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interpretar la f́ısica en las matemáticas. Gracias por haberme acogido unos meses en
Saclay, por introducirme en el mundo de las microstate geometries y por estar siempre
disponible para discutir.

A Patrick Meessen, por haber sido una especie de segundo tutor. Por compartir el
campo de batalla de la supergravedad no abeliana y, alguna vez, parar para tomar una
cerveza o hablar de videojuegos. Siempre es agradable tenerte por el IFT.
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Además de los ya mencionados, quiero agradecer a todos los buenos f́ısicos con
quienes he tenido la oportunidad de discutir o simplemente de escuchar y aprender en
mayor o menor medida. En especial me gustaŕıa mencionar a Jesús Ávila, José L. F.
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seáis unos tarugos. Y a los que han venido con vosotros, Paca, Eva, Gordana, Nico y Alicia.
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Abstract

This thesis is devoted to the study of the interaction of non-Abelian Yang-Mills fields
with the gravitational field in the context of String Theory and its low energy effective
supergravity description. While this type of interactions has been considered for decades
within several theoretical frameworks, limited progress has been made, especially when
compared to the knowledge we have of the interaction of Abelian fields and gravity. The
main reason for that is the complexity of this sort of systems; the differential equations
that govern the dynamics of both, gravitational and non-Abelian Yang-Mills fields, are
highly non-linear and their resolution represents a formidable problem.

The complexity of these systems, however, can be reduced through the restriction to
supersymmetric solutions. This type of solutions, which include extremal black holes, have
very special properties. Nevertheless, a great deal of information can be acquired from
them. In particular, not only we can learn about the properties of the classical interaction
between the corresponding fields and gravity, but it is also possible to glimpse the quantum
nature of certain gravitational systems. The “three-charge” Abelian black hole constitutes
the most popular example. This system of String Theory can be understood both as
a supersymmetric solution of N = 1 five dimensional supergravity and as a quantum
ensamble in which gravity plays no role. One of the greatest achievements of this theory
is precisely the computation of the entropy of this black hole from these two perspectives
with identical result.

The main result of this thesis is the construction of “three-charge” non-Abelian black
holes in supergravity and its interpretation in String Theory. In its turn, this allows for
the microscopic computation of its entropy, which at the same time implies the resolution
of the non-Abelian hair puzzle in this type of black holes.

Another prominent result of this thesis is the development of a solution generating
technique that allows for the construction of many other families of non-Abelian gravi-
tating solutions in supergravity. Their interpretation in terms of fundamental objects of
String Theory has only just started.
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1
Introduction

1.1 Black Holes

Few concepts attract as much interest as that of a black hole: a region of spacetime
from which not even light can escape. Any process inside the black hole cannot have
any influence on the outer region, while external observers can never find out about these
events unless they choose to fall in. Certainly this idea, together with associated notions
as the event horizon or the always mysterious singularity, is not only inherently beautiful,
but also has been proven to be extraordinarily powerful in the advance of modern physics.

Probably the most important fact about black holes is that, despite their extremely
exotic physical properties, they actually seem to exist in nature. They have not been
observed directly yet, although numerous indirect observations have provided a large body
of evidence1. Among those, the most impressive are the direct detection of gravitational
waves from merging black holes by the LIGO collaboration [1–3], or the motion of almost
100 stars orbiting Sagittarius A*, what is believed to be a supermassive black hole of
4.3×106 M� located near the center of our galaxy [45,96,101]. Experimental observations
are going to improve both qualitatively and quantitatively in the forthcoming decades.
ESA’s Laser Interferometer Space Antenna, the Event Horizon Telescope or the already
mentioned LIGO collaboration, among others, might be able to perform precision tests to
explore the near-horizon region of black holes.

We are thus witnessing the birth of a new era in gravitational physics in which
theory will confront experiments in an unprecedented scenario. And it is precisely in
that scenario in which novel phenomena might take place. According to the theory of
General Relativity, the event horizon has no local significance. For a big enough black
hole, the Equivalence Principle dictates that an infalling observer would not experience any
particular gravitational effect when crossing its horizon. On the other hand, the absence
of a complete theory of quantum gravity undermines any prediction one could do about
the physics in that regime. To make further progress, we shall be precise about what a
black hole is2,3.

1See for instance [161,186] for general references about astrophysical evidences for the existence of black
holes.

2Actually, we can be precise about what we mean by black holes in a particular context. The true
nature of these physical objects remains, of course, far from understood.

3Many of the contents in this section are based on [87,118,152,171,175,212,213].
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Chapter 1. Introduction

1.1.1 Definitions

In order to make a rigorous definition of the classical notion of black hole, one must first
elaborate what it means to escape from a region of spacetime. The concept of asymptot-
ically flat manifold introduced by Penrose [176] is useful for that purpose, and requires
prior definitions.

In terms of the conformal structure of spacetime, infinity can be treated as the
ordinary boundary of a finite conformal region. A manifoldM with Lorentzian metric g,
i.e. a spacetime (M,g), is asymptotically simple if there exists a new spacetime (M̃, g̃)
with boundary ∂M̃ such that

• M can be embedded in M̃ \ ∂M̃ with pullback metric g̃∗ = Ω2g.

• Ω|M > 0, Ω|∂M̃ = 0 and ∂µΩ|∂M̃ 6= 0.

• All null geodesics in M begin and end at ∂M̃.

(M, g̃∗) is said to be a conformal compactification of the original spacetime4 and
M̃ is called the conformal Penrose space. Minkowski space or generic spaces containing
bound objects that have not collapsed such as planets or stars are asymptotically simple.
Penrose proved that asymptotically simple spaces satisfying Einstein’s vacuum equations
(without cosmological constant) have the global structure of Minkowski and do not allow
for black holes, since those contain null geodesics that do not have endpoints in ∂M̃. To
include those into consideration, we need to introduce a more general concept.

A spacetime (M,g) is said to be weakly asymptotically simple if there exists an
asymptotically simple space (M̃, g̃) such that for a neighborhood Ũ of ∂M̃, the space
Ũ∩M̃ is isometric to a subset ofM. The basic idea is that a weakly asymptotically simple
space can be converted into an asymptotically simple space by “cutting out” some inner
regions and “patching” smoothly the resulting “holes”. A weakly asymptotically simple
space is asymptotically flat if its metric g is a solution of Einstein’s vacuum equations in
the neighborhood Ũ of the boundary. In an asymptotically flat space there is a region in
which, at leading order, Minkowski geometry is recovered.

We can formally define a black hole as the region B of an asymptotically flat space-
time such that

B ≡M \ J−(J +) , (1.1)

where J−(J +) denotes the chronological past of J +; that is, the set of points in M
traversed by a future directed causal curve connecting it with the subset of the boundary
∂M̃ where null geodesics can end, known as the future null infinity J +. In other words,
J−(J +) represents the region of spacetime casually connected to asymptotic infinity. The
boundary of J−(J +), which of course coincides with that of B, is called event horizon.

Notice that complete knowledge about the history of spacetime is required to de-
termine the location of a putative event horizon, which possesses no intrinsically local
significance. Then, this cumbersome definition is hard to exploit when analyzing general
spacetimes. For most practical purposes, the rigidity theorems developed by Carter and
Hawking [60,118] are of crucial importance. Once again, we need some definitions before.

4Even if the third condition does not apply.
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Chapter 1. Introduction

An asymptotically flat spacetime is stationary if there exists a one parameter group
of isometries with an associated Killing vector field kα that in the asymptotic region
becomes a unit timelike vector field5. When there exists a family of spacelike hypersurfaces
orthogonal to the Killing vector field, the spacetime is also static.

The rigidity theorems state that the event horizon of any stationary black hole must
be a Killing horizon, i.e. a null hypersurface whose null generators are given by the orbits
of a Killing vector lα. For static black holes this vector coincides with kα at the event
horizon. On the other hand, if the horizon is rotating, there exists another Killing vector
field mα such that lα = kα + ωhm

α, where ωh is the angular velocity of the horizon.
The domain of outer communication, i.e. the complement region to the black hole (B̄),
can then be argued to have an axial symmetry generated by mα. Therefore, the rather
abstract original definition is related to a more useful concept in a wide variety of cases of
interest.

1.1.2 Conserved quantities

The concept of energy and its associated law of conservation has played a prominent
role in most physical theories. The modern approach that results from Noether’s (first)
theorem [168] states that the law of conservation of energy is a mathematical consequence
of the fact that the laws of physics do not change with time. In a special relativistic theory
of fields, the associated energy-momentum tensor Tµν satisfies the equation

∂µT
µ
ν = 0 . (1.2)

This leads to a law of conservation for the quantity E =
∫

Σ Tµνn
µtν , where tµ is the Killing

vector associated to time translations and Σ is a spacelike surface with unit normal vector
nµ.

However it is well-known that in the framework of General Relativity, or other
generally covariant metric-based theories of gravity, there is no appropriate notion of
energy density. Still, there is an energy-momentum tensor characterizing matter and its
local energy density associated by a given observer remains well defined. This can be
easily seen. Notice that general covariance transforms the above equation (1.2) into

∇µTµ ν = 0 . (1.3)

By virtue of the Equivalence Principle the connection can be made trivial locally, recover-
ing the special relativistic expression and its associated conservation law. But (1.3) does
not in general lead to a global conservation law. This should not be surprising. One would
expect the appearance of some “gravitational energy” contribution to the total energy, but
Tµν contains information only about the matter content. Precisely, this is the physical
reason why we can only define an energy density in a preferred system of coordinates that
makes the “gravitational field” disappear locally. The situation gets even more puzzling
when we take into consideration that there is no meaningful notion of gravitational energy
density. Indeed, the gravitational energy-momentum tensor that can be constructed using
Noether’s theorem is not unique [171]. We could try to gain some insight by comparison

5The Killing vector field cannot be assumed to be timelike everywhere, however, since this would forbid
the existence of ergoregions.
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Chapter 1. Introduction

with Newton’s theory, where gravitational energy density is related to the gradient of the
potential. However, that would imply the construction of the candidate tensor using just
the metric and their first derivatives, which cannot be done unless a privileged coordinate
system is defined6.

The absence of a fully general-covariant gravitational energy-momentum tensor
seems to unavoidably imply that gravitational energy cannot be localized; only the to-
tal energy of spacetime can be well defined. Although there is not a unique manner to
characterize global conserved quantities in general, in the case of asymptotically flat space-
times the different approaches produce the same result [7]. Probably the most popular
constructions are the Arnowitt-Deser-Misner (ADM) mass [6] and the Komar mass [141],
which is defined for stationary configurations. The Komar mass formula can be deduced
from physical principles, [212], although a more straightforward derivation is obtained by
considering the asymptotic expansion of the gravitational field around a background met-
ric, followed by the construction of the Noether current associated with the background
timelike Killing vector. This results in the expression [164]

M = − 1

16πG
(d)
N

d− 2

d− 3

∫
∂Σ
dd−2Σµν∇µkν , (1.4)

being kµ the timelike Killing vector and Σ a spacelike hypersurface extending to infinity.
We can immediately apply this formula to the simple case of Schwarzschild-Tangerlini
solution,

ds2 =
(

1− ω

rd−3

)
dt2 −

(
1− ω

rd−3

)−1
dr2 − r2dΩ2

(d−2) , (1.5)

to obtain

M =
(d− 2)ω(d−2)

16πG
(d)
N

ω , with ω(d−2) ≡
2π

d−1
2

Γ
(
d−1

2

) . (1.6)

This expression provides a simple way of obtaining the mass of any asymptoti-
cally flat spacetime that we will use through the text. Indeed, we can just preform the
asymptotic expansion of the corresponding metric and identify the coefficient ω from the
gtt metric component, with the understanding that t and r are respectively a coordinate
adapted to the timelike Killing vector and a coordinate with constant value at the horizon.

A similar discussion with analogous conclusion can be raised about the definition of
angular momentum; a value can be assigned only for the global angular momentum. We
will skip a deep analysis and directly give a practical computational method. When more
than four dimensions are considered there is the possibility of rotation in several indepen-
dent planes. This can be seen from the fact that the Cartan subgroup of SO(d − 1) is

U(1)b
d−1

2
c. This basically means that, among all possible spatial rotations in d-dimensional

Minkowski space, there are bd−1
2 c which commute and are, therefore, independent. The

different angular momenta are the Noether charges associated with these Killing vectors
of Minkowski space, considered as the background metric in the weak field asymptotic
expansion, gµν = ηµν + hµν .

6Another possibility is to consider the decomposition of the metric into a background and a dynamical
part, as it is done in the linearized approach.
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Chapter 1. Introduction

In order to find their values, it is convenient to use a coordinate system in which
these independent rotations take place in manifestly independent planes. The background
metric can be written as

ds2
b = dt2 − dr2 − r2

b d−1
2
c∑

i=1

(
dµ2

i + µ2
i dφ

2
i

)
+ dz2δd mod 2

0 , (1.7)

where the last term is only present when d is even and µi are the “direction cosines”,
satisfying

∑
i µ

2
i + δd mod 2

0 z2/r2 = 1. Euclidean coordinates on the independent rotation
planes are recovered with the identification (xi, yi) = (rµi cosφi, rµi sinφi). The associated
angular momenta are7 [164]

Ji = − lim
r→∞

ω(d−2)htφir
(d−3)

8πG
(d)
N µ2

i

. (1.8)

1.1.3 Laws of classical black hole mechanics

We discussed above that the event horizon of stationary black holes is a Killing horizon,
whose normal Killing vector we denote as kµ. Along the horizon we have gµνk

µkν = 0, so
it is clear that the vector8 ∇µ (kνkν), if it does not vanish, must be normal to the Killing
horizon. In turns this means that it is proportional to kµ,

∇µ (kνkν) |H = −2κkµ|H . (1.9)

The scalar κ is known as surface gravity, because it corresponds to the asymptotic force
per unit mass that would have to be exerted to hold a point like particle at the horizon.
When κ 6= 0 the Killing horizon is bifurcate and, when κ = 0, it is a degenerate Killing
horizon.

The zeroth law of black hole mechanics states that the surface gravity is constant
over the horizon [10]. This observation constitutes a first analogy between a black hole
and a thermodynamical system in equilibrium, which has the same temperature at any
point. But, in fact, the temperature of a classical black hole is absolute zero. It cannot
be in equilibrium with a thermal bath, as it absorbs radiation but does not emit any. So
at this stage this analogy could be seen as a mere coincidence. However, the scenario gets
more confusing as one goes deeper.

The first law of black hole mechanics provides a relation between the changes in the
mass, area, angular momenta and other conserved charges,

δM =
κ

8πG
(d)
N

δAH + ωhδJ + . . . (1.10)

Additional terms containing information about the matter content may be included. For
example if the black hole is electrically charged the term (φhδQ) must be included, φh

7Notice that for this expression to be well defined htφi can be at most of order r−(d−3).
8It is evident that in this expression the covariant derivative can be replaced by a simple partial

derivative, we just use this notation to emphasize that the combination is a tensor.
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Chapter 1. Introduction

being the value of the electrostatic potential at the horizon and Q the electric charge9.
The validity of this law depends only on general properties of diffeomorphism invariant
theories [130].

The second law of black hole mechanics indicates that the area of the event horizon
of a black hole spacetime does not decrease with time

δAH ≥ 0 . (1.11)

Although this fact might seem obvious from the definition of classical black holes, the
rigorous proof is subtle [115]. This relation can actually be applied to non-stationary
solutions, such as those describing the merging of black holes, in which case the horizon
can only be defined by means of the rather abstract expression (1.1).

Inspired by these ideas a third law of black hole mechanics was conjectured, indicat-
ing that it should be impossible to reduce the surface gravity of a black hole to zero value
by a finite sequence of operations, no matter how idealized [10].

These relations suggest that there are two quantities in black holes, the surface
gravity and the horizon area, that behave like the temperature and entropy of the system
in some aspects. Still, the identifications κ ∼ T and AH ∼ S result rather odd: in
thermodynamical systems, having finite temperature means radiating energy while entropy
usually scales with the volume, not the area. In a parallel line of research, few months
before the laws of classical black holes were stated, Bekenstein suggested that in order to
prevent a violation of the second law of thermodynamics, black holes should have a well-
defined entropy proportional to the event horizon area [16]. He provided an extraordinarily
simple and beautiful argument based on the area increase of a black hole’s horizon as it
captures a beam of thermal radiation, noticing that it is of the order of the value of the
entropy of the beam. Bekenstein’s arguments supported the identification AH ∼ S as a
consequence of the second law of thermodynamics, which in turn implies that κ ∼ T via
the first law of thermodynamics and (1.10). But, how can a black hole have non vanishing
temperature? And what are the microscopic degrees of freedom responsible of having a
non vanishing entropy?

1.1.4 Hawking radiation and the Information Paradox

In 1974 Hawking published a stunning result: black holes radiate as perfect black bodies
with temperature

T =
~κ
2π

. (1.12)

The result was found performing a semiclassical analysis with quantum fields propagating
in a fixed background geometry describing the gravitational collapse of a black hole [116,
117]. The presence of an event horizon produces the Hawking radiation, although the
backreaction of the radiation on the geometry was not considered. The original derivation
considered that the quantum field is in its vacuum state before the collapse and computed
the particle content of the field at infinity at late times. The result has been generalized to
include arbitrary regular initial states of the quantum field and it has been checked that

9Also it has been shown that dipole terms make appearance in higher dimensional theories [67,80], with
the Chern-Simons terms in the action playing a crucial role.
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Chapter 1. Introduction

the density matrix describing asymptotic radiation completely agrees with black body
emission [211].

It has been proposed that the physical process giving raise to Hawking radiation is
the creation of Schwinger pairs in strong background fields [87,190], rather than quantum
tunneling across the horizon. Schwinger carried out his original work for electric fields and
observed that the background field can give energy to a virtual pair of particles, separating
them. This effect causes the spontaneous discharge of charged bodies in vacuum and,
interestingly, it was signaled as responsible of the discharge of Reissner-Nordström black
holes before Hawking’s discovery [150]. In the case of the gravitational field, all kinds of
particles are produced as a consequence of the universal coupling of gravity to all forms
of energy.

The discovery of Hawking radiation removed the last theoretical obstruction to a
complete identification of black holes as thermodynamical systems. At the same time it
made precise the identification of entropy and area,

S =
AH

4~G(d)
N

. (1.13)

As black holes radiate, they lose mass and their entropy decreases. This indicates that the
second law of black hole mechanics is purely classical and does not hold when quantum
effects are taken into account. However it can be proven that the total entropy, corre-
sponding to the black hole and the outgoing radiation, never decreases, giving rise to the
concept of generalized second law of thermodynamics [17].

These results seem to indicate that stationary black holes are thermal states of the
quantum gravitational field and the laws of classical black hole mechanics are simply the
result of the application of the ordinary laws of thermodynamics to this type of systems.
There are still, however, two unresolved key issues in the area of black hole thermodynam-
ics that lie at the very heart of quantum gravitational physics and should be explained by
any candidate theory of quantum gravity:

• The black hole information paradox. The Schwinger pairs that appear at the
vicinity of the horizon are entangled. This means that as the evaporation process
goes on, the outgoing radiation is entangled with the interior of the black hole. In
a simple approximation in which the particles created have two possible states the
magnitude of this effect can be quantified to yield an entanglement entropy of the
order

Sentanglement ∼ N ln 2 , (1.14)

Where N is the number of pairs that have been created. When the black hole
evaporates completely the final state has a huge associated entanglement entropy,
but there is nothing left for these particles to be entangled with. This means that
it is not possible to describe the final system as a product state; a density matrix
must be used instead. Now one can consider the complete evolution history of a
mass distribution which initially is in a pure (product) state, collapses into a black
hole and completely evaporates, resulting in a mixed state. This sort of evolution
cannot be described by the action of a unitary operator on a Hilbert space. That is
the basis of the famous problem known as the black hole information paradox, since
it seems that the information about the original state has been lost. There are three
different approaches to attack this problem:
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1. In the first approach it is postulated that a complete theory of quantum grav-
ity must preserve unitarity. In this scenario the information paradox is just
an illusion caused by the fact that black hole evaporation is a process that the
semiclassical analysis captures only rudimentarily. In the full quantum compu-
tation of the gravitational collapse and the subsequent evaporation, Hawking
radiation would carry the information about the original state. The absorp-
tion and radiation of matter and energy by a black hole is not different to any
standard scattering experiment. Nowadays, this is the most popular manner to
approach the paradox.

2. The second possibility is to consider that, in contrast to other physical phe-
nomena, the theory of quantum gravity is non-unitary. The information of
the original state that produced the black hole is simply lost, since Hawking
radiation carries no information as the black hole evaporates until completely
disappearing.

3. The third option suggests that the evaporation process stops at some point
leaving a remnant with which the outgoing radiation is entangled. Hawking’s
computation requires that the region surrounding the event horizon has low
curvature (in Planck’s units), so the possible effects of quantum gravity can
be neglected. It is clear that this condition will eventually be violated as the
black hole becomes smaller and one can speculate with the possibility that
quantum gravity effects prevent black holes from disappearing. Notice that such
a remnant can be entangled with the outgoing radiation with Sentanglement ∼
N ln 2 only if the number of possible states of the object is at least of order
N . Thus it seems that such remnants would have unbounded degeneracy even
though their mass and size is, by definition, bounded by the scale at which
quantum gravity effects become relevant. While this does not constitute a
violation of quantum mechanics per se, still differs from usual expectations of
any physical system.

It is important to emphasize that, contrary to a quite extended belief, Hawking’s
paradox is a deep problem and the evaporation process cannot describe unitary
evolution by the inclusion of subleading corrections. Actually Mathur has recently
shown that this would be possible only when the evolution process is altered by order
one corrections, see [152]. That is suggesting a striking result: a unitary quantum
theory of gravity might modify physical processes drastically at the event horizon
scale.

• Microscopic origin of entropy. Birkhoff’s theorem [39] established that the
only stationary, spherically symmetric solution of Einsteins vacuum equation Rµν =
0 is Schwarzschild’s. Another solution of these equations is the Kerr black hole,
which preserves axial symmetry and is characterized by its mass M and its angular
momentum J . Also when other fields are coupled to gravity it is natural that the
associated conserved charges10, collectively denoted as Q, label stationary solutions,
as is the case of Reissner-Nordström.

Beyond that, there must necessarily be other black hole solutions describing non-
stationary systems, which include the gravitational collapse of stars or the evolution

10Scalar fields do not have a conserved charge, while Abelian vector fields conserve their monopole
momentum.
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of perturbations on any of the stationary solutions already mentioned. Since there
are many states in which a star can be or the variety of conceivable perturbations
is huge, one might hope that these give rise to many different black holes labeled
by the same conserved charges. On the contrary, the analysis of perturbations of
gravitational collapse in General Relativity shows that, independently of the initial
state and the peculiarities of the perturbations, these always decay and the final con-
figuration is fully described by the conserved quantities M , J and Q. All the higher
multipole momenta of the gravitational and matter fields are radiated away. More
generally, it has been shown that this conclusion is valid beyond the perturbative
regime. These results are known as uniqueness theorems [18,59,128,129], giving rise
to the no-hair conjecture that states that stationary black holes cannot have other
characteristics different from M , J and Q.

In standard statistical thermodynamics the entropy is related to the number of
microscopic states, or microstates, of a system in equilibrium described by a reduced
set of macroscopic variables. In black hole physics, those variables are the global
conserved quantities M , J and Q, and one should be able to construct a huge number
of microstates reflecting the degeneracy of such system. However, the uniqueness
theorems prevent that construction within the framework of General Relativity and,
probably, within more general classical field theories of gravity. We can get an idea
of the magnitude of that problem considering that the number of microstates of a
standard astrophysical black hole is of the order of 101080

, while we only are capable
of constructing one classical solution describing this system. This is the essence of
the black hole entropy problem, that constitutes, by far, the largest computational
discrepancy in the history of theoretical physics. The solution of this tremendous
problem needs the use of quantum gravity tools.

1.2 Supergravity and String Theory

The previous section closed with an exposition of the information and entropy problems
that appear when one tries to do quantum mechanics in classical black hole backgrounds.
String Theory is, probably, the only consistent theory of quantum gravity that can be
used to face these problems at present. Actually, one of its major successes has been the
microscopic computation of the entropy of certain families of simple black holes. In this
thesis we perform this identification for a special solution containing non-Abelian fields.
On the other hand, the details associated to the information paradox remain unclear.
Several proposals have been made and we will make some comments about this topic in
Chapter 6 in the context of the Fuzzball proposal.

The aim of this section is to describe the theories of supergravity that we will study
in forthcoming chapters and to characterize their supersymmetric solutions. These are
N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theories and, in Chapter 2, their lower
dimensional counterpart N = 2, d = 4 SEYM. Some theories of supergravity describe
low energy limits of String Theory. One of the main results of this thesis is precisely
the explicit identification of some SEYM theories as such: they can be obtained from the
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compactification of N = 1, d = 10 heterotic supergravity on T 5, the low energy limit of
Heterotic String Theory, see Chapters 7 and 8.

We follow a top-bottom approach, starting with an extremely brief description of the
highlights of String Theory and following with a general characterization of its low energy
supergravity approximation. Afterwards, we introduce Kaluza-Klein compactification as
a technical tool which will be used through the text. The lower dimensional theories of
supergravity obtained from this dimensional reduction are then presented and we then
show how SEYM theories are constructed as gauged supergravities. We continue with
an overview description of the method that we use to obtain supersymmetric solutions of
general theories. We finish this introductory chapter with a discussion about black holes
in String Theory.

1.2.1 Perturbative String theory

String theory is a presumably consistent theory of quantum gravity that still lacks a fully
satisfactory formulation. The standard approach to define it has a perturbative nature and
is based on the quantization of the dynamics of a relativistic string propagating in a given
background. This worldsheet formulation turns out to be very powerful, since it allows
not only for the calculation of the perturbative spectrum but also for the description
of some of the non-perturbative states: the D-branes. However, the extended objects
that appear in String Theory, which are generally called p-branes being p its spacelike
dimensionality, are related among each other by dualities so it would be desirable to have
a formulation of the theory in which all the fundamental objects are treated in the same
way. Unfortunately, we only know how to quantize particles and strings and so far we have
had to content ourselves with a worldsheet formulation that, nevertheless, has been proven
to be extraordinarily effective, specially when complemented with the insights that the low
energy effective actions of supergravity provide. For instance, much of the information we
have learned about non-perturbative objects has been acquired in this manner.

A free (super)string propagating in Minkowski space is described by the Ramond-
Neveu-Schwarz action [166,185]

SRNS = − 1

4πα′

∫
Σ
d2ξ

[
ηij∂iX

µ∂jXµ − iψ̄µ/∂ψµ
]
, (1.15)

that has to be supplemented with the equations of motion of the worldsheet metric γ
and the gravitino φ fields, that have been previously eliminated from the action using
symmetries [106, 178]. The boundary term that results from the variation of the above
action for open strings is not trivial. In order to eliminate it, boundary conditions must
be imposed. For the bosonic fields Xµ there are two possibilities:

• Neumann boundary conditions, that preserve Poincaré invariance in the target target
space. They impose that no momentum flow beyond the end of the strings,

ni∂iX
µ|∂Σ = 0 , (1.16)

where ni is a unit vector normal to the boundary of the worldsheet ∂Σ.

• Dirichlet boundary conditions. These break Poincaré invariance by requiring that
the endpoint of the string has a fixed position in some directions. They imply
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momentum is flowing through the endpoints.

ti∂iX
µ|∂Σ = 0 , → Xµ|∂Σ = cµ . (1.17)

being ti a unit tangential vector to the boundary. These conditions explicitly break
translation invariance and only allow the string’s endpoints to move on (p + 1)−
dimensional timelike hypersurfaces. These hypersurfaces correspond to the world-
volume swept by D-branes. This is precisely the way in which Dp-branes, non-
perturbative fundamental objects, are captured by the perturbative formulation.

Boundary conditions have to be imposed on the fermionic fields ψµ as well. In
this case the left- and right-moving components ψµ± must be identified at the endpoints
ξ1 = 0, 2πl. Once again, there are two possibilities

• Ramond (R) boundary conditions,

ψµ+(ξ1 = 0) = ψµ−(ξ1 = 0) , ψµ+(ξ1 = 2πl) = ψµ−(ξ1 = 2πl) . (1.18)

• Neveu-Schwarz (NS) boundary conditions,

ψµ+(ξ1 = 0) = ψµ−(ξ1 = 0) , ψµ+(ξ1 = 2πl) = −ψµ−(ξ1 = 2πl) . (1.19)

For closed superstrings there is no boundary but we can choose between four different
possibilities (two for left- and two for right-moving componentes) for the periodicity of the
fermions,

• Ramond (R) periodic conditions,

ψµ±(ξ1 = 0) = ψµ±(ξ1 = 2πl) . (1.20)

• Neveu-Schwarz (NS) antiperiodic conditions,

ψµ±(ξ1 = 0) = −ψµ±(ξ1 = 2πl) . (1.21)

The quantization of the superstring action proceeds in the canonical manner, solving
the equations of motion taking into consideration the boundary and periodicity conditions
(if applicable) and promoting Poisson brackets to commutators and superspace variables to
operators. See [14,178] for detailed and careful expositions. Notice that imposing different
boundary and periodicity conditions we are actually realizing the quantization on different
backgrounds with distinct degrees of freedom. This is why, in the perturbative analysis,
one distinguishes between different String Theories. However these, in principle, different
theories have been found to be connected through the action of non-trivial relations known
as dualities, reflecting the extraordinary beauty and depth of String Theory. We will make
some comments about dualities in the next subsection.

Superstring Theories can only be quantized preserving Poincaré invariance in d = 10
dimensions. Self consistency and absence of tachyons and negative norme states is only
possible for very precise combinations of periodicity and boundary conditions through
the GSO projection. As a result, 5 different theories are usually distinguished: type I,
type IIA, type IIB, heterotic SO(32) and heterotic E8 × E8. Type I and the heterotics
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have N = 1 spacetime supersymmetry while type II have N = 2, which means they are
invariant under 16 and 32 independent supersymmetry transformations respectively. The
type IIA has non-chiral fermions, while the type IIB is chiral. The gauge groups SO(32)
and E8×E8 in the two heterotic theories correspond to the anomaly-free gauge groups that
arise from the compactification of 16 extra spacetime dimensions that are only accessible
to bosonic string excitations.

Before moving to the next subsection, let us include a brief comment about the na-
ture of strings interactions. Strings can basically split and join. To compute an amplitude
one has to evaluate the path integral summing over all possible classical paths,

Z =

∫
DXDψDγDφe−SRNS−SE , (1.22)

where, besides the Ramond-Neveu-Schwarz action, the following topological term that
does not modify the classical equations of motion is included

SE = −φ0

4π

∫
d2ξ
√
|γ|R(γ) , (1.23)

This term is simply the vacuum expectation value of the dilaton, a massless state present
in all consistent String Theories, times the Euler characteristic of the worldsheet11. Then,
the path integral can be decomposed into a sum of path integrals over worldsheets Σt with
different topologies t,

Z =
∑
t

(
eφ0

)−χ(t)
∫
{Σt}
DXDψDγDφe−SRNS,Σt . (1.24)

This expression can be understood as a perturbative series expansion in the string cou-
pling constant gs ≡ eφ0 . Each possible worldsheet topology enters in the expansion at
order −χ(t) in the coupling constant. For a fixed topology, the reduced path integral
receives larger contributions from lower energy excitation states, and one can think of it
as another perturbative expansion with parameter α′. It can be described as an expansion
in “stringiness” about the point-particle limit [14]. Therefore perturbative String Theory
can be understood as a simultaneous double expansion in two different parameters.

1.2.2 Low energy effective actions and dualities

For each String Theory we can construct an effective field theory action12 capturing its
low-energy dynamics. This is done by taking the α′ → 0 limit, which in practice means
we are neglecting the string length to recover a field theory. Since the mass of the string
modes is proportional to 1/

√
α′, only the massless modes of each theory are relevant in

this limit. The proper way to find this field theory involves the construction of the action
that reproduces the string amplitudes for the massless modes in the α′ → 0 limit. In
principle the effective action is given by an expansion in α′, but only the terms of lowest
order are usually considered.

11This is given by χ = 2 − 2g − b − c, where g is the genus, b is the number of boundaries and c is the
number of crosscaps (which is zero for oriented surfaces).

12Actually for type IIB the best we can do is to construct an effective pseudoaction that must be
complemented with a self-duality restriction for the 5-form field strength.
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Surprisingly, the low energy effective actions constructed in this manner can be ob-
tained straightforward using supersymmetry arguments13. Actually, the fields associated
to the massless modes of the type II theories correspond to the only two supergravity
multiplets (chiral and non-chiral) of N = 2 in ten dimensions. On the other hand, there is
only one possible supergravity multiplet with N = 1, which gives the effective action of the
heterotic and type I theories when it is coupled to vector multiplets with the appropriate
gauge group. We should point out that these theories of supergravity were found before
the advent of String Theory.

Theory NSNS RR Vectors Chiral fermions Non-chiral fermions
Type I gµν , φ C2 AIµ ψµ, λ

Type IIA gµν , Bµν , φ C1, C3 ψµ, λ
Type IIB gµν , Bµν , φ C0, C2, C4 ψiµ, λi

Heterotic gµν , Bµν , φ AIµ ψµ, λ

Table 1.1: Fields associated to the massless modes of the String Theories

The fields of the effective theories are given in table 1.1. We will not pay much
attention to the fermionic fields, and, from now on, we will only describe the bosonic
content and set to zero all fermions for simplicity. This is always a consistent truncation
in theories of supergravity14. The NSNS fields include the metric gµν , the dilaton φ and
the Kalb-Ramond 2-form Bµν , except for the type I in which the latter is absent (although
there is a 2-form in the RR sector that plays a similar role in the action). These fields are
sometimes called the common sector, as they occur in all theories. They appear in the
action as follows15

Scs =
g2
s

16πG
(10)
N

∫
d10x

√
|g|e−2φ

[
R− 4∂µφ∂

µφ+
1

2 · 3!
HµνρH

µνρ

]
, (1.25)

where H = dB. This expression for the field strength gets modified in heterotic theories
when Yang-Mills fields are included, as we will shortly see. The action has been presented
in the string frame, which refers to the fact that the Ricci scalar appears multiplied by
the exponential of the dilaton. This factor can be understood as being associated to
the genus-0 term in the quantum expansion of the string’s worldsheet. An appropriate

conformal transformation, gµν = e
φ
2 gEµν , can eliminate this factor and take us to the

Einstein frame. We also define a modified Einstein frame, which is obtained with the

conformal transformation gµν = e
φ−φ0

2 g̃Eµν , and guarantees the transformed metric is
asymptotically flat if the original string metric is.

The most remarkable fact about the action (1.25) is that String Theories contains
General Relativity in their low energy limit. Their consistent quantization not only re-
quires the existence of gravity, but also indicates that it is described by Einstein’s theory
at low energies.

Let us present the remaining terms that complement the above action. For type II
theories we have to include the RR sector. In the type IIA theory the additional fields

13Perhaps not so surprisingly, as supersymmetry imposes strong constraints in the possible theories that
can be constructed.

14We refer to [14,171] for information about the fermions in these theories.
15In type I supergravity the coupling between fields is different, see (1.28).
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enter as

SIIA =
g2
s

16πG
(10)
N

∫
d10x

√
|g|

[
−1

4
(G2)2 − 1

2 · 4!
(G4)2 − 1

144

1√
|g|
ε∂C3∂C3B

]
, (1.26)

with G2 = dC1, G4 = dC3−H ∧C1 and H = dB. We have omitted antisymmetrized con-
tracted indices for notational simplicity. The type IIB supergravity pseudoaction includes
the terms

SIIB =
g2s

16πG
(10)
N

∫
d10x

√
|g|

[
1

2
(G1)

2
+

1

12
(G3)

2
+

1

4 · 5!
(G5)

2 − 1

192

1√
|g|
ε∂C4∂C2B

]
(1.27)

and is supplemented with the selfduality condition ?G5 = G5, with the field strengths
defined as G1 = dC0, G3 = dC2 − C0H and G5 = dC4 − 1

2C2 ∧H + 1
2B ∧ dC2.

We write the complete bosonic action of the heterotic supergravities, since they play
a prominent role in this thesis,

Sh =
g2
s

16πG
(10)
N

∫
d10x

√
|g|e−2φ

[
R− 4∂µφ∂

µφ+
1

2 · 3!
HµνρH

µνρ − α′F I µνF I µν
]
.

(1.28)

The field strengths are given by F I = dAI + 1
2f

I
JKA

J ∧AK and H = dB+2α′ωCS , where
ωCS is the Chern-Simons 3-form defined as ωCS = F I ∧ AI − 1

3!fIJKA
I ∧ AJ ∧ AK . The

gauge group of the vector multiplets can be SO(32) or E8 ×E8, with structure constants
generically written as fIJ

K .

The last effective action is that of type I, which is

SI =
g2
s

16πG
(10)
N

∫
d10x

√
|g|
{
e−2φ [R− 4∂µφ∂

µφ] +
1

2 · 3!
(G3)2 − α′e−φF I µνF I µν

}
.

(1.29)

Type I supergravity has the same field content as the heterotic, although there are differ-
ences in the way the dilaton couples to the field strengths. This reflects that those effective
terms arise from worldsheets with different topologies in each theory.

As we have already mentioned, the distinct perturbative String Theories are believed
to correspond to different limits of a single underlying theory. Such great expectations
are supported by the dualities that relate them, like type IIA/IIB T-duality, type IIB
S-duality, heterotic/type I duality or the 11-dimensional strong-coupling limit of type IIA,
among others. Only the first of these was known from the worldsheet description because
T-duality is the only one that has a perturbative nature. The rest of them were conjectured
after some specific relations between the effective supergravity actions were observed. Let
us briefly describe these dualities.

We can start with the observation that N = 1, 11-dimensional supergravity [68],
whose interpretation in the context of String Theory remained unclear for decades, gives
type IIA supergravity when compactified on a circle [37]. The technical details about the
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compactification of field theories of gravity on a circle are compiled in next section. The
most relevant factor for our discussion is that the lower dimensional dilaton emerges as
the Kaluza-Klein scalar of the compactification, which measures the size of the compact
dimension. Since in perturbative String Theory the dilaton gives the string coupling
constant, one can suggest that the strong coupling limit of type IIA theory is an 11-
dimensional theory. It turned out that this vague idea was extraordinarily deep, as one
could also argue about the higher dimensional origin of fundamental objects of type IIA [4].
The existence of M theory has been conjectured [216]. It is not a String Theory and its
low energy limit is given by 11-dimensional supergravity, but its complete formulation is
still missing.

T-duality is associated to compactifications of apparently different theories on circles
of different radii. The best known example relates type IIA and type IIB compactified
on a circle of different radii RA = l2s/RB. The spectra of the two reductions describes
the same fields and interactions, although the higher dimensional origin of those naturally
differs for each of the possible oxidations. One can then introduce a set of relations known
as Buscher rules that transform directly then 10-dimensional fields of type IIA and IIB
supergravities compactified on a circle. Another example of T-duality is found between
the two heterotic strings, SO(32) and E8 × E8 compactified on circles of dual radii. It is
clear that further compactification enlarges the number of possible dualities. In the first
place because there are more directions in which one can perform T-dualities. But new
dualities also emerge because the lower dimensional fields can be Hodge-dualized and this
can increase the number of fields that can be rotated into each other.

S-duality is a strong-weak coupling duality and it is necessarily non-perturbative
in String Theory. The above presented relation between M theory and type IIA is an
example of this class of dualities. Another interesting and illustrative case is provided
by type IIB selfduality. The (pseudo-)action of type IIB supergravity has been presented
here in a frame that is well suited to study T-duality to type IIA but obscures the ex-
istence of a symmetry under SL(2,R) transformations acting on some combinations of
the fields. In particular, one can define a complex scalar that parametrizes the coset
space SL(2,R)/SO(2) using the dilaton φ and the RR scalar C0. Some of the SL(2,R)
transformations involve an inversion of the dilaton, so they involve a weak/strong cou-
pling transformation. In type IIB theory, S-duality16 implies the existence of D-branes as
fundamental objects dual to previously known perturbative string states. This conclusion
can be extended to type IIA using T-duality arguments. Therefore, consistency requires
that open strings should also be considered in type II theories. Actually, we will show
in section 1.2.7 how the entropy of a very special black hole can be reinterpreted in type
IIB theory by counting how many open strings can be attached between two stacks of
D-branes.

Before finishing this section we would like to include a comment about heterotic/type I
duality. Type I supergravity is obtained as a consistent truncation of type IIB that re-
duces the supersymmetry. In string language this is achieved by introducing an O9-plane,
and consistency requires 16 D9-branes are also included. The S dual of this construction
is the heterotic SO(32) superstring, that is, therefore, interpreted as the S-dual of the
type I theory. At the level of the effective supergravity actions, this duality involves the
transformations

16In this case the group is broken to SL(2,Z) due to charge quantization.
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gI µν = e−(φh−φh∞)ghµν , φI = −φh , C2 = e−φh∞ , AII,µ = e
φh∞

2 AIh,µ . (1.30)

We will make use of these relations in Chapter 8 to interpret non-Abelian black holes
in terms of collections of intersecting D-branes.

1.2.3 Kaluza-Klein compactification (à la Scherk-Schwarz)

The effective field theories described in the previous section are defined in higher dimen-
sional spacetimes. If they are to be considered candidates to describe real world phenom-
ena, it is necessary to make contact with the 4-dimensional spacetime experience. We now
describe the Scherk-Schwarz formalism that provides a systematic procedure to perform a
dimensional reduction at the action level [189]. It can be seen as a refinement of the orig-
inal Kaluza-Klein compactification that makes use of the Vielbein formalism17. We only
consider here compactification on a circle or products of circles. Other internal spaces such
as Calabi-Yau manifolds (and other general manifolds with exceptional holonomy) have
been extensively used in the literature, as they are specially attractive for phenomenolog-
ical purposes. Since we are more interested in studying geometrical properties of bosonic
configurations, we prefer to consider toroidal compactifications because in that case it
is possible to use an explicit form for the metric and other fields in the decomposition.
Notably this simple dimensional reduction is very interesting and powerful, as toroidal
compactifications of the heterotic string are claimed to be dual to type IIA on K3 [126].

We shall ignore all dynamics in the internal space. In field theory, this implies that
the higher dimensional fields are decomposed in a Fourier expansion and we only consider
the zero mode in the compactified theory. In some particular configurations this truncation
to the zero mode modifies important properties of the initial solution. One interesting
example is found in the compactification of the BPST instanton on R3 × S1, known as
the caloron solution [110]. The field configuration depends on the compact coordinate
and its dimensional reduction involves a zero mode truncation, a modification that does
not preserve the original equations of motion. Remarkably it is possible to dimensionally
reduce the original, non-truncated BPST instanton on R4 exploiting spherical symmetry
to obtain a colored monopole in R3, as we show in Chapter 3. This relation plays a crucial
role in our construction of solutions with non-Abelian fields.

The Scherk-Schwarz formalism starts with a convenient choice of Vielbein basis ex-
ploiting the fact that d̂-dimensional Lorentz invariance is broken to d = (d̂−1)-dimensional
Lorentz invariance times an internal U(1) isometry18. We choose an upper-triangular Viel-
bein basis of the form

(êµ̂
â) =

(
eµ

a kVµ
0 k

)
, (êâ

µ̂) =

(
ea

µ −Va
0 k−1

)
, (1.31)

with Va ≡ ea
µVµ. As we are about to see, in d dimensions Vµ and k become dynamical

17In particular this means that the Scherk-Schwarz formalism for Kaluza-Klein compactification can be
applied to fermions in curved spacetimes.

18In this section all d̂-dimensional objects carry a hat, whereas d = (d̂−1)-dimensional ones do not. The
d̂-dimensional indices split as follows: µ̂ = (µ, z) (curved) and â = (a, z) (tangent-space indices). We take
the periodicity of z to be 2πl.
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fields that transform as a vector and a scalar respectively. It is straightforward to compute
the anholonomy coefficients Ω̂âb̂

ĉ associated to this frame using their definition,

[
êâ, êb̂

]
= −2Ω̂âb̂

ĉêĉ , → Ω̂âb̂
ĉ = êâ

µ̂êb̂
ν̂∂[µ̂êν̂]

ĉ . (1.32)

The non-vanishing components are

Ω̂abc = Ωabc , Ω̂abz = −1

2
kGab , Ω̂azz = −Ω̂zaz = −1

2
∂alnk , (1.33)

Here Gab is the field strength of the Kaluza-Klein vector Va with tangent space indices.
The non-vanishing components of the spin connection, ω̂âb̂

ĉ = (Ωb̂
ĉ
â − Ωâb̂

ĉ − Ωĉ
âb̂)are,

then

ω̂abc = ωabc , ω̂abz =
1

2
kGab , ω̂zbc = −1

2
kGab , ω̂zbz = −∂blnk . (1.34)

We now recall the Palatini’s identity, which allows us to remove the derivatives of
the spin connection in the Einstein-Hilbert action,

∫
ddx
√
|g|KR =

∫
ddx
√
|g|K[−ωb baωc c a − ωa bcωbc a + 2ωb

ba(∂alnK)] . (1.35)

We can use this identity forward and backwards after substituting the spin connection, to
obtain the dimensional reduction of the Einstein-Hilbert action

S =
1

16πG
(d̂)
N

∫
dd̂x̂
√
|ĝ|R̂ =

2πl

16πG
(d̂)
N

∫
ddx
√
|g|k[R− 1

4
k2G2] . (1.36)

We can make explicit the dynamical nature of the Kaluza-Klein scalar with a conformal

transformation to the modified Einstein frame, gµν = (k/k∞)−
2
d−2 g̃Eµν , to get19

S =
2πlk∞

16πG
(d̂)
N

∫
ddx
√
|g̃|

R̃E +
d− 1

d− 2
(∂ ln k)2 − k

− 2
d−2
∞
4

k2 d−1
d−2G2

 . (1.37)

In the modified Einstein frame the dimensionally reduced space is asymptotically flat and
therefore this is the appropriate frame to define the global conserved charges. From the
prefactor that appears in the reduced action we conclude that Newton’s gravitational

constant in d dimensions is given by G
(d)
N = G

(d̂)
N /Rz, where Rz = lk∞ is the asymptotic

radius of the compact direction.

We have exposed here in great detail how to dimensionally reduce the metric. We
will be more succinct with the rest of fields of interest in this thesis, which are scalars

19If the reader feels uncomfortable with the presence of the factor k∞ in the lagrangian, this can be
eliminated by a field redefinition k̃ = k/k∞ and Ṽµ = k∞Vµ.
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and p-forms. Actually, the reduction of scalars is completely trivial so there is no need to
further consideration.

The vector representation of SO(1, d̂−1) gives a scalar and a vector of SO(1, d−1).
The scalar emerges from the spontaneous breaking of the d̂-dimensional gauge transforma-
tions that depend on the internal coordinate. Notice that gauge transformations cannot
introduce a dependence of the fields on this coordinate in order to preserve the Kaluza-
Klein ansatz. The correct decomposition of a vector Âµ̂ is easily seen to be20,

Âµ = Aµ + lVµ , Âz = l . (1.38)

It is convenient to include here the decomposition of the field strength F̂ = dÂ,

F̂µν = 2∂[µAν] + 2l∂[µVν] , F̂µz = k−1∂µl . (1.39)

The dimensional reduction of Maxwell and Chern-Simons terms is then straightforward.

More general p-forms Ĉ
(p)
µ̂1...µ̂p

are reduced in a similar fashion, giving rise to a p-form

C
(p)
µ1...µp (as long as d ≥ p) and a (p − 1)-form C

(p−1)
µ1...µ(p−1)

in d dimensions. The explicit
decomposition of these forms can generally be written as

Ĉ(p)
µ1...µp = C(p)

µ1...µp + pV[µ1
Ĉ

(p−1)
µ2...µp] , Ĉ(p)

µ1...µ(p−1)z
= C(p−1)

µ1...µ(p−1)
, (1.40)

although one can always make convenient field redefinitions.

1.2.4 Five dimensional Supergravity

Most of the work carried out in this thesis can be interpreted in the context of 4- and
5-dimensional supergravity coupled to non-Abelian matter multiplets. These theories
are presented here as they were originally obtained, i.e. as the result of gauging global
isometries of the scalar manifold of the original (Abelian) matter coupled supergravities.
The 4- and 5-dimensional theories that we consider21 are related by dimensional reduction.
In this section we describe the ungauged 5-dimensional theory, which can be obtained
compactifying 10-dimensional supergravities. Its 4-dimensional counterpart is described
in Chapter 2.

The field content of matter coupled N = 1, d = 5 supergravity is given by a super-
gravity multiplet and vector multiplets22. The supergravity multiplet contains a graviton
ea µ, a graviphoton Aµ and a gravitino given by a pair of symplectic-Majorana spinors ψi µ
(eight real components in total). Each vector multiplet, labeled as x = 1, . . . , nV , contains
a vector Ax µ, a scalar φx and a gaugino λxi. The most general symmetry of the equations
of motion is necessarily a subgroup of GL(nV + 1) that rotates the graviphoton with the
rest of vector fields. For this reason it is convenient to introduce a notation that considers
all vectors collectively. We can label all vectors with indices I, J = 0, . . . , nV such that

20Based on invariance under local reparametrizations of the internal circle.
21We work with supergravity theories with 8 supercharges. In the 4-dimensional case the models are

specified by a cubic prepotential.
22We ignore hypermultiplets through the whole text, which is always a consistent truncation.

18



Chapter 1. Introduction

AI µ = (Aµ, A
x
µ) . (1.41)

The scalars parametrize a so-called real special manifold with σ-model metric gxy(φ).
Real special geometry arises as the combination of the Riemannian character of the σ-
model with the GL(nV + 1) structure that controls how scalars couple to vectors via the
kinetic matrix aIJ(φ). The most convenient approach to tackle this problem is through
the definition of (nV + 1) functions of the scalars hI(φ) transforming as vectors under
GL(nV + 1). Then, these parametrize a (nV + 1)-dimensional space with metric aIJ in
which the real special manifold is embedded, as given by the following constraint

CIJKh
IhJhK = 1 , (1.42)

for some real constant symmetric tensor CIJK . The metric gxy is then given by the
pullback of aIJ , which is fixed by the real special structure itself. Actually the real special
geometry is completely determined by the value of CIJK ; given this tensor one can find
aIJ(φ) and gxy(φ) for a parametrization hI(φ) as follows

hI = CIJKh
JhK , aIJ = −2CIJKh

K + 3hIhJ , gxy = 3aIJ
∂hI

∂φx
∂hJ

∂φy
. (1.43)

The bosonic part of the action is

S =

∫
d5x
√
g

{
R+

1

2
gxy∂µφ

x∂µφy − 1

4
aIJF

I
µνF

J µν +
εµνρσλ

12
√

3
√
g
CIJKF

I
µνF

J
ρσA

K
λ

}
.

(1.44)

The supersymmetry transformations for vanishing fermions, which is the only case we
consider, are

δεψ
i
µ = Dµε

i − 1

8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) εi ,

δελ
xi =

1

2

(
/∂φx −

√
3

2
hI ,x /F

I

)
εi . (1.45)

We include the equations of motion for completeness,

0 = Gµν −
1

2
aIJ

(
F I µ

ρF J νρ −
1

4
gµνF

I ρσF J ρσ

)
+

1

2
gxy

(
∂µφ

x∂νφ
y − 1

2
gµν∂ρφ

x∂ρφy
)
,

0 = ∇2φx +
1

4
gxy∂yaIJF

I ρσF J ρσ ,

0 = ∇ν
(
aIJF

J νµ
)

+
1

4
√

3
CIJK

εµνρσλ
√
g

F I σρF
J
σλ . (1.46)

Pure N = 1, d = 5 supergravity has no matter multiplets, i.e. nV = 0. This
theory is characterized by a trivial constant symmetric tensor with only one component,
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C000 = 1, so there are no scalars and we have a00 = 1 and h0 = 1. We usually will work
in theories with nV 6= 0 in the ST [2, nV + 1] model. The name of this model is taken
from the 4-dimensional theory that results from dimensional reduction, which describes
the supergravity multiplet coupled to (nV +1) vector multiplets. The ST [2, nV +1] model
is characterized by the following non-vanishing components of the constant symmetric
tensor

C0αβ =
1

6
ηαβ =

1

6
diag(1,−1, . . . ,−1) , with α , β = 1, . . . , nV . (1.47)

For the particular value nV = 2 we recover the STU model, that is usually presented as
the model with CIJK = 1

6 |εIJK |. It is trivial to check that this can be recast in the form
of the ST [2, 3] model through the field redefinition

A± STU =
1√
2

(
A1

ST ±A2
ST

)
, h±STU =

1√
2

(
h1
ST ± h2

ST

)
. (1.48)

1.2.5 Gauging isometries of the scalar manifold

The global symmetries of generic N = 1, d = 5 supergravities are given by the product

G = GV × SU(2)R . (1.49)

The second factor corresponds to the R-symmetry group of the theory. This group acts on
the indices i, j carried by the fermionic fields that label the pair of symplectic-Majorana
spinors. The term GV represents the group of transformations on the vector multiplets
that preserve the real special structure of the theory. The non-Abelian theories on which
we work are obtained gauging a subgroup of GV [107]. Therefore, it is worth reviewing
here how this is done.

In the first place, we need to understand how the isometries of a general non-linear
σ-model can be gauged. Consider the following term of the action

Sφ =
1

2

∫
d5x
√
g [gµνgxy(φ)∂µφ

x∂νφ
y] . (1.50)

While gxy(φ) has been presented as a “metric” on the scalar manifold, it does not
transforms as such under transformations of the scalars23. Actually, under general in-
finitesimal redefinitions of the scalars δφz = εz(φ) it transforms as a set of functions,
i.e.

δεgxy(φ) = εz∂zgxy(φ) . (1.51)

The variation of the action can be computed to be

δεSφ =
1

2

∫
d5x
√
g [gµνLεgxy(φ)∂µφ

x∂νφ
y] , (1.52)

23Nonetheless the use of the word “metric” is well motivated, as we are about to see.
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where Lεgxy = εz∂zgxy + 2gz(x∂ν)ε
z. That is, Lεgxy is the standard Lie derivative of

a symmetric (0, 2)-type tensor. Thus, the σ-model action is left invariant (up to total
derivatives) under infinitesimal redefinitions of the scalars only if those are generated by a
Killing vector of the scalar metric, preserving the Riemannian structure of the real special
manifold.

We denote the Killing vectors of the scalar manifold as kA(φ), which generally satisfy
the Lie algebra

[kA, kB] = −fAB CkC , (1.53)

where fAB
C are the structure constants of the algebra. Then the possible infinitesimal

transformations that leave the action invariant are of the form

δαφ
z = αAkA

z . (1.54)

for αA a set of infinitesimally small constant parameters.

We can promote these infinitesimal parameters to local spacetime functions αA(x). It
is then clear that the scalar reparametrization they generate via (1.54) is not a symmetry
of the action above, as now δα∂µφ

x =
(
∂µα

A
)
kA

x + αA∂zkA
x∂µφ

z and the first term
cannot be canceled. The process of deforming the σ-model action such that it becomes
invariant under these local transformations is referred as gauging the theory.

This can be achieved by a modification of the derivative operator on the scalars,
which do not transform covariantly as we just discussed. The standard construction of
a covariant derivative Dµφ

x requires the use of additional fields, the gauge vectors AI µ,
that compensate the terms ∂µα

A. The theories that we consider already contain some
vector fields24 with Abelian gauge symmetry

δΛA
I
µ = −∂µΛI , (1.55)

for any spacetime functions ΛI(x). The gauging process identifies a subset of these func-
tions, let us say ΛA, with the local parameters αA. This identification avoids the introduc-
tion of additional fields or in the theory. In this manner the couplings will change but the
degrees of freedom remain the same, which is the reason why this method is well-suited
for supersymmetric theories.

The covariant derivative of a generic object Φ that under the action of (1.54) behaves
as

δαΦ = αAδAΦ , (1.56)

is defined as

DµΦ = ∇µΦ + gAA µδAΦ , (1.57)

where the first term is spacetime and target-space covariant. In the case at hand, the
covariant derivative acting on the scalars that substitutes the original partial derivative is

24The vector field sector at the action has to be invariant under the transformations generated by the
group that it is being gauged, and the vectors must transform in the adjoint representation, ∂αA

A
µ =

αBfBC
AAC µ for αA constants.
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Dµφ
x = ∂µφ

x + gAA µkA
x . (1.58)

We can also define a covariant derivative for objects with adjoint indices,

Dµh
A = ∂µh

A + gfBC
AAB µh

C , DµhA = ∂µhA + gfAB
CAB µhC . (1.59)

The gauge fields transform in the usual manner

δαA
A
µ = −1

g
Dµα

A = −1

g

(
∂µα

A + gfBC
AAB µα

C
)
. (1.60)

And the gauged σ-model action is

Sφ =
1

2

∫
d5x
√
g [gµνgxy(φ)Dµφ

xDνφ
y] . (1.61)

Since the scalars couple to other fields, the symmetries of a σ-model might not al-
ways be symmetries of the complete theory. Only when the Killing vectors kA

x respect the
complete real special structure we can gauge the isometries they generate. In a nutshell,
this requires that the functions of the scalars hB(φ) remain invariant up to GL(nV + 1)
rotations with matrices TA, and that these rotations themselves do not modify the sym-
metric constant tensor CABC . The first condition can be written as

LkAh
B ≡ kA x∂xh

B = TA
B
Ch

C , with [TA, TB] = fAB
CTC , (1.62)

so the matrices TA are just the structure constants, TA
B
C = fAC

B. The second condition
reads

δkECABC = −3TE
D

(ACBC)D = 0 . (1.63)

In this work, we consider the gauging of a SU(2) subgroup of the group of isometries
of the scalar manifold. The coset space that the scalars parametrize in the ST [2, nV + 1]
model is

SO(1, 1)× SO(1, nV − 1)

SO(nV − 1)
, (1.64)

and therefore we need at least 4 vector multiplets for SU(2) to be an isometry of the scalar
manifold. In some cases we will find convenient to consider 5 vector multiplets, so the
theory can be understand as a non-Abelian extension of the STU model which already
contains 2 Abelian vector multiplets.

1.2.6 Unbroken Supersymmetry

The solutions of the equations of motion of general theories break most of their symmetries,
if not all. In metric theories of gravity, the infinite-dimensional group of general coordinate
transformations cannot be preserved by any solution, as a metric can be invariant only
under the action of a finite-dimensional group of isometries generated infinitesimally by a
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set of Killing vectors. In this section we are more interested on solutions preserving some
of the (also infinite) local supersymmetry transformations that leave supergravity theories
invariant. We refer to them as supersymmetric or BPS. A supersymmetric field configu-
ration, not necessarily a solution, is given by a collection of bosonic (B) and fermionic (F)
fields schematically satisfying

δεB ∼ εF = 0 , (1.65)

δεF ∼ ∂ε+Bε = 0 , (1.66)

for some infinitesimal supersymmetry generator ε(x). Since we consider only bosonic
solutions, the first set of equations is automatically satisfied. The second set, on the
other hand, is not trivial and is known as the Killing spinor equations (KSE). The set of
Killing spinors ε(x) that solve these equations generate a finite-dimensional subgroup of
the infinite-dimensional group of superspace reparametrizations.

The KSE turn out to be very powerful. Supersymmetric field configurations depend
on a reduced number of independent functions, as the KSE impose relations between the
different fields. Beyond that, the equations of motion are not all independent when working
with supersymmetric configurations. There are relations among them, known as Killing
spinor identities [132], whose derivation is illustrative. The remaining of this subsection is
devoted to giving a generic description of this derivation and to exposing Tod’s program,
which is a method to characterize the supersymmetric solutions of any theory.

The action of a supergravity theory is invariant under arbitrary local supersymmetry
transformations. Up total derivatives, we have

δεS =

∫
ddx [S,bδεB + S,fδεF ] = 0 . (1.67)

In that expression S,(b,f) represents the variation of the Lagrangian with respect to bosonic
and fermionic fields respectively, or, in other words, the equations of motion. Then we
take a second functional derivative of the integrand with respect to fermionic fields,

[S,bfδεB + S,b(δεB),f + S,ffδεF + S,f (δεF ),f ] = 0 . (1.68)

The terms δεB and S,f are odd in the fermion fields, so they vanish automatically for
purely bosonic configurations. Besides, we only consider supersymmetric configurations
so δεF = 0. Then, only one term in that expression survives:

S,b(∂εB),f |F=0 = 0 . (1.69)

Thus we obtain the Killing spinor identities, that consist in a sum of terms with coefficients
that contain the equations of motion. These relations can be used to reduce the number
of equations of motion that have to be solved when looking for supersymmetric solutions.

We know give a systematic procedure introduced by Tod [203], in a formulation
due to Gauntlet and collaborators [93, 95], that makes use of this tools to characterize
supersymmetric solutions of a theory:

1. Assume there exists a Killing spinor ε that solves the KSE (1.66).
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2. Construct all possible spinor bilinears of the form ε̄γµ1...µnε. Using Fierz identities,
it is possible to rewrite the product of tensor bilinears as different products of other
bilinears.

3. The KSE are of the form Oε + Bε = 0, where O is some operator and the other
terms are linear on the Killing spinor. Acting with this operator on the bilinears
constructed in the previous step and making use of the KSE, we obtain several tensor
equations for the bilinears solely.

4. These equations for the bilinears always indicate the existence of a Killing vector
of the spacetime metric, with all the fields invariant under the isometry associated.
From this moment one can introduce adapted coordinates and conveniently decom-
pose the fields. The tensor equations yield relations among the decomposed fields,
so supersymmetric configurations depend on a reduced number of independent func-
tions.

5. Derive the Killing spinor identities to identify the minimal set of independent equa-
tions of motion that have to be solved using supersymmetric configurations. One
then obtains simpler equations for the few independent functions.

1.2.7 Black holes in String Theory

Many classical black hole solutions to the equations of motion of different supergravities
are known. Among those, some families of supersymmetric solutions, which are extremal
black holes, are very well understood. In this section we give an extremely brief presenta-
tion of a very special family that can be interpreted from the String Theory perspective;
the 5-dimensional three-charge black hole. Our goal here is just to describe rudimentarily
how String Theory matches the classical entropy of a black hole with a degeneracy of mi-
crostates. As we will see along this thesis, our non-Abelian black holes can be understood
as an extension of this family of solutions. We follow a bottom-up approach, starting with
the 5-dimensional solution of the STU model of supergravity. The three-charge black hole
is given by the static metric

ds2
(5) = (Z0Z+Z−)−

2
3 dt2 − (Z0Z+Z−)

1
3

[
dρ2 + ρ2dΩ2

(3)

]
, (1.70)

three vector fields

A0 = −Z−1
0 dt , A+ = −Z−1

+ dt , A− = −Z−1
− dt , (1.71)

and two scalars that can be parametrized as φ+ = Z+/Z0 and φ− = Z−/Z0. The solution
is completely specified in terms of Z0, Z+ and Z−, which are harmonic functions in E3

and can be taken of the form

Z0 = 1 +
c0N0

ρ2
, Z+ = 1 +

c+N+

ρ2
, Z− = 1 +

c−N−
ρ2

. (1.72)

Here c0,± are constants whose precise value is not important for our current discussion,
while N0,± are natural numbers. The value ρ = 0 defines a null hypersurface that is an
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event horizon. The entropy of the black hole can be readily computed using (1.13), which
yields

S = 2π
√
N0N+N− . (1.73)

It is certainly remarkable that the entropy is given by a set of integers, which already sug-
gests that a microscopic interpretation in terms of degeneracy of states might be possible.
This is a generic feature of supersymmetric black holes.

This solution can be straighforwardly embedded in 11-dimensional supergravity com-
pactified on T 2 × T 2 × T 2 as follows

ds2
(11) = ds2

(5) −
(
Z+Z−
Z2

0

) 1
3

d~τ2
1 −

(
Z0Z−
Z2

+

) 1
3

d~τ2
2 −

(
Z0Z+

Z2
−

) 1
3

d~τ2
3 , (1.74)

C3 = A0 ∧ ω0 +A+ ∧ ω+ +A− ∧ ω− , (1.75)

where d~τ2
i are the metrics of three sets of T 2, d~τ2

i = dx2
i1

+dx2
i2

, and ωi are the correspond-
ing volume form ωi = dxi1 ∧ dxi2 . This metric corresponds to the low energy, classical
description of three orthogonal stacks of M2 branes, each wrapping one of the two-tori and
smeared along the other two at ρ = 0. For example, a set of N0 M2 branes is wrapping
the two-torus parametrized by ~τ1 and is smeared along ~τ2 and ~τ3, and so on. From the
5-dimensional perspective these are perceived as sources of mass and electric charge.

The solution can be expressed in different supergravity theories upon use of dualities.
For instance we can consider the following chain:

1. Dimensional reduction along x−2 .

2. T-dualities along x+1 , x+2 and x−1 .

In the first step, the N− M2 branes become fundamental strings F1 of type IIA theory.
On the other hand, the remaining two sets of M2 branes become D2 branes. After the
second step we end up with the following configuration in type IIB theory

(N0) D5 t x01 x02 x+1 x+2 x−1

(N+) D1 t - - - - x−1

(N−) P t - - - - x−1

In this table the symbol − denotes smearing, while the coordinates indicate extension of
the object along this direction. The computation of the supergravity solution in this frame
is a bit lengthy but straightforward,

ds2
10 = Z

−1/2
0 Z

−1/2
+ Z−1

− dt2 − Z1/2
0 Z

1/2
+ ds2

4 − Z
1/2
+ Z

−1/2
0 (d~τ2

1 + d~τ2
2 )

−Z−1/2
0 Z

−1/2
+ Z− (dx−1 +A−)2 , (1.76)

φ =
1

2
log

(
Z+

Z0

)
, B = 0 , C0 = 0 , C4 = 0 , (1.77)

F3 = −
(

Z5
0

Z3
+Z

2
−

)1/4

?5 dA0 − dA+ ∧ (dx−1 −A−) . (1.78)
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The near-horizon geometry obtained in the ρ→ 0 limit yields the metric of AdS3×S3×T 4.
String theory on this background is dual to a 2-dimensional CFT and it is most remarkable
that the black hole entropy can be recovered by counting the many ways in which states
of this CFT theory can carry this amount of momentum.

It is possible to get an idea of how this computation works as follows. First, assume
that there exist two regimes in which the same String Theory system can be described.
In the first, the supergravity limit, it is a large classical black hole. In the second, it is
described as open strings ending on D-branes and gravity is negligible. The existence of
these two limits as good descriptions requires N0,± � 1, N− � N+N0 and gs � 1. The
combination gsN0,± indicates how important gravity effects are and we can move from the
first regime to the second by varying gs, so that gsN0,± � 1 or gsN0,± � 1, respectively,
while maintaining a small value of the string coupling. Notice that the entropy of these
supersymmetric black holes does not depend on gs. We just computed the entropy in the
first regime. Let us summarize how it can be computed in the second.

The condition N− � N+N0 means that the size of the compact direction x−1 ,
denoted by R, is much larger than that of the four-torus. In this limit the theories on the
D1 and D5 branes are well approximated by a (1+1) theory on this circle. The momentum
P along the circle receives its dominant contribution from open strings attached to these
branes, that in this limit look like point particles connecting coincident branes. Since the
string coupling is small we are basically led to a theory of free particles on a circle, so
their wavefunction is of the form

ψ(x−1) =
∑
n

e−
2πn
R
x−1 , (1.79)

Now observe that having N D branes wrapping a circle is equivalent to having one
D brane with winding number N . As the endpoints of the strings are attached to the
D branes their wavefunction need not be periodic in R, but only in NR. That is, the
string has to go N times around the circle to be back at its initial position. In the case at
hand, a string stretching between a D1 and a D5 finds the system periodic in N0N+R

25.
Therefore, standard arguments about the quantization of momentum along a circle imply
that it is quantized in units of 1/N0N+R, instead of simply 1/R. We can then ask the
following question: how many configurations of open strings can we construct such that
the total momentum is given by N−/R? The answer is found by counting the integer
partitions of the number N0N+N−.

The function defined as

Z =
∞∏
n=1

1

1− xn
= 1 + x+ 2x2 + 3x3 + 5x4 + . . . , (1.80)

is called the partition function, a polynomial where each coefficient counts the number of
integer partitions of the corresponding order26. It seems impossible to compute directly
the coefficient of this function for order N0N+N−, but we can make use of the tools of

25This of course applies when N0 and N+ are coprime. Otherwise there would be corrections to the
value of the entropy that we compute, but those corrections would be generally subdominant.

26Recall that
∑∞
m=0 (xn)m = 1

1−xn and that Euler proved the partition function can be written as the

product Z = (1 + x+ x2 + . . . )(1 + x2 + x4 + . . . ) . . . (1 + xk + x2k + . . . ) . . .
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statistical mechanics. The partition function (1.80) coincides with that of a canonical
ensemble upon the identification,

x = e−β , with β =
1

T
, (1.81)

provided the energy levels of the microstates are integer numbers. In the canonical en-
semble the entropy is given by

S = logZ + β < n > , < n >= − ∂

∂β
logZ . (1.82)

Given a value of temperature, the average energy < n > and the entropy can be
computed from Z. In our problem we start with a given value of < n >= N0N+N− and
then we compute the entropy. We first notice that

logZ =
∞∑
m=1

xm

m(1− xm)
. (1.83)

This expression is hard to evaluate, so we take the high temperature limit β � 1, x =
1− β +O(β2) in which case

logZ '
∞∑
m=1

1

βm2
+O(β0) =

ζ(2)

β
+O(β0) , (1.84)

where ζ(x) is Riemann’s zeta function, in particular ζ(2) = π2/6. Computing < n > and
inverting the relation we get β2 = π2/(6N0N+N−), which justifies the high temperature
approximation is valid. The entropy is

S = 2π

√
N0N+N−

6
, (1.85)

which differs with the supergravity computation by a factor of
√

6.

Actually, what we have computed is the entropy associated to strings stretching
between the D1 and the D5 branes with only one bosonic degree of freedom. But we have
neglected the compact T 4 in this discussion. This compact space has an effect: there are
four bosonic degrees of freedom and four fermionic, as the system is supersymmetric. For
c bosonic degrees of freedom, the proper partition function and the entropy are

Zbc =

( ∞∏
n=1

1

1− xn

)c
, Sbc = 2π

√
cN0N+N−

6
. (1.86)

On the other hand, fermions can only have occupation number 0 or 1. This implies that
d fermionic degrees of freedom have

Zfc =

( ∞∏
n=1

1 + xn

)d
, Sfc = 2π

√
dN0N+N−

12
. (1.87)

Finally, in a supersymmetric system d = c and we get
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Zbc =

( ∞∏
n=1

1 + xn

1− xn

)c
, S = 2π

√
cN0N+N−

4
. (1.88)

Therefore, we conclude that the microscopic entropy of the D1D5P system is

S = 2π
√
N0N+N− . (1.89)

The result coincides with the value obtained in the supergravity regime, which constitutes
a major achievement of String Theory.
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2
N = 2 Einstein-Yang-Mills’ static two-center

solutions

This chapter is based on

Pablo Bueno, Patrick Meessen, Tomas Ort́ın and Pedro F. Ramı́rez
“N = 2 Einstein-Yang-Mills’ static two-center solutions”,

JHEP 1412 (2014) 093. [arXiv:1410.4160 [hep-th]] [47].

Contrary to what one might think, multi-black hole solutions need not be related
to supersymmetry or, like in the case of Kastor and Traschen’s solution in Ref. [134],
fake-supersymmetry. Proof of this is given by various solutions e.g. the ones presented
in Refs. [25] and [64]. The benefit of using supersymmetry, however, is that after a few
decades’ worth of investigations there are workable recipes for creating supersymmetric
solutions, which greatly facilitates the construction and study of multi-black hole solutions.

The construction is particularly straightforward in ungauged N = 2, d = 4 super-
gravity coupled to vector multiplets where there are clear-cut rules for a supersymmetric
multi-object solution to give rise to a well-defined multi-black hole solution [22,66,73,112,
127,148,174,177]: i) positive mass of the constituents, ii) the near-horizon limit has to have
definite entropy, iii) the 2nd law of thermodynamics must hold in the coalescence of con-
stituents, and iv) the Denef constraints [73] must be satisfied. Depending on the charges
the latter may constrain the distance between the constituents but it always implies the
absence of NUT charge.

The oft forgotten case of ungauged N = 2, d = 4 supergravity coupled to non-
Abelian vector multiplets, which we refer to as N = 2 (Super-)Einstein-Yang-Mills, is
similar to the Abelian case in that there is a well-defined recipe for constructing super-
symmetric solutions [123, 124]. However, the construction of supersymmetric solutions is
greatly hindered not only by the fact that not every Abelian theory can be non-Abelianized,
but doubly more so by the fact that the supersymmetric recipe requires the use of solu-
tions of the (non-Abelian) Bogomol’nyi equation on R3 [43]. Our lack of knowledge of
the space of all solutions to this equation is a serious limitation to the application of
the supersymmetric recipe: there exists a vast literature on single monopole solutions,
i.e. regular single-center solutions to the Bogomol’nyi equation (see e.g. Refs. [202,214]).
Depending on the chosen N = 2, d = 4 model, these can be used to construct globally
regular supergravity solutions known as global monopoles. A lot less is known about the
singular solutions to the Bogomol’nyi equation which are the ones which give rise to black
holes with different degrees of non-Abelian hair [123,124,155]. Finally, even less is known
about multi-center solutions to the Bogomol’nyi equation. These are the ones we need in

29

http://www.arXiv.org/abs/1410.4160
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order to apply the supersymmetric recipe to the construction of multi-center supergravity
solutions, with centers that correspond to global monopoles or black holes.

Luckily enough, some explicit solutions are known.1 In this chapter we are going to
use the solutions of the SU(2) Bogomol’nyi equation found by Cherkis and Durcan [63]
and Blair and Cherkis [42] (which we will generalize by adding Protogenov hair [155]).
These solutions describe an ’t Hooft-Polyakov (-Protogenov) monopole in the presence of
an arbitrary number of Dirac monopoles embedded in SU(2), all having charge opposite to
the one carried by the former. These solutions can (in principle) give rise to supergravity
solutions describing black holes in the presence of a global monopole. The construction of
these solutions is, at the same time, our main goal and our main result.

Before we start constructing multi-black hole solutions, however, it is worth review-
ing briefly some of the previous work on solutions of YM theories coupled to gravity2.
Most of the previous work on this topic was focused on pure Einstein-Yang-Mills (EYM)
theories, (the minimal non-Abelian extension of the Einstein-Maxwell theory), ignoring
the possible existence of unbroken supersymmetry which is, however, one of our main
concerns here.

Soon after the discovery of the ’t Hooft-Polyakov monopole [120,180] several groups
found solutions to the pure EYM theory [220] whose SU(2) gauge field is that of the
Wu–Yang SU(2) monopole [218]. The metric of all these solutions is that of the (dS or
AdS) non-extremal Reissner-Nordström black hole and the singularity in the gauge field
(generically expected for static YM solutions [74]) is covered by an event horizon.

This coincidence of the metrics is due to the relation between the Wu–Yang SU(2)
monopole and the non-Abelian embedding of the Dirac monopole Eq. (A.15): they are
related by a singular gauge transformation and therefore give rise to exactly the same
energy-momentum tensor as it is gauge invariant whether the gauge transformation is
singular or not. For this reason, these solutions have been regarded as not truly non-
Abelian, even though there are potentially measurable differences, see e.g. Refs. [54,114].

Finding less trivial (“genuinely or essentially non-Abelian”) solutions proved much
more difficult and a non-Abelian baldness theorem stating that the only black-hole solutions
of the EYM SU(2) theory with a regular horizon and non-vanishing magnetic charge had
to be non-Abelian embeddings of the Reissner–Nordström solution was proven in [90].
This theorem was subsequently generalized to prove the absence of regular monopole or
dyon solutions to the EYM theory in Refs. [41, 84].

An “essentially non-Abelian” solution, globally regular [197] to EYM theory had
already been found: the Bartnik-McKinnon particle [11]. The Bartnik-McKinnon particle
and its black hole-type generalizations [208], are in fact families of unstable solutions
indexed by a discrete parameter and evade the non-Abelian baldness theorem by being
bald, i.e. they have no asymptotic charge. It is worth pointing out that even though these
solutions are only known numerically, they have been proven to exist [195].

The classification of the possible EYM solutions for the gauge group SU(2) [196] sug-
gests that one has to add more fields to the theory in order to get “essentially non-Abelian”
black-hole or gravitating monopole solutions with non-vanishing charges. Investigations
of solutions to the EYM theory coupled to a Higgs field in the adjoint representation [144]

1Finite-energy, multi-center solutions of the Yang-Mills or Yang-Mills-Higgs system which do not satisfy
the Bogomol’nyi equation like those in Refs. [135,137,139] are also known.

2For more comprehensive reviews see e.g. Refs. [210].
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in the BPS-limit, a theory that is closer to the one we are going to study than EYM,
shows that a globally well-defined ’t Hooft-Polyakov monopole exists and furthermore the
existence of other Bartnik-McKinnon-like solutions.

As far as 4-dimensional supergravity is concerned we have the (supersymmetric)
Harvey-Liu [113] and the Chamseddine-Volkov [61] regular gravitating monopole solutions
to gauged N = 4, d = 4 supergravity; in N = 2, d = 4 theories there are analytical
solutions describing global monopole solutions and non-Abelian black hole solutions with
and without asymptotic magnetic charge. Needless to say, all the solutions mentioned in
this little historical exposé describe the fields corresponding to a single object. To our
knowledge, there are no known, essentially non-Abelian multi-object analytic3 solutions
and this article intends to fill this gap by constructing static solutions describing the
interplay between an ’t Hooft-Polyakov monopole and a Dirac monopole of opposite charge
in two generic classes of gauged N = 2, d = 4 models.

As we stressed in the introduction, in the theories we have called N = 2, d = 4
SEYM the gauge group does not contain any part of the R-symmetry group. Indeed, in
general (ungauged) N = 2, d = 4 theories, the global symmetry group G can be written
as

G = GV ×Ghyper × SU(2)R ×U(1)R , (2.1)

where GV and Ghyper stand for the isometry groups of the special and quaternionic Kähler
manifolds respectively. When a (necessarily non-Abelian) subgroup of GV is gauged (as in
N = 2, d = 4 SEYM theories) the scalar potential is positive semidefinite, which allows for
asymptotically De-Sitter and asymptotically flat solutions (such as the ones we construct
in this section). This is in contradistinction to theories in which a subgroup of SU(2)R

(or the complete SU(2)R) is gauged via Fayet-Iliopoulos terms4 in whose case the scalar
potential becomes negative definite, the solutions thus being asymptotically anti-De Sitter.
Lately, an intense effort has been devoted to the construction of black-hole solutions of
theories with Abelian gaugings (that is, theories in which a subgroup U(1) ∈ SU(2)R has
been gauged); see, for instance, Refs. [49, 105, 108, 121, 140, 204] and references therein.
The case in which the full SU(2)R has been gauged remains as unexplored as challenging,
even though the general form of the timelike supersymmetric solutions of this theory has
been given in Ref. [157].

This chapter is organized as follows: in section 2.1 we review the theories we are
going to work with (N = 2, d = 4 Super-Einstein-Yang-Mills theories) and the recipe for
constructing timelike supersymmetric solutions (black holes, in particular). In section 2.2
we apply that recipe to construct single, static supersymmetric black-hole and monopole

solutions of two particular examples of SU(2)-gauged N = 2, d = 4 SEYM: the CP3
model

(quadratic) (2.2.2 ) and the ST[2, 4] model (cubic) (2.2.3). We use as seeds for these
solutions the single-center solutions of the Bogomol’nyi equations reviewed in section A.5.
In section 2.3 we construct multi-black-hole solutions for the same models using the multi-
center solutions of the Bogomol’nyi equations reviewed in section 2.3.1. Our conclusions
are contained in section 2.4.

3Numerical, multi-center solutions have been found previously, though. See, e.g. Refs. [136,138]. Some
of those solutions can be embedded in N = 1, d = 4 supergravity. However, representing massive objects,
they can never be supersymmetric in that theory. The embedding in higher-N supergravities is much more
difficult (if possible at all). We thank J. Kunz for pointing these works to us.

4The overall U(1)R group cannot be gauged in this way. The Abelian gaugings discussed in the literature
deal with a subgroup U(1) ∈ SU(2)R.
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2.1 N = 2, d = 4 SEYM and its supersymmetric black-hole
solutions (SBHSs)

In this section we are going to introduce the class of theories that we have called N = 2,
d = 4 SEYM theories and we are going to review the recipe to construct all their timelike
supersymmetric solutions, presented in Ref. [124]. We shall be extremely brief. The
interested reader can find more details in Refs. [86,123,169]; our conventions are those of
Refs. [123,124,169].

2.1.1 The theory

N = 2, d = 4 SEYM theories can be seen as the simplest N = 2 supersymmetrization
of the Einstein-Yang-Mills (EYM) theories. They are nothing but theories of N = 2,
d = 4 supergravity coupled to n vector multiplets in which a (necessarily non-Abelian)5

subgroup of the isometry group of the (Special Kähler) scalar manifold has been gauged
using some of the vector fields of the theory as gauge fields6.

We will only be concerned with the bosonic sector of the theory, which consists
on the metric gµν , the vector fields AΛ

µ (Λ = 0, 1, · · · , n) and the complex scalars Zi

(i = 1, · · · , n). The action of the bosonic sector reads

S[gµν , A
Λ
µ, Z

i] =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

−2<eNΛΣF
Λµν ? FΣ

µν − V (Z,Z∗)
]
.

(2.2)

In this expression, Gij∗ is the Kähler metric, DµZ
i is the gauge-covariant derivative

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (2.3)

FΛ
µν is the vector field strength

FΛ
µν = 2∂[µA

Λ
ν] − gfΣΓ

ΛAΣ
µA

Γ
ν , (2.4)

NΛΣ is the period matrix and, finally, V (Z,Z∗) is the scalar potential

V (Z,Z∗) = −1
4g

2=mNΛΣPΛPΣ . (2.5)

Since the imaginary part of the period matrix is negative definite, the scalar potential
is positive semidefinite, which leads to asymptotically-flat or -De Sitter solutions.

In the above equations, kΛ
i(Z) are the holomorphic Killing vectors of the isometries

that have been gauged7 and PΛ(Z,Z∗) the corresponding momentum maps, which are
related to the Killing vectors and to the Kähler potential K by

iPΛ = kΛ
i∂iK − λΛ , (2.6)

kΛ i∗ = i∂i∗PΛ , (2.7)

5 The theory becomes identical to the ungauged one when the gauge group is Abelian.
6 A global symmetry group can be gauged if it acts on the vector fields in the adjoint representation.

Furthermore, it is required to be a symmetry of the prepotential; see e.g. ref. [124] for more details.
7 The employed notation associates a Killing vector to each value of the index Λ in order to avoid the

introduction of yet another class of indices and the embedding tensor (See e.g. the reviews [205]); it is
understood that not all the kΛ need to be non-vanishing.
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for some holomorphic functions λΛ(Z). Furthermore, the holomorphic Killing vectors and
the generators TΛ of the gauge group satisfy the Lie algebras

[kΛ, kΣ] = −fΛΣ
ΓkΓ , [TΛ, TΣ] = +fΛΣ

ΓTΓ . (2.8)

For the gauge group SU(2), which is the only one we are going to consider, we use
lowercase indices8 a, b, c = 1, 2, 3 and the structure constants are fab

c = −εabc, so

[ka, kb] = +εabckc , [Ta, Tb] = −εabcTc . (2.9)

We will use the fundamental representation, in which the generators are proportional
to the standard Pauli matrices9 σa

Ta ≡ + i
2σ

a , ⇒ Tr(TaTb) = −1
2δab . (2.11)

The equations of motion of the theory can be written in the following form:

Gµν + 2Gij∗ [D(µZ
iDν)Z

∗ j∗ − 1
2gµνDρZ

iDρZ∗ j
∗
]

+4MMNFMµ
ρFNνρ + 1

2gµνV (Z,Z∗) = 0, (2.12)

D2Zi + ∂iGΛµν ? F
Λµν + 1

2∂
iV (Z,Z∗) = 0, (2.13)

Dν ? GΛ
νµ + 1

4g
(
kΛ i∗DµZ

∗i∗ + k∗Λ iDµZ
i
)

= 0 , (2.14)

where GΛµν is the dual vector field strength

GΛ ≡ <eNΛΣF
Σ + =mNΛΣ ? FΣ , (2.15)

FMµν is the symplectic vector of vector field strengths

(
FM

)
≡
(
FΛ

GΛ

)
, (2.16)

MMN is the symmetric 2(n+ 1)× 2(n+ 1) matrix defined by

(MMN ) ≡

 =mNΛΣ +RΛΓ=mN−1|ΓΩRΩΣ −RΛΓ=mN−1|ΓΣ

−=mN−1|ΛΩRΩΣ =mN−1|ΛΣ

 , (2.17)

and
Dν ? GΛ

νµ = ∂ν ? GΛ
νµ + gfΛΣ

ΓAΣ
ν ? GΛ

νµ . (2.18)

Most of the literature and earlier work on non-Abelian black-hole and monopole so-
lutions has been carried out in the context of the Einstein-Yang-Mills (EYM) and Einstein-
Yang-Mills-Higgs (EYMH) theories. Before closing this introduction, it is worth discussing

8These will be a certain subset of those represented by Λ,Σ, . . ..
9These are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σaσb = δab + iεabcσc . (2.10)
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the relation between those and the theories we are considering here. The main differences
of the latter w.r.t. the former are the complexification of the Higgs field and the presence of
a non-trivial period matrix. A further difference is the possibility of having more general
scalar manifolds, which is reflected in the expressions of the gauge-covariant derivatives
of the scalar fields. Solutions to the N = 2, d = 4 SEYM theory have a chance of being
also solutions of the EYMH theory if they have covariantly-constant scalars with identical
phases (e.g. all of them purely imaginary). Then, if the scalar potential vanishes on the
solutions, they also have a chance of being solutions to the EYM system as well; as we are
going to see, some of the solutions found in Refs. [123,124] are also solutions of the EYM
theory and have the same metric as the EYM solutions of Refs. [54, 220].

2.1.2 The recipe to construct SBHSs of N = 2, d = 4 SEYM

To construct timelike supersymmetric solutions of the N = 2, d = 4 SEYM theory,
it suffices to follow this recipe [123, 124] to find the elementary building blocks of the

solutions, which are the 2(n+ 1) time-independent functions (IM ) =
(
IΛ

IΛ

)
:

1. Take a solution of the Bogomol’nyi equations

F̃Λ
mn = − 1√

2
εmnpD̃pIΛ, (2.19)

for a gauge field ÃΛ
m (m = 1, 2, 3 labels the 3 spatial coordinates) and a real

“Higgs” field IΛ. D̃pIΛ is the covariant derivative in the adjoint representation

with gauge field ÃΛ
m. Observe that this equation has to be solved in the gauged

(non-Abelian) and ungauged (Abelian) directions. The integrability condition in the
Abelian directions is the familiar requirement that the IΛ be harmonic functions on
R3.

2. Find the functions IΛ by solving these equations:

D̃mD̃mIΛ = 1
2g

2
[
fΛ(Σ

Γf∆)Γ
Ω IΣI∆

]
IΩ . (2.20)

In the non-Abelian directions these equations can, in many cases, be solved by taking
IΛ ∝ IΛ, but currently we only know how to generate non-trivial solutions to them
in the cases where the gauge doublet (ÃΛ, IΛ) describes a non-Abelian Wu-Yang
monopole; Observe that IΛ = 0 is always a solution, but the physical fields may be
singular in some models.

In the Abelian directions, the IΛ are just independent harmonic functions on R3.

3. Given the functions IM , we must find the 1-form on R3 ωm by solving the following
equation:

∂[mωn] = εmnpIMD̃pIM = εmnp

(
IΛD̃pIΛ − IΛD̃pIΛ

)
. (2.21)

The integrability conditions of this equation impose constraints on the integration
constants of the functions IM in exactly the same manner as in the ungauged case
[13,73].

In the case of static solutions, i.e. when ω = 0, the above equation becomes a
constraint on the integration constants of the functions IM that will have to be
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solved. Observe, however, that this constraint is independent of the specific N = 2,
d = 4 model and only depends on the choice of gauge group; possible restrictions on
the solution to said constraint can come from the desired behaviour of the physical
fields in the full solution.

4. To reconstruct the physical fields from the functions IM we need to solve the stabi-
lization equations, a.k.a. Freudenthal duality equations, which give the components
of the Freudenthal dual10 ĨM (I) in terms of the functions IM [88]; These relations
completely characterize the model of N = 2, d = 4 supergravity.

Equivalently, the Ĩ can be derived from a homogeneous function of degree 2 W (I)
called the Hesse potential as [13,158,163]

ĨM = 1
2
∂W
∂IM −→ W (I) = ĨMIM . (2.22)

5. The metric takes the form

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm , (2.23)

where ω = ωmdx
m is the above spatial 1-form and the metric function e−2U is given

by

e−2U = ĨM (I)IM = W (I) . (2.24)

6. The scalar fields are given by

Zi =
Ĩi + iIi

Ĩ0 + iI0
. (2.25)

7. The components of the vector fields are given by

AΛ
t = − 1√

2
e2U ĨΛ , (2.26)

AΛ
m = ÃΛ

m + ωm AΛ
t . (2.27)

After having gone through the steps of the recipe, one ends up with a supersymmetric
solution to a chosen N = 2, d = 4 EYM theory and what remains to be done is to analyze
the constraints coming from imposing appropriate regularity conditions such as the absence
of naked singularities.

2.2 Static, single-SBHSs of SU(2) N = 2, d = 4 SEYM and
pure EYM

Following the recipe given in section 2.1.2, we are going to construct static, single-center
SBHSs of SU(2) N = 2, d = 4 SEYM. Some of the solutions will simultaneously solve the
equations of motion of the EYM and EYMH theories.

The first step consists in finding a solution ÃΛ
m, IΛ of the SU(2) Bogomol’nyi equa-

tions in R3 Eqs. (2.19).

10 In Refs. [123,124,156] the components of the Freudenthal dual are denoted by RM .
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2.2.1 Single-center solutions of the SU(2) Bogomol’nyi equations in R3

Before we search for solutions of the Bogomol’nyi equations it is worth reviewing the origin
and meaning of those equations in the context of the SU(2) Yang-Mills-Higgs theory (in
the Bogomol’nyi-Prasad-Sommerfield (BPS) limit in which the Higgs potential vanishes).

The SU(2) Yang-Mills-Higgs system

With the normalization in Eq. (2.11) and writing F ≡ F aTa,Φ ≡ ΦaTa, the action of the
YMH theory in our conventions reads

SYMH = −2

∫
d4xTr

{
1
2DµΦDµΦ− 1

4FµνF
µν
}
, (2.28)

and the corresponding equations of motion are

DµF
µν = g[Φ,DνΦ] , (2.29)

D2Φ = 0 . (2.30)

For static configurations Ftm = DtΦ = 0, the action can be written, up to a total
derivative, in the manifestly positive form

SYMH = −2

∫
d4xTr

{
−1

4

(
Fmn ∓ εmnpDpΦ

)(
Fmn ∓ εmnpDpΦ

)}
, (2.31)

which leads to the conclusion that static field configurations satisfying the first-order
Bogomol’nyi equations [43]

Fmn = ±εmnpDpΦ , (2.32)

extremize the action Eq. (2.28) and are solutions of the full Yang-Mills-Higgs equations.
Indeed, if we act with Dm on both sides of the equation and use the Ricci identity and
the Bogomol’nyi equation we get the Yang-Mills equation:

DmFmn = ∓εnmpDmDpΦ = ∓1
2gεnmp[Fmp,Φ] = −g[DnΦ,Φ] . (2.33)

If, instead, we act with εpmnDp and use the Bianchi identity, we get the Higgs equation:

0 = εpmnDpFmn = ±DpDpΦ . (2.34)

Observe that the source of the Yang-Mills field, the Higgs current g[Φ,DΦ], not only
vanishes when the Higgs field is covariantly constant DΦ = 0 but also when Φ and DΦ
are parallel in su(2).

Eqs. (2.32) are identical to the ones that arise in N = 2, d = 4 SEYM theory, (2.19)
upon the identification of the vector fields and

1√
2
Ia = ∓Φa . (2.35)
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The hedgehog ansatz

In order to construct static, single-center black-hole-type solutions, it is natural to look
for spherically symmetric solutions of Eqs. (2.32). Substituting the hedgehog ansatz

∓ Φa = δamf(r)xm , Aam = −εamnxnh(r) (2.36)

in the Bogomol’nyi Eqs. (2.32) we get an equivalent system of differential equations for
f(r) and h(r):

r∂rh+ 2h− f(1 + gr2h) = 0 ,

r∂r(h+ f)− gr2h(h+ f) = 0 .
(2.37)

After Prasad and Sommerfield [182] found the solution describing the ’t Hooft-
Polyakov monopole in the BPS limit, Protogenov [183] classified all spherically symmetric
solutions to the SU(2) Bogomol’nyi equations: the ones that can be used to generate
BH-like spacetimes are a 2-parameter family (fµ,s, hµ,s) plus a 1-parameter family (fλ, hλ)
given by

rfµ,s =
1

gr
[1− µr coth (µr + s)] , rhµ,s =

1

gr

[
µr

sinh (µr + s)
− 1

]
,

rfλ =
1

gr

[
1

1 + λ2r

]
, rhλ = −rfλ .

(2.38)

The parameter s is known in the black-hole context as the Protogenov hair parameter
[155]. The BPS ’t Hooft-Polyakov monopole [182] is the only globally regular solution
of this family (which explains why it is the only one usually considered in the monopole
literature11) and corresponds to s = 0. In the s→∞ limit we get

− rfµ,∞ =
µ

g
− 1

gr
, rhµ,∞ = − 1

gr
, (2.39)

which, for µ = 0, coincides with the Wu-Yang monopole [218] given in Eq. (A.15), and
is a solution of the pure Yang-Mills theory. This is possible because the Higgs current
g[Φ,DΦ] vanishes even though Φ is neither zero nor covariantly constant12. With a non-
trivial Higgs field, though, we can assign a well-defined monopole charge to it: for any µ
and s

1

4π

∫
S2
∞

Tr(Φ̂F ) =
1

g
, Φ̂ ≡ Φ√

|Tr(Φ2)|
. (2.40)

The same field configuration can be seen as a Lorentzian meron (see Appendix A.1)
and as a solution to the Skyrme model (see Appendix A.3), and, crucially, it is related
to the SU(2)-embedded Dirac monopole by a singular gauge transformation (see Ap-
pendix A.2). Since the metric is oblivious to gauge transformations, singular or not,
the Wu-Yang monopole gives rise to solutions whose metric is identical to that of Abelian
case.13 The same applies to the higher-charge generalizations of the Lorentzian meron/Wu-
Yang monopole reviewed in Appendix A.4.

11 After coupling the system to gravity, the singularities of the other solutions may become “harmless”
if they can be covered by regular event horizons.

12Actually, the only field configuration in this ansatz with a vanishing Higgs current is this one.
13 Of course there are measurable differences between these two situations, see e.g. Refs. [54,114].
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If fact, this mechanism can be used to generate Wu-Yang monopoles of higher charge
from the well-known Dirac monopole solutions of charge higher than 1 embedded in SU(2),
as reviewed in Appendix A.4. The metric cannot see the difference between the non-
Abelian and the Abelian fields given in Eq. (A.42).

The 1-parameter family is singular for all values of the parameter λ, which also
appears in black-hole solutions as hair. The magnetic charge measured at spatial infinity
vanishes according to the above definition. However, it can be argued that these solutions
do describe a magnetic monopole placed at the origin whose charge is screened: the
entropy of black hole associated to this field has the same form as that of the black hole
associated to the Wu-Yang monopole. Observe that, for λ = 0, the solution is identical to
the Wu-Yang monopole with µ = 0, Eqs. (A.42).

The Protogenov trick

As it turns out, many regular monopole solutions can be deformed by adding a parame-
ter s to the argument µr, generating a family of solutions that contains the original one
(s = 0) and, typically, a new and simpler solution in the s→∞ limit. We will refer to this
procedure as the Protogenov trick and it can be justified as follows: let us consider, for
instance, the ’t Hooft-Polyakov monopole. Since the Bogomol’nyi equation is polynomial,
having elementary functions such as hyperbolic functions in the solution means that they
must cancel amongst themselves and that only their derivatives contribute to the polyno-
mial part of the solution. This means that one should be able to deform the dependency
of the elementary functions introducing a shift s of the radial coordinate and still solve
the Bogomol’nyi equations.

Of course, the cancellations necessary for having a regular solution will not work out
anymore (assuming they did work for s = 0) and one will end up with a family of singular
solutions. We will use this trick later.

2.2.2 Embedding in the SU(2)-gauged CP3
model

The CP3
model

As we already explained, the CPn models have n vector supermultiplets and are defined
by the quadratic prepotentials

F = − i
4ηΛΣXΛXΣ , (ηΛΣ) = diag(+− · · ·−) . (2.41)

The n physical scalar fields can be defined as

Zi ≡ X i/X 0 , (2.42)

and they parametrize the symmetric space U(1, n)/(U(1) × U(n)). It is convenient to
define Z0 ≡ 1, ZΛ ≡ XΛ/X 0 and ZΛ ≡ ηΛΣZ

Σ. In the X 0 = 1 gauge, the Kähler potential
and the Kähler metric are given by

K = − log (Z∗ΛZΛ) , Gij∗ = −eK
(
ηij∗ − eKZ∗i Zj∗

)
, ⇒ 0 ≤

∑
i

|Zi|2 < 1 . (2.43)

The above metric is the standard (Bergman) metric for the U(1, n)/(U(1)×U(n)) symmet-
ric spaces [38]. The covariantly holomorphic symplectic section V and the period matrix
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NΛΣ are given by

V = eK/2

 ZΛ

− i
2ZΛ

 , NΛΣ = i
2

[
ηΛΣ − 2

ZΛZΣ

ZΓZΓ

]
. (2.44)

The isometry subgroup SU(1, n) acts linearly, in the fundamental representation, on
the coordinates XΛ

X ′Λ = ΛΛ
ΣXΣ , with Λ†ηΛ = η , and det Λ = 1 . (2.45)

This linear action induces a non-linear action on the special coordinates:

Z ′Λ =
ΛΛ

ΣZ
Σ

Λ0
ΣZΣ

. (2.46)

The Kähler potential is invariant under these transformations up to Kähler transformations
K′ = K + f + f∗ with

f(Z) = log
(
Λ0

ΣZ
Σ
)
. (2.47)

The n(n+2) infinitesimal generators Tm of su(1, n) in the fundamental representation
are defined by

ΛΛ
Σ ∼ δΛ

Σ + αm Tm
Λ

Σ , with ηT †mη = −Tm , and Tm
Λ

Λ = 0 . (2.48)

Substituting this definition into Eq. (2.46) we find an expression for the holomorphic
Killing vectors14.

Z ′Λ = ZΛ + αmkm
Λ(Z) , km

Λ(Z) = Tm
Λ

Σ ZΣ − Tm0
Ω ZΩZΛ , (2.49)

and, from this expression, we also find explicit expressions for the holomorphic functions
λm(Z) and the momentum maps

λm = Tm
0

ΣZ
Σ , Pm = ieKTm

Λ
ΣZ

ΣZ∗Λ = ieKηΛΩTm
Λ

ΣZ
ΣZ∗Ω . (2.50)

Although the theory is invariant under the whole SU(1, n) group, the prepotential
is invariant only under the subgroup of SU(1, n) with real matrices, SO(1, n), which is the
largest group that we could eventually gauge. However, the requirements that the vectors
must transform in the adjoint representation restricts the possibilities to either SO(1, 2) or
SO(3) (if n ≥ 2 or n ≥ 3, respectively); we are going to consider the latter case embedded

into the minimal model admitting this gauge group, namely CP3
.

In this model, the adjoint indices a, b, c, . . . and the fundamental indices i, j, k, . . .
take the same values 1, 2, 3 and we will only use the latter. The infinitesimal transforma-
tions of the scalars are

δαZ
i = αjTj

i
kZ

k , whereTj
i
k = fjk

i = −εjki , (2.51)

and the momentum maps, holomorphic Killing vectors etc. take the values

Pi = −ieKεijkZjZ∗ k , ki
j = εijkZ

k , λi = 0 . (2.52)

14The km
0(Z) component vanishes identically, as it must, but it is convenient to keep it.

39



Chapter 2. N = 2 Einstein-Yang-Mills’ static two-center solutions

This means that the gauge-covariant derivative of the scalars is just that of a complex
adjoint SO(3) scalar

DµZ
i = ∂µZ

i − gεijkAjµZk, (2.53)

and that the scalar potential takes the form

V (Z,Z∗) = −1
2g

2eKεijkεimnZ
jZ∗k

∗
ZmZ∗n

∗
= 1

2g
2
∣∣∣~Z × ~Z∗

∣∣∣2 . (2.54)

The solutions

To construct the solutions of this model15 we just have to follow the recipe spelled out in
section 2.1.2. We will only consider static solutions (so ω = 0 and ÃΛ

m = AΛ
m). First

of all, we need a solution of the Bogomol’nyi Eqs. (2.19). These equations split into an
Abelian part (the 0th component) and the non-Abelian part (the i = 1, 2, 3 components):

F 0
mn = − 1√

2
εmnp∂pI0 , (2.55)

F imn = − 1√
2
εmnpDpIi . (2.56)

The Abelian equation is solved by

I0 = A0 +
p0/
√

2

r
, (2.57)

where A0 is an integration constant and p0 is the normalized Abelian magnetic charge.
The non-Abelian set of equations can be solved making the identification Eq. (2.35) and
using Protogenov’s solutions Eqs. (2.38).

The second step in the recipe (finding solutions IΛ to Eqs. (2.20)) will be solved,
for the sake of simplicity, by choosing another harmonic function in the Abelian direction
and vanishing functions in the rest:

I0 = A0 +
q0/
√

2

r
, Ii = 0 . (2.58)

The third point in the recipe, combined with the staticity of the solutions implies
the following constraint on the integration constants:

A0q0 −A0p
0 = 0 . (2.59)

Another constraint will arise from the normalization of the metric at infinity. The solution
is completely determined and, now, we only have to write the physical fields and make, if
necessary, sensible choices of the values of the physical parameters to make the solutions
regular.

In order to write the physical fields we need the solutions of the Freudenthal duality
equations of this model. These are given by (see, e.g. Ref. [46])

(ĨM ) =

(
ĨΛ

ĨΛ

)
=

(
−2ηΛΣIΣ
1
2ηΛΣIΣ

)
, ⇒ e−2U = 1

2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , (2.60)

15All these solutions have already been presented in Refs. [123, 124, 155]. We review them here for
pedagogical reasons and also for the sake of making easier the comparison with the solutions of other
models.
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and the metric function and the physical scalars are given by

e−2U = 1
2(I0)2 + 2(I0)2 − (rf)2, (2.61)

Zi =

√
2rf

I0 + 2iI0
δim

xm

r
. (2.62)

At least one of the two functions I0, I0 must be different from zero for the metric
function to be positive. Then, there are two possible cases, depending on the vanishing of
the Abelian charges p0, q0:

I. p0 = q0 = 0 The only regular solution is the one with s = 0 (the ’t Hooft-Polyakov
monopole). In this solution, the integration constants satisfy the normalization
condition

1
2(A0)2 + 2(A0)2 = 1 + (µ/g)2 . (2.63)

They are also related to the asymptotic values of the scalars. These cannot be con-
stant, in general, because the scalars transform under local SU(2) transformations,
but they are covariantly constant and their asymptotic values are determined by a
single gauge-invariant complex parameter that we call Z∞:16

Zi ∼ Z∞δim
xm

r
, Z∞ ≡

µ/g

1 + (µ/g)2

(
1√
2
A0 −

√
2iA0

)
, 0 ≤ |Z∞|2 < 1 .

(2.64)

These expressions lead to the following identification of the integration constant µ
in terms of the physical parameters:

µ2 =
|Z∞|2

1− |Z∞|2
g2 , (2.65)

and to the following expression for the mass of the solution

Mmonopole =

√
|Z∞|2

1− |Z∞|2
1

g
. (2.66)

This asymptotically flat solution has no singularities nor horizons (one finds a
Minkowski spacetime in the r → 0 limit, hence zero entropy and temperature).
Globally-regular solutions of this kind [61,113] are sometimes called global monopoles.

Observe that a solution of the ungauged theory with

H0 = A0 , H0 = A0 , H1 = A1 +

√
2

gr
, (2.67)

in which the non-Abelian monopole is replaced by an Abelian monopole with the
same charge, would have the same asymptotic behavior but it would mean having a
naked singularity at some value of r > 0.

16Observe that the scalar potential of this theory, Eq. (2.54), vanishes at infinity for those solutions,
which is why they are asymptotically flat.
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II. p0q0 6= 0 17 Solving Eq. (2.59) the metric can be written in the form

e−2U =
1

1− |Z∞|2
H2 − (rf)2, (2.68)

Zi =
2β

p0 + 2iq0

rf

H
δim

xm

r
, (2.69)

where H is the harmonic function

H ≡ 1 +
β

r
, β2 = (1− |Z∞|2)WRN(Q)/2 , WRN(Q) ≡ 1

2(p0)2 + 2(q0)2 ,

(2.70)
and the integration constant µ is still given by Eq. (2.65). We have expressed all
the constants (except for Protogenov’s hair parameter s and λ) in terms of physical
constants. Observe that the isolated solution f∗ has µ = 0 and corresponds to
Z∞ = 0. These identifications allow us to compute the mass and entropy of all the
possible solutions in terms of the physical parameters. We get a completely general
mass formula and two formulae for the entropy, one for the s 6= 0 solutions and
another one for the s = 0 and the isolated solutions (which corresponds to Z∞ = 0):

M =

√
1
2

WRN (Q)

1− |Z∞|2
+Mmonopole, (2.71)

S/π = 1
2WRN(Q)− 1

g2
, for s 6= 0 and Z∞ = 0, (2.72)

S/π = 1
2WRN(Q), for s = 0 , (2.73)

where Mmonopole is given by Eq. (2.66).

The entropy is moduli-independent as in the ungauged case and both the entropy
and the mass are independent of the hair parameters s and λ.

Observe that the charge of the BPS ’t Hooft-Polyakov monopole s = 0 does not
contribute to the entropy which suggests that it must be associated to a pure state
in the quantum theory. The non-Abelian field of the isolated solution does not
contribute to the mass at infinity (Mmonopole = 0 for Z∞ = 0) but there is a magnetic-
charge contribution to the entropy, which suggests that there really is a magnetic
charge but it is screened at infinity. Further support for this interpretation comes
from the near-horizon limit of the scalars, which is the covariantly-constant function
of the charges

Zih =
1/g

1
2p

0 + iq0
δim

xm

r
. (2.74)

even for the isolated case, when no magnetic charge is observed at infinity.

In the case of the 1-parameter (λ) family, neither the mass nor the entropy depend
on λ.

17It is easier to work with both charges non-vanishing. The results will still be valid when we set one of
them to zero.
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Some of the solutions in this family can also be seen as solutions of the pure EYM
theory. They are identical to those obtained in Refs. [54, 220]. As discussed at the end
of section 2.1.1, we need to tune the parameters of the solutions so as to get covariantly
constant scalars which do not contribute to the energy-momentum tensor This is only
possible for the s → ∞ solutions (Wu–Yang monopoles) for which rf is a harmonic
function. In that case

Zi = Z δim
xm

r
, Z =

1/g
1
2p

0 + iq0
= Z∞ . (2.75)

The metric is identical to that of a Reissner-Nordström black hole. These solutions
were called black hedgehogs in Ref. [124] and black merons in Ref. [54] because the gauge
field of the Wu–Yang monopole can also be understood as Lorentzian meron solution.

A closely related solution with non-covariantly constant scalars was obtained in a
different context in Ref. [133].

2.2.3 Embedding in SU(2)-gauged ST[2, n] models

The ST [2, n] models

The ST [2, n] models are cubic models with nV = n+1 vector supermultiplets and as many
complex scalars and, as all other cubic models, they can be embedded in type II String
Theory compactified Calabi-Yau 3-folds and then uplifted to M-theory. They can also be
obtained from corresponding models of N = 1, d = 5 supergravity compactified on S1.

A generic cubic model is defined by the prepotential

F = − 1

3!
dijk

X iX jX k

X 0
, (2.76)

where d is completely symmetric in its indices; the ST [2, n] models are characterized by
d-tensors with non-vanishing components d1αβ = ηαβ where (ηαβ) = diag(+ − · · ·−) and
where the indices α, β take n values between 2 and n+ 1.

The scalar Z1 = X 1/X 0 plays a special role and parametrizes a SL(2,R)/SO(2)
coset space. For this and other reasons, it is called axidilaton and we will denote it by
τ . The other n scalars parametrize a SO(2, n)/(SO(2)×SO(n)) coset space and will be
denoted by Zα = Xα/X 0 (α = 2, · · · , n). The Kähler metric and 1-form connection are
the products of those of the two spaces.

Using this notation and using the gauge X 0 = 1, the canonical symplectic section Ω,
the Kähler potential K and the components of Kähler 1-form Qi and of the Kähler metric
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Gij∗ are given by

Ω =


1
τ
Zα

1
2τηαβZ

αZβ

− 1
2ηαβZ

αZβ

−τηαβZβ

 , e−K = 4=m τ ηαβ=mZα =mZβ ,

Qτ =
1

4=m τ
, Qα =

ηαβ=mZβ

2ηγδ=mZγ =mZδ
,

Gττ∗ =
1

4(=m τ)2
, Gαβ∗ =

ηαγ=mZγ ηβδ=mZδ

[ηεϕ=mZε =mZϕ]
2 −

ηαβ
2ηεϕ=mZε =mZϕ

.

(2.77)

The reality of the Kähler potential constrains the values of the scalars. The model
has two branches characterized by

=m τ > 0 , ηαβ=mZα =mZβ > 0 , (2.78)

and
=m τ < 0 , ηαβ=mZα =mZβ < 0 , (2.79)

that will be distinguished where required by + and − indices, respectively.

Only the subgroup SO(1, n) ⊂SO(2, n) acts linearly (in the fundamental representa-
tion) on the special coordinates Zα and the group SO(3) acts in the adjoint (for instance)
on the coordinates α = 3, 4, 5 if n ≥ 4. We take n = 4 for simplicity and denote the
α = 3, 4, 5 indices by a, b, · · · = 1, 2, 3. For the sake of simplicity we will write Za instead
of Za+2 for Z3, Z4, Z5 etc. The generators and structure constants of so(3) and their

action on the scalars are the same as in the CP3
model with obvious changes of notation:

(Ta)
b
c = fac

b = −εacb , δαZ
a = αb(Tb)

a
cZ

c = −εabcαbZc = αbkb
a(Z) , (2.80)

(τ and Z2 are inert) so the holomorphic Killing vectors and the momentum maps are

ka
b(Z) = εabcZ

c , Pa = − i
2

εabcZ
bZ∗ c

∗

ηαβ=mZα =mZβ
. (2.81)

The scalar potential has a structure similar to that of the CP3
model, but more

complicated. We will not give it here since it is not needed anyway.

The solutions

To find solutions to this non-Abelian model we just need to follow the recipe. First, we
find the functions IΛ and the spatial components of the vector fields AΛ

m by solving the
Bogomol’nyi equations

FΛ
mn = − 1√

2
εmnp∂pIΛ , I = 0, 1, 2, (2.82)

F a+2
mn = − 1√

2
εmnpDpIa+2 , a = 1, 2, 3, (2.83)
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(we will suppress the +2 in the non-Abelian indices in most places). The Abelian equations
are solved by harmonic functions and the non-Abelian ones by making the identification
Eq. (2.35) with the Higgs field and using Protogenov’s solutions Eqs. (2.38), as we did in

the CP3
model.

Next, we have to find the functions IΛ by solving Eqs. (2.20). In the Abelian
directions Λ = 0, 1, 2 we can simply choose harmonic functions and in the non-Abelian
ones we take Ia = 0. This choice gives non-singular solutions, as we are going to see. We
will also set some of the harmonic functions to zero for simplicity.

The Hesse potential defined in Eq. (2.22) can be found from Shmakova’s solution
of the stabilization (or Freudenthal duality) equations for cubic models [191]; it can be
written as

W(I) = 2
√
J4(I) , (2.84)

with the quartic invariant J4(I) given by

J4(I) ≡ (IαIβηαβ + 2I0I1)(IαIβηαβ − 2I1I0)− (I0I0 − I1I1 + IαIα)2 . (2.85)

This potential does not vanish for the choice Ia = 0, as we advanced and it will
remain non-singular if we set I0 = I1 = I2 = 0. In other words: the only non-trivial
components of IM are I1, I2, Ia+2, I0. With this choice the metric function is given by

e−2U = W(I) = 2
√
−2I1I0 ηαβIαIβ = 2

√
−2I1I0[(I2)2 − IaIa] . (2.86)

As instructed by the recipe in section (2.1.2), we can calculate the Ĩ from Eq. (2.22),
which for our choice of non-trivial components of IM means that Ĩi = 0 (i = 1, · · · , 5);
this implies that all the scalars are purely imaginary and given by

Zi = i
Ii

Ĩ0
, where Ĩ0 =

2I1ηαβIαIβ

W(I)
. (2.87)

It is convenient to write all of them in terms of τ = Z1

Zα =
Iα

I1
τ , τ = i

e−2U

2ηαβIαIβ
. (2.88)

In the two (+ and −) branches of the model corresponding, respectively, to the
upper and lower signs ±=m τ(±) > 0 and, since e−2U > 0, we must choose the functions
Iα(±) so that

± ηαβIα(±)I
β
(±) = ±

[
(I2

(±))
2 − Ia(±)I

a
(±)

]
> 0 . (2.89)

In order for W(I) to be real the I(±) 0 and I1
(±) must be chosen so as to satisfy

± I1
(±)I(±) 0 < 0 . (2.90)

(We will suppress the ± subindices in what follows, to simplify the notation, except
where this may lead to confusion.)

Observe that with our choice of non-vanishing components of IM the r.h.s. of
Eq. (2.21) vanishes automatically, whence the staticity condition ω = 0 does not impose
any constraint.
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According to the preceding discussions, the non-vanishing components of IM will
be assumed to take the form

I1 = A1 +
p1/
√

2

r
, I2 = A2 +

p2/
√

2

r
, Ia =

√
2 δamx

mf(r) ,

I0 = A0 +
q0/
√

2

r
,

(2.91)

where f(r) is fµ,s or fλ in Eqs. (2.38), p1, p2, q0 are magnetic and electric charges and
A1, A2, A0 are integration constants to be determined in terms of the asymptotic values of
the scalars and the metric. These constants must have the same sign as the corresponding
charges

sign(A1,2) = sign(p1,2) , sign(A0) = sign(q0) , (2.92)

as the functions I1, I2 and I0 are required to have no zeroes on the interval r ∈ (0,+∞)
in order to avoid naked singularities there. Then, the above constraint on the signs of
I1 and I0 translates into the following constraints on the signs of the charges in the two
branches:

sign(p1)sign(q0) = ∓1 . (2.93)

Defining as in the CP3
case the asymptotic value Z∞ of the adjoint scalars by

Za∞ ≡ Z∞ δam
xm

r
, (2.94)

and imposing the normalization of the metric at infinity it is not hard to express the
integration constants µ,A1, A2, A0 in terms of the moduli (the asymptotic values of the
scalars =mτ∞,=mZ2

∞ and =mZ∞) and the coupling constant g

A1 =
sign(p1)|=mτ∞|√

2χ∞
,

A2 =
sign(p2)|=mZ2

∞|√
2χ∞

,

µ =
g|=mZ∞|

2χ∞
,

A0 = 1
2
√

2
sign(q0)χ∞ ,

(2.95)

where we have defined the combination (real in both branches of the theory)

χ∞ ≡
√
=mτ∞ [(=mZ2

∞)2 − (=mZ∞)2] . (2.96)

The mass of the solutions in terms of the moduli and the charges is

M = 1
4

χ∞
|=mτ∞|

|p1|+ 1

2χ∞
|q0| ± 1

2

|=mτ∞=mZ2
∞|

χ∞
|p2| ± |=mτ∞=mZ∞|

χ∞

1

g
. (2.97)

In the above expressions we have used two consistency conditions:

sign(=mZ∞) = ∓sign(p1) , sign(=mZ2
∞) = ±sign(p1)sign(p2) . (2.98)
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These expressions for the integration constants and the mass are valid both for the 2- and
1-parameter families, the latter being recovered by setting =mZ∞ = 0 everywhere. The
contribution of the monopole charge 1/g to the mass disappears because it is screened.

Observe that the positivity of the mass is not guaranteed in the − branch for arbi-
trary values of the charges and moduli: it has to be imposed by hand.

Let us now study the behavior of the solution in the near-horizon limit r → 0. For
fµ,s 6=0 and fλ the metric function behaves as

e−2U ∼
√
−2p1q0 [(p2)2 − (2/g)2]

1

r2
, (2.99)

which corresponds to a regular horizon in both branches. The solutions will describe
regular black holes if the charges and moduli are such that M > 0. Observe that in the −
branch it is possible to chose those such that M = 0 with a non-vanishing entropy.

In the fµ,s=0 case with p2 6= 0 the solution is only well defined in the + branch
because there is no 1/r contribution from the monopole in the r → 0 limit and it is
impossible to satisfy the inequality −ηαβIαIβ > 0 in that limit. In this case (the +
branch with p2 6= 0) we have

e−2U ∼
√
−2p1q0(p2)2

1

r2
, (2.100)

which corresponds to a regular horizon.

In the fµ,s=0 case with p2 = 0 there are two possibilities:

1. We can set p1 = q0 = 0. Then, in the r → 0 limit, e−2U is the moduli-dependent
constant 2

√
−2A1A0(A2)2. There is neither horizon nor singularity and the solution,

which is a global monopole, belongs to the + branch (this also guarantees that the
mass is positive).

2. We can keep both p1 6= 0 and q0 6= 0, setting A2 = 0 and profit from the fact that, in
this limit ΦaΦa goes to zero as r2. The solution is only well defined in the − branch.
The metric function takes the constant value

e−2U ∼

√
+p1q0

µ4

g2
, (2.101)

We have, as far as the metric is concerned, a global monopole solution (as long as
M > 0), but since we need two Abelian charges switched on, namely p1 and q0, the
scalar fields and the gauge fields are singular at r = 0. As before, it is possible to
tune the moduli and charges so that M = 0.

The near-horizon limits of the scalars are, in the fµ,s 6=0 and fλ cases

=mτh =

√
−2p1q0 [(p2)2 − (2/g)2]

2 [(p2)2 − (2/g)2]
,

=mZ2
h =

p2

p1
=mτh ,

=mZah =
2=mτh

gp1
δam

xm

r
,

(2.102)
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and, in the fµ,s=0 case with p2 6= 0, we get the same results up to the contribution of the
monopole which disappears (formally, 1/g = 0).

2.2.4 Embedding in pure SU(2) EYM

The scalars can only be trivialized for the Wu-Yang monopole s = ∞. In that case, it is
easy to construct a double-extremal black hole with constant scalars and the metric is, as
usual, Reissner-Nordström’s.

2.3 Multi-center SBHSs

To construct multi-center SBHSs we can use the same recipe as in the single-center case
but we need multi-center solutions of the Bogomol’nyi equations. We start by discussing
these.

2.3.1 Multi-center solutions of the SU(2) Bogomol’nyi equations on R3

In the Abelian case, the multicenter solutions of the Bogomol’nyi equations are associated
to harmonic functions with isolated point-like singularities. They are the seed solutions
of the multi-black-hole solutions of the Einstein-Maxwell theory [66,112,127,148,174,177]
and N = 2, d = 4 supergravities [13, 15, 22, 73]. In the non-Abelian case, the hedgehog
ansatz is clearly inappropriate and more sophisticated methods need to be used. Only a
few explicit solutions are known, even though solutions describing several BPS objects in
equilibrium are, on general grounds, expected to exist. For instance, there is no explicit
solution describing two BPS ’t Hooft-Polyakov monopoles in equilibrium (see however
Ref. [173]).

Perhaps not surprisingly, the only general families of explicit solutions available in-
volve an arbitrary number of Wu-Yang or Dirac monopoles embedded in SU(2). The
simplest of these only involve Wu-Yang monopoles and formally, it can be obtained from
solutions describing Dirac monopoles embedded in SU(2) via singular gauge transforma-
tions [181], generalizing the constructions reviewed in Appendices A.2 (minimal charge)
and A.4 (higher charge). As we have explained at length in the preceding sections, the
metric is completely oblivious to these gauge transformations and takes the same form as
in the Abelian cases. We will not study such solutions in this section.

In Refs. [63], using the Nahm equations [165], Cherkis and Durcan found new so-
lutions describing one or two, charge 1, Wu-Yang monopoles embedded in SU(2) in the
background of a single BPS ’t Hooft-Polyakov monopole.18 We are going to use the first of

them to construct multi-center solutions of the CP3
and ST [2, 4] models of N = 2, d = 4

SEYM. Let us review the Cherkis-Durcan solution first: take the BPS ’t Hooft-Polyakov
monopole to be located at xn = xn0 and the Wu-Yang monopole at xm = xm1 . We define

18 In Ref. [42] Blair and Cherkis generated a solution describing an arbitrary number of charge 1 Wu-
Yang monopoles in the presence of an ’t Hooft-Polyakov monopole; one can easily generalize this solution
to one describing an arbitrary number of charge n(> 0) Wu-Yang monopoles in the background of an ’t
Hooft-Polyakov monopole, by coalescing n charge 1 Wu-Yang monopoles. Needless to say, the Protogenov
trick works as expected. For the sake of simplicity of exposition, we will not consider this more general
solution in this article.
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the coordinates relative to each of those centers and the relative position by

rm ≡ xm − xm0 , um ≡ xm − xm1 , dm ≡ um − rm = xm0 − xm1 , (2.103)

and their norms by respectively, r, u and d. The Higgs field and gauge potential of this
solution (adapted to our conventions) are given by [63]

±Φa =
1

g
δam

{[
1

r
−
(
µ+

1

u

)
K

L

]
rm

r
+

2r

uL

(
δmn − rmrn

r2

)
dn
}
, (2.104)

Aa = −1

g

[
1

r
− µD + 2d+ 2u

L

]
εamnr

mdxn

r
+ 2

K

L

εnpqd
nupdxq

uD
δam

rm

r

− 2r

uL
δam

(
δmn − rmrn

r2

)
εnpqu

pdxq , (2.105)

where the functions K,L,D of u and r are defined by

K ≡
[
(u+ d)2 + r2

]
cosh µr + 2r(u+ d) sinh µr , (2.106)

L ≡
[
(u+ d)2 + r2

]
sinh µr + 2r(u+ d) cosh µr , (2.107)

D = 2 (ud+ umdm) = (d+ u)2 − r2 . (2.108)

The function D is clearly zero along the direction19 um/u = −dm/d signaling the
possible presence of a Dirac string in Eq. (2.105); that this is however not the case is
demonstrated in Ref. [42].

In the models that we are going to study, the Higgs field enters the metric in the
combination ΦaΦa, which takes the value

ΦaΦa =
1

g2

{[
1

r
−
(
µ+

1

u

)
K

L

]2

+
4|~r × ~d|2

u2L2

}
. (2.109)

To better understand this solution one will consider several limits:

1. The limit in which we take the BPS ’t Hooft-Polyakov anti-monopole infinitely far
away, keeping the Dirac monopole at xm1 : in this limit d → ∞, rm ∼ −dm while u
remains finite. The Higgs and gauge fields take the form

±Φa ∼ −1

g
δam

(
µ+

1

u

)
dm

d
, (2.110)

Aa ∼ −1

g

(
1 +

dm

d

um

u

)−1

εmnp
dm

d

um

u
d
up

u
. (2.111)

The gauge field should be compared with the embedding of a Dirac monopole with
a string in the direction −dm into the direction δamd

mT a of the gauge group,
Eqs. (A.11) and (A.17) with sm = −dm.

19 This is the half of the line that joins r = 0 to u = 0 that stretches from the Dirac monopole u = 0 to
infinity in the direction opposite to the ’t Hooft-Polyakov monopole at r = 0
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2. The limit in which we take the Dirac monopole infinitely away, keeping the BPS
’t Hooft-Polyakov anti-monopole at xm0 : In this limit d → ∞, um ∼ dm while r
remains finite. The Higgs and gauge fields become those of a single BPS ’t Hooft-
Polyakov anti-monopole at xm0 .

3. In the limit in which we are infinitely far away from both monopoles (r → ∞,
u→∞), which remain at a finite relative distance, the Higgs and gauge fields take
the form

±Φa = −
[
µ

g
+O(|x|−2)

]
δam

xm

|x|
, (2.112)

Aa = −1

g
εamn

xmdxn

|x|2
+

1

2g
δam

xm

|x|

(
εnpqd

nxpdxq

|x|2

)
. (2.113)

The first term in the gauge potential is identical to that of a Wu-Yang anti-monopole
(compare with Eq. (A.2)). This is also the asymptotic behavior of the BPS ’t Hooft-
Polyakov monopole. The Higgs field is asymptotically covariantly constant and, in
particular

ΦaΦa ∼ µ2

g2
+O(

1

|x|2
) . (2.114)

4. The limit in which we approach the center of the BPS ’t Hooft-Polyakov anti-
monopole rm → 0, um → dm

ΦaΦa ∼ 1

4g2d2(1 + µd)2
+O(r) . (2.115)

This limit is finite and only vanishes when the Dirac monopole is taken to infinity
d→∞.

For finite values of d, Eq. (2.109) says that ΦaΦa can only vanish along the line that
stretches from r = 0 to u = 0 so ~r× ~d = 0. Substituting rm = αdm in ΦaΦa we get a
function of α and of the parameter µd. Plotting the functions of α for different values
of µd we find that they have a single zero, which is also a local minimum. At this
minimum the second derivative does not vanish, and therefore, there, ΦaΦa ∼ O(r2),
as in the single-monopole case. However, the value of this second derivative depends
on the direction.

5. The limit in which we approach the singularity of the Dirac monopole um → 0,
rm → −dm

ΦaΦa → 1

g2

{
1

u2
+

(
1

d
− µ

)
1

u

}
+O(1) . (2.116)

Growing Protogenov hair

As we have argued in section (2.2.1) we can add a Protogenov hair parameter s to the
Cherkis & Durcan solution by simply replacing the argument µr of the hyperbolic sines
and cosines in the functions K and L by the shifted on µr + s. We do not need to write
explicitly the solution, but we do need to reconsider the different limits studied for the
s = 0 case:

50



Chapter 2. N = 2 Einstein-Yang-Mills’ static two-center solutions

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

µd

r(d)
d

Figure 2.1: The zeros of the Higgs density as measured by r as a function of the dimen-
sionless separation µd.

1. In the limit in which we take the BPS ’t Hooft-Polyakov-Protogenov anti-monopole
infinitely away, keeping the Dirac monopole at xm1 the Higgs and gauge fields become,
to leading order, those of the Dirac monopole with the Dirac string in the direction
−dm, as in the s = 0 case (See Eqs. (2.110) and (2.105)).

2. In the limit in which we take the Dirac monopole infinitely away, keeping the BPS
’t Hooft-Polyakov-Protogenov anti-monopole at xm0 the Higgs and gauge fields be-
come those of a single BPS ’t Hooft-Polyakov-Protogenov anti-monopole at xm = xm0
(the first two equations (2.38)).

3. In the limit in which we are infinitely far away from both monopoles (r → ∞,
u→∞), which remain at a finite relative distance, the Higgs and gauge fields take
the same form as in the s = 0 case, Eqs. (2.112-2.114).

4. The limit in which we approach the singularity of the BPS ’t Hooft-Polyakov-
Protogenov anti-monopole rm → 0, um → dm (for s 6= 0)

±Φa ∼ 1

g
δam

[
1

r
−
(
µ+

1

d

)
coth s+O(r)

]
rm

r
, (2.117)

⇒ ΦaΦa ∼ 1

g2r2
+O

(
1

r

)
, (2.118)

which is similar to the behaviour near the Dirac monopole as in Eq. (2.116) (with u
replaced by r).

5. The limit in which we approach the singularity of the Dirac monopole um → 0,
rm → −dm we have the same behavior as in the s = 0 case Eq. (2.116).

The solutions with Protogenov hair have another limit, namely the one in which
s→∞; this case will be studied separately.

51



Chapter 2. N = 2 Einstein-Yang-Mills’ static two-center solutions

The s→∞ limit solution

In this limit we get a solution that describes the same Dirac monopole together with a
(µ 6= 0) Wu-Yang anti-monopole:20

±Φa =
1

g
δam

[
−µ+

1

r
− 1

u

]
rm

r
, (2.119)

Aa =
1

g

εamnr
mdxn

r2
+

1

g

εnpqd
nupduq

u(ud+ urdr)
δam

rm

r
. (2.120)

This solution is a particular example of a more general family describing an arbi-
trary number of Dirac monopoles in the background of a Wu-Yang anti-monopole. These
solutions can be obtained from a solution describing only Dirac monopoles embedded in
SU(2) via a singular gauge transformation that only removes the Dirac string of one of
them, which becomes the Wu-Yang anti-monopole. The general family of solutions can be
written in the form:

Φ = ΦWY +HU , A = AWY + CU , (2.121)

where U is the SU(2) (and su(2)) matrix defined in Eq. (A.1) and where ΦWY and AWY

are the Higgs and Yang-Mills fields of a Wu-Yang monopole, given, respectively, by

∓ ΦWY =
1

2g

[
−µ+

1

r

]
U , (2.122)

and by Eq. (A.2) and where H is a function and C a 1-form on R3. If we substitute
into the Bogomol’nyi equations (2.32) and use, on the one hand, that they are satisfied
by the pair AWY,ΦWY, and, on the other hand, that U is covariantly constant with the
connection AWY we arrive at the Dirac monopole equation

dC = ?(3)dH . (2.123)

The integrability condition of this equation is d?(3)dH = 0 so H is any harmonic function.
We can choose it to have isolated poles at the points xm = xmi i = 1, · · · , N

H =
∑
i

pi
2ui

, umi ≡ xm − xmi , (2.124)

in which case C is the 1-form potential of N Dirac monopoles with charges pi which can
be constructed by summing over the potentials of each individual monopole:

C =
∑

Ci , dCi = ?(3)d
pi

2ui
. (2.125)

The expression for each of the Ci is of the form Eq. (A.11) where we can, in principle,
choose the direction smi of each Dirac string independently:

20 One can see fairly easily that in the limiting solution one can, as far as the Bogomol’nyi equations
are concerned, allow for µ to be negative; for finite values of s this is impossible.
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Ci =
pi
2

(
1− smi

si

umi
ui

)−1

εmnp
smi
si

umi
ui
d
upi
ui
, (no sum over i). (2.126)

This solution of the Yang-Mills-Higgs system shares two important properties with
the original Wu-Yang monopole and which are related to the fact that they are related to
Abelian embeddings by singular gauge transformations:

1. Both Φ and DΦ are proportional to U :

Φ =

(
− µ

2g
+

1

2gr
+H

)
U , DΦ = d

(
− µ

2g
+

1

2gr
+H

)
U , (2.127)

and, therefore, commute with each other, so the Higgs current vanishes and the
gauge field is, by itself, a solution of the pure Yang-Mills theory.

2. The gauge field strength is also proportional to U , the coefficient being the field
strength of an Abelian gauge field:

F (A) = d(B + C)U , (2.128)

which implies that the energy-momentum tensors are related as in the single-center
case.

These solutions can be generalized even further, by allowing the the charge of the
“original” Wu-Yang monopole at r = 0 to be n/g (that is: using the generalization of
the Wu-Yang monopole due to Bais [8] which is studied in Appendix A.4). If we now
substitute into the Bogomol’nyi equations (2.32) the ansatz

Φ = Φ(n) +HU(n) , A = A(n) + CU(n) , (2.129)

where U(n), A(n) and Φ(n) are given, respectively, in Eqs. (A.28),(A.29) and (A.34), H is a
function and C a 1-form on R3, and use that they are satisfied by the pair A(n),Φ(n) and
that U(n) is covariantly constant with the connection A(n), we arrive again at the Dirac
monopole equation (2.123).

Since all these solutions are related to Abelian embeddings, they contribute to the
black-hole solutions as the Abelian solutions. We will not consider them in what follows.

2.3.2 Embedding in the SU(2)-gauged CP3
model

We can use the Cherkis & Durcan solution of the SU(2) Bogomol’nyi equations reviewed
in the previous section as a seed solution for a multicenter solution of N = 2, d = 4 SEYM,
adding the same harmonic functions as in the single-center case (I0, I0) or a generalization
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with poles at the locations of the monopoles r = 021 and u = 0. More explicitly, we take

I0 = A0 +
p0
r/
√

2

r
+
p0
u/
√

2

u
,

I0 = A0 +
qr,0/
√

2

r
+
qu,0/

√
2

u
,

Ii = ∓
√

2Φi(r, u) ,

Ii = 0 ,

(2.130)

where Φi(r, u) is the Higgs field of the Cherkis & Durcan solution. The metric and scalar
fields take the form

e−2U = 1
2(I0)2 + 2(I0)2 − ΦiΦi , (2.131)

Zi =
∓
√

2Φi

I0 + 2iI0
. (2.132)

The normalization of the metric and scalars at infinity leads to the same relations
between the integration constants A0, A0, µ and the physical constants Z∞, g as in the
single-center case, namely

1√
2
A0 +

√
2iA0 =

Z∗∞
|Z∞|

1√
1− |Z∞|2

, µ =
|Z∞|√

1− |Z∞|2
g . (2.133)

The integrability conditions of Eq. (2.21) are, in this case,

I0∂m∂mI0 − I0∂m∂mI0 = 0 , (2.134)

and lead to the following relations between the integration constants:

A0(qr,0 + qu,0)−A0(p0
r + p0

u) = 0 , (2.135)

J − 1√
2
d(A0qu,0 −A0p

0
u) = 0 , (2.136)

where we have defined the constant

J ≡ p0
rqu,0 − qr,0p0

u . (2.137)

The first equation is equivalent to Eq. (2.59) for the total charges and the second
equation determines the relative distance d in terms of J and A0qu,0−A0p

0
u provided that

J 6= 0. When that is the case, the solution is not static and has an angular momentum J
directed along the line that joins the monopoles Jm = Jdm/d. The corresponding 1-form

21The location of the BPS ’t Hooft-Polyakov anti-monopole is not completely clear: it is sometimes
argued that the center of the monopole is the point at which the Higgs vanishes and the full gauge
symmetry is restored. As we have discussed, that point is not r = 0. We could try to place the poles of the
harmonic functions at that point, but, given that its location is not known analytically and the expansion
of ΦaΦa around it is difficult to compute, we will not try to do that here.
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ω can be constructed by the standard procedure of the Abelian case. However, since this
complicates the analysis of the regularity of the solutions, we will stick to the static case
and require J = 0.

In order to have regular solutions, the charges at each center must be chosen as in
the corresponding single-center case: since there is an Abelian monopole at u = 0, we
must switch on either p0

u or qu,0 to have a regular horizon there. We can treat them both
as non-vanishing with no loss of generality. Then, there are two possibilities:

I. p0
r = qr,0 = 0: Only for s = 0 (’t Hooft-Polyakov anti-monopole at r = 0) has the

solution a chance of being regular at r = 0. Solving Eq. (2.135) the solution can be
written in the form

e−2U =
1

1− |Z∞|2
H2 − ΦiΦi , (2.138)

Zi =
2β

p0 + 2iq0

Φi

H
, (2.139)

where H is the harmonic function

H ≡ 1 +
β

u
, β2 = (1− |Z∞|2)WRN(Qu)/2 , WRN(Qu) ≡ 1

2(p0
u)2 + 2(qu,0)2 .

(2.140)

The free parameters of this solution are the charges p0
u, qu,0 and the single modulus

|Z∞|.

Studying the u→ 0 limit we find a black hole with entropy

Su/π = 1
2WRN(Qu)− 1

g2
, (2.141)

as in the corresponding single-center case.

In the r → 0 limit e−2U is constant. The positivity of the constant is guaranteed if
Su is positive. The total entropy of the solution is just the entropy of the black hole
at u = 0 and the Dirac monopole does contribute to it.

The mass of the solution, expressed in terms of the independent parameters of the
solution, p0

u, qu,0 and |Z∞| takes the form

M = Mr +Mu , (2.142)

Mr = −Mmonopole , (2.143)

Mu =

√
1
2

WRN (Qu)

1− |Z∞|2
+Mmonopole , (2.144)

where Mmonopole is given by Eq. (2.66). The contributions of the monopole and the
’t Hooft-Polyakov monopole to the mass cancel each other.

II. p0
r or qr,0 6= 0 We can treat both charges as non-vanishing with no loss of generality.
Solving Eqs. (2.135) and (2.137), we can write the solution as in Eqs. (2.138) and
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(2.139) where, now,

H ≡ 1 +
βr
r

+
βu
u
, β2

r,u = (1− |Z∞|2)WRN(Qr,u)/2 ,

WRN(Qr,u) ≡ 1
2(p0

r,u)2 + 2(qr,u,0)2 .

(2.145)

The free parameters of this solution are the charges p0
u, qu,0 and |Z∞| and either p0

r

or qr,0, since they must be proportional to those of the other center. The areas of
each of the horizons are as in the single-center case. In particular, the BPS ’t Hooft-
Polyakov monopole (s = 0) does not contribute to the entropy of the r = 0 center.
The mass is given by

M = Mr +Mu , (2.146)

Mr =

√
1
2

WRN (Qr)
1− |Z∞|2

−Mmonopole , (2.147)

Mu =

√
1
2

WRN (Qu)

1− |Z∞|2
+Mmonopole , (2.148)

and the contributions of the monopole and anti-monopole cancel each other. In the
s→∞ limit it can be easily seen that the solution is completely regular everywhere
(e−2U only vanishes at r = 0 and u = 0) if the Abelian charges as chosen so that the
horizons are regular. This guarantees that all the terms in e−2U are positive. For
finite s this is more difficult to proof analytically, but, since the Higgs field has a
better behavior than in the s → ∞ case, it is reasonable to expect that it will also
be true. We have checked numerically that this is so in several examples.

2.3.3 Embedding in the SU(2)-gauged ST[2, 4] model

The metric and scalar fields of the solution are now given by

e−2U = 2
√
−2I1I0[(I2)2 − 2ΦaΦa] , (2.149)

Z1 ≡ τ = i
e−2U

2[(I2)2 − 2ΦaΦa]
, Z2 =

I2

I1
τ , Za =

√
2Φa

I1
τ , (2.150)

where Φa is the Higgs field of the Cherkis & Durcan solution (deformed with the Pro-
togenov hair parameter s) and where the harmonic functions I1, I2 and I0 are allowed to
have poles at r = 0 and u = 0:

I1 = A1 +
p1
r/
√

2

r
+
p1
u/
√

2

u
, I2 = A2 +

p2
r/
√

2

r
+
p2
u/
√

2

u
,

I0 = A0 +
qr,0/
√

2

r
+
qu,0/

√
2

u
.

(2.151)

As in the CP3
case, the Abelian charges at each center must be chosen with the

same criteria as in the corresponding single-center case. This means, in particular, that
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the Abelian charges at u = 0, p1
u, qu,0 must be non-vanishing. p2

u may need to be activated,
depending on the branch we are considering. At r = 0, for s 6= 0 we get exactly the same
possibilities, but, for s = 0 there are two possibilities:

1. p1
r , qr,0, p

2
r non-vanishing. We find a black hole at r = 0 in the + branch.

2. p1
r = qr,0 = p2

r = 0. e−2U is a complicated d-dependent constant in the r = 0 limit
and we get a global monopole.

Here we find an important difference with the single-center case, due to the fact
that ΦaΦa is a finite constant in the r → 0 limit instead of going to zero as r2: there is
no solution with p1

rqr,0 6= 0 and p2
r = 0. In order to have such a global monopole solution

with p1q0 6= 0 and p2 = 0 in equilibrium with the monopole at u = 0 one may try to place
those charges at the point at which ΦaΦa = 0, but the resulting solution may not be well
defined there because the limit of the metric function depends on the direction from which
we approach that point.

The entropy of the solution is the sum of the entropies of both centers (vanishing

for global monopoles). As in the CP3
case, the monopole at each center does contribute

to the center entropy (except for global monopoles). The contributions of the monopole
and anti-monopole to the mass cancel each other:

M = 1
4

χ∞
|=mτ∞|

|p1
u + p1

r |+
1

2χ∞
|qu,0 + qr,0| ± 1

2

|=mτ∞=mZ2
∞|

χ∞
|p2
u + p2

r | . (2.152)

2.4 Conclusions

In this chapter we have discussed the construction of supersymmetric multi-object solu-

tions in N = 2, d = 4 EYM theories, specifically in the so-called CPn≥3
and ST[2, n]

models. These models were chosen due to their workability, the fact that they allow for a
SU(2) gauging and (in the second case) for their stringy origin. Starting with a deforma-
tion of the solutions to the SU(2) Bogomol’nyi equation found by Cherkis and Durcan that
adds to the ’t Hooft-Polyakov monopole Protogenov hair, we have been able to construct
bona fide two-center solutions. These solutions describe a Dirac monopole embedded in
SU(2) in the presence of either a global monopole (the supergravity solution corresponding
to the ’t Hooft-Polyakov monopole) or a non-Abelian black hole (a supergravity solution
with an ’t Hooft-Polyakov-Protogenov monopole). In order to make the comparison with
the single-object case easier, we included a detailed discussion of the embeddings of the
spherically symmetric solutions to the SU(2) Bogomol’nyi equations into the two models,
and expressed the whole solution in terms of charges and moduli of the physical fields.

The constructed solutions are all static. It would be very interesting to study dyonic
solutions and to see how this interplays with the Denef constraint; the stumbling block in
this respect is not so much the Bogomol’nyi equation as the equation (2.20); for the moment
the only general solution we know of is to take IΛ ∼ IΛ in the gauged directions, but this
automatically solves the Denef constraint. The only case for which we can find non-trivial
dyonic solutions is for the multi-Wu-Yang solutions, or if you like the s→∞ limit of the
deformed Cherkis and Durcan’s solution; we refrain from discussing these solutions here
as, due to gauge invariance, even taking into account the singular gauge transformation,
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the restriction coming from the Denef constraint is basically the one corresponding to the
Abelian theory.

A natural question that follows from the results presented here and in Refs. [123,
124,155] is whether we could use a charge k SU(2) monopole to construct globally regular
solutions; the answer is yes: observe that the construction of globally regular solutions in
section (2.2) hinges exclusively but crucially on the fact that the used monopole solution
is regular and is such that ΦaΦa ≤ lim|~x|→∞ΦaΦa. A charge-k monopole may be rather
difficult to construct but the regularity is guaranteed and also the last needed ingredient
is known to be satisfied: indeed, using the Bogomol’nyi equation (2.32) one can show that

∂m∂m ΦaΦa = F ammF
a
mm ≥ 0 . (2.153)

This equation together with the Hopf maximum principle and the regularity, implies
that the function ΦaΦa is bounded from above by its value on the sphere at infinity, which
is exactly what one needs.

As was said in the introduction, the creation and study of non-Abelian solutions
to d = 4 supergravity theories is in its infancy and this holds doubly so for the higher
dimensional theories. One possible reason is that the structure of supersymmetric solutions
to higher supergravities (see e.g. Refs. [23, 58]) is more entangled than the one given in
the recipe in section 2.1.2. For example, naively one would expect that Kronheimer’s link
of monopoles on R3 to instantons on GH-spaces, would carry over to the supersymmetric
solutions as in d = 4 the base space is R3 and that in d = 5 must be hyper-Kähler; i.e. one
would expect the instanton equation to show up in the recipe for cooking up 5-dimensional
supersymmetric solutions. Perhaps it does, but it definitely is not obvious where and how
it is making its appearance in such a clear-cut manner as in d = 4.

The 4- and 5-dimensional EYMH theories are, however, related by dimensional
reduction/oxidation, whence the solutions to the cubic models presented in here could
be oxidized to 5-dimensions and can be studied with the hope of unraveling the structure
of 5-dimensional supersymmetric solutions.
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3
Resolution of SU(2) monopole singularities by

oxidation

This chapter is based on

Pablo Bueno, Patrick Meessen, Tomas Ort́ın and Pedro F. Ramı́rez
“Resolution of SU(2) monopole singularities by oxidation”,

Phys.Lett. B746 (2015) 109-113. [arXiv:1503.01044 [hep-th]] [48].

It has been known for a long time that selfdual Yang–Mills (YM) instantons in
4-dimensional Euclidean space E4 and magnetic monopoles satisfying the Bogomol’nyi
equation in E3 [43]1 are related by dimensional reduction. In its simplest setting, this
relation can be described as follows: if Âµ̂ (µ̂ = 0, 1, 2, 3)2 is the gauge potential of a
selfdual YM instanton solution in E4 and is furthermore independent of one of the 4
Cartesian coordinates, z say, then the z-component Âz and the other three components
Âm (m = 1, 2, 3) can be identified with the Higgs field Φ ≡ −Âz and the gauge potential
Am ≡ Âm of a solution of the Yang–Mills–Higgs (YMH) system in the Prasad-Sommerfield
limit satisfying the Bogomol’nyi equation:

DmΦ = 1
2εmnpFnp . (3.1)

The sign in the Bogomol’nyi equation depends on the orientation of the coordinates;
we have taken the one corresponding to z to be x0 and ε0123 = ε123 = +1.

The coordinate z has to be compactified for the instanton action to be finite:3

z ∼ z+4π. Thus, in practice, we are performing the dimensional reduction in S1×E3 and
the z-independent solutions can be considered to be the Fourier zero modes of instanton
solutions periodic in the direction z (the so-called calorons).

The paradigm of selfdual YM instanton in E4 is the BPST instanton [19], usually
presented in Cartesian coordinates using the ’t Hooft symbols. It belongs to a family
of selfdual YM solutions depending on an arbitrary function K, harmonic on E4 (see
e.g. Ref. [131] and references therein). With K asymptotically constant and with a
single point-like pole at the origin K = 1 + 4/(λ2ρ2), where |~x(4)|2 ≡ ρ2, the solution

1This is the equation satisfied by the ’t Hooft–Polyakov monopole [120,180] in the Prasad-Sommerfield
limit [182]. We will henceforth refer to these monopoles as BPS monopoles. Since the time direction
does not play any role here, we will also refer to the spatial parts of 4-dimensional Lorentzian solutions as
“3-dimensional” solutions.

2We dress 4-dimensional objects with a hat; hatless objects are 3-dimensional.
3This choice of period is unconventional but convenient for what follows.
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describes a single BPST instanton located at the origin. Replacing K by a harmonic
function on S1 × E3 with a single pole at the origin and asymptotically constant in E3,
K = 1 + (sinh r/2)/[λ2r2(cosh r/2− cos z/2)], where ρ2 = z2 + r2 = z2 + |~x(3)|2, we get a
caloron [111] whose Fourier zero mode gives, upon dimensional reduction, the spatial part
of a Wu-Yang SU(2) magnetic monopole [218], which is singular at the origin.

Since the BPST instanton and caloron are regular everywhere, the singularity of the
Wu–Yang solution can be understood as the result of having ignored the massive Fourier
modes in the dimensional reduction, but the mere oxidation of the 3-dimensional monopole
does not automatically restore them: the 4-dimensional singular instanton corresponding
to the Fourier zero mode of the BPST caloron is singular.

The above redox relation was generalized by Kronheimer in Ref. [142] to a relation
between selfdual Yang–Mills instanton solutions in hyper–Kähler (HK) spaces [142] and
BPS monopoles in E3. We are going to see that Kronheimer’s scheme provides an alterna-
tive reduction of the BPST instanton which relates it to the colored BPS monopole solution
of Protogenov [183]. Colored monopoles are a rather misterious type of monopole solutions
that exist for many gauge groups [160] and are characterized by asymptotically vanishing
Higgs field and magnetic charge which, nevertheless, can contribute to the Bekenstein–
Hawking entropy of certain (supersymmetric) non-Abelian black holes [47,155,160].

Let us start by reviewing Kronheimer’s result: consider a 4-dimensional HK space
admitting a free U(1) action which shifts the adapted periodic coordinate z ∼ z + 4π by
an arbitrary constant. Its metric can always be put in the form [97]

dŝ 2 = H−1(dz + ω)2 +Hdxmdxm (m = 1, 2, 3) , (3.2)

where the z-independent function H and 1-form ω are related by4

dH = ?dω . (3.3)

The integrability condition of this equation implies that H is a harmonic function in E3

which is furthermore required to be strictly positive in order for the metric to be regular.
Now, for any gauge group G, let us consider a gauge field Â whose field strength F̂ is
selfdual ?̂F̂ = +F̂ in the above HK metric with respect to the frame and orientation

ê 0 = H−1/2(dz + ω) , ê a = H1/2δamdx
m , ε0123 = +1 . (3.4)

Then, the 3-dimensional gauge and Higgs fields A and Φ defined by

Φ ≡ −HÂz ,

Am ≡ Âm − ωmÂz ,
(3.5)

satisfy the Bogomol’nyi equation in E3 Eq. (3.1). It is worth stressing that, had we
started with an anti-selfdual YM field we would have obtained the Bogomol’nyi equation
with opposite sign, which is acceptable, but also Eq. (3.3) with opposite sign, which would
be a contradiction: in this setup we can only reduce YM fields which are selfdual w.r.t. the
above frame and orientation.

4Unhatted objects are always defined in 3-dimensional Euclidean space E3.
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When H = 1, the HK space is just S1 × E3 and one recovers the result explained
at the beginning. A more interesting choice is H = 1/r with r2 = xmxm. Writing the E3

metric dxmdxm as dr2 + r2dΩ2
(2) and then redefining r = ρ2/4 the HK metric Eq. (3.2)

becomes the metric of E4 in spherical coordinates

ds2 = dρ2 + ρ2dΩ2
(3) , (3.6)

where dΩ2
(3) is the round metric of the 3-sphere of unit radius in Eq. (B.14). This HK

space is, therefore, E4
−{0} and the shifts of z act freely on it because the origin ρ = 0 does

not belong to it.

Obviously, the standard BPST instanton is a selfdual solution in this space and,
provided that the gauge field is independent of z, we can reduce it directly (avoiding the
caloron step) using Kronheimer’s scheme to find a monopole in E3

−{0}. This is what we
are going to do in the next section but, before, we want to review the relation between
the Euclidean action of the instanton and the monopole charge.

The gauge field strength components in the frame Eq. (3.4) are
F̂ab = H−1Fab −H−2Φ(dω)ab ,

F̂0a = H−1DaΦ−H−2Φ∂aH ,

(3.7)

Substituting them into the YM action and using repeatedly Eq. (3.3), the Bogomol’nyi
equation (3.1) and Stokes’ theorem we get

1
4

∫
d4x
√
|ĝ|F̂ 2 = 4π

∫
V 3

1
2H
−2d ? dH Φ2 + 4π

∫
∂V 3

[
H−1ΦAFA + 1

2 ? dH
−1Φ2

]
, (3.8)

where V 3 is E3 with the singular points of H removed: this means that the first term on
the r.h.s. always vanishes. The end result therefore reads

1
4

∫
d4x
√
|ĝ|F̂ 2 = 4π

∫
∂V 3

[
H−1ΦAFA + 1

2 ? dH
−1Φ2

]
, (3.9)

and one must take into account that the boundary of V 3 includes the singularities of H
as well as infinity.

For H = 1, V 3 = E3 and the r.h.s. is directly related to the monopole magnetic
charge

p = 1
4π

∫
S2
∞

ΦAFA√
ΦBΦB

, (3.10)

provided the Higgs field is asymptotically constant, as in the BPS ’t Hooft–Polyakov
monopole.

For H = 1/r, which is the case of interest here, V 3 = E3
−{0}, ∂V

3 = {0} ∪ S2
∞,

and the integral will diverge precisely for monopoles with well-defined magnetic charge at
infinity and asymptotically constant Higgs fields. Thus, we can only expect convergence
for colored magnetic monopoles [160]. If the selfdual YM field has a finite action, then
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it must lead to a colored monopole in E3 by Kronheimer’s dimensional reduction. In the
next section we are going to see that this is indeed the case for the BPST instanton.

3.1 Singular reduction of the BPST instanton

In order to reduce the BPST instanton à la Kronheimer in the HK space with H = 1/r,
it is convenient to write it in spherical coordinates and, actually, it is easier to rederive it
directly using the following ansatz for the components of the SU(2) gauge potential

ÂAL
R

= b L
R

(ρ)vAL
R
, A = 1, 2, 3 , (3.11)

where the vAL
R

are the components of the SU(2) Maurer–Cartan (MC) 1-forms defined

in Eqs. (B.12), satisfying Eq. (B.13), and b L
R

(ρ) is a function of ρ to be determined by

imposing the selfduality of the gauge field strength. To this end it is most convenient to
use the frames

ê 0
L
R

= dρ , ê aL
R

= 1
2ρδ

a
Av

A
L
R
, (3.12)

for the metric Eq. (3.6). Using the MC 1-forms it is straightforward to compute the gauge
field strength F̂AL

R

:

F̂ L
R
A

=
2ḃ

ρ
δAa ê LR

0 ∧ ê LR
a

+
2b(b∓ 1)

ρ2
εAab ê LR

a ∧ ê LR
b
. (3.13)

Requiring F̂AL
R

to be (anti-)selfdual (F̂A(±)
0a = ±1

2εabcF̂
A(±)

bc) in these two frames

we arrive at a differential equation for b±L
R

(ρ) leading to two self- and two anti-selfdual

solutions describing a single BPST instanton or anti-instanton, of size5 determined by the
parameter λ, at the origin:

?̂F̂ = +F̂


Â
A(+)
L =

1

1 + λ2ρ2/4
vAL ,

Â
A(+)
R = − λ2ρ2/4

1 + λ2ρ2/4
vAR ,

?̂F̂ = −F̂


Â
A(−)
L = +

λ2ρ2/4

1 + λ2ρ2/4
vAL ,

Â
A(−)
R = − 1

1 + λ2ρ2/4
vAR .

(3.14)

The gauge fields Â
A(±)
L are gauge-equivalent to the Â

A(±)
R owing to

UÂ
A(±)
L U−1 + dUU−1 = Â

A(±)
R , (3.15)

and the property Eq. (B.11). Then, we could just work with Â
A(+)
R and Â

A(−)
L , which are

regular (they vanish at ρ = 0 while the other two are multivalued there). However, if we

want to use Kronheimer’s results we are forced to work with the singular ones, Â
A(+)
L and

5 In the instanton literature it is customary to denote the size of the (anti-)instanton by ρ, see e.g.
Refs. [207], but here we’ll denote it by ρ0. It is then easy to see that λ = 2/ρ0.
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Â
A(−)
R , because as one can see the transformation between the frame êâL

R

in Eqs. (3.12) and

Kronheimer’s frame êâ in Eqs. (3.4) preserves the orientation for êâL but reverses it for êâR.

In other words: the regular gauge fields Â
A(+)
R and Â

A(−)
L are anti-selfdual in Kronheimer’s

frame and can therfore not be consistently reduced.

Let us, then, consider Â
A(+)
L and Â

A(−)
R . By construction, these gauge fields are

invariant under the free U(1) actions in Eqs. (B.5) and (B.4), respectively.

In other words: Â
A(+)
L is ϕ-independent and Â

A(−)
R is ψ-independent and can be

dimensionally reduced along those directions because the only invariant point under these
actions (the origin ρ = 0) does not belong to our HK space. We can expect 3-dimensional
monopoles which are singular there.

Using directly Eqs. (3.5), from Â
A(+)
L we get the Yang–Mills and Higgs fields of a

BPS monopole solution

Φ
A(+)
L =

1

r(1 + λ2r)
δAm

ymL
r
, A

A(+)
L =

1

(1 + λ2r)
εAmnd

ymL
r

ynL
r

(3.16)

where we have defined the Cartesian coordinates ym/r ≡ −δmAvALϕ:6

y1
L ≡ r sin θ cosψ , y2

L ≡ r sin θ sinψ , y3
L ≡ r cos θ . (3.17)

The reduction of Â
A(−)
R gives exactly the same 3-dimensional fields upon the replace-

ment of the Cartesian coordinates ymL by ymR ≡ +rδmAv
A
Rψ:7

y1
R ≡ r sin θ cosϕ , y2

R ≡ −r sin θ sinϕ , y3
R ≡ −r cos θ . (3.18)

As predicted by the arguments based on the Euclidean action, the 3-dimensional
BPS monopole obtained by this procedure is the colored monopole found by Protogenov
in Ref. [183]. The Higgs field vanishes at infinity and the magnetic charge, as defined
in Eq. (3.10) vanishes identically. The solution approaches the Wu–Yang monopole [218]
for r → 0 (which corresponds to λ2 = 0) and, therefore, one can argue that the solution
describes a magnetic monopole at the origin whose charge is completely screened at infinity.
This interpretation is supported by the computation of the Bekenstein–Hawking entropy
SBH of non-Abelian black holes with this kind of gauge fields: there is a contribution to
SBH corresponding to a magnetic charge [47,155].

3.2 Oxidation of singular Protogenov monopoles

Reversing the procedure we just carried out, we see that the singularity of the SU(2) colored
BPS monopole disappears completely when it is oxidized to 4 Euclidean dimensions. Since
there are other singular SU(2) BPS monopoles [183], it is natural to ask whether their
singularities can also be cured by oxidizing them within this scheme.

The spherically symmetric solutions of the SU(2) Bogomol’nyi equations have the
following hedgehog form [183]:

6We use the identity vAL (ϕ = 0)− cos θ vALϕdψ = εAmnd
ymL
r

ynL
r

7Now we use the identity vAR(ψ = 0)− cos θ vARψdϕ = −εAmnd y
m
R
r

ynR
r
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AA = −r2h(r)εAmn
yn

r
d

(
ym

r

)
, (3.19)

ΦA = −rf(r)δAm
ym

r
, (3.20)

where the functions f(r) and h(r) must satisfy the differential equations

rḣ+ 2h+ f(1 + r2h) = 0 , (3.21)

r(ḣ− ḟ)− r2h(h− f) = 0 , (3.22)

if the above Yang-Mills and Higgs fields are to satisfy the Bogomol’nyi equation (3.1).
Apart from the family of colored solutions in Eq. (3.16), there is another 2-parameter (µ
and s) family of solutions given by

rf = −1

r
[1− µr coth (µr + s)] , rh =

1

r

[
µr

sinh (µr + s)
− 1

]
. (3.23)

The BPS limit of the ’t Hooft–Polyakov monopole [120,180] is the s = 0 member of
this family, and the only regular one. Before oxidizing them, we can compute the action
of the corresponding instanton using Eq. (3.9). The action turns out to diverge for all
values of s. However, even if all hope of getting a regular instanton by oxidizing these
solutions is lost, it is still worth finding the general expression of the singular instantons,
since it may give us inspiration for making instanton ansätze directly in 4 dimensions.
Using Kronheimer’s relations, Eq. (3.5), we find

ÂA = −r2f(r)vAL + r2 [f(r)− h(r)]uA , (3.24)

where we have defined the 1-forms

u1 = cosψ sin θ cos θdψ + sinψdθ ,

u2 = sinψ sin θ cos θdψ − cosψdθ ,

u3 = − sin2 θdψ .

(3.25)

These 1-forms depend only on two coordinates (ψ and θ) and they can be seen as projec-
tions of the left-invariant MC 1-forms vAL

uA = vBL

[
δAB −

yBy
A

r2

]
. (3.26)

They satisfy differential equations identical to the ones satisfied by the left-invariant MC
1-forms vAL up to the 1/2 factor, i.e.

duA = −εABCuB ∧ uC , (3.27)
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which makes them well suited for a generalization of the ansatz Eq. (3.11):

ÂA = b(ρ)vAL + c(ρ)uA . (3.28)

Imposing selfduality of the corresponding field strength with the redefinition

b(ρ(r)) = −r2f(r) , c(ρ(r)) = −r2 [h(r)− f(r)] , (3.29)

leads to Protogenov’s equations (3.21) and (3.22); the oxidation of the BPS monopoles
gives all the selfdual instantons of that form.

3.3 Conclusions

In this chapter we have shown how a misterious kind of SU(2) BPS magnetic monopoles
known as colored monopoles, which are singular at the origin and have vanishing asymp-
totic charge and Higgs field, can be understood as the result of the singular dimensional
reduction of the BPST instanton, which is itself globally regular. The parameter appear-
ing in the monopole family of solutions turns out to be related to the one that measures
the instantons’ size.

The mechanism is analogous to the well-known mechanism curing gravitational sin-
gularities by oxidation as for example the KK-monopole [198] or in certain 4-dimensional
dilatonic black holes [98], but with the twist that here the fields are non-Abelian. The
mechanism that cures the singularity of the colored monopole does not, however, work
for the rest of the spherically-symmetric BPS monopoles of the theory: they always have
infinite action, but depending on the application this may or may not be a problem.

We have argued, based on the relation between the instanton action and the monopole
magnetic charge, that this relation between regular instantons and singular, colored mag-
netic monopoles should be general. It has recently been shown in Ref. [160] that colored
magnetic monopoles are present in the Yang–Mills–Higgs theory for all SU(N) groups and
the results of that paper can be used to construct regular selfdual SU(N) instantons, as
we will see in the following chapters. Possibly, the transmutation monopoles discovered in
Ref. [160], which have different (non-vanishing) charges at infinity and at the origin, can
be related to regular solutions by a similar mechanism.

The case studied here is just the simplest and most special of those comprised
in Kronheimer’s work Ref. [142], since it just involves E4

−{0}. One may wonder if the
rest can be of any relevance in physics. It turns out that the relation between N =
1, d = 5 and N = 2, d = 4 super-Einstein–Yang–Mills (SEYM) theories must include the
relation between selfdual instantons in HK spaces and BPS monopoles in E3 discovered
by Kronheimer: the timelike supersymmetric solutions of N = 1, d = 5 [23] (as it happens
in the Abelian case [93]) involve a 4-dimensional Euclidean base space of HK type and the
YM field strengths have a piece which is selfdual in that space. On the other hand the YM
fields of the timelike supersymmetric solutions of N = 2, d = 4 SEYM [157] are required
to satisfy the Bogomol’nyi equation in E3 in combination with an effective Higgs field.
These two classes of theories and their solutions are related by dimensional reduction.
Explicit solutions of the latter describing non-Abelian black holes have been obtained
in [47,123,124,155,160]. Some of the solutions are powered by the colored BPS monopoles
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that we have shown to be related to the BPST instanton. It is then natural to expect that
the oxidation of the complete supergravity solutions will provide us with explicit solutions
of the N = 1, d = 5 SEYM theory8 involving the BPST instanton. These solutions,
whose form is quite intriguing, may be globally regular. The oxidation à la Kronheimer
of solutions involving other monopoles will give potentially singular solutions, but, just
as it happens with singular monopoles in d = 4, gravity may cover the singularities with
event horizons. All these new possibilities opened by the result presented in this chapter
are very interesting and well worth investigating.

8So far, no explicit solutions of these theories have been constructed.
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The search for classical solutions of General Relativity and theories of gravity in
general has proven to be one of the most fruitful approaches to study this universal and
mysterious interaction. This is partially due to the non-perturbative information they
provide, which we do not know how to obtain otherwise. It is fair to say that some of
the solutions discovered (such as the Schwarzschild and Kerr black-hole solutions, the
cosmological ones or the AdS5×S5 solution of type IIB supergravity) have opened entire
fields of research.

Some of the most interesting solutions are supported by fundamental matter fields
and a large part of the search for gravity solutions has been carried out in theories in
which gravity is coupled to different forms of matter, usually scalar fields, Abelian vector
and p-form fields coupled in gauge-invariant ways among themselves and to scalars, as
suggested by superstring and supergravity theories, for instance. The solutions of gravity
coupled to non-Abelian vector fields have been much less studied because of the complexity
of the equations. Most of the genuinely non-Abelian solutions found so far, such as the
Bartnik-McKinnon particle [11] and its black hole-type generalizations [208], in the SU(2)
Einstein-Yang-Mills (EYM) theory, are only known numerically, which makes them more
difficult to study and generalize.

Supersymmetry can simplify dramatically the construction of classical solutions,
providing in some cases recipes to construct systematically whole families of solutions that
have the property of being “supersymmetric” or “having unbroken supersymmetry”, or
being “BPS” (a much less precise term) because these solutions satisfy much easier to solve
first-order differential equations.1 These techniques can be applied to non-supersymmetric
theories if we can “embed” them in a larger supersymmetric theory from which they can
be obtained by a consistent truncation that, in particular, gets rid of the fermionic fields.

In order to apply these techniques to the case of theories of gravity coupled to funda-
mental matter fields we must embed the theories first in supergravity theories. d = 4 EYM

1For a general review on the construction of supersymmetric solutions of supergravity theories, including
some of those that we are going to study here, see Ref. [171].
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theories can be embedded almost trivially in N = 1, d = 4 gauged supergravity coupled
to vector supermultiplets, but there are no supersymmetric black-hole or more general
particle-like solutions in N = 1, d = 4 supergravity: all the supersymmetric solutions of
these theories belong to the null class2 and describe, generically, massless solutions such
as gravitational waves and also black strings (whose tension does not count as a mass).
This could well explain why there are no simple analytic solutions of the EYM theory.

Embedding of d = 4 EYM theories in extended (N > 1) d = 4 supergravity theories
turns out to be impossible, since the latter always include additional scalar fields charged
under the non-Abelian fields which cannot be consistently truncated away. On the other
hand, these scalar fields (or part of them) can also be interpreted as Higgs fields and we
can think of those supergravities (which we will call Super-Einstein-Yang-Mills (SEYM)
theories) as the minimal supersymmetric generalizations of the Einstein-Yang-Mills-Higgs
(EYMH) theory. Actually, some solutions of the SEYM theories are also solutions of the
EYMH theory, but this is not generically true and we cannot say that the EYMH theory
is embedded in some SEYM theory.

At any rate, analytic supersymmetric solutions of SEYM or more general gauged
supergravity theories should be much easier to find than solutions of the EYM theory and,
at the same time, much more realistic, since we know there are scalar fields charged under
non-Abelian vector fields in Nature.

This expectation turns out to be true. In 1991 Harvey and Liu [113] and in
1997 Chamseddine and Volkov [61] found globally regular gravitating monopole (“global
monopole”) solutions to gauged N = 4, d = 4 supergravity, a theory that can be related
to the Heterotic string. In 1994, a 4-dimensional black-hole solution with non-Abelian
hair was obtained by adding stringy (Heterotic) α′ corrections to an a = 1 dilaton black
hole [133]. This solution was singular in the Einstein frame.3 More recently, the timelike
supersymmetric solutions of gauged N = 2, d = 4 and N = 1, d = 5 were characterized,
respectively, in Refs. [124,157] and [20,23],4 so the form of all the fields in those solutions
is given in terms of a few functions that satisfy first-order equations.

In the 4-dimensional case, these first-order equations are straightforward generaliza-
tions of the well-known Bogomol’nyi monopole equations [43] whose more general static
and spherically symmetric solutions for the gauge group SU(2) were obtained by Pro-
togenov in Ref. [183]. Then, the characterization of timelike supersymmetric solutions
was immediately used to construct, apart from global monopole solutions, the first an-
alytical, regular, static, non-Abelian black-hole solutions which cannot be considered as
pure Abelian embeddings [124], showing how the attractor mechanism works in the non-
Abelian setting [123,124]. Colored black holes5 and two-center non-Abelian solutions were
constructed, respectively, in [155] and [47] by using, respectively, “colored monopole” and
two-center solutions of the Bogomol’nyi equations.

In the N = 1, d = 5 SEYM case, the characterization obtained in Refs. [20, 23] has
not yet been exploited. Doing so to construct non-Abelian black-hole and black-string

2The Killing spinor of the supersymmetric solutions in the null (resp. timelike) class gives rise to a null
(resp. timelike) Killing vector bilinear.

3We will see, though, that it is closely related to the 4-dimensional black-hole solutions studied in [47]
and to the 5-dimensional ones presented here.

4In the N = 1, d = 5 case, the null supersymmetric solutions were characterized as well.
5Colored black holes have non-Abelian hair but vanishing asymptotic charges. The charges must be

screened at infinity because they contribute to the near-horizon geometry and to the entropy.
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solutions is our main goal in this chapter. It is a well-known fact, one that also holds
in the Abelian (ungauged) case that the vector field strengths of the timelike supersym-
metric solutions of these theories are the sum of two pieces, one of them self-dual in the
hyperKähler base space, i.e. an instanton in the base space. In the non-Abelian case we
are interested in, this fact can be exploited in an obvious way to add non-Abelian hair to
black hole solutions.

As we are going to see, it will be convenient to refine the general characterization
obtained in those references to obtain a simpler recipe to construct supersymmetric solu-
tions with one additional isometry. These solutions are still general enough and can also be
related to the timelike supersymmetric solutions of N = 2, d = 4 SEYM. In the timelike-
to-timelike reduction, we recover the relation between self-dual instantons in hyperKähler
spaces with one isometry and BPS monopoles in E3 found by Kronheimer in Ref. [142]. As
we have shown in Ref. [48] this redox relation brings us from singular colored monopoles
to globally regular BPST instantons and vice-versa and it will allow us to obtain regular
black holes with a BPST instanton field.

The recipes we have obtained can be applied to any model of N = 1, d = 5 super-
gravity coupled to vector multiplets in which a non-Abelian subgroup of the perturbative
duality group can be gauged. The explicit solutions we will construct will belong to a
particular model, the ST[2, 5] model which is the smallest of the ST[2, n] family of models
admitting a SU(2) gauging. These models are consistent truncations of N = 1, d = 10
supergravity coupled to a number of vector multiplets on T 5 and, for low values of n, they
can be embedded in Heterotic string theory. The SU(2) gauging can be associated to the
enhancement of symmetry at the self-dual radius U(1)×U(1)→U(1)×SU(2), although, in
order to study the details of the embedding of our model in Heterotic string theory (which
will be our next goal) more work will be necessary.

This chapter is organized as follows: in Section 4.1 we review the gauging of a non-
Abelian group of isometries of an N = 1, d = 5 supergravity theory coupled to vector
multiplets. The result of this procedure is what we call an N = 1, d = 5 Super-Einstein-
Yang-Mills (SEYM) theory. In Section 4.2 we review and extend the results of Ref. [23]
on the characterization of the supersymmetric solutions of N = 1, d = 5 SEYM theories,
giving the recipe to construct those admitting additional isometries and showing how they
are related to the analogous supersymmetric solutions of N = 2, d = 4 SEYM theories
characterized in Ref. [123, 157]. We will then use these results in Sec. 4.3 to construct
black holes and black strings (in the timelike and null cases, respectively) of the SU(2)-
gauged ST[2, 5] model of N = 1, d = 5 supergravity and to study their relations, via
dimensional reduction, to the non-Abelian timelike supersymmetric solutions (black holes
and global monopoles) of the SU(2)-gauged ST[2, 5] model of N = 2, d = 4 supergravity
(see Ref. [47]). Our conclusions are given in Section 4.4. Appendix C.4 reviews the
reduction of ungauged N = 1, d = 5 supergravity to a cubic model of N = 2, d = 4
supergravity, with the relation between the 5- and 4-dimensional fields for any kind of
solution (supersymmetric or not). This relation remains true for gauged supergravity
theories under standard dimensional reduction (which does not change the gauge group).
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4.1 N = 1, d = 5 SEYM theories

In this section we give a brief description of general N = 1, d = 5 Super-Einstein-Yang-
Mills (SEYM) theories. These are theories of N = 1, d = 5 supergravity coupled to nv
vector supermultiplets (no hypermultiplets) in which a necessarily non-Abelian group of
isometries of the Real Special manifold has been gauged. These theories can be con-
sidered the simplest supersymmetrization of non-Abelian Einstein-Yang-Mills theories in
d = 5. Our conventions are those in Refs. [21, 23] which are those of Ref. [36] with minor
modifications.

The supergravity multiplet is constituted by the graviton eaµ, the gravitino ψiµ
and the graviphoton Aµ. All the spinors are symplectic Majorana spinors and carry a
fundamental SU(2) R-symmetry index. The nv vector multiplets, labeled by x = 1, ...., nv
consist of a real vector field Axµ, a real scalar φx and a gaugino λi x.

The full theory is formally invariant under a SO(nv + 1) group6 that mixes the
matter vector fields Axµ with the graviphoton Aµ ≡ A0

µ and it is convenient to combine
them into an SO(nv + 1) vector (AIµ) = (A0

µ, A
x
µ). It is also convenient to define a

SO(nv + 1) vector of functions of the scalars hI(φ). These nv + 1 functions of nv scalar
must satisfy a constraint. N = 1, d = 5 supersymmetry determines that this constraint is
of the form

CIJKh
I(φ)hJ(φ)hK(φ) = 1, (4.1)

where the constant symmetric tensor CIJK completely characterizes the theory and the
Special Real geometry of the scalar manifold. In particular, the kinetic matrix of the vector
fields aIJ(φ) and the metric of the scalar manifold gxy(φ) can be derived from it as follows:
first, we define

hI ≡ CIJKhJhK , ⇒ hIhI = 1, (4.2)

and

hIx ≡ −
√

3hI ,x ≡ −
√

3
∂hI

∂φx
, hIx ≡ +

√
3hI,x, ⇒ hIh

I
x = hIhIx = 0. (4.3)

Then, aIJ is defined implicitly by the relations

hI = aIJh
I , hIx = aIJh

J
x. (4.4)

It can be checked that

aIJ = −2CIJKh
K + 3hIhJ . (4.5)

The metric of the scalar manifold gxy(φ), which we will use to raise and lower x, y
indices is (proportional to) the pullback of aIJ

gxy ≡ aIJhIxhJy = −2CIJKh
I
xh

J
yh

K . (4.6)

6The theory will only be invariant under a subgroup of SO(nv + 1).
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The functions hI and their derivatives hIx satisfy the following completeness relation:

aIJ = hIhJ + gxyh
x
Ih

y
J . (4.7)

By assumption, the real Real Special structure is invariant under reparametrizations
generated by vectors kI

x(φ)7

δφx = cIkI
x, (4.8)

satisfying the Lie algebra8

[kI , kJ ] = −fIJKkK . (4.9)

The invariance of the metric gxy implies that the vectors kI
x(φ) are Killing vectors. The

invariance of the constraint Eq. (4.1) implies the invariance of the CIJK tensor

− 3fI(J
MCKL)M = 0. (4.10)

Multiplying this identity by hJhKhL we get another important relation:

fIJ
KhJhK = 0. (4.11)

The functions hI(φ), in their turn, must be invariant up to SO(nv + 1) rotations,
that is

kI
x∂xh

J − fIKJhK = 0, ⇒ kI
x = −

√
3fIJ

KhxKh
J , ⇒ hIkI

x = 0, (4.12)

where we have used the completeness relation Eq. (4.7) and Eq. (4.11).

If the real special manifold is a symmetric space, then the tensor CIJK satisfies the
identity

CIJKCJ(LMCNP )K = 1
27δ

I
(LCMNP ) , (4.13)

where CIJK = CIJK . In these spaces we can solve immediately hI in terms of the hI

hI = 27CIJKhJhK , ⇒ CIJKhIhJhK =
1

27
. (4.14)

To gauge this global symmetry group we promote the constant parameters cI to
arbitrary spacetime functions identifying them with the gauge parameters of the vector
fields ΛI(x) cI → −gΛI(x). The gauge transformations scalars φx, the functions hI and
the AIµ take the form

7Some of these vectors may be identically zero. This is price paid for labeling the gauge vectors and
the Killing vectors with the same indices.

8Some of the structure constants may vanish identically, but it is assumed that some of them do not
because, otherwise, we would be dealing with an ungauged supergravity.
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δΛφ
x = −gΛIkI

x, (4.15)

δΛh
I = −gfJKIΛJhK , (4.16)

δΛA
I
µ = ∂µΛI + gfJK

IAJµΛK ≡ DµΛI , (4.17)

where Dµ is the gauge-covariant derivative. Dµh
I has the same expression as DµΛI and

have the same gauge transformations as hI and ΛI . We also have

DµhI = ∂µhI + gfIJ
KAJµhK , (4.18)

DµCIJK = 0. (4.19)

On the other hand, the gauge-covariant derivative of the scalars is given by

Dµφ
x = ∂µφ

x + gAIµkI
x, (4.20)

and transforms as

δΛDµφ
x = −gΛI∂ykI

xDµφ
x. (4.21)

The gauginos λi x transform in exactly the same way as Dφx and their gauge-
covariant derivatives are identical to the second covariant derivative of φx:

DµDνφ
x = ∂µDνφ

x − ΓρµνDρφ
x + Γyz

xDµφ
yDνφ

z + gAIµ∂ykI
xDνφ

y. (4.22)

The gauge-covariant vector field strength has the standard form

F Iµν = 2∂[µA
I
ν] + gfJK

IAJµA
K
ν . (4.23)

The bosonic action of N = 1, d = 5 SEYM is given in terms of aIJ , gxy, CIJK and
the structure constants fIJ

K by

S =

∫
d5x
√
g

{
R+ 1

2
gxyDµφ

xDµφy − 1
4
aIJF

I µνF Jµν + 1

12
√

3
CIJK

εµνρσα
√
g

[
F IµνF

J
ρσA

K
α

− 1
2
gfLM

IF JµνA
K
ρA

L
σA

M
α + 1

10
g2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
α

]}
.

(4.24)

Observe that this action does not contain a scalar potential V (φ) because

V (φ) = 3
2g

2hIhJkI
xkJ

ygxy , (4.25)

(the expression that follows from the general formula in Ref. [36]) vanishes identically for
the kind of gaugings considered here, owing to the property Eq. (4.12). This fact is asso-
ciated to the vanishing of the corresponding fermion shift in the gauginos’ supersymmetry
transformations.
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The equations of motion for the bosonic fields are

Eµν ≡ 1

2
√
g
ea(µ

δS

δeaν)

= Gµν − 1
2aIJ

(
F Iµ

ρF Jνρ − 1
4gµνF

I ρσF Jρσ
)

+1
2gxy

(
Dµφ

xDνφ
y − 1

2gµνDρφ
xDρφy

)
(4.26)

EIµ ≡ 1
√
g

δS

δAIµ

= Dν

(
aIJF

J νµ
)

+ 1
4
√

3

εµνρσα
√
g

CIJKF
J
νρF

k
σα + gkI xD

µφx (4.27)

Ex ≡ −g
xy

√
g

δS

δφy

= DµD
µφx + 1

4g
xy∂yaIJF

I ρσF Jρσ. (4.28)

The supersymmetry transformation rules for the bosonic fields are

δεe
a
µ = i

2 ε̄iγ
aψiµ,

δεA
I
µ = − i

√
3

2 hI ε̄iψ
i
µ + i

2h
I
xε̄iγµλ

i x,

δεφ
x = i

2 ε̄iλ
i x.

(4.29)

and the corresponding transformation rules for the fermionic fields evaluated on vanishing
fermions are

δεψ
i
µ = ∇µεi − 1

8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) εi, (4.30)

δελ
i x = 1

2

(
6Dφx − 1

2h
x
I 6F I

)
εi, (4.31)

where ∇µεi is just the Lorentz-covariant derivative on the spinors, given in our conventions
by

∇µεi =
(
∂µ − 1

4 6ωµ
)
εi. (4.32)

The equations of motion and the supersymmetry transformation rules are the straight-
forward covariantization of those of the ungauged theory, except for the addition of a source
to the Maxwell equations corresponding to the charge carried by the scalar fields.
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4.2 The supersymmetric solutions of N = 1, d = 5 SEYM
theories

In this section we are going to review first the results of Ref. [23] particularized to the case
in which there are no hypermultiplets nor Fayet-Iliopoulos terms. We will simply focus on
the final characterization of the supersymmetric solutions. Then, we will analyze the form
of the solutions that admit an additional isometry and can, therefore, be dimensionally
reduced to d = 4, following Refs. [21, 93].

Let us start by reminding the reader that a solution of one of the N = 1, d = 5
SEYM theories is said supersymmetric if the so-called Killing spinor equations

δεψ
i
µ = 0 , δελ

i x = 0 , (4.33)

written in the background of the solution can be solved for at least one spinor εi(x),
which is then called Killing spinor. The supersymmetric solutions of these theories can
be classified according to the causal nature of the Killing vector that one can construct as
a bilinear of the Killing spinor V a = iε̄iγ

aεi as timelike (V aVa > 0) or null (V aVa = 0).
These two cases must be discussed separately.

4.2.1 Timelike supersymmetric solutions

The fields of the timelike supersymmetric solutions of N = 1, d = 5 SEYM theories are
completely determined by

1. A choice of 4-dimensional (obviously Euclidean) hyperKähler metric

dŝ2 = hmn(x)dxmdxn . (4.34)

Fields and operators defined in this space are customarily hatted.

2. Vector fields defined in the hyperKähler space, ÂI , such that their 2-form field
strengths, F̂ I(Â) are self-dual

?̂F̂ I = +F̂ I , (4.35)

with respect to the hyperKähler metric. This implies that ÂI defines an instanton
solution of the Yang-Mills equations in the hyperKähler space.

3. A set of functions in the hyperKähler space f̂I satisfying the equation9

D̂2f̂I − 1
6CIJK F̂

J · F̂K = 0 . (4.36)

Given hmn, Â
I , f̂I , the physical fields can be reconstructed as follows:

9The coefficient of the second term is wrong by a factor of 2 in Refs. [21, 23] although all subsequent
formulae are correct.
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1. The functions f̂I are proportional to the hI(φ) defined in Eq. (4.2). The proportion-
ality coefficient is called 1/f̂ :

hI/f̂ = f̂I . (4.37)

The functions hI(φ) satisfy a model-dependent constraint (analogous to the con-
straint satisfied by the functions hI(φ), Eq. (4.1)). This constraint can be obtained
by solving Eq. (4.2) for the hI and substituting the result into Eq. (4.1). Therefore,
the constraint has the form F (h·) = 1 where F is a function homogeneous of degree
3/2 in the hI and, substituting the above equation, one gets

f̂−3/2 = F (f̂·) . (4.38)

Using this result in Eq. (4.37) one gets all the hI as in terms of the f̂I

hI = f̂IF
−2/3(f̂·) , (4.39)

and, using the expression of the hI in terms of the hI , one also gets the hI in terms
of the functions f̂I .

If the real special scalar manifold is symmetric, then we can use Eq. (4.14) to get

f̂−3 = 27CIJK f̂I f̂J f̂K . (4.40)

2. The scalar fields φx can be obtained by inverting the functions hI(φ) or hI(φ). A
parametrization which is always available is

φx = hx/h0 = f̂x/f̂0 . (4.41)

3. Next, we define the 1-form ω̂ through the equation

(
f̂dω̂

)+
=

√
3

2
hI F̂

I+ . (4.42)

4. Having solved the above equation for ω̂ we have determined completely the metric
of the timelike supersymmetric solutions, which is given by

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1hmndx
mdxn , (4.43)

5. Also, the complete 5-dimensional vector fields are given by

AI = −
√

3hIe0 + ÂI , where e0 ≡ f̂(dt+ ω̂) , (4.44)

so that the spatial components are

AIm = ÂIm −
√

3hI f̂ ω̂m . (4.45)

The field strength can be written in the form
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F I = −
√

3D̂(hIe0) + F̂ I , (4.46)

where D̂ is the covariant derivative in the hyperKähler space with connection ÂI .

Timelike supersymmetric solutions with one isometry

We are particularly interested in the supersymmetric solutions that have an additional
isometry. Following Refs. [92, 93] we assume that the additional isometry is a triholo-
morphic isometry of the hyperKähler metric (i.e. an isometry respecting the hyperKähler
structure), in which case, as shown in Ref. [99] it must be a Gibbons-Hawking multi-
instanton metric [97]. Assuming z is the coordinate associated to the additional isometry,
these metrics can always be written in the form

hmndx
mdxn = H−1(dz + χ)2 +Hdxrdxr , r = 1, 2, 3 , (4.47)

where the z-independent function H and 1-form χ = χrdx
r are related by

dχ = ?3dH , (4.48)

?3 being the Hodge operator in E3. Assuming now that the rest of the bosonic fields of the
timelike supersymmetric solutions are z-independent one can simplify Eqs. (4.35),(4.36)
and (4.42).

Let us start with Eq. (4.35) and let us assume that the selfduality of F̂ I has been
defined with respect to the frame and orientation

ê z = H−1/2(dz + χ) , ê r = H1/2δrrdx
r , εz123 = +1 . (4.49)

Then, following Kronheimer [142],10 Eq. (4.35) can be rewritten as Bogomol’nyi equations
for a Yang-Mills-Higgs (YMH) system in the BPS limit in E3 [43]

D̆rΦ
I = 1

2εrstF̆
I
st , (4.50)

where the 3-dimensional Higgs field and the vector fields are given by11

2
√

6ΦI ≡ HÂIz ,

2
√

6Ăr ≡ −ÂIr + χrÂ
I
z .

(4.51)

Thus, we can always construct a selfdual YM instanton in a Gibbons-Hawking space
from a (monopole) solution of the Bogomol’nyi equation of a YMH system in E3 (ΦI , ĂIr)
[142]. Many solutions of these equations are known, specially in the spherically symmetric
case12. In Ref. [48] this relation has been explored precisely for the SU(2) monopoles and
instantons we are interested in, and we will make use of those results later.

10See also Ref. [48].
11We have rescaled the 3-dimensional fields by a factor of −1/(2

√
6) to conform to the normalization of

the fields in N = 2, d = 4 supergravity. See Appendix C.4.
12see Ref. [183] for the SU(2) case and Ref. [160] and references therein for more general gauge groups.
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We can now use this result into Eq. (4.36), rewriting the 4-dimensional gauge vector
in terms of the 3-dimensional gauge vector and Higgs field defined above and using the
harmonicity of H and the Bogomol’nyi equation to get rid of F̆ I and D̆2ΦI (which vanishes
identically). The result is the equation in E3

D̆2f̂I − g2fIJ
LfKL

MΦJΦK f̂M − 8CIJKD̆2
(
ΦJΦK/H

)
= 0 . (4.52)

Defining

f̂I ≡ LI + 8CIJKΦJΦK/H , (4.53)

and using the condition Eq. (4.10) we find a linear equation for the functions LI :

D̆2LI − g2fIJ
LfKL

MΦJΦKLM = 0 . (4.54)

Finally, let us consider Eq. (4.42). Defining ω̂ as

ω̂ = ω5(dz + χ) + ω , where ω = ωrdx
r , (4.55)

Eq. (4.42) gives an equation for ω5 whose general solution is

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , where d ?3 dM = 0 , (4.56)

and the following equation for ω:

?3 dω = HdM −MdH + 3
√

2
(

ΦID̆LI − LID̆ΦI
)
, (4.57)

whose integrability condition d2ω = 0 is satisfied wherever the above equations forH,M,ΦI , LI
are satisfied.

Summarizing: we have identified a set of z-independent functions M,H,ΦI , LI and
1-forms ω,AI , χ in E3 in terms of which we can write all the building blocks of the 5-
dimensional timelike supersymmetric solutions admitting an isometry as follows:

hI/f̂ = LI + 8CIJKΦJΦK/H , (4.58)

ω̂ = ω5(dz + χ) + ω , (4.59)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (4.60)

ÂI = 2
√

6
[
H−1ΦI(dz + χ)− ĂI

]
, (4.61)

F̂ I = 2
√

6H−1
[
D̆ΦI ∧ (dz + χ)− ?3HD̆ΦI

]
, (4.62)

provided that they satisfy the following set of equations:
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d ?3 dM = 0 , (4.63)

?3dH − dχ = 0 , (4.64)

?3D̆ΦI − F̆ I = 0 , (4.65)

D̆2LI − g2fIJ
LfKL

MΦJΦKLM = 0 , (4.66)

?3dω −
{
HdM −MdH + 3

√
2(ΦID̆LI − LID̆ΦI)

}
= 0 . (4.67)

For symmetric real special manifolds we can use Eq. (4.40) to write the metric
function f̂ explicitly in terms of the tensor CIJK and the functions M,H,ΦI , LI :

f̂−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJΦLΦM/H

+3 · 26LIΦ
ICJKLΦJΦKΦL/H2 + 29

(
CIJKΦIΦJΦK

)2
/H3 .

(4.68)

Let us compare the above formulae with those of the ungauged case (in Ref. [21] in
our conventions). It is easy to see that all the functions M,H,ΦI , LI become standard
harmonic functions in E3. Furthermore, the functions ΦI are related to the functions KI

used in that reference by

ΦI = + 1
2
√

2
KI . (4.69)

Dimensional reduction of the timelike supersymmetric solutions with one isom-
etry

The supersymmetric solutions that admit an additional isometry can be dimensionally
reduced to supersymmetric solutions of N = 2, d = 4 supergravity using the formulae in
Appendix C.413. Performing explicitly this reduction will allow us to simplify the tasks of
oxidation and reduction of supersymmetric solutions.

First of all, the metric of the 4-dimensional solutions obtained through the dimen-
sional reduction takes the conventional conformastationary form of the timelike supersym-
metric solutions of the N = 2, d = 4 theory

ds2 = e2U (dt+ ω)2 − e−2Udxrdxr , (4.70)

where the 1-form ω = ωrdx
r is precisely the 1-form given in Eq. (4.57) and the metric

function e−2U is given by

e−2U = 2

√
(f̂ −1H)3 − (ω5H2)2

4H2
. (4.71)

13These formulae are valid for any field configuration, supersymmetric or not.
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We can compare the equations satisfied by the building blocks of the timelike su-
persymmetric solutions of gauged N = 1, d = 5 supergravity (4.63)-(4.67) with the equa-
tions satisfied by the building blocks of the timelike supersymmetric solutions of gauged
N = 2, d = 4 supergravity Ref. [123,157], which we rewrite here for convenience adapting
slightly the notation to avoid confusion with the different accents used to distinguish the
different gauge fields:

− 1√
2
?3 D̆IΛ − F̆Λ = 0 , (4.72)

D̆2IΛ − 1
2g

2fΛΣ
Ωf∆Ω

ΓIΣI∆IΓ = 0 , (4.73)

?3dω − 2
[
IΛD̆IΛ − IΛD̆IΛ

]
= 0 , (4.74)

where D̆ is the gauge covariant derivative associated to the modified gauge connection in
E3

ĂΛ
m ≡ AΛ

m − ωmAΛ
t . (4.75)

The notation that we are using has implicit the identification of the gauge potentials
Ă coming from 5 and 4 dimensions, except for Λ = 0. Using the formulae in Appendix C.4
with the modifications explained in the last paragraph we can identify14

χm = −2
√

2Ă0
m , (4.76)

which leads to the identifications

ΦI = − 1√
2
II+1 , LI = 2

3II+1 , H = 2I0 , M = −I0 . (4.77)

These are the only formulae we need to relate timelike supersymmetric solutions
in N = 1, d = 5 supergravity with one additional isometry to timelike supersymmetric
solutions in cubic model of N = 2, d = 4 supergravity with I0 6= 015.

For symmetric real special scalar manifolds we can use the explicit form of f̂ in
Eq. (4.68) together with the expression for ω5 in Eq. (4.60) to get

e−2U = 2
{

33

4 HC
IJKLILJLK − 27/2MCIJKΦIΦJΦK + 2 · 34CIJKCKLMLILJΦLΦM

− 32

2

(
LIΦ

I
)2 − 3√

2
HMLIΦ

I − 1
4M

2H2
}1/2

.

(4.78)

Then, using the identifications Eqs. (4.77) together with the second of Eqs. (C.35) we get

e−2U = 2
{

(dijkIjIl − 2
3I0Ii)(dilmI lIm + 2

3I
0Ii) + 4

9I
0I0IiIi

−(I0I0 + IiIi)2
}1/2

.

(4.79)

14The 0th components are never gauged if the dimensional reduction is simple (not generalized).
15Those with I0 = 0 are related to null supersymmetric 5-dimensional solutions.
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4.2.2 Null supersymmetric solutions

The general form of the null supersymmetric solutions of N = 1, d = 5 SEYM is quite
involved [23], but it simplifies dramatically when one assumes the existence of an additional
isometry so that all the fields are independent of the two null coordinates u and v. These
are the solutions which will become timelike supersymmetric solutions of N = 2, d = 4
SEYM upon dimensional reduction and, therefore, we are going to describe only these.

u-independent null supersymmetric solutions

The metric of the general null supersymmetric solutions of N = 1, d = 5 SEYM can always
brought into the form [23]16

ds2 = 2`du(dv +Kdu+
√

2ω)− `−2dxrdxr , (4.80)

where the functions `,K and the 1-form ω = ωrdx
r are v-independent. We are going to

assume also u-independence of all the fields throughout.

After the partial gauge fixing AIv = 0, the gauge fields are decomposed as17

AI = AIudu− 2
√

6ĂI , ĂI = ĂIrdx
r , (4.81)

and the vector field strengths take the form18

F I = (
√

2/3`2hI ?3 dω − ψI) ∧ du+
√

3 ?3 D̆(hI/`) , (4.82)

where the ψI are some 1-forms in E3 satisfying

hIψ
I = 0 , (4.83)

to be determined and D̆ is the gauge-covariant derivative on E3 with respect to the con-
nection ĂI .

Finally, the scalar fields will be determined by the equations obeyed by the scalar
functions hI , which follow from the equations of motion.19

Let us start by analyzing the Bianchi identities of the vector field strength. They
lead to the following two sets of equations:

− 1
2
√

2
?3 D̆(hI/`)− F̆ I = 0 , (4.84)

D̆AIu −
√

2/3`2hI ?3 dω + ψI = 0 .‘ (4.85)

16We have changed the notation and normalization with respect to [23] to avoid possible confusions
between the objects that appear in the null and timelike cases.

17As the notation suggests, the gauge fields ĂI are the same as the N = 2, d = 4 fields denoted with the
same symbols, according to the general formulae of Appendix C.4. The same is true of the 1-form ω.

18All the operators in the r.h.s. are defined in E3.
19The field configurations that we have just described are automatically supersymmetric, but not nec-

essarily solutions of all the equations of motion and Bianchi identities [23].
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Eq. (4.84) is the Bogomol’nyi equation on E3 and, thus, we define the Higgs field

ΣI ≡ − 1
2
√

2
hI/` . (4.86)

Multiplying Eq. (4.85) by hI and using Eq. (4.83) together with hIh
I = 1 we get

the equation that defines ω

dω =
√

3/2`−2 ?3

{
hID̆A

I
u

}
. (4.87)

Defining the functions

KI ≡ CIJKΣJAKu , (4.88)

the above equation takes a much more familiar form

dω = 4
√

6 ?3

{
ΣID̆KI −KID̆ΣI

}
, (4.89)

whose integrability condition is

ΣID̆2KI = 0 . (4.90)

Given the functions ΣI ,KI and the gauge fields ĂI we can solve this equation for ω.
It should be possible to find the functions AIu in terms of ΣI ,KI

20 and, plugging these
result in Eq. (4.85), compute directly the 1-forms ψI .

From the Maxwell equations one obtains the equations that determine the functions
KI :

D̆2KI − g2fIJ
LfKL

MΣJΣKKM = 0 , (4.91)

from which the integrability condition Eq. (4.90) follows automatically.

Finally, defining

N ≡ K −
√

2AIuKI , (4.92)

the last non-trivial equation of motion, from the Einstein equations, takes the simple form

∇2N = 0 . (4.93)

Summarizing: we have identified a set of u-independent functions ΣI ,KI , N and
1-forms ω, ĂI on E3 in terms of which we can write all the building blocks of the 5-
dimensional u-independent null supersymmetric solutions, assuming we can solve Eq. (4.88)
for AIu, as follows:

20This will certainly be the case for the particular model we are going to study, but we have not found
(even for just the symmetric case) a general way of solving Eq. (4.88) for AIu.
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hI/` = −2
√

2ΣI , (4.94)

K = N +
√

2AIuKI , (4.95)

AI = AIudu+ 2
√

6ĂI , (4.96)

F I = D̆AIu ∧ du+
√

3 ?3 D̆(hI/`) , (4.97)

provided the following equations are satisfied21:

?3D̆ΣI − F̆ I = 0 , (4.98)

D̆2KI − g2fIJ
LfKL

MΣJΣKKM = 0 , (4.99)

dω − 4
√

6 ?3

{
ΣID̆KI −KID̆ΣI

}
= 0 , (4.100)

∇2N = 0 . (4.101)

Using Eq. (4.1), we find a general expression for `:

`−3 = −29/2CIJKΣIΣJΣK . (4.102)

Dimensional reduction of the u-independent null supersymmetric solutions

Using the general formulae in Appendix C.4, the u-independent solutions that we have
considered can be dimensionally reduced to timelike supersymmetric solutions of N =
2, d = 4 SEYM along the spacelike coordinate z defined by

u = 1√
2
(t+ z) , v = 1√

2
(t− z) , (4.103)

with metrics of the form Eq. (4.70) where the 1-form ω = ωrdx
r is precisely the 1-form

given in Eq. (4.80) and the metric function e−2U is given by

e−2U =
√
`−3(1−K) =

√
−29/2CIJKΣIΣJΣK(1−N −

√
2AIuKI) . (4.104)

In order to express entirely the metric function in terms of the functions KI ,Σ
I , N

we need to solve Eq. (4.88) for AIu as a function of KI ,Σ
I , which we do not know how

to do in general. We can still compare the equations satisfied by these functions (4.98)-
(4.101) with those satisfied by IΛ, IΛ in N = 2, d = 4 SEYM (4.72)-(4.74) knowing that
the vector fields ĂI and the 1-form ω are the same objects. We find that

21The gauge coupling constant is the 4-dimensional one.

82



Chapter 4. Non-Abelian, supersymmetric black holes and strings in 5 dimensions

ΣI = − 1√
2
II+1 , KI = − 1

2
√

3
II+1 , (4.105)

while N must be proportional to either I0 or I0. Since a wave moving in the internal z
direction should give rise to a 4-dimensional electric charge, it must be

N ∼ I0 , (4.106)

but the precise coefficient cannot be determined from this comparison alone. We have to
find a more explicit expression for e−2U .

4.3 5-dimensional supersymmetric non-Abelian solutions of
the SU(2)-gauged ST[2, 5] model

In this section we are going to consider a particular model of N = 1, d = 5 supergravity
that admits an SU(2) gauging. This model is related to the SU(2)-gauged ST[2, 5] model
of N = 2, d = 4 supergravity some of whose solutions we have studied in Ref. [47]. We will
use the relations derived in the previous section to find relations between the non-Abelian
supersymmetric solutions of both theories.

We start by describing the 4- and 5-dimensional models and their SU(2) gauging.

4.3.1 The models

The ST[2, 5] model is a cubic model of N = 2, d = 4 supergravity coupled to 5 vector
multiplets i.e. a model with a prepotential of the form

F = − 1
3!

dijkX iX jX k

X 0
, i = 1, 2 · · · , 5 (4.107)

where the fully symmetric tensor dijk has as only non-vanishing components

d1αβ = ηαβ , where (ηαβ) = diag(+− · · ·−) , and α, β = 2, · · · , 5 . (4.108)

The 5 complex scalars parametrize the coset space

SL(2,R)

SO(2)
× SO(2, 4)

SO(2)× SO(4)
, (4.109)

and the group SO(3) acts in the adjoint on the coordinates α = 3, 4, 5. These are the
directions we are going to gauge and we will denote them with capital A,B, . . .. This is
the only information we need in order to construct supersymmetric solutions, but more
details on the construction of this theory can be found in Ref. [47]. We will need the form
of the metric function in terms of the functions IM :

e−2U = 2
√

(IαIβηαβ + 2I0I1)(IαIβηαβ − 2I1I0)− (I0I0 − I1I1 + IαIα)2 . (4.110)
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The models of the ST[2, n] family are related to the effective theory of the Heterotic
string and compactified on T 6 by a consistent truncation: the 10-dimensional effective
theory is N = 1, d = 10 supergravity coupled to 16 10-dimensional vector multiplets with
gauge group U(1). Upon dimensional reduction on a generic T 6 one gets N = 4, d = 4
supergravity coupled to 16 + 6 = 22 vector multiplets, whose duality group is

SL(2,R)

SO(2)
× SO(6, 22)

SO(6)× SO(22)
. (4.111)

Observe that SO(6) acts on the 6 vectors in the supergravity multiplet and SO(22)
on the 22 matter vector fields. The coset SL(2,R)/SO(2) is parametrized by the only
scalar in the supergravity multiplet. A consistent truncation to N = 2, d = 4 eliminates
4 vectors from the N = 4 supergravity multiplet and one of the remaining two vectors
becomes a matter vector field from the N = 2 point of view and comes in the same
multiplet as the complex scalar that parametrizes the coset space SL(2,R)/SO(2). The
result is a ST[2, 23] model from which one can consistently eliminate vector multiplets to
arrive to the ST[2, 5] model we are dealing with.

This is the story at a generic point in the moduli space of the Heterotic strings
on T 6. At certain points, though, there is a enhancement of gauge symmetry usually
associated to an increase in the number of massless vector fields that we must take into
account in the effective theory. Our SU(2)-gauged model of N = 2, d = 4 supergravity can
be interpreted as the effective theory describing the simplest of these situations in which
the enhancement of gauge symmetry arises in the sector of the 16 original 10-dimensional
vector fields.

The ST[2, 5] model is related to a model of N = 1, d = 5 supergravity coupled to 4
vector multiplets determined by the tensor Ci−1,j−1,k−1 = 1

6dijk so its only non-vanishing
components are

C0xy = 1
6ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 4 . (4.112)

The 4 real scalars in the vector multiplets parametrize the coset space

SO(1, 1)× SO(1, 3)

SO(3)
. (4.113)

Now the group SO(3) acts in the adjoint on the coordinates x = 2, 3, 4 and, if we gauge it,
the theory goes to the gauged 4-dimensional model we just discussed. It should be obvious
after the 4-dimensional discussion that that this model can be interpreted as a truncation
of the effective theory of the Heterotic string compactified on T 5.

Again, we do not need many more details of the theory in order to construct su-
persymmetric solutions. For timelike supersymmetric solutions admitting an additional
isometry we will need the metric function, which follows directly from the generic expres-
sion Eq. (4.68)

f̂ −1 = H−1
{

1
4 (6HL0 + 8ηxyΦ

xΦy)
[
9H2ηxyLxLy + 48HΦ0LxΦx

+64(Φ0)2ηxyΦ
xΦy

]}1/3
(4.114)
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This metric function and the 4-dimensional one e−2U are related by Eq. (4.71) using
Eq. (4.60) and the relations between the functions IM and H,M,LI ,Φ

I in Eqs. (4.77),
which we rewrite for this specific pair of models for convenience:

H = 2I0 , Φ0 = − 1√
2
I1 , Φ1 = − 1√

2
I2 , ΦA = − 1√

2
IA ,

M = −I0 , L0 = 2
3I1 , L1 = 2

3I2 , LA = 2
3IA ,

(4.115)

For u-independent null supersymmetric solutions we first need to solve Eq. (4.88)
for AIu. For this model, we find

A0
u = 6

ΣxKx − Σ0K0

(ηΣΣ)
, Axu = 6

ηxyKy(ηΣΣ)− Σx(ΣyKy − Σ0K0)

Σ0(ηΣΣ)
, (4.116)

where (ηΣΣ) ≡ ηxyΣxΣy, so that

e−2U = 2
√

(IαIβηαβ)[IαIβηαβ + I1(1−N)]− (−I1I1 + IαIα)2 . , (4.117)

and we arrive at the following identifications

0 = I0 , Σ0 = − 1√
2
I1 , Σ1 = − 1√

2
I2 , ΣA = − 1√

2
IA ,

N = 1 + 2I0 , K0 = − 1
2
√

3
I1 , K1 = − 1

2
√

3
I2 , KA = − 1

2
√

3
IA .

(4.118)

4.3.2 The solutions

We are ready to put to work the machinery developed in the previous sections. We are
going to consider the simplest cases first.

A simple 5d black hole with non-Abelian hair

In order to add non-Abelian fields to our solutions it is exceedingly useful to consider
metrics with one additional isometry, because, then, we can make use of our knowledge
of the spherically symmetric solutions of the Bogomol’nyi equations of the SU(2) YMH
system found by Protogenov in Ref. [183]. However, this isometry cannot be translational
if we want to find spherically-symmetric black holes because, then, the full 5-dimensional
solution will have a translational isometry. Thus, we will start with the choice H = 1/r
(r2 = yryr)22 which, as we have shown in Ref. [48], relates the colored monopole solution23

to the the BPST instanton, which is spherically symmetric in E4.

We are, thus, going to consider a configuration with the following non-vanishing
functions:

22We need to distinguish between the Cartesian coordinates in E3, which we will denote by yr and the
Cartesian coordinates in E4, which we will denote by xm. The former are not a simple subset of the latter.

23This monopole is characterized by a vanishing magnetic charge.

85



Chapter 4. Non-Abelian, supersymmetric black holes and strings in 5 dimensions

H =
1

r
, L0 = A0 +

q0

4r
, L1 = A1 +

q1

4r
, ΦA = −f(r)δAry

r , (4.119)

where q0, q1 are electric charges in some convenient normalization, A0, A1 are constants
to be determined through the normalization of the metric and the scalar fields at infinity
and f(r) is the function (not to be mistaken by f̂) that characterizes the Higgs field in
the spherically-symmetric monopole solutions of Ref. [183]24).

The next step consists in finding the 1-forms χ, ĂI , ω and functions LI that satisfy
Eqs. (4.64)-(4.67) for the above non-vanishing functions. ω is closed and can be set to
zero, the functions LI can also be set to zero while25

χ = dϕ+ cos θdψ , ĂA = h(r)εArsy
rdys , (4.120)

where h(r) is the function that characterizes the gauge field of the monopole solution (see
Appendix A.5)). The spacetime metric is, then,

ds2 = f̂ 2dt2 − f̂ −1

[
r(dϕ+ cos θdψ)2 +

1

r
(dr2 + r2dΩ2

(2))

]
, (4.121)

where

dΩ2
(2) = dθ2 + sin2 θdψ2 , (4.122)

and, upon the change of coordinates r = ρ2/4, it becomes

ds2 = f̂ 2dt2 − f̂ −1dxmdxm , where dxmdxm = dρ2 + ρ2dΩ2
(3) . (4.123)

For this configuration, the metric function Eq. (4.114) is given by

f̂ −1 = 3 3

√
1
2

(
L0 − 4

3r
3f2
)

(L1)2 , (4.124)

and it immediately follows that in order for the solution to be asymptotically regular,
the monopole must be the colored one for which r3f2

λ ∼ 1/r, because for all the rest
r3f2 ∼ r (see Appendix A.5). With this choice,26 as shown in Ref. [48]27, the gauge field
ÂA = ÂAmdx

m that follows from the use of Eq. (4.61) is that of a BPST instanton in E4:

ÂA = 1
g̃

1

1 + λ2ρ2/4
vAL , (4.125)

24See Appendix A.5 in which we have written all of Protogenov’s solutions.
25The choice of angular coordinates is conditioned by the relation between the monopole and instanton

as explained in Ref. [48]. We will identify the compact coordinate z with the angular coordinate ϕ.
26We are going to study the consequences of the other choices in Section 4.3.2.
27More specifically, the gauge field one gets is Â

A(+)
L .
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where vAL are the SU(2) left-invariant Maurer-Cartan 1-forms28. Since the scalar functions
hA vanish for this configuration, the full 5-dimensional vector fields are, according to
Eq. (4.44), given by

A0 = −35/2

2 (L1)2f̂ 3dt ,

A1 = −35/2L1

(
L0 − 4

3r
3f2
λ

)
f̂ 3dt ,

AA = 1
g̃

1

1 + λ2ρ2/4
vAL .

(4.127)

Finally, the only non-vanishing scalar is given by by

φ ≡ h1/h0 =
L1

L0 − 4
3r

3f2
λ

. (4.128)

The integration constants are readily identified in terms of the asymptotic value of
the scalar as

A0 = 21/3

3 φ−2/3
∞ , A1 = 21/3

3 φ1/3
∞ , (4.129)

while the mass and the area of the event horizon are given by

M = 2−1/331/2
[
φ2/3
∞ q0 + 2φ−1/3

∞ q1

]
, (4.130)

A

2π2
=

√
33

2

(
q0 −

2

9g̃2

)
(q1)2 . (4.131)

This solution can be understood as the result of the addition of a BPST instanton
to a standard 2-charge Abelian solution. This addition does not produce any observable
effects at spatial infinity, like, for instance, a change in the mass, but does produce a
change in the near-horizon geometry and in the entropy.

The metric function of the 4-dimensional solution e−2U that one obtains by dimen-
sional reduction is related to the metric function of the 5-dimensional solution by

e−4U =
1

r
f̂−3 , (4.132)

which implies that the 4- and 5-dimensional solutions cannot be asymptotically flat at the
same time. In particular, with the choice made above (corresponding to a colored monopole
in d = 4) e−2u ∼ r−1/2 at spatial infinity, a behavior that does not correspond to any
known vacuum. With the monopoles we discarded, however, we get an asymptotically-flat
solution. The near-horizon behavior is simultaneously good in d = 4 and d = 5.

28In our conventions, these are given by
v1
L = sinψ dθ − sin θ cosψ dϕ ,

v2
L = − cosψ dθ − sin θ sinψ dϕ ,

v3
L = −(dψ + cos θ dϕ) ,

and dvAL + 1
2
εABC v

B
L ∧ vCL = 0 . (4.126)
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A rotating 5d black hole with non-Abelian hair

In the context of timelike supersymmetric solutions of N = 1, d = 5 supergravity rotation
can be added by switching on the harmonic function M [119]. More specifically, we add
to the static solution we just constructed the harmonic function

M =
J/2

4r
, (4.133)

which only appears in Eq. (4.60). The metric of the new solution is

ds2 = f̂ 2

[
dt+

J/2

4r
(dϕ+ cos θdψ)

]2

− f̂ −1

[
r(dϕ+ cos θdψ)2 +

1

r
(dr2 + r2dΩ2

(2))

]
,

(4.134)

where the metric function f̂ is still given by Eq. (4.124). The scalar field φ and the non-
Abelian vector field AA take the same value as in the static solution while the two Abelian
vector fields are modified by the change

dt −→ dt+
J/2

4r
(dϕ+ cos θdψ) , (4.135)

which describes the presence of a magnetic dipole moment associated to the rotation.

Asymptotically, the only novelty is the off-diagonal term ∼ J/ρ2dt(dϕ + cos θdψ)
which corresponds to identical values of the two Casimirs of the angular momentum, both
proportional to J , so this solution is a non-Abelian generalization of the Breckenridge–
Myers-Peet–Vafa (BMPV) spinning black hole [44,94]. The mass has the same expression
in terms of the charges as in the static case.

In the near-horizon limit, if the behavior of the metric function f̂ is

f̂−1 ∼ R2/r , (4.136)

for some constant R, the metric can be rewritten in the form

ds2 ∼ R2dΠ2
(2) −R

2dΩ2
(2) −R

2
[
cosα(dϕ+ cos θdψ)− sinα

r

R2
dφ
]2
, (4.137)

where φ is the rescaled time coordinate, defined as follows

φ ≡ t/X , X/R ≡
√

1− [J/(2R)3]2 ≡ cosα , (2R)3 ≡

√
33

2

(
q0 −

2

9g̃2

)
(q1)2 ,

(4.138)

and dΠ2
(2), dΩ2

(2) are the metrics of the 2-dimensional Anti-de Sitter and sphere of unit
radius

dΠ2
(2) ≡

( r

R2

)2
dφ2 − dr2

r2
. (4.139)

The constant-time sections of the event horizon are squashed 3-spheres with metric
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− ds2 = R2
{

cos2 α(dϕ+ cos θdψ)2 + dΩ2
(2)

}
, (4.140)

and area

A

2π2
=

√
33

2

(
q0 −

2

9g̃2

)
(q1)2 − J2 . (4.141)

A more general solution

In Section 4.3.2 we used the colored monopole solution in order to obtain an asymptotically
flat black-hole solution in the simplest way. However, we can also use the monopoles in
the 2-parameter family, for which, asymptotically, r3f2 ∼ r if we switch on additional
harmonic functions and choose the values of the integration constants appropriately so
that the metric functions f̂(r), ω5, ω give an asymptotically-flat solution.

Throughout the following discussion, it is convenient to have the explicit form of
these functions for H = 1/r, ΦA = −f(r)δAry

r and LA = 0 at hand:

f̂ −3 = 27
[
1
2L0 + 2

3r[(Φ
1)2 − r2f2]

] [
(L1)2 + 16

3 rΦ
0L1Φ1 + 64

9 (rΦ0)2[(Φ1)2 − r2f2]
]
,

ω5 = M + 8
√

2 r2Φ0[(Φ1)2 − r2f2] + 3
√

2 rLiΦ
i ,

?3dω = 1
rdM −Md 1

r + 3
√

2
(
ΦidLi − LidΦi

)
,

(4.142)

where i = 0, 1. Apart from the functions H and ΦA, we are going to consider the following
non-vanishing harmonic functions

{Φ0,Φ1, L0, L1,M} , (4.143)

with

Φ0,1 = A0,1 +
p0,1

4r
, L0,1 = A0,1 +

q0,1

4r
, M = a+

b

4r
. (4.144)

f̂−3 is a product of two factors. Our strategy will be to make the constant piece of
Φ1, A1, cancel the constant piece in rf(r), µ/g so that [(Φ1)2 − r2f2] is asymptotically
O(1/r)29:

A1 = µ/g . (4.145)

This ensures that the second term in f̂−3 diverges asymptotically at most as O(r) while
the first is asymptotically constant. This constant can be made to vanish by choosing the
constant piece of L0, A0, to be

A0 = −8
3

µ

g

(
1

g
+
p1

4

)
, (4.146)

29We choose the positive sign for simplicity.
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and now the first term is asymptotically O(1/r) and f̂−3 is asymptotically constant.

Next, we require that all the O(r2), O(r) and O(1) terms in ω5 vanish30. This gives
two new relations31 between the constants Ai, A

i and a. The vanishing of ω gives another
relation between the same constants. Thus, requiring asymptotic flatness fixes the values
of all these constants in terms of the Abelian charges pi, qi and µ and g. Finally the
normalization of the metric at infinity also fixes the value of µ and the solution has no
free moduli!

The values of the integration constants A0, A
1 has been given above and the values

of the rest are32

A1 = −88
3 A

0

(
1

g
+
p1

4

)
,

A0 =


(
16p0 + 4gp0p1 + gq1

) (
4 + gp1

)−1

40
(

3q0 + (p1)2 − 16
g2

)(
q0 + 2(p1)2 − 32

g2

)


1/3

,

µ = A0

[
32− 2g2(p1)2 − g2q0

16p0 + 4gp0p1 + gq1

]
,

a =
√

2A0

[
48

g2
+

22p1

g
+

5(p1)2

2
− 3q0

4

]
−
√

2

[
22µp0

g2
+

11µp0p1

2g
+

3µq1

4g

]
,

b = J/2− 6
√

2

[
p0(p1)2

2
+
p0q0 + p1q1

8
− 8

p0

g2

]
,

(4.147)

where J is the angular momentum.

The mass of this solution is given by

M =
πA0

2G

[
3q0 + (p1)2 − 16

g2

] [
3
µ

g
q1 + 8

(
1

g
+
p1

4

)(
10A0

(
24

g
+ 5p1

)
− 9

µ

g
p0

)]
.

(4.148)

and the area of the horizon is

A

2π2
=

√
1
2

[
3q0 + (p1)2 − 16

g2

] [
3q1 + 2p1p0 − 8p0

g

] [
3q1 + 2p0p1 +

8p0

g

]
− J2 . (4.149)

30Observe that this does not imply the complete vanishing of ω5: there are O(1/r) terms that give
angular momentum (which could be cancelled by the integration constant b in M) and also O(e−4µr)
terms that cannot be cancelled. Therefore, the metric is not static even if the angular momentum is set
to zero.

31The above values of A0 and A1 make the O(r2) term vanish.
32We have not reexpressed the 4-dimensional gauge coupling constant g in terms of the 5-dimensional,

g̃ to have simpler expressions.
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Null supersymmetric non-Abelian 5d solutions from 4d black holes and global
monopoles

Using the general results of the preceding sections it is very easy to construct null super-
symmetric solutions by uplifting 4-dimensional timelike supersymmetric solutions with I0.
In particular, we can uplift the black-hole and global-monopole solutions of the ST[2, 5]
model recently constructed in Ref. [47]. In this chapter we will focus on the single center
solutions only.

The 4-dimensional solutions depend on the following non-vanishing IM

I1 = A1 +
p1/
√

2

r
, I2 = A2 +

p2/
√

2

r
, IA =

√
2 δApx

pf(r) ,

I0 = A0 +
q0/
√

2

r
,

(4.150)

where f(r) is the function fµ,s or fλ in Appendix A.5 corresponding to one of the spherically-
symmetric BPS SU(2) monopoles, p1, p2, q0 are magnetic and electric charges andA1, A2, A0

integration constants to be determined in terms of the asymptotic values of the scalars
and the metric.

The 5-dimensional metric is that of an intersection of a string lying along the z
direction and a pp-wave propagating along the same direction:

ds2 = 2`du(dv +Kdu)− `−2d~x2
(3) , (4.151)

where

`−3 = 4I1[(I2)2 − 2r2f2] , K = 1 + 2I0 . (4.152)

The scalar fields, defined by φx ≡ hx/h0, are given by

φ1 = I2/I1 , φA = −δApxpf(r)/I1 , (4.153)

and the vector fields are given by

A0,1 = −2
√

6p1,2A , AA = 2
√

6h(r)εArsx
rdxs , (4.154)

where A is the vector field of a Dirac magnetic monopole of unit charge, satisfying dA =
?3d

1
r and h(r) is the function hµ,s or hλ in Appendix A.5 corresponding to one of the

spherically-symmetric BPS SU(2) monopoles.

The 4-dimensional electric charge q0 corresponds to the momentum of the 5-dimensional
gravitational wave in the z direction and none of the scalar and vector fields depend on it.
For the sake of simplicity we are going to set it to zero (q0 = 0 and I0 = −1/2 so K = 0)
and we are going to analyze the string solutions with the above scalar and vector fields
and with metric

ds2 = `(dt2 − dz2)− `−2d~x2
(3) , (4.155)
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with the metric function ` given as above.

The metric will be regular in the r → 0 limit if ` ∼ r or ` ∼ constant. These two
behaviors are, respectively, those of extremal black strings in the near-horizon limit and
those of global monopoles. Let us consider each case separately.

Global string-monopoles These are the string-like solutions that, upon dimensional
reduction along z, give the spherically-symmetric global monopoles constructed in
Ref. [47]. They can be constructed with f(r) = fµ,s=0(r) (the BPST ’t Hooft-
Polyakov monopole) and with p1 = p2 = 0, so that

`−3 = 4A1[(A2)2 − 2r2f2
µ, s=0] , φ1 = A2/A1 , φA = −

√
2δArx

rfµ,s=0(r)/A1 ,
(4.156)

and the only non-trivial vector field is AA.

The integration constants A1,2, µ are given by

A1 =
1

χ
1/3
∞

, A2 =
φ1
∞

χ
1/3
∞

, µ =
g|φ∞|√
2χ

1/3
∞

, χ∞ ≡ 4[(φ1
∞)2 − |φ∞|2] , (4.157)

where |φ∞|2 is the asymptotic value of the gauge-invariant combination φAφA, and
the string’s tension (simply defined as minus the coefficient of 1/r in the large-r
expansion of gtt) is given by [72]

Tmonopole =
32|φ∞|√

3χ
2/3
∞

1

|g̃|
. (4.158)

These are globally regular solutions with no horizons, like their 4-dimensional ana-
logues.

Black strings They must necessarily have non-vanishing magnetic charges p1,2 in order
to have a regular horizon. This horizon will be a 2-dimensional surface characterized
by being normal to 2 linearly independent null vectors. The mass and entropy of
the black string will depend on the choice of monopole.

Let us first consider the BPST ’t Hooft-Polyakov monopole (or equivalently, let us
add magnetic charges p1,2 to the above global monopole). In this case, the relation
between the integration constants A1,2, µ and the asymptotic values of the scalars
will be the same as before. The string’s tension and the area of the horizon contain
contributions from the magnetic charges p1, p2:

T = 1
3
√

2
χ1/3
∞

[
p1 + 8

φ1
∞
χ∞

p2

]
+ Tmonopole , (4.159)

A

4π
= 2

[
p1(p2)2

]2/3
. (4.160)
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When we consider the more general ’t Hooft-Polyakov-Protogenov monopole we find
that the area of the horizon receives a contribution from the non-Abelian charge,

A

4π
= 2

{
p1

[
(p2)2 − 2

g2

]}2/3

. (4.161)

4.4 Conclusions

In this chapter we have studied the general procedure to construct timelike and null
supersymmetric solutions of N = 1, d = 5 SEYM theories that can be dimensionally
reduced to timelike solutions of N = 2, d = 4 SEYM theories. These solutions, therefore,
can also be constructed by oxidation of the 4-dimensional solutions and we have striven
to clarify this procedure and find the relations between the 4- and 5-dimensional fields
and the 4- and 5-dimensional equations they satisfy. The relation between instantons in
4-dimensional hyperKähler spaces and monopoles satisfying the Bogomol’nyi equation in
E3 found by Kronheimer plays a crucial role in this relation and, in combination with the
results obtained in Ref. [48], it allows us to construct spherically-symmetric 5-dimensional
solutions that contain YM instantons. The standard oxidation of monopoles gives rise
to 5-dimensional solutions that have an additional translational isometry and cannot be
spherically symmetric.

We have exploited the general results to construct the first 5-dimensional black-hole
and black-string solutions with non-Abelian YM fields. The simplest black-hole solutions
contain the field of a BPST instanton in the so-called base space and their behavior is
similar to that of the colored black holes found in 4-dimensional SEYM theories [155,160]:
the non-Abelian YM field cannot be “seen” at spatial infinity, it does not contribute to the
mass, but it can be seen in the near-horizon limit and it contributes to the entropy. One
can compare the entropies of the simplest non-Abelian black hole with that of another
black hole with the same Abelian charges and moduli (and, henceforth, with the same
mass). The entropy of the former is always smaller, so it is entropically favorable to lose
the non-Abelian field. It is not clear by which mechanism this can happen.

We have also found more complicated black-hole solutions which contain the field
of the instantons that one obtains by reducing Protogenov monopoles in the so-called
base space. Those instantons are not regular in flat space and, in general, the spacetime
metrics they give rise to are not asymptotically flat. We have shown that a judicious
choice of the integration constants (and, hence, of the moduli) in terms of the charges
produces a metric that is not only asymptotically flat with positive mass but also has
a regular horizon. Thus, at special points in the moduli space of the scalar manifold,
additional non-Abelian black-hole solutions are possible. In these solutions, the YM fields
do contribute to the mass and to the entropy.

Finally, we have also found black-string solutions by conventional oxidation of non-
Abelian black-hole solutions from 4 dimensions. One of them is a globally-regular string-
monopole solution and the rest are more conventional solutions.

It is clear that the new solutions that we have constructed need further study. Their
string-theoretic interpretation could be very interesting. The model we have chosen to
construct explicit solutions is a truncation of the effective theory of the heterotic string
compactified to 5 dimensions and can, alternatively, be seen as associated to the compact-
ification of the type IIB theory in K3 times a circle. This should simplify a bit the task
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and, perhaps, open the way to a microscopic interpretation of entropies that depend on
parameters that do not appear at infinity.
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5
A non-Abelian Black Ring

This chapter is based on

Tomas Ort́ın and Pedro F. Ramı́rez
“A non-Abelian Black Ring”,

Phys.Lett. B760 (2016) 475-481. [arXiv:1605.00005 [hep-th]] [172].

The discovery of black rings by Emparan and Reall in Ref. [81] showed how two
important properties of 4-dimensional asymptotically-flat black holes, uniqueness/no-hair
and spherical topology of the event horizon (which, for the 5-dimensional black ring, is
S2 × S1), could be violated in higher dimensions.1 For a range of values of the conserved
charges (mass, angular momenta) that may characterize an uncharged black ring, a dif-
ferent black-ring and a black-hole solutions are also possible. For charged black rings
(the first of which was constructed in Ref. [77]) the non-uniqueness becomes infinite; for
the same conserved electric charges one can construct black rings with regular horizons
with magnetic dipole momenta taking continuous values in some interval [80]. Despite
being innocuous to the conserved charges, these dipole momenta do contribute to the
BH entropy. The construction of supersymmetric black-ring solutions in minimal [78] or
matter-coupled N = 1, d = 5 supergravity [30, 79, 91, 92, 170] using the general classifi-
cation of supersymmetric solutions of these theories started in Ref. [93] opened up the
possibility of constructing very general families of black-ring solutions with various kinds
of electric charges and moduli in which these issues could be studied.

The violation of the no-hair conjecture by non-Abelian fields in 4-dimensions is also
a well-known but less stressed fact, perhaps because the first solutions in which this was
observed [40,143,208], black-hole generalizations of the “Bartnik-McKinnon particle” [11]
with asymptotically vanishing gauge charges, were purely numerical, which makes more
difficult their study and understanding.2 The first black-holes with non-Abelian hair (not
related to the embedding of an Abelian field into a non-Abelian one through a singu-
lar gauge transformation) given in an analytical form were found using supersymmetry
techniques in the context of N = 2, d = 4 Super-Einstein-Yang-Mills (SEYM) theory3

1See, for instance, the reviews [32,82,83] and references therein.
2For a review on hairy and non-Abelian black-hole solutions see Ref. [210] or the more recent Ref. [209].
3This theory is the simplest N = 2 supersymmetric generalization of the Einstein-Yang-Mills theory.

This supersymmetrization requires the addition of scalar fields to the pure Einstein-Yang-Mills theory in
order to completeN = 2, d = 4 vector supermultiplets and, often, the addition of full vector supermultiplets
to fulfill the requirements of Special Geometry. There may be more than one way of performing this
supersymmetrization. Thus, there are more than one N = 2, d = 4 SEYM theory with gauge group SU(2),
for instance. These theories are also known as non-Abelian gauged N = 2, d = 4 supergravity coupled to
vector supermultiplets.
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in Refs. [124] and [155] using the general classification of the timelike supersymmetric
solutions of these theories made in Ref. [123]. The black-hole solutions constructed in
Ref. [155] include the field of an SU(2) coloured monopole found by Protogenov in [183]
which also has asymptotically vanishing gauge charge. The monopole charge does con-
tribute to the entropy, though. These black holes, which can be seen as the result of
adding the coloured monopole to a standard black hole with Abelian charges, modifying
the entropy but none of the asymptotic charges, were called coloured black holes and they
seem to be ubiquitous [160].

The results of Ref. [123] have been used more recently to construct new single-center
and two-center non-Abelian solutions of N = 2, d = 4 SEYM models that can be obtained
by dimensional reduction of N = 1, d = 5 SEYM models4 in Ref. [47].

One of the main goals of that exercise was to open the possibility for the construc-
tion of the first non-Abelian black-hole solutions in d = 5 by oxidation to d = 5 of those
solutions, because the direct construction using the general classification of timelike su-
persymmetric solutions of Refs. [20,23] turns out to be too complicated. This can only be
done for certain models of the lower dimensional theory. The oxidation itself turned out to
be a non-trivial exercise if one wanted to construct solutions without spatial translation
isometries (which would be black strings instead of black holes), but, as was shown in
Ref. [48], one can use non-trivial cycles to perform the reduction and still preserve super-
symmetry, basically using Kronheimer’s mechanism [142]. Both kinds of black solutions
(strings and holes) were recently constructed in Ref. [159].

The d = 5 non-Abelian black holes constructed there are, again, coloured black
holes, with asymptotically vanishing gauge fields. They can be understood as the result
of adding a BPST instanton to a black hole with Abelian charges, leaving the mass and
electric charges unmodified. Just as in the 4-dimensional case, the non-Abelian field does
contribute to the entropy. The BPST instanton field turns out to be related by dimensional
redox to the coloured monopole at the heart of the 4-dimensional coloured black holes.

It is natural to try to see if black-rings also admit the addition non-Abelian instanton
fields and the effect this addition may have on the mass and entropy. In this chapter we
are going to construct and study a regular supersymmetric black-ring solution of N =
1, d = 5 SEYM with a distorted BPST instanton. We start by reviewing in Section 5.1 the
recipe that we are going to use to construct timelike supersymmetric solutions, which was
obtained in Ref. [159]. In Section 5.2 we will carry out the construction of the solution
after which we will study its regularity and we will compute its essential properties. In
Section 5.3 we will study the limit in which the black ring becomes a non-Abelian rotating
black hole. Our conclusions are in Section 5.4.

5.1 The recipe to construct solutions

In Ref. [159] we have found a procedure to construct systematically timelike supersym-
metric solutions admitting an additional spacelike isometry (with adapted coordinate z)
of any N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) characterized by the tensor CIJK

4Again, these are the simplest, but not unique N = 1 (minimal) supersymmetrizations of the d = 5
Einstein-Yang-Mills theory and the supersymmetrization requires the addition of, at least, scalars. They
also go by the name of non-Abelian-gauged N = 1, d = 5 coupled to vector supermultiplets.
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and the structure constants fIJ
K :5

1. Find a set of t- and z-independent functions M,H,ΦI , LI and 1-forms ω,AI , χ in E3

satisfying the equations (defined in E3 as well)

d ?3 dM = 0 , (5.1)

?3dH − dχ = 0 , (5.2)

?3D̆ΦI − F̆ I = 0 , (5.3)

D̆2LI − g2fIJ
LfKL

MΦJΦKLM = 0 , (5.4)

?3dω −
{
HdM −MdH + 3

√
2(ΦID̆LI − LID̆ΦI)

}
= 0 . (5.5)

The first two equations state that H and M are harmonic functions on E3. Once
H is given, the second equation (which is the Abelian Bogomol’nyi equation on
E3 [43]) can be solved for χ. Eq. (5.3) is the general Bogomol’nyi equation on E3.
In the ungauged (Abelian) directions, it implies that the ΦI are harmonic functions
on E3 and, once they are chosen, the corresponding vectors ĂI can be determined.
In the non-Abelian directions, the equation becomes non-linear and one has to find
simultaneously solutions for the functions ΦI and gauge fields ĂI through adequate
ansatzs or other methods. Eq. (5.4) is automatically solved if we choose LI ∝ ΦI

(or zero). Finally, Eq. (5.5) can always be solved if the other equations are solved
(because they solve its integrability condition), except, perhaps, at the singularities
of the functions where, strictly speaking, the other equations are not solved. In most
cases, the integrability condition can be solved by a choice of integration constants in
the functions H,M,LI ,Φ

I . Then, of course, one has to integrate explicitly Eq. (5.5)
to obtain ω.

2. Using them, reconstruct the solution’s 5-dimensional spacetime fields as follows:

(a) The scalars can be found from this equation for the quotients hI(φ)/f̂

hI/f̂ = LI + 8CIJKΦJΦK/H , (5.6)

because there is always a parametrization of the scalar manifold such that

φx ≡ hx/h0 . (5.7)

With the above equation for the quotients hI(φ)/f̂ one can also determine the
function f̂ . For the special case of symmetric scalar manifolds, it is given by6

5Our conventions are those of Refs. [21,23] and are based on Ref. [36]. The supersymmetric solutions of
the most general N = 1, d = 5 supergravity theory including vector supermultiplets and hypermultiplets
and generic gaugings were characterized in Ref. [23]. The inclusion of tensor supermultiplets was considered
in Ref. [20].

6In this expression, CIJK ≡ CIJK .
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f̂−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJΦLΦM/H

+3 · 26LIΦ
ICJKLΦJΦKΦL/H2 + 29

(
CIJKΦIΦJΦK

)2
/H3 .

(5.8)

(b) The metric has the form

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1dŝ2 , (5.9)

where f̂ has been determined above, the 1-form ω̂ is given by7

ω̂ = ω5(dz + χ) + ω , (5.10)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (5.11)

and where the 4-dimensional Euclidean metric dŝ2 is given by8

dŝ2 = H−1(dz + χ)2 +Hdxrdxr , r = 1, 2, 3 . (5.12)

(c) The vector fields and their corresponding field strengths are given by

AI = −
√

3hI f̂(dt+ ω̂) + ÂI ,

F I = −
√

3D̂[hI f̂(dt+ ω̂)] + F̂ I ,

(5.13)

where the vector fields ÂI , defined on the 4-dimensional Euclidean space dŝ2,
and their field strengths are given by

ÂI = 2
√

6
[
H−1ΦI(dz + χ)− ĂI

]
,

F̂ I = 2
√

6H−1
[
D̆ΦI ∧ (dz + χ)− ?3HD̆ΦI

]
,

(5.14)

where D̂ (resp. D̆) is the exterior gauge-covariant derivative with respect to the
connection ÂI (resp. ĂI).

In Ref. [159] we used this recipe to construct black-hole solutions with non-Abelian
gauge and scalar fields for the SU(2)-gauged ST[2, 5] model.9 This model has 4 vector
multiplets and, hence, 4 scalar fields that parametrize the symmetric space SO(1, 3)/SO(3).
It is defined by a tensor CIJK with the following non-vanishing components

7The unhatted ω is the one occurring in Eq. (5.5).
8With H and χ related by Eq. (5.2), this is a hyperKähler metric admitting a triholomorphic Killing

vector, also known as Gibbons-Hawking metric [97, 99]. We will also denote the compact coordinate z by
ϕ. It will be assumed to take values in [0, 4π).

9Actually, this is the name of the model of N = 2, d = 4 supergravity one obtains by dimensional
reduction.
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C0xy = 1
6ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 4 . (5.15)

The directions to be gauged are the last three, which we will denote by indices
α, β, . . . = 2, 3, 4. the ungauged directions will be denoted by indices i, j, . . . = 0, 1.

Being a symmetric space, we can use Eq. (5.8) to write the metric function f̂ as a
function of the building blocks H,LI ,Φ

I :

f̂ −1 = H−1
{

1
4 (6HL0 + 8ηxyΦ

xΦy)
[
9H2ηxyLxLy + 48HΦ0LxΦx

+64(Φ0)2ηxyΦ
xΦy

]}1/3
.

(5.16)

Now, in order to find solutions of this model, we just need to find building blocks
that satisfy Eqs. (5.1)-(5.5). In the next section we will just do this to find a solution that
describes a black ring.

5.2 Non-Abelian Black Rings

5.2.1 Construction of the Solution

Inspired by Refs. [91, 92], we choose a point ~x0 ≡
(
0, 0,−R2/4

)
in E3 and a harmonic

function N with a pole at that point,

N ≡ 1

|~x− ~x0|
≡ 1

rn
, (5.17)

in terms of which we can write the non-vanishing building blocks in the ungauged directions
as

H =
1

r
, M = 3

4λiq
i (1− |~x0|N) , Φi = − qi

4
√

2
N , Li = λi +

Qi − Cijkqjqk

4
N .

(5.18)

These functions contain the integration constants qi, Qi and λi. The first two can be
interpreted as charges. The latter, whose value will be restricted by requirements such as
the normalization of the metric at infinity, are moduli. Eq. (5.1) is satisfied automatically.
Eq. (5.2) is satisfied with

χ = cos θdψ , (5.19)

where r, θ ∈ (0, π) and ψ ∈ [0, 2π) are spherical coordinates centered at r = |~x| = 0 with
the definitions and orientation

x1 = r sin θ sinψ ,
x2 = r sin θ cosψ ,
x3 = −r cos θ ,

ε123 = εrθψ = +1 . (5.20)
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Eqs. (5.3) are satisfied with

Ăi = − qi

4
√

2
cos θndψn , (5.21)

where rn, θn ∈ (0, π) and ψn ∈ [0, 2π) are spherical coordinates centered at rn = |~xn| = 0
with the definitions 

x1
n ≡ x1 − x1

0 = rn sin θn sinψn ,
x2
n ≡ x2 − x2

0 = rn sin θn cosψn ,
x3
n ≡ x3 − x3

0 = −rn cos θn ,
(5.22)

and the same orientation as the spherical coordinates centered at r = 0.

Eqs. (5.4) in the Abelian directions are trivially satisfied because all fij
k = 0 and,

finally, the integrability condition of Eq. (5.5) is identically satisfied for the chosen inte-
gration constants and ω can be found by integration. We will compute ω for the complete
solution later.

The above functions are enough to construct an Abelian black ring. Now, we excite
the gauged directions of this solution by adding to it a solution of the SU(2) Bogomol’nyi
equations on E3 (5.3)

Φα =
1

grn (1 + λ2rn)
δαs+1

xsn
rn

, Ăα =
1

grn (1 + λ2rn)
εαrs

xsn
rn
dxrn . (5.23)

This solution, originally found by Protogenov in Ref. [183], describes a magnetic
colored monopole placed at rn = 0. It is singular at rn = 0 as a field configuration in E3,
but this behaviour can change when we analyze the whole picture. In fact, we showed in
Ref. [48] that the monopole field gives rise to a BPST instanton in E4 through (5.14), and
we used this result in Ref. [159] to construct a regular black hole of the same supergravity
theory we consider in this work.

In the present case we obtain a different instanton field configuration from (5.14),
which we call distorted BPST, because the pole of the harmonic function H is placed in a
different point (r = 0) than that of the coloured monopole (rn = 0). This distorted BPST
is singular at rn = 0, which might turn the black ring solution ill-defined. Happily this
is not the case. The complete vector field contains the instanton plus an additional term,
see (5.13), where the latter cancels precisely this divergence at that critical point

lim
rn→∞

(
−
√

3hI f̂ω5 + 2
√

6H−1ΦI
)

(dz + χ) = 0 . (5.24)

Observe that in the ungauged case the Φαs would have been harmonic functions
−qαN/(4

√
2) and the combinations Cijkq

jqk should have been replaced by CiJKq
JqK .

Here the asymptotic behaviour of the non-Abelian gauge field indicates that the “non-
Abelian qαs” do not contribute in the same way the qis do. However, they have a similar
near-horizon behaviour.

The above functions define completely the solution. In what follows we are going to
analyze its metric to show that it describes a regular black ring and to compute its main
properties.
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5.2.2 Analysis of the Solution

In this analysis it is convenient to use two set of coordinates: those centered at r = 0,
(r, θ, ψ, defined in Eq. (5.20)) supplemented by the time coordinate t and the angular
coordinate ϕ, and those centered at rn = 0 (rn, θn, ψn, defined in Eq. (5.22)) supplemented
by the time coordinate tn and the angular coordinate ϕn. The relations

rn =
(
r2 + |~x0|2 − 2|~x0|r cos θ

)1/2
,

r =
(
r2
n + |~x0|2 + 2|~x0|rn cos θn

)1/2
,

|~x0| = r cos θ − rn cos θn ,

(5.25)

will be useful in the computations.

The metric function f̂ can be obtained by substituting the functions H,LI ,Φ
I in

Eq. (5.8). At this moment we just want to impose the standard asymptotic normalization

lim
r→∞

f̂ = 1 , ⇒ 33Cijkλiλjλk =
33

2
λ0λ

2
1 = 1 . (5.26)

Now let us compute the only missing ingredient in the metric (5.9): the 1-form ω̂.
Let us consider Eq. (5.5), which, upon substitution of the chosen functions H,M,LI ,Φ

I ,
can be written as

?3dω = −3
4λiq

i

{
− 1

r2

[
1− |~x0|+ r

rn
+
r|~x0| (r + |~x0|)

r3
n

(1− cos θ)

]
dr

+

[
|~x0| sin θ

r3
n

(r − |~x0|)
]
dθ

}
,

(5.27)

and a solution can be readily found assuming ω has only one non-vanishing component,
ωψ:10

ω = −3
4λiq

i (cos θ − 1)

[
1−

(
r +

R2

4

)
1

rn

]
dψ . (5.28)

Observe that, since Lα = 0 the non-Abelian terms do not affect ω. However, they
do affect the whole 5-dimensional ω̂ given in Eq. (5.10) via ω5 in Eq. (5.11):

ω̂ = (F −G) dϕ+ (F −G cos θ) dψ , (5.29)

F =
3λiq

i

4

[
1−

(
r +

R2

4

)
1

rn

]
, (5.30)

G =
qi

16

[
3
(
Qi − Cijkqjqk

)
+ 2Cijkq

jqk
r

rn

]
r

r2
n

− 2q0

g2

r2

r3
n (1 + λ2rn)2 . (5.31)

10The expression coincides with that of [171] despite we have chosen ~x0 to be on the negative x3 axis.
This is because the coordinate θ has also a relative sign with respect to the used in that reference.
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The last term in G has a non-Abelian origin. In the r → ∞ limit in which the
metric tends to Minkowski’s (so we have an asymptotically flat solution), though, it is
subdominant and we do not expect it to contribute to the the angular momentum of the
solution.

So far we have been working in coordinates in which the hyperKähler metric Eq. (5.12)
is of the form

dŝ2 = r (dϕ+ cos θdψ)2 +
1

r

[
dr2 + r2

(
dθ2 + sin θ2dψ2

)]
, (5.32)

but, in order to compute mass and angular momentum, it is convenient to use a different
coordinate system (also centered at ~x = 0) t,Θ, φ1, φ2, related to the former by

r =
ρ2

4
, θ = 2Θ , ψ = φ1 − φ2 , ϕ = φ1 + φ2 , (5.33)

in which the complete 5-dimensional metric is of the form

ds2 = f̂2 (dt+ ω̂)2 − f̂−1
[
dρ2 + ρ2

(
dΘ2 + cos2 Θdφ2

1 + sin2 Θdφ2
2

)]
, (5.34)

with

ω̂ =
(
2F − 2G cos2 Θ

)
dφ1 − 2G sin2 Θdφ2 . (5.35)

The independent components of the angular momentum are now obtained from the metric
behaviour in the ρ→∞ limit11

Jφ1 = lim
ρ→∞

π|gtφ1 |ρ2

4GN cos2 Θ
= 1

2
√

3
qi
(

3Qi − Cijkqjqk
)
, (5.36)

Jφ2 = lim
ρ→∞

π|gtφ2 |ρ2

4GN sin2 Θ
= 1

2
√

3
qi
(

3Qi − Cijkqjqk + 6λiR
2
)
, (5.37)

and, from the absence of contribution proportional to g, we see that they coincide with
those of the Abelian black ring, as we expected.

Observe that these formulae allow us to identify

qiλiR
2 = 1√

3
(Jφ2 − Jφ1) . (5.38)

Before we move to study the possible presence of an event horizon, let us point out
that the solution does not contain any Dirac-Misner strings.12 Indeed, the gtφ1 (resp. gtφ2)
metric component vanishes when the coordinate φ1 (resp. φ2) is not well defined, which
happens at Θ = π/2 (Θ = 0).

The solution may have an event horizon at ~x = ~x0, where the norm of the timelike
Killing vector of the metric vanishes. In order to study the near horizon limit we need to

11We use units in which GN =
√

3π/4.
12They could have been removed but only at the price of introducing closed timelike curves [162].
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use a different coordinate system because several components of the metric blow up there
in the coordinates we have been using so far. Recall the expression for the metric in the
original frame centered at ~x = 0

ds2 = f̂2 (dt+ ω)2 + 2f̂2ω5(dt+ ω)(dϕ+ cos θdψ)

−f̂2
(
f̂−3r − ω2

5

)
(dϕ+ cos θdψ)2 − f̂−1r−1dxrdxr .

(5.39)

We first go to the auxiliary frame centered at the horizon with spherical coordinates and
take the rn → 0 limit. The functions that appear in the metric behave in this limit as
follows

f̂ =
16

R2v2
r2
n +O(r3

n) , (5.40)

ωψn = − 3

R2
λiq

i sin2 θnrn +O(r2
n) (5.41)

f̂−1r−1 =
v2

4
r−2
n + k1r

−1
n +O(rn) , (5.42)

f̂2ω5 = −2

v
rn + k2r

2
n +O(r3

n) , (5.43)

f̂2(f̂−3r − ω2
5) =

l2

4
+ k3rn +O(r2

n) , (5.44)

where we have defined the constants

v =

(
Cijkq

iqjqk − 16
q0

g2

)1/3

, (5.45)

l =
1

2v2

[
9 · 62CijkCklm

(
Qi − Cihnqhqn

)
(Qj − Cjpqqpqq) qlqm

−9
(
qiQi − Cijkqiqjqj

)2 − 12qiλiR
2v3 − 9

(
Q1 −

q0q1

3

)2(
32

g2

)]1/2

. (5.46)

These expression for the constants v and l resemble those of the Abelian case [92],
with an additional non-Abelian term. The precise form of the constants k1, k2 and k3

in terms of the charges are messy. They do not occur in the calculation of any physical
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quantity, but they play a role in the near horizon analysis,13 since they are responsible
for the disappearance of O(r−1

n ) in the metric after we perform the following coordinate
transformation,

dtn = dτn +

(
b2
r2
n

+
b1
rn

)
drn , dϕn = −dψn + 2dξn +

c1

rn
drn , (5.50)

where the constants b1, b2 and c1 can be chosen such that all divergences in the metric in
the rn → 0 limit disappear:

c1 = ∓v
l
, b2 = ± lv

2

8
, b1 = ±4l2k1 + l2v3k2 + 4v2k3

16l
. (5.51)

With this choice we find in the rn → 0 limit that the horizon has the following
metric

ds2
h = −l2dξ2

n −
v2

4

(
dθ2
n + sin2 θndψ

2
n

)
. (5.52)

with the topology S1 × S2, so the solution is a black ring with non-Abelian hair, i.e. a
non-Abelian black ring. Using this metric we can compute the area of the horizon14,

Ah
2π2

=
1

2π2

∫
d3x
√
|gh| = lv2 , (5.53)

so the entropy of the non-Abelian black ring can be written in terms of the charges and
angular momenta using the expressions for the constants v and l Eqs. (5.45) and (5.46)
together with Eq. (5.38) as follows:

S = π
[
3 · 62CijkCklm

(
Qi − Cihnqhqn

)
(Qj − Cjpqqpqq) qlqm − 3

(
qiQi − Cijkqiqjqk

)2
− 4√

3
(Jφ2 − Jφ1)

(
Cijkq

iqjqk − 16
q0

g2

)
− 3

(
Q1 −

q0q1

3

)2(
32

g2

)]1/2
. (5.54)

13We give their form here for the sake of completeness,

k1 =
16λ2R2 q0

g2
+ 3

(
qiQi − Cijkqiqjqk

)
3R2v

, (5.47)

k2 =
4k1

v
, (5.48)

k3 =
1

2g2R2v4

{
3R2k1

v3

[
(q0q1/3)2 (96− 3g2(q1)2)

+6(q0q1/3)
(
−32Q1 + g2q1(−2(q1)2/6q0 + 2q0Q0 + q1Q1)

)
+3
(

4(q1)2/6g2q0q1Q1 + 32Q2
1 + g2

(
−q1Q1(4q0Q0 + q1Q1) + (Cijkq

iqjqk − qiQi)2
))

+4λiq
i
(
−16q0 + g2Cijkq

iqjqk
)
R2
]
− 3

[
9g2((q1)2/6−Q0)(q0q1/3−Q1)2

+
(
−24(q0q1/3)2λ2 + 6(q1)2/6g2λ1q

0q1 − 6g2λ1q
0Q0q

1 + 96λ1Q1 − 6g2λ0q
0q1Q1

−3g2λ1(q1)2Q1 − 24λ2Q2
1 + 3q0q1/3

(
−32λ1 + 2g2λ0q

0q1 + g2λ1(q1)2 + 16λ2Q1

)
+32λiq

iq0 − 8Cijkq
iqjqkg2λiq

i + 6g2λiq
iQjq

j
)
R2 + 16λ2λiq

iq0R4
]}

(5.49)

14Notice that ξn ∈ [0, 2π), as can be deduced from expression (5.50) together with
∫
dΩ(3) = 2π2.
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Finally, we would like to compute the mass of the solution. We do so by compar-
ing the asymptotic behavior of the metric component gtt with that of the Schwarzschild
solution, gtt ∼ 1− 8MG

3πρ2 + · · · . We get

M =
35/2λ1

2
(λ1Q0 + 2λ0Q1) . (5.55)

The constants λi can be expressed in terms of physical constants. If we define the
physical scalars of the theory as φx ≡ hx/h0 we find that the only scalar with a non-
vanishing asymptotic value is the Abelian one and this value is φ1

∞ = λ1/λ0. On the other
hand, the asymptotic normalization of the metric Eq. (5.26) implied λ0λ

2
1 = 2/33. Then,

λ0 = 21/33−1
(
φ1
∞
)−2/3

, λ1 = 21/33−1
(
φ1
∞
)1/3

. (5.56)

and M takes the form

M = 2−1/331/2
[(
φ1
∞
)2/3

Q0 + 2
(
φ1
∞
)−1/3

Q1

]
, (5.57)

and depends only on the moduli and on the electric charges Q0, Q1 while the qi, which
correspond to magnetic dipole momenta do not contribute to it [80]. The non-Abelian
field do not contribute, either.

This expression looks identical to that of the non-Abelian black hole solution con-
structed in Ref. [159], but the charges Q0 and Q1 are not the same than the charges q0 and
q1 that appear in the black-hole mass formula given in that reference. They are, actually,
related by QBR

i = qBH
i + Cijkq

j
BRq

k
BR. This is just reflecting the fact that the conserved

electrical charges in the black ring receive contributions from the magnetic dipole momenta
via the Chern-Simons term in the action. This effect is commonly described as ”charges
dissolved in fluxes” [30].

This non-Abelian black-ring mass formula, is, however, identical to that of the
Abelian black ring that one would obtain by removing the non-Abelian fields from this
solution. In other words: the presence of non-Abelian fields is not observable at spatial
infinity. They do contribute to the entropy, though, as in the black-hole case, their entropy
being smaller than that of their Abelian siblings.

5.3 Non-Abelian Rotating Black Holes

In the R→ 0 limit, several things happen:

1. All the harmonic functions are now centered at r = 0 (except for M which becomes
constant):

H = N =
1

r
, M = 3

4λiq
i , Φi = − qi

4
√

2
N , Li = λi +

Qi − Cijkqjqk

4
H .

(5.58)

2. The non-Abelian gauge field is also centered at r = 0:
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Φα =
1

gr (1 + λ2r)
δαs+1

xs

r
, Ăα =

1

gr (1 + λ2r)
εαrs

xs

r
dxr , (5.59)

and the distorted BPST instanton is not distorted anymore.

3. The metric function f̂ is now given by

f̂−3 =

[
3
2

(
λ0 +

Q0

4r

)
− 2

g2
1

r(1 + λ2r)2

][
9

(
λ1 +

Q1

4r

)2

− 2(q0)2

g2
1

r2(1 + λ2r)2

]
. (5.60)

The mass of this object is identical to that of the black ring Eqs. (5.55) and (5.57).
it has no non-Abelian contributions. The near-horizon limit, though, includes non-
Abelian terms

f̂−1 ∼ Y

r
, with Y 3 =

(
3
8Q0 −

2

g2

)(
9
16Q

2
1 −

2

g2
(q0)2

)
(5.61)

4. ω vanishes identically and ω̂ is determined only by ω5, which takes the form

ω̂ = ω5(dϕ+ cos θdψ) ,

ω5 =
qi

16

(
3Qi − Cijkqjqk

) 1

r
− 2q0

g2

1

r (1 + λ2r)2 .
(5.62)

As a result, the two angular momenta become identical

Jφ1 = Jφ2 = 1
2
√

3
qi
(

3Qi − Cijkqjqk
)
≡ J . (5.63)

Observe that the non-Abelian term in ω5, which does not contribute to the angular
momentum, does contribute to the r → 0 limit just as the Abelian terms:

ω5 ∼ Z/r , where Z =
√

3
8 J −

2q0

g2
. (5.64)

Let us study the near-horizon limit → 0. Using Eqs. (5.61) and (5.64), we find that
the metric Eq. (5.9) behaves in this limit as

ds2 ∼ r2

Y 2
dt2− Y

r2
dr2−Y dΩ2

(2)+
2Z

Y 2
rdt(dϕ+cos θdψ)+

(
Z2

Y 2
− Y

)
(dϕ+cos θdψ)2 , (5.65)

which can be rewritten in the form

ds2 ∼ Y dΠ2
(2) − Y dΩ2

(2) − Y [sinαρdt− cosα(dϕ+ cos θdψ)]2 , (5.66)

where r = (Y 3−Z2)1/2ρ, dΠ2
(2) = ρ2dt2− dρ2

ρ2 is the metric of the AdS2 of unit radius and

sin2 α = Z2/Y 3. This space is the near-horizon limit of the BMPV black hole [44], but,
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due to the non-Abelian contribution to Z (which can be understood as a sort of “near-
horizon angular momentum”), now α does not vanish for vanishing asymptotic angular
momentum J and we can have a stationary black hole with J = 0 whose near-horizon limit
is not AdS2×S3. The converse is also possible: we can make α = Z = 0 for J = 16√

3
q0/g2

and have a rotating black hole whose near-horizon limit is AdS2×S3.

The area of the horizon is

A

2π2
= 8
√
Y 3 − Z2 . (5.67)

5.4 Conclusions

The existence of black-hole and black-ring solutions with identical asymptotic behaviour
but with non-Abelian hair that contributes to the entropy [47, 155, 159, 160] challenges
our understanding of black-hole hair and the microscopic interpretation of the black-
hole/black-ring entropy, just as the Abelian hair discovered in Ref. [80] did. More research
is necessary to gain a better understanding of these solutions. In particular, the stability
of these supersymmetric non-Abelian solutions (which are entropically disfavored) needs
to be addressed and their possible non-supersymmetric and non-extremal generalizations
have to be constructed and studied.
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6
Non-Abelian bubbles in microstate geometries

This chapter is based on

Pedro F. Ramı́rez
“Non-Abelian bubbles in microstate geometries”,

JHEP 1611 (2016) 152. [arXiv:1608.01330 [hep-th]] [184].

The construction and study of smooth microstate geometries in supergravity theories
has become a fruitful area of research since the pioneering work, more than a decade ago,
of Bena and Warner [31] and independently of Berglund, Gimon and Levi [34], where a
strategy to obtain ample families of microstate geometries was given, generalizing earlier
results [102–104, 145–147, 153]. This kind of solutions can be roughly described as a
black hole configuration in which the horizon and its interior have been replaced by some
complicated, although smooth horizonless geometry while keeping the rest of the field
configuration looking like the unmodified solution. Any solution with such remarkable
properties is interesting per se, although it is in the context of the fuzzball proposal [151]
in which these configurations acquire their greatest significance.

The proposal originated as a possible solution to the information paradox and con-
jectures that the entropy of a black hole has its microscopic origin in the degeneracy of
a quantum bound state, the fuzzball. In this picture, the classical black hole would pro-
vide an effective description of the system, that would consist in a quantum ensamble of
geometries. These microstate geometries, when considered individually, would correspond
to string theory configurations with unitary scattering and hopefully a subset of these
states might be captured as smooth horizonless supergravity solutions. Since the pro-
posal suggests a modification at the horizon scale, such geometries should have the same
asymptotics as the black hole.

This conjecture opened a whole program in the quest to construct smooth microstate
geometries in theories of supergravity. Much progress has been made in this direction and
vast classes of such solutions have already been described in the literature, see [9,32,33,65,
193] and references therein. The direct identification of these configurations as representing
typical microstates of a particular black hole is generally unclear due to the absence
of a description in terms of a dual CFT. However very recently this identification has
been performed for a particular type of configurations known as superstrata, constituting
a major achievement of the fuzzball program [24]. Nevertheless, even though general
microstate geometries lack of this identification, they are still very useful in providing
valuable information about the physics of black holes in string theory, see for instance
[26–28,154,188].
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Chapter 6. Non-Abelian bubbles in microstate geometries

Typically these are described as topologically non-trivial spacetimes in five and six
dimensions, in the context of supergravity coupled to Abelian matter multiplets or pure
supergravity. In the present work we perform the inclusion of non-Abelian degrees of free-
dom for the first time1. The reason why this class of microstate geometries has remained
unexplored so far seems to be clear: the construction of explicit analytic non-Abelian so-
lutions in five- and six-dimensional supergravity theories has become accessible only in the
last few months [57,159,172]. The solutions that we present here constitute a non-Abelian
extension of the BPS three-charge smooth geometries described in [32]. We work in N = 1,
d = 5 Super-Einstein-Yang-Mills (SEYM) theories. One can think of these theories as an
extension of the five-dimensional STU model of supergravity, that describes a supergravity
multiplet coupled to two Abelian vector multiplets. SEYM theories are then obtained by
consistently coupling the STU model to a set of additional vector multiplets that trans-
form under the local action of a non-Abelian group2. Although this nomenclature might
seem unfamiliar in the literature of microstate geometries, in fact the underlying theory
where this solutions are constructed is quite frequently the STU model: five-dimensional
three-charge configurations are naturally described in this framework.

It is worth mentioning how N = 1, d = 5 SEYM theories are embedded in string
theory. The 10-dimensional effective theory of the Heterotic string describes N = 1 su-
pergravity coupled to 16 Abelian vector multiplets. When the Heterotic string theory is
compactified on T 5, there are special points in the moduli space for which there is an en-
hancement of the gauge symmetry. Then, besides the Kaluza-Klein vectors, the effective
supergravity description contains additional massless vector fields taking values in the al-
gebra of some non-Abelian group. A consistent truncation can reduce the supermultiplets
content (as well as their number) and result in the N = 1, d = 5 SEYM theories that we
consider here. The explicit realization of this particular compactification and truncation
is discussed in the following chapters.

The procedure by which non-Abelian microstate geometries are found has a similar
structure than that of the Abelian case, but requires the introduction of some modifica-
tions. Just like in the case of supersymmetric solutions of STU supergravity, the con-
struction of BPS configurations satisfying the equations of motion of SEYM theory relies
on the specification of a reduced set of seed functions defined in R3. In the case of the
familiar STU model, these are simply harmonic functions that satisfy certain differential
equations whose integrability condition is the Laplace equation. The SEYM procedure
conserves these harmonic functions and introduces a new set of seed functions satisfying
the covariant version of these differential equations.

We find that the bubbling equations, which determine the size of the bubbles leading
to physically sensible geometries, contain a new contribution that appears standing next
to the magnetic fluxes threading the bubbles, see (6.45). This new term can be given a
physical interpretation in terms of the topological charge, or instanton number, associated
to the endpoints of the bubble of a non-Abelian instanton that builds up the vector fields.
As a consequence it should be possible to have stable bubbles without some magnetic fluxes
placed on them or, inversely, a bubble can collapse even though the fluxes are non-zero.

Another interesting peculiarity introduced by the non-Abelian fields is that the
solution depends on a set of continuous parameters that can be modified with no apparent

1Notice that globally regular non-Abelian gravitating configurations on contractible spaces have been
known since the late 80s, see [12,61,62,113]. These are usually referred as global monopoles.

2One can consider as well the introduction of additional Abelian vector multiplets.
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restriction whose influence is only local, i.e. their modification does not change any of
the asymptotic charges. This is a shocking feature that allows the construction of huge
amounts of microstate geometries with the same topology for a unique black hole, and its
proper interpretation requires further study.

Having said that, let us start talking about the details of non-Abelian microstate
geometries. We give a general description of the solutions that can be found using our
generating technique in Section 6.1. In Section 6.2 we describe how this method can be
utilized for the construction of smooth horizonless solutions. We conclude the chapter
in Section 6.3 with some comments about the results and discuss future directions. In
Appendix C.1 we give a brief summary of N = 1, d = 5 SEYM theories, describing its
matter content and its action. Appendix C.3 contains the solution generating technique
written in a step-by-step language.

6.1 Supersymmetric solutions of N = 1, d = 5 Super-Einstein-
Yang-Mills

A technique to construct supersymmetric timelike solutions with a spacelike isometry in
these theories was recently developed in [159], where it was used to describe the first non-
Abelian analytic black holes in five dimensions3. This method has also been used in [172]
to find non-Abelian generalizations of the Emparan-Reall black ring solution, [81], and
the BMPV rotating black hole, [44]. In the simplest settings, the configurations can be
roughly interpreted as three-charge Abelian solutions on top of which we place a non-
Abelian instanton that, interestingly, does not produce any change on the mass of the
solution while it reduces its entropy.

The solutions of N = 1, d = 5 SEYM4 are specified by the form of the metric ds2,
the vector fields AI and the scalars φx. The indices labeling the vectors take values in
{I, J, . . . = 0, . . . , 5}, with the Abelian sector contained in the first values {i, j, . . . = 0, 1, 2}
and the non-Abelian sector in the last three {α, β, . . . = 3, 4, 5}. We make a continuous
use of this division in two sectors through the text. The scalars are conveniently codified
in terms of a set of functions hI labeled with the same indices than the vectors, such that
φx ≡ hx/h0. We also define the functions of the scalars with upper indices as

hI ≡ 27CIJKhIhJ , hIhI = 1 , (6.1)

where CIJK = CIJK is a constant symmetric tensor that characterizes the supergravity
theory. We work on the SU(2)-gauged ST[2, 6] model, that contains nv = 5 vector mul-
tiplets and, as we mentioned in the introduction, can be understood as a non-Abelian
extension of the STU model. This model is characterized by a constant symmetric tensor
with the following non-vanishing components

C0xy = 1
6ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 5 . (6.2)

In [23] it was shown that timelike supersymmetric solutions of this theory are of the

3A method for the systematic construction of null solutions and some explicit examples describing black
strings and regular string-monopoles are also given in that reference.

4See Apendix C.1 for a brief description of the theory.
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form

ds2 = f 2(dt+ ω)2 − f −1dŝ2 , (6.3)

AI = −
√

3hIf(dt+ ω) + ÂI , (6.4)

where dŝ2 is a four-dimensional hyperKähler metric and the rest of elements that appear
in this decomposition are defined on this four-dimensional space. These elements satisfy
the system of BPS equations:

F̂ I = ?4F̂
I , (6.5)

D̂2 (hI/f) = 1
6CIJK F̂

J · F̂K , (6.6)

dω + ?4dω =
√

3
2 (hI/f)F̂ I . (6.7)

Here ?4 is the Hodge dual in the four-dimensional metric dŝ2 and F̂ I is the field strength
of the vector ÂI

F̂ Iµν = 2∂[µÂ
I
ν] + ĝfJK

IÂJµÂ
K
ν , (6.8)

where fIJ
K are only non-vanishing when the indices take values in the non-Abelian sector,

in which case they are the structure constants of SU(2), fαβ
γ = εαβγ .

Some words about notation are necessary. Notice that we use hats to distinguish
objects that are defined in four spatial dimensions. For example, AI is used to represent the
five-dimensional physical vectors and ÂI is a vector in the four-dimensional hyperKähler
space. In a few lines we will introduce another collection of objects that are labeled with
inverse hats and that are defined in three-dimensional Euclidean space. In particular we
define the vectors ĂI . We use all these vectors to define covariant derivatives in five, four
and three dimensions for objects with upper and lower vector indices. For example the
four-dimensional covariant derivatives are defined by

D̂hI = dhI + ĝfJK
IÂJhK , D̂hI = dhI + ĝfIJ

KÂJhK . (6.9)

The system of BPS equations can be drastically simplified under the assumption that
the solutions admit a global spacelike isometry along a compact direction [159]. Then the
mathematical objects that build up the physical fields can be further decomposed in terms
of elements defined in three dimensional flat space in the following manner

dŝ2 = H−1(dϕ+ χ)2 +Hdxrdxr , r = 1, 2, 3 , (6.10)

ÂI = −2
√

6
[
−H−1ΦI(dϕ+ χ) + ĂI

]
, (6.11)

hI/f = LI + 8CIJKΦJΦKH−1 , (6.12)

ω = ω5(dϕ+ χ) + ω̆ , (6.13)
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where ϕ is a coordinate adapted to the direction of the isometry. Substituting back these
expressions in the BPS system of equations, we obtain the conditions thatH,χ,ΦI , ĂI , LI , ω5

and ω̆ need to satisfy

?3dH = dχ , (6.14)

?3D̆ΦI = F̆ I , (6.15)

D̆2LI = ğ2fIJ
LfKL

MΦJΦKLM , (6.16)

?3dω̆ = HdM −MdH + 3
√

2(ΦID̆LI − LID̆ΦI) , (6.17)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (6.18)

where M is just a harmonic function in E3, i.e. ∇2M = 0.

Equations (6.14), (6.15) and (6.16) in the Abelian sector imply that H, Φi and Li
are just harmonic functions on E3. Once these are specified it is straightforward to find
the 1-forms χ and Ăi.

In the non-Abelian sector (6.15) is the Bogomol’nyi equation [43], which is non-
linear and hard to solve in general. Fortunately this system, that describes a non-Abelian
monopole in Yang-Mills-Higgs theory, has been studied by many authors and the space of
solutions available in the bibliography is rich enough for the purposes of our work.

Equation (6.16) in the non-Abelian sector is easily solved if we choose Lα ∝ Φα

or just Lα = 0. However none of these choices is completely satisfying if one pursues
the construction of general smooth horizonless geometries. If one takes Lα ∝ Φα then
there are some potential restrictions on the space of possible Φi that can result in smooth
geometries. We will need to find a more general solution.

Finally, (6.17) can always be solved if its integrability condition is satisfied. This
condition gives a set of algebraic equations, which in this context are known as bubbling
equations, that impose restrictions on the distance between the different centers of the
solution (the points were the seed functions are singular). Then, of course, one has to
integrate explicitly equation (6.17) to obtain ω̆.

In summary, we have described a procedure to construct supersymmetric timelike so-
lutions in terms of a set of seed functions defined on three-dimensional flat space: H,ΦI , LI
and M .

6.2 Smooth bubbling geometries in SEYM supergravity

Smooth microstate geometries are defined as horizonless, regular field configurations with-
out any brane sources but with the asymptotic charges of a black hole. At a technical
level this statement implies several conditions that we shall address in the following sub-
sections, being perhaps the most important of those the requirement of working with
manifolds with non-trivial topology5. This fact can be roughly understood from the fact

5By this we mean that they describe non-contractible spaces.
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that the existence of non-trivial cycles allows for the presence of measurable asymptotic
charges without the introduction of localized brane sources. See for instance [32] for a
detailed discussion about this topic.

The systematic procedure for finding solutions described in the previous section can
naturally accommodate ambipolar Gibbons-Hawking spaces, which have just the right
properties for these purposes. Let us start with a brief description of these manifolds.

6.2.1 Ambipolar Gibbons-Hawking spaces

Much of the very interesting physics exhibited by these solutions is related to the use
of ambipolar Gibbons-Hawking spaces, which are a particular example of ambipolar hy-
perKähler manifolds [167]. These have the form of a U(1) fibration over a R3 base, with
the fiber collapsing to a point at a finite collection X = {~xa|a = 1, . . . , n} of points in
R3 which we will call centers. Any path in the base manifold connecting two centers,
γab, defines a non-contractible 2-cycle through the inclusion of the U(1) fiber, ∆γab . A
different path γ′ab between the same centers describes an homologically equivalent 2-cycle
∆γ′ab

' ∆γab . We will denote any of the equivalent 2-cycles simply as ∆ab.

These spaces have the metric

dŝ2 = H−1(dϕ+ χ)2 +H
[
dr2 + r2

(
dθ2 + sin2θdψ2

)]
, ?3dH = dχ , (6.19)

with the angular coordinates taking values in θ ∈ [0, π), ψ ∈ [0, 2π), ϕ ∈ [0, 4π). H is a
harmonic function on E3 of the form

H =
∑
a

qa
ra
, with ra ≡ |~x− ~xa| , ~xa ∈ X , (6.20)

while the 1-form χ plays the role of local connection of the fiber bundle and can be written
as

χ =
∑
a

qacosθadψa , (6.21)

where θa and ψa are coordinates on a spherical frame centered in ~xa.

Although H is singular when evaluated at the centers it is straightforward to check
that if all qa, aka Gibbons-Hawking charges, are integers then the metric remains regular
at these points6. Indeed under the redefinition of the radial coordinate ρa = 2

√
ra we find

that locally

dŝ2|ρa→0 ∼ dρ2
a + ρ2

adΩ2
(3)/qa

, (6.22)

being dΩ2
(3)/qa

the standard metric on S3/Z|qa|. Asymptotically the manifold is also of this

form, dŝ2|ρ→∞ ∼ dρ2 + ρ2dΩ2
(3)/Q, with the orbifold given in this case by S3/Z|Q|, being

Q ≡
∑

a qa.

Physically, smooth bubbling geometries are claimed to represent microstate con-
figurations of some particular black hole, being both solutions indistinguishable asymp-
totically. Therefore we are interested in having the ambipolar Gibbons-Hawking space
asymptotic to R4, which we can achieve imposing Q = 1. This condition requires that

6When |qa| 6= 1 there is an orbifold singularity at ~x = ~xa, but we will not worry about it since these
singularities are innocuous in the context of string theory.
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some of the Gibbons-Hawking charges be negative, and therefore the function H interpo-
lates between −∞ and +∞. Each negatively charged center is surrounded by a connected
open region with H < 0, whose boundary is a surface where H vanishes.

Then the signature of the metric interpolates between (+ + ++) and (−−−−),
being clearly ill-defined at the surfaces where H = 0. It is this characteristic what renders
this space be ambipolar. This harmful properties, however, can be made compatible with
having a smooth five-dimensional supergravity solution due to the presence of both, the
conformal factor f−1 multiplying dŝ2 and the additional terms in the full metric, see
equation (6.3). We will elaborate on this in subsequent sections.

6.2.2 Seed functions for horizonless spacetimes

In the language of the solution generating technique outlined in Section 6.1, we have given
the first small step in the way to obtain a supersymmetric solution, that can be synthesized
as

H =
∑
a

qa
ra
, with qa ∈ Z ,

∑
a

qa = 1 . (6.23)

The remaining seed functions in the Abelian sector Φi, Li and M are also harmonic,

Φi = ki0 +
∑
a

kia
ra
, Li = li0 +

∑
a

lia
ra
, M = m0 +

∑
a

ma

ra
, (6.24)

and from equation (6.15) we readily obtain

Ăi =
∑
a

kiacosθadψa . (6.25)

Notice that we imposed that the location of the singularities coincides with a Gibbons-
Hawking center. With this requirement we will be able to avoid that the building blocks
hI/f as defined in (6.12) become singular whenever any of the seed functions individually
diverge. This is the mathematical version of what at the beginning of the section we
called absence of brane sources, and it is the mechanism responsible of obtaining hori-
zonless geometries7. Also, the fact that the harmonic seed functions are singular at the
Gibbons-Hawking centers is directly responsible for much of the very interesting physics
captured by these solutions. Consequently, we would like the non-Abelian seed functions
to display a similar qualitative behavior, i.e. (Φα, Lα)|ra→0 ∼ r−1

a +O(r0
a).

Protogenov’s SU(2) colored monopole [183] is a solution to the Bogomol’nyi equation
with this property, with only one single center. Colored monopoles are rather intriguing
objects. They describe a point with unit local magnetic charge surrounded by a magnetic
cloud that completely screens the charge as seen from infinity8. Despite its singular nature
when interpreted in the context of Yang-Mills-Higgs theory, single center colored monopole
solutions have been fruitfully used in the literature to obtain regular non-Abelian black

7Clearly this naming is pointing at the physical origin of these potential singularities once the solutions
are interpreted in the context of string theory.

8The magnetic charge is defined as p = ğ
4π

∫
S2

ΦαF̆α√
ΦαΦα

.
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holes in four- [47,123,155,160] and five-dimensional [159,172] theories of gauged supergrav-
ity. Their presence has an interesting impact on black hole thermodynamics, modifying
the entropy without altering the mass.

Therefore, a family of well-suited non-Abelian seed functions Φα is given by a multi-
center generalization of colored monopoles, which we construct now. From now on we will
assume the gauged group is SU(2) for the sake of simplicity, so the index α can take three
possible values. Nevertheless, following the ideas of Meessen and Ort́ın [160], it should be
possible to embed these monopoles in a more general group SU(N) and use them in the
construction of smooth bubbling geometries in SU(N)-gauged supergravity.

Plugging in the Bogomoln’yi equation (6.15) the ansatz of the hedgehog form

Φα = − 1

ğP

∂P

∂xs
δαs , Ăαµ = − 1

ğP

∂P

∂xs
εα µs , (6.26)

we find that this configuration describes a monopole solution if P is a harmonic function,

P = λ0 +
∑
a

λa
ra
, λ0 6= 0 . (6.27)

Substituting back in (6.26), we can write the solution as

Φα =
∑
a

λa
ğr2
aP

δαs
(xs − xsa)

ra
, Ăαµ =

∑
a

λa
ğr2
aP

εα µs
(xs − xsa)

ra
. (6.28)

The Higgs field of the monopole is singular at the centers and vanishes at infinity

lim
ra→0

Φα =
kαa
ra

+O(r0
a) , lim

r→∞
Φα ∼ O(r−2) , kαa ≡ δαs

(xs − xsa)
ğra

. (6.29)

This solution corresponds to a multicenter colored monopole configuration.

The last seed functions we need to find are Lα, which are solutions of equation
(6.16), that we repeat here for convenience

D̆2Lα − ğ2fαβ
λfγλ

ρΦβΦγLρ = 0 . (6.30)

We can solve this differential system by making use of the ansatz

Lα = − 1

ğP

∂Q

∂xs
δαs , (6.31)

the equation reduces to the condition of Q being harmonic. We choose Q to be of the
form

Q =
∑
a

σaλa
ra

. (6.32)

The functions Lα behave similarly to Φα near the centers and at infinity

lim
ra→0

Lα =
lαa
ra

+O(r0
a) , lim

r→∞
Lα ∼ O(r−2) , lαa ≡ σaδαs

(xs − xsa)
ğra

, (6.33)
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only differentiated by the presence of the parameters σa in the near-center limit. The
appearance of these factors will be fundamental for obtaining horizonless geometries.

After having fixed the general form of all the seed functions, we can start analyzing
the regularity of the metric. In order to construct horizonless solutions we need to avoid
having brane sources at the centers. In other words, we want the building blocks hI/f that
constitute the metric function, given by (6.12), to remain finite at these points. Keeping
the charges qa and kia arbitrary, it is possible to remove the brane sources by taking

lIa = −8CIJK
kJa k

K
a

qa
. (6.34)

Notice that this expression is valid in both the Abelian and the non-Abelian sector. In the
former it fixes the value of the parameters lia, while in the latter it fixes the parameters
σa. Regularity of the metric at the centers also requires ω5 to be finite there, something
that we achieve by choosing

ma = 8
√

2CIJK
kIak

J
a k

K
a

q2
a

. (6.35)

The constant terms in the harmonic seed functions (6.24) define the solution at
infinity. In order to have an asymptotically flat metric (f∞ ∼ 1, ω5,∞ ∼ 0) we need to
satisfy the constrains

ki0 = 0 , 27Cijkli0l
j
0l
k
0 = 1 , m0 = −3

√
2
∑
i,a

li0k
i
a . (6.36)

6.2.3 Closed timelike curves and bubbling equations

By using an ambipolar Gibbons-Hawking metric we are taking a clear risk: the spacetime
metric might contain closed timelike curves (CTC’s) or even be ill-defined at the critical
surfaces where H = 0. We now study the conditions under which CTC’s are absent, so
the microstate geometries are physically sensible.

Let us expand the expression of the spacetime metric (6.3) and write it in the
following manner

ds2 = f2dt2 + 2f2dtω − I
f−2H2

(
dϕ+ χ− ω5H

2

I
ω̆

)2

− f−1H

(
d~x · d~x− ω̆2

I

)
, (6.37)

where I is defined as

I ≡ f−3H − ω2
5H

2 . (6.38)

There is one general restriction that needs to be satisfied in order to avoid the
presence of CTC’s

I ≥ 0 . (6.39)

Apparently there is one additional condition, f−1H ≥ 0, but this is implied by the in-
equality in (6.39). Let us express this condition in more detail by evaluating I in terms
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of the seed functions

I = −M2H2 − 18
(
ΦILI

)2 − 32
√

2MCIJKΦIΦJΦK − 6
√

2MHLIΦ
I

+27HCIJKLILJLK + 3423CIJKCKLMLILJΦLΦM ≥ 0 .

(6.40)

The first point to notice is that the form of this expression coincides with that of
ungauged supergravity originally derived in [31], where it was identified as the quartic
invariant of E7(7). The analysis of the positivity of this quantity is hard to do in general,
although we can assert that this bound can be satisfied for large families of configurations.
The reason behind this statement is that this has been shown to be the case for ungauged
supergravities, and many techniques to construct solutions satisfying this bound have been
developed. In any case, it is fair to say that this restriction definitely makes the process
of constructing explicit solutions more complicated.

There is one additional factor that can result in the appearance of CTC’s, and this
is the formation of Dirac-Misner strings. Those arise when the integrability condition of
the last differential equation that still remains to be solved, (6.17), is not satisfied. This
condition is obtained acting with the operator d?3 in that expression, which gives

{
H∇2M −M∇2H + 3

√
2(Φi∇2Li − Li∇2Φi + ΦαD̆2Lα − LαD̆2Φα)

}
= 0 . (6.41)

This condition is identically satisfied as a consequence of equations (6.14)-(6.16) every-
where except at the centers, where technically those equations cease to apply. The bub-
bling equations are algebraic constrains that guarantee that the integrability condition
is satisfied everywhere, setting the requirements that avoid the presence of Dirac-Misner
strings.

To make further progress it is convenient to define the symplectic vector of seed
functions

SM =
(
H, 3
√

2ΦI ,M,LI

)
, SM =

(
M,LI ,−H,−3

√
2ΦI

)
, (6.42)

and a symplectic vector of charges at each center

QMa =
(
qa, 3
√

2kIa,ma, l
I
a

)
, QM,a =

(
ma, l

I
a,−qa,−3

√
2kIa

)
. (6.43)

Now we can write the integrability condition as

SMD̆2SM = 0 . (6.44)

Interestingly the non-Abelian sector vanishes in the last expression due to the sym-
plectic product and the expression is reduced to SmQm,aδ(~x − ~xa) = 0 with the under-
standing that Sm and Qma are the components of the symplectic vectors in the Abelian
sector. Then, one could naively expect that the bubbling equations coincide with those in
the case of ungauged supergravity theories. However, this does not happen because the
charges lia are affected by the presence of the non-Abelian fields according to (6.34). After
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a few lines of algebraic computation, the resulting bubbling equations are conveniently
written as

∑
b6=a

qaqb
rab

[
CijkΠ

i
abΠ

j
abΠ

k
ab −

1

2ğ2
Π0
abTab

]
=

3

8
li0

(∑
b

qak
i
b − kia

)
, (6.45)

where Πi
ab is the ith- flux threading the 2-cycle ∆ab and Tab contains information about

the topological charge associated to the centers a and b, see (6.63)

Πi
ab ≡

(
kib
qb
− kia
qa

)
, Tab ≡ ğ2

(
kαa k

α
a

q2
a

+
kαb k

α
b

q2
b

)
. (6.46)

We are now ready to integrate (6.17). It is convenient to decompose the 1-form ω̆
into two parts, ω̆A and ω̆B, satisfying

?3dω̆
A = HdM −MdH + 3

√
2(ΦidLi − LidΦi) , (6.47)

?3dω̆
B = 3

√
2(ΦαD̆Lα − LαD̆Φα) , (6.48)

The first equation can be solved independently for each pair of centers (a, b), with ω̆A =∑
a

∑
b>a ω̆

A
ab. For each pair we use adapted coordinates such that ~xa = (0, 0, 0) and

~xb = (0, 0,−rab), with spherical angles given by

x1
ab = rasinθabsinψab x2

ab = rasinθabcosψab x3
ab = −racosθab . (6.49)

Upon substitution of the seed functions H,M,Li,Φ
i, (6.47) can be written as

?3dω̆
A
ab =

Qm,aQ
m
b

rab

{
− 1

r2
a

[
1− rab + ra

rb
+
rarab (ra + rab)

r3
b

(1− cos θab)

]
dra

+

[
rab sin θab

r3
b

(ra − rab)
]
dθab

}
,

(6.50)

being rb the radial distance as measured from ~xb. A solution can be readily found provided
ω̆Aab has only one non-vanishing component, ω̆Aab,ψab

ω̆Aab =
8
√

2qaqb
rab

[
CijkΠ

i
abΠ

j
abΠ

k
ab −

1

2ğ2
Π0
abTab

]
(cos θab − 1)

(
1− ra + rab

rb

)
dψab . (6.51)

Now we turn our attention to (6.48). Notice that this expression contains three-
point interactions due to the presence of the connection Ăα in the covariant derivative, so
at first sight its structure is more involved than that of its Abelian counterpart. However,
despite this complexity, the general solution for an arbitrary number of centers can be
found. It is most remarkable that the interactions among all of them can be written in a
very compact form! We obtain

ω̆B =
3
√

2εrst
ğ2P 2

∂Q

∂xs
∂P

∂xt
dxr . (6.52)
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While deriving (6.51) and (6.52) we have assumed that the integrability condition
is satisfied by making use of the bubbling equations (6.45). As a consistency check we can
perform an inspection to confirm the absence Dirac-Misner strings in ω̆A and ω̆B. For the
former, it is straightforward to verify that the only component of the one form, ω̆Aab,ψab ,
vanishes when the coordinate ψab is not well defined. In particular this happens along the

x3
ab axis both in the positive direction, where

(
1− ra+rab

rb

)
|
x3,+
ab

= 0, and in the negative

direction, with (cos θab − 1) |
x3,−
ab

= 0. In the case of the latter it suffices to check that ω̆B

is regular at the centers as a consequence of the antisymmetric character of the 1-form
components.

6.2.4 Fluxes and topological charge

We now turn our attention to the vector fields. We shall recall their expressions

AI = −
√

3hIf(dt+ ω) + ÂI , (6.53)

ÂI = −2
√

6
[
−ΦIH−1 (dϕ+ χ) + ĂI

]
, (6.54)

where ĂI is determined in terms of ΦI by the Bogomol’nyi equation (6.15) and whose
explicit form is (6.25) in the Abelian sector and (6.26) in the non-Abelian. From these
expressions we see that these fields can be understood in terms of three layers: the physical
vectors AI , a four-dimensional instanton ÂI with selfdual field strength and a three-
dimensional static magnetic monopole ĂI . Each of them is used to build up those preceding
it, in a configuration that resembles the structure of the Russian matryoshka dolls.

In the Abelian sector Ăi describes a configuration with several Dirac monopoles,
which is singular due to the presence of Dirac strings attached to each center. These
strings are eliminated in Âi by the new term in (6.54), although this term introduces new
strings in the compact direction ϕ,

lim
ra→0

Âi ∼ −2
√

6

[
−k

i
a

qa
(dϕ+ qacosθadψa) + kiacosθadψa

]
∼ 2
√

6
kia
qa
dϕ . (6.55)

The component in the local coordinate ψa is compensated by the new term, but now Âiϕ
is finite at the centers, where the coordinate ϕ is not well defined. Besides Âi is not
regular either at the critical surfaces characterized by H = 0. Yet again, this singularity
is cured at the next stage and the physical vectors Ai are globally regular up to gauge
transformations. In this case the first term in (6.53) compensates the divergence at the
critical surface,

lim
H→0

(
−
√

3hifω5(dϕ+ χ)
)

= −2
√

6H−1Φi(dϕ+ χ) +O(H0) , (6.56)

without introducing any anomaly elsewhere, which is guaranteed because ω has been
designed to be free of Dirac-Misner strings.

To every non-trivial 2-cycle at the ambipolar space it is naturally associated a mag-
netic flux for each vector, defined as the integral of the field strength F i along the 2-cycle.
To compute this quantity we make use of our standard decomposition for Ai, which is
valid everywhere except at the centers. Nevertheless since the field strength is globally
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Chapter 6. Non-Abelian bubbles in microstate geometries

regular the flux can be equally computed by taking the integral along the 2-cycle with
the poles excised. In this region the integrand is an exact form and we can make use of
Stokes’ theorem. We get

Πi
ab ≡

1

(2
√

6)4π

∫
∆ab

F i =

(
kib
qb
− kia
qa

)
. (6.57)

We now consider the non-Abelian sector. Our recipe for constructing solutions
of N = 1, d = 5 SEYM theory naturally incorporates Kronheimer’s scheme [142], that
relates any static monopole Ăα to an instanton over a Gibbons-Hawking base, Âα, through
equation (6.54). For example, in [48] this mechanism has been utilized to oxidize the
single center colored monopole, that has turned out to be the counterpart of the BPST
instanton [19]. On the other hand, Etesi and Hausel showed in [85] that families of
regular Yang-Mills instantons over an Asymptotically Locally Euclidean space (ALE) are
related to multicenter colored monopoles in Kronheimer’s scheme9. However, although
our instanton is related to the same monopole, it is necessarily different than the Etesi-
Hausel solution because they are defined on different bases: our Gibbons-Hawking space is
ambipolar, not ALE. In particular this means that our instanton is singular at the critical
surfaces. This is cured for the five-dimensional physical vector in the same manner than
it is for the Abelian vectors.

Even though the instanton Âα is ill-defined at the critical surfaces, we would like
to study if we can associate to it a topological charge, also known as instanton number10.
Here we need to remark that this topological charge is associated to the vector Âα defined
on the ambipolar Gibbons-Hawking space. Therefore this quantity may not be a true
invariant of the physical spacetime. Nevertheless its computation is interesting by itself
and, as we are about to see, this quantity is finite even though the connection blows up.
We define the topological charge as

T =
g2

32π2

∫
M4\S

d4ΣF̂ 2 , (6.58)

where d4Σ is the volume form of the manifold, F̂ 2 is the scalar obtained by taking the trace
of the field strength contracted with itself, F̂ 2 ≡ F̂αµνF̂

αµν , and M4\S is the ambipolar
space without the critical surfaces. These have to be necessarily removed because the
canonical volume form associated to the metric vanishes there and the above integral
cannot be defined over them. To perform the calculation it is convenient to work in the
following flat frame of the cotangent bundle

e0 = s|H|−1/2(dϕ+ χ) , ea = |H|1/2dxsδas , ε0123 = ε0123 = 1 . (6.59)

where s is +1 when H is positive and −1 when H is negative. The volume form is expressed
in terms of the vielbeins as e0 ∧ e1 ∧ e2 ∧ e3 = Hdϕ ∧ d3x, where d3x is a shorthand for
dx1 ∧ dx2 ∧ dx3. The gauge field strength is obtained from (6.54) and its components in
this coframe are

9In fact, to the best of our knowledge, multicenter colored monopoles have only appeared in the literature
so far in [85], where they are used as valuable intermediates for computing the topological charge of their
instanton counterparts.

10It would be very interesting to study rigorously the construction of SU(2) fiber bundles over ambipolar
Gibbons-Hawking bases, but this goes beyond the scope of the present work.
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F̂α0a = −2
√

6sD̆a

(
ΦαH−1

)
, F̂αab = −2

√
6s
[
H−1F̆αab −H−2Φα(dχ)ab

]
. (6.60)

Substituting back into (6.58), using (6.14), (6.15) and integrating by parts we get

T =
ğ2

32π2

∫
M4\(S∪X)

dϕ ∧ d3x

[
2∇2

(
ΦαΦα

H

)
− 4H−1ΦαD̆2Φα + 2H−2ΦαΦα∇2H

]
.

(6.61)

Notice that in this step the centers have also been removed from the integration space
because the decomposition (6.54) is not well-defined there. This does not change the
value of the integral because F̂ 2 is regular at these points. The second and third terms
in the above expression vanish identically in the region. We can integrate on ϕ and apply
Stokes theorem to get

T =
ğ2

4π

∫
V 3

d3x∇2

(
ΦαΦα

H

)
=
ğ2

4π

∫
∂V 3

d2Σna∂a

(
ΦαΦα

H

)
. (6.62)

Here V 3 is R3 with the centers and the critical surfaces excised, d2Σ is the volume form
induced on ∂V 3 and na are the components of a unit vector normal to ∂V 3. Thus the
problem is reduced to a computation at the boundary of V 3, which is composed of the
critical surfaces, the centers and infinity. Formally at the critical surfaces we receive an
infinite contribution to the topological charge, but notice that each connected critical
surface is the boundary of two disconnected regions of V3 and therefore it appears twice in
the computation. Since the normal unitary vector ~n has opposite direction in each case,
both infinite contributions cancel out because lim~x→∂V 3 ∂a

(
ΦαΦα

H

)
|na| takes the same

value when ~x is evaluated at both sides of the critical surface.

After having got rid of the critical surfaces, the computation of (6.62) is straightfor-
ward. The contributions at each center and at infinity are

Ta = ğ2k
α
a k

α
a

qa
, T∞ = 0 , (6.63)

Assuming that we placed non-Abelian seed functions at every center, the total topological
charge is

T =
∑
a

1

qa
. (6.64)

6.2.5 Critical surfaces

As we have already discussed at previous stages, the critical surfaces defined by having
H = 0 are worth special attention. Not only is the ambipolar Gibbons-Hawking metric
ill-defined there, but also many of the other auxiliary building blocks that make up the
solution contain inverse powers of H. Nevertheless, the spacetime metric and all physical
fields remain completely regular at the critical surfaces. It is interesting to illustrate in
some detail how this happens.
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Chapter 6. Non-Abelian bubbles in microstate geometries

Let us consider the metric as written in (6.37). In the purely spatial part there
are no singularities in these surfaces because the product f−1H defines a finite positive
quantity,

lim
H→0

f−1H = 8
(
CIJKΦIΦJΦK

)2/3
+O(H) , (6.65)

and I is also regular, as easily seen from its expression in terms of the seed functions (6.40).
Of course, this is only possible because limH→0 f ∼ 0 and this, in particular, means that
the critical surfaces are determined by the vanishing of the norm of the Killing vector that
generates time translations, V = ∂t, V

µVµ = f2.

One might get worried by this statement, since timelike supersymmetric solutions in
supergravity quite frequently have event horizons at the regions where the timelike Killing
vector becomes null. Happily this does not happen here. First, because as we just saw the
spatial part remains regular, and second, because of the presence of the additional finite
term in the metric that keeps the determinant non-vanishing at these regions,

lim
H→0

f2ω5dt(dϕ+ χ) =
1

2
√

2

(
CIJKΦIΦJΦK

)−1/3
dt(dϕ+ χ) +O(H) . (6.66)

Then any massive particle sitting at the surface is unavoidably dragged along some spatial
direction. Critical surfaces have the same properties as the boundary of an ergosphere,
except from the fact that they do not actually surround an ergosphere since the Killing
vector V remains timelike at both of their sides. As a consequence of this they have been
named evanescent ergosurfaces [100].

In the previous subsection we already showed that the physical vectors are well-
behaved at the evanescent ergospheres. The physical scalars, constructed by φx ≡ hI/h0,
are also regular here

lim
H→0

φx =
CxIJΦIΦJ

C0LMΦLΦM
+O(H) . (6.67)

6.3 Final comments

The set of continuous parameters λa that appear in the definition of the colored monopole,
(6.26), have no impact on the physics of the solution neither at the centers nor at infinity,
but they do affect the physical fields at intermediate regions. This means that the geometry
of a particular solution can be continuously distorted in some manner as long as the
modification does not introduce CTC’s. Therefore we can build a classically infinite
number of microstate geometries with the same topology for the same black hole or black
ring.

It is useful to explain in some detail why these parameters are special in this sense.
First, one has to notice that asymptotically the non-Abelian seed functions Φα are sub-
leading with respect to the Abelian seed functions Φi (6.24). Second, the functions Φα

have the same limit at leading order at all the centers, whose value is independent of these
parameters. These characteristics imply that the mass, angular momenta and electric
charges of the solution are invisible to the parameters λa. The size of the bubbles are also
unaffected by them, see (6.45).

The colored non-Abelian black hole solutions discovered so far are constructed from
a single-center colored monopole. They incorporate one parameter, say λ1, interpreted
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Chapter 6. Non-Abelian bubbles in microstate geometries

Figure 6.1: Representation of the multicenter instanton on the Gibbons-Hawking space.

as the size of the instanton field of the solution, that modifies the geometry outside the
horizon but does not alter any of the observables of the solution, like the mass, entropy,
electric charges or instanton number. In this context this parameter is interpreted as
non-Abelian hair. On the other hand microstate geometries have one parameter for each
center. Although we do not have a complete interpretation of the multicenter instanton
field contained in these solutions, preliminary analysis based on the expansion of the
instanton field Âα near the centers suggest that each parameter codifies the information
of the size of an instanton placed at the corresponding center whose individual topological
charge is 1/qa.

On the other hand, the gauge coupling constant ğ controls the relative weight of
the non-Abelian versus the Abelian fields. The closer this parameter is to zero the more
influent the non-Abelian ingredients are. This is in particular reflected in the bubbling
equations (6.45), from what we see that the size of the bubble can be dominated by one
or the other contributions for different values of the coupling constant.

Clearly these solutions require further study. The explicit construction of concrete
solutions with specific charges would be of course very interesting.
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7
A gravitating Yang-Mills instanton

This chapter is based on

Pablo A. Cano, Tomas Ort́ın and Pedro F. Ramı́rez
“A gravitating Yang-Mills instanton”,

JHEP 1707 (2017) 011 [arXiv:1704.00504 [hep-th]] [56].

Fueled by the research on theories of elementary particles and fundamental fields
(Yang-Mills, Kaluza-Klein, Supergravity, Superstrings...), over the last 30 years, the search
for and study of solutions of theories of gravity coupled to fundamental matter fields
(scalars and vectors in d = 4 and higher-rank differential forms in higher dimensions)
has been enormously successful and it has revolutionized our knowledge of gravity itself.
Each new classical solution to the Einstein equations (vacua, black holes, cosmic strings,
domain walls, black rings, black branes, multi-center solutions...) sheds new light on
different aspects of gravity and, often, on the underlying fundamental theories. For in-
stance, although the string effective field theories (supergravities, typically) only describe
the massless modes of string theory, it is possible to learn much through them about the
massive non-perturbative states of the fundamental theory because they appear as clas-
sical solutions of the effective theories.1 Beyond this, there is a definite program in the
quest to construct horizonless microstate geometries as classical solutions of Supergravity
theories [32, 33]. When interpreted within the context of the fuzzball conjecture [151],
these geometries have been proposed to correspond to the classical description of black
hole microstates. Therefore, in the best case scenario, it might be possible to find a large
collection (∼ eS) of microstate geometries with the same asymptotic charges as a par-
ticular black hole, and, furthermore, to identify explicitly their role in the ensemble of
black-hole microstates. See Refs. [24, 29] for recent progress in that direction.

Apart from the fact that they describe gravity, one of the most interesting features
of string theories is that their spectra include non-Abelian Yang-Mills (YM) gauge fields.
This aspect is crucial for their use in BSM phenomenology but has often been neglected in
the search for classical solutions of their effective field theories, specially in lower dimen-
sions, which have been mostly focused on theories with Abelian vector fields and with,
at most, an Abelian gauging. Thus, the space of extremal (supersymmetric and non-
supersymmetric, spherically-symmetric and multi-center) black-hole solutions of 4- and
5-dimensional ungauged supergravities has been exhaustively explored and progress has
been made in the Abelian gauged case, motivated by the AdS/CFT correspondence, but
the non-Abelian case has drawn much less attention in the string community and, corre-

1See, e.g., Refs. [76, 171,199].
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Chapter 7. A gravitating Yang-Mills instanton

spondingly, there are just a few solutions of the string effective action (and of supergravity
theories in general) with non-Abelian fields in the literature.

One of the main reasons for that is the intrinsic difficulty of solving the highly
non-linear equations of motion. This difficulty, however, has not prevented the Gen-
eral Relativity community from attacking the problem in simpler theories such as the
Einstein-Yang-Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) theories, although it
has prevented them from finding analytical solutions: most of the genuinely non-Abelian
solutions2 are known only numerically.3 Another reason is that non-Abelian YM solu-
tions are much more difficult to understand than the Abelian ones (specially when they
are known only numerically): in the Abelian case we can characterize the electromagnetic
field of a black hole, say, by its electric and magnetic charge, dipoles and higher multipoles.
In the non-Abelian case the fields are usually characterized by topological invariants or
constructions such as t’ Hooft’s magnetic monopole charge.

In general, the systems studied by the GR community (the EYM or EYMH theories
in particular) are not part of any theory with extended local supersymmetry (a N > 1
supergravity with more than 4 supercharges)4 and, therefore, the use of supersymmetric
solution-generating techniques is not possible. One can, however, consider the minimal
N > 1 supergravity theories that include non-Abelian YM fields, which are amenable
to those methods. Some time ago we started the search for supersymmetric solution-
generating methods in N = 2, d = 4 [123] and N = 1, d = 5 [20,23,48,159] Super-Einstein-
Yang-Mills (SEYM) theories. The results obtained have allowed to construct, for the first
time (at least in fully analytical form), several interesting supersymmetric solutions with
genuine non-Abelian hair: global monopoles and extremal static black holes in 4 [47, 155,
160] and 5 dimensions [160], rotating black holes and black rings in 5 dimensions [172],
non-Abelian 2-center solutions in 4 dimensions [47] and the first non-Abelian microstate
geometries [184].

Many of the black-hole solutions found by these methods can be embedded in string
theory and, in that framework, one can try to address the microscopic interpretation of
their entropy, which seems to have relevant contributions from the non-Abelian fields, even
though, typically, they decay so fast at infinity that they do not seem to contribute to
the mass. Following the pioneer’s route [149,201] requires an understanding of the stringy
objects (D-branes etc.) that contribute to the 4- and 5-dimensional solutions’ charges.
Furthermore, the interpretation of the non-Abelian microstate geometries would benefit
from the knowledge of their stringy origin. In this chapter, as a previous step towards the
microscopic interpretation of the 5-dimensional non-Abelian black holes’ entropy which
we will undertake in the following chapter, we identify the elementary component of the
simplest, static, spherically symmetric, non-Abelian 5-dimensional black hole that carries
all the non-Abelian hair. The solution that describes this component turns out to be
asymptotically flat, globally regular, and horizonless and the non-Abelian field is that of a
BPST instanton [19] living in constant-time hypersurfaces. Only a few solutions supported

2That is, solutions whose non-Abelian fields cannot be rotated into Abelian ones using (singular or
non-singular) gauge transformations. When they can be rotated into a purely Abelian one, it is often
referred to as an “Abelian embedding”.

3The most complete review on non-Abelian solutions containing the most relevant developments until
2001 is Ref. [210] complemented with the update Ref. [89]. Ref. [215] reviews the anti-De Sitter case. A
more recent but less exhaustive review is Ref. [209], although it omits most of the non-Abelian solutions
found recently in the supergravity/superstring context.

4The supersymmetric solutions of N = 1 supergravity are massless (waves) or not asymptotically flat.

126



Chapter 7. A gravitating Yang-Mills instanton

by elementary fields with these characteristics are known analytically: the global monopoles
found in gauged N = 4, d = 4 supergravity [61, 62, 113] and also in N = 2, d = 4 SEYM
theories [47,123] whose non-Abelian field is that of a BPS ’t Hooft-Polyakov monopole.

The simplest string embedding of this solution is in the Heterotic Superstring and
the 10-dimensional solution whose dimensional reduction over T 5 gives this 5-dimensional
global instanton turns out to be the gauge 5-brane found in Ref. [200]. This is, therefore,
the non-Abelian ingredient present in the non-Abelian 5-dimensional black holes and rings
constructed in Refs. [160,172].

In what follows, we are going to derive the global instanton solution as a component
of the 5-dimensional non-Abelian black holes, we show that it is the Heterotic String gauge
5-brane compactified on T 5 and we study the dependence of the distribution of energy on
the instanton’s scale parameter, showing that, no matter how small it is, there is never
more energy concentrated in a 3-sphere of radius R than that of a Schwarzschild-Tangerlini
black hole of radius R.

7.1 The global instanton solution

We are going to work in the context of the ST[2, 6] model of N = 1, d = 5 supergravity
(which is a model with 5 vector supermultiplets) with an SU(2) gauging in the I = 3, 4, 5
sector. This theory is briefly described in Appendix C.1 and a convenient parametrization
for our current interests is given in Appendix C.2. The solution-generating technique that
allows us to construct timelike supersymmetric solutions of this theory with one isometry
is that of Section 4.2.

Our goal is to construct the minimal non-singular solution that includes in the SU(2)
sector the following solution of the Bogomol’nyi equations

ΦA =
1

g4r(1 + λ2r)

xA

r
, ĂAB = εABC

1

g4r(1 + λ2r)

xC

r
. r2 ≡ xsxs , (7.1)

This solution describes a coloured monopole [155,160], one of the singular solutions
found by Protogenov [183]. Observe that this solution is written in terms of the 4(=
1 + 3)-dimensional Yang-Mills coupling constant g4. As shown in [48], the 4-dimensional
Euclidean SU(2) gauge field ÂA that one obtains via Eq. (4.61) for H = 1/r is the
BPST instanton [19], which justifies our choice. Using the 4-dimensional radial coordinate
ρ2 = 4r, the 5-dimensional Yang-Mills coupling constant g4 = −2

√
6g, and renaming

4λ−2 = κ2 (the instanton scale parameter) it takes the form5

ÂA =
κ2

g(ρ2 + κ2)
vAR , (7.2)

where the vAR are the three SU(2) left-invariant Maurer-Cartan 1-forms.

5Our conventions for the SU(2) gauge fields are slightly different from the ones used in Refs. [159,172]
and in Chapters 4 and 5: in this chapter the generators satisfy the algebra [TA, TB ] = +εABCTC (which
is equivalent to changing the sign of all the generators), and the gauge field strength is defined by F =
dA+ gA∧A. The left- and right-invariant Maurer-Cartan 1-forms vL,R have the same definitions, but the
overall signs of the components are different, as a consequence of the change of sign in the generators TA.
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Let us now consider the ungauged sector. As it is well known, 5-dimensional
asymptotically-flat, static, regular black holes need to be sourced by at least three charges,
associated to three different kind of branes. A popular example is the D1D5W black hole
considered by Strominger and Vafa in Ref. [201]. The corresponding solution of the (su-
pergravity) effective action is expressed in terms of three independent harmonic functions.
In the basis that we are using, these functions are L0,1,2, where the last two will be used
in the the combinations L± = L1 ± L2 in order to make contact with the literature.

Thus, we take6

L0,± = B0,± + q0,±/ρ
2 , (7.3)

and we will assume that all the constants are positive.

This choice gives a static solution (ω̂ = 0, see the appendices for more information)
with the following active fields function

ds2 = f̂2dt2 − f̂−1(dρ2 + ρ2dΩ2
(3)) ,

A0 = − 1√
3

1

L̃0

dt , A1 ±A2 = − 2√
3

1

L±
dt , AA =

κ2

g(ρ2 + κ2)
vAR ,

e2φ = 2
L̃0

L+
, k = (3f̂L−)3/4 ,

(7.4)

where the metric function f̂ is given by

f̂−1 =
{

27
2 L̃0L+L−

}1/3
, (7.5)

and we have defined the combination

L̃0 ≡ L0 − 1
3ρ

2Φ2 , and Φ2 ≡ ΦAΦA =
2κ4

3g2ρ4(ρ2 + κ2)2
. (7.6)

The normalization of the metric at spatial infinity demands 27
2 B0B+B− = 1 and we

can express the three integration constants B in terms of the values of the 2 scalars at
infinity:

B0 = 1
3e
φ∞k−2/3

∞ , B+ = 2
3e
−φ∞k−2/3

∞ , B− = 1
3k

4/3
∞ , (7.7)

and the metric takes the form

f̂−1 =
{

(L̃0/B0) (L+/B+) (L−/B−)
}1/3

, (7.8)

where

6The simplest 5-dimensional non-Abelian black hole constructed in Ref. [159] has L2 = 0, or L+ =
L− and, therefore, it has three Abelian charges as well, but two of them are equal, which obscures the
interpretation of the solution from the string theory point of view.
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L̃0/B0 = 1 +
2e−φ∞k

2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2
+ 3e−φ∞k2/3

∞

(
q0 −

2

9g2

)
1

ρ2
,

L+/B+ = 1 + 3eφ∞k
2/3
∞ q+/(2ρ

2) ,

L−/B− = 1 + 3k
−4/3
∞ q−/ρ

2 .

(7.9)

If q̃0 ≡ q0 − 2
9g2 > 0 and q± 6= 0 there is a regular event horizon with entropy

S =
π2

2G
(5)
N

√
(3q̃0) (3q+/2) (3q−) . (7.10)

The mass, however, depends on q0, not on q̃0

M =
π

4G
(5)
N

[
e−φ∞k2/3

∞ (3q0) + eφ∞k2/3
∞ (3q+/2) + k−4/3

∞ (3q−)
]
, (7.11)

so that the Yang-Mills fields only appear to be relevant in the near-horizon region, a
behavior also observed in 4-dimensional colored black holes Refs. [155, 160]. Explaining
this behavior and finding a stringy microscopic interpretation for the entropy of these
black holes will be the subject of next chapter.

One of the main ingredients needed to reach that goal is the list of elementary
components (branes, waves, KK monopoles...) of the black-hole solution. In the Abelian
case, these are typically associated to the harmonic functions in which the brane charges
occur as coefficients of the 1/ρ2 terms (in 5 dimensions) and these are the charges that
appear in the entropy formula. In the present case L̃0/B0 has a term which is finite in
the ρ → 0 limit and another term, proportional to q̃0, which goes like 1/ρ2 in that limit,
as an ordinary Abelian contribution would. The presence of the finite term suggests the
presence of a solitonic brane which does not contribute to the entropy.

In order to identify this brane we set q̃0 = q± = 0 in the above solution (but
q0 = 2

9g2 6= 0) and we obtain7

ds2 = f̂2dt2 − f̂−1(dρ2 + ρ2dΩ2
(3)) ,

f̂−3 = 1 +
2e−φ∞k

2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2
,

A0 = − 1√
3B0

f̂3dt , AA =
κ2

g(ρ2 + κ2)
vAR ,

e2φ = e2φ∞ f̂−3 , k = k∞f̂
3/4 ,

(7.12)

7Notice that the cancellation of the term that diverges in the ρ → 0 limit can only be achieved in the
branch in which L0 > 0. In particular, if either L+ < 0 or L− < 0 we are forced to work in the L0 > 0
branch and that contribution cannot be made to vanish,
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This solution depends on one function, f̂ which has the same profile as the one
appearing in the gauge 5-brane [200].8 The similarity can be made more manifest by
using the relation between the 5-dimensional Yang-Mills coupling constant g, the Regge
slope α′, the string coupling constant gs = eφ∞ and the radius of compactification from 6
to 5 dimensions k∞ = Rz/`s, where `s =

√
α′ is the string length parameter:

g = k1/3
∞ e−φ∞/2/

√
12α′ , (7.13)

which brings e2φ to the form9

e2φ = e2φ∞ f̂−3 = e2φ∞

{
1 + 8α′

ρ2 + 2κ2

(ρ2 + κ2)2

}
. (7.15)

It is not difficult to show that, indeed, this solution is nothing but the double
dimensional reduction of the gauge 5-brane compactified on T 5 [55].

From the purely 5-dimensional point of view, apart from the instanton field, the
solution has a vector field A0 which is dual to the Kalb-Ramond 2-form and is sourced by
the instanton number density only, as in the gauge 5-brane [75]. Observe that this means
that the parameter q0 is the sum of the instanton-number contributions (associated to a
gauge 5-brane, as we are going to argue) which amount to just 2

9g2 and electric sources

of a different origin which amount to q̃0 = q0 − 2
9g2 which we have set to zero in the

above solution. The complete identification of the higher-dimensional stringy components
of the general solution will be the subject of the forthcoming chapter, see also [55]. Here
we just want to study the above solution, which in its 5-dimensional form is, apart from
supersymmetric, clearly globally regular (at least for finite values of κ), asymptotically
flat and horizonless and they are the higher-dimensional analogue of the global monopole
solutions found in gauged N = 4, d = 4 supergravity [61,62,113] and also in N = 2, d = 4
SEYM theories [47,123].

The mass of the global instanton is obtained by replacing q0 by 2
9g2 and setting

q± = 0 in Eq. (7.11):

M =
π

6g2G
(5)
N

e−φ∞k2/3
∞ = 8

R9 · · ·R5

g2
s`

6
s

, (7.16)

where Ri is the compactification radius of the xi coordinate and where we have used

G
(5)
N =

G
(10)
N

(2π)5R9 · · ·R5
, and G

(10)
N = 8π6g2

s`
8
s . (7.17)

8More precisely, the function H = e2φ∞ f̂−3.
9In our conventions, which coincide essentially with those of Ref. [200], the 10-dimensional Heterotic

String effective action is written in the string frame as

SHet =
g2
s

16πG
(10)
N

∫
dx10

√
|g| e−2φ

[
R− 4(∂φ)2 + 1

12
H2 − α′FAFA

]
. (7.14)

The 10-dimensional string-frame metric solution is normalized such that it becomes (+1,−1, · · · ,−1) at
spatial infinity. The same is true for the 5-dimensional metric, which can be seen as the modified-Einstein-
frame metric in the language of Ref. [149]. The relation between these two metrics involves rescalings by
powers of eφ−φ∞ and k/k∞.
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Figure 7.1: Radial mass density function of the global instanton solution for different values of
the instanton scale, κ2.

This value is eight times that of a single neutral (solitonic) 5-brane [51,52].

The metric depends on the instanton scale κ2, and it becomes singular when κ = 0.
It is tempting to regard that singular metric as the result of concentrating all the mass,
which is independent of κ, in a single point. Thus, one may wonder how the radial
distribution of the energy depends on κ and whether there is a value of κ and ρ such that
the energy enclosed in a 3-sphere of that radius is larger than the mass of a Schwarzschild

black hole of that Schwarzschild radius (R2
S = 3πM/(8G

(5)
N )).

The radial mass density, given by
√
|g|T 00 (T 00 being the tangent-space basis com-

ponent of the energy-momentum tensor) is represented in Fig. 7.1 for different values of
the instanton scale and its integral over a sphere of radius R (the mass function) is rep-
resented in Fig. 7.2. The values of the integrals at infinity are not exactly equal because,
after all, there is no well-defined concept of energy density in General Relativity and we
are just using a reasonable approximation. In Fig. 7.3 we have represented the quotient
between the mass function and the Schwarzschild mass as a function of R and we see that
it never goes above 5/9 for any finite, non-vanishing value of the instanton scale.

7.2 Conclusions

Globally regular solutions supported by elementary fields are quite remarkable. In the
case of the 4-dimensional global monopoles [47, 61, 62, 113, 123] we have argued that they
represent elementary, non-perturbative states of the theory because they do not modify
the entropy of a given Abelian black hole solution when they are added to it. They
do contribute to the mass, though. Adding the global instanton to 5-dimensional black
holes should have the same result: unmodified entropy and increased mass. However, the
reverse seems to happen: the entropy is modified while the mass is not. The construction
of the global instanton solution seems to suggest that this is a false appearance caused by
an inappropriate definition of the charges involved. The exact role in 4-dimensional non-
Abelian black-hole solutions (in which it must appear disguised as a coloured monopole) has
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Figure 7.2: Radial mass function of the global instanton solution for different values of κ2 obtained
by integration of the mass density function in Fig. 7.1 with respect to ρ.

to be investigated. It is also unclear if a global instanton can be added to a Schwarzschild-
Tangerlini (or any other non-extremal black hole) and what the effect would be.

We have tried to deform this solution by adding angular momentum, which in these
theories is always possible, although the simplest ways to do it (adding a non-trivial
harmonic function M to generate a non-vanishing ω5) would also introduce a singularity
at the origin. While we have succeeded in producing an ω5 regular at ρ = 0 and dropping
at infinity as ρ−2, the metric function f̂−1 becomes singular at ρ = 0. It is possible to
cancel those singularities by introducing additional Abelian harmonic functions with fine-
tuned coefficients but the resulting f̂−1 either has zeroes, or leads to negative mass or
both.

The non-Abelian solutions found so far in the supergravity/superstring context are
the simplest to construct. One can expect, however, a space of solutions far richer than
that of the Abelian ones. Work in this direction is under way.
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Fig. 7.1 and MS = 3πρ2/8 respect to ρ.
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8
Non-abelian black holes in string theory

This chapter is based on

Pablo A. Cano, Patrick Meessen, Tomas Ort́ın and Pedro F. Ramı́rez
“Non-abelian black holes in string theory”,

FPAU-O17-05-IFT-UAM-CSIC-17-025. [arXiv:1704.01134 [hep-th]] [55].

One of the common features of black holes or black rings with genuinely non-Abelian
fields1 in Einstein-Yang-Mills (EYM) theory, where they are only known numerically [40,
208], or in N = 2, d = 4, 5 Super-EYM (SEYM) theories [155,159,160,172], where they are
known analytically, is that their non-Abelian fields fall off at spatial infinity so fast that
they cannot be characterized by a conserved charge. For this reason they are sometimes
called “colored” black holes, as opposed to “charged” black holes. As a consequence, the
parameters that characterize the black holes must be understood as pure non-Abelian hair.

In the SEYM it has also been observed that the non-Abelian fields seem to contribute
in a non-trivial way to the BH entropy because their near-horizon behavior is similar to
that of their Abelian counterparts [155, 159, 160, 172]. Thus, apparently, the entropy of
these non-Abelian black holes and rings depends on non-Abelian hair! If the BH entropy
admits a microscopic interpretation, this conclusion is clearly unacceptable.

In this chapter we are going to solve this puzzle for a family of particularly simple
non-Abelian 5-dimensional black holes that can be embedded in String Theory [159] and
which can be seen as the well-known 3-charge D1D5W black-hole solutions discussed in
Ref. [50]2 with the addition of a BPST instanton [19], which is genuinely non-Abelian in
the sense discussed above.3

In this case at least, the solution to the non-Abelian hair puzzle lies in the cor-
rect interpretation of the different charges that characterize the black hole. As we have
shown in Ref. [56], the charges that count the underlying String-Theory objects are com-
binations of the naive ones. The correctly identified charges can be switched off one by

1That is: non-Abelian fields that cannot be related to an Abelian embedding via a (possibly singular)
gauge transformation [197]. Gauge transformations, whether regular or singular, have no effect whatsoever
on the spacetime metric and, therefore, if the non-Abelian fields can be related to an Abelian embedding,
the metric is effectively that of a solution with an Abelian field. This was the only kind of regular solutions
thought to exist in the Einstein-Yang-Mills theory, basically because the non-Abelian fields were expected
to behave at infinity like the Abelian ones [41,84,90]. See also See Refs. [89, 210] and references therein.

2More information on these black holes and the String Theory computation of their BH entropy can be
found in Ref. [71] and references therein.

3Technically, this family of black holes is a solution of the SU(2)-gauged ST[2, 6] model of N = 1, d = 5
supergravity. This model and the solution-generating technique used to obtain the black-hole family is
described in full detail in an Appendix of Ref. [56].
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one and, switching off those that count the objects that give rise to the Abelian charges
(that is, setting to zero the number of D1s, D5s and the momentum) one is left with the
object that produces the net non-Abelian field. In 5 dimensions, this object is a glob-
ally regular, horizonless gravitating instanton [56] which, when uplifted to 10-dimensional
Heterotic Supergravity (the effective field theory of the Heterotic Superstring), is nothing
but Strominger’s gauge 5-brane [200].4 In terms of these charges, as we will see, there is
a non-Abelian contribution to the mass and the non-Abelian contribution to the entropy
disappears, solving the puzzle.

This is a very important clue that we are going to apply to these solutions. In
Section 8.1 we are going to introduce them and rewrite them in terms of the charges that
describe the underlying String-Theory objects. In Section 8.2 we are going to uplift them
to 10-dimensional Heterotic Supergravity, a theory that has non-Abelian vector fields in
10 dimensions, and, in Section 8.3 we will reinterpret the solution in terms of intersections
of fundamental strings, solitonic 5-branes and gauge 5-branes, plus momentum along the
strings, and we will dualize it into a solution of Type-I Supergravity (the effective field
theory of Type-I Superstring Theory) [70, 125, 179] with D-strings with momentum, D5-
branes and “gauge D5-branes”, the duals of the gauge 5-branes, also referred to as D5-
branes dissolved into the D9 branes. Then, in Section 8.4 we discuss how this brane
configuration leads to the same entropy as the Abelian one, pointing to directions for
future work.

8.1 5-dimensional non-Abelian black holes

We consider the SU(2)-gauged ST[2, 6] model of N = 1, d = 5 supergravity, which can
be obtained from d = 10 Heterotic Supergravity by compactification on T 5 followed by a
truncation. This is most conveniently done in two stages: first, compactification on T 4

followed by a truncation to N = (2, 0), d = 6 supergravity coupled to a tensor multiplet
and a triplet of SU(2) vectors and, second, further compactification on S1. The first stage
is almost trivial: all the 6-dimensional fields are identical (up to rescalings) to the first 6
components of the 10-dimensional ones. The second stage is described in detail in Ref. [57].

This model is determined by the symmetric tensor C0xy = 1
6ηxy, with x, y = 1, 2, A,

A,B, . . . = 3, 4, 5 and ηxy = (+,−,−,−,−).5 The A,B, . . . are adjoint SU(2) indices. The
bosonic content of this model consists of the metric gµν , 3 Abelian vectors, A0, A1 and A2

a triplet of SU(2) vectors AA, and 5 scalars which we choose as φ, k and `A where φ can
be directly identified with the 10-dimensional heterotic dilaton and k is the Kaluza-Klein
scalar of the last compactification from d = 6 to d = 5.

A particularly simple family of non-Abelian black-hole solutions of N = 1, d = 5
supergravity can be constructed by adding a BPST instanton to the standard 3-charge
solution [48, 56, 159]. The family of solutions is determined by 3 harmonic functions L0,±
which depend on three constants B0,± satisfying 27

2 B0B+B− = 1 and three independent
charges q0,±

L0,± = B0,± + q0,±/ρ
2 , (8.1)

4For recent work on Abelian black-hole solutions of Heterotic Supergravity (with R2terms, the Hull-
Strominger system) see Ref. [109] and references therein.

5A more detailed description of this model can be found in Appendix A of Ref. [56], for instance.
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and a non-Abelian contribution that depends on the 5-dimensional gauge coupling constant
g and on the instanton scale κ

Φ2 ≡ 2κ4

3g2ρ4(ρ2 + κ2)2
. (8.2)

The non-Abelian contribution appears combined with the harmonic function L0 as follows:

L̃0 ≡ L0 − 1
3ρ

2Φ2 , (8.3)

and, since it goes like 1/ρ4 at spatial infinity while L0 goes like B0+q0/ρ
2, it is not expected

to contribute to the mass. However, both the Abelian and non-Abelian contributions
diverge like 1/ρ2 near the horizon at ρ = 0, and, naively, one expects both of them to
contribute to the entropy. This can be manifest by rewriting L̃0 as

L̃0 = B0 + (q0 −
2

9g2
)

1

ρ2
+

2

9g2

ρ2 + 2κ2

(ρ2 + κ2)2
, (8.4)

where we have combined Abelian and non-Abelian 1/ρ2 terms in L̃0, leaving a purely
non-Abelian contribution which is finite at ρ = 0. As in Ref. [56], we will call q̃0 ≡ q0− 2

9g2

the coefficient of the 1/ρ2 term.

The constants B0,± are related to the moduli i.e. the values of the 2 scalars at
infinity.6 as follows

B0 = 1
3e
φ∞k−2/3

∞ , B− = 2
3e
−φ∞k−2/3

∞ , B+ = 1
3k

4/3
∞ . (8.5)

Is is convenient to use the functions Z̃0 ≡ L̃0/B0 and Z± ≡ L±/B± and the charges
Q̃0 ≡ q̃0/B0 = (q0 − 2

9g2 )/B0 and Q± ≡ q±/B±.

It is also convenient to transform the BPST instanton field from the gauge used in
Refs. [159,172] to one in which the 10-dimensional solution will be easier to recognize:7,8

AAR =
1

g

1

(1 + λ2ρ2/4)
vAR −→ AAL = −1

g

ρ2

(κ2 + ρ2)
vAL , (8.6)

where κ2 = 4/λ2. In the first gauge, the instanton field is not defined on the horizon,
while in the second one, it is not defined at infinity. The vector field strength is, evidently,
the same, but the Chern-Simons term is not and this difference will also affect the 10-
dimensional 2-form. The functions ΦA must be transformed as well but they only appear
in the gauge-invariant combination Φ2 and we will not need to compute them explicitly
in the new gauge.

6We will relate the charges to the numbers of branes in d = 10 after embedding the solution in Heterotic
Supergravity.

7The reason why this gauge was not used in Refs. [159, 172] is that, in it, the gauge field cannot be
consistently reduced following Kronheimer.

8Our conventions for the SU(2) gauge fields are slightly different from the ones used in Refs. [159,172]
Here the the generators satisfy the algebra [TA, TB ] = +εABCTC , the left-invariant Maurer-Cartan 1-forms
are defined by vL ≡ −U−1dU and the right-invariant ones by vR ≡ −dUU−1. the gauge field strength is
defined by F = dA+ gA ∧A.
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After all these transformations, the active fields of the solutions are9

ds2 = f2dt2 − f−1(dρ2 + ρ2dΩ2
(3)) ,

A0 = −
√

3e−φ∞k
2/3
∞

dt

Z̃0

, A1 +A2 = −2
√

3k
−4/3
∞

dt

Z+
,

AA = −1

g

ρ2

(κ2 + ρ2)
vAL , A1 −A2 = −

√
3eφ∞k

2/3
∞

dt

Z−
,

e2φ = e2φ∞
Z̃0

Z−
, k = k∞(fZ+)3/4 ,

(8.7)

where the metric function f is given by

f−3 = Z̃0Z+Z− , (8.8)

and the Z functions take the form

Z̃0 = 1 +
Q̃0

ρ2
+

2e−φ∞k
2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2
,

Z± = 1 +
Q±
ρ2

.

(8.9)

The mass and entropy of this family of black-hole solutions take the form

M =
π

4G
(5)
N

[
Q̃0 +

2e−φ∞k
2/3
∞

3g2
+Q+ +Q−

]
, (8.10)

S =
π2

2G
(5)
N

√
Q̃0Q+Q− . (8.11)

Using the charge Q̃0 instead of Q0 ≡ q0/B0, and assuming that Q̃0 is not related to
the non-Abelian fields, the mass contains a net O(1/g2) contribution from the instanton
while the entropy does not, against the naive expectations exposed above. We are going
to argue that, indeed, Q̃0 is a charge completely unrelated to the non-Abelian vector
fields, showing that it counts the number of neutral 5-branes (also known as solitonic or
NSNS 5-branes) while Q− and Q+ count, respectively, the number of fundamental strings
and the momentum along them. Setting these three charges to zero we are left with the
only non-Abelian component of this solution which is the globally regular and horizonless
gravitating Yang-Mills instanton that we have found in Ref. [56], showing that it is is
nothing but the dimensional reduction of Strominger’s gauge 5-brane [200].

In Ref. [56] we have argued that the gravitating Yang-mills instanton (or the gauge
5-branes) should not contribute to the entropy while, obviously, it must contribute to

9Since we are going to use hats to denote 10-dimensional fields, we have removed the hats that we use
in our notation for the metric function f .
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the total mass of black-hole solutions, just as the global monopole does in 4 dimensions
[47,123]. the above mass and entropy formulae reflect this fact.

8.2 Embedding in d = 10 Heterotic Supergravity

In order to embed our solutions in 10-dimensional Heterotic Supergravity we are going to
show how the reduction and truncation of the latter leads to the SU(2)-gauged ST[2, 6]
model of N = 1, d = 5 supergravity we are working with.

The action of Heterotic Supergravity in the string frame, including only a SU(2)
triplet of vector fields, is10

Ŝ =
g2
s

16πG
(10)
N

∫
d10x

√
|ĝ| e−2φ̂

[
R̂− 4(∂φ̂)2 + 1

2·3!Ĥ
2 − α′F̂AF̂A

]
, (8.12)

where the field strengths are defined as

F̂A = dÂA + 1
2ε
ABCÂB ∧ ÂC , (8.13)

Ĥ = dB̂ + 2α′ωCS , (8.14)

and ωCS is the Chern-Simons 3-form

ωCS ≡ F̂A ∧ ÂA − 1
3!ε

ABCÂA ∧ ÂB ∧ ÂC , dωCS = F̂A ∧ F̂A . (8.15)

10 A few words are necessary in order to explain why we use this truncation of the Heterotic String
effective action. The Heterotic String effective action is a double infinite expansion in powers of α′ and of
the string coupling constant gs (which occurs as the dilaton field in the action). In order to find solutions,
one is forced to truncate this action to a given order in α′ and gs. The truncation should be consistent
with the symmetries and homogenous in the two expansion parameters; that is: it should contain all the
elements whose order in those parameters is lower than the one chosen and the action should be invariant
under the relevant gauge symmetries to that order. This action should be a good approximation whenever
the contribution of the terms truncated is much smaller than the contribution of the terms of highest order
in the expansion parameters. However, there seems to be no truncation satisfying all these consistency
requirements, except the one of lowest order in α′.

Let us consider, for instance, the truncation to first order in α′: besides Yang-Mills term α′F̂ 2, which
we have considered, we should add an additional term quadratic in the Lorentz curvature α′R̂2 and, at
the same time, a Lorentz Chern-Simons term α′ωL to the 3-form field strength Ĥ, whose Bianchi identity
will contain, on top of the Yang-Mills term α′TrF̂ ∧ F̂ a Lorentz term α′TrR̂ ∧ R̂. This truncation is very
popular in the literature, but the Chern-Simons terms give O(α′2) terms in the action and, therefore, in the
Einstein equations. Removing them would, however, break the gauge invariance of Ĥ to O(α′2). On the
other hand, the α′R̂2 term breaks supersymmetry unless, as shown in Ref. [35], one includes higher-order
terms α′2R̂4 and introduces further corrections through the use of a torsionful Lorentz connection.

This example shows that there is no canonical way to truncate the Heterotic String action. Of course,
there are more or less convenient truncations: ours, for instance, is dictated by our desire to use supersym-
metry as a tool to construct solutions, which would be spoiled by the introduction of the α′R̂2. Having said
this, one must always check that the solutions of the truncated action are good solutions of the complete
action to the chosen order in α′ and gs. In our case, this means that the solutions we are studying can be
considered good Heterotic String backgrounds to O(α′) and O(1) in gs if the curvature is small in units of
α′ and the dilaton field is also small. This property will be checked explicitly later on. This is sufficient if
we do not want to proof that a solution is exact to all orders in α′ which is not our goal: our solutions,
therefore, will have α′ corrections.
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In the above expressions, α′, the Regge slope, is related to the string length `s by α′ = `2s,
and gs, the string coupling constant, is the value of the exponential of the dilaton at
infinity: gs = eφ∞ in asymptotically-flat configurations. The somewhat unconventional
factor of g2

s in front of the action ensures that, after a rescaling from the string frame to
the modified Einstein frame defined in Ref. [149] with powers of eφ−φ∞ , the action has

the standard normalization factor (16πG
(10)
N )−1. The 10-dimensional Newton constant is

given by

G
(10)
N = 8π6g2

s`
8
s . (8.16)

If we compactify this theory on T 4, it is not difficult to see that truncating all the
components of the fields with indices in the internal coordinates yi, i = 1, · · · , 4, is a
consistent truncation. The resulting 6-dimensional action and field strengths have exactly
the same form as the 10-dimensional ones, although the action carries an extra factor
(2π`s)

4 which is the volume of the T 4:

Ŝ =
(2π`s)

4g2
s

16πG
(10)
N

∫
d6x
√
|g| e−2φ̂

[
R̂− 4(∂φ̂)2 + 1

2·3!Ĥ
2 − α′F̂AF̂A

]
. (8.17)

The 6-dimensional modified Einstein metric ĝE µ̂ν̂ is related to the the 6-dimensional
string metric ĝµ̂ν̂ by

ĝµ̂ν̂ = g−1
s eφ̂ĝE µ̂ν̂ , (8.18)

and, in this frame, the action takes the form

Ŝ =
(2π`s)

4

16πG
(10)
N

∫
d6x
√
|g|
[
R̂E + (∂φ̂)2 + 1

2·3!g
2
se
−2φ̂Ĥ2 − α′gse−φ̂F̂AF̂A

]
, (8.19)

which coincides exactly with the action of the theory of gauged N = (2, 0), d = 6 super-
gravity that we called N = 2A in Ref. [57] upon the redefinitions

φ̂ = −ϕ̃/
√

2 , gsĤ/2 = H̃ ,
√
gsα′F̂

A = F̃A , (8.20)

which lead to the introduction of the 6-dimensional Yang-Mills coupling constant g6 =
(gsα

′)−1/2.

Further compactification of this theory on a circle leads to the SU(2)-gauged ST[2, 6]
model of N = 1, d = 5 supergravity we are working with, with Newton and Yang-Mills
constants given by

G
(5)
N =

G
(10)
N

(2π)5`4sRz
=
πg2

s`
4
s

4Rz
, and g =

g6k
1/3
∞√
12

=
R

1/3
z√

12gs`2s
. (8.21)

This reduction was carried out in detail in Ref. [57] and we can use its results, but we have
to take into account that we have to rescale the 5-dimensional metric with the Kaluza-
Klein scalar k divided by its asymptotic value, k∞ in order to preserve the normalization
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of asymptotically-flat metrics. This introduces an additional factor of k
1/3
∞ in the relations

between higher-dimensional fields and 5-dimensional vector fields and an additional factor

of k
2/3
∞ in the relations between higher-dimensional fields and 5-dimensional 2-form fields.

Combining the k∞-corrected rules given in Ref. [57] to uplift 5-dimensional configu-
rations to d = 6 and the relations given above between 6- and 10-dimensional fields in the
string frame, we arrive to the following rules that allow us to uplift any solution of the
SU(2)-gauged ST[2, 6] model of N = 1, d = 5 supergravity to a solution of 10-dimensional
Heterotic Supergravity preserving the normalization of the fields at spatial infinity:

dŝ2 = eφ−φ∞
[
(k/k∞)−2/3ds2 − k2A2

]
− dyidyi ,

φ̂ = φ ,

ÂA =
k

1/3
∞√

12gsα′
AA − k2`A√

α′gs
A ,

Ĥ = − k
2/3
∞

gs
√

3
e2φk−4/3 ?(5) F

0 +
k

1/3
∞

gs
√

3
A ∧ F ,

(8.22)

where we have introduced the auxiliary fields

A ≡ dz +
k

1/3
∞√
12
A+ , A+ ≡ A1 +A2 ,

F ≡ F− + `2F+ − 2`AFA .

(8.23)

Notice that the map gives us the 3-form field strength Ĥ, but not the 2-form potential
B̂ because the process involves a dualization. Therefore B̂ must be obtained from (8.14)
once the field strengths Ĥ and F̂A have been computed.

8.3 String Theory interpretation

Using the uplifting formulae of the previous section, and defining the coordinate u = k∞z
(whose period is 2πRz) we get the following solution of d = 10 Heterotic Supergravity11

11According to the discussion in footnote 10, we must find out now to which extent this solution of
Heterotic Supergravity can be considered a solution of the complete Heterotic String effective action to
first order in α′ and leading order in gs at least outside the event horizon at ρ = 0. For the Abelian black
holes that one obtains by eliminating the non-Abelian fields, this issue was addressed in Ref. [201] in terms
of the string-frame Schwarzschild radius and the value of the dilaton on the horizon and the conditions
derived in that case turn out to be valid in this case: the numbers of branes NF1, NS5, NW (defined below)
must all be very large and NF1 >> NS5. The dependence of the curvature on these charges can be
illustrated in Figs. 8.1, 8.2, 8.3 and 8.4, in which the Ricci scalar has been represented as a function ρ in
units of `s =

√
α′ for different values of N = NF1 = NS5 = NW and κ setting gs = 1. It is easy to see that

in all cases the curvature can be made arbitrary small by letting N be large enough.
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dŝ2 =
2

Z−
du
(
dv − 1

2Z+du
)
− Z̃0(dρ2 + ρ2dΩ2

(3))− dy
idyi , i = 1, 2, 3, 4 ,

B̂ = − 1

Z−
dv ∧ du+ 1

4Q̃0 cos θdψ ∧ dφ ,

ÂA = − ρ2

(κ2 + ρ2)
vAL ,

e−2φ̂ = e−2φ̂∞Z−
Z̃0

,

(8.24)

where Z̃0 and Z± are given in Eqs. (8.9). In terms of the stringy constants, Z̃0 is given by

Z̃0 = 1 +
Q̃0

ρ2
+ 8α′

ρ2 + 2κ2

(ρ2 + κ2)2
, (8.25)

showing that the charge Q̃0 which is the coefficient of the 1/ρ2 term is probably associated
to neutral (or solitonic or NSNS) 5-branes [187] while the last term should be associated
to gauge 5-branes. We are first going to discuss this point in more detail.

We start by noticing that, in absence of the Yang-Mills instanton, this supergravity
solution is the one found in Refs. [69, 206] which describes solitonic 5-branes wrapped on
T 5, and fundamental strings wrapped around one cycle of the T 5 with momentum along
the same direction.

Let us consider the coupling of NS5 solitonic 5-branes lying in the directions 1
2(u+

v), y1, · · · , y4, to the Heterotic Supergravity action given in Eq. (8.12). Since the effective
action of the solitonic 5-branes is written in terms of the NSNS 6-form B̃, we must first
rewrite the action in terms of that field. It is convenient to use the language of differential
forms, so the action Eq. (8.12) takes the form

Nevertheless, it is convenient to compute the term TrR̂ ∧ R̂ which occurs in the α′-corrected action, in
the equation of motion of the dilaton and in the Bianchi identity of the 3-form field strength Ĥ. This can
be done analytically as follows: first of all, we notice that, due to the index structure of this term

TrR̂ ∧ R̂ ∝ R̂αβµνR̂γδµνdxα ∧ dxβ ∧ dxγ ∧ dxδ ,

only the Weyl part of the Riemann cuvature tensor contributes to it. It is, therefore, invariant under
conformal transformations of the metric. On top of this property, we are going to use the fact that the
Riemann tensor for direct product metrics has a product form (all the mixed indices components vanish).

We start by considering a slightly simpler metric. The metric in the first of Eqs. (8.24) with Z+ = 1
is a direct product of the form ĝ = (ĝ(6), ĝ(T 4)), in an obvious notation. Therefore, R̂ = (R̂(6), R̂(T 4)) =
(R̂(6), 0). In its turn, the 6-dimensional metric is conformally equivalent to another direct product metric:
g̃(6) = Z−ĝ(6) = (g̃(M2), g̃(4)) where g̃(M2) is the 2-dimensional Minkowski metric. Thus, by the same
argument and conformal invariance TrR̂ ∧ R̂ = TrR̂(6) ∧ R̂(6) = TrR̃(4) ∧ R̃(4). Finally, the metric g̃(4) =
Z−Z̃0g(R4) is conformally flat and TrR̃(4) ∧ R̃(4) = 0.

The inclusion of the full ρ-dependent function Z+ does not modify this result, even though the 6-
dimensional metric is no longer a direct product because the 2-dimensional part of the metric has the
structure of a pp-wave metric, whose Riemann tensor is orthogonal to itself, so that TrR̂(6) ∧ R̂(6) =
TrR̃(4) ∧ R̃(4) still holds and the rest of the proof that TrR̂ ∧ R̂ = 0 identically follows in the same way.

We have also checked that TrR̂ ∧ R̂ vanishes identically for these solutions by explicit computation.
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Figure 8.1: Representation of the Ricci scalar of the metric with respect to ρ/
√
α′ for several

values of N ≡= NW = NS5 = NF1, gs = 1 and and κ = 1.

Ŝ =
g2
s

16πG
(10)
N

∫
e−2φ̂

[
?R̂− 4dφ̂ ∧ ?dφ̂+ 1

2Ĥ ∧ ?Ĥ + 2α′F̂A ∧ ?F̂A
]
, (8.26)

and, after dualization ?e−2φ̂Ĥ = ˆ̃H ≡ d ˆ̃B

Ŝ =
g2
s

16πG
(10)
N

∫ {
e−2φ̂

[
?R̂− 4dφ̂ ∧ ?dφ̂+ 2α′F̂A ∧ ?F̂A

]

+1
2e

2φ̂ ˆ̃H ∧ ? ˆ̃H + 2α′ ˆ̃B ∧ F̂A ∧ F̂A
}
.

(8.27)

The 6-form will couple to the Wess-Zumino term in the effective action of NS5

coincident solitonic 5-branes via its pullback over the worldvolume

NS5TS5 g
2
s

∫
φ∗

ˆ̃B , where TS5 =
1

(2π`s)5`sg2
s

, (8.28)

and the 6-form equation of motion is

g2
s

16πG
(10)
N

{
d(?e2φ̂ ˆ̃H)− 2α′F̂A ∧ F̂A

}
= g2

sNS5TS5 ?(4) δ
(4)(ρ) , (8.29)

where ?(4)δ
(4)(ρ) is a 4-form in the 5-branes’ transverse space whose integral gives 1.

Integrating both sides of this equation over the transverse space12 we get

12We replace ?e2φ̂ ˆ̃H by Ĥ for simplicity and use Stokes’ theorem in the first term. For the second term
we have

1

16π2

∫
R4

F̂A ∧ F̂A = 1 , (8.30)

the instanton number.
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Figure 8.2: Representation of the Ricci scalar of the metric with respect to ρ/
√
α′ for several

values of N ≡= NW = NS5 = NF1, gs = 1 and and κ = 10−2.

Q̃0 = Q0 − 8α′ = `2sNS5 , (8.31)

which confirms that Q̃0 = Q0 − 8α′n, where n would the instanton number in more
general configurations counts solitonic (neutral) 5-branes. The number of gauge 5-branes
NG5 coincides with the instanton number n. Thus, we conclude that the parameter Q0 of
the solution is

Q0 = `2s(NS5 + 8NG5) . (8.32)

The function Z− is clearly associated to 10-dimensional fundamental strings wrapped
around the coordinate 1

2(u−v). If we couple NF1 fundamental strings lying in the direction
1
2(u− v) we have

TF1NF1 =
g2
s

16πG
(10)
N

∫
V 8

d(?e−2φ̂Ĥ) , where TF1 =
1

2πα′
, (8.33)

where V 8 is the space transverse to worldsheet parametrized by u and v, whose boundary
is the product T4×S3

∞. Using Stokes’ theorem and the value of volume of T 4 (2π`S)4, we
get

Q− = `2sg
2
sNF1 . (8.34)

Finally, the function Z+ is associated to a gravitational wave moving in the compact
direction 1

2(u− v) at the speed of light. The simplest way to compute its momentum is to
T-dualize the solution along that direction. This operation interchanges winding number
(NF1) and momentum (NW ) and, at the level of the solution, it interchanges the functions
Z− and Z+ or, equivalently, the constants Q− and Q+. Thus,
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Figure 8.3: Representation of the Ricci scalar of the metric with respect to ρ/
√
α′ for several

values of N ≡= NW = NS5 = NF1, gs = 1 and and κ = 10−8.

Q+ = `2sg
′ 2
s N

′
F1 = `2s (gs`s/Rz)

2NW =
g2
s`

4

R2
z

NW , (8.35)

where we have taken into account the transformation of the string coupling constant under
T-duality.

We conclude that the fields that give rise to the 5-dimensional non-Abelian black
hole in Eq. (8.7),(8.8) and (8.9) correspond to those sourced by NF1 fundamental strings
wrapped around the 6th dimension with Nw units of momentum moving in the same
direction and NS5 solitonic (neutral) and NG5 = 1 gauge 5-branes wrapped around the
6th direction and a T 4. In terms of these numbers, the black hole’s mass and the entropy
in Eqs. (8.10) and (8.11) take the form

M =
Rz
g2
s`

2
s

(NS5 + 8NG5) +
Rz
`2s
NF1 +

1

Rz
NW , (8.36)

S = 2π
√
NF1NWNS5 . (8.37)

Unfortunately, the dynamics of String Theory in the background of non-perturbative
objects such as solitonic and gauge 5-branes is not as well understood as its dynamics
in the background of D-branes. Therefore, it is convenient to perform a string-weak
coupling Heterotic-Type-I duality transformation [70,125,179] which acts on the fields as
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Figure 8.4: Representation of the Ricci scalar of the metric with respect to ρ/
√
α′ for a collection

with N ≡= NW = NS5 = NF1, gs = 1 and and κ = 0.

follows:13,14

ĝµ̂ν̂ = e−(ϕ̂−ϕ̂∞)̂µ̂ν̂ , φ̂ = −ϕ̂ , Ĉ
(2)
µ̂ν̂ = e−ϕ̂∞B̂µ̂ν̂ ÂAµ̂ = g

1/2
I Â

A
µ̂ , (8.40)

where gI ≡ eϕ̂∞ is the Type-I string coupling constant. These transformations lead to the
Type-I supergravity action

g−4I ŜI =
g2I

16πG
(10)
N,I

∫ {
e−2ϕ̂

[
?R̂− 4dϕ̂ ∧ ?dϕ̂

]
+ 1

2 Ĝ
(3) ∧ ?Ĝ(3) + 2α′e−ϕ̂F̂A ∧ ?F̂A

}
,

(8.41)

13These are the transformations that preserve the normalization of the string metric at spatial infinity
and lead to the correct normalization of the action of the Type-I theory. In particular, the rescaling of
the gauge fields is required in order to reproduce correctly the term that appears in the expansion of the
Born-Infeld action of the O9-D9-brane system (in the Abelian case). The effective worldvolume action of
the D9-brane (Born-Infeld plus Wess-Zumino (WZ) terms) is

ŜD9 = TD9gI

∫
dξ10e−ϕ̂

√
det(̂ij + 2πα′F̂ij) +WZ , (8.38)

where gI is the Type I string coupling constant. In the physical gauge, ignoring the cosmological constant-
type term because it will be cancelled by the O9-planes, and using TD9 = [(2π`s)

9`sgI ]
−1 we get

ŜD9 ∼
g2
I

16πG
(10)
N,I

∫
d10x

√
|̂|
[
α′e−ϕ̂F̂2

]
+WZ , (8.39)

where, now, 16πG
(10)
N,I = (2π`s)

7`sg
2
I . If we rewrite the Type-I supergravity action in terms of the RR

6-form Ĉ(6), just as in the Heterotic case, we get a term Ĉ(6) ∧ F̂A ∧ F̂A. This term originates in the WZ
term of the D9 effective action as well.

14The same procedure (a strong-weak coupling duality transformation within Type-IIB supergravity)
was followed in Ref. [50] to derive the D5D1W solution without non-Abelian fields from the solution
in [69, 206] which can be embedded directly in the Type-IIB NSNS sector. The presence of non-Abelian
vector fields suggests the route we have taken.
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and our solution takes the form

dŝ2
I =

2√
Z̃0Z−

du
(
dv − 1

2Z+du
)
−
√
Z̃0Z−(dρ2 + ρ2dΩ2

(3))−

√
Z−
Z̃0

dyidyi ,

Ĉ(2) = −e
−ϕ̂∞

Z−
dv ∧ du+

e−ϕ̂∞

4
Q̃0 cos θdψ ∧ dφ ,

ÂA = −e−ϕ̂∞/2 ρ2

(κ2 + ρ2)
vAL ,

e−2ϕ̂ = e−2ϕ̂∞ Z̃0

Z−
.

(8.42)

In agreement with the fact that under Heterotic/Type-I duality fundamental strings
and solitonic 5-branes transform into D1- and D5-branes, respectively, gravitational waves
remain gravitational waves with the same momentum, this solution describes the fields
produced by a D5-brane intersecting a D1-brane in the z direction with a wave propagating
along that direction. The Yang-Mills instanton is a nor-perturbative configuration of the
non-Abelian Born-Infeld field that occurs in the worldvolume of the parallel D9-branes
that give rise to the Type-I theory from the Type-IIB and sources D5-branes. Thus
ND1 = NF1, ND5 = NS5, NGD5 = NG5 and, in Type-I variables, the mass and entropy
formulae take the form

M =
Rz
gI`2s

(ND5 + 8NGD5) +
Rz
gI`2s

ND1 +
1

Rz
NW , (8.43)

S = 2π
√
ND1ND5NW . (8.44)

In absence of the instanton (NGD5 = 0) this solution is identical to the one originally
considered in Ref. [50], which is itself very closely related to Strominger and Vafa’s original
model [201].15 The same conditions (namely, that all the Ns are large and NW >>
ND1,D5) ensure that this solution describes at leading order in α′ (low curvature) and in
gs (perturbative string theory) a good background for Type-IIB string theory.

8.4 Discussion

In the previous sections we have shown that the 5-dimensional supergravity black holes
with 3 quantized Abelian charges ND1, ND5, NW and a non-Abelian instanton can be seen,
up to dualities, as the fields associated to a 10-dimensional Type-IIB configuration with

1. An orientifold O9+-plane and 16 D9-branes and their mirror images, that give rise to
the Type-I superstring theory with gauge group SO(32) (see, e.g. [5] and references
therein).

15See also Refs. [71,149,175].
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2. ND5 D5-branes wrapped around the 5th-9th directions and ND1 D-strings wrapped
around the 5th direction with NW units of momentum along the 5th direction. Open
strings can end on these D-strings and D5-branes.

3. NGD5 = 1 “gauge D5-brane”, sourced by an instanton field located in the 1st-4th
dimensions, which are not compact. This brane, which is the dual of the heterotic
gauge 5-brane is often referred to as a D5-brane “dissolved” into the spacetime-
filling D9-branes and differs essentially from standard D5-branes because no strings
can end on them.

Since the entropy of the D1D5W black holes can be understood as associated to the
massless states associated to strings with one endpoint on a D1 and the other on a D5
(1-5 states) and this fact, as discussed in in Ref. [50] is unchanged by the presence of the
D9-branes and O9+-plane that defines the Type-I theory16 the microscopic interpretation
of the entropy of these non-Abelian black holes must be the same as in the Abelian case
and should give the same result at leading order. Observe that, as an intermediate step in
the uplift of the solution to 10 dimensions one obtains a non-Abelian string solution in 6
dimensions with an AdS3×S3 near-horizon geometry where the AdS3 radius only depends
on 3 quantized Abelian charges ND1, ND5, NW .

It is important to stress that the correct identification of the charges and their
meaning in terms of branes plays a crucial rôle to reach this conclusion as well as in
solving the apparent non-Abelian hair problem explained in the Introduction. A more
detailed study is, however, necessary to find corrections to the entropy.

In the last few years we have constructed non-Abelian stating and rotating black-
hole solutions in 4 and 5 dimensions [47, 123, 124, 155, 159, 160], as well as black-ring
solutions [172] and microstate geometries [184] in 5 dimensions. All those constructed with
“coloured monopoles” in 4 dimensions and many of the 5-dimensional solutions exhibit
non-Abelian hair which seems to contribute to the entropy or the angular momentum on
the horizon but cannot be seen at infinity. Many of them can be uplifted to 10-dimensional
Heterotic Supergravity and then dualized into Type-I Supergravity solutions and it is likely
that the correct interpretation of the charges of those solutions is enough to understand
the non-Abelian hair problem.

16The counting of states is, however, different since, as mentioned in Ref. [50] one has to take into
account the SU(2) degrees of freedom associated to the D5-brane of the Type-I string found in [217].
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SU(2) Yang-Mills solutions

A.1 The SU(2) Lorentzian meron

A Lorentzian meron is a classical solution to the pure SU(2) (Lorentzian) Yang-Mills theory
such that the 1-form gauge field A defining it, is proportional to a pure-gauge configuration,
which in our conventions would be 1

gdUU
−1 where U(x) ∈ SU(2). In Ref. [54] U(x) was

chosen to be of the hedgehog form

U ≡ 2
xm

r
δamTa , U † = U−1 = −U , ⇒ U2 = −12×2 . (A.1)

and it was shown that A solves the Yang-Mills equations if the proportionality coefficient
is 1/2, that is

A =
1

2g
dUU−1 = − 1

gr2
εamnx

mdxnTa . (A.2)

As we will see, this gauge field is nothing but the gauge field of the Wu-Yang SU(2)
monopole given in Eq. (A.15).

Since the field strength of a pure gauge configuration vanishes, we find that F (A)
can be written in these two specially simple ways which we will use in Appendix A.3:

F (A) = 1
2dA = g[A,A] = ?(3)d

1

2gr
U , (A.3)

Now we can write the non-Abelian field strength F (A) in terms of F (B), where
F (B) is the field strengths of the Dirac monopole of unit charge Eq. (A.6) that we will
review in the next section

F (A) = F (B)U , F (B) = ?(3)d
1

2gr
, (A.4)

and the energy-momentum tensor of A in terms of that of B

Tµν(A) = − 1
2Tr[Fµρ(A)Fν

ρ(A)− 1
4ηµνF

2(A)] = Fµρ(B)Fν
ρ(B)− 1

4ηµνF
2(B) = Tµν(B) . (A.5)
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A.2 The Wu-Yang SU(2) monopole

The Wu-Yang SU(2) monopole [218] is a solution of the SU(2) Yang-Mills theory that
can be obtained from the embedding of the Dirac monopole in SU(2) via a singular gauge
transformation (see, e.g. Ref. [192] and references therein). To fix our conventions, it is
convenient to start by reviewing the Wu-Yang construction of the Dirac monopole [219].

A.2.1 The Dirac monopole

The U(1) field of the Dirac monopole, that we will denote by B is defined to satisfy the
Dirac monopole equation1, which can be written in several forms:

F (B) ≡ dB = ?(3)d
1

2gr
= − 1

2g
dΩ2 , 2∂[mBn] = − 1

2g
εmnp

xp

r3
, (A.6)

where dΩ2 is the volume 2-form of the round 2-sphere of unit radius

dΩ2 = −1
2εmnp

xm

r
d
xn

r
∧ dx

p

r
= sin θdθ ∧ dϕ . (A.7)

The value of the magnetic charge has been set to g−1 and it is the minimal charge allowed
if the unit of electric charge is g.

The above equation does not admit a global regular solution.

B(±) = − 1

2g
(cos θ ∓ 1)dϕ , (A.8)

are local solutions regular everywhere except on the negative (resp. positive) z axis (the
Dirac strings). A globally regular solution can be constructed by using B± in the upper
(lower) hemisphere and using the gauge transformation

B(+) −B(−) = −d
(

1

g
ϕ

)
, (A.9)

to relate them in the overlap region. If the gauge group is U(1) where the radius of the
circle is the inverse coupling constant 1/g, the gauge transformation parameter can have
a periodicity 2πn/g with n ∈ N. This is the well-known Abelian Wu-Yang monopole
construction [219]. In our case, since the period of ϕ is 2π, we get 2π/g, which is the
smallest value allowed p = 1/g. The solution that describes the monopole of charge n
times the minimum is n times this one p = n/g.

It is useful to have the expression of B(±) in Cartesian coordinates:

B(±) =
1

2g

[(0, 0,∓1)× (x1, x2, x3)] · d~x
r2(r ± x3)

, (A.10)

in which the singularity at r = ∓x3 becomes evident. In this form, one can easily change
the position of the monopole from the origin to some other point xm0 and the position of
the Dirac string from the half line that starts from the origin in the direction −(0, 0,∓1) to

1This equation is just the Abelian version of the Bogomol’nyi equation.
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the half line that starts at the monopole’s position xm0 hand has the direction sm relative
to that point:

B(s) =
1

2g

(
1− sm

s

um

u

)−1

εmnp
sm

s

un

u
d
up

u
, (A.11)

with

um ≡ xm − xm0 , u2 ≡ umum , s2 ≡ smsm . (A.12)

A.2.2 From the Dirac monopole to the Wu-Yang monopole

Let us consider the Abelian B(+) solution in Eq. (A.8) and let us embed it in SU(2) as
the 3rd component of the gauge field

A(+) ≡ 2B(+)T3 , F (A(+)) = 2F (B)T3 . (A.13)

The SU(2) gauge transformation (which is evidently singular along the negative z axis
and makes the whole Dirac string singularity, but the endpoint at the coordinate origin,
disappear)

U (+) ≡ 1√
2(1 + z

r )

[
1 +

z

r
+ 2

(x
r
T2 −

y

r
T1

)]
, (A.14)

relates the gauged field A(+) to

A =
1

g
εamndx

mx
n

r2
Ta , A(+) = U (+)A(U (+))−1 +

1

g
dU (+)(U (+))−1 , (A.15)

which is the gauge field of the Wu-Yang SU(2) monopole. As we have mentioned in the
previous appendix, this is also the gauge field of the Lorentzian meron Eq. (A.2). The
gauge transformation also relates T3 to U in Eq. (A.1) and the Abelian vector

U (+)U(U (+))−1 = 2T3 . (A.16)

The fact that the Lorentzian meron is the Wu-Yang monopole, which is related by
a gauge transformation to the Dirac monopole makes the relation Eq. (A.5) trivial.

This construction can be generalized to more general positions of the Dirac string:
if we consider embedding of the Dirac monopole solution B(s) in Eq. (A.11) into SU(2)

A(s) ≡ −2B(s) s
m

s
δm

aTa , (A.17)

it is easy to see that the gauge transformation

U (s) ≡ 1√
2
(
1− sm

s
um

u

) [1− sm

s

um

u
− 2εmn

a s
m

s

un

u
Ta

]
, (A.18)

relates it to the same Wu-Yang monopole field Eq. (A.15)
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A(s) = U (s)A(U (s))−1 +
1

g
dU (s)(U (s))−1 . (A.19)

A.3 The SU(2) Skyrme model

In this appendix we are going to show that the Lorentzian meron (Wu-Yang monopole) is
also associated to a solution of the equations of motion of the SU(2) Skyrme model [194]
written in the form [53]

SSkyrme = −1
2

∫
d4x

{
1
2RµR

µ +
λ

16
SµνS

µν

}
, (A.20)

where

Rµ ≡ V −1∂µV , Sµν ≡ [Rµ, Rν ] , V (x) ∈ SU(2) . (A.21)

The equations of motion are

∂µR
µ +

λ

4
∂µ[Rν , F

µν ] = 0 . (A.22)

If we take V = U−1 (U given by Eq. (A.1)), then we can write R = 2gA where A is
Lorentzian meron’s gauge field Eq. (A.2) and

∂µR
i µ = −2g∂mA

i
m = 0 ,

∂µ[Rν , F
µν ]i ∼ ∂m

(
Aim
r2

)
= 0 .

(A.23)

A.4 Higher-charge Lorentzian merons and Wu-Yang monopoles

The construction of a Lorentzian meron can be generalized by using a generalization of
the unit outward-pointing vector xm/r denoted by ξm and defined by [8]

(ξm) ≡ 1

r

(
=m(x2 + ix1)n

ρn−1
,
<e(x2 + ix1)n

ρn−1
, x3

)
, ρ2 ≡ (x1)2 + (x2)2 , (A.24)

or, in spherical coordinates,

(ξm) ≡ (sin θ sinnϕ, sin θ cosnϕ, cos θ) , (A.25)

and which reduces to xm/r for n = 1. The essential properties of ξm are

dξm ∧ dξn = −nεmnpξpdΩ2 , (A.26)

−1
2εmnpξ

mdξn ∧ dξp = ndΩ2 = ?(3)d
n

r
, (A.27)
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The generalization of the meron solution is constructed in terms of the generalization
SU(2) matrix in Eq. (A.1)

U(n) ≡ 2ξmδamTa , U †(n) = U−1
(n) = −U(n) , (A.28)

and takes the form

A ≡ 1

2g
dU(n)U

−1
(n) . (A.29)

The field strength is given by

F (A(n)) = 1
2dA = g[A,A] = ?(3)d

n

2gr
U(n) , (A.30)

and can be related to that of a Dirac monopole of charge p = n/g

F (B(n)) = ?(3)d
n

2gr
, F (A(n)) = F (B(n))U(n) , (A.31)

which is given by the expressions studied at the beginning. The energy-momentum tensor
of A is also equal to that of the Abelian monopole of charge n/g B. These fields can
also be related to the embedding of the charge n/g Dirac monopole into SU(2) with a
generalization of the gauge transformation Eq. (A.18)

U
(s)
(n) ≡

1√
2
(
1− sm

s ξ
m
) [1− sm

s
ξm − 2εmn

a s
m

s
ξnTa

]
, (A.32)

relates it to the meron gauge field:

U
(s)
(n)U(n)(U

(s)
(n))
−1 = −2

sm

s
δm

aTa , U
(s)
(n)A(n)(U

(s)
(n))
−1 +

1

g
dU

(s)
(n)(U

(s)
(n))
−1 = nB

(s)
(n)2

sm

s
δm

aTa .

(A.33)

To check that this gauge field solves the Yang-Mills equations of motion we first
stress that, with the above connection, U(n) is a covariantly-constant adjoint field. Then,
auxiliary the adjoint Higgs field

Φ(n) ≡
(
− µ

2g
+

n

2gr

)
U(n) , (A.34)

satisfies

DΦ(n) = d
n

2gr
U(n) , (A.35)

and the pair A(n),Φ(n) satisfies the Bogomol’nyi equations (A.38) and, as a consequence
the equations of motion of the Yang-Mills-Higgs system. The last equation implies that
Φ(n) and DΦ(n) commute so the Higgs current vanishes and A(n) also solves the sourceless
Yang-Mills equations.
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A.5 Spherically-symmetric solutions of the SU(2) Bogomol’nyi
equations in E3

The equations of motion of the SU(2) Yang-Mills-Higgs (YMH) theory in the Bogomol’nyi
Prasad Sommerfield (BPS) limit in which the the Higgs potential vanishes read

DµF
Aµν = −gεBCAΦBDνΦC , (A.36)

D2ΦA = 0 . (A.37)

Static configurations satisfying the first-order Bogomol’nyi equations [43]

FArs = εrstDtΦA , (A.38)

can be seen to satisfy all the above second-order YMH equations of motion.

BPS magnetic monopoles such as the (BPS) ’t Hooft-Polyakov solution found by
Prasad and Sommerfield in Ref. [182] satisfy the Bogomol’nyi equations and, therefore,
it is of some interest to identify all their solutions. In the spherically-symmetric case
this problem was solved by Protogenov in Ref. [183] and his solution can be described as
follows: the Higgs and gauge field can always be brought to this form (hedgehog ansatz )

ΦA = −δAsf(r)ys , AAr = −εArsysh(r) , (A.39)

in which they are characterized by just two functions, f(r), h(r) of the radial coordinate
r =

√
ysys. There is only a 2-parameter family for which these functions, denoted by

(fµ,s, hµ,s), are given by

rfµ,s =
1

gr
[1− µr coth (µr + s)] , rhµ,s =

1

gr

[
µr

sinh (µr + s)
− 1

]
, (A.40)

and a 1-parameter family for which these functions, denoted by (fλ, hλ), are given by

rfλ =
1

gr

[
1

1 + λ2r

]
, rhλ = −rfλ . (A.41)

The BPS ’t Hooft-Polyakov monopole [182] is the only globally regular solution and cor-
responds to fµ,s=0. The fµ,s=∞ solution is given by

− rfµ,∞ =
µ

g
− 1

gr
, rhµ,∞ = − 1

gr
, (A.42)

and, for µ = 0, it is the Wu-Yang monopole [218]. The latter solution is also recovered in
the 1-parameter family for fλ=0.

The asymptotic behavior of rf(r) (which is the combination that occurs in the
metrics we study) for the different solutions is

rfµ,s ∼ −
µ

g
+

1

gr
+O(e−4µr) , −rfλ ∼

1

gλ2r2
+O(r−3) , (A.43)
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and the behavior near the origin (where the black-hole horizons may be in the metrics
under study) are

rfµ,0 ∼ −
µ2

2g
r+O(r3) , rfµ,s ∼

1

gr
−µ
g

coth s+O(r) , rfλ ∼
1

gr
−λ

2

g
r+O(r3) . (A.44)

If we define the magnetic monopole charge by

p ≡ 1

4π

∫
S2
∞

Tr(Φ̂F ) , Φ̂ ≡ Φ√
|Tr(Φ2)|

, (A.45)

then, we always find p = 1/g except in the 1-parameter family for finite λ, for which we
find p = 0. As we have argued in Ref. [47], the λ 6= 0 colored monopoles can be seen as a
magnetic monopole placed at the origin whose charge is completely screened at infinity.
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B
The metrics of the round S3 and S2

In this appendix we will review the well-known construction of the SO(4)-invariant metric
on S3 using its identification with the SU(2) group manifold, the construction of SO(3)-
invariant metric on S2 using its identification with the SU(2)/U(1) coset space and the
relation between both of them.

All matrices U ∈ SU(2) (U † = U−1, detU = +1) can be parametrized by two
complex numbers z0, z1

U ≡
(

z0 z1

−z̄1 z̄0

)
, |z0|2 + |z1|2 = 1 . (B.1)

Therefore, the SU(2) manifold can be identified with S3. Both are traditionally parametrized
by the Euler angles {θ, ϕ, ψ}:

z0 = cos(θ/2) ei(ϕ+ψ)/2 , z1 = sin(θ/2) ei(ϕ−ψ)/2 . (B.2)

The main property of this parametrization is that any SU(2) rotation can be written as
the product of three rotations with these angles:

U(ϕ, θ, ψ) = U(ϕ, 0, 0)U(0, θ, 0)U(0, 0, ψ) . (B.3)

The Euler angles are usually assumed to take values in the intervals θ ∈ [0, π],
ϕ ∈ [0, 2π), and ψ ∈ [0, 4π). Other choices are possible: for instance, θ ∈ [0, π], ϕ ∈ [0, 4π),
and ψ ∈ [0, 2π) also covers once S3. Only the coordinate chosen to take values in [0, 4π)
should be considered periodic. There is a free U(1) action on S3 associated to constant
shifts of the periodic coordinate. For the standard choice, this action is

U(ϕ, θ, ψ)→ U(ϕ, θ, ψ)U(0, 0, 2α) , α ∈ [0, 2π) . (B.4)

Being a right action, it is adequate to define the right coset space SU(2)/U(1). If we
choose instead ϕ to be the periodic coordinate, the U(1) action is

U(ϕ, θ, ψ)→ U(2α, 0, 0)U(ϕ, θ, ψ) , α ∈ [0, 2π) . (B.5)

Being a left action, it is adequate to define the left coset space U(1)\SU(2), which is a
more unusual option.
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A convenient basis of the su(2) Lie algebra is provided by the anti-Hermitian ma-
trices1

TA = i
2σ

A , [TA, TA] = −εABCTC . (B.7)

In this basis

U(ϕ, 0, 0) = eϕT3 , U(0, θ, 0) = eθT2 , U(0, 0, ψ) = eψT3 . (B.8)

The left- (resp. right-)invariant Maurer–Cartan (MC) 1-form VL (resp. VR) are de-
fined by

VL ≡ −U−1dU , VR ≡ −dUU−1 , (B.9)

and as a consequence of their definition they satisfy the MC equations

dV L
R
∓ V L

R
∧ V L

R
= 0 . (B.10)

Observe that the left- and right-invariant MC 1-forms are related by the following
gauge transformations:

VR = UVLU
−1 . (B.11)

The components of the MC 1-forms in the above basis V L
R
≡ vAL

R

TA are given by


v1
L = sinψ dθ − sin θ cosψ dϕ ,

v2
L = − cosψ dθ − sin θ sinψ dϕ ,

v3
L = −(dψ + cos θ dϕ) ,


v1
R = − sinϕdθ + sin θ cosϕdψ ,

v2
R = − cosϕdθ − sin θ sinϕdψ ,

v3
R = −(dϕ+ cos θ dψ) ,

(B.12)

and the MC equations in components take the form

dvAL
R
± 1

2εABC v
B
L
R
∧ vCL

R
= 0 . (B.13)

As their name indicates, the left- (resp. right-)invariant MC 1-forms are invariant
under the left (resp. right) U(1) action in Eq. (B.5) (resp. Eq. (B.4)).

Both the left- or the right-invariant MC 1-forms can be used as Dreibeins to construct
a bi-invariant (that is SU(2) × SU(2) ∼ SO(4) -invariant) metric on SU(2) (∼ S3) with
tangent space metric δAB. The result is exactly the same in both cases: normalizing the
metric so as to get the volume of the 3-sphere of unit radius, we find

dΩ2
(3) = 1

4v
A
Lv

A
L = 1

4v
A
Rv

A
R = 1

4

[
dθ2 + dϕ2 + dψ2 + 2 cos θ dϕdψ

]
. (B.14)

1The σA are the Pauli matrices, which we take to satisfy

σAσB = δAB + iεABCσC . (B.6)
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It is customary to rewrite this metric so that the invariance under the chosen U(1) action
is manifest. For the standard choice in which ψ ∈ [0, 4π) is the periodic coordinate and
there is invariance under the right action in Eq. (B.4)

dΩ2
(3) = 1

4

[
dΩ2

(2)(θ, ϕ) + v3
Lv

3
L

]
, (B.15)

where dΩ2
(2)(θ, ϕ) is the standard metric of the round 2-sphere of unit radius

dΩ2
(2)(θ, ϕ) = dθ2 + sin2 θdϕ2 = v1

Lv
1
L + v2

Lv
2
L . (B.16)

For the other choice, we just have to interchange ϕ and ψ and L by R in the above
expressions.
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C
N = 1, d = 5 Super-Einstein-Yang-Mills

C.1 The theory

In this appendix we give a very brief, workable description of SEYM theories and their
known analytic solutions adapted to the purpose of this letter. N = 1, d = 5 gauged
supergravities can be interpreted as the minimal supersymmetric realization of Einstein-
Yang-Mills-Higgs theories1. They describe the coupling between a supergravity multiplet
and nv vector multiplets, a subset of which transform under the local action of a non-
Abelian group. The supergravity multiplet is constituted by the graviton eaµ, the gravitino
ψiµ and the graviphoton A0

µ, while each vector multiplet, labeled by x = 1, ...., nv, contains
a real vector field Axµ, a real scalar φx and a gaugino λi x. The vector fields can be
collectively denoted as AIµ, with {I, J, . . . = 0, 1, · · · , nv}. The set over which these
indices take values is conveniently split in two sectors denoted as {i, j, · · · = 0, · · · , imax}
and {α, β, · · · = imax + 1, · · · , nv}, referred as the Abelian and the non-Abelian sectors
respectively.

The nv scalars φx parametrize a σ-model equipped with a Riemannian metric gxy
and can be understood as coordinates on a scalar manifold. On general grounds the σ-
model metric is invariant under coordinate transformations in the scalar manifold of the
form

δΛφ
x = −ĝcIkIx , (C.1)

where ĝ is interpreted as the gauge coupling constant (see below) and kI
x(φ) is a set of

Killing vectors of the scalar metric2. The requirement that the σ-model is compatible
with the supersymmetric structure that controls the coupling between scalars and vectors
gives rise to the mathematical construct known as Real Special Geometry, see [36, 171],
that completely characterizes the supergravity theory. Then, a Killing vector of the scalar
metric generates an isometry of the full supergravity theory if it respects the real special
structure of the theory, see Appendix H in [171].

The parameters that generate these isometries in the non-Abelian sector are space-
time functions, i.e. cα = cα(x), while the corresponding Killing vectors satisfy the algebra

[kα, kβ] = −fαβ γkγ , (C.2)

1Those were first considered in [107], see [21, 23, 36, 159] for more detailed expositions in our same
conventions.

2Here the index I is for labeling each one of these vectors. We use it in order to keep notation simple,
and it should be understood that the Killing vectors will be non-zero only for a subset of the possible
values of the index.
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where fαβ
γ are the structure constants of some non-Abelian group (we will often use the

notation fIJ
K , understanding that the structure constants just vanish whenever any index

take values in the Abelian sector).

The vectors in the non-Abelian sector, i.e. Aα µ, play the role of gauge fields under
the action of (C.1). That is, they transform in an appropriate way such that the covariant
derivative of the scalars defined as

Dµφ
x = ∂µφ

x + ĝAαµkα
x , (C.3)

transforms, indeed, covariantly. The field strengths are defined in the standard manner in
both the Abelian and non-Abelian sectors,

F Iµν = 2∂[µA
I
ν] + ĝfJK

IAJµA
K
ν . (C.4)

We will set all the fermionic fields to zero, which is always a consistent truncation
in these theories. The bosonic action of N = 1, d = 5 SEYM is given by

S =

∫
d5x
√
g

{
R+ 1

2
gxyDµφ

xDµφy − 1
4
aIJF

I µνF Jµν + 1

12
√

3
CIJK

εµνρσλ
√
g

[
F IµνF

J
ρσA

K
λ

− 1
2
ĝfLM

IF JµνA
K
ρA

L
σA

M
λ + 1

10
ĝ2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
λ

]}
.

(C.5)

The Real Special Geometry, and therefore the full supergravity theory, is completely
determined by the constant symmetric tensor CIJK . In particular the σ-model metric
gxy(φ) and the kinetic matrix aIJ(φ) are directly derived from this tensor, see for example
[159] for the explicit expressions.

We make use of the SU(2)-gauged ST[2, 6] model, that contains nv = 5 vector
multiplets and the constant symmetric tensor CIJK that characterizes it has the following
non-vanishing components

C0xy = 1
6ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 5 . (C.6)

C.2 A special parametrization

The theory we are considering is a truncation of the effective field theory of the Het-
erotic Superstring compactified on T 5 that preserves an SU(2) triplet of vector fields.
The compactification and truncation reduce the theory to a particular model of gauged
N = 1, d = 5 supergravity to which one can apply the solution-generating techniques based
on the characterization of supersymmetric solutions described in Chapter 4.2. The dimen-
sional reduction of this model on a circle gives the so-called ST[2, 6] model of N = 2, d = 4
supergravity coupled to 6 vector multiplets and we will, therefore, refer to it by that name
in the 5-dimensional context as well. Here we are going to give a minimal description of
the bosonic sector of these theories and of the particular model we are considering. More
information can be found in Refs. [36, 86,171].3

The ST[2, 6] model model N = 1, d = 5 supergravity contains 5 vector supermul-
tiplets labeled by x, y = 1, · · · , 5, each containing a vector field Axµ and a scalar φx.

3Our conventions are those in Refs. [21,23,171] which are those of Ref. [36] with minor modifications.
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Together with the graviphoton A0
µ, all the vectors are written AIµ, I, J, . . . = 0, 1, · · · , 5.

The only remaining bosonic field is the spacetime metric gµν . The CIJK tensor has the
non-vanishing components

C0xy = 1
6ηxy , where (ηxy) = diag(+− · · ·−) , (C.7)

and the Real Special manifold parametrized by the physical scalars can be identified with
the Riemannian symmetric space

SO(1, 1)× SO(1, 4)

SO(4)
. (C.8)

A convenient parametrization of the scalar manifold is

h0 = e−φk2/3 , h1,2 = k−4/3
[
1± (`2 + 1

2e
φk2)

]
, h3,4,5 = −2k−4/3`3,4,5 , (C.9)

where φ coincides with the 10-dimensional Heterotic Superstring dilaton field, k is the
Kaluza-Klein scalar of the dimensional reduction from d = 6 to d = 5 and the `A are the
fifth components of the 6-dimensional vector fields. The rest of the components that make
up the 10-dimensional vector fields have been truncated [57].

The group SO(3) acts in the adjoint on the coordinates x = 3, 4, 5 which we are
going to denote by A,B, . . . and this is the sector that is gauged without the use of
Fayet-Iliopoulos terms. This means that R-symmetry is not gauged and there is no scalar
potential.4 The structure constants are fAB

C = +εAB
C .5 We will denote with a, b, . . . =

1, 2 the ungauged directions. Observe that this sector of the theory corresponds to the
so-called STU model: in absence of the hAs we can make the linear redefinitions

h1′ ≡ 1√
2
(h1 + h2) , h2′ ≡ 1√

2
(h1 − h2) , ⇒ Cabch

ahbhc = h0h1′h2′ . (C.10)

Thus, our model can be also understood as the STU model with an additional SU(2)
triplet of vector multiplets.

With the above parametrization of the scalar manifold, the action for this model
can be brought to the form

S =

∫
d5x
√
g

{
R+ ∂µφ∂

µφ+ 4
3∂µ log k∂µ log k + 2e−φk−2Dµ`

ADµ`A

− 1
12e

2φk−4/3F 0 · F 0 + 1
12

(
ηxye

−φk2/3 − 9hxhy
)
F x · F y

+ 1
24
√

3

εµνρσα
√
g

A0
µηxyF

x
νρF

y
σα

}
,

(C.11)

where
4Models of this kind are called model of N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM), which are

the simplest N = 1 supersymmetrization of the 5-dimensional Einstein-Yang-Mills (EYM) theories.
5These indices will always be raised and lowered with δAB , just for esthetical reasons.
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Dµ`
A = ∂µ`

A + gεABCA
B
µ`
C , (C.12)

F 0,a
µν = 2∂[µA

0,a
ν] , (C.13)

FAµν = 2∂[µA
A
ν] + gεABCA

B
µA

C
ν . (C.14)

Notice that A0
µ is sourced by εµνρσαηxyF

x
νρF

y
σα which is related to the instanton

number on the constant-time hypersurfaces. In differential-form language, its equation of
motion is

d(e2φk−4/3 ? F 0) = 1
2
√

3
ηxyF

x ∧ F y = 0 , (C.15)

which is similar to that of the Kalb-Ramond 2-form B. This is because A0 is the 5-
dimensional dual of the dimensionally reduced Heterotic Kalb-Ramond form B. The
duality relation is

F 0 = e−2φk4/3 ? H , with H ≡ dB + 1
2
√

3
ωCS , (C.16)

where ωCS is the Chern-Simons 3-form of all the vector fields but A0 itself

ωCS = 1
2F

+ ∧A− + 1
2F
− ∧A + FA ∧AA − 1

3!gεABCA
A ∧AB ∧AC , (C.17)

satisfying

dωCS = ηxyF
x ∧ F y . (C.18)

C.3 Procedure for constructing solutions

1. Timelike supersymmetric solutions of N = 1, d = 5 SEYM with a spacelike isometry
are constructed from a set of (2nv + 4) seed functions defined on E3. These are
denoted6 as M,H,ΦI , LI and satisfy the following equations

6Notice that the seed functions ΦI should not be confused with the physical scalars φx appearing in
the action (C.5).
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d ?3 dM = 0 , (C.19)

?3dH − dχ = 0 , (C.20)

?3D̆ΦI − F̆ I = 0 , (C.21)

D̆2LI − ğ2fIJ
LfKL

MΦJΦKLM = 0 , (C.22)

?3dω̆ −
{
HdM −MdH + 3

√
2(ΦID̆LI − LID̆ΦI)

}
= 0 , (C.23)

for some 1-forms χ, ω̆ and ĂI (with field strength F̆ I) defined also in E3. Here the
covariant derivative D̆ is defined in three-dimensional Euclidean space with respect
to the gauge field ĂI for objects transforming in the (dual) adjoint representation.
More explicitly,

D̆ΦI = dΦI + ğfJK
IĂJΦK , D̆LI = dLI + ğfIJ

KĂJLK . (C.24)

Two subtleties about these expressions are worth mentioning. First, notice that the
structure constants are only non-trivial in the non-Abelian sector so the covariant
derivative reduce to the standard exterior derivative in the Abelian sector. Second,
the gauge coupling constant in this expression is rescaled with respect to the physical
gauge constant appearing in the action of the theory7, ĝ = −ğ/2

√
6.

2. Using the seed functions, the five-dimensional fields of the solution are obtained as
follows:

(a) We define the intermediate building blocks

hI/f = LI + 8CIJKΦJΦK/H , (C.25)

that can be used to compute the physical scalars

φx ≡ hx/h0 , (C.26)

and the metric function

f−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJΦLΦM/H

+3 · 26LIΦ
ICJKLΦJΦKΦL/H2 + 29

(
CIJKΦIΦJΦK

)2
/H3 .

(C.27)
This is derived from the Real Special Geometry constrain 27CIJKhIhJhK = 1,
which is valid for symmetric scalar manifolds8. In these spaces we can also
define

hI = 27CIJKhJhK . (C.28)
7This fact is an indirect consequence of the rescaling factor appearing in equation (C.34).
8This is always the case in the supergravity models that we consider here. In this expression, CIJK ≡

CIJK .
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(b) The spacetime metric is of the conformastationary form

ds2 = f 2(dt+ ω)2 − f −1dŝ2 , (C.29)

where the 1-form ω is obtained as

ω = ω5(dϕ+ χ) + ω̆ , (C.30)

ω5 = M + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , (C.31)

being the inverse-hatted ω̆ the one in (C.23), and dŝ2 is a four-dimensional
Gibbons-Hawking metric [97,99]

dŝ2 = H−1(dϕ+ χ)2 +Hdxrdxr , r = 1, 2, 3 . (C.32)

(c) The physical vector fields and their field strengths are

AI = −
√

3hIf(dt+ ω) + ÂI ,

F I = −
√

3D̂[hIf(dt+ ω)] + F̂ I ,

(C.33)

where the auxiliary vectors ÂI are four-dimensional gauge fields defined on the
Gibbons-Hawking space as

ÂI = −2
√

6
[
−H−1ΦI(dϕ+ χ) + ĂI

]
,

F̂ I = −2
√

6
[
−D̆

[
ΦIH−1(dϕ+ χ)

]
+ ?3D̆ΦI

]
,

(C.34)

By this construction, which is due to Kronheimer [142], the field strength F̂ I is
self-dual in the Gibbons-Hawking space, describing an instanton configuration
intimately related to a lower dimensional static monopole.

Notice that D̂ is the covariant derivative with associated connection ÂI in the
Gibbons-Hawking space, while D̆ is the covariant derivative with associated
connection ĂI in E3.

C.4 Dimensional reduction of N = 1, d = 5 SEYM theories

N = 1, d = 5 supergravity coupled to vector multiplets gives N = 2, d = 4 supergravity
coupled to vector multiplets upon dimensional reduction over a spacelike circle9. If some
non-Abelian subgroup of the isometry group of the scalar manifold of the 5-dimensional
theory has been gauged, and we perform a simple (as opposed to a generalized) dimensional
reduction, the 4-dimensional theory will have exactly the same non-Abelian subgroup of
the (now bigger) isometry group gauged. Thus N = 1, d = 5 and N = 2, d = 4 SEYM
theories are related by dimensional reduction over a spacelike circle.

It should be clear that, under the above conditions, the relation between the 5- and
4-dimensional fields in the gauged theories is exactly the same as in the ungauged one and

9See, for instance, Refs. [86] and references therein
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is, therefore, well known. In the conventions we follow here10 the relation between the
bosonic fields of an N = 1, d = 5 supergravity model defined by CIJK (tilded) and the
bosonic fields of a cubic model of N = 2, d = 4 supergravity defined by the symmetric
tensor dijk (untilded) are 11

gµν = |g̃zz|
1
2

(
g̃µν − g̃µz g̃νz/g̃zz

)
, dijk = 6Ci−1 j−1 k−1,

A0
µ = 1

2
√

2
g̃µz/g̃zz , Aiµ = − 1

2
√

6

(
Ãi−1

µ − Ãi−1
z g̃µz/g̃zz

)
,

Zi = 1√
3
Ãi−1

z + i|g̃zz|
1
2 h̃i−1 ,

(C.35)

and the inverse relations are

g̃zz = −k2 , ÃIz =
√

3<eZI+1 ,

g̃µz = −2
√

2k2A0
µ , ÃIµ = −2

√
6
(
AI+1

µ −<eZI+1A0
µ

)
,

g̃µν = k−1gµν − 8k2A0
µA

0
ν , h̃I = k−1=mZI+1 .

(C.36)

In these relations it has been taken into account that, if nv denotes the number of
vector multiplets in d = 5, then, the 4-dimensional theory has nv + 1 vector multiplets
so that I, J,K = 0, · · · , nv, i, j, k = 0, · · · , nv + 1. The additional 4-dimensional vector
multiplet is the i = 0 one and, therefore, the 5-dimensional vector labeled by I corresponds
to the 4-dimensional vector labeled by i = I + 1.

While this is the whole story for the fields, it is important to realize that the factor
that related the 4- and 5-dimensional gauge fields changes the standard form of the co-
variant derivatives and gauge field strengths and it must be absorbed into a redefinition
of the gauge coupling constant. Thus, we also have

g̃ = − g

2
√

6
. (C.37)

Observe that this result has been obtained using the orientation ε0123z = +1, which
is not the one we are using in the main text (ε0z123 = +1). However, in practice, the
result can be adapted to that orientation by reversing the sign of each z tensor index.
This operation only changes the sign of A0

µ and <eZi.

10That is, the conventions used in Refs. [20,21,23] for the N = 1, d = 5 theories and in the conventions
used in Refs. [47,48,122–124,155–157,160] for the N = 2, d = 4 theories.

11See, for instance, Ref. [171] which follows the conventions used here.
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D
Resumen

Esta tesis está dedicada al estudio de la interacción de campos de Yang-Mills no abelianos
con el campo gravitatorio aśı como de su realización en el contexto de teoŕıa de cuerdas
a través de teoŕıas efectivas de supergravedad. Esta clase de interacciones se ha venido
considerando en diversos marcos teóricos desde hace varias décadas y sin embargo el grado
de entendimiento alcanzado durante todos estos años ha sido limitado, especialmente si
lo comparamos con el que se tiene de la interacción de campos abelianos con la gravedad.
Buena parte de esta falta de entendimiento se debe sin duda a la enorme complejidad de
estos sistemas; las ecuaciones diferenciales que rigen el comportamiento tanto de campos
gravitatorios como de campos de Yang-Mills no abelianos son de carácter no lineal y su
resolución es una tarea harto complicada.

La complejidad de estos sistemas, sin embargo, puede reducirse a través de la consid-
eración de configuraciones de campos supersimétricas. Esta clase de configuraciones dan
lugar a soluciones con propiedades muy especiales, como es el caso de los agujeros negros
extremos. Aún aśı, a través de ellas no sólo es posible comprender propiedades sobre el
acoplamiento entre ciertos campos y a la gravedad, sino que también es posible atisbar la
naturaleza cuántica de ciertos sistemas gravitacionales. El agujero negro abeliano de “tres
cargas”, una solución supersimétrica de supergravedad N = 1 en 5 dimensiones, consti-
tuye el paradigma de ello. Esta solución se puede entender como un agujero negro clásico
en supergravedad o como un sistema cuántico en teoŕıa de cuerdas. Uno de los mayores
logros de esta teoŕıa consiste precisamente en que la entroṕıa de este agujero negro puede
calcularse en estos dos esquemas, obteniéndose el mismo resultado.

El principal resultado de esta tesis es la construcción de agujeros negros no abelianos
de “tres cargas” en teoŕıas de supergravedad y su interpretación en teoŕıa de cuerdas, lo
que a su vez permite una identificación microscópica de su entroṕıa. Esto a su vez re-
quiere (o implica) la resolución del problema de la presencia de “pelo” en estos agujeros
negros no abelianos. Es decir, mientras que los agujeros negros abelianos quedan com-
pletamente determinados por sus cargas conservadas (no tienen “pelo”), es sabido que los
agujeros negros no abelianos necesitan de algunos parámetros adicionales para especificar
la solución.

Otro destacado resultado de esta tesis es el desarrollo de una técnica de generación
que permite la descripción de amplias familias de soluciones en teoŕıas de supergravedad.
La interpretación de éstas en función de objetos fundamentales de teoŕıa de cuerdas no ha
hecho más que comenzar.
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En el caṕıtulo 2 describimos las primeras soluciones anaĺıticas multicentro de campos no
abelianos acoplados a la gravedad, junto a otras soluciones con un sólo centro de diversas
caracteŕısticas. Este caṕıtulo se desarrolla en el contexto de una teoŕıa de supergravedad
cuatro dimensional en la que se ha gaugeado un subgrupo SU(2) del grupo de isometŕıas
de la variedad escalar. Este trabajo sirve como un punto de partida en la familiarización
con teoŕıas de supergravedad con campos de Yang-Mills no abelianos, aśı como con sus
soluciones.

El caṕıtulo 3 hace uso de la relación entre monopolos estáticos en espacio plano
e instantones en variedades hyperKähler con una isometŕıa descubierta por Kronheimer
para ilustrar la conexión existente entre los singulares monopolos colorados y los popu-
lares instantones BPST. Esta relación resulta clave para el desarrollo de una técnica de
construcción de soluciones en teoŕıas gaugeadas de supergravedad N = 1 en cinco dimen-
siones, iniciando el camino hacia una posible interpretación en teoŕıa de cuerdas.

En el caṕıtulo 4 describimos dicha técnica de obtención de soluciones y la ponemos
en práctica para describir los primeros agujeros negros no abelianos en cinco dimensiones.
Además de esto, describimos algunas soluciones de tipo nulo como cuerdas negras. A
continuación, en el caṕıtulo 5, utilizamos nuestra técnica de generación de soluciones para
describir un anillo negro (cuyo horizonte tiene topoloǵıa S2×S1) aśı como agujeros negros
rotatorios.

En el caṕıtulo 6 describimos cómo obtener solitones regulares multicentro, también
conocidos como geometŕıas de microestados, en estas teoŕıas. Las soluciones descritas
tienen las mismas cargas asintóticas que ciertos agujeros negros, aunque carecen de hor-
izonte de eventos. Este tipo de configuraciones se hace posible gracias al descubrimiento
de una solución diónica no abeliana multicentro, en la cual las componentes eléctricas no
son triviales e interactúan con las magnéticas dando lugar a geometŕıas no estáticas. Otra
propiedad de estos diones no abelianos es que, al contrario de lo que sucede en los de tipo
abeliano, las posiciones de los centros no están sometidas a restricción alguna.

Los caṕıtulos 7 y 8 suponen la culminación de esta tesis. En ellos se explica cómo
es posible obtener las teoŕıas de supergravedad cinco dimensionales N = 1 con campos
de Yang-Mills no abelianos a través de la compactificación toroidal de la teoŕıa de su-
pergravedad heterótica, acompañada de una truncación consistente que reduce el número
de supersimetŕıas. A continuación, se identifican los elementos fundamentales de teoŕıa
de cuerdas que originan estas soluciones de supergravedad para dos clases especiales de
soluciones: un instanton global regular y un agujero negro no abeliano de “tres cargas”.
Esta identificación hace posible el cálculo de la entroṕıa de estas soluciones desde un punto
de vista microscópico.
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