![R μνρσ(Γ ) = 2∂[μΓ ν]ρσ + 2 Γ [μ|λσΓ |ν]ρλ . (1.27)](misprints0x.png)
![R = 1 *∇ *T ρ + 1R ρ . (1.34)
[μν] 2 ρ μν 2 μνρ](misprints1x.png)
The missing term vanishes for metric-compatible connections. (Thanks to Bert Janssen for pointing this missprint to us.)
![ρ ( λ ρ) ( λ ρ) ( ρ λ) λ ρ σ ρ
L ξTμν = ∇ μ ξ T λν + ∇ ν ξ T μλ - ∇ λ ξ T μν - 3 ξ R[λμν]+ ξ ∇ σTμν . (1.37)](misprints2x.png)

(Thanks to Gregory Giecold for this one).
We can immediately define the dual basis of 1-forms {ea = ea μdxμ} defined by...
![[ ]
ω ′c = Λc ω d( Λ-1)f - (Λ -1)d ∂ Λc (Λ -1)e . (1.78 )
ab d ef b b e d a](misprints4x.png)
(Thanks to Gregory Giecold for this one).

(Thanks to Masoud Soroush).


The last equation can be rewritten in the form
![∇ ∇ k = - 1[∇ ,∇ ]k - 1[∇ ,∇ ]k ,
(α β) γ 2 α γ β 2 β γ α](misprints8x.png)
and, using the Ricci identities for the l.h.s.

Now, using the Bianchi identities for the metric-compatible torsinless curvature we get

Combining this equation with the Ricci identity
![1 λ 1 λ
∇ [α ∇β]kγ = - 2kλR αβγ = 2 kλR γαβ ,](misprints11x.png)
we get Eq. (1.108).


![ρ⋅⋅⋅ρ σ σ
g 1 (d-n)σ1⋅⋅⋅σ(d-n) = g[ρ1 1 ⋅⋅⋅g ρ(d-n)] (d-n)
| |
| gρ σ1 ⋅⋅⋅ gρ σ(d-n) |
|| 1 1 || (1.115)
= --1-- || . . . ||
(d-n)!| .. .. .. |
||g σ1 ⋅⋅⋅ g σ(d-n)||
ρ(d- n) ρ(d-n)](misprints14x.png)
Another important case is when k = p + 2 and F(k) is the field-strength of
the potential A(p+1), so F(p+2)μ1
μ(p+2) = (p + 2)∂[μ1A(p+1)μ2
μ(p+2)].
![⋆Fμ ⋅⋅⋅μ = (˜p + 2)∂[μ ˜A(˜p+1)μ⋅⋅⋅μ ].
1 (˜p+2) 1 2 (˜p+2)](misprints17x.png)

(Thanks to Diego Blas)
We can also take the divergence of the tensor and contract it with the volume
element dd-n+1Σ
μ1
μn-1.
