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1
Introduction

In this section we introduce several concepts related to the three topics which give name
to this thesis, namely: supergravity, black holes and holography. We have tried to include
here the material which has played a more prominent rôle in the research carried out
throughout these years, and that is essential for a good understanding of the results
obtained in the papers which in this thesis have been compiled.

1.1 Supergravity

The first topic is supergravity (SUGRA), the framework in which essentially all my re-
search has been developed. After a short reflection on string theory, and a small general
introduction to supersymmetry and supergravity, we study in some detail certain aspects
of N = 2, d = 4 SUGRA theories, which are of most relevance for the results obtained in
the next chapters.

1.1.1 Two words on string theory

For some time now, string theory (ST) [33,214,215,353,365,366] has established itself as
the most prominent (if not the only) candidate for consistently describing the quantum
nature of gravity, along with all the rest of known (and surely some unknown) interactions
in a unified framework. Some of the highlights of ST, leaving mathematics aside, can be
enumerated as follows

• Provides a(n arguably) quantum mechanically consistent UV completion for gravity.

• Not only unifies gauge interactions and gravity, but it makes them inseparable.

• Produces numerous candidates for grand unification gauge groups. It is even possible
to get just the standard model at low energies from it [249].

• Incorporates (world-sheet and spacetime) supersymmetry, which in many cases pro-
vides natural candidates for dark matter as well as helping to make sense of other
issues such as the hierarchy problem, the discrepancy in the anomalous magnetic
moment of the muon, etc.

• It has no free parameters. Besides, as oppossed to QFTs, where you have the
freedom to choose a particular gauge group, the fields you include in the theory, the
representations under which they transform, etc., in some sense, there is a unique

1



Chapter 1. Introduction

string theory (there are five consistent superstring theories which are supposed to
correspond to different limits of a single (M-)theory, and which are related to each
other through different kinds of dualities).

• Satisfactorily accounts for the microscopic entropy of certain extremal and near-
extremal black holes [403], producing results which match the macroscopic result
obtained through the Bekenstein-Hawking formula.

• Provides a majestic realization of the holographic principle as well as a window into
the strongly coupled regime of certain QFTs by means of the AdS/CFT correspon-
dence [311].

• Predicts a wrong number of spacetime dimensions (10 or 11), which suggests that
some of them might be compact and small (or something alternative, like in the
brane-worlds avatar [376]).

• It seems to possess a huge amount of 4D vacua, the so-called String landscape (see,
e.g., [368]). This has raised some doubts on the capability of the theory to address
certain fundamental issues in theoretical physics, such as the cosmological constant
problem. Some people, however, consider that an anthropic view of the problem
(according to which we just happen to live in a particular locus of the landscape
which is suitable enough to support life so as to have us here wondering about what
the reason for this highly unlikely suitability might be) can be acceptable, and even
the best we can get.

From a down-top perspective, ST is very attractive. Indeed, physics beyond the standard
model is crying out for solutions to several problems which could be nicely addressed
by supersymmetry (some of them, such as the hierarchy problem, less nicely the higher
the bounds for the masses of the SUSY partners are set at accelerators). Now, if SUSY
is a fundamental symmetry of nature, some supergravity theory will be responsible for
describing the massless modes of the corresponding theory (many of which will not be
really massless because of broken symmetries at certain scales such as the vacuum expec-
tation value of the Higgs, ΛGUT, etc.). Actually, the consistent quantization of a spin 3/2
massless field (a.k.a. Rarita-Schwinger field) imposes the theory under consideration to
be symmetric under local supersymmetry transformations (i.e., to be a SUGRA theory),
just like similar arguments for spin 1 and 2 fields lead to gauge and diffeomorphism invari-
ances. As it turns out, the low energy limits of the different String Theories (which are all
related through dualities of different kinds) correspond to different SUGRA theories, and
so do their corresponding compactified versions to 4 dimensions. Hence, it is extremely
tempting to think that some of these effective theories might be adequate for describing
nature1.

In spite of these achievements and hints, our knowledge of ST is still rather limited,
and a significantly deeper understanding of the theory will still probably require (in case
such a goal is pursued) several generations of theorists. Such understanding could eventu-
ally lead us to know whether ST is the right framework for describing the physics of our

1It is convenient to note that, as we will briefly comment, SUGRA theories contain solitonic SUSY
solutions, which due to their supersymmetric properties are protected from receiving stringy corrections
when we move from the effective SUGRA action, and which correspond to the long range fields produced
by bound states of non-perturbative ST objects (like D-branes [367]). This means that SUGRA theories
also contain non-perturbative information about the corresponding ST.
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universe or not. In any event, it is fair to say that even if that a goal is never fully realized,
ST has already provided us with numerous fascinating insights concerning the physics of
gravity, quantum mechanics and spacetime (as well as mathematics). An example of this
is, as we have already mentioned, the celebrated AdS/CFT correspondece, which not only
unveils a deep connection between certain gravity (and string) theories and some quantum
field theories, but also provides a realization of the holographic principle.

1.1.2 SUSY and SUGRA

Supersymmetry is one of the big ideas of the second half of twentieth-century theoretical
physics. After the observation by Coleman and Mandula [142] that under very generic
assumptions, any Lie group of symmetries of QFT S-matrices containing the Poincaré
group P and some additional group of internal symmetries G must be a direct product of
both in order to produce non-trivial physics, Golfand and Likhtman showed [212] that this
no-go theorem could be circumvented by generalizing the concept of Lie algebra to that
of a Z2-graded Lie algebra, which included new anticommuting (fermionic) generators.
Haag, Lopuszanski and Sohnius [223] proved that the most general non-trivial extension
of the Poincaré group in 4-dimensions including this kind of generators could be obtained
by considering 4N (for some integer N ) of these: QIα, Q̂Iα̇, I = 1, ...,N , α, α̇ = 1, 2,
transforming as left (right) Weyl spinors, and satisfying the following (anti)commutation
relations

[QIα, Jµν ] = (σµν)βαQ
I
β , (1.1)

[QIα, Pµ] = [Q̄Iα̇, Pµ] = 0 (1.2)

{QIα, Q̄β̇J} = 2(σµ)αβ̇Pµδ
I
J , (1.3)

{QIα, QJβ} = εαβZ
IJ , (1.4)

where ZIJ = −ZJI are the so-called central charges, commuting with all the generators
of the superalgebra, Jµν are the generators of boosts and rotations of the Poincaré group,
and Pµ those of translations (among them, they satisfy the usual commutation relations of
the Poincaré algebra). The group H of automorphisms of the superalgebra is the so-called
R-symmetry group. When ZIJ = 0, H=U(N ), and when ZIJ 6= 0, H is a subgroup of
U(N ).

Studying the massless linear irreps of Poincaré’s superalgebra [375], one finds that
each multiplet is composed of 2N states of helicities λ0 + k/2 (k = 0, ...,N ), (

(N
k

)
for

each k) and with the same number of fermionic and bosonic states in each case. Let us
consider for example the case λ0 = −2, N = 8, which in fact corresponds to the field
content of N = 8, d = 4 SUGRA: we have

(
8
0

)
= 1 states of helicities ±2,

(
8
1

)
=
(

8
7

)
= 8

states of helicities ±3/2,
(

8
2

)
=
(

8
6

)
= 28 states of helicities ±1,

(
8
3

)
=
(

8
5

)
= 56 states

of helicities ±1/2 and
(

8
4

)
= 70 states of helicities 0. So the number of bosonic states

2× 1 + 2× 28 + 70 = 128 equals the number of fermionic states 2× 8 + 2× 56 = 128.

Assuming |λ ≤ 2|2, the maximum number of supersymmetries in 4-dimensional
theories is given by N = 8. In addition, renormalizability becomes problematic for N ≥ 4
[375], although some recent intriguing results [58,59,265] indicating the possible quantum

2Particles of helicities larger than 2 are usually problematic in standard QFTs. Higher-spin theories [416]
are a different kettle of fish.
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finiteness of N = 8, d = 4 SUGRA might jeopardize the widespread belief that no field
theory of quantum gravity in 4D can be quantum mechanically finite.

SUSY transformations in field space are given by δε ∼ εαLQLα, being εL the fermionic
parameter of the transformations3, and they generically act on bosonic (B) and fermionic
(F ) fields as

δεB ∼ ε̄F , (1.5)

δεF ∼ Bε . (1.6)

Now, a field theory is said to be supersymmetric if it is invariant under the action of
the corresponding SUSY transformations. If we allow the transformation parameters to
depend on the spacetime coordinates εL = εL(x), all the fields will necessarily be cou-
pled to the gravitational field, and the theories invariant under the action of such local
transformations

δεB ∼ ε̄F , (1.7)

δεF ∼ Bε+ ∂ε , (1.8)

will be called supergravity theories. The composition of two local SUSY transformations
produces an infinitesimal general coordinate transformation, which immediatly makes us
think about General Relativity (GR). The jump is, however, not completely straightfor-
ward since SUGRA theories contain fermions, whereas the original framework of GR does
not allow for such a possibility. This is because only the group of diffeomorphisms of a
given spacetime M, Diff(M), acts naturally on the fields of the theory, and this does not
have finite-dimensional spinorial representations. Actually, SUGRA theories can be seen
as particular cases of the Cartan-Sciama-Kibble theory (see [353,380] for reviews), which is
precisely a generalization of GR suitable for the coupling of fermions to gravity. In classi-
cal field theories, bosonic fields B transform under tensorial representations of the Lorentz
group SO(1, 3), so in GR they correspond to spacetime tensors. However, fermionic fields
F transform under spinorial representations, which correspond, e.g., to the fundamental of
the universal cover of SO(1, 3), Spin(1, 3). These cannot be identified with any section of
the tangent or cotangent budles of M (as opposed to the bosonic fields), so some further
structure must be added in order to incorporare them when gravity is present (a more
detailed discussion of this issues can be found in [386]). Such a structure is known as spin
bundle, of which fermions would be sections. In case M admits this structure, one can
apply the first-order formalism of Cartan-Sciama-Kibble. In this, we use the Vierbein
e instead of the spacetime metric g as the dynamical field associated to gravity (being
both related by g = η(e, e) where η is the flat frame metric). Using a Vierbein we can
make the theory manifestly invariant under local Spin(1, 3) transformations, and allows
for the definition of a spin connection ω, which enables one to define covariant derivatives
D ∼ ∂ + ω with respect to the action of that group. This is the needed machinery for
including fermions into the theory. The kinetic terms of the spinors are constructed now
using the covariant derivative associated to the spin connection, which is considered an
auxiliary field (in the sense that its equation of motion will act as a constraint for the
other fields).

3Remarkably, the commutator of two of these is related to the spacetime derivative (this reflects nothing
but the fact that the commutator of two Q is proportional to the translations generator in (1.3)) as
[δ1, δ2] ∝ γµ∂µ.
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Let us consider, for example, pure N = 1, d = 4 SUGRA, whose field content is
given by the Vierbein, and the gravitino, which is a vector of Majorana or Weyl spinors, so
we have (we choose to show explicitly spacetime and frame indices, and omit the spinorial
ones):

{
eaµ, ψµ

}
. The action reads [353]

I[eaµ, ωµ
ab, ψµ] =

1

16πG

∫
d4x e

[
R(e, ω) + 2e−1εµνρσψ̄µγ5γνDρψσ

]
, (1.9)

where e ≡ det(e), the Lorentz-covariant derivative of the Rarita-Schwinger field reads

Dρψσ ≡ ∂ρψσ −
1

4
ωµ

abγabψσ , (1.10)

and
R(e, ω) ≡ eµaeνbRµν ab(ω) , (1.11)

where Rµν
ab(ω) is the curvature of the spin connection ωabµ ,

Rµνa
b(ω) ≡ 2∂[µων]a

b − 2ω[µ|a
cω|ν]c

b . (1.12)

The above action, which only contains first derivatives to the power of 1 (hence the name
first-order formalism), is invariant under general coordinate transformations, local Lorentz
transformations, as well as local N = 1 SUSY transformations4

δεe
a
µ = −iε̄γaψµ , δεψµ = Dµε . (1.13)

As a general fact, the invariance of SUSY and SUGRA theories under the correspond-
ing supersymmetric transformations constrains the field content as well as the geometric
structure of the different multiplets. We will review how this works for a particular theory,
namely: N = 2, d = 4 ungauged SUGRA, which is of particular interest for the results of
this thesis. Before doing so, let us introduce the general structure of the theory.

1.1.3 N = 2, d = 4 SUGRA

A N = 2, d = 4 SUGRA is a field theory invariant under the action of two independent
local supersymmetry transformations generated by two spinors (Weyl or Majorana). Ac-
cording to this definition, there are SUGRA theories which include terms of arbitrarily
high order in derivatives in their action. However, we will restrict ourselves to second-
order Lagrangians. Let us also assume for the moment that none of the global symmetries
of the theory has been gauged.

The field theory content of any ungauged classical SUGRA5 is then the following

• A gravity multiplet: (e, ψI , A
0), where e is the Vierbein, ψI an SU(2) (which is the

R-symmetry group of the theory) doublet of gravitini and A0 is the graviphoton
1-form.

4All this is a bit more subtle, because ω is an independent field here. It is often convenient to work in
the so-called 1,5 formalism, according to which we mantain the first-order form of the action, but impose
the relations satisfied by ω (which come from its equation of motion) on its variations. We will not mess
up with this here.

5Classical in the sense that it does not include higher-order terms in derivatives, which arise from stringy
and quantum corrections, so that the bosonic sector is a particular case of GR
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• nv vector multiplets: (Ai, λiI , zi), where Ai, i = 1, ..., nv are 1-forms, λiI are spinors
and the Zi are complex scalars. These parametrize a nv-dimensional Special Kähler
manifold [145] (see below).

• nh hypermultiplets: (χα, χ
α, qu) where the χα, α = 1, ..., 2nh are spinors, and the

qu, u = 1, ..., 4nh real scalars parametrizing a 4nh-dimensional quaternionic Kähler
manifold [63].

Every supersymmetric Lagrangian, and theN = 2 d = 4 SUGRA in particular, is invariant
under a Z2 symmetry which makes B → B, F → −F . As a consequence, truncating all
fermions is always consistent6. Since we will be interested in purely bosonic configurations,
let us truncate all fermions from now on. The action corresponding to the bosonic sector
of ungauged N = 2 d = 4 SUGRA is given by

I =
1

16πG

∫
d4x
√
|g|
{
R+ huv(q)∂µq

u∂µqv + Gij̄(Z, Z̄)∂µZ
i∂µZ̄ j̄ (1.14)

+2=ΛΣ(Z, Z̄)FΛ
µνF

Σµν − 2<ΛΣ(Z, Z̄)FΛ
µν ? F

Σµν
}
,

where we used the symplectic index Λ = (0, i) for all vector fields AΛ, Λ = 0, ..., nv. The
first term is the usual Ricci scalar7. The second is the kinetic term of the hyperscalars,
which parametrize a quaternionic manifold of metric huv(q). It is easy to show that these
fields can be fixed to a constant value qu = q0

u in a consistent manner, and this we assume
henceforth: their equations of motion do not involve more fields than themselves, and in
their SUSY transformation all terms contain some dependence on them. The third term
is a non-linear sigma model corresponding to the kinetic term of the vector multiplets’
complex scalars, which parametrize a (complex) nv-dimensional Special Kähler manifold
with metric Gij̄(Z, Z̄). The two remaining terms correspond to the kinetic and CP-violating
like terms corresponding to the nv+1 1-forms. =ΛΣ ≡ =mNΛΣ (which is negative-definite)
and <ΛΣ ≡ <eNΛΣ are the imaginary and real parts of some symplectic matrix depending
on the scalars Zi, NΛΣ(Z, Z̄).

We will study different models of ungauged N = 2 d = 4 SUGRA in the forthcoming
chapters. Our interest on them will be in all cases related to the search for new solutions.
In chapters 2, 3 and 4, we will focus on black holes, whereas in the first part of 7 we will
look for a different kind of solutions, namely, hvLf-like (see below).

Let us now explain the rôle played by symplectic and Special Kähler geometries on
the structure of N = 2 d = 4 SUGRA theories.

Electric-magnetic duality and symplectic covariance

Consider the action (1.14) without hypermultiplets. If we define a tensor dual to FΛ, as8

F̃Λµν ≡ −
1

4
√
|g|

δS

δ ? FΛµν
= <eNΛΣF

Σ
µν + =mN ∗ΛΣF

Σ
µν , (1.15)

the equations of motion for the nv+1 1-forms can be written as EµΛ ≡ ∇ν ?F̃
νµ
Λ = 0, which

clearly resembles the Bianchi identity for the FΛ: BΛµ ≡ ∇ν ? FΛνµ = 0. If we define the

6This means that any solution of the truncated theory is a solution of the complete theory.
7Once we truncate the fermions, the first-order formalism looses a great part of it usefulness. From

now on, we come back to the usual second-order formulation.
8The results of this subsections are based on [129,186,206].
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doublet

EMµ ≡
(
BΛ
µ

EΛµ,

)
, (1.16)

Maxwell equations and Bianchi identities can be simply written as EM = 0, so they
admit as a symmetry, an arbitrary GL(2nv + 2,R) rotation on the M index: EMµ = 0 →
mM

NENµ = 0, mM
N ∈ GL(2nv + 2,R). These transformations act analogously on the

2-forms FΛ and F̃Λ as

FMµ ≡
(
FΛ

F̃Λ

)
, F ′M = mM

NF
N . (1.17)

However, FΛ and F̃Λ are not independent, as it can be seen from (1.15). Imposing (1.15) to
be valid after the rotation clearly imposes that the matrix NΛΣ(Z, Z̄) must be transformed
under GL(2nv + 2,R) as well. Then, one needs to impose an action of this group on the
scalars in a way such that N ′ΛΣ(Z, Z̄) has the desired structure. In order to do this, we
consider a diffeomorphism ξ ∈ Diff(Mescalar) on the scalar manifold Mescalar, as well as
the existence of a group homomorphism as

i : Diff(Mscalar)→ GL(2nv + 2,R) , (1.18)

such that, for every ξ ∈ Diff(Mscalar) it assigns a transformation i(ξ) ∈ GL(2nv + 2).
This construction allows us to define the simultaneous action of ξ on all the fields of the

theory
{
Z,FM ,NΣΛ(Z)

} ξ→
{
ξ(Z), (i(ξ))MNF

N ,N ′ΣΛ(ξ(Z))
}

. The consistency condition
on N ′ΛΣ(Z, Z̄), which can be written as

F̃ ′Λµν ≡ −
1

4
√
|g|

δS′

δ ? F ′Λµν
, (1.19)

translates into the fact that the transformations mM
N must belong to the subgroup

Sp(2nv +2,R), so the homomorphism i reduces to i : Diff(Mescalar)→ Sp(2nv +2,R), and
that the period matrix NΛΣ(Z, Z̄) transforms as

N ′ = (AN +B)(CN +D)−1 , (1.20)

where A, B, C y D are (nv + 1)× (nv + 1) matrices such that

m ≡
(
D C
B A

)
∈ Sp(2nv + 2,R) . (1.21)

Thus, whenever the period matrix satisfies (1.20), we can define these symplectic electric-
magnetic duality transformations acting as symmetries of the Maxwell and Bianchi equa-
tions. On the other hand, it is convenient to stress that not all these transformations
are symmetries of the action (1.14) (not even of the sector corresponding to the 1-forms).
However, we can make of these transformations symmetries of all the equations of motion
of (1.14) by restricting the diffeomorphisms ξ ∈ Diff(Mscalar) associated to the duality
transformations to be isometries of the scalar manifold metric Gij̄ . This means that the
homomorphism reduces even more to

i : Isometries(Mscalar,Gij)→ Sp(2nv + 2,R) . (1.22)

Summing up, the symplectic duality transformations which are global symmetries of the
equations of motion correspond to isometries of the scalar manifold which act on the scalars
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as diffeomorphisms, and on the 1-forms through (1.22), provided the period matrix satisfies
(1.20).

Finally, it actually happens that these transformations correspond to symmetries of
the action (1.14) in some cases. The condition for this to be so reads: B = C = 0.

A crash course in Special Kähler geometry

As we have mentioned already, the geometry underlying the vector multiplets of any
N = 2, d = 4 SUGRA is called Special Kähler [155, 402]. Let us now review what it is
about9.

Let (M, J,G) be a d-dimensional Hermitean manifold with complex structure J and
Hermitean metric G. By definition, they satisfy

J ≡ 1

2
JmndX

m ∧ dXn = Jij̄dZ
i ∧ dZ̄ j̄ = 2iGij̄dZi ∧ dZ̄ j̄ , (1.23)

where we have introduced the Kähler 2-form, J , and we have used real, Xm, m = 1, ..., 2d,
and (anti-) holomorphic complex coordinates (Z̄i) Zi, i = 1, ..., d. (M, J,G) is a Kähler
manifold iff its Kähler form is closed

dJ = 0 . (1.24)

Therefore, a Kähler manifold is a Riemannian (G), complex (J) and symplectic (J ) mani-
fold which nicely incorporates in a compatible way the three basic structures of differential
geometry (J (., .) = G (J., .)).

The defininig property of a Kähler manifold immediatly leads to the conditions
∂[kGi]j̄ = ∂[k̄|Gi|j̄] = 0, which in turn imply the vanishing of the torsion and the identifica-
tion of the Hermitean and Levi-Civita connections. These equations are solved in a local
patch U(x) by

Gij̄ = ∂i∂j̄K(x) , (1.25)

or J = 2i∂∂̄K(x), for some function K(x)(Z, Z̄), called Kähler potential. This is not
uniquely defined. Indeed, if we construct a new Kähler potential as

K′(x)(Z, Z̄) = K(x)(Z, Z̄) + λ(Z) + λ̄(Z̄) , (1.26)

it is trivial to see that the metric constructed from it equals the one constructed from the
original one. Similarly, in compact manifolds, Kähler potentials defined on two different
patches U(x), U(y) are related through

K(x) = K(y) + λxy(Z) + λ̄xy(Z̄) , (1.27)

in the overlap U(x) ∩ U(y).

In a Kähler manifold it is possible to define objects transforming under the Kähler
transformations (1.26). Such an object Ψ(Z, Z̄) is said to have Kähler weight (q, q̄) if,
under (1.26), it transforms as

Ψ′ = e−(qλ+q̄λ̄)/2Ψ . (1.28)

9We follow the conventions of [320,353].
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One can define a Kähler-covariant derivative acting on these objects as

Di ≡ ∇i + iqQi , Dī ≡ ∇ī − iq̄Qī , (1.29)

where ∇ is the Levi-Civita (Hermitean) connection and Q is the so-called Kähler 1-form,
which is defined as

Q(x) ≡
1

2i

(
∂ − ∂̄

)
K(x) , (1.30)

so in each patch J = 2dQ(x). Under a Kähler transformation (1.26), this object transforms
as

Q′i = Qi +
1

2i
∂iλ . (1.31)

A situation of particular interest for our purposes is that of fields with q̄ = −q, whose
Kähler transformations are Z-dependent U(1) transformations:

Ψ′ = e−iq=mλ(z)Ψ . (1.32)

In particular, for q = 1, the structure that supports these fields is that of a U(1) bundle
associated to an holomorphic line bundle (i.e., a complex line bundle whose projection
is holomorphic) L → M over the Kähler manifold, being the consistency condition of
this construction that the first Chern class of the line bundle (which can be obtained
from the Ricci 2-form R of the fiber’s Hermitean metric) equals the Kähler 2-form J .
Manifolds with this additional structure are called Kähler-Hodge manifolds, and they play
an important rôle in SUGRA theories. In particular, the manifolds parametrized by the
complex scalars of the chiral multiplets of N = 1, d = 4 SUGRA must be of this kind. The
same occurs for the manifolds parametrized by the complex scalars of the vector multiplets
of N = 2, d = 4 SUGRA (because of which we are talking about this), although these
must satisfy further constraints defining what is called Special Kähler geometry, which we
are finally able to review now.

Let us consider a Kähler-Hodge manifold of complex dimension nv (this is a suitable
name as nv will indeed correspond to the number of vector multiplets of a N = 2, d = 4
SUGRA) and a flat 2(nv + 1)-dimensional vector bundle E → M with structure group
Sp(2(nv + 1);R). The product bundle E ⊗ L → M will be a special Kähler manifold
if there is a section V of it, called covariantly-holomorphic canonical symplectic section,
which satisfies the following properties

−〈V|V̄〉 = i , (1.33)

DīV = 0 , (1.34)

〈Ui|V〉 = 0 , (1.35)

where

Ui ≡ DiV =

(
∂i +

1

2
∂iK

)
V , DīV =

(
∂ī −

1

2
∂īK

)
V , (1.36)

and the symplectic product 〈.|.〉 is defined as

〈A|B〉 ≡ AMBM = −ANΩNMBM = BΛAΛ − BΛAΛ, (1.37)

where we have used symplectic indices M,N = 1, ..., 2(nv+1) or, equivalently, pairs of one
upper and one lower index Λ,Σ = 1, ..., nv+1 and ΩMN = antidiag[I,−I] is the symplectic
metric.
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The canonical section V, which is usually written in components as V = (LΛ,MΣ)T ,
completely defines a N = 2, d = 4 SUGRA model in the absence of hypermultiplets, as
we will see. An important object we can define is the period matrix

MΛ = NΛΣLΣ , hΛi = N̄ΛΣf
Σ
i , (1.38)

where hΛi, f
Λ
i are the components of Ui: Ui = (fΛ

i , hΣi)
T . It can be seen that the defining

properties of the Special Kähler manifold (1.33), (1.34), (1.35) imply NΛΣ to be symmetric
and its imaginary part =mNΛΣ to be negative-definite (which is exactly what we want for
the matrix appearing in (1.14)!).

There are many other useful objects one can construct in a Special Kähler manifold.
In particular, it is convenient to consider another holomorphic section, Ω, which is defined
as

Ω ≡ e−K/2V ≡
(
XΛ,FΣ

)T
. (1.39)

Since e−K/2 and V have Kähler weights (1, 1) and (1,−1) respectively, this is a weight
(2, 0) section. The following expression for the Kähler potential can be now obtained

e−K = −2=mNΛΣXΛX̄Σ . (1.40)

Now, assuming that the lower components of Ω, FΛ, depend on the complex coordinates
Zi only through the upper components X , it can be seen [353] that (1.40) implies the
following relation,

FΛ =
∂F
∂XΛ

, (1.41)

where

F(X ) ≡ 1

2
XΣFΣ(X ) , (1.42)

is the so-called prepotential, which is a homogeneous function of second degree in the
XΛs, as is clear from (1.41) and (1.42). It might be that the prepotential does not exist
for a given holomorphic section Ω. However, it can be shown that there always exists
a symplectic transformation of Ω such that the prepotential exists. From the SUGRA
perspective, this transformation will correspond to a change of coordinates in the scalar
manifold so, for practical purposes, the existence of a prepotential can in general be
assumed. From the prepotential, one can reconstruct the metric of the Special Kähler
manifold and the period matrix as

Gij̄ = −∂i∂j̄ ln
[
i
[
X̄Λ∂ΛF − XΛ∂ΛF̄

]]
, (1.43)

NΛΣ = ∂Λ∂ΣF̄ + 2i
=m(∂Λ∂Λ′F̄)XΛ′=m(∂Σ∂Σ′F̄)XΣ′

XΩ=m(∂Ω∂Ω′F̄)XΩ′
. (1.44)

At this point, it is not difficult to guess what the above objects correspond to in the bosonic
action (1.14) of N = 2, d = 4 SUGRA. Indeed, SUSY imposes Gij̄(Z, Z̄) and NΛΣ(Z, Z̄)
to be identified with the Hermitean metric and the period matrix of a Special Kähler
manifold parametrized by the complex scalars of the vector multiplets, and satisfying all
the relations presented in this subsection. In particular, the period matrix satisfies (1.20),
so the equations of motion of N = 2, d = 4 ungauged SUGRA can be invariant under the
symplectic duality transformations explained in the previous subsection.

Therefore, after truncating hyperscalars and fermions, the theory gets completely
determined by the election of some holomorphic symplectic section for the bundle SM

10
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with structure group Sp(2nv + 2,R) defined on the scalar manifold or, equivalently in
the case it exists, by the election of an holomorphic and homogeneous function of second
degree (the prepotential) F , defined in (1.42), and from which the scalar metric and the
period matrix can be constructed using (1.43), and (1.44). Examples of prepotentials we
will study in the following chapters are

• The CPn model (see chapters 2 and 5), which contains n scalar fields given by
Zi ≡ X i/X 0, which parametrize the symmetric space U(1, n)/(U(1)×U(n))

F = − i
4ηΛΣXΛXΣ , (ηΛΣ) = diag(+− · · ·−) . (1.45)

• The ST [2, n] model (see chapter 5), which is an example of a cubic model

F = − 1

3!
dijk

X iX jX k

X 0
, (1.46)

where d is completely symmetric in its indices, characterized by d1αβ = ηαβ where
(ηαβ) = diag(+ − · · ·−) and where the indices α, β take n values between 2 and
n + 1. In this model, the scalar Z1 = X 1/X 0 plays a special role and parametrizes
a SL(2,R)/SO(2) coset space, whereas the other n scalars, Zα = Xα/X 0 (α =
2, · · · , n), parametrize a SO(2, n)/(SO(2)×SO(n)) coset space.

• Type-IIA string theory compactified to 4D on a Calabi-Yau manifold up to second-
order in derivatives (see chapters 3 and 4) [109–111]

F = − 1

3!
κ0
ijkz

izjzk +
ic

2
+

i

(2π)3

∑
di

ndiLi3

(
e2πidiz

i
)
, (1.47)

where zi, i = 1, ..., nv = h1,1, are the scalars in the vector multiplets, c = χζ(3)
(2π)3 with

χ the Euler characteristic of the C.Y. three-fold, (given by χ = 2(h1,1 − h2,1)), κ0
ijk

are the classical intersection numbers, di ∈ Z+ is a nv-dimensional summation index
and

Li3(x) ≡
∞∑
j=1

xj

j3
(1.48)

is the third polylogarithmic function.

N = 2, d = 4 SEYM

In general (ungauged) N = 2, d = 4 SUGRA theories, the global symmetry group G can
be written as [353]

G = GV ×Ghyper × SU(2)R ×U(1)R , (1.49)

where GV and Ghyper stand for the isometry groups of the Special and quaternionic Kähler
manifolds respectively. N = 2, d = 4 gauged SUGRA theories are those in which some
subgroup of G has been promoted to a local symmetry group through the corresponding
gauging procedure while preserving the supersymmetric structure of the theory.

When a (necessarily non-Abelian) subgroup of GV is gauged the scalar potential is
positive semidefinite, which tipically allows for asymptotically de-Sitter and asymptotically
flat solutions. This is in contradistinction to theories in which a subgroup of SU(2)R (or
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the complete SU(2)R) is gauged via Fayet-Iliopoulos (FI) terms10 in whose case the scalar
potential becomes negative definite, the solutions thus being typically asymptotically anti-
de Sitter. This is the kind of theories we will deal with in the second part of chapter 7.
In particular, a short review of N = 2, d = 4 SUGRA theories with FI gaugings can be
found in section 7.8.

N = 2, d = 4 SEYM theories can be seen as the simplest N = 2 supersymmetriza-
tion of the Einstein-Yang-Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) theories.
They are nothing but theories of N = 2, d = 4 SUGRA coupled to nv vector multiplets
in which a non-Abelian11 subgroup of the isometry group of the (Special Kähler) scalar
manifold has been gauged using some of the vector fields of the theory as gauge fields12.

The bosonic sector of the theory, in the absence of hypers, has the following action

S[gµν , A
Λ
µ, Z

i] =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

−2<eNΛΣF
Λµν ? FΣ

µν − V (Z,Z∗)
]
.

(1.50)

where DµZ
i is the gauge-covariant derivative

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (1.51)

FΛ
µν is the vector field strength

FΛ
µν = 2∂[µA

Λ
ν] − gfΣΓ

ΛAΣ
µA

Γ
ν , (1.52)

and V (Z,Z∗) is the scalar potential

V (Z,Z∗) = −1
4g

2=mNΛΣPΛPΣ , (1.53)

which is positive-semidefinite, since the imaginary part of the period matrix is negative-
definite. In the above equations, kΛ

i(Z) are the holomorphic Killing vectors of the isome-
tries that have been gauged13 and PΛ(Z,Z∗) the corresponding momentum maps, which
are related to the Killing vectors and to the Kähler potential K by

iPΛ = kΛ
i∂iK − λΛ , (1.54)

kΛ i∗ = i∂i∗PΛ , (1.55)

for some holomorphic functions λΛ(Z). Furthermore, the holomorphic Killing vectors and
the generators TΛ of the gauge group satisfy the Lie algebras

[kΛ, kΣ] = −fΛΣ
ΓkΓ , [TΛ, TΣ] = +fΛΣ

ΓTΓ . (1.56)

10The overall U(1)R group cannot be gauged in this way. The Abelian gaugings discussed in the literature
deal with a subgroup U(1) ∈ SU(2)R.

11 The theory becomes identical to the ungauged one when the gauge group is Abelian.
12 A global symmetry group can be gauged if it acts on the vector fields in the adjoint representation.

Furthermore, it is required to be a symmetry of the prepotential; see e.g., [245] for more details.
13 The employed notation associates a Killing vector to each value of the index Λ in order to avoid the

introduction of yet another class of indices and the embedding tensor (see e.g., the reviews [413]); it is
understood that not all the kΛ need to be non-vanishing.

12



Chapter 1. Introduction

For the gauge group SU(2), which is the only one we are going to consider, we use
lowercase indices14 a, b, c = 1, 2, 3 and the structure constants are fab

c = −εabc, so

[ka, kb] = +εabckc , [Ta, Tb] = −εabcTc . (1.57)

We said before that these theories could be seen as the simplest SUSY version of Einstein-
Yang-Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) theories. The main differences
of these w.r.t. the SUGRA theories we are dealing with are the complexification of the
Higgs field and the presence of a non-trivial period matrix. A further difference is the
possibility of having more general scalar manifolds, which is reflected in the expressions
of the gauge-covariant derivatives of the scalar fields.

In chapter 2, we will consider several N = 2, d = 4 SEYM models, for which we
will be able to construct the first examples of regular multi-center black-hole-monopole
solutions of any model of gravity coupled to non-Abelian Yang-Mills(-Higgs) fields as well
as new global-monopole solutions.

More aspects of N = 2, d = 4 SUGRA theories will be highlighted in some of the
following chapters as they are needed for the results presented there. For the moment, let
us close here our introduction to (certain aspects of) supergravity and start dealing with
our second topic of interest, to wit: black holes.

1.2 Black holes

In this section we review some basics about black holes, their thermodynamic properties
and their rôle as supersymmetric objects in SUGRA theories and string theory. We also
introduce the H-FGK formalism, which facilitates the characterization and construction
of static and spherically symmetric black holes of N = 2, d = 4 SUGRA.

1.2.1 Asymptotically flat black holes in General Relativity

In the context of Newtonian mechanics, it was a British geologist, John Michell, who first
conceived the idea of a massive object so dense that its escape velocity would exceed c, so
light would not be able to scape from it. Such an observation was made by Michell in a
letter sent to Cavendish in 1783 and although at this point the interaction between light
and matter was very far from understood, so the comment can be regarded as not much
more than a curiosity, the intuition brought up by Michell is certainly remarkable15. The
issue of these black objects was broadly ignored until Einstein’s formulation of GR [167]. A
few months after his seminal papers appeared, Schwarzschild found the first exact solution
to Einstein’s vacuum equations, which described the gravitational field outside an spherical
distribution of mass, and which would turn out to hide many surprises. In fact, many of
the properties of the Schwarzschild solution were understood many years after, and those
involving the regime in which ~ cannot be neglected are still far from being understood.
Schwarzschild’s solution inaugurated the era of a new class of physical objects: the black
holes.

14These will be a certain subset of those represented by Λ,Σ, . . ..
15Obviously, this Newtonian version of black holes hardly shares any of the properties of GR black holes.
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The precise definition of black hole in GR is rather technical and requires the intro-
duction of several concepts which we are about to review16. In particular, we will start
focusing in the definition of asymptotically flat black holes, which have been of prominent
importance throughout my Ph.D. studies17. So let us get started with the definitions, no
need for anaesthesia.

Two metrics g and g̃ defined on some spacetimeM are conformally related if there
exists an scalar function Ω on M such that g̃ = Ω2g. A conformal compactification of
(M,g) consists of an election of a metric g̃ such that (M, g̃) can be isometrically embedded
(i.e., g̃ is given by the pullback of g′) in a compact domain U ′ of a new spacetime (M′,g′).

A spacetime M is said to be asymptotically simple iff it admits a conformal com-
pactification M′ and all null geodesics in M have future and past endpoints in ∂M′.
Asymptotically simple spaces include Minkowski and the asymptotically flat spaces con-
taining bounded objects such as stars which have not collapsed. They do not include,
however, black holes, as in these there are null geodesics which do not have endpoints in
∂M′ (esentially because of the presence of singularities). We need a more refined defini-
tion for them. A spacetime M is said to be weakly asymptotically simple if there exists
an asymptotically simple spacetimeM′ and a neighbourhood U ′ of ∂M′ inM′ such that
M′ ∩ U ′ is isometric to a subset of M.

Now, M is said to be asymptotically flat if it is weakly asymptotically simple and
its metric in the neighborhood of the boundary of the conformal compactification ∂M′
satisfies Einstein’s vacuum equations. Conceptually, a spacetime of this kind corresponds
to the general relativistic version (in the absence of cosmological constant) of an isolated
system. In a spacetime of this kind, there exists a region far away from any energy
density in which curvature becomes arbitrarily small, and Minkowski geometry is recovered
asymptotically.

Given an asymptotically flat spacetime M, the black hole region B ⊂ M is defined
as

B ≡M− I−(I+) , (1.58)

where I+ stands for the future null infinity (the set of points asymptotically approached
by null geodesics which can escape to spatial infinity) and I− is the chronological past.

The event horizon H of a black hole is defined as the boundary of B. Hence, H is
the boundary of the past of I+.

A black hole therefore consists of a set of points in M from which null geodesics
cannot escape to infinity. Thus, an observer in B cannot have any causal influence on
anything happening outside the horizon: no information sent from the interior of H can
escape from it. Similarly, all information sent into a black hole from the exterior is
inevitably lost forever18. It is convenient to stress that H has no local significance (in fact,
the curvature can be arbitrarily small on H): the whole history of spacetime’s future must
be known in order to determine the location of an even horizon.

If an asymptotically flat spacetime contains a black hole, this is said to be stationary
if it admits a timelike Killing vector field. In such a spacetime, the components of the
metric can be chosen locally so that they are all independent of the time coordinate. A

16Some of the contents in this section are based on [235,419,421]
17However, many of the general properties of black holes we will present afterwards will apply as well

for other kinds of beasts, such as asymptotically AdS black holes.
18All these statements apply only in the framework of GR, and are modified when ~ is at work.
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Chapter 1. Introduction

static black hole is stationary, with the additional property that there exists a family of
space-like hypersurfaces Σ orthogonal to the Killing field.

A null surface K whose generators coincide with the orbits of a uniparametric group
of isometries is called a Killing horizon. A result due to Hawking [235] establishes that for
electrovacuum solutions of 4D Einstein’s equations, the event horizon of any stationary
black hole must be a Killing horizon. Now let K be a Killing horizon (not necessarily an
event horizon) with orthogonal Killing field ξµ. Given that ∇µξ2 is also orthogonal to
K, both vectors must be proportional in every point of the horizon. Hence, there must
exist a function κ, on K, known as surface gravity of K, defined through ∇µξ2 = −2κξµ.
The surface gravity can be thought of as the force required at infinity to hold a unit mass
particle at rest near the horizon.

A final definition useful for our purposes is the following: a 4-dimensional spacetime
is spherically symmetric if its isometry group has an SO(3) subgroup.

1.2.2 Black hole thermodynamics

All we have said so far about black holes holds in the world of General Relativity. It is
also in this framework where the results we are going to review now, known as the laws of
black hole mechanics, are found. Remarkably, these laws strikingly resemble the laws of
thermodynamics. When the machinery of quantum fields in curved spaces is introduced
to analyze this issue, one finds that this apparently accidental analogy is not just that.
Black holes turn out to be thermodynamic objects whose macroscopic thermodynamic
information is encoded in their geometric stucture in a very nice way. Let us go by parts.

Bardeen, Carter and Hawking [27] showed that in case Einstein’s equation is satisfied
for some stress-energy tensor satisfying the dominant energy condition (which requires that
all physical observers measure a speed of energy flow less than or equal to the speed of
light), then κ must be constant on any Killing horizon. This result is usually known as
the zeroth law of black hole mechanics, in an analogy with thermodynamics’ zeroth law,
which establishes that the temperature along a system in thermal equilibrium is constant.

The first law of black hole mechanics [27] is an identity which relates the variations
of mass M (in analogy with energy E in the thermodynamic case), area of the horizon
A (in analogy with the entropy S as we will see in a moment), angular momentum J ,
electric charge Q, and other magnitudes when a black hole is perturbed. At first order,
this variations turn out to satisfy

δM =
1

8π
κδA+ ΩδJ + ΦδQ+ ... , (1.59)

where Ω is the angular velocity, and Φ the electrostatic potential.

If Einstein’s equation is satisfied for a matter content satisfying the null energy
condition (which states that for every future-pointing null vector field V µ, the stress tensor
satisfies: TµνV

µV ν ≥ 0) and the black hole is strongly future asymptotically predictable,
i.e., if there exists a globally hyperbolic region (such that it contains a Cauchy surface,
i.e., one which is crossed by every inextensible null and time-like curve once, and only
once) containing I−(I+) ∪ H (where H is the horizon of a black hole in that spacetime),
it can be shown that the expansion θ (which measures how much geodesics infinitesimally
close to each other in a congruence expand in average) satisfies θ ≥ 0 in all points of H.
As a consequence, the area of the event horizon A corresponding to a black hole contained
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Chapter 1. Introduction

in a spacetime of this kind can never decrease with time, as discovered by Hawking [233].

δA ≥ 0 . (1.60)

This is the second law of black hole mechanics, in analogy with the second law of thermo-
dynamics, which establishes that the entropy of an isolated system cannot decrease.

The mathematical analogy between these and the laws of thermodynamics is broken
with the Planck-Nernst form of the third law of thermodynamcis, which establishes that
S → 0 as T → 0. Indeed, there are extremal black holes (i.e., those with κ = 0 ) with
finite area. In any case, the analogy seems to hold in the formulation according to which
it is not possible for a thermodynamic system (black hole) to reach T → 0 (κ → 0) by
means of a finite number of physical processes.

In spite of the suggesting analogy we have established between the laws satisfied by
magnitudes characterizing black holes, and thermodynamics, the strict interpretation of
M , A or κ as thermodynamic quantities does not make sense in GR. Although identifying
the mass of the black hole M with the energy looks fine, the temperature of a black hole
in GR is strictly zero, since it does not radiate anything. This of course difficults the
identification of T and κ. As a consequence, identifying the conjugate variable of T , S
with the area of the black hole looks also dubious.

Interestingly enough, when quantum effects are taken into account, the situation
turns out to change dramatically. Indeed, as discovered by Hawking in 1974 [234], black
holes emit radiation as perfect black bodies at a temperature

T =
κ

2π
. (1.61)

Thus, surface gravity is after all related to the physical temperature of the black hole.
This is also supporting evindence for the proportionality between the area of the black
hole and its physical entropy. Using the first law of black hole mechanics and (1.61) one
can fix the proportionality constant to be 1/4, so Sbh = A

4G .

Actually, some time before Hawking discovered the relationship between surface
gravity and temperature, Bekenstein [39, 40] had already proposed a generalization of
the second law of thermodynamics for systems including a black hole as a subsystem.
The motivation for this arised, in addition to the formal analogies between black holes
mechanics and thermodynamics, from the fact that the absortion of matter by a black hole
would produce a decrease in the total entropy of the Universe. In order to overcome this
problem, Bekenstein had proposed that black holes actually have an entropy proportional
to its area, so the second law of thermodynamics would read now δS′ ≥ 0, where S′ ≡
S + Sbh, with Sbh the entropy of the black hole, and S that of the rest of the Universe.

In summary, the laws of black hole mechanics can be regarded as particular cases
of the laws of thermodynamics applied to systems which contain black holes. Now, just
like the laws of statistical physics underlie the laws of thermodynamics, it is reasonable
to expect that black hole mechanics is determined by the dynamics of certain microscopic
degrees of freedom. In the context of string theory, the counting of microstates can be
achieved for certain families of extremal and near-extremal black holes [34, 54, 80, 81, 239,
312, 403] as observed by Strominger and Vafa for the first time in [403] (see more at the
end of section (3.4)).
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1.2.3 Black holes and supersymmetry

In a SUGRA theory19, a configuration of fields is said to be supersymmetric or BPS
(from Bogomol’ny-Prasad-Sommefield) if it preserves some supersymmetry, i.e., if (see
the previous section for notation) [354]

δεB ∼ ε̄F = 0 , (1.62)

δεF ∼ ∂ε+Bε = 0 , (1.63)

for at least one spinor ε. For purely bosonic configurations, the first equation is trivially
satisfied, while the second is known as Killing spinor equation (KSE) and ε is a Killing
spinor if there exists a solution for the corresponding equation. If a given configuration
is invariant under the maximum number of independent Killing spinors, it is said to be
maximally supersymmetric.

It is possible to couple a Rarita-Schwinger spin 3/2 field Ψµ to gravity [183, 353].
The resulting theory is pure N = 1, d = 4 SUGRA. If we now truncate the gravitino, the
bosonic solutions of the original theory (vacuum GR) will still be solutions of the SUGRA
theory. In particular, Schwarzschild’s metric

g =

(
1− 2M

r

)
dt⊗ dt−

(
1− 2M

r

)−1

dr ⊗ dr − r2hS2 , (1.64)

hS2 = dθ ⊗ dθ + sin2 θdφ⊗ dφ , (1.65)

which is the unique static and spherically symmetric solution of the vacuum Einstein
equation (Birkhoff’s theorem) will also be a solution of N = 1, d = 4 SUGRA. However,
it is not supersymmetric, because the corresponding KSE

δεΨµ|Schw. = 0 (1.66)

has no solutions. On the other hand, Minkowski spacetime is maximally supersymmetric,
as it preserves four supersymmetries, corresponding to the components of a 4D Majorana
spinor. Obviously, in the asymptotic region r → ∞, the supersymmetries are recovered
for Schwarzschild’s solution, a characteristic which will be common to all asymptotically
flat solutions.

Let us consider now the Reissner-Nordström (RN) solution, which is the only asymp-
totically flat, static and spherically symmetric solution of the Einstein-Maxwell system

g =

(
1− 2M

r
+
q2

r2

)
dt⊗ dt−

(
1− 2M

r
+
q2

r2

)−1

dr ⊗ dr − r2hS2 , (1.67)

where q is the electric charge of the solution. In this case, the solution has two horizons
at r± = M ±

√
M2 − q2: the inner horizon r−, which is a Cauchy horizon, and the event

horizon r+.

According to the cosmic censorship hypothesis, it is not possible that a naked sin-
gularity (i.e., one which is not hidden behing an event horizon) is produced dynamically
by means of any physical process with a physically reasonable matter content (such that

19A nice introduction to the relation between black holes and supersymmetry in SUGRA theories can
be found in [47].
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it satisfies certain energy conditions). In the case of the RN black hole, the condition
M2 ≥ q2 must be fulfilled in order to avoid the absence of event horizon. This relation
is remarkably similar to the BPS bound relative to the stability of solitons in gauge theo-
ries [373]. When the bound is saturated, M2 = q2, both horizons coincide, and the black
hole becomes extremal, because

T =
κ

2π
=
r+ − r−

4πr2
+

=

√
M2 − q2

2π2r2
+

= 0 . (1.68)

From the point of view of SUSY, what happens is the following. The Einstein-Maxwell
theory can be consistently embedded in pure N = 2, d = 4 SUGRA by introducing two
gravitini ΨL

µ , L = 1, 2 (and nothing else). For generic values of M and q, RN’s black
hole does not preserve any of the 8 supercharges. However, the saturation of the bound
M2 = q2 makes the KSE

δεΨµ|RN extr. = 0 (1.69)

have four independent solutions, making a 1
2 -BPS solution of it. In addition, the solution

can be interpreted as a soliton, as it interpolates between two maximally supersymmetric
vacua of the theory, namely: the near horizon solution AdS2 × S2, and the asymptotic
solution, Minkowski.

An interesting property of an extremal solution is that its entropy depends only on
the quantized electric and magnetic charges of the solution, which is a key feature that al-
lows for a comparison between the macroscopic (Bekenstein-Hawking) and the microscopic
(string theory) entropy. In addition, in supersymmetric black holes all the information
relative to the asymptotic values of the fields is lost in the horizon. In that case, if we
understand the trip between spatial infinity and the horizon as a flow, the scalars lose
all memory about the initial configuration and are attracted by certain configurations
known as attractors. In non-supersymmetric extremal cases, the system also contains
fixed points at the horizon, but these depend in general on the asymptotic values of the
scalars. All these properties are a direct consequence of the so-called attractor mecha-
nism [46, 48, 127, 173–177, 210, 384, 414] for extremal black holes, which establishes that
the scalars of any extremal black-hole solution of a broad class of theories flow from arbi-
trary values at spatial infinity to others completely fixed in the horizon, and which in the
supersymmetric cases are determined uniquely by the quantized charges of the black hole.
This mechanism is rather general, and turns out to work for any theory whose action can
be described by (1.14), particularly in SUGRA theories.

It can be seen that the most general form of a static and spherically symmetric black
hole for an action of the form (1.14) is given by [173]

g = e2U(τ)dt⊗ dt− e−2U(τ)γmndx
m ⊗ dxn ,

γmndx
m ⊗ dxn =

r2
0

sinh2 r0τ

[
r2

0

sinh2 r0τ
dτ ⊗ dτ + hS2

]
,

(1.70)

where τ is a (inverse) radial coordinate and r0 is the non-extremality parameter, which
vanishes for extremal configurations. In such a case, the outer horizon is covered by
τ ∈ (−∞, 0), with the horizon at τ → −∞ and spatial infinity at τ → 0−. The inner
Cauchy horizon is covered by (τS ,∞), with the horizon at τ → ∞, and the singularity
at some positive and finite τS [190]. Under the assumption that the spacetime is static
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and spherically symmetric, all the fields of a theory given by an action of the form (1.14)
depend only on τ . Maxwell equations can be explicitly integrated, so the vector fields can
be obtained as functions of the radial coordinate and the electric qΛ and magnetic charges
of the solution pΛ. Solving the equations of motion of the theory turns out to be equivalent
to solving the one-dimensional equations of motion for U(τ) and Zi(τ) corresponding to
the so-called FGK effective action [173]

IFGK[U, zi] =

∫
dτ
{

(U̇)2 + Gij̄Żi ˙̄Z j̄ − e2UVbh(Z, Z̄,Q)
}
, (1.71)

together with the Hamiltonian constraint

(U̇)2 + Gij̄Żi ˙̄Z j̄ + e2UVbh(Z, Z̄,Q) = r2
0 , (1.72)

where Vbh(Z, Z̄,Q) is the so-called black hole potential, which is defined as

Vbh(Z, Z̄,Q) ≡ 1

2
MMN (N )QMQN , (1.73)

QM being the symplectic (2nV + 2)−dimensional vector of charges

(
QM

)
=

(
pΛ

qΛ

)
, (1.74)

andMMN (N ) is a symplectic and symmetric matrix defined in terms of I ≡ =m(N ) and
R ≡ <e(N ) as

(MMN (N )) ≡

 I +RI−1R −RI−1

−I−1R I−1

 . (1.75)

Thus, this dimensional reduction allows to simplify the problem of finding black-hole
solution of this kind to a mechanical problem for the (2nV + 1) variables corresponding to
the complex scalars Zi and the metric factor U .

Let us now see how the attractor mechanism works in this formalism. In the extremal
limit, r0 → 0, (1.70) is given by

g = e2U(τ)dt⊗ dt− e−2U(τ)[δabdx
a ⊗ dxb] , (1.76)

where xa (a = 1, 2, 3) are Euclidean coordinates. It can be seen that in this situation,

lim
τ→−∞

e−2U =
A

4π
lim

τ→−∞
τ2 , lim

τ→−∞
τ
dφi

dτ
= 0 , i = 1, ..., nv , (1.77)

where A is the area of the horizon. Using this equation and assuming that the scalars do
not diverge at the horizon, it is easy to show from the 1-dimensional equation of motion
corresponding to these fields that [386]

lim
τ→−∞

φi = φih , Gij(φh)∂jVbh(φh) = 0 , (1.78)

thus, assuming the metric of the scalar manifold not to be degenerate, it follows that

∂jVbh(φh) = 0 , (1.79)
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i.e., the possible values of the scalars at the horizon correspond to critical points of the
black-hole potential. If Vbh has no flat directions (something untrue in general), then
(1.79) is a compatible system of nv independent equations, the value of all the scalars gets
fixed in the horizon in terms of the black hole charges. Similarly, in the extremal case
(supersymmetric or not), it can be seen [386] that the entropy of the solution is given by

S = πVbh(φh(Q)) = 0 . (1.80)

And not only that: regardless of whether the scalars at the horizon depend on their
asymptotic values (if Vbh has flat directions) or not, the entropy of any extremal solution
depends only on the quantized charges of the solution, without any dependence on these
asymptotic moduli. An additional property of extremal black holes entropy is the fact
that it turns out to equal the square-root of the products of the entropies of the inner and
outer horizons, so this product remains moduli-independent for non-extremal solutions
(see e.g., [211] for details). Examples of all these properties can be found in chapters 2, 3
and 5.

We mentioned before that Schwarzschild’s is the only static and spherically-symmetric
solution of Einstein’s equation in the vacuum. Similar uniqueness theorems exist for less
symmetric spacetimes, such as Kerr-Newmann [318] as the only stationary, axisymmetric
and electrovacuum solution, and possible extensions to systems with more fields have been
studied intensively [38, 41, 143]. In the context of SUGRA theories, there is a common
belief that given a black-hole solution with some degree of symmetry and all the charges
and fields active, that must be the unique solution of the kind. In chapter 4 we show
how this is not the case in general for N = 2, d = 4 SUGRA theories, by constructing
a static and spherically symmetric black-hole solution (to a rather exotic, but otherwise
well- and uniquely-defined model) whose physical fields depend on a function which is
bivalued in the real numbers, something that allows one to choose one of the two branches
(which are not symmetric in any sense) to construct two different solutions which share
the same physical charges as well as asymptotic values of the scalar fields (as we will see,
our construction seems to entail certain stability issues though).

1.2.4 The H-FGK formalism

In Refs. [324,331] it was shown that the problem of finding static, single-center, spherically-
symmetric black-hole solutions of any ungauged N = 2, d = 4 SUGRA theory coupled to
nv vector multiplets can be reduced to that of finding solutions to the effective action for
the 2(nv + 1) real variables HM (τ)

− IH-FGK[H] =

∫
dτ
{

1
2gMNḢ

MḢN − V
}
, (1.81)

subject to the Hamiltonian constraint

1
2gMNḢ

MḢN + V + r2
0 = 0 , (1.82)

where r0 is again the non-extremality parameter. The H-FGK action plus Hamiltonian
constraint are equivalent to the FGK formulation (see the previous section), although now
we have an extra variable which introduces a gauge freedom in the system [189]. The
equations of motion that follow from the above action read [189,331]

gMNḦ
N + (∂NgPM − 1

2∂MgNP )ḢNḢP + ∂MV = 0 . (1.83)
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The metric gMN (H) and the potential V (H) of the H-FGK effective action are given in
terms of the so-called Hesse potential W(H) by

gMN (H) ≡ ∂M∂N logW − 2
HMHN

W2
, (1.84)

V (H) ≡
{
−1

4∂M∂N logW +
HMHN

W2

}
QMQN , (1.85)

where QM = (pΛ, qΛ)T is the symplectic vector of magnetic and electric charges. The
Hesse potential contains all the information needed to characterize the N = 2, d = 4
SUGRA theory under consideration, and defines it (at least in this context) just like the
canonically-normalized covariantly-holomorphic symplectic section VM does. The black-
hole potential is related to the potential V appearing in the H-FGK action by

Vbh = −W V , (1.86)

as a function of the variables HM , and it is always extremized by the near-horizon value
BM = βQM for any proportionality constant β.

W can be derived from VM as follows:

1. Introduce an auxiliary complex variable X with the same Kähler weight as VM .
Then we can define the two Kähler-neutral real symplectic vectors RM and IM

VM/X ≡ RM + iIM . (1.87)

The components of RM can be expressed in terms of those of IM by solving the sta-
bilization equations a.k.a. Freudenthal duality equations [191]. The functions RM (I)
are characteristic of each theory, but they are always homogeneous of first degree in
the IM .

It can be shown that

X = 1√
2
eU+iα , (1.88)

where eU is the metric function (see (1.70)) and α is an arbitrary τ -dependent phase
which does not enter in the Lagrangian: different choices of α give different defini-
tions of the variables HM which, nevertheless, describe the same physical variables.
This freedom gives rise to a local symmetry of the H-FGK action, known as local
Freudenthal duality [189].

2. Given those functions, the Hesse potential W(I) is just

W(I) ≡ RM (I)IM , (1.89)

so it is, by construction, homogeneous of second degree in IM .

It is customary to relabel these variables

HM ≡ IM , H̃M ≡ RM , −→


VM/X = H̃M + iHM ≡ HM .

W(H) = H̃M (H)HM .

(1.90)
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The physical fields of the solution can be obtained from the H variables as

Zi =
V i/X
V0/X

=
H̃ i(H) + iH i

H̃0(H) + iH0
, e−2U =

1

2|X|2
= H̃M (H)HM . (1.91)

The main advantages of this formalism can be enumerated as follows (for more details see
chapter 2)

• The H variables transform linearly under the electric-magnetic duality group G of
the theory:

HM ′ = SMNH
N , (SMN ) ∈ G ⊂ Sp(2nv + 2;R) , (1.92)

which implies that any solution must be of the form

HM (τ) = cσ(τ) UMσ , (1.93)

where the functions cσ(τ) are duality invariant; the symplectic vectors UMσ are con-
stant vectors that may depend on the physical parameters of the theory (mass M ,
electric and magnetic charges QM and asymptotic values of the scalars Zi∞) and
must be equivariant w.r.t. the duality group, i.e.

UMσ (M,Z ′∞, Z
∗ ′
∞,Q′) = SMNU

N
σ (M,Z∞, Z

∗
∞,Q) , (1.94)

with

Zi ′ ≡ F iS(Z) , QM ′ = SMNQN , (1.95)

where F iS(Z) is the non-linear realization of the duality transformation SMN on the
complex scalars. In the cases in which the number of equivariant vectors of the
model is smaller than the number of HM s, we will automatically be left with a small
number of invariant functions to be determined. The identification of equivariant
vectors UMσ in a given model allows to produce Ansätze of the form (1.93), which
can be used to solve the H-FGK equations of motion and obtain the cσ(τ), which
would completely determine a solution to the full SUGRA equations of motion.

• Contracting (1.83) with HM and using the homogeneity properties of the different
terms and the Hamiltonian constraint Eq. (1.82) one finds

H̃M

(
ḦM − r2

0H
M
)

+
(ḢMHM )2

W
= 0 . (1.96)

This allows to classify all SUGRA solutions of a given model in two categories:
conventional, and non-conventional. In the extremal case (r0 = 0), conventional
solutions (all supersymmetric solutions belong to this class) correspond to variables
HM (τ) that are harmonic functions, i.e., they satisfy ḦM = 0. The above equation
implies that they also satisfy the constraint 20

ḢMHM = 0 , (1.97)

20In the supersymmetric case this implies the absence of NUT charge [42].
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the converse being untrue in general: the above constraint can be satisfied for black-
hole solutions which are not given by harmonic HM s and that we will call uncon-
ventional. In the non-extremal cases, conventional solutions are those satisfying

ḦM = r2
0H

M , (1.98)

which correspond to hyperbolic functions reducing to the appropriate harmonic ones
in the extremal limit. Actually, it can be shown that one can impose (1.97) without
loss of generality (it can be understood as a convenient gauge-fixing condition) [189],
although that does not necessarily mean that (1.98) is implied by (1.96) (actually in
(1.96) one has only one equation, whereas in (1.98) there are 2(nv + 1) of them).

• It works: the H-FGK formalism has been indeed used to construct new extremal
and non-extremal solutions of different SUGRA theories [89, 90, 95, 96, 188, 191]. In
fact, the solutions presented in chapters 3 and 4 would have been extremely difficult
to obtain, if not impossible, without the H-FGK formalism.
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1.3 Holography

In this section21 we enter into the holographic world. After a more than brief introduction
to the AdS/CFT correspondence, we review the rôle played by higher-order gravities in
the holographic avatar, introduce the concept of entanglement entropy and its importance
in holography, and review some general properties of Lifshitz geometries with hyperscaling
violation (hvLf).

1.3.1 The AdS/CFT correspondence

In [311], Maldacena proposed his celebrated AdS/CFT correspondence. According to it,
Type-IIB ST on AdS5×S5 is physically equivalent to N = 4, d = 4 Super-Yang-Mills
with gauge group SU(N). Although the conjecture has not been proven, the overwhelming
evidence accumulated so far strongly supports it. This is especially so in the large-N
(where N is the dimension of the SU(N) matrices) limit, in which the field theory becomes
infinitely strongly coupled while the ST side reduces to classical 5-dimensional SO(6)
gauged SUGRA.

Grosso modo, in the large-N limit of the correspondence asymptotically AdS5 ge-
ometries correspond to states in the N = 4, d = 4 SYM theory living in the asymptotic
boundary of those (e.g., the vacuum state corresponds to pure AdS5, whereas a thermal
state is given by an asymptotically AdS5 black hole), with the nice feature that the extra
(spatial) dimension encodes the renormalization group flow of the field theory.

As anticipated before, the AdS/CFT correspondence [219,311,423] is the first real-
ization of the holographic principle [404, 409]. This is nothing but the observation that,
in gravity theories, the entropy contained in a certain volume cannot exceed the entropy
of a black hole fitting inside such a volume (you could always create a black hole by
throwing more matter into the volume, which would increase the entropy) and, as already
commented, the entropy of the black hole is proportional to its horizon area. This seems
to suggest that the degrees of freedom of any (d + 1)-dimensional gravity theory can be
described in terms of certain degrees of freedom living in some d-dimensional surface. The
reasoning is expected to hold for general gravity theories, something that, after Malda-
cena’s discovery, motivates the broader name gauge/gravity duality (or holography), which
makes reference to several more or less robustly established correspondences in the spirit
of Maldacena’s, between several gravity and gauge theories in various dimensions.

A particularly nice property of the gauge/gravity duality is the fact that it allows
to study the strongly coupled regime of (certain) QFTs, which is inaccessible with the
standard field theory techniques, using the tools of Riemannian geometry and GR. This
approach has been used, for example, to study aspects of less symmetric field theories,
whose dual is given by gravity theories living in non-maximally symmetric spacetimes.
From the opposite perspective, the duality provides an unrivalled framework for studying
the emergent quantum nature of spacetime and gravity.

21Please note that by the symbol d we are meaning different things depending on the chapter/section.
In the previous sections, d stood for the number of spacetime dimensions. This is the notation used so far,
and the one we use in chapters 2, 3, 4, 5 and 6. However, in this section as well as in chapter 9, d will
stand for the number of spacetime dimensions of the dual QFT (so d + 1 is the spacetime dimension of
the gravity theory). Finally, in chapters 7 and 8, d will stand for the number of spatial dimensions of the
dual QFT (so d+ 2 is the spacetime dimension of the gravity theory).
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In spite of the colossal effort and the tremendous success made so far in these
directions, there are still multiple formidable challenges for holography. On the one hand,
one would like to extend this duality to realistic QFTs, such as QCD, in which a first-
principles description of the phenomena observed at the strongly coupled regime is lacking
(how great would it be to explain confinement holographically? [424]). On the other, the
holographic principle should work for gravity theories in general backgrounds and not only
for AdS spacetimes. However, constructing asymptotically flat or de Sitter versions of the
correspondence has proven to be strikingly difficult (the fact that the AdS case is simpler is
intimately related to the fact that the near horizon limit of supersymmetric black objects,
which play an special rôle in ST due to the privileges this symmetry confers on them
within the theory, generically contains an AdS factor). In addition, our knowledge of the
AdS/CFT correspondence is fairly limited if we slightly move away from the large-N limit,
not to mention if we try to consider the full Type-IIB string theory.

1.3.2 Holography and higher-order gravities

A particular issue with holography we have already mentioned arises when we try to
move from the large-N limit in the dual CFT. In that situation, α′ corrections appear
in the effective SUGRA equations of motion in the form of higher-order terms in the
Riemann tensor (and the rest of fields). For example, the first stringy corrections to the
10-dimensional Type-IIB action [56]22 appear at third order in α′

IIIB = I
(0)
IIB + α′

3
I

(1)
IIB + ... (1.99)

where I
(0)
IIB stands for the classical Type-IIB SUGRA action, and the dots refer to higher-

order corrections. For gravity solutions of the form A5×S5, where A5 is an Einstein
manifold of negative curvature, the 10-dimensional gravity sector of the theory at this
order is equivalent to the following 5-dimensional action [86]

I =
1

16πG

∫
d5x
√
−g

[
R+

12

L2
+
ζ(3)α′3

8
W

]
, (1.100)

where L is some length parameter which coincides with the AdS radius in the absence of
the cubic term, and

W ≡
[
CρµνκCφµνη +

1

2
CρκµνCφηµν

]
Cρ

ιψφCη ιψκ , (1.101)

where

Cµνρσ ≡ Rµνρσ −
2

3

[
gµ[ρRσ]ν − gν[ρRσ]µ

]
+

1

6
Rgµ[ρgσ]ν (1.102)

is the five-dimensional Weyl tensor.

As we can see, in this case the first correction to the Einstein-Hilbert action appears
at fourth order in curvature. However, in generic situations in arbitrarty dimensions one
expects corrections already at second order (which would mean O(α′)), i.e., something

22Strictly speaking, Type-IIB SUGRA has no action, because of the self-duality condition of the Ramond-
Ramond 4-form field strength, but you know what I mean.
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like

I =
1

16πG

∫
d(d+1)x

√
−g
[
R+

d(d− 1)

L2
+ L2

{
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
}

+ ...

]
,

(1.103)
where the αi would be dimensionless constants, and the dots stand for higher-order terms.

The interest in considering higher-order corrections to the SUGRA action in the
context of holography is not restricted to the obvious fact that it allows us to probe the
CFT in a regime which is not infinitely strongly coupled. In some sense, the situation
is similar to that found (for instance) when studying the Hydrogen atom energy states:
when relativistic corrections are considered, several accidental degeneracies are broken,
and the structure proves to be much richer than that suggested by the non-relativistic
calculation. A neat example of this analogy was found in [84], where the authors showed
that considering higher-order terms in the holographic game allowed for a violation of the
previously [288] presumed universal bound for the ratio of shear viscosity to volume entropy
density (η/s = 1/4π in natural units) obtained for AdS black hole horizons. In that case,
the degeneracy is broken in the sense that the new higher-order terms produce corrections
of the form η/s = 1/4π (1 + cα+ ...), where α stands for a generic dimensionless higher-
order coupling, and c is some constant, so depending on the theory, the value of the
ratio will be larger or smaller than the previously claimed universal lower bound. In a
similar fashion, including higher-order terms allows to study hidden connections between
apparenty unrelated observables. Consider for example the thermal entropy density of an
AdS black hole and the two-point function of the holographic stress tensor. In general,
the first scales with the temperature through an expression of the form23 s ∼ T (d−1) (here
d+1 is the number of dimensions of the bulk theory), whereas the second looks something
like [169, 356] 〈Tab(x)Tcd(0)〉 ∼ Iab,cd(x)/x

2d, where Iab,cd(x) is some tensor irrelevant for
our discussion here. The point is now the following: if we compute these quantities in
gravity theories which do not include higher-order terms, the constants in front of these
two expressions are certain dimensionless numbers which have nothing to do with each
other (in particular, the second one turns out to equal the central charge of the dual
CFT when d = 4 [85]). However, if we include a generic higher-order term with coupling
constant α, the expressions will be modified to something like s ∼ (1 + c1α)T (d−1),

〈Tab(x)Tcd(0)〉 ∼ (1 + c2α)Iab,cd(x)/x
2d , (1.104)

so a structure of the same kind appears in both relations, which makes one wonder,
for example, in which cases might c1 = c2? What would that tell us about the relation
between these observables? Is there a finite number of constants ci characterizing a higher-
order theory which appear repeatedly as we compute different observables? And so on.
This is the kind of questions we address in chapter 9. As a remarkable result, we will
find that two well-defined and unambiguous charges κ and σ, which can be obtained
from the holographic entanglement entropy corresponding to an entangling region with a
geometric singularity in a CFT3 (see below), turn out to be such that the ratios κ/CT and
σ/CT (where CT is the proportionality constant in the stress tensor two-point function, so
〈Tab(x)Tcd(0)〉 = CTIab,cd(x)/x

2d in general) does not change when we introduce different
higher-order terms. This leads us to wonder whether such ratios, which read

κ

CT
=

Γ
(

3
4

)4
π2

6
, (1.105)

23We will see that this behaviour is changed for geometries with hyperscaling violation.
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σ

CT
=
π2

24
, (1.106)

are universal. By comparing these results with the free field results which we can compute
using certain computations available in the literature, we find that κ/CT is not universal for
general theories. However, very remarkably, we find that σ/CT is equal to the holographic
result both for a free scalar and a free fermion, which suggests that this ratio is indeed a
universal number which might well be the same for general conformal field theories. On the
one hand, this universality strongly supports the validity of the holographic prescriptions
for the computation of HEE. On the other, it explains why the results for σ corresponding
to the fermion and the scalar are equal (up to a factor 2), a phenomenom which had been
found (only within some accuracy range) withouth explanation in [119]. Finally, we use
the universality of this ratio to improve the available free field results for σ. In particular,
holography remarkably allows us to compute σscalar and σfermion exactly.

A final comment about higher-order gravities (applying not only in the context of
holography) is the fact that they are usually not well behaved quantum mechanically,
as they suffer from certain pathologies such as ghosts. In particular, in higher-order
gravities the metric contains new degrees of freedom, something related to the fact that
the linearized equations of motion are no longer of second order. In order to study their
behaviour, one can consider an analogy [341] consisting of a massless scalar field whose
equation of motion has been corrected with a fourth-order term, just like the equation of
motion for a graviton would be in a curvature-squared gravity(

� +
λ

M2
�2

)
φ = 0 , (1.107)

M2 ∼ 1/L2 being some high energy scale. Then, the propagator for the field will read

1

q2 (1− λq2/M2)
=

1

q2
− 1

q2 −M2/λ
. (1.108)

Thus, the q2 = 0 pole will be the usual massless mode, whereas that with q2 = M2/λ
will be related to new massive states. However, independently of the sign of λ, these
extra degrees of freedom will contribute negatively to the propagator, so they are ghosts.
Fortunately, not all higher-order gravities present this behaviour, and even if they do, the
masses of these modes will generically be at the Planck scale, where the low energy field
theory description is not valid anymore, making their physical interpretation obscure.

We will talk again about higher-derivative gravities in the next subsection, which is
devoted to the subject of holographic entanglement entropy.

1.3.3 Holographic entanglement entropy

There are many observables one can wish to compute in a QFT (specially in the pertur-
bative regime), such as correlation functions of local operators. Non-local quantities are
also important, and usually encode valuable physical information. An example of such
quantities is entanglement entropy (EE). For a particular QFT and a spatial region A,
the EE between de degrees of freedom in A and those in the complement Ā is defined as:
S = −Tr [ρA log ρA], where ρA is the reduced density matrix obtained by integrating out
the degrees of freedom in Ā.
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Entanglement entropy has become an ubiquitous tool in fields as diverse as con-
densed matter [8,218,292,364], quantum information [345,425], string theory and quantum
gravity [68, 73, 101, 236, 295, 310, 336, 347, 378, 379, 400, 415], and QFTs [100, 117, 119, 123,
275,276,388].

As its name suggests, EE is a measure of the degree of entanglement between the
degrees of freedoms living at A and Ā, and has some nice properties which make it so
popular. To begin with, it is computable for certain QFTs, which is already a non-trivial
point. Also, as opposed to thermal entropy, EE is non-vanishing at zero temperature, so
it can be used to probe the quantum properties of the ground state for a given quantum
system. In addition, for two-dimensional CFTs it is proportional to the central charge
[238], with similar relations occuring for higher-dimensional CFTs as well [85] (so it allows
for a rough estimation of the number of degrees of freedom of the theory). In addition, it
captures valuable information on renormalization group flows. In particular, it is possible
to construct c-functions in various dimensions using EE [341]. Also, in holography, it
seems to be a key observable to consider when trying to understand the emergent nature
of spacetime or the physics of black holes (see, e.g., [25, 68,310,348]).

The ultraviolet (UV) behaviour of EE for arbitrary (d + 1)-dimensional QFTs is
expected to be [119]:

S =
kd−1

δd−1
+ ...+

k1

δ
+ γ log

l

δ
+ S0 , (1.109)

δ being a short distance cutoff, S0, γ and kd−i constants, and l a characteristic length of A.
The coefficient in front of the leading term is proportional to the area of the boundary of
A (kd−1 ∼ ld−1), a behaviour which is argued to be caused by the entanglement between
degrees of freedom living at both sides of ∂A, and which is often referred to as the area
law [73, 400] of EE. Another interesting term is the one proportional to log l/δ: while
the constants kd−i are unphysical, since they are not related to well-defined quantities
in the continuum24, the coefficient γ is expected to be independent of the regularization
procedure. When d is even, γ is generically non-vanishing, whereas for odd-d QFTs the
logarithmic divergence disappears, and S0 is the universal term, unless the entangling
region A contains a geometric singularity. Thus, when the boundary of the entangling
region presents such kind of singularity (imagine for example a corner in d = 3), the EE
contains a universal term of that form, where γ is a function of the opening angle of the
singularity [118,120,180,237]. In chapter 9, we study how the introduction of higher-order
gravities affects this universal contribution within the context of holographic entanglement
entropy, which we are about to introduce.

As we have explained, holography allows us to study certain QFTs in the strongly
coupled regime using GR tools, which tend to be computationally simpler by several orders
of magnitude. In the case of entanglement entropy, this is especially true, as the QFT
computation using standard methods is extremely challenging even in the weakly coupled
or free regimes, while the holographic prescription we will present in a second is very
simple and computationally powerful in lots of cases.

Holographic entanglement entropy (HEE) for theories dual to Einstein gravity can
be computed using the Ryu-Takayanagi prescription [379]25. According to it, the HEE
for a certain region A living in the boundary of some asymptotically AdSd+1 spacetime is

24Indeed, if we shift δ → δε, the coefficient kd−i changes as kd−i → kd−iε
i−d.

25This prescription has been recently proven under certain conditions in [296].
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given by

S = ext
m∼A

[
A(m)

4G

]
, (1.110)

where m are codimension-2 bulk surfaces homologous to A with ∂m = ∂A, and A(m) is
the (d − 1)-dimensional volume (area) of m. Hence, HEE in theories with an Einstein
gravity dual is obtained by extremizing the area functional over all possible bulk surfaces
homologous to A whose boundary coincides with ∂A.

The Ryu-Takayanagi prescription is obviously reminiscent of the Bekenstein-Hawking
formula for the entropy of black holes. Indeed, since the minimal surface tends to wrap
the horizon when there is one [346], formula (1.110) can be regarded as a generalization
of Bekenstein and Hawking’s.

Besides reproducing all the known results available from CFTs in various dimensions,
(1.110) can be used for numerous purposes. To name a few:

• The possibility of proving holographic c-theorems in various dimensions using the
universal terms in the HEE along renormalization group flows [341].

• Establishing seemingly deep connections between AdS/CFT and renormalization
group schemes, in which the geometry of AdS can be constructed as an emergent
quantity [348].

• Providing supporting evidence for certain conjectures concerning the quantum na-
ture of gravity [68], including the ER=EPR [310] one [405].

As we have said, (1.110) can be used for holographic theories dual to Einstein gravity.
When higher-order gravities are considered, this needs to be somehow generalized. In
view of the analogy between the Bekenstein-Hawking formula and the Ryu-Takayanagi
one, it is tempting to guess that an analogous generalization of the Wald entropy formula
for black holes in higher-order gravities [420]

SWald =
1

4G

∫
H
dd−1x

√
hH

∂L
∂Rµνρσ

εµνερσ , (1.111)

(where hH stands for the pull-back metric on the horizon H, L is the gravity Lagrangian
and εµν is the binormal to the horizon) should work as well for the entanglement entropy.
However, in [247] this guess was proven to be incorrect, since this expression would produce
wrong universal terms. Alternative expressions producing the right terms are known for
certain higher-order gravities. In particular, for Lovelock [247, 256], curvature-squared
[185, 336], and f(Lovelock) [92, 381]. Quite remarkably, a formula for general gravity
theories involving arbitrary contractions of the Riemann tensor L(Rµνρσ), which satisfies
several consistency checks, has been proposed by Dong [161] (see also [65, 103]). The
key point which explains why Wald’s formula is not suitable for HEE is that it does
not involve extrinsic curvatures of the surface (horizon), something that makes sense in
that case since Killing horizons have vanishing extrinsic curvatures. However, entangling
surfaces will in general have non-vanishing extrinsic curvatures, appearing in the HEE
formulas for higher-order gravities.

Computing the HEE for a simple enough entangling region A in a particular higher-
order gravity (assuming we know what the right functional is) entails three steps. First,
we need to parametrize the family of codimension-2 surfaces susceptible of extremizing the
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functional. Secondly, we need to extremize the functional by solving the corresponding
Euler-Lagrange equations. Finally, we need to evaluate the on-shell functional including
a short-distance cut-off δ so the final result is regularized. Step two is very involved in
general, since the equations of motion one has to solve are usually of order higher than
two in derivatives of the functions parametrizing the surface (as opposed to the case of
Einstein gravity), and expansions for small values of the gravitational couplings are often
the best one can do. Naturally, one finds that the surfaces extremizing the new functional
are no longer minimal-area surfaces (see, e.g., [85]), although remarkable exceptions occur
(see chapters 8 and 9).

1.3.4 Lifshitz spacetimes with hyperscaling violation

As we explained in the introduction, the AdS/CFT correspondence has been lately ex-
tended in a variety of ways in the hope of accounting for the physics of more realistic quan-
tum field theories, such as QCD and condensed matter systems (see, e.g., [1,116,229,369]).

One possibility consists of considering systems in which, albeit scaling symmetry is
respected, space and time do not scale in the same manner, so conformal (and Lorentz)
invariance is broken. This is the case of the so-called Lifshitz fixed points. These are
characterized by a dynamical critical exponent z, which determines the anisotropic scaling
in the time direction t

t→ λzt , xi → λxi , i = 1, ..., d− 1 , (1.112)

being xi the d − 1 spatial dimensions of the d-spacetime in which the field theory under
consideration is defined. The class of (d+ 1)-dimensional dual spacetime geometries with
the appropriate symmetries can be written as [261,287,410]

ds2 = − L
2

r2z
dt2 +

L2

r2

[
dr2 + d~x2

(d−1)

]
, (1.113)

which clearly reduces to AdSd+1 in the Poincaré patch for z = 1.

A further generalization can be achieved by considering the following family of space-
time metrics [131]

ds2 = L2r
2(θ−d+1)
d−1

[
−r−2(z−1)dt2 + dr2 + d~x2

(d−1)

]
. (1.114)

These geometries (which are conformally Lifshitz) include, in addition to z, another expo-
nent, customarily named θ, and are characterized by the following behavior under rescal-
ings of the coordinates

t→ λzt , xi → λxi , r → λr , ds2 → λ
2θ
d−1ds2 . (1.115)

A system whose thermal entropy density scales as s ∼ T d−1 is said to possess a hyperscaling
behaviour. When the dynamical exponent is present, this scaling gets modified to s ∼
T
d−1
z . In field theories with the kind of scaling defined by (7.4), the thermal entropy scales

in turn as s ∼ T
d−1−θ
z [213,246], and so, from the thermodynamic point of view, d− 1− θ

acts as the effective number of space-like dimensions of the system [246]. The fact that s
does not scale with its naive power of the temperature is a violation of the hyperscaling
behaviour [178, 246] (the hyperscaling case being obviously θ = 0)26, and the above class

26Holographically, this would correspond to the entropy of a black brane whose spacetime metric asymp-
totes to one of these solutions [250].
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of metrics has been consequently named hyperscaling-violating Lifshitz metrics (hvLf in

short). Although the r
2θ
d−1 factor spoils dimensional analysis in (1.114), this can be easily

restored by including an additional scale rF : r
2θ
d−1 → (r/rF )

2θ
d−1 .

In order to have a clear interpretation of a constant-r slice (with r → 0) of the
geometry defined by (1.114) as the boundary of the metric, it is necessary to require
θ < d−1. From a different perspective, θ > d−1 would correspond to a negative effective
number of spatial dimensions according to the previous arguments. Also, when θ > 0,
hvLf metrics suffer from a curvature UV-singularity in the Einstein frame: indeed, the
Kretschmann invariant scales as RµνρσR

µνρσ ∼ r−4θ/(d−1). In appearance, this means
that hvLf metrics with θ < 0 are completely reliable in the UV, whereas those with
0 < θ < d− 1 need to be completed asymptotically, something which is usually performed
through the assumption that spacetime is described by (1.114) only above some scale
rF , but asymptotes to some well-behaved solution, such as AdSd+1, as r << rF . As
explained in [136], this statement is imprecise. The authors argue that hvLf geometries
with θ 6= 0 typically require a UV-divergent (linear) dilaton, which allows one to tune
the curvature singularity (appearing in the cases in which 0 < θ < d − 1) by changing
to an appropriate Weyl frame, and completely absorb it in such scalar field. The linear
running character of the dilaton is a characteristic feature of general hvLf backgrounds
(with θ 6= 0) so one needs to be careful when interpreting the UV physics from the field
theory perspective not only for θ > 0, but also for θ < 0. The situation is similar to
that found for non-conformal branes, where the dual theory is known to be SYM (with
d 6= 4). In that case, the dilaton, which is related to the YM coupling, also runs in the
UV, which means that the theory is either asymptotically free or needs a UV completion
(depending on the dimension). In order to determine what the case is, one needs the
exact relation between the dilaton and the coupling. When the YM coupling blows up
in the UV, SUGRA is not a valid description and S-duality needs to be used. For hvLf
metrics, however, the dual theory is not known and the approach taken in the literature is
more phenomenological/engineering-like since the SUGRA result is taken to define what
is meant by the dual theory.

hvLf and asymptotically-hvLf solutions have been extensively (and intensively) stud-
ied in the context of holography in e.g., [4,5,162,246,349,385]. The gravity models in which
solutions of this kind have been found and studied include, for example, Einstein-Maxwell-
Dilaton (EMD) [6,98,131,146,165,166,179,199,250,274,360], supergravity and string the-
ory [9,87,88,162,220,343,361] and EMD plus curvature-squared terms [203,286,350]. The
inclusion of higher-curvature terms in the gravitational action is motivated in the partic-
ular case of Lifshitz and hvLf geometries by, e.g., trying to change the (θ, z) parameter
space allowed by the null energy conditions (NEC) or curing the characteristic infrared
(IR) divergent behaviour of the dilaton [246] appearing in EMD theories (see [350] for
details on these issues).

In the first part of chapter 8, we show that hvLf geometries are much more common
than previously thought. In particular, in most of the previous papers devoted to the
construction of solutions of this class (or others asymptoting to it in different regimes),
hvLf metrics are obtained as solutions to Einstein-Maxwell-Dilaton models (although some
of these are embedded in some SUGRA or ST). We find that hvLf geometries appear in
the near-horizon and near-singularity limits of generic black-hole solutions of N = 2,
d = 4 SUGRA (in particular, these are theories without scalar potential, as oppossed to
the previous known examples). We also show how solutions of this kind can be obtained
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from limiting procedures of standard solutions such as Schwarzschild’s black hole, or by
smearing of some other previously known solutions.

In the second part of chapter 8, on the other hand, we perform a systematic study
of the existence of hvLf and asymptotically-hvLf geometries for a broad class of theories
suitable for accommodating a general N = 2, d = 4 SUGRA gauged with Fayet-Iliopoulos
terms, and we construct new solutions of that kind (both purely hvLf and asymptotically
hvLf) for a particular model of gauged SUGRA which can be embedded in Type-IIB string
theory.

Coming back to entanglement entropy, we saw before that the generic UV behaviour
of that quantity for generic QFTs included a leading term scaling with the area of the
entangling surface (8.1). When this term is absent, or there is a different leading term,
the area law is violated. This is the case of 2D CFTs, where EE scales logarithmically
with the length of A, l, and γ turns out to be proportional to the central charge of the
theory [100,238]

S =
c

3
log

l

δ
, (1.116)

as we said before. In higher dimensional theories, violations of the area law appear in QFTs
with Fermi surfaces [326,407,426]. In such cases, S acquires a logarithmic dependence on
the characteristic length of A

S ∼ (lkF )(d−2) log(lkF ) , (1.117)

being kF the Fermi momentum27, and the area law is violated. It has been argued that
certain QFTs with Fermi surfaces might be holographically engineered by considering the
family of hvLf metrics in the case θ = d− 2 [162,246,349]. Indeed, using holography, one
can compute the HEE for a stripe of width l and infinite length LS → +∞ (this length
plays the role of an IR cut-off) [162]

S =
Ld−1L

(d−2)
S

2G(d− θ − 2)

δ−(d−θ−2) − (l/2)(θ−d+2)

√πΓ
(

d−θ
2(d−θ−1)

)
Γ
(

1
2(d−θ−1)

)
(d−θ−1)

 . (1.118)

When θ = 0, we recover the usual AdSd+1 expression [378], and when θ = d − 2, this
expression gets modified to include a logarithmic leading term, and becomes [162]

S =
Ld−1L

(d−2)
S

2G
log

2l

δ
, (1.119)

In [350] it was raised the question of whether new violations of the area law might be
found for other values of θ when higher-order gravities were added to the Einstein gravity
Lagrangian. We answer this question in chapter 8, where we show that the leading contri-
bution to the HEE in this class of geometries always comes from the Einstein gravity term,
although new logarithmic terms appear for generic higher-curvature gravities (of order n
in curvature) for

θ =
(d− 1)(d− 2)

(d− 2n+ 1)
. (1.120)

27This behaviour comes from the effective 2D CFT which governs the physics of modes at the Fermi
surface [385,407].
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These would always be subleading except for n = 1, which is the well-known case θ = d−2.
We also find the form of the universal term at first order in the coupling for a gravity
Lagrangian with an R2 correction, as well as the exact corrections to the area-law term for
general curvature-squared gravities. This information allows us to conjecture the general
form of holographic entanglement entropy for these geometries in arbitrary higher-order
gravities.
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2
Black holes and equivariant vectors in N = 2,

d = 4 supergravity

This chapter is based on

Pablo Bueno, Pietro Galli, Patrick Meessen and Tomas Ort́ın
“Black holes and equivariant charge vectors in N=2,d=4 supergravity”,

JHEP 1309 (2013) 010. [arXiv:1305.5488 [hep-th]] [90].

The intensive search for black-hole solutions of supergravity theories over the last
25 years has been a very rewarding one in respect to the supersymmetric (also known
as BPS in the literature, even if this concept is not equivalent, but wider) ones. Even
though the existence of extremal non-supersymmetric black holes was discovered long time
ago [273,352] and we know that they are subject to the same attractor mechanism as the
supersymmetric ones [173], only a few general families of solutions have been constructed
for some classes of theories [74] and we are still far from having a complete understanding
of their structure and general properties. The situation w.r.t. non-extremal solutions,
studied recently, e.g., in [89,190,191,321,323] is even worse: even if all extremal black-hole
solutions may be deformed (i.e., heated up) to a non-extremal one, then we do not know
the non-extremal deformations of many of them; in general we don’t know whether there
are obstructions to such a deformation and what they are. We also don’t know whether,
in each theory, there is only one family of non-extremal black-hole solutions from which
all the extremal ones can be obtained by taken the appropriate limits, such as it happens
in the few models studied so far [190,267,305,321,323]. The (stringy) non-extremal black
hole landscape is a largely uncharted territory.

It is clear that to answer these questions new tools are needed since the first-order
equations associated to unbroken Supersymmetry are of no help here and the second-
order equations of motion of the FGK effective action [173] are still very hard to solve.
Several approaches have been proposed to this end. For instance, it has been shown that
in general one can construct first-order flow equations for extremal non-supersymmetric
and non-extremal black holes Refs. [15, 18, 127, 132, 187, 192, 258, 328, 362] and many such
equations have been constructed. From them one can extract interesting information about
the near-horizon and spacelike infinity limits (whence about the entropy and mass of the
solutions), but in practice these equations are obtained when the solutions are already
known, which somewhat diminishes their usefulness.

The most common approach to the search of stationary black-hole solutions, pio-
neered in Ref. [83], consists in the dimensional reduction over the time direction. For
4-dimensional theories, this results in a 3-dimensional theory consisting of a non-linear σ-
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model coupled to gravity (in 3 dimensions the vector fields can be dualized into scalars).1

When the σ-model corresponds to a homogeneous space one can show that the system
is integrable and use the standard techniques to classify and obtain explicit black-hole
solutions, see e.g. [55,75–77,133,221]. This approach has been quite a successful one, but
for the moment it has not provided complete answers to the above questions.

More recently, a new approach for the 4- and 5-dimensional N = 2, d = 4 supergrav-
ity theories coupled to nv vector supermultiplets has been introduced in Ref. [324]2. This
is nothing but the H-FGK formalism, introduced in the previous section. The H variables
arise naturally in the supersymmetric cases [200,320], but it has been shown that they can
be used in more general (but always stationary) cases. As we stressed, the main virtue of
the new variables, when compared to the scalar fields present in the FGK effective action,
is that they transform linearly under the duality group (embedded in Sp(2nv + 2;R) in
the d = 4 case and in SO(nv + 1) in d = 5 case).

In previous works [89,95,191,323], the description of the simplest families of solutions
was investigated (that we will call conventional in Section 2.2) for which the H-variables
are harmonic functions (in the extremal case) or linear combinations of hyperbolic sines
and cosines (in the non-extremal case). Some general features of the formalism, like the
invariance of the effective action under local Freudenthal duality rotations [189] have also
been studied.

Our main goal in this chapter is to study the main aspect of the formalism, namely
the linear equivariance under duality transformations of the charges and moduli that char-
acterize a given solution, and show how to exploit the requirement of linear equivariance
in order to find attractors and construct explicit extremal solutions in some already well-
studied models: the axidilaton and the CPn models. We also want to make progress
towards answering the questions posed at the beginning of this introduction using these
new tools. In the conventional cases that we have studied so far, it is known how one
can arrive at (extremal) solutions described by harmonic functions from (non-extremal)
solutions described by hyperbolic sines and cosines: we will apply our new tools to a
non-conventional (non-supersymmetric) extremal solution of the t3 model not considered
in the previous works Refs. [191, 323]. This solution, which has been known for some
time [74, 187, 208, 300], is characterized by H-variables that contain anharmonic terms
and its deformation into a non-supersymmetric (finite-temperature) solution has proven
elusive [188]. We think that, in order to search for this non-extremal generalization (if it
exists), it is necessary to know more about the structure of the extremal solution and we
will show how the new tools can help us to this end.

The remainder of the chapter is organized as follows: in Section 2.1 we explain how
equivariant charge vectors enter in black-hole solutions when we express them in the H-
variables of this formalism. In Section 2.2 we explain when the usual harmonic ansatz
becomes insufficient to write the general family of solutions associated to some attractor
(expressed through an equivariant charge vector). This insufficiency indicates the need of
adding anharmonic terms to the H-variables giving rise to what we have called unconven-
tional black-hole solutions. Then, in Section 2.3 we give a general form for the first-order
flow equations of any static black-hole solution of these theories that applies, in particular,
to the unconventional solutions. In Sections 2.4 and 2.5 we review the supersymmetric and

1 Further assumptions (staticity plus an ansatz for the 3-dimensional metric) lead to the FGK effective
action, presented in the introduction, with its characteristic effective black-hole potential [173].

2A closely-related approach has been proposed in Ref. [329,331,332].
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non-supersymmetric extremal solutions (which are completely conventional) of two simple
models, studying their duality symmetries and their equivariant vectors. In Section 2.6
we turn to the t3 model, showing how its extremal, non-supersymmetric solutions are
non-conventional. We, then, construct and study this unconventional family of solutions
using a basis of equivariant vectors. Our conclusions and comments on further directions
of work can be found in Section 5.4.

2.1 Explicit solutions and equivariant vectors

The main advantage of the H-FGK formalism (see section 1.2.4) is the linear behavior of
the variables under transformations of the electric-magnetic duality group G of the theory:

HM ′ = SMNH
N , (SMN ) ∈ G ⊂ Sp(2nv + 2;R) . (2.1)

This linear behavior can dramatically simplify the construction of explicit solutions to
theories with a non-trivial duality group as it implies that any solution must be of the
form

HM (τ) = cσ(τ) UMσ , (2.2)

where the functions cσ(τ) are duality invariant; the symplectic vectors UMσ are constant
vectors that may depend on the physical parameters of the theory (mass M , electric and
magnetic charges QM and asymptotic values of the scalars Zi∞) and must be equivariant
w.r.t. the duality group, i.e.,

UMσ (M,Z ′∞, Z
∗ ′
∞,Q′) = SMNU

N
σ (M,Z∞, Z

∗
∞,Q) , (2.3)

with
Zi ′ ≡ F iS(Z) , QM ′ = SMNQN , (2.4)

where F iS(Z) is the non-linear realization of the duality transformation SMN on the com-
plex scalars.

In some cases, the number of equivariant vectors of the theory can be greater than3

or equal to the number of variables HM . In that case, one does not win much by using
the above ansatz. In other cases, however, the number can be much smaller and we will
be left with a small number of invariant functions to be determined.

In the near-horizon limit of extremal black-hole solutions, the value of the variables
HM will be dominated by one equivariant vector that we denote by BM and that can be
defined, in our conventions, by4

BM ≡ lim
τ→−∞

−
√

2HM

τ
. (2.5)

The values of the scalars on the horizon, Zih, are completely determined by this equivariant
vector upon use of the general expression of the scalars as functions of the variables

3If it is greater, we can eliminate some from the ansatz, since they will be linearly dependent on the
rest.

4Observe that this definition is completely general: given the behavior of the 3-dimensional transverse
metric in the near-horizon limit as a function of τ and the degree of homogeneity of e−2U = W(H) as a
function of the H-variables, in regular black-hole solutions the functions HM (τ) are dominated by these
constant vectors in the near-horizon limit.
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HM [324]

Zi(H) =
H̃ i + iH i

H̃0 + iH0
, ⇒ Zih = Zi(B) , (2.6)

and also extremize the black-hole potential Vbh(H,Q) as a function of the variables HM :

∂MVbh(H,Q)|H=B = 0 . (2.7)

The vectors BM , which in this context can be called attractors, can also be written
in the form

BM = bσUMσ , (2.8)

where the bσ are duality-invariant constants such that the products bUM have the same
dimensions as electric and magnetic charges.

Clearly these vector attractors must contain more information than the values of the
scalars on the horizon Zih (the standard attractors). On the other hand, when the model
has a high degree of symmetry the requirement of equivariance imposes strong constraints
on the possibilities and it simplifies the task of finding the attractors BM .

A similar discussion can be made for the values of the variables HM at spatial
infinity, which in the employed coordinate system lies at τ = 0.

The amount of simplification introduced by the above observation that the variables
HM must always be of the form Eq. (2.2) depends on our ability to find a sufficient number
of equivariant vectors; the Freudenthal dual of the charge vector Q̃M is, by construction,
a prime example of equivariant vector, but there are other systematic ways of finding
them. Let us consider, first, equivariant vectors that only depend on the charges. They
can be seen as an endomorphism of the (2nv + 2)-dimensional vector space of charges and
their equivariance is equivalent to the fact that these endomorphisms commute with the
duality transformations (which are also endomorphisms of charge space). Thus, linear (not
necessarily symplectic) transformations that commute with G provide a second example
of equivariant vectors.

To study non-linear cases, let us expand an equivariant vector and the duality trans-
formations around the identity

UMσ (Q) ∼ QM + ξM (Q) , (SQ)M ∼ QM + αAηA
M (Q) , (2.9)

where S ∈ G ⊂ Sp(2nv + 2;R) and, therefore,

ηA
M (Q) = (TA)MN QN , (2.10)

where TA ∈ Sp(2nv + 2;R) are the generators of the duality group; the condition of
equivariance is equivalent to requiring that the Lie brackets of these two kinds of generators
vanish5

[U, ηA] = 0 , ⇒ (TA)MNQN∂MUP = (TA)PRU
R , where ∂MU

P ≡ ∂UP

∂QM
. (2.11)

On taking the derivative with respect to QP of both sides of this equation we find the
integrability condition

(TA)MNQN∂MP = 0 , P ≡ ∂MUM = ΩMN∂MUN . (2.12)

5Obviously, also ξ must be an equivariant vector, whence we can replace ξ by U in what follows for the
purpose of writing an equation characterizing equivariant vectors.
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which implies that P is an invariant function of the charges. Thus, equivariant vectors
are associated to invariants by the above equation. The simplest invariant is just P = 0
and equivariant vectors such that ∂[MUN ] = 0 are associated to it; clearly there may be
more possibilities as locally they must be of the form UM = ∂Mh for some non-vanishing
invariant h (possibly up to additive numerical constants) and one can check that the
equivariance condition is automatically satisfied. For instance, if we take h = W/2, then
UM = Q̃M .

For equivariant vectors that depend (non-holomorphically) on the moduli Zi∞, the
equivariance condition takes the form

(TA)MNQN∂MUP + kA
i∂iU

P + kA
∗ i∗∂i∗U

P = (TA)PRU
R , (2.13)

where KA ≡ kAi(Z)∂i + c.c. are the Killing vectors that generate the action of the duality
group G on the scalar manifold preserving the holomorphic and Kähler structures. Again,
P ≡ ∂MU

M must be an invariant and a particularly simple case is P = 0 and UM = ∂Mh
where, now, h is required to be invariant only up to additive functions of the moduli. A
recurring example is

h = log (Z(Q)) , (2.14)

where Z(Q) is the central charge defined as

Z(Q) ≡ VMQM , (2.15)

so using the definition of the H-variables it can be written as

Z(Q) =
e−iα√

2W
HMQM . (2.16)

The associated (complex) equivariant vector is

UM =
∂ h

∂QM
=
VM
Z(Q)

. (2.17)

The real and imaginary parts provide two real moduli-dependent equivariant vectors. It
should be obvious that one can use, instead of the central charge any fake central charge,
but the result may not be a new equivariant vector.

The Lie bracket of two equivariant vectors is also an equivariant vector, so that the
equivariant vectors form a Lie algebra that commutes with that of the duality group G.

Finally, in the cases that we are going to study, we will show how one can construct
equivariant vectors by using other methods like solution-generating techniques.

2.2 Conventional and unconventional solutions

As explained in Ref. [324], contracting the equations of motion derived from the H-FGK
action Eq. (1.81) with HM and using the homogeneity properties of the different terms
and the Hamiltonian constraint Eq. (6.6) one finds, in the extremal case r0 = 06, the
equation

WH̃M ḦM + (ḢMHM )2 = 0 . (2.18)

6In this discussion we will only consider the extremal case because in the rest of the chapter we are
going to restrict ourselves to it.
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In what we are going to call from now on conventional extremal solutions (super-
symmetric or not) the variables HM (τ) are harmonic functions, i.e., they satisfy ḦM = 0.
The above equation implies that they also satisfy the constraint7

ḢMHM = 0 . (2.19)

Conventional extremal solutions have been intensively studied in Ref. [191]. However,
how general are these solutions? Can all the extremal black-hole solutions be written in a
conventional form? (The answer in the supersymmetric case is yes.) If not, what are the
limitations and how can they be overcome as to obtain the most general extremal black-
hole solutions that depend on the maximal number of independent physical parameters?

To investigate these issues, it is convenient to review in detail the construction of
conventional extremal black-hole solutions: extremal black-holes are associated to values of
the scalar fields Zih (attractors) that extremize the black-hole potential [173]. As explained
in the previous section, in the H-FGK formulation attractors appear as symplectic vectors
BM that extremize the black-hole potential when written in terms of the H-variables.
These attractors BM are defined up to normalization because the black-hole potential
is invariant under rescalings of the HM s and also up to global Freudenthal rotations.
Furthermore, as functions of the charges and moduli, the attractors BM are equivariant
under duality transformations. A family of extremal black holes closed under duality will
be associated to a given equivariant vector expressed as a set of functions of the charge
components and moduli BM (Q, Z∞, Z∗∞). We are going to focus on moduli-independent
attractors, i.e., the so-called true attractors.

The attractor BM determines the near-horizon form of the solution. We can always
construct a solution describing the AdS2×S2 solution that describes the near-horizon ge-
ometry by choosing the appropriate normalization of BM : indeed, one can check that the
harmonic functions

HM = − 1√
2
BMτ , (2.20)

always satisfy the equations of motion as long as the condition

Vbh(B,Q) = −1
2W(B) , (2.21)

determining the normalization of BM is met.

To construct a solution with the same near-horizon behavior and with an asymptotically-
flat region we must add to the HM above a constant vector AM . The condition Eq. (2.19)
and the normalization of the metric at infinity become two constraints for AM

BMAM = 0 , W(A) = 1 , (2.22)

that leave 2nv real constants, which is just the right amount to describe the asymptotic
values of the nv complex scalars Zi∞. Only if we cannot add a vector AM satisfying these
two constraints, then the most general solution associated to the attractor BM cannot be
conventional and we will have to add anharmonic terms to the HM .

We can reformulate this question as follows: if we add to the HM in Eq. (2.20) an
infinitesimal vector εM satisfying BMεM = 0, do we get another solution to the Hamilto-
nian constraint Eq. (1.82) and equations of motion Eq. (1.83)? To first order in εM , the

7The converse is not always true: the above constraint can be satisfied for extremal black-hole solutions
which are not given by harmonic HM s and that we will call unconventional.
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Hamiltonian constraint will be solved by the perturbed solution

H ′M = HM + εM , HM = − 1√
2
BMτ , BMεM = 0 , (2.23)

if

εM
{

1
2∂MgNP Ḣ

NḢP + ∂MV (H,Q)
}

= 0 . (2.24)

Evaluating this equation at the near-horizon solutionHM , using Vbh(H,Q) = −W(B)V (H,Q),
the homogeneity properties of the different terms, the fact that ∂MVbh(B,Q) = 0 and the
condition (2.21), we arrive at

εM
{

1
4B

NBP∂M∂N∂P logW(B)− 1
2∂M logW(B)

}
= 0 , (2.25)

which is an equation in the variables BM (including the partial ∂M derivatives, which
should be understood as partial derivatives with respect to BM ) and is identically satisfied
on account of the scale invariance of logW(B).

The analogous condition on the equations of motion, Eqs. (1.83), reads

εM
{
∂MgNP Ḧ

P + ∂M (∂P gQN − 1
2∂NgPQ)ḢP ḢQ + ∂M∂NV (H,Q)

}
= 0 , (2.26)

and, after evaluation on the near-horizon solution we get a homogenous equation that,
again, can be read as an equation on the variables BM . Using the same properties we
used with the Hamiltonian constraint plus BMεM = 0 we get a non-trivial equation for
εM

MMNε
N = 0 , with MMN ≡W(B)∂M∂N logW(B) + 2

B̃M B̃N
W(B)

− ∂M∂NVbh(B,Q) .

(2.27)
We are interested in the number of independent solutions to this equation that satisfy the
constraint BMεM = 0, i.e., in the rank of MMN . The rank should be at most 1 as this
implies a single linear constraint on the components of εM , which should be equivalent to
BMεM = 0. If the rank of MMN happens to be bigger than 1, then there are not enough
unconstrained components of εM for the family of solutions to have arbitrary values of
the moduli and the most general solution based on the chosen attractor, must necessarily
contain anharmonic terms.

For cubic models, the need of anharmonic ansätze to construct the most general,
generating, non-supersymmetric, extremal, black-hole solution of [300] and [208] was first
observed in [187] and later confirmed in [74] and [188]. In the next sections we will see
how the obstruction to the fully harmonic ansatz arises in the particular case of the t3

model. For the non-extremal case of these theories, the situation is still unclear [188].

2.3 The general first-order flow equations

The central charge of an N = 2, d = 4 SUGRA theory is defined by Eq. (2.15) and, in
terms of the H-variables it takes the form of Eq. (2.16) which we copy here for convenience

Z(Q) =
e−iα√

2W
(H̃M + iHM )QM . (2.28)
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Let us consider a generalization of the central charge, denoted by Z(φ,
√

2DH), in
which we replace the second argument (the charge vector) by the Freudenthal-covariant
derivative of HM introduced in Ref. [189], i.e.,

DHM ≡ ḢM +AH̃M , A ≡ ḢNHN

W
. (2.29)

Since HMDHM = 0 and H̃MH̃
M = 0 identically, we immediately find that

|Z(φ,
√

2DH)| = ±H̃MḢ
M

√
W

= ±∂MW ḢM

2
√
W

= ±d
√
W

dτ
= ±de

−U

dτ
, (2.30)

which is the first-order equation for the metric function8. Observe that HMDHM = 0
implies that the phase of Z(φ,

√
2DH) is equal to the phase of ±X. The sign must be

chosen so as to make ±H̃MḢ
M > 0 and, since the mass of the solution corresponding to

e−2U = W(H) is given by

M = −1
2

de−2U

dτ

∣∣∣∣
τ=0

= −1
2 Ẇ

∣∣∣
τ=0

= − H̃MḢ
M
∣∣∣
τ=0

, (2.31)

we find that for regular solutions (with positive mass) we must choose the lower sign:

de−U

dτ
= −|Z(φ,

√
2DH)| . (2.32)

From Eq. (2.8) of Ref. [355] we have that

dZi

dτ
= −2XGij∗Dj∗V∗MḢM . (2.33)

We can rewrite ḢM as

ḢM = DHM −AH̃M = DHM −A
(
VM

2X
+ c.c.

)
, (2.34)

and plug it into the previous equation to get

dZi

dτ
= −2XGij∗Dj∗Z∗(φ,DH) = 4Xe−iαGij∗∂j∗ |Z∗(φ,DH)|

= 2eUGij∗∂j∗ |Z∗(φ,
√

2DH)| ,

(2.35)

where we have used Eq. (1.88) and the equality of the phases of −X and |Z(φ,
√

2DH)|.
This is the second first-order equation9.

Some remarks are in order:

1. In these derivations we have assumed neither extremality or non-extremality of the
solutions nor any explicit form of the variables HM (harmonic or hyperbolic)10.

8This equation reduces to Eq. (5.9) of Ref. [187] in the extremal limit. Observe that the Freudenthal-
covariant derivative corresponds to Eq. (5.6) of the same reference.

9Again, this equation reduces to Eq. (5.10) of Ref. [187] in the extremal limit.
10Actually, we have written solutions but we have not used at any moment the fact that the HM solve

the equations of motion. The first-order equations that we have derived are, therefore, valid for any
configuration of the variables HM , although their use is essentially limited to solutions.
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Furthermore, we have not assumed the Freudenthal gauge-fixing condition ḢNHN =
0. Only the properties of Special Geometry encoded in the H-FGK formalism have
been used. Therefore, the first-order Eqs. (2.32) and (2.35) apply to any static black-
hole solution of ungauged N = 2, d = 4 supergravity coupled to vector multiplets.

2. These first-order equations reduce to those found in the literature starting from
Ref. [173] in the extremal/harmonic (i.e., A = ḢNHN = 0) cases: if HM = AM −

1√
2
BMτ for some constant symplectic vectors AM (which encode the values of the

scalars at spatial infinity) and the attractor BM , then

|Z(φ,
√

2DH)| = |Z(φ,B)| , (2.36)

which is known as fake central charge when BM 6= QM and coincides with the central
charge in the supersymmetric case BM = QM .

3. In the general (non-supersymmetric) case DH will be τ -dependent and its near-
horizon (τ → −∞) and spatial infinity (τ → 0−) limits, will not necessarily be
equal: in the near-horizon limit limτ→−∞DHM ≡ − 1√

2
BM and in the spacelike

infinity limit limτ→0− DH
M ≡ − 1√

2
EM and, generically, BM 6= EM .

M = − lim
τ→0−

de−U

dτ
= |Z(φ∞, E)| , (2.37)

S = π

[
lim

τ→−∞

de−U

dτ

]2

= π|Z(φh, B)|2 , (2.38)

where φ∞ and φh are the values of the scalars at spatial infinity and on the horizon,
respectively. Different fake central charges Z(φ,E) and Z(φ,B) drive the metric
function in the spatial-infinity and near-horizon regions, respectively. This behavior
is present in the non-supersymmetric extremal solutions of the cubic models studied
in Refs. [52, 74,187,207,300] which have anharmonic HM s11.

4. In Ref. [127] and subsequent literature the first-order flow equations were given
in terms of superpotential functions W (φ,B) which depend only on a constant
fake charge vector BM and which has a structure similar, but not identical, to
the central charge. Those first-order equations must be completely equivalent to
Eqs. (2.32,2.35), because the same variables, for the same solution, cannot obey two
different sets of first-order equations. We do not know how to prove this equivalence
in general, and it will have to be checked case by case.

2.4 The axidilaton model

The axidilaton model is defined by the prepotential

F = −iX 0X 1 , (2.39)

11The HM s of those solutions do not satisfy the constraint ḢMHM = 0. A change of Freudenthal gauge
can bring the solutions to the ḢMHM = 0 gauge but cannot make the HM harmonic [189].
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and has only one complex scalar that we will denote by λ that is given by

λ ≡ iX 1/X 0 . (2.40)

In terms of λ and in the X 0 = i/2 gauge, the Kähler potential and metric are

K = − ln=mλ , Gλλ∗ = (2=mλ)−2 , (2.41)

and therefore λ, which must take values in the upper half complex plane, parametrizes
the coset space Sl(2;R)/SO(2).

The canonically-normalized covariantly-holomorphic symplectic section V is, in the
gauge in which the Kähler potential is given by Eq. (2.41),

V =
1

2(=mλ)1/2


i
λ
−iλ

1

 , (2.42)

and the central charge and its holomorphic covariant derivative are

Z(Q) =
1

2
√
=mλ

[
(p1 − iq0)− (q1 + ip0)λ

]
,

DλZ =
i

4(=mλ)3/2

[
(p1 − iq0)− (q1 + ip0)λ∗

]
.

(2.43)

It is useful to define the fake charge and associated fake central charge

P ≡


p0

−p1

q0

−q1

 , Z(P) ≡ 1

2
√
=mλ

[
(−p1 − iq0)− (−q1 + ip0)λ

]
, (2.44)

in terms of which
Gij∗DiZDj∗Z∗ = |Z(P)|2 , (2.45)

so that the black-hole potential takes the simple form

− Vbh = |Z(Q)|2 + |Z(P)|2 . (2.46)

The black-hole solutions of this model have been exhaustively studied in Refs. [23,57,141,
190,194,195,198,205,266,269,305,351,377,387]. Our goal here is to illustrate the general
results and methods described in the previous sections using this well-known model. First,
let us recall what are the symmetries of this model in its original formulation.

2.4.1 The global symmetries of the axidilaton model

The full axidilaton model (and not just the axidilaton kinetic term) is invariant under
global Sl(2;R) transformations. Let us start by describing the action of this group on the
axidilaton field: parametrize a generic element of Sl(2;R) as

Λ ≡
(
a b
c d

)
, with ad− bd = 1 , (2.47)
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then the axidilaton transforms as

λ′ =
aλ+ b

cλ+ d
. (2.48)

The scalar manifold metric admits 3 holomorphic Killing vectors which can be taken to
be

K1 = λ∂λ + c.c. , K2 = 1
2(1− λ2)∂λ + c.c. , K3 = 1

2(1 + λ2)∂λ + c.c. , (2.49)

and satisfy the commutation relations of the Lie algebra sl(2;R)

[Km,Kn] = εmnqη
qpKp , ⇒ fmn

p = −εmnqηqp, (m,n, . . . = 1, 2, 3) , (2.50)

where ε123 = +1 and η = diag(+ +−); η is proportional to the Killing metric of so(1, 2) '
sl(2;R) ' sp(2;R). The infinitesimal Sl(2;R) transformations of λ can be written using
these Killing vectors as

δαλ = αmkm
λ = 1

2(α2 + α3) + α1λ− 1
2(α2 − α3)λ2 . (2.51)

The infinitesimal linear transformations associated to the above choice of Killing vectors
are, in terms of the Pauli matrices(

a b
c d

)
∼ 12×2 + αmTm , T1 = −1

2σ
3 , T2 = −1

2σ
1 , T3 = i

2σ
2 , (2.52)

and satisfy the Lie algebra
[Tm, Tn] = −εmnqηqpTp . (2.53)

The action of the finite Sl(2;R) transformations on the Kähler potential and on the
canonical covariantly-holomorphic symplectic section V given in Eq. (2.42) is

K′(λ) ≡ K(λ′(λ)) = K(λ) + 2<ef(λ) , (2.54)

V ′M (λ) ≡ VM (λ′(λ)) = e−i=mf(λ) SMNVN , (2.55)

where the holomorphic function f(λ) of the Kähler transformation and the symplectic
rotation SMN are given by

f(λ) = ln (cλ+ d) , (2.56)

(SMN ) =


d −c

a b
−b a

c d

 . (2.57)

In this 4-dimensional representation the infinitesimal generators Tm are given by

(T1
M
N ) = −1

2

(
σ3

−σ3

)
, (T2

M
N ) = −1

2

(
σ3

σ3

)
, (T3

M
N ) = 1

2

(
1

−1

)
.

(2.58)

The same transformations act on all the symplectic vectors of the theory and, in
particular, on the variables HM and the charge vectors QM . In this formulation of the
axidilaton system there seem to be no further symmetries12.

12 We will see, however, that there is an additional U(1) factor in the symmetry group that only has
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Equivariant vectors of the axidilaton model

In this model there is no need to solve any equation to find 4 linearly independent equiv-
ariant vectors: observe that the symplectic vector of charges is the direct sum of two real
Sl(2;R) doublets ai and bi (i, j = 1, 2), namely

(ai) ≡
(
p1

q1

)
, (bi) ≡ (p0, q0) . (2.59)

These doublets transform respectively contravariantly and covariantly, that is

a′ i = Λij a
j , b′i = bj (Λ−1)j i , (2.60)

where (Λij) is the matrix given in Eq. (2.47), which furthermore satisfies

(Λ−1)ij = Ωki Λlk Ωlj , (Ωij) = (Ωij) =

(
0 1
−1 0

)
, (2.61)

because Sl(2;R) ' Sp(2;R). We can use the symplectic metric Ω to raise and lower doublet
indices such as i and j, so ai ≡ Ωija

j and bi = bjΩ
ji. The only non-vanishing Sl(2;R)

invariant that can be built out of these two doublets is

aibi = p0p1 + q0q1 ≡ 1
2W(Q) . (2.62)

Let us denote by QM (a, b) the standard symplectic charge vector seen as the direct
sum of the two doublets a and b. Using the two doublets we can construct three further,
up to a global sign, inequivalent charge vectors that under Sl(2;R) transform in the same
way as QM (a, b), i.e., equivariantly; the four equivariant charge vectors are

QM (a, b) ≡


p0

p1

q0

q1

 , QM (b,−a) ≡


−q1

−q0

p1

p0

 ,

QM (−a, b) ≡


p0

−p1

q0

−q1

 , QM (−b,−a) ≡


−q1

q0

p1

−p0

 .

(2.63)

These equivariant vectors are generically linearly independent and provide a basis
of equivariant vectors; any other equivariant vector, in particular the attractors BM , can
be expanded w.r.t. this base, e.g.

BM = bσUMσ , with {Uσ} = {Q, Q̃,P, P̃} . (2.64)

We will plug this general ansatz into the equation ∂MVbh(H,Q)|H=B = 0 as to find
the most general attractor of the theory in Section 2.4.4, but at this point we already know

a non-trivial action on objects with symplectic indices and that coincides with the continuous global
Freudenthal duality transformation. The scalars do not transform under this symmetry. On the other
hand, only this U(1) symmetry is also a local symmetry of the H-FGK formalism. We would like to thank
Alessio Marrani for clarifying discussions on this point.
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some general results: The standard charge vector QM (a, b) will be the supersymmetric
attractor, as usual, and we are going to see, QM (b,−a) is its Freudenthal dual

QM (b,−a) = Q̃M (a, b) = Q̃M . (2.65)

On the other hand, QM (−a, b) is the non-supersymmetric attractor PM and QM (b, a) is
its Freudenthal dual

QM (−a, b) = PM , QM (b, a) = Q̃M (b,−a) = P̃M . (2.66)

It is easy to see that
W(Q̃) = W(Q) = −W(P) = −W(P̃) . (2.67)

These four vectors are related by Sp(4;R) transformations that however do not
belong to Sl(2;R) ⊂ Sp(4;R):

Q̃M = AMNQN , (AMN ) ≡
(

0 σ1

−σ1 0

)
, (2.68)

PM = BMNQN , (BMN ) ≡
(
σ3 0
0 σ3

)
. (2.69)

The only non-vanishing symplectic contractions between these four vectors are

Q̃MQM = −P̃MPM = W(Q) . (2.70)

Apart from these moduli-independent equivariant vectors we can construct the
generic moduli-dependent ones by taking the real and imaginary parts of Eq. (2.17), in
which we can replace Q by any of the other three equivariant vectors. Observe that when
we use the Freudenthal dual charge, we obtain the same complex equivariant vector but
multiplied by −i.

2.4.2 H-FGK formalism

The solution of the stabilization equations of this theory is

RM (I) = AMNIN , (AMN ) ≡
(
σ1 0
0 σ1

)
, (2.71)

where σ1 is the standard Pauli matrix. A = (AMN ) is a symplectic matrix:

AΩA = Ω , (2.72)

which is not surprising since it is just −MMN (F). It follows that (AMN ) = (ΩPMAPN ) =
−ΩA is also a symplectic matrix.

By definition, the original and tilded, i.e., Freudenthal dual, H-variables are related
by13

H̃M (H) = AMNH
N , H̃M (H) = AMNH

N . (2.74)

13Explicitly, we have

(H̃M ) =

(
−σ1 ΛΣHΣ

σ1
ΛΣH

Σ

)
=


−H1

−H0

H1

H0

 . (2.73)

This vector should be compared with QM (b,−a) in Eq. (2.63).
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Therefore in this simple model the Freudenthal duality transformation is linear and is,
furthermore, a symplectic transformation. It is clearly a transformation that does not
belong to the global symmetries that act on the axidilaton (i.e., Sl(2;R) whose embedding
into Sp(4;R) is given in Eq. (2.57)), but it is a symmetry transformation that acts on
objects with symplectic indices such as the vector fields and as such must be considered a
part of the duality group of the model14.

As expected in Freudenthal duality

AMP APN = −δMN . (2.75)

We can extend the Freudenthal duality transformation to all symplectic vectors.
The properties

X̃MY
M = ỸMX

M = −YMX̃M , ⇒ X̃M Ỹ
M = XMY

M , (2.76)

which hold in this particular model for any two symplectic vectors XM and YM because
Freudenthal duality is a symplectic transformation, will be used very often.

The Hesse potential is given by the Sl(2;R) invariant discussed in earlier sections

W(H) ≡ H̃M (H)HM = AMNH
MHN = 2(H0H1 +H0H1) , (2.77)

and in accordance with the general formalism it determines the model completely: the
effective action can be constructed entirely from it and the metric function e−2U and the
axidilaton λ are related to the Hesse potential by

e−2U = W(H) , λ ≡ iZ = i
H̃1 + iH1

H̃0 + iH0
=
H1 + iH0

H1 − iH0
. (2.78)

The metric gMN (H) of this system can be written in the form

gMN = 2 NMNPQ
HPHQ

W2
, (2.79)

where we have defined the constant matrix

NMNPQ ≡ AMNAPQ − 2AMPANQ − ΩMPΩNQ . (2.80)

Using this notation, the derivatives of the metric take the form

∂MgPQ = −4
H̃M

W
gPQ + 4NPQ(MR)

HR

W2
, (2.81)

and the Christoffel symbols of the first kind are given by15

[PQ,M ] = 2
H̃MgPQ − H̃P gQM − H̃QgPM

W

−[6APQAMR − 4AM(PAQ)R + 4ΩM(PΩQ)R]
HR

W2
.

(2.82)

14See footnote 12.
15We remind the reader that the metric gMN (H) is not invertible, so we cannot use the standard

Christoffel symbols ΓPQ
M ≡ gNM [PQ,M ].
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It is easy to check that H̃M [PQ,M ] = 0, as required by Freudenthal duality invariance.

The potential V can be written in the convenient form

W2V (H,Q) = −1
2W(Q)W + (HM Q̃M )2 + (HMQM )2 , (2.83)

and its derivative reads

∂MV = −4
H̃M

W

[
V + 1

4

W(Q)

W

]
+ 2(QMQN + Q̃M Q̃N )

HN

W2
; (2.84)

using the properties Eq. (2.76) it is easy to see that H̃M∂MV = 0, which is the last
requirement for having local Freudenthal duality [189].

Observe that, in this model, a Freudenthal duality transformation of the charge
vectors only (that is: not of the variables HM ), not only preserves W(Q) but also the
complete potential and black-hole potential, i.e.,

W(Q̃) = W(Q) ⇒ V (H, Q̃) = V (H,Q) , and Vbh(H, Q̃) = Vbh(H,Q) . (2.85)

On the other hand, using the definition of the fake charge Eq. (2.44) one can show
that for any values of HM

−Vbh(Q) = −1
2W(Q) + 2|Z(Q)|2 = −1

2W(P) + 2|Z(P)|2 = −Vbh(P) , (2.86)

|Z(P)|2 = |Z(Q)|2 − 1
2W(Q) . (2.87)

The first identity means that, if Q is an attractor, so will P. The fact that it is an identity
for arbitrary values of HM means that replacing Q by P in an extremal solution gives
another extremal solution with the attractor P. The second identity is a consequence of
the first and implies that

W(Q) < 0 , ⇒ |Z(P)| > |Z(Q)| ,

W(Q) > 0 , ⇒ |Z(Q)| > |Z(P)| ,
(2.88)

for all values of HM . The second case should correspond to the supersymmetric attractor
in which the evaporation process stops when the mass equals the largest central charge,
which in this case is the true one.

Finally, observe that this black-hole potential satisfies the curious interchange prop-
erty

Vbh(H,Q) =
W(H)

W(Q)
Vbh(Q, H) . (2.89)

2.4.3 The symmetries in the H-FGK formalism

In Section 2.4.1 we discussed the global symmetries of the axidilaton model (more precisely,
of its scalar manifold metric) when it is described in terms of the standard fields and have
studied the embedding of these symmetries into Sp(4;R). It is in this form that we expect
these symmetries to be present in the H-FGK formalism. On the other hand, there may
be additional non-obvious symmetries such as Freudenthal duality (which is in general
non-linear) in the H-FGK formalism.
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Let us consider first the kinetic term: if we consider only linear transformations of
the HM

δHM = TMNH
N , (2.90)

it is evident that they will leave the kinetic term invariant if they are symplectic transfor-
mations, i.e.,

ΩP (MT
P
N) = 0 , (2.91)

and are furthermore symmetries of the Hesse potential

δW = 2H̃MδH
M = 2H̃M TMN HN = 0 −→ [ΩA, T ] = β14×4 , (2.92)

where β is a real constant that can vanish. It is not difficult to see that for infinitesimal
symplectic transformations, β must indeed vanish, and the only independent generators
that solve the above equation are the three Sl(2;R) generators Ti given in Eq. (2.58) plus

T4 = 1
2AΩ , (2.93)

which generates the Freudenthal transformations and commutes with the generators of
Sl(2;R)16.

It can be checked that these symmetries leave invariant the metric gMN . Actually,
the metric is invariant under the constant rescalings of the HM

T5 ≡ 1
414×4 , (2.94)

which are not symplectic transformations and leave the Hesse potential invariant only up
to a multiplicative constant, in the same way as the Kähler potential is invariant under
isometries of the Kähler metric only up to Kähler transformations.

We can study now the invariance of the potential using the expression for ∂MV given
in Eq. (2.84). The first term cancels for i = 1, 2, 3, 4 (we do not need to check i = 5: the
potential is homogeneous of degree −2 and δ5V = −2V 6= 0 in general) and the rest gives

δiV = −2HNTi
M
N (QMQN + Q̃M Q̃N )

HN

W2
, (2.95)

which vanishes only for the Freudenthal transformation i = 4 unless we also perform
the same transformation on the charge vector: this means that Sl(2;R) is only a pseudo-
symmetry of the system, since the constants that enter the action are rotated. The charges
appear as integration constants of the solution of the equations of motion for the electro-
static and magnetostatic potentials in Ref. [173] and Sl(2;R) is probably a (standard)
symmetry of the effective theory before that.

There are no conserved quantities associated to pseudo-symmetries, whence there is
only one conserved current: the one associated to the Freudenthal duality. This current
vanishes, however, identically, which is a generic feature of the formalism.

16it is not difficult to see that the Hesse potential of the axidilaton model is not determined by Sl(2;R)
invariance alone: one must require invariance under Freudenthal duality.
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2.4.4 Critical points

The critical points of this model are equivariant vectors BM satisfying the equations

∂MVbh|H=B = −2
B̃M
W(B)

[
Vbh(B,Q)− 1

2W(Q)
]
−2(QMQN + Q̃M Q̃N )

BN

W(B)
= 0 . (2.96)

Using the basis of equivariant vectors {Uσ} = {Q, Q̃,P, P̃} constructed in Sec-
tion 2.4.1, we can write any such solution as

BM = aQM + ãQ̃M + bPM + b̃P̃M . (2.97)

The only non-vanishing symplectic products of the four basis vectors are

Q̃MQM = W(Q) , P̃MPM = −W(Q) , (2.98)

and a very simple calculation gives

∂MVbh|H=B =
−2

(a2 + ã2 − b2 − b̃2)

{
ã(b2 + b̃2)QM − a(b2 + b̃2)Q̃M

+b̃(a2 + ã2)PM − b(a2 + ã2)P̃M
}

= 0 ,

(2.99)

which only admits two non-trivial solutions: b = b̃ = 0 and a = ã = 0. The first
solution, up to global normalization (which is undetermined in this formalism because
the black-hole potential is scale-invariant), corresponds to a global Freudenthal rotation
with arbitrary angle of the standard supersymmetric attractor BM = QM and the second
corresponds to a global Freudenthal rotation of the standard non-supersymmetric attractor
BM = PM [190].

We obtain the following relations

Vbh(P,P) = −Vbh(Q,P) = Vbh(P,Q) = −Vbh(Q,Q) = 1
2W(Q) , (2.100)

that are necessary to have the corresponding near-horizon solutions, see Eq. (2.21).

2.4.5 Conventional extremal solutions

As a first simple illustration of the methods proposed in the first section of this chapter,
we are going to review the construction of the extremal solutions17 performed in Ref. [191].

From the results of that paper we know that all of them (including the extremal
non-supersymmetric ones) are going to be conventional, but it is important for us to
understand why. Thus, we start from the near-horizon solutions given by Eq. (2.20) where
BM takes the values of the attractors found in the previous section, normalized so that
(see Eq. (2.21))

Vbh(B,Q) = Vbh(B,B) = −1
2W(B) . (2.101)

17The axidilaton model is a particular case (n = 1) of the CPn model. We will construct the most
general non-extremal solutions of that model (and, hence, of the axidilaton model) later.
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The attractors that satisfy these conditions are global Freudenthal rotations of the stan-
dard supersymmetric attractor QM and of the non-supersymmetric one PM , i.e.,

either BM = cos θQM + sin θ Q̃M ,

or BM = cos θPM + sin θ P̃M . (2.102)

The results of Section (2.2) guarantee that Eq. (2.20) provides a near-horizon solution for
these choices of BM . Now, to see if we can extend these solutions to asymptotically flat
solutions by adding an infinitesimal constant vector to these HM as in Eq. (2.23), we have
to compute the rank of MMN in Eq. (2.27) to find how many independent solutions εM

exist.

It is enough to consider a charge configuration whose orbit covers the complete
charge space (see Appendix A.1) and, therefore, we set p0 = p1 = 0, getting, for the
supersymmetric (+) and non-supersymmetric (−) cases, the matrix

(MMN ) = 1
2


1
q2
1

± 1
q0q1

0 0

± 1
q0q1

1
q2
0

0 0

0 0 0 0
0 0 0 0

 . (2.103)

This matrix has rank 1 and, furthermore, the three independent solutions to Eq. (2.27)
satisfy the constraint BMεM = 0. This means that there is no obstruction to the addition
of arbitrary (up to normalization W(A) = 1 and the condition BMAM = 0) constants AM

to the near-horizon harmonic functions, which now take the form

HM = AM − 1√
2
BMτ . (2.104)

The two independent components of AM describe the two real moduli of this theory
<e(λ∞) , =m(λ∞) and AM is given by [191]

AM =
√

2=m
(
Z∗(φ∞, B)

|Z(φ∞, B)|
VM∞
)
. (2.105)

To show that the equations of motion are satisfied for finite constants AM (which
is only needed in the non-supersymmetric case) we can proceed as follows: from the
linearity of the HM it is possible to show that these configurations satisfy first-order flow
equations [355]. These, in turn can be shown to imply the standard second-order equations
of motion if and only if the identity

Vbh(H,Q) = Vbh(H,B) , (2.106)

is satisfied for arbitrary values of H. This is evident for BM = QM (the supersymmetric
attractor) and has been shown for BM = PM (the non-supersymmetric attractor) in
Eq. (2.46) and the invariance of the black-hole potential under Freudenthal transformations
of the charges extends this result to the other two (physically indistinguishable) attractors
and proves that these configurations are classical solutions of the model.
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2.4.6 Unconventional solutions

We do not expect more extremal black-hole solutions to the axidilaton model since the
solutions constructed in the previous section already have the maximal number of inde-
pendent physical parameters (charges QM and moduli λ∞) which are constrained only by
the requirement that the horizon has a non-vanishing area, i.e., W(B) > 0.

On the other hand, we can rewrite these solutions in an unconventional form (i.e., so
that ḢMHM 6= 0) by using local Freudenthal duality transformations, but in this case
doing so merely complicates the form of the solution in the H-FGK formalism.

2.5 The CPn model

The prepotential of the CPn model is given by18

F = − i
4ηΛΣXΛXΣ , (ηΛΣ) = diag(+− · · ·−) . (2.107)

The CPn model contains n scalar fields given by

Zi ≡ X i/X 0 , (2.108)

but it is convenient to add Z0 ≡ 1 and we define

(ZΛ) ≡
(
XΛ/X 0

)
= (1, Zi) , (ZΛ) ≡ (ηΛΣZ

Σ) = (1, Zi) = (1,−Zi) . (2.109)

The Kähler potential, the Kähler metric, the inverse Kähler metric and the covariantly
holomorphic symplectic section read

K = − log (Z∗ΛZΛ) ,

Gij∗ = −eK
(
ηij∗ − eKZ∗i Zj∗

)
,

Gij∗ = −e−K
(
ηij
∗

+ ZiZ∗ j
∗)
,

V = eK/2

 ZΛ

− i
2ZΛ

 .

(2.110)

It is also convenient to define the following complex charge combinations

ΓΛ ≡ qΛ + i
2ηΛΣp

Σ , (2.111)

in terms of which the central charge, its holomorphic Kähler-covariant derivative and the
black-hole potential are

Z = eK/2ZΛΓΛ ≡ Z(Γ) ,

DiZ = e3K/2Z∗i Z
ΛΓΛ − eK/2Γi ,

−Vbh = 2eK|ZΛΓΛ|2 − Γ∗ΛΓΛ .

(2.112)

18The black-hole solutions of this model have been studied in [190].
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We can extend this complex notation to any symplectic vector:

if (AM ) =

(
aΛ

bΛ

)
then


AΛ ≡ bΛ + i

2ηΛΣa
Σ ,

AΛ ≡ ηΛΣAΣ = ηΛΣbΣ + i
2a

Λ ,
(2.113)

and the symplectic product of two vectors becomes

AMB
M = −2=m(AΛB∗Λ) , (2.114)

where of course AΛB∗Λ = AΛB∗Λ. We will use both notations, based on convenience.

2.5.1 The global symmetries of the CPn model

The n complex scalars of the CPn model parametrize the symmetric coset space SU(1, n)/SU(n),
and the full theory is invariant under global SU(1, n) transformations19. If ΛΛ

Σ is a generic
element in the fundamental representation of SU(1, n), i.e., if it satisfies

Λ∗Γ
Λ ηΓ∆ Λ∆

Σ = ηΛΣ , (or Λ†ηΛ = η) , det Λ = 1 , (2.115)

then its action on the scalars is given by

Z ′Λ =
ΛΛ

ΣZ
Σ

Λ0
ΣZΣ

, Z ′Λ =
ΛΛ

ΣZΣ

Λ0
ΣZΣ

, (2.116)

where we have raised and lowered the indices of the SU(1, n) matrix with the metric η. In
the fundamental representation the n(n+ 2) infinitesimal generators of su(1, n)

ΛΛ
Σ ∼ δΛ

Σ + αm Tm
Λ

Σ , (2.117)

are matrices such that TmΛΣ = ηΛΓ Tm
Γ

Σ is anti-Hermitean. Substituting the infinitesimal
linear transformations in the non-linear transformation rules of the scalars, Eq. (2.116),
we find that they take the form

Z ′Λ = ZΛ + αmkm
Λ(Z) , (2.118)

where km
Λ(Z), the holomorphic part of the Killing vectors Km, is given by20

km
Λ(Z) = Tm

Λ
Σ ZΣ − Tm0

Ω ZΩZΛ . (2.119)

The commutation relations of the generators Tm and the Lie brackets of the Killing vectors
are related as usual:

[Tm, Tn] = fmn
p Tp , [Km,Kn] = −fmnpKp . (2.120)

19Actually, the coset space can also be described as U(1, n)/U(n), which would imply that the global
symmetry group of the model is U(1, n). As in the axidilaton model (the n = 1 case), the extra U(1), that
does not act on the scalars, is the Freudenthal duality group (see footnote 12). We thank Alessio Marrani
for clarifying discussions on this point.

20The Λ = 0 component vanishes, as it should, but it is useful to keep it.
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The action of the finite SU(1, n) transformations on the Kähler potential and on the
canonical covariantly-holomorphic symplectic section V are given by the obvious general-
ization of Eqs. (2.54) and (2.55) where now

f(Z) = log
(
Λ0

ΣZ
Σ
)
, (2.121)

(SMN ) =

 <eΛΛ
Σ −2=mΛΛΣ

1
2=mΛΛΣ <eΛΛ

Σ

 , (2.122)

where once again we have raised and lowered the indices of ΛΛ
Σ with η. The condition

Λ†ηΛ = η implies for the real and imaginary parts of Λ

<eΛ∆Λ =mΛ∆
Σ = =mΛ∆Λ <eΛ∆

Σ , <eΛ∆Λ <eΛ∆
Σ + =mΛ∆Λ =mΛ∆

Σ = ηΛΣ ,
(2.123)

and implies that the matrix (SMN ) constructed above satisfies STΩS = Ω and therefore
belongs to Sp(2nv+2;R). The infinitesimal generators in this representation, i.e., (Tm

M
N ),

can be constructed in the same way, leading to

(Tm
M
N ) =

 <eTmΛ
Σ −2=mTmΛΣ

1
2=mTmΛΣ <eTmΛ

Σ

 . (2.124)

Equivariant vectors

The search for equivariant vectors is simplified by using the complex combinations defined
above: we look for vectors BΛ behaving as ΓΛ under duality transformations, i.e., such
that its complex conjugate transforms in the fundamental representation of SU(1, n)

Γ∗ ′Λ = ΛΛ
Σ Γ∗Σ , ⇒ B∗ ′Λ = ΛΛ

Σ B∗Σ . (2.125)

Observe that Γ∗ΛΓΛ and B∗ΛBΛ are duality invariants.

The simplest equivariant vectors are, up to a complex constant, just equal to the
charge vector ΓΛ. This constant is relevant because, as we will see, the complex form of
the Freudenthal dual of the charge vector

Q̃M =

 −2 ηΣΛqΛ

1
2 ηΛΣp

Λ

 , (2.126)

is just Γ̃Λ = −iΓΛ, whence the phase of the constant corresponds to a global Freudenthal
duality rotation. This immediately implies that the SU(1, n) invariants Γ∗ΛΓΛ and B∗ΛBΛ

are also invariant under Freudenthal U(1) duality. There may be other equivariant vectors
which are functions of the charges only, but we will not need them.

We can use the moduli ZΛ
∞ in order to construct more equivariant vectors. Again, up

to normalization, the only one we will need is the generic vector given in Eq. (2.17). Mul-
tiplying it by the invariant Γ∗ΛΓΛ as to give it the right dimensions for later convenience,
we have the equivariant vector

ΣΛ ≡ Z∗Λ
∞

Z∗Σ
∞ Γ∗Σ

Γ∗ΣΓΣ . (2.127)
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We will see that in order to find the most general solutions of this model, it is enough
to consider complex linear combinations of the two equivariant vectors constructed thus
far:

BΛ = αΓΛ + βΣΛ , (2.128)

where α and β are complex duality invariants (including pure numbers).

Using this information we can see that in this model (for generic n), in distinction
to the axidilaton model, we cannot define a fake charge BΛ and its associated fake central
charge Z(B) such that

Gij∗DiZDj∗Z∗ = |Z(B)|2 = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ , (2.129)

or such that
Vbh(Q) = Vbh(B) , (2.130)

for arbitrary values of the scalars. This fact has important implications for the construction
of extremal non-supersymmetric solutions as the first-order equations do not imply the
second order ones, which therefore have to be solved explicitly. In this chapter we are
going to construct directly the general non-extremal solutions from which all the extremal
ones can be obtained in the appropriate limits.

2.5.2 H-FGK formalism

The stabilization equations of this model are solved by a linear relation between RM and
IM , as in the axidilaton case:

RM (I) = AMNIN , (AMN ) =

 1
2ηΛΣ 0

0 2ηΛΣ

 , (2.131)

which implies that the Freudenthal dual can be expressed as

H̃M = AMNH
N , (AMN ) = (ΩPMAPN ) =

 0 −2ηΛΣ

1
2ηΛΣ 0

 . (2.132)

As in the axidilaton case, AMN is a symplectic matrix, but, in contradistinction to
that case, AMN is not. In terms of the complex H-variables21

HΛ ≡ HΛ + i
2ηΛΣH

Σ , (2.133)

discrete Freudenthal duality is equivalent to multiplication by a factor of −i.
The Hesse potential reads

W(H) = AMNH
MHN = 1

2ηΛΣH
ΛHΣ + 2ηΛΣHΛHΣ = 2H∗ΛHΛ , (2.134)

and the metric function e−2U and the scalars Zi can be easily obtained from it as

e−2U = W(H) , Zi =
H̃ i + iH i

H̃0 + iH0
=

Hi + i
2H

i

−H0 + i
2H

0
=
H∗i
H∗0

. (2.135)

21Observe that, in his notation, HΛ ≡ ηΛΣHΣ but HΛ 6= ηΛΣHΣ.
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The metric gMN (H) and the potential V (H) have the same structure as in the
axidilaton case when we write them in terms of the matrix AMN (which, evidently, is
different). Then, the expressions from Eq. (2.79) to Eq. (2.84) are also valid here upon
use of the new matrix AMN .

The central charge of the model, Eq. (2.112), takes in the H-FGK formalism the
form

Z(H,Q) = −
(H0 + i

2H
0)∣∣H0 + i

2H
0
∣∣ (H̃M + iHM )QM√

2W(H)
. (2.136)

It is easy to check that, like in the axidilaton case, this black-hole potential satisfies

Vbh(H,Q) =
W(Q)

W(H)
Vbh(Q, H) . (2.137)

2.5.3 Critical points

Using the complex notation we can write the equation for the critical points BΛ of the
black-hole potential of this model in the form

i
2W(B) ∂∗ΛVbh|H=B =

BΣΓ∗Σ
W(B)

[
B∗∆Γ∆BΛ − B∗∆B∆ΓΛ

]
= 0 , (2.138)

and can be solved by

BΣΓ∗Σ = 0 , or B∗∆Γ∆BΛ − B∗∆B∆ΓΛ = 0 . (2.139)

Inserting the general ansatz (2.128) into the first condition we find that it is satisfied for

α = −β , ⇒ BΛ = α(ΓΛ − ΣΛ) , (2.140)

which, up to normalization (which is not fixed in this approach), leaves us with one
arbitrary global phase associated to Freudenthal duality: this is the moduli-dependent
attractor found in Ref. [190].

Inserting our ansatz (2.128) into the second condition we get the equation

β(α∗ + β∗)Γ∗∆Γ∆ΣΛ −
[
2<e(αβ∗) +

|β|2Γ∗ΣΓΣ

|Z∞(Γ)|2

]
Γ∗∆Γ∆ΓΛ = 0 . (2.141)

The coefficients of the two equivariant vectors must vanish separately, which can only
happen for β = 0, whence BΛ = αΓΛ: up to normalization and the Freudenthal duality
phase, this is the supersymmetric attractor.

2.5.4 Conventional non-extremal solutions

In this section we are going to show how the knowledge of the equivariant vectors of the
model simplifies the construction of solutions in the H-FGK formalism. We are going to
see that the most general solution can be written as

HΛ(τ) = a(τ)ΓΛ + b(τ)ΣΛ , (2.142)
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where a(τ) and b(τ) are two complex, duality-invariant functions of τ to be determined.
Already, at this stage, we see that this ansatz reduces dramatically the number of real
functions to be found, from 2nv + 2 to just 4, and all of this without any loss of generality.

First of all, we are going to impose the usual Freudenthal gauge-fixing condition
ḢMHM = 0 [189] which in complex notation takes the form

=m(Ḣ∗ΛHΛ) = 0 . (2.143)

As shown in Ref. [189], assuming this condition, the contraction of the equations of motion
with HM leads to the equation

H̃M

(
ḦM − r2

0H
M
)

= 0 , (2.144)

which can always be solved by

ḦM = r2
0H

M , ⇒ ḦΛ = r2
0HΛ . (2.145)

This is not necessarily the only solution of Eq. (2.144), but as we are going to see it allows
us to solve the rest of the equations without imposing unnecessary constraints on the
physical parameters of the solution. This equation combined with the equivariant ansatz
leads to

HΛ(τ) =
[
c1e

r0τ + c3e
−r0τ ]ΓΛ +

[
c2e

r0τ + c4e
−r0τ ]ΣΛ , (2.146)

so it only remains to determine the four complex invariants ci (i = 1, · · · , 4) in terms of
the charges ΓΛ, the moduli ZΛ

∞ and the mass M (or alternatively of the non-extremality
parameter r0).

These four constants can be constrained even further by requiring that the ansatz
gives the right asymptotic behavior for the physical fields in Eq. (2.135): requiring that
ZΛ
∞ = H∗Λ

∞ /H∗ 0
∞ we get22

c1 + c3 = 0 . (2.147)

Asymptotic flatness requires that H∗Λ
∞ HΛ,∞ = 1

2 which, upon use of the above condition,
gives

|c2 + c4|2 −
|Z∞(Γ)|2

2(Γ∗ΛΓΛ)2
= 0 , (2.148)

where Z∞(Γ) is the central charge at spatial infinity. The gauge-fixing condition (2.143)
gives (again, upon use of Eq. (2.147))

=m [c∗3(c2 + c4)] + =m [c∗2c4]
Γ∗ΛΓΛ

|Z∞(Γ)|2
= 0 . (2.149)

Finally, we can still make global Freudenthal duality rotations, which are not fixed by
Eq. (2.143): this freedom cannot be used to solve Eq. (2.149) but can be used to simplify
it by fixing the phase of one of the constants to a convenient value.

Using the gauge-fixing condition (2.143), the Hamiltonian constraint takes the form[
Ḣ∗ΛḢΛ − 1

2Γ∗ΛΓΛ

]
H∗ΣHΣ − 2(Ḣ∗ΛHΛ)2 +

∣∣H∗ΛΓΛ

∣∣2 − r2
0(H∗ΛHΛ)2 = 0 , (2.150)

22 In the (H-)FGK coordinate system, spatial infinity corresponds to the limit τ → 0−.
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and using the gauge-fixing condition plus Eq. (2.145) and the Hamiltonian constraint
above, the equations of motion take the form

H∗Λ
[
2(Ḣ∗ΣHΣ)2 −

∣∣H∗ΣΓΣ

∣∣2]+ Γ∗Λ(H∗ΣΓΣ)(H∗∆H∆)− 2Ḣ∗Λ(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 .

(2.151)
The coefficients of the two equivariant vectors ΓΛ and ΣΛ must vanish independently,
which implies that we must solve the following equations

a∗
[
2(Ḣ∗ΣHΣ)2 −

∣∣H∗ΣΓΣ

∣∣2]+ (H∗ΣΓΣ)(H∗∆H∆)− 2ȧ∗(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 ,

(2.152)

b∗
[
2(Ḣ∗ΣHΣ)2 −

∣∣H∗ΣΓΣ

∣∣2]− 2ḃ∗(Ḣ∗ΣHΣ)(H∗∆H∆) = 0 .

(2.153)

The coefficients of b∗ and ḃ∗ in the last equation are real (on account of the gauge-fixing
condition) and this implies that the phases of c2 and c4 must be the same up to π (the
global sign) so that =m(c∗2c4) = 0 . Then, Eq. (2.149) states that the phase of c3 must be
the same as that of c2 and c4, again up to π. We know that in the near-horizon limit (i.e.,
τ → −∞) of the extremal non-supersymmetric case the phases of c3 and c4 must differ
by π and, since this difference is constant, this must always be the case. Furthermore, in
the extremal non-supersymmetric case Z∞(Γ) = 0 and Eq. (2.148) implies that c2 and c4

must also have opposite global signs. Therefore we find

arg(c3) = arg(c2) = arg(c4) + π ≡ θ , (2.154)

and, by making use of the global Freudenthal duality freedom

|c2| − |c4| = −
|Z∞(Γ)|√
2Γ∗ΛΓΛ

. (2.155)

To simplify the calculations further, we introduce the constant A

|c2|+ |c4| = −
|Z∞(Γ)|√
2Γ∗ΛΓΛ

A , (2.156)

which allows us to rewrite Eq. (2.146) as

HΛ(τ) = eiθ
{
−2|c3| sinh r0τΓΛ +

|Z∞(Γ)|√
2Γ∗ΛΓΛ

[
(1 +A)e−r0τ + (1−A)er0τ

]
ΣΛ

}
. (2.157)

It is now straightforward to solve the equations of motion for the three constants θ, A
and |c3|, for which it is convenient to express the final result using the mass M (defined
in Eq. (2.31))

M = r0

[
A+ 2

√
2|c3||Z∞(Γ)|

]
. (2.158)
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The final result is

|c3| =
|Z∞(Γ)|
2
√

2Mr0

, (2.159)

A =
M2 − |Z∞(Γ)|2

Mr0
, (2.160)

eiθ = ± Z∞(Γ)

|Z∞(Γ)|
, (2.161)

M2r2
0 =

[
M2 − |Ẑ∞|2

] [
M2 − |Z∞(Γ)|2

]
, (2.162)

which is precisely the result obtained in Ref. [190].

We do not expect any other Freudenthal-inequivalent solutions to this model since
the solutions we just found have the maximal number of independent physical parameters.

2.6 The t3 model

The t3-model is characterized by the prepotential

F(X ) = −5
6

(X 1)3

X 0
. (2.163)

In terms of the coordinate t = X 1/X 0, the Kähler potential and the scalar-manifold metric
are given by

K = −3 ln=m t− ln 20
3 , Gtt∗ = 3

4 (=m t)−2 ; (2.164)

the covariantly holomorphic symplectic section reads

V(t, t∗) = eK/2


1
t

5
6 t

3

−5
2 t

2

 , (2.165)

and the central charge, its covariant derivative, the black-hole potential and its partial
derivative read

Z ≡ e
1
2
KẐ , (2.166)

DtZ ≡ i
2

e
1
2
K

=m t
Ŵ , (2.167)

−Vbh = eK
[
|Ẑ|2 + 1

3 |Ŵ|
2
]
, (2.168)

−∂tVbh = i
20(=m t)−4

[
(Ŵ∗)2 + 3ŴẐ∗

]
, (2.169)

where we have defined

Ẑ = 5
6p

0t3 − 5
2p

1t2 − q1t− q0 , (2.170)

Ŵ = 5
2p

0t2t∗ − 5
2p

1t(t+ 2t∗)− q1(2t+ t∗)− 3q0 . (2.171)

Observe that all these objects are well defined only iff =m t > 0.
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2.6.1 The global symmetries of the t3 model

The t3 model as a theory of N = 2, d = 4 supergravity is invariant under global Sl(2;R)
transformations, just like the axidilaton model, since their Kähler metrics are identical
up to a numerical factor. The action of Sl(2;R) on t is identical to its action on λ,
which was discussed in Section 2.4.1. The transformations of the Kähler potential and
covariantly-holomorphic symplectic section Eqs. (2.54,2.55) are determined by the holo-
morphic function f(t) and the Sp(4;R) matrix SMN given by

f(t) = 3 ln (ct+ d) , (2.172)

(SMN ) =



d3 3d2c 6
5c

3 −6
5dc

2

bd2 (ad+ 2bc)d 6
5ac

2 −2
5(2ad+ bc)c

5
6b

3 5
2ab

2 a3 −a2b

−5
2b

2d −5
2(2ad+ bc)b −3a2c (ad+ 2bc)a


. (2.173)

In this case the 4-dimensional representation of the generators Tm are given by

(T1
M
N ) =


3

1
−3

−1

 , (T2
M
N ) =


−3

−1 4/5
1

5 3

 ,

(T3
M
N ) =


−3

1 4/5
−1

−5 3

 .

(2.174)

As in the axidilaton model, the same transformations act on all the symplectic
vectors of the theory and, in particular on HM and QM . There are no more symmetries
in this formulation of the model.

Equivariant vectors of the t3 model

It is not difficult to see that, from the point of view of Sl(2;R), the symplectic vectors
such as the charge vector QM transform as a quadruplet, i.e., a fully symmetric 3-index
covariant tensorQijk = Q(ijk) (in the notation used in Section 2.4.1). The relation between
the components of this tensor and those of the charge vector is

Q111 = p0 , Q112 = −p1 , Q122 = −2
5q1 , Q222 = −6

5q0 . (2.175)

It is useful to observe that the contraction of two quadruplets is related to the symplectic
product by

AijkB
ijk = −6

5A
MBM . (2.176)

By definition, any new Sl(2;R) quadruplet that we construct out of t∞ and Qijk can
be transformed according to the above rules into an equivariant symplectic vector of the
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t3-model. The Sl(2;R) index notation makes this construction easy, but, as we are going
to see, insufficient.

In order to construct Sl(2;R) invariants and other quadruplets it is useful to define
the matrix

mi
j ≡ QiklQjkl , (2.177)

whose components take the values

m1
1 = −m2

2 = −2
5(p1q1 + 3p0q0) , m1

2 = 12
5 p

1q0 − 8
25(q1)2 , m2

1 = 4
5p

0q1 + 2(p1)2 .
(2.178)

The square of this matrix is

mi
k m

k
j = −36

25 J4(Q) δij , (2.179)

where, since δij is an invariant tensor, the coefficient J4(Q) must be an invariant of order
four in the charges; this quartic invariant is explicitly given by

J4(Q) ≡ 8
45p

0(q1)3 + 1
3(p1q1)2 − (p0q0)2 − 2p0q0p

1q1 − 10
3 (p1)3q0 . (2.180)

This is the only independent invariant that can be constructed from the charge
alone. We can construct invariants taking traces of powers of m and taking also the
determinant: the traces of odd powers vanish and those of even powers are proportional
to J4(Q). Furthermore, the determinant is also proportional to J4(Q), i.e.,

det(m) = 36
25J4(Q) . (2.181)

The simplest quadruplet that can be built out of the original one Qijk is

Q(ij|l m
l
|k) . (2.182)

This tensor is necessarily proportional to the Freudenthal dual of Qijk since

Q(ij|lm
l
|k) = 1

4

∂Trm2

∂Qijk
= −18

25

∂J4(Q)

∂Qijk
. (2.183)

Using higher powers of m does not give anything new as

Q(i|lmm
l
|jm

m
k) = Q(ij|lm

l
mm

m
|k) = −36

25 J4(Q) Qijk . (2.184)

We must use, therefore, contractions of Qijk such that the free indices are not those
of mi

j . At cubic order in Qijk there is only one possibility, which vanishes identically

Q(i|lmQ|j|nlQ|k)
mn = 0 , (2.185)

due to the antisymmetry of the symplectic metric Ωij . At order five inQijk we can consider

Qi,i1,i2Qj,j1,j2Qk,k1,k2Qi1,j1,k1Qi2,j2,k2 = −36
25 J4(Q) Qijk , (2.186)

Q(i|mnQ|j|pqQ|k)
mpmnq = 0 . (2.187)

Up to at least order 9 there are no quadruplets other than Qijk and its Freudenthal dual
that can be constructed by these tensor methods.
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To find more, we have to solve Eq. (2.11). Since this is a very complicated task, we
are going to restrict ourselves to a generating charge configuration with p0 = q1 = 0, i.e.,

(QM ) =


0
p1

q0

0

 . (2.188)

This subspace is preserved by the Sl(2;R) transformations with b = c = 0 and
d = 1/a (or equivalently by the infinitesimal transformations generated by T1), to which
by analogy we shall refer to as the small group. It is not difficult to see that by acting on
this charge vector with the transformations with appropriate charge-dependent parameters
b 6= 0 , c 6= 0 (or, equivalently, by the infinitesimal transformations generated by T2 and
T3) we can generate the complete generic charge vector with four unrestricted charge
components.

It should be clear that if we construct vectors in the subspace p0 = q1 = 0 that
are equivariant under the small group, then by acting on these vectors with the same
transformations that generate the complete charge vector, we will obtain vectors that are
equivariant under the full duality group, i.e., Sl(2;R), and which reduce to the former
when we set p0 = q1 = 0. Since duality transformations preserve linear independence, a
base for the small-group-equivariant vectors will be transformed into a base of the duality-
group-equivariant vectors; seeing this reasoning we shall refer to a small-group-equivariant
vector as an equivariant-generating vector.

The equation that these equivariant-generating vectors have to solve is the restriction
of Eq. (2.11) to just T1 and allow for no dependence on p0 nor q1, i.e.,

p1∂U
P

∂p1
− 3q0

∂UP

∂q0
= β(P )U (P ) , (βP ) =


3
1
−3
−1

 , (2.189)

which is solved by

UP =
∑
i

a
(P )
i (p1)α

(P )
i (q0)

α
(P )
i
−β(P )

3 , (2.190)

for arbitrary constants aPi , α
P
i (the parenthesis enclosing the indices P indicate that they

are not summed over and the index i runs over an arbitrary number of terms). For
simplicity, we can choose them to depend only on p1 (αP = βP ) or only on q0 (αPi = 0)
and take them to have only one term:

UP = a(P )(p1)β
(P )
, UP = a(P )(q0)−β

(P )/3 . (2.191)

To avoid charges with fractional components, we choose the first option and get a basis of
equivariant-generating vectors

Uσ
P ∼ δσ(P )(p1)β

(P )
. (2.192)

We have found it convenient to normalize these vectors and give them names {R,S, U, V }

R ≡


10
3 (p1)3

0
0
0

 , S ≡


0
0

(10
3 (p1)3)−1

0

 , U ≡


0
p1

0
0

 , V ≡


0
0
0

1/p1

 . (2.193)
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The only non-vanishing symplectic contractions of these four vectors are

RMS
M = −1 , UMV

M = −1 , (2.194)

and they satisfy the completeness relation

RMSN − SMRN + UMVN − VMUN = δMN . (2.195)

We can decompose any equivariant-generating vector, such as QM w.r.t. this basis
and the expression will have the same form after acting with the duality group. For QM
we find

RMQM = −10
3 (p1)3q0 = J4(Q)|p0=q1=0 , VMQM = 1 , (2.196)

from which we find that in general

QM = UM − J4(Q)SM . (2.197)

The Freudenthal dual charge vector is (using the results of the next section) given
by

Q̃M =
1

W(Q)
RM + 3

4W(Q)VM , W(Q) = 2
√
J4(Q) . (2.198)

As for the moduli-dependent equivariant vectors, we can use the generic construction
in Eq. (2.17) replacing Q with different equivariant vectors.

2.6.2 H-FGK formalism

The stabilization equations can be solved in a completely general way [389] and the result
is summarized by the Hesse potential which, in terms of the quartic invariant

J4(H) ≡ 8
45H

0(H1)3 + 1
3(H1H1)2 − (H0H0)2 − 2H0H0H

1H1 − 10
3 (H1)3H0 , (2.199)

can be expressed as
W(H) = 2

√
J4(H) . (2.200)

It is convenient to introduce the fully symmetric rank-4 K-tensor [17,315], implicitly
defined by23

KMNPQH
MHNHPHQ ≡ J4(H) . (2.201)

Using this tensor, we can write

H̃M =
∂MJ4

W
= 4

KMNPQH
NHPHQ

W
, (2.202)

MMN (F) = −∂M∂NJ4

W
+ 2

∂MJ4∂NJ4

W3
= −12

KMNPQH
PHQ

W
+ 2

H̃MH̃N

W
,(2.203)

gMN = 24
KMNPQH

PHQ

W2
− 8

H̃MH̃N

W2
− 2

HMHN

W2
, (2.204)

23In most of what follows, the exact form of the K-tensor will be irrelevant. The formulae and results
obtained will, therefore, be valid for any N = 2, d = 4 theory with Hesse potential of the same generic
form.
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and one can check (e.g. using a symbolic manipulation program) the following properties:

J4(H̃) = J4(H) , (2.205)

KMNPQH̃
NH̃P H̃Q = −1

4WHM , (2.206)

KMNPQH̃
P H̃Q = KMNPQH

PHQ + 1
6(HMHN − H̃MH̃N ) , (2.207)

KMNPQH
P H̃Q = −1

6H(MH̃N) . (2.208)

These properties (which hold for any symplectic vector with non-vanishing quartic in-
variant which implies the existence of the Freudenthal dual) imply the invariance under
Freudenthal duality of W, MMN (F) and the potential V (H); the latter can be rewritten
in the manifestly Freudenthal-duality-invariant form

V (H) = −3W−2
{
KMNPQ

(
HPHQ + H̃P H̃Q

)
− 1

2

(
HMHN + H̃MH̃N

)}
QMQN .

(2.209)

It is, however, not possible to express it in a form manifestly invariant under the
Freudenthal duality transformation of the charge vector QM → Q̃M .

The physical fields are given in terms of the H-variables by the usual expressions

e−2U = 2W = 2
√
J4(H) , (2.210)

t =
H̃1 + iH1

H̃0 + iH0
= − 3H0H0 +H1H1

5(H1)2 + 2H0H1
+ i

3W

2 [5(H1)2 + 2H0H1]
. (2.211)

Very small vectors

The vectors RM and SM turn out to be very small charge vectors of this model [74,241],
owing to the following properties:

KMNPQR
PRQ = −1

6RMRN , KMNPQS
PSQ = −1

6SMSN , (2.212)

that leads to (in obvious shorthand notation)

KMR
3 = KMS

3 = 0 , J4(R) = J4(S) = 0 . (2.213)

On the other hand, the vectors UM and VM are both small vectors

J4(U) = J4(V ) = 0 . (2.214)

2.6.3 Critical points

The complexity of this model forces us to use a symbolic manipulation program and,
further, impose the restriction p0 = q1 = 0 on the charges to search for the critical points
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of the black-hole potential. Apart from the standard supersymmetric attractor BM = QM
we find only one physically acceptable attractor given by

(BM ) =


0
p1

−q0

0

 . (2.215)

It is an equivariant vector and we can write it in the form

BM = UM + J4(Q)SM = QM + 2J4(Q)SM . (2.216)

The quartic invariant for this vector can be computed readily using Eqs. (2.212–
2.214), and

SMQM = 0 , Q̃MSM = −1/W(Q) , (2.217)

and, by Eq. (2.198), it reads

J4(B) = KB4 = K[Q+ 2J4(Q)S]4 = KQ4 + 8J4(Q)KQ3S

= J4(Q) + 2J4(Q)W(Q)Q̃MSM

= −J4(Q) .

(2.218)

2.6.4 Conventional extremal solutions

The supersymmetric solutions of this model are constructed as usual, and we will focus
on the extremal non-supersymmetric ones which are associated to the attractor BM =
UM+J4(Q)SM . For the near-horizon solutions, the HM take the standard form Eq. (2.20)
since Eq. (2.21) is satisfied. Now we must investigate whether we can add constant terms
AM to these harmonic functions satisfying only the normalization condition W(A) = 1 and
the constraint BMAM = 0, which is equivalent, at the infinitesimal level, to investigating
the space of solutions to Eq. (2.27). For simplicity, we work with a generating charge
configuration with p0 = q1 = 0. We find for the non-supersymmetric attractor

(MMN ) = 1
2


21
20

q0
(p1)3 0 0 − 3

20
1

(p1)2

0 0 0 0
0 0 0 0

− 3
20

1
(p1)2 0 0 1

4
1

p1q0

 , (2.219)

whose rank is 2. The solutions to Eq. (2.27) have the form (εM ) =

(
0
ε1
ε0
0

)
and satisfy

BMεM = 0 but we still have to impose the normalization condition W(A) = 1 on the two
non-vanishing components, which leaves us with only one independent solution that can
only describe one independent real moduli; this modulus turns out to be =m(t∞). It can
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be shown that the solution takes the form [188]

(
HM

)
=



0

s1
{√

3
10=m t∞ −

1√
2
|p1|τ

}
−s0

{√
5(=m t∞)3

24 − 1√
2
|q0|τ

}
0


, (2.220)

where we have defined
sM ≡ sgn(QM ) , (2.221)

and where we have to require s1 = s0 for the solution to be regular.

Having <e t∞ = 0 poses a very important problem because even though the charge
vector with p0 = q1 can generate via Sl(2;R) duality transformations a complete charge
vector with four independent charges, it cannot at the same time generate an independent
<e t∞ 6= 0. In other words, this solution is not a generating solution; its orbit under
Sl(2;R) rotations will not fully cover the space of parameters. A necessary and sufficient
condition for a solution to be generating is that all the Sl(2;R) invariants of the theory
are independent when evaluated on the charges and moduli of that solution [61, 62]. As
we show in detail in Appendix A.1.2, the solution (2.220) does not satisfy this condition.

In order to have a generating solution for the class of extremal non-supersymmetric
black-hole solutions associated to the attractor BM = UM + J4(Q)SM , we need to add
<e t∞ 6= 0 to the solution and it should be clear that this cannot be done if we make a
conventional, i.e., harmonic, ansatz: the HM must contain anharmonic terms.

For future use, it is useful to have symplectic-covariant expressions for the constraints
on AM imposed by the equations of motion for a harmonic ansatz:

AMU
M = 0 , AMS

M = 0 . (2.222)

AMB
M = 0 only imposes the weaker condition AM (UM + J4(Q)SM ) = 0. The above

constraints imply that AM has to take the form

AM = aUM + bSM , (2.223)

for some invariant coefficients a and b, and it cannot contain terms proportional to the
vectors RM and VM .

2.6.5 Unconventional extremal solutions

The missing free parameter must be added to the above solution by adding anharmonic
terms to the harmonic ansatz: let us don the harmonic functions of the undeformed
solution with hats, so that

ĤM = AM − 1√
2
BMτ , (2.224)

where BM is given by the attractor (2.216) and AM satisfies the constraints Eqs. (2.222)
but is otherwise arbitrary (up to asymptotic flatness normalization). Observe that this
implies that

ĤMU
M = ĤMS

M = 0 , ⇒ Ĥ = a(τ)UM + b(τ)SM , (2.225)
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where a(τ) and b(τ) are duality-invariant harmonic functions of τ . Terms proportional to
RM and VM are excluded if the coefficients are harmonic functions; a term proportional
to VM can always be eliminated by a local Freudenthal duality transformation, whence
we expect that it is enough to add a (necessarily anharmonic) term proportional to RM .
It turns out that such a solution [188]24 has the form25

HM = ĤM − χRM

RNHN
, (2.226)

where χ is another independent parameter, like AM . The values of χ and AM are deter-
mined by requiring that the physical fields have the right asymptotic behavior at spatial
infinity (e−2U → 1 , t → t∞ when τ → 0−) as follows: first of all, observe that as a
consequence of Eq. (2.225) the property

HMU
M = 0 , (2.227)

is satisfied everywhere and in particular at spatial infinity where

HM τ→0−−→ HM
∞ = AM − χRM

RNAN
. (2.228)

Then, using the definition of HM = IM , Eq. (1.87), in Eq. (2.227) plus Eq. (1.88) at
spatial infinity we find

0 = HM∞U
M = =m

(
VM∞
X∞

)
UM = =m

(
Z∞(U)

X∞

)
=
√

2=m
(
Z∞(U)

eiα∞

)
. (2.229)

This implies that

eiα∞ = ± Z∞(U)

|Z∞(U)|
, (2.230)

which can be used again in the definition of HM = IM to give

HM
∞ = ±

√
2=m

(
VM∞
Z∞(U)

)
|Z∞(U)| . (2.231)

To determine the overall sign we will demand that the functions HM (τ) never vanish for
τ ∈ [−∞, 0), a condition that is usually related to the positivity of the mass. Contracting
the above result with SM and using Eq. (2.225) we get

χ

RNAN
= ±
√

2=m
(
Z∞(S)

Z∞(U)

)
|Z∞(U)| , (2.232)

which, after substitution in Eq. (2.228) gives the value of the constants AM , satisfying
Eqs. (2.222), as an equivariant symplectic vector, function of the physical parameters of
the solution

AM = ±
√

2(δMN −RMSN )=m
(
VM∞
Z∞(U)

)
|Z∞(U)| . (2.233)

24This solution can be obtained by truncation from the STU-model solution in Ref. [208] and is also
a particular case of the general extremal non-supersymmetric solutions of cubic models of Ref. [74]. It
has also been obtained by using integrability methods in the action that one obtains in the approach of
Ref. [83] (see also [132]): its derivation can be found in Section 9.4 (page 76) of Ref. [182]. The solution
belongs to the orbit O3

22 in the classification of Ref. [181] (see Table 2 of that reference).
25This definition is not recursive because RNH

N = RNĤ
N .
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With this information we can compute RNA
N to find, from Eq. (2.232) the value of

the invariant parameter χ as a function of the physical parameters of the solution26

χ = −2=m
(
Z∞(R)

Z∞(U)

)
=m

(
Z∞(S)

Z∞(U)

)
|Z∞(U)|2 . (2.235)

For p0 = q1 = 0, the solution takes the explicit (but not manifestly equivariant)
form

(
HM

)
=



−1
2
<e t∞
=m t∞

1

H0
,

s1
{√

3
10=m t∞ −

1√
2
|p1|τ

}
−s0

(
|t∞|
=m t∞

)2
{√

5=m t∞
24 − 1√

2
|q0|τ

}
0


. (2.236)

The mass of this solution can be computed using the general formula Eq. (2.31).
From the definition of H̃M we have

H̃M (0) = ±
√

2<e
(
V∞M

Z∞(U)

)
|Z∞(U)| , (2.237)

and

ḢM (0) = − 1√
2

[
BM − χJ4(Q)

(RA)2
RM

]
, (2.238)

from which we get the covariant expression

M = ±|Z∞(U)|

{
1− 1

3J4(Q)=m
(
Z∞(V )

Z∞(U)

)[
=m

(
Z∞(R)

Z∞(U)

)]−1
}
. (2.239)

This last expression reduces for p0 = q1 = 0 (selecting the upper sign in Eq. (2.231)) to

M = eK∞/2
(
|q0|+ 5

2 |t∞|
2|p1|

)
. (2.240)

Observe that the value of the mass differs from the absolute value of the associated fake
central charge BM :

M 6= |Z(φ∞, B)| . (2.241)

The above result should be compared to the mass of the supersymmetric black hole
which is given by the standard formula M = |Z∞(Q)| and reduces for p0 = q1 = 0 to27

the following expression,

M = eK∞/2
√[
|q0| − 5

2(<et∞)2|p1|
]2

+ 25
4 (=mt∞)4|p1|2 + 5(=mt∞)2|q0p1| , (2.242)

26In terms of the invariants i1, · · · , i5 of the theory given in Eqs. (A.1)-(A.5)

χ = 1
4
(−J4(Q))−1/6


(
i1 + i2 −

(i1 − i2 /3)3

J4(Q)
− 4 i3√

−J4(Q)

)1/3

−

(
i1 + i2 −

(i1 − i2 /3)3

J4(Q)
+

4 i3√
−J4(Q)

)1/3
 .

(2.234)

27We have used that p1q0 > 0 for the non-supersymmetric case and p1q0 < 0 for the supersymmetric
one.
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which can be rewritten in the equivalent form

M = eK∞/2
√[
|q0|+ 5

2 |t∞|2|p1|
]2 − 10(<et∞)2|q0p1| , (2.243)

which shows that the mass of the supersymmetric black hole is always smaller than the
mass of the non-supersymmetric one with charges of equal absolute value.

The entropy is given by the square of the fake central charge at the horizon

S = π|Z(φh, B)|2 = πW(B)/2 = π
√
−J4(Q) . (2.244)

As discussed in Section 2.3, an interesting characteristic of the unconventional so-
lutions is that, in distinction to what happens for the conventional ones, the flow of the
black-hole metric function e−U from infinity to the horizon is not governed by a simple
fake central charge Z(φ,B) since the near-horizon limit of the metric is related to Z(φh, B)
but the spacelike infinity limit is not related to Z(φ∞, B). The first-order flow equations
for these black holes can be written in terms of a superpotential W (φ,B) or, equivalently,
in terms of the “fake central charge” Z(φ,

√
2DH) defined in Section 2.3.

It is possible to prove analytically that the general configuration Eq. (2.226) solves
the equations of motion by using the duality-invariant properties of the equivariant vectors
AM , BM and RM that appear in its definition (that is: not reducing the equations to the
p0 = q1 case) and the properties of the K-tensor of this model, see Eqs. (2.218). As an
intermediate step, we derive the following relations, which are valid only for the HMs of
our ansatz:

KMNĤ
2 = 1

2(V H)2R(MVN) + 1
2(V H)(RH)VMVN + 1

18(V H)2UMUN

−1
3(V H)(RH)U(MSN) − 1

6(RH)2SMSN , (2.245)

KMNĤQ = 1
2(V H)R(MVN) + 1

4 [J4(Q)(V H) + (RH)]VMVN + 1
18(V H)UMUN

−1
6 [J4(Q)(V H) + (RH)]U(MSN) − 1

6J4(Q)(RH)SMSN , (2.246)

KMNĤR = −1
3(RH)R(MSN) − 1

6(RH)U(MVN) − 1
6(V H)R(MUN) . (2.247)

Using these identities it is easy to show, for instance, that

J4(H) = J4(Ĥ)− χ2 , J4(Ĥ) = (V H)3 (RH) . (2.248)

2.7 Conclusions

In this chapter we have shown how the equivariance of the H variables under duality
transformations translates into equivariance of the constant symplectic vectors that occur
in their explicit expressions. Using the H-FGK formalism we have studied under what
conditions the extremal solutions associated to a given attractor can be described, for all
values of the charges and moduli, by harmonic Hs alone and when it is necessary to add
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anharmonic terms to them. We have called these two kinds of solutions conventional,
respectively unconventional.

As mentioned in the introduction, it is not known how unconventional extremal so-
lutions (which are necessarily non-supersymmetric, since we know that all the supersym-
metric ones are conventional) can be deformed into non-extremal solutions, with non-zero
temperature but the same values of the charges and moduli. The H-FGK formalism and
the use of equivariant vectors can help us to solve this problem and, as a first step, we have
shown how to apply these methods to well-known examples of theories with conventional
and unconventional solutions.

In the case of the unconventional extremal solutions of the t3-model we have shown,
first of all, how the criterion found in Section 2.2 indicates the need for anharmonic terms
and which equivariant vectors these terms should depend on. We have then described the
solution entirely in terms of these objects and we have computed the general form of the
mass and the entropy. The second has a well-known form in terms of the near-horizon
limit Z(φh, B) of a fake central charge, Z(φ,B), constructed from what we have called (in
the context of the H-FGK formalism) attractor BM . The mass instead is not given by
the spacelike infinity limit of this fake central charge M = |Z(φ∞, B)| but rather by the
spacelike infinity of a different one Z(φ,E) with EM 6= BM . The first-order flow equations
that govern the system (which have been given in Refs. [74, 187]) are written in term of
non-standard fake central charge Z(φ,

√
2DH) whose second argument is τ -dependent and

correctly interpolates between BM (on the horizon) and EM (at spacelike infinity).

The behavior of the metric function in the unconventional solutions gets modified
in the asymptotic region but remains unchanged in the near-horizon region, where it is
still governed by the attractor mechanism. This behavior is reminiscent, but opposite, to
that of the colored non-Abelian supersymmetric black holes of Refs. [319] in which the
near-horizon geometry is modified by the non-Abelian effects while the asymptotic one is
unchanged by them.

The formalism and the methods presented in this chapter can be applied to the
problem of finding the non-extremal generalization of the unconventional solutions studied
in this chapter.
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3
Stringy black holes in Type-IIA string theory

This chapter is based on

Pablo Bueno, Rhys Davies and C. S. Shahbazi,
“Quantum black holes in Type-IIA string theory”,

JHEP 1301 (2013) 089. [arXiv:1210.2817 [hep-th]] [89].

Pablo Bueno and C. S. Shahbazi,
“Non-perturbative black holes in Type-IIA string theory vs. the no-hair conjecture”,

Class. Quantum Grav. 31 (2013) 015023. [arXiv:1304.8079 [hep-th]] [95].

Supergravity solutions have played, and continue to play, a prominent rôle in the
new developments of string theory. The body of literature about black hole solutions (and
p-branes) that has been accumulated during the past thirty years is enormous, but only
recently the issue of non-extremality was systematically investigated, and by now, it could
be said that we have at our disposal more or less well-established methods to deal with
non-extremal solutions [132, 137, 153, 190, 284, 323, 324, 329, 331] in SUGRA. However, ex-
plicit non-extremal solutions to supergravity models with perturbative quantum (stringy)
corrections (see below for further explanation) are yet to be constructed. These kind of
solutions may be relevant in order to understand how the deformation of the scalar ge-
ometry modifies the solutions of the theory, and also in order to relate the macroscopic
computation of the entropy with the microscopic calculation in a string theory set-up,
once sub-leading corrections to the prepotential are taken into account [34, 36]. These
kinds of corrections differ from the higher-order corrections, which, together with the
corresponding microscopic string theory computation, have been already studied in the
literature [302] (for a very nice review about this and related topics, as well as for further
references, see [330]).

In the first part of this chapter we are going to use the H-FGK formalism [190,323,
324] in order to take a small step in the study of non-extremal black holes in supergravity
in the presence of quantum corrections. Through a consistent truncation, we are going to
define a particular class of black holes, which is characterized by existing only when the
quantum perturbative corrections are included in the action. These kinds of solutions,
which we have chosen to call quantum black holes1, display a remarkable behavior: the so
called large-volume limit =mzi →∞ is in fact not a large volume limit of the Calabi-Yau
(C.Y.) manifold, whose volume remains constant and fixed by topological data. In addi-
tion, the regularity conditions of the black hole solutions impose the topological restriction

1It is worth pointing out again that the term quantum does not refer to space-time but to world-sheet
properties in this context [330]. In this respect, although such denomination is widely spread in the
literature, the adjective stringy is probably more acqurate.
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h1,1 > h2,1 in the compactification C.Y. For small h1,1 the condition is particularly re-
strictive, and since this case is the most manageable one from the point of view of black
hole solutions, we prove the existence of C.Y. manifolds obeying h1,1 > h2,1 by explicit
construction for the h1,1 = 3 case. These C.Y. manifolds are new in the literature.

The perturbative corrections, encoded in a single term i c2 in the prepotential, in-
troduce a highly non-trivial difficulty in the model, which makes almost hopeless the
resolution of the equations of the theory. Surprisingly enough, we are able to find a black
hole solution with non-constant scalars, similar to the D0−D4−D4−D4 black hole so-
lution of the STU model, and which can be used as a toy model to study the microscopic
description of black holes in the presence of quantum perturbative corrections and away
from extremality.

3.1 Type-IIA string theory on a Calabi–Yau manifold

Type-IIA string theory compactified to 4D on a C.Y. three-fold, with Hodge numbers
(h1,1, h2,1), is described, up to two derivatives, by a N = 2, d = 4 supergravity whose
prepotential is given in terms of an infinite series around =mzi →∞ [109–111]

F = − 1

3!
κ0
ijkz

izjzk +
ic

2
+

i

(2π)3

∑
{di}

n{di}Li3

(
e2πidiz

i
)
, (3.1)

where zi, i = 1, ..., nv + 1 = h1,1, are the scalars in the vector multiplets. There are
also h2,1 + 1 hypermultiplets in the theory. However, they can be consistently set to a
constant value [386]. c = χζ(3)

(2π)3 is a model-dependent number, being χ the Euler charac-

teristic, which for C.Y. three-folds is given by χ = 2(h1,1 − h2,1). κ0
ijk are the classical

intersection numbers, di ∈ Z+ is a h1,1-dimensional summation index and Li3(x) is the
third polylogarithmic function. The first two terms in the prepotential correspond to tree
level and higher-order perturbative contributions in the α′-expansion, respectively

FP = − 1

3!
κ0
ijkz

izjzk +
ic

2
, (3.2)

whereas the third term accounts for non-perturbative corrections produced by world-sheet
instantons. These configurations get produced by (non-trivial) embeddings of the world-
sheet into the C.Y. three-fold. The holomorphic mappings of the genus 02 string world-
sheet onto the h1,1 two-cycles of the C.Y. three-fold are classified by the nubers di, which
count the number of wrappings of the world-sheet around the i−th generator of the integer
homology group H2(C.Y.,Z). The number of different mappings for each set of {di}
(≡ {d1, ..., dh1,1}) or, in other words, the number of genus 0 instantons is denoted by
n{di}

3

FNP =
i

(2π)3

∑
{di}

n{di}Li3

(
e2πidiz

i
)
. (3.3)

2Genus ≥ 1 instantons contribute with higher-derivative corrections.
3See, e.g. [330] for more details on the stringy origin of the prepotential.
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The full prepotential can be rewritten in homogeneous coordinates XΛ, Λ = (0, i) as

F (X ) = − 1

3!
κ0
ijk

X iX jX k

X 0
+
ic(X 0)2

2
+
i(X 0)2

(2π)3

∑
{di}

n{di}Li3

(
e2πidi

X i
X0

)
, (3.4)

with the scalars zi given by

zi =
X i

X 0
. (3.5)

Therefore, this coordinate system is only valid away from the locus X 0 = 0.

The non-perturbative corrections (3.3) are exponentially suppressed and therefore
can be safely ignored going to the large volume limit. Therefore our starting point is going
to be Eq. (3.2), which in homogeneous coordinates XΛ, Λ = (0, i), can be written as

F (X ) = − 1

3!
κ0
ijk

X iX jX k

X 0
+
ic

2

(
X 0
)2

. (3.6)

The scalar geometry defined by (3.6) is the so called quantum corrected d-SK geometry4

[156], [157]. In this scenario, the classical case is modified and the scalar manifold, due to
the correction encoded in c, is no longer homogeneous, and therefore, the geometry has
been corrected by stringy effects.

We are interested in constructing spherically symmetric, static, black hole solutions
of the theory defined by Eq. (3.6).This is the subject of the next section.

3.1.1 A quantum class of black holes

For (3.2), the general form of the Hesse potential W(H) in the H-FGK formalism (see 1.2.4)
is an extremely involved function, and one cannot expect to solve in full generality the
corresponding differential equations of motion, or even the associated algebraic equations
of motion obtained by making use of the hyperbolic Ansatz for the HM . Therefore, we
are going to consider a particular truncation, which will give us the desired quantum black
holes

H0 = H0 = Hi = 0, p0 = p0 = qi = 0 . (3.7)

Eq. (3.7) implies

W(H) = α
∣∣∣κ0
ijkH

iHjHk
∣∣∣2/3 , (3.8)

where α = (3!c)1/3

2 must be positive in order to have a non-singular metric. Hence c > 0
is a necessary condition in order to obtain a regular solution and a consistent truncation.
The corresponding black hole potential reads

Vbh =
W(H)

4
∂ij logW(H)QiQj . (3.9)

The scalar fields, purely imaginary, are given by

zi = i (3!c)1/3 H i(
κ0
ijkH

iHjHk
)1/3

, (3.10)

4The attractor points of this model have been extensively studied in [50]. Related works can be found
in [44] [45].
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and are subject to the following constraint, which ensures the regularity of the Kähler
potential (X 0 = 1 gauge)

κ0
ijk=mzi=mzj=mzk >

3c

2
. (3.11)

Substituting Eq. (3.10) into Eq. (3.11), we obtain

c >
c

4
, (3.12)

which is an identity (assuming c > 0) and therefore imposes no constraints on the scalars.
This phenomenon can be traced back to the fact that the the Kähler potential is constant
when evaluated on the solution, and given by

e−K = 6c , (3.13)

which is well defined, again, if c > 0. Since the volume of the C.Y. manifold is proportional
to e−K, Eq. (3.13) implies that such volume remains constant and, in particular, that
the limit =mzi → ∞ does not imply a large volume limit of the compactification C.Y.
manifold, a remarkable fact that can be seen as a purely stringy characteristic of our
solution5. Notice that it is also possible to obtain the classical limit =mzi � 1 taking
c� 1, that is, choosing a Calabi-Yau manifold with large enough c. In this case we would
have also a truly large volume limit.

We have seen that, in order to obtain a consistent truncation, a necessary condition
is c > 0, which implies that W (H) is well defined. We can go even further and argue that
this is a sufficient condition by studying the equations of motion of the H-FGK formalism.

A consistent truncation requires that the equation of motion of the truncated field
is identically solved for the truncation value of the field. First, notice that the set of
solutions of Eqs. (1.83) and (1.82), taking into account (4.1), is non-empty, since there is
a model-independent solution, given by

H i = ai − pi√
2
τ, r0 = 0 , (3.14)

which corresponds to a supersymmetric black hole. However, the equations of motion
don’t know about supersymmetry: it is system of differential equations whose solution
can be written as

HM = HM (a, b) , (3.15)

where we have made explicit the dependence in 2nv + 2 integration constants. When
the solution (3.15) is plugged into (1.82) is when we impose, through r0, a particular
condition about the extremality of the black hole. If r0 = 0 the integration constants
are fixed such as the solution is extremal. In general there is not a unique way of doing
it, one of the possibilities being always the supersymmetric one. Therefore, given that
for our particular truncation the supersymmetric solution always exists, we can expect
the existence also of the corresponding solution (3.15) of the equations of motion, from
which the supersymmetric solution may be obtained through a particular choice of the
integration constants that make (3.15) fulfilling (1.82) for r0 = 0. We conclude, hence,
that {

HP = 0,QP = 0
}
⇒ EP = 0 , (3.16)

5Notice that in order to consistently discard the non-perturbative terms in Eq. (3.1) we only need to
take the limit =mzi →∞. Therefore, the behavior of the C.Y. volume in such limit plays no role.
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(where EP stands for the corresponding equation of motion) and therefore the truncation
of as many H’s as we want, together with the correspondet Q’s, is consistent as long as
W (H) remains well defined, something that in our case is assured if c > 0. From Eq.
(3.1) it can be checked that the case c = 0, that is h1,1 = h2,1, can in principle be cured
by non-perturbative effects.

It is easy to see that the truncation is not consistent in the classical limit, and there-
fore, we can conclude that the corresponding solutions are genuinely quantum (stringy)
solutions, which only exist when perturbative quantum effects are incorporated into the
action.

Hence, we can conclude that if we require our theory to contain regular quantum
black holes there is a topological restriction on the Calabi-Yau manifolds that we can
choose to compactify Type-IIA string theory. The condition can be expressed as

c > 0 ⇒ h1,1 > h2,1 . (3.17)

Eq. (3.17) is a stringent condition on the compactification C.Y. manifolds, in particular
for small h1,1. In fact, for small enough h1,1 it could be even possible that no Calabi–Yau
manifold existed such Eq. (3.17) is fulfilled. We will investigate this issue for h1,1 =
3, explicitly constructing the corresponding C.Y. manifolds and finding also particular
quantum black hole solutions, in the next section6.

3.2 New Calabi–Yau manifolds

In this section we will present the construction of new Calabi–Yau manifolds which satisfy
h1,1 = 3 and h2,1 < 3, as required for the truncation presented in the previous section.

Calabi–Yau threefolds with both Hodge numbers small are relatively rare; two
large and useful databases are the complete intersections in products of projective spaces
(CICY’s) [104], and hypersurfaces in toric fourfolds [32, 289], but the manifolds in these
lists all satisfy the inequality h1,1 + h2,1 > 21. Smaller Hodge numbers can be found by
taking quotients by groups which have a free holomorphic action on one of these manifolds
(see, e.g., [78,108,152] and references therein), but none of the known spaces constructed
this way satisfy our requirements.

Our technique here will be to begin with known manifolds with h1,1 < 3, h2,1 < 4,
and a non-trivial fundamental group, and find hyperconifold transitions [150, 151] to
new manifolds with the required Hodge numbers. Briefly, these transitions occur be-
cause a generically-free group action on a Calabi–Yau will develop fixed points on certain
codimension-one loci in the moduli space. The fixed points are necessarily singular, and
typically nodes [150], so the quotient space develops a point-like singularity which is a
quotient of the conifold — a hyperconifold. These singularities can be resolved to give a
new smooth Calabi–Yau. If the subgroup which develops a fixed point is ZN , then the
change in Hodge numbers for one of these transitions is δ(h1,1, h2,1) = (N − 1,−1).

Interestingly, there are examples which one might näıvely believe would lead to

6It is known in the literature the existence of the so called rigid C.Y. manifolds [105, 106, 401], which
obey h1,1 > 0, h2,1 = 0, being therefore admissible compactification spaces. However, in order to have
a tractable theory, we need a small enough h1,1, yet not too small to yield a trivial theory. The choice
h1,1 = 3 fulfills both conditions.
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manifolds with (h1,1, h2,1) = (3, 0) and (h1,1, h2,1) = (3, 2), but none of these work out;7

instead, we have two examples with (h1,1, h2,1) = (3, 1), but with different intersection
forms and Kähler cones.

3.2.1 (h1,1, h2,1) = (3, 1) and diagonal intersection form

For the first example, we start with a manifold X1,3, where the superscripts are the Hodge
numbers (h1,1, h2,1), and fundamental group Z5×Z2×Z2

∼= Z10×Z2. It was first discovered
in [108], and we briefly review the construction here. The manifold is obtained as a free
quotient of a CICY X5,45 that is given by the vanishing of two multilinear polynomials in
a product of five P1’s; the configuration matrix [104] is

P1

P1

P1

P1

P1


1 1
1 1
1 1
1 1
1 1

 (3.18)

Let us call the two polynomials p1, p2, and take homogeneous coordinates ti,a on the
ambient space, where i = 0, 1, 2, 3, 4 is understood mod 5, and a = 0, 1 is understood mod
2. Then the action of the quotient group is generated by

g10 : ti,a → ti+1,a+1 ; p1 ↔ p2 ,

g2 : ti,a → (−1)ati,a ; p1 → p1 , p2 → −p2 .

Note that these commute only up to projective equivalence, but this is sufficient. To define
polynomials which transform appropriately, we start with the following quantities:

mabcde =
4∑
i=0

ti,ati+1,bti+2,cti+3,dti+4,e . (3.19)

Then it is easily checked that the following are the most general polynomials which trans-
form correctly:

p1 =
A0

5
m00000 +A1m00011 +A2m00101 +A3m01111 ,

p2 =
A0

5
m11111 +A1m11100 +A2m11010 +A3m10000 ,

where the Aα are arbitrary complex constants. For generic values of the coefficients, these
polynomials define a smooth manifold on which the group Z10×Z2 acts freely; in this way
we find a smooth quotient family X1,3 = X5,45/Z10×Z2.

We now need to specialise to a sub-family of X5,45 which does have fixed points of
the group generator g2. Specifically, consider the point given by

t0,1 = t1,1 = t2,1 = t3,0 = t4,0 = 0, (3.20)

7In each case, the spaces have unavoidable symmetries which make it impossible to create just a single
hyperconifold singularity. Resolving the extra singularities pushes h1,1 higher.
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which is fixed by the action of g2. Substituting the above into the polynomials gives the
values p1 = A1, p2 = 0, so if we set A1 = 0, X5,45 will contain this point. The argument
of [150] guarantees that it will be a singularity, and one can check that for general values of
the other coefficients, it is a node, so the quotient space X1,3 develops a Z2-hyperconifold
singularity. In fact, there are nine other points related to the above by the action of the
other group generator g10, so the covering space X5,45 actually has ten nodes. Since these
are all identified by the group action, X1,3 develops only a single Z2-hyperconifold. This
can be resolved by a single blow-up, and we obtain a new manifold with Hodge numbers
(h1,1, h2,1) = (2, 2), and fundamental group Z10.

To get all the way to X3,1, we need to go through another Z2-hyperconifold transi-
tion. If we also set A2 = 0, then X5,45 also passes through another fixed point of g2, given
by

t0,1 = t1,1 = t2,0 = t3,1 = t4,0 = 0 , (3.21)

as well as the nine points related to this by the action of g10.

It can be checked that when A1 = A2 = 0, X5,45 has exactly twenty nodes, at the
points described above, and is smooth elsewhere. Therefore X1,3 has precisely two Z2-
hyperconifold singularities, which we can resolve independently to obtain a new smooth
Calabi–Yau manifold X3,1.

The intersection form and Kähler cone

To find the supergravity theory coming from compactification on X3,1, we need to calculate
its triple intersection form, and for this we need a basis for H2(X3,1,Z) (throughout, we
will implicitly talk about only the torsion-free part of the cohomology). There is a natural
basis which consists of one divisor class inherited from X1,3, and the two exceptional
divisor classes coming from the two blow-ups.

First, let us find an integral generator of H2(X1,3,Z). On the covering space X5,45,
let Hi be the divisor class given by the pullback of the hyperplane class from the ith P1.
Then the invariant divisor classes are multiples of H ≡ H0 +H1 +H2 +H3 +H4. However,
H itself, although an invariant class, does not have an invariant representative. The class
2H does, however; an example of an invariant divisor in 2H is the surface given by the
vanishing of

f = (m00011)2 + (m11100)2 + (m00101)2 + (m11010)2 . (3.22)

This is a particularly convenient choice, as it gives a smooth divisor even on the singular
family of threefolds given by A1 = A2 = 0, which misses the singular points.

Let D1 be the divisor given by setting f = 0 and then taking the quotient, and
let D2 and D3 be the two exceptional divisors. Then, since f 6= 0 on the fixed points of
the group action, we immediately see that D1, D2, and D3 are all disjoint, and the only
intersection numbers which might be non-zero are D3

1, D3
2, and D3

3.

For D3
2 and D3

3, we can use an easy general argument. For any smooth surface S in a
Calabi–Yau threefold, the adjunction formula gives S

∣∣
S
∼ KS , where KS is the canonical

divisor class. The triple intersection number S3 is therefore equal to K2
S . Each of D2 and

D3 is isomorphic to P1×P1, so we find D3
2 = D3

3 = 8.

To calculate D3
1, we note that D1 descends from the divisor class 2H on X5,45. Since

this is embedded in a product of projective spaces, we can calculate intersection numbers
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purely from degrees; it is easy to check that on X5,45, (2H)3 = 960. We divide by a
freely-acting group of order twenty, so on the quotient space we find D3

1 = 960
20 = 48.

To summarise, the non-vanishing triple intersection numbers of X3,1, in the basis
D1, D2, D3, are

κ0
111 = 48 , κ0

222 = κ0
333 = 8 . (3.23)

We can also say something about the Kähler cone. Certainly D1 is positive every-
where except on the exceptional divisors, where it is trivial. On the other hand, each
exceptional divisor D contains curves C for which D ·C = −1. From this information, we
can glean that the Kähler cone is some sub-cone of t1 > 0, t2 < 0, t3 < 0, and certainly
includes the region where t1 is much larger than |t2| and |t3|.

3.2.2 (h1,1, h2,1) = (3, 1) and non-diagonal intersection form

For our second example, we will again start with a free quotient of a CICY manifold, with
configuration matrix

P1

P1

P1

P1

P1

P1

P1



0 0 1 1
1 0 1 0
1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1
0 1 0 1


p q r1 r2

where the labels on the columns denote the respective polynomials. This manifold has
Euler number zero, and a series of splittings and contractions (explained in [104,107,108])
establishes that it is in fact isomorphic to the ‘split bicubic’ or Schoen manifold, with
Hodge numbers (h1,1, h2,1) = (19, 19).

Let us take homogeneous coordinates σa on the first P1, si,a on the next three, and
ti,a on the last three, where i = 0, 1, 2 , and a = 0, 1 are understood mod 3 and mod 2
respectively. The quotient group of interest is the dicyclic group Dic3

∼= Z3 o Z4, which
is the only non-trivial semi-direct product of Z3 and Z4. It is generated by two elements
g3 and g4, of orders given by their subscripts, with the relation g4g3g

−1
4 = g2

3, and acts on
the ambient space and polynomials as follows:

g3 : σa → σa , si,a → si+1,a , ti,a → ti+1,a ; all polynomials invariant ,

g4 : σa → (−1)aσa , si,a → (−1)a+1t−i,a , ti,a → s−i,a ; p→ −q , q → p , r1 ↔ r2 .

In order to write down polynomials which transform appropriately, let us first define
the g3-invariant quantities

mabc =
∑
i

si,asi+1,bsi+2,c , nabc =
∑
i

ti,ati+1,bti+2,c . (3.24)

Then by choice of coordinates (consistent with the above action), we can take the poly-
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nomials to be

p =
1

3
m000 +m011 , q =

1

3
n000 + n011 ,

r1 = (a0m001 +
1

3
a1m111)σ0 + (a0m001 +

1

3
a2m111)σ1 ,

r2 = (a0n001 +
1

3
a1n111)σ0 − (a0n001 +

1

3
a2n111)σ1 ,

where a0, a1, a2 are arbitrary complex coefficients, defined only up to overall scale. It
can be checked that for generic values of these coefficients, the corresponding manifold
is smooth, and the group acts on it without fixed points. We therefore obtain a smooth
quotient manifold X2,2, where the value h2,1 = 2 corresponds to the two free coefficients
(once we factor out overall scale) in the above polynomials.8

We will now show that there is a Z2-hyperconifold transition from X2,2 to a manifold
with (h1,1, h2,1) = (3, 1). To do this, we need to arrange for the unique order-two element,
g2

4, to develop a fixed point. Consider the point in the ambient space given by

σ1

σ0
= −1 , s0,1 = s1,1 = s2,0 = t0,0 = t1,0 = t2,0 = 0 . (3.25)

This is fixed by g2
4, but the other elements of the group permute this and five other g2

4-fixed
points. If we evaluate the polynomials at the point above, we find

p = q = r1 = 0 , r2 = a1 + a2 , (3.26)

and their values at the other five fixed points are related by the group action to the ones
above. So if a1 + a2 = 0, the Calabi–Yau will intersect these fixed points. By expanding
the polynomials around any one of these points, we find that it has a node at each of
them, so on the quotient space, we obtain a single Z2-hyperconifold singularity. Resolving
this takes us to a new smooth manifold Y 3,1 (we use the letter Y to distinguish this
from the other (3, 1) manifold we constructed). Its fundamental group is Dic3/〈g2

4〉 ∼=
S3, the symmetric group on three letters (the behaviour of fundamental groups under
hyperconifold transitions such as this one is described in [152]).

The intersection form and Kähler cone

To calculate the intersection form of Y 3,1, we start with X2,2 and its covering space X19,19.
Part of H1,1(X19,19,Z) is generated by the pullbacks of the hyperplane classes of the P1

spaces. We will denote these by9 H0, H1, . . . ,H6. Looking at the group action, we can
see that there are exactly two invariant divisor classes constructed from these: H0 and
H1 + H2 + . . . + H6. In contrast to the last example, each of these actually contains an
invariant representative, and we get a basis {D1, D2} for H1,1(X2,2,Z) by simply taking
the two invariant classes above and quotienting.

On the covering space, we can calculate intersection numbers simply by counting
degrees, and we find that

H0(H1 +H2 + . . .+H6)2 = 72 , (H1 +H2 + . . .+H6)3 = 216 , (3.27)

8Counting independent coefficients does not always give the value of h2,1, but in this case it does; perhaps
the most direct way to obtain this is to notice that the manifold is obtained via a conifold transition on a
codimension two locus in the moduli space of a manifold X1,4, which was described at length in [79].

9Do not confuse these with the H variables of the H-FGK formalism.
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and all others vanish. Dividing by the order of the group, we see that on the quotient
space

D1D
2
2 = 6 , D3

2 = 18 , (3.28)

and the other triple intersections are zero.

Finally, we perform the transition to Y 3,1; denote the class of the exceptional divisor
by D3. It is easy enough to check that D1 and D2 have representatives which miss the
singularity, so their pullbacks to Y 3,1 are disjoint from the exceptional divisor, and we get
D1 ·D3 = D2 ·D3 = 0. Once again, the exceptional divisor is isomorphic to P1×P1, so by
the argument of the last section, D3

3 = 8.

Summarising, the non-zero intersection numbers on Y 3,1 are

κ0
122 = 6 , κ0

222 = 18 , κ0
333 = 8 . (3.29)

By similar reasoning to the last case, we can say that the Kähler cone is some
sub-cone of t1 > 0, t2 > 0, t3 < 0, and includes the region where |t3| is sufficiently small
compared to t1 and t2.

3.3 Quantum black hole solutions with h1,1 = 3

In section 3.1 we have presented a particular truncation of the equations of motion of
N = 2, d = 4 ungauged supergravity in a static, spherically symmetric background, which
turned out to be consistent only for positive values of the quantum perturbative coefficient
c (3.17). In the next two sections we are going to explicitly construct regular non-extremal
(and therefore non-supersymmetric) black hole solutions to the truncated theory. In par-
ticular, we will start studying the cases where the C.Y. manifold is of the type constructed
in section 3.2, to wit:

X3,1 ⇒ κ0
111 = 48 , κ0

222 = κ0
333 = 8 , (3.30)

Y 3,1 ⇒ κ0
122 = 6 , κ0

222 = 18 , κ0
333 = 8 . (3.31)

For these two sets of intersection numbers, Eq. (3.8) becomes, respectively

W(H) = α
∣∣∣48
(
H1
)3

+ 8
[(
H2
)3

+
(
H3
)3]∣∣∣2/3 , (3.32)

W(H) = α
∣∣∣18
(
H2
)2 [

H1 +H2
]

+ 8
(
H3
)3∣∣∣2/3 . (3.33)

For simplicity we take H1 = s2H
2 = s3H

3 ≡ H (s2,3 = ±1), p1 = p2 = p3 ≡ p. For
this particular configuration we find a non-extremal solution for each set of intersection
numbers given by

H = a cosh(r0τ) +
b

r0
sinh(r0τ), b = sb

√
r2

0a
2 +

p2

2
, (3.34)

where, now and henceforth, sb = ±1. The scalars, which turn out to be constant, read

z1 = i(3!c)1/3λ−1/3 = s2,3z
2,3 , (3.35)
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where

λ = [48 + 8(s2 + s3)] for X3,1, (3.36)

λ = [18 + 18s2 + 8s3] for Y 3,1 .

The explicit form of the metric reads, in turn,

ds2 =

[
1

2
(3!c)1/3

[
a cosh(r0τ) +

b

r0
sinh(r0τ)

]2
]−1

dt2 (3.37)

− 1

2
(3!c)1/3

[
a cosh(r0τ) +

b

r0
sinh(r0τ)

]2 [ r4
0

sinh4 r0τ
dτ2 +

r2
0

sinh2 r0τ
dΩ2

(2)

]
.

(3.38)

Since the scalars are constant and don’t depend on the charges, we cannot perform the
=mzi →∞ limit that fully suppress the non-perturbative corrections. Still, the exponent
in Eq. (3.3) is, in both cases, of order

2πidiz
i ∼ −1

3

3∑
i=1

di, di ≥ 1 , (3.39)

and therefore we find small non-perturbative corrections, in particular one order smaller
than the perturbative part of the prepotential FPert ∼ 10 · FNon−Pert . The solution lies
inside the Kähler cone when

s2 = s3 = −1, for X3,1 , (3.40)

s2 = −s3 = 1, for Y 3,1 . (3.41)

This can be verified by explicitly checking the positive-definiteness of the Kähler metric

Gij∗ = ∂i∂j∗K (3.42)

evaluated on the solution. It turns out that the only sets of {s2, s3} which give rise to
positive-definite Kähler metrics (and, as a consequence, to solutions lying inside the Kähler
cone) are the ones shown above. These conditions on the signs of the scalar fields are in full
agreement with those obtained in subsections (3.2.2) and (3.2.1), since =mzi = ti [110].

Imposing asymptotic flatness, the constant a gets fixed to

a = −sb
=mz1

∞√
3c

. (3.43)

It is now easy to compute the mass and the entropy of the outer/inner horizon

M = r0

√
1 +

3cp2

2r2
0(=mz1

∞)2
, (3.44)

S± = r2
0π

(√
1 +

3cp2

2r2
0(=mz1

∞)2
± 1

)2

. (3.45)
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This implies that the product of both entropies only depends on the charge

S+S− =
π2α2

4
p4λ4/3 , (3.46)

so it does not depend on the asymptotic value of the moduli =mz1
∞.

It is worth stressing that the Ansatz H i = ai + biτ in the extremal (r0 = 0) case
was successfully used to obtain solutions with constant scalars but different critical points,
in some cases particularly involved. However, presumably due to the complexity of the
calculations, we have not been able to find a solution with non-constant scalars for any of
the two models analyzed in this section. This may suggest also a more stabilized behavior
for the scalars in the presence of perturbative quantum corrections.

3.4 Quantum corrected STU model

In this section we consider a very special case, the so-called STU model, in the presence
of perturbative quantum corrections, obtaining the first non-extremal solution of this kind
with non-constant scalars. In order to do so, we set nv = 3, κ0

123 = 1. From (3.8) we
obtain10

W(H) = α
∣∣H1H2H3

∣∣2/3 , (3.47)

where α = 3c1/3. The scalar fields are given by

zi = ic1/3 H i

(H1H2H3)1/3
, (3.48)

The τ -dependence of the HM can be found by solving the equations of motion plus Hamil-
tonian constraint of the H-FGK formalism, Eqs. (1.83) and (1.82). We find the solution

H i = ai cosh (r0τ) +
bi

r0
sinh (r0τ) , bi = sib

√
r2

0(ai)2 +
(pi)2

2
. (3.49)

The three constants ai can be fixed relating them to the value of the scalars at infinity and
imposing asymptotic flatness. We have, hence, four conditions for three parameters and
therefore one would expect a relation among the =mzi∞, leaving c undetermined. However,
the explicit calculation shows that the fourth relation is compatible with the others, and
therefore no extra constraint is necessary. The ai are given by

ai = −sib
=mzi∞√

3c
. (3.50)

The mass and the entropy, in turn, read

M =
r0

3

∑
i

√
1 +

3c(pi)2

2r2
0(=mzi∞)2

, (3.51)

S± = r2
0π
∏
i

(√
1 +

3c(pi)2

2r2
0(=mzi∞)2

± 1

)2/3

, (3.52)

10We have to stress that we haven’t been able to construct an explicit C.Y. manifold with κ0
123 = 1 and

h2,1 < 3.
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and therefore the product of the inner and outer entropy only depends on the charges
again

S+S− =
π2α2

4

∏
i

(
pi
)4/3

. (3.53)

In the extremal limit we obtain the supersymmetric as well as the non-supersymmetric
extremal solutions, depending on the sign chosen for the charges.

It is important to point out that the black holes presented in this section have been
succesfully uplifted to M-theory in the supersymmetric limit in [54]. There, the authors
show that they can be interpreted as arising from three stacks of M2 branes on a conical
singularity. This allows them to relate them to a system of D3 branes carrying momentum
and to give a microscopic interpretation of their entropy. As we have seen (the macroscopic
entropy of the supersymmetric black holes can be obtained by taking the square root of Eq.
(3.53)), our solutions present the particularity that, in contradistinction to the previously
studied cases [260, 312, 313, 403], their entropy does not scale with the square-root of the
product of their charges (which microscopically comes from using Cardy’s formula for the
count of states in a certain 1+1 dimensional system of branes and strings), but with a
power 2/3. The authors are able to microscopically reproduce the exact expression of the
entropy

SSUSY =
3c

1
3

2
π
∣∣p1p2p3

∣∣2/3 , (3.54)

up to a global factor. The result is such that if the entropies match, some dependence of
the entropy on trascendental numbers dissapears, which is argued to be a nontrivial check
for theirs to be the right microscopic description of our quantum black holes.

3.5 Non-perturbative α′-corrected solutions

In the previous sections, we have used the H-FGK formalism (see section 1.2.4), to defined
a new class of black holes for Type-IIA C.Y. compactifications. These have the property
that they exist only when the perturbative corrections to the prepotential are included
and that no classical limit can be assigned to them (because the truncation itself becomes
inconsistent in that limit). They were called, in consequence, quantum or stringy black
holes. Therefore, for self-mirror C.Y. manifolds such black holes do not exist, since in
that case the perturbative corrections exactly vanish. However, the situation can be
changed if we add non-perturbative corrections to the prepotential. That is the case we
are going to consider now. We will obtain the first explicit black hole solution of Type-IIA
string theory compactified on a self-mirror Calabi-Yau threefold in the presence of non-
perturbative corrections, proving at the same time that these non-perturbative corrections
lift the singular behaviour of the quantum black holes to a regular one.

Somewhat surprisingly, we will obtain a class of solutions which involves Lambert’s
W function [291], which is multi-valued in a certain real domain. We will explain how
this fact seems to provide an appropriate scenario for a potential new kind of violation of
the (corresponding uniqueness conjecture, and as a consequence of the) no-hair conjecture
in four dimensions. It turns out that, in our set-up, string theory forbids the use of the
Lambert function to that end. However, the possibility remains open in an exclusive
supergravity set-up (not necessarily embedded in string theory), and there does not seem
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to be a reason to discard it right away. Actually, we will see in the next chapter how this
can be actually achieved.

In order to tackle the construction of these new black hole solutions of (3.1), we are
going to consider the same truncation as in Eq. (3.7), namely

H0 = H0 = Hi = 0, p0 = q0 = qi = 0 . (3.55)

Under this assumption, the stabilization equations take the form(
iH i

H̃i

)
=
eK/2

X

(
X i

∂F (X )
∂X i

)
,

(
H̃0

0

)
=
eK/2

X

(
X 0

∂F (X )
∂X 0

)
. (3.56)

The physical fields can be obtained from the H i as

e−2U = H̃iH
i , zi = i

H i

H̃0
, (3.57)

as soon as H̃0 and H̃ i are determined. In order to obtain H̃0 as a function of H i, we need
to solve the highly involved equation

∂F (H)

∂H̃0
= 0 , (3.58)

where F (H) stands for the prepotential expressed in terms of the H i

F (H) =
i

3!
κ0
ijk

H iHjHk

H̃0
+
ic(H̃0)2

2
+
i(H̃0)2

(2π)3

∑
{di}

n{di}Li3

(
e−2πdi

Hi

H̃0

)
. (3.59)

Once this is done, it is not difficult to express H̃ i in terms of H i. Indeed, from (3.56) we
simply have

H̃i = −i∂F (H)

∂H i
. (3.60)

If we expand (3.58), we find

− 1

3!
κ0
ijk

H iHjHk

(H̃0)3
+ c+

1

4π3

∑
{di}

n{di}

[
Li3

(
e−2πdi

Hi

H̃0

)
+Li2

(
e−2πdi

Hi

H̃0

)[
πdiH

i

H̃0

]]
= 0 .

(3.61)

Solving (3.61) for H̃0 in full generality seems to be an extremely difficult task. However,
if we go to the large volume compactification limit (=mzi >> 1), we can make use of the
following property of the polylogarithmic functions

lim
|w|→0

Lis(w) = w ,∀s ∈ N , (3.62)

since, in our case, w = e−2πdi=mzi , ∀ {di} ∈ (Z+)
h1,1

. Eq. (3.62) enables us to rewrite
(3.61) as

− 1

3!
κ0
ijk

H iHjHk

(H̃0)3
+ c+

1

4π3

∑
{di}

n{di}

[
e−2πdi

Hi

H̃0 +e−2πdi
Hi

H̃0

[
πdiH

i

H̃0

]]
= 0 , =mzi >> 1 .

(3.63)
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The dominant contribution in this regime, aside from the cubic one, is given by c. In the
previous subsections and [191], the first non-extremal black hole solutions (with constant
and non-constant scalars) of (3.1) were obtained ignoring the non-perturbative corrections.
In particular, the solutions of [89] turned out to be purely quantum, in the sense that not
only the classical limit c→ 0 was ill-defined, but also the truncated theory became incon-
sistent and therefore no classical limit could be assigned to such solutions. An interesting
question to ask now is whether the non-perturbative contributions could actually be able
to cure or at least improve this behaviour. On the other hand, it is also interesting per
se to explore the existence of black hole solutions when the subleading contribution to
the prepotential is not given by c, but has a non-perturbative origin. In order to tackle
these two questions, let us restrict ourselves to C.Y. three-folds with vanishing Euler char-
acteristic (c = 0), the so-called self-mirror C.Y. three-folds. Under this assumption, and
considering only the subleading contribution in (3.61), which is now given by the fourth
term in (3.63), such equation becomes11

− 1

3!
κ0
ijk

H iHjHk

(H̃0)3
+

1

4π3

∑
{di}

n{di}e
−2πdi

Hi

H̃0

[
πdiH

i

H̃0

]
= 0 . (3.64)

The sum over {di} in (3.64) will be dominated in each case by a certain term corresponding

to a particular vector
{
d̂i

}
(and, as a consequence, to a particular nd̂i ≡ n̂), which, since

we are assuming =mzi >> 1, is the only one that we need to consider. That is,
{
d̂i

}
corresponds to the set of di that labels the most relevant term in the infinite sum present
in (3.64). Hence, this equation becomes

− 1

3!
κ0
ijk

H iHjHk

(H̃0)3
+

n̂

4π3
e−2πd̂i

Hi

H̃0

[
πd̂iH

i

H̃0

]
= 0 , =mzi >> 1 . (3.65)

This is solved by12

H̃0 =
πd̂lH

l

Wa

(
sa

√
3n̂(d̂nHn)3

2κ0
ijkH

iHjHk

) , (3.66)

where Wa(x), (a = 0,−1) stands for (any of the two real branches of) the Lambert W
function13 (also known as product logarithm), and sa = ±1. Using now Eq. (3.60) we can
obtain H̃ i. The result is

H̃i =
1

2
κ0
ijk

HjHk

πd̂lH l
Wa

(
sa

√
3n̂(d̂mHm)3

2κ0
pqrH

pHqHr

)
. (3.67)

The physical fields can now be written as a function of the H i as

e−2U = W(H) =
κ0
ijkH

iHjHk

2πd̂mHm
Wa

(
sa

√
3n̂(d̂lH l)3

2κ0
pqrH

pHqHr

)
, (3.68)

11e2πidiz
i

<< πdi=mzie2πidiz
i

for =mzi >> 1.
12Henceforth we will be using W for the Hessian potential, and W for the Lambert function. We hope

this is not a source of confusion.
13See the Appendix B.1 for more details.
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zi = i
H i

πd̂mHm
Wa

(
sa

√
3n̂(d̂lH l)3

2κ0
pqrH

pHqHr

)
. (3.69)

In order to have a regular solution, we need to have a positive definite metric warp factor
e−2U . Since, as explained in Appendix B.1, sign [Wa(x)] = sign [x] , a = 0,−1, x ∈ Da

R,
we have to require that

s0 ≡ sign
[
κ0
ijk

H iHjHk

d̂mHm

]
, (3.70)

s−1 ≡ −1 . (3.71)

On the other hand, since W0(x) = 0 for x = 0 and W−1(x) is a real function only when
x ∈

[
−1
e , 0
)
, we have to impose that the argument x of Wa lies entirely either in

[
−1
e , 0
)

or in (0,∞) for all τ ∈ (−∞, 0), since e2U cannot be zero in a regular black hole solution
for any τ ∈ (−∞, 0). This condition must be imposed in a case by case basis, since it
depends on the specific form of the symplectic vector HM = HM (τ) as a function of τ .
Notice that if x ∈

[
−1
e , 0
)
∀ τ ∈ (−∞, 0) we can in principle14 choose either W0 or W−1

to build the solution, whereas if x ∈ (0,+∞) ∀ τ ∈ (−∞, 0), only W0 is available.

Needless to say, in order to construct actual solutions, we have to solve the H-FGK
equations of motion (1.83) (plus hamiltonian constraint (1.82)) using the Hessian potential
given by (3.68). Fortunately, such equations admit a model-independent solution which is
obtained choosing the H i to be harmonic functions in the flat transverse space, with one
of the poles given in terms of the corresponding charge

H i = ai − pi√
2
τ, r0 = 0 . (3.72)

In fact, it is a virtue of the H-FGK formalism to make explicit how every N = 2, d = 4
supergravity theory admits a solution of the form

HM = aM − Q
M

√
2
τ, r0 = 0 , aMQM = 0 , (3.73)

where the last equation encodes the absence of Taub-NUT charge. It can be easily verified
that Eq. (3.73) does indeed satisfy Eqs. (1.83) and (1.82) independently of the model.
This corresponds to a supersymmetric black hole solution [37,320,411].

3.6 The general supersymmetric solution

As we have said, plugging (3.72) into (3.69) and (3.68) provides us with a supersymmetric
solution without solving any further equation. The entropy of such a solution reads

S =
1

2
κ0
ijk

pipjpk

d̂mpm
Wa (saβ) , (3.74)

β ≡

√
3n̂(d̂lpl)3

2κ0
pqrp

ppqpr
,

14As we will see in section 4.2, the possibility s0 = s−1 = −1 will not be consistent with the large volume
approximation we are considering.
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and the mass is given by

M = U̇(0) =
1

2
√

2

[
3κ0

ijkp
iajak

κ0
pqra

paqar

[
1− 1

1 +Wa(saα)

]
− dlp

l

dnan

[
1− 3

2 (1 +Wa(saα))

]]
,

(3.75)

α ≡

√
3n̂(d̂lal)3

2κ0
pqra

paqar
. (3.76)

In the approximation under consideration, we are neglecting terms ∼ e−2πdi=mzi with re-
spect to those going as ∼ πdi=mzie−2πdi=mzi . Taking into account (3.69), this assumption
is translated into the condition

Wa(x)e−2Wa(x) >> e−2Wa(x) . (3.77)

It is clear that this condition is satisfied for a = 0 if x ∈ [α, β] for positive and suficiently
large values of α and β. Constructing a solution such that the values of pi and ai correspond
to large enough α and β may or may not be possible depending on the compactification
data. For example, if d̂i = (1, 0, ..., 0) and κ0

iii = 0∀ i = 1, ..., nv, it is clear that taking
a1 >> 1 and p1 >> 1 satisfies the corresponding condition.

It is also clear, however, that (3.77) is not satisfied at all for x ∈ [−1
e , 0), which is

the range for which both branches of the Lambert function are available.

If we assume x ∈ [α, β] for suficiently large α, β ∈ R+, a = 0 and W0 is the only real
branch of the Lambert function. In that case, s = s0 = 1, and we have

e−2U =
κ0
ijkH

iHjHk

2πd̂mHm
W0

(√
3n̂(d̂lH l)3

2κ0
pqrH

pHqHr

)
, (3.78)

zi = i
H i

πd̂mHm
W0

(√
3n̂(d̂lH l)3

2κ0
pqrH

pHqHr

)
. (3.79)

In the conformastatic coordinates we are working with, the metric warp factor e−2U is
expected to diverge at the event horizon (τ → −∞) as τ2. In addition, we have to require
e−2U > 0 ∀τ ∈ (−∞, 0], and impose asymptotic flatness e−2U(τ=0) = 1. The last two
conditions read

κ0
ijkH

iHjHk

2πd̂nHn
> 0 ∀τ ∈ (−∞, 0] , (3.80)

κ0
ijka

iajak

2πd̂mam
W0 (α) = 1 , (3.81)

whereas the first one turns out to hold, since

e−2U τ→−∞−→
κ0
ijkp

ipjpk

8πd̂mpm
W0 (β) τ2 . (3.82)

(3.80) and (3.81) can in general be safely imposed in any particular model we consider.
Finally, the condition for a well-defined and positive mass M > 0 can be read off from
(3.75).
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3.7 Multivalued functions and the no-hair conjecture

As we explained in the previous section, our approximation is not consistent with a so-
lution such that x ∈ [−1

e , 0). This forbids the domain in which W (x) is a multivalued
function (both W0 and W−1 are real there). However, it seems legitimate to ask what
the consequences of having two different branches would have been, had this constraint
not been present. In principle, we could have tried to assign the asymptotic (τ → 0)
and near horizon (τ → −∞) limits to any particular pair of values of the arguments
of W0 and W−1 (x0 and x−1 respectively) through a suitable election of the parameters
available in the solution. In particular, had we chosen x0|τ=0 = x−1|τ=0 = −1/e and
x0|τ→−∞ = x−1|τ→−∞ = β, β ∈ (−1/e, 0), both solutions would have had exactly the
same asymptotic behavior (and therefore the scalars of both solutions would have coin-
cided at spatial infinity), and we would have been dealing with two completely different
regular solutions with the same mass15, charges and asymptotic values of the scalar fields,
in contradiction16 with the corresponding black hole uniqueness conjecture (and, as a
consequence, with the no-hair conjecture). At this point, and provided that our approx-
imation is not consistent with such presumable two-branched solution, the feasibility of
this reasoning in a different context can only be catalogued as speculative at the very least.
However, a violation of the no-hair conjecture in four-dimensional supergravity would have
interesting consequences independently of whether the solution is embedded in string the-
ory or not. In this regard, the very possibility that the stabilization equations may admit
(for certain more or less complicated prepotentials) solutions depending on multivalued
functions seems to open up a window for possible violations of the no-hair conjecture in
the context of N = 2 d = 4 supergravity. The question (whose answer is widely assumed
to be ”no”) is now: is it possible to find a four-dimensional (super)gravity theory admit-
ting more than one stable black hole solution with the same mass, electric, magnetic and
scalar charges? We devote the next chapter to prove the answer to this question to be yes.

15Although W ′0,−1(x) are divergent at x = −1/e (as explained in the Appendix B.1), and the definition
of M would involve derivatives of the Lambert function at that point, it would not be difficult to cure this

behaviour and get a positive (and finite) mass by imposing ẋ(τ)
τ→0

−→ 0 faster than |W ′0,−1(x)|
x→−1/e
−→∞ .

16Up to possible stability issues, which should be carefully studied.
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4
The violation of the no-hair conjecture in d = 4

ungauged supegravity

This chapter is based on

Pablo Bueno and C. S. Shahbazi,
“The violation of the no-hair Conjecture in four-dimensional ungauged Supergravity”,

Class. Quantum Grav. 31 (2014) 145005. [arXiv:1310.6379 [hep-th]] [96].

An interesting feature of black holes comes from their exclusiveness. Indeed, it
has been known for a long time now that all the stationary, asymptotically flat, black
hole solutions to the Einstein-Maxwell theory, in a sort of general relativistic version of
the Gauss law, are uniquely determined by a few parameters: their mass, their angular
momentum and their electric and magnetic charges [69,115,253,259,317] 1.

The possible generalizations of these uniqueness (or no-hair) theorems to systems
with more fields (such as scalars or non-Abelian vectors) has been an active area of re-
search [38,41,143] since the proofs of the theorems for the simplest cases were carried out.
On the other hand, the seek for counterexamples to the corresponding conjectured unique-
ness theorems in such scenarios has also attracted a lot of attention, and produced some in-
teresting results. In particular, it is now known that the no-hair conjecture can be violated
or circumvented in certain Einstein-Yang-Mills-Higgs systems (See [10–13,196,216,282,422]
and references therein) and in higher-curvature theories of gravity [271,316].

In this chapter we are going to construct a particular N = 2, d = 4 ungauged
Supergravity model admitting pairs of supersymmetric, static, spherically symmetric and
asymptotically flat black hole solutions sharing the same mass, charges and asymptotic
values of the scalar fields, providing, to the best of our knowledge, the first counterexample
to the corresponding uniqueness conjecture in the context of an ungauged Supergravity
theory, and one of the first (some previous examples can be found in [12]) for a system
without scalar potential, non-Abelian vector fields or higher-order curvature corrections.

In the previous chapter, we obtained for the first time black hole solutions to a
Type-IIA String Theory compactification on a Calabi-Yau manifold in the presence of
non-perturbative corrections to the Special Kähler geometry of the vector multiplet sector.
These black holes were given in terms of harmonic functions on euclidean R3, as it must
be for supersymmetric black hole solutions of ungauged four dimensional Supergravity

1Thus, the only possible solution for a stationary, axisymmetric and electrovacuum black hole is given
by the well-known Kerr-Newmann spacetime [318].
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[243,325], but they also contained a special function called the Lambert function2. As we
argued in [95], the fact that the Lambert function is multivalued opened up the possibility
of using its different branches to build inequivalent black hole solutions with the same
conserved charges at infinity. However, such possibility was forbidden by the large volume
compactification limit we assumed to hold through all the calculations: that limit only
allowed us to consider solutions such that the argument of the Lambert function lied into
a set of values for which the function was uniquely valued.

Inspired by this result, we are going to construct a particular Supergravity model
that can be analitically solved, and such that its supersymmetric black hole solutions
share some of the characteristics of those found in the previous chapter, but without any
approximation involved. In particular, we will be able to construct solutions whose metric
and scalars will depend on the Lambert function. In this case both branches will be
available, and we will show how to construct a family of pairs of inequivalent solutions,
providing a violation of the conjecture.

In order to illustrate the result, we will show an explicit example for a model with
two scalar fields. We will find that both solutions are regular, in the sense that the
only physical singularity of the space-time will be hidden by an event horizon of non-zero
positive area (for each solution in the pair). However, we will also see that the Special
Kähler metric will not be positive definite (just like happens in other counterexamples
to the conjecture [316]) when evaluated on the solutions we have constructed explicitly
or, equivalently, that the energy-momentum tensor of at least one of the scalars will not
satisfy in general the null energy condition (NEC). In this respect, and although the no-
hair conjecture does not make in principle reference to stability issues, it is fair to say that
the spirit of the conjecture remains partially alive.

4.1 A stringy motivation for the model

The purpose of this chapter is to study the supersymmetric black hole solutions of a par-
ticular N = 2 four dimensional ungauged Supergravity coupled to vector multiplets, which
we will find to violate the folk uniqueness theorems that are supposed to hold in unaguged
four-dimensional Supergravity. Of course, such model did not appear out of the blue, but
it has his seed and motivation in the results found in the previous chapter. In section
4.2 a new class of supersymmetric black hole solutions of type-IIA String Theory com-
pactified to four dimensions on a Calabi-Yau manifold in the presence of non-perturbative
stringy corrections was obtained. In order to solve the involved stabilization equations, we
were forced to consider the large volume limit =mzi →∞ of the compactification, where
certain simplifications could be made. As a consequence, the approximation =mzi → ∞
had to be also imposed on the solution. As explained in section 3.7, only one of the two
real branches of the W function (the one with a = 0) was consistent with such condition,
which also implied the argument of W0(x(τ)) to be positive. We argued how, had not
this condition been present, we could have tried to build two different solutions solving
the same equations of motion, by choosing W0(x(τ)) or W−1(x(τ)). In fact, we could
have assigned, through a suitable election of the parameters available in the solution, the
near horizon (τ → −∞) and asymptotic (τ → 0) limits of the argument x(τ) of W0(x(τ))
and W−1(x(τ)) to any pair of values chosen at will. In particular, we could have selected

2See appendix B.1.
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x(τ = 0) = −1/e and limτ→−∞ x(τ) = β, β ∈ (−1/e, 0), and then the solution built
with W0(x(τ)) and the one constructed with W−1(x(τ)) would have had exactly the same
asymptotic behaviour, but different profiles away from infinity (note also (B.1) that W0

and W−1 are not even symmetric, in contradistinction to the branches of other real multi-
valued functions such as the inverse trigonometric functions). That is, we would have been
dealing with two completely different regular solutions with the same mass M , charges and
asymptotic values of the scalar fields, in contradiction with the aforementioned conjecture.
Let us state that when we write regular, we mean a black hole solution with positive mass
M such that there is a unique physical singularity in the space-time and it is hidden by
an event horizon with non-zero, positive area.

In order to accomplish the construction of our solutions, we are going to somewhat
forget about String Theory and propose a prepotential which we can solve exactly, and
such that the corresponding supersymmetric solutions enjoy the same desirable properties
as the String-Theory-forbidden ones of [95]. In particular, we will use the same truncation
in the H-variables, to wit

H0 = H0 = Hi = 0, p0 = q0 = qi = 0 . (4.1)

In addition, we want the Lambert function to appear when solving the corresponding
0-electric component of the stabilization equations. We have found that the following
prepotential fulfils the required conditions

F (X ) = n [dnX n]

[
X 0e2idl

X l
X0 − 2i [dmXm]Ei

[
2idl
X l

X 0

]]
− dijk

X iX jX k

X 0
, (4.2)

where Ei(z) is the exponential integral function3, and dijk = d(ijk), n and di
4 are now

arbitrary constants not constrained by any String Theory requirement, since we are con-
sidering a purely Supergravity model.

In the next section we are going to obtain the supersymmetric black hole solutions
corresponding to the four dimensional N = 2 Supergravity theory defined by (4.2), as-
suming the truncation (4.1).

4.2 The supersymmetric solution

As we have already stressed, in the H-FGK formalism, it is trivial to see that any N = 2,
d = 4 Supergravity model admits a solution for the HM variables given by

HM = AM − Q
M

√
2
τ , (4.3)

which turns out to correspond to a supersymmetric black hole [201, 243, 320, 411]. Using
the truncation (4.1) we have

H i = ai − pi√
2
τ , HM = 0 , M 6= i . (4.4)

3See appendix B.2.
4The indices i, j, k, l . . . run from 1 to a fixed arbitrary positive integer nv.
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For the prepotential under consideration (4.2), and the truncation (4.1), it is easy to see
that the corresponding stabilization equation for H̃0 is solved by

H̃0 =
dlH

l

Wa

(
sa

√
n(dnHn)3

dijkHiHjHk

) . (4.5)

This is precisely the same result that we found for the H̃0 of the solution in the String
Theory case Eq. (3.66), and which incorporates the Lambert function, as we wanted. The
remaining stabilization equation is solved by

H̃i =
3dijkH

jHk

H̃0
+ ndi

[
e−

2dlH
l

H̃0 H̃0 + [4dmH
m]Ei

[
−2dqH

q

H̃0

]]
. (4.6)

H̃i becomes an explicit function of the H i once we substitute (4.5) into (4.6). In any case
the result is different from the corresponding one in the String Theory solution, which is
to be expected since the model, although sharing some general characteristics, is different.
The metric warp factor is hence given by

e−2U = n [dnH
n]

[
e−

2dlH
l

H̃0 H̃0 + [4dmH
m]Ei

[
−2dqH

q

H̃0

]]
+

3dijkH
iHjHk

H̃0
, (4.7)

whereas the scalars read

zi =
X i

X 0
= i

H i

dlH l
Wa

(
sa

√
n(dnHn)3

dijkH iHjHk

)
. (4.8)

This completes the general construction of the supersymmetric solution. Of course, now
we have to require, in order to have a regular solution, several conditions which will now
be studied.

4.2.1 Regularity conditions

In order to have a regular solution the following requirements have to be satisfied:

1. The warp factor must be non zero, namely

e2U > 0 , ∀ τ ∈ (−∞, 0) . (4.9)

2. The mass M of the solution must be positive and finite

M ≡ U̇(τ → 0) > 0 . (4.10)

This requires a bit more explanation. Indeed, it turns out that the definition of the
black hole mass involves derivatives of the Lambert function evaluated at x(τ = 0),
which will appear multiplicatively in the different factors of U̇(τ). As we have
sketched already and will explain in the next section, in order to jeopardize the no-
hair conjecture we want to fix the parameters of our solution in a way such that
the argument of the Lambert function evaluated at spatial infinity (τ = 0) takes
the value −1/e, where the two branches of W make contact. However, it turns out
that W ′(x) diverges as x → −1/e (as explained in the appendix B.1). Fortunately,
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it is not difficult to cure this behaviour and get a positive (and finite) mass by

choosing the parameters of the solution to be such that ẋ(τ)
τ→0−→ 0 faster than

|W ′0,−1(x)| x→−1/e−→ ±∞. For instance, we can impose that the coefficient of order τ0

in the numerator of ẋ(τ) vanishes. As we will see in the explicit examples of section
4.4, this suffices to obtain a finite and positive mass for our pairs of inequivalent
black holes.

3. The Kähler potential must be consistently defined. That is

e−K = iΩM Ω̄M (4.11)

must be positive. For the prepotential (4.2) the Kähler potential is given by

e−K = idijk(z − z̄)i(z − z̄)j(z − z̄)k + indi (z + z̄)i
(
e2idlz

l − e−2idlz̄
l
)

(4.12)

+ 4n|dizi|2
(
Ei
[
2idiz

i
]

+ Ei
[
−2idiz̄

i
])
.

Since the supersymmetric solution that we have constructed has purely imaginary
scalars, we can use z̄i = −zi to simplify this expression

e−K

8
= idijkz

izjzk + n|dizi|2Ei
[
2idiz

i
]
. (4.13)

To summarize, if we obtain a solution such that the metric factor, the Kähler potential,
and the mass are definite positive, we will have a regular black hole solution with a physical
singularity hidden by an event horizon, and no other space-time singularities.

4.3 The violation of the no-hair conjecture

The resolution of the stabilization equations given in section (4.2) gives us the opportunity
to build the supersymmetric solution either using W0 (solution which we will denote by
S0) or W−1 (solution which we will denote by S−1). Therefore, in order to prepare the
set up for the violation of the uniqueness conjecture, we need to construct a solution such

that the argument of Wa

(
sa

√
n(dnHn)3

dijkHiHjHk

)
, which we denote by x(τ), lies entirely in the

interval (−1/e, 0), only touching the value −1/e when τ = 0, that is, at spatial infinity.
Notice that if we want the argument x(τ) to be negative we have to chose s0 = s−1 = −1,
which we will assume henceforth. This way, we will be able to construct two different
black hole solutions that solve the same equations of motion, and have the same mass,
charges and moduli at infinity, but however are different, since the profiles of W0 and W−1

are different (and asymmetric) when evaluated in (−1/e, 0). Hence, we need to impose

x(0) = −

√
n(dnan)3

dijkaiajak
= −1

e
, (4.14)

and

x(τ) ∈ (
−1

e
, 0) , ∀ τ ∈ (−∞, 0) . (4.15)
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Of course, as explained in the previous section, in order to have a regular solution we need
to impose M > 0 and e−2U , e−K > 0 for τ ∈ (−∞, 0). Assuming that (4.10), (and the
discussion under it) and (4.14) hold, the value of the scalars at infinity as well as the mass,
for both solutions S0 and S−1 will be given by

M = U̇(τ → 0) , =zi∞ = − ai

dlal
. (4.16)

In order to show that it is indeed possible (and actually easy) to choose the parameters
available in the model in a way such that we can obey all the conditions (regularity plus
(4.14) and (4.15)), in the next section we will explicitly construct a pair of solutions
satisfying the required properties for a particular model with two scalar fields.

Another issue, related to the stability of the solution, is the positive definiteness of
the scalar metric Gij̄ evaluated on the solution. Such a condition, which is related to the
fulfilment of the NEC associated to the energy-momentum tensor of all the scalar fields
in our solution, turns out to be difficult to satisfy. In particular, for the simple models
in which we have worked out the explicit construction of pairs of solutions with the same
masses, charges and asymptotic values of the moduli (like the one in section 4.4), the scalar
metric turns out to have both positive and negative eigenvalues (for both solutions in each
pair), meaning that some of the scalars in our solutions fail to satisfy the NEC (just like in
other counterexamples to the no-hair conjecture [316]). At this point it is not clear to us
whether this is a feature shared by all the possible solutions eluding the no-hair conjecture
susceptible of being constructed in our model (for any number of scalar fields), or not.
This is an open question which could be addressed from different approaches. On the one
hand, one could always try to map (brute force-wise) the parameter space for models with
different numbers of scalars, looking for a solution satisfying all the requirements but with
a positive definite scalar metric. It would also be possible to consider other prepotentials
giving rise to stabilization equations whose solutions involve multivalued functions, and
study the situation therein. On the other hand, it might just be that our procedure
of placing the spatial infinity at the branch point of the Lambert function necessarily
implies some unstable behaviour for the corresponding solutions, not incompatible with
their regularity. This could be related to the structure of the attractor flows associated to
each pair of solutions. Let us see how this works.

4.3.1 Attractors

Although both solutions S0 and S−1 have exactly the same asymptotic limit τ → 0, since
the flow is different, one should expect that the corresponding attractors z0 and z−1 are
different. This is indeed the case; they are given by

zia =
pi

dlpl
Wa

(
−

√
n(dlpl)3

dijkpipjpk

)
. (4.17)

This can be understood in the context of the basins of attractions [268]. Let us suppose
that we impose

x(0) = α , α ∈ (−1

e
, β) , (4.18)

instead of x(0) = −1
e . Then S0 and S−1 have different asymptotic limits at spatial

infinity. In particular, the asymptotic value of the scalars at infinity is different for S0
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and S−1. Therefore, we have two basins of attraction B0 and B1 such that the solution
S0 corresponds to B0 and S−1 corresponds to B−1. What happens when we impose

x(0) = −1

e
(4.19)

is that we precisely choose a point which lies in B0 and B−1, that is, we choose a point
in the common border of the two basins of attraction. As a result, we end up with two
different solutions, with different attractors, which however have the same mass, charges
and asymptotic values of the scalares at infinity.

This standpoint suggests that there could be, in fact, some instability associated to
our election of the Lambert’s function argument at the branch point. If this were the case,
it would simply mean that, just like appears to happen in other counterexamples available
in the literature (but those usually in theories with scalar potential, gaugings or higher
order curvature corrections), the no-hair Conjecture remains robust when stability issues
are considered.

4.4 An explicit example

Let us consider a model with two scalar fields z1 and z2. The warp factor of the spacetime

metric and the scalars can be read off directly from (4.7) and (4.8) with H1 = a1 − p1
√

2
τ ,

H2 = a2 − p2
√

2
τ . Imposing the regularity conditions, the correct asymptotic behaviour of

the metric (e2U τ→0
=⇒ 1) and choosing the parameters in the argument of the two branches

of the Lambert function in the way explained in the previous section (and such that
(4.15) and (4.14) hold), it is not difficult to construct solutions with the required prop-
erties (and which, in all the examples constructed automatically satisfy the condition
e−K > 0 ∀τ ∈ (−∞, 0)). Let us choose a particular model with d1 = d2 = 1, d122 = 0,
d222 ' −0, 270, d211 ' 0, 320, d111 ' −2, 040, n ' −0, 011, and with the following con-
stants for our solutions: =mz1

∞ = −1/3, =mz2
∞ = −2/3, p1 = p2 = 1. The explicit

dependence on τ of the warp factor and the imaginary parts of our scalars for the exam-
ples at hand is in general very messy, so instead of reproducing it here, let us have a look
at the corresponding plots for this particular example, for which the mass turns out to be
M = 2/3
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Figure 4.1: The profiles of the metric warp factors corresponding to the two solutions
outside the event horizon τ ∈ (−∞, 0). Both metrics asymptote to Minkowski spacetime
at spatial infinity.
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Figure 4.2: The profiles of the imaginary parts of the scalar fields outside the event horizon
τ ∈ (−∞, 0). As we can see, their asymptotic values =mz1

∞ and =mz2
∞ coincide for both

solutions (recall that spatial infinity is at τ → 0−).

As we can see, both solutions are completely regular, and share the same mass,
charges, and asymptotic values of the scalars.
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5
N = 2 Einstein-Yang-Mills’ static two-center

solutions

This chapter is based on

Pablo Bueno, Patrick Meessen, Tomas Ort́ın and Pedro F. Ramı́rez
“N = 2 Einstein-Yang-Mills’ static two-center solutions”,

JHEP 1412 (2014) 093. [arXiv:1410.4160 [hep-th]] [91].

Contrary to what one might think, multi-black hole solutions need not be related
to supersymmetry or, like in the case of Kastor and Traschen’s solution in Ref. [272],
fake-supersymmetry. Proof of this is given by various solutions e.g. the ones presented
in Refs. [53] and [139]. The benefit of using supersymmetry, however, is that after a few
decades’ worth of investigations there are workable recipes for creating supersymmetric
solutions, which greatly facilitates the construction and study of multi-black hole solutions.

The construction is particularly straightforward in ungauged N = 2, d = 4 super-
gravity coupled to vector multiplets where there are clear-cut rules for a supersymmetric
multi-object solution to give rise to a well-defined multi-black hole solution [42, 140, 159,
228, 252, 309, 358, 359]: i) positive mass of the constituents, ii) the near-horizon limit has
to have definite entropy, iii) the 2nd law of thermodynamics must hold in the coalescence
of constituents, and iv) the Denef constraints [159] must be satisfied. Depending on the
charges the latter may constrain the distance between the constituents but it always im-
plies the absence of NUT charge.

The oft forgotten case of ungauged N = 2, d = 4 supergravity coupled to non-
Abelian vector multiplets, which we refer to as N = 2 Einstein-Yang-Mills, is similar to
the Abelian case in that there is a well-defined recipe for constructing supersymmetric
solutions [244, 245]. However, the construction of supersymmetric solutions is greatly
hindered not only by the fact that not every Abelian theory can be non-Abelianized, but
doubly more so by the fact that the supersymmetric recipe requires the use of solutions of
the (non-Abelian) Bogomol’nyi equation on R3 [72]. Our lack of knowledge of the space of
all solutions to this equation is a serious limitation to the application of the supersymmetric
recipe: there exists a vast literature on single monopole solutions, i.e. regular single-
center solutions to the Bogomol’nyi equation (see e.g. Refs. [406]). Depending on the
chosen N = 2, d = 4 model, these can be used to construct globally regular supergravity
solutions known as global monopoles. A lot less is known about the singular solutions to
the Bogomol’nyi equation which are the ones which give rise to black holes with different
degrees of non-Abelian hair [244,245,319]. Finally, even less is known about multi-center
solutions to the Bogomol’nyi equation. These are the ones we need in order to to apply
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the supersymmetric recipe to the construction of multi-center supergravity solutions, with
centers that correspond to global monopoles or black holes.

Luckily enough, some explicit solutions are known.1 In this chapter we are going to
use the solutions of the SU(2) Bogomol’nyi equation found by Cherkis and Durcan [138]
and Blair and Cherkis [71] (which we will generalize by adding Protogenov hair [319]).
These solutions describe an ’t Hooft-Polyakov (-Protogenov) monopole in the presence of
an arbitrary number of Dirac monopoles embedded in SU(2), all having charge opposite to
the one carried by the former. These solutions can (in principle) give rise to supergravity
solutions describing black holes in the presence of a global monopole. The construction of
these solutions is, at the same time, our main goal and our main result.

Before we start constructing multi-black hole solutions, however, it is worth review-
ing briefly some of the previous work on solutions of YM theories coupled to gravity2.
Most of the previous work on this topic was focused on pure Einstein-Yang-Mills (EYM)
theories, (the minimal non-Abelian extension of the Einstein-Maxwell theory), ignoring
the possible existence of unbroken supersymmetry which is, however, one of our main
concerns here.

Soon after the discovery of the ’t Hooft-Polyakov monopole [370,408] several groups
found solutions to the pure EYM theory [429] whose SU(2) gauge field is that of the
Wu–Yang SU(2) monopole [428]. The metric of all these solutions is that of the (dS or
AdS) non-extremal Reissner-Nordström black hole and the singularity in the gauge field
(generically expected for static YM solutions [160]) is covered by an event horizon.

This coincidence of the metrics is due to the relation between the Wu–Yang SU(2)
monopole and the non-Abelian embedding of the Dirac monopole Eq. (C.15): they are
related by a singular gauge transformation and therefore give rise to exactly the same
energy-momentum tensor as it is gauge invariant whether the gauge transformation is
singular or not. For this reason, these solutions have been regarded as not truly non-
Abelian, even though there are potentially measurable differences, see e.g. Refs. [113,232].

Finding less trivial (“genuinely or essentially non-Abelian”) solutions proved much
more difficult and a non-Abelian baldness theorem stating that the only black-hole solutions
of the EYM SU(2) theory with a regular horizon and non-vanishing magnetic charge had
to be non-Abelian embeddings of the Reissner–Nordström solution was proven in [193].
This theorem was subsequently generalized to prove the absence of regular monopole or
dyon solutions to the EYM theory in Refs. [70, 171].

An “essentially non-Abelian” solution, globally regular [396] to EYM theory had
already been found: the Bartnik-McKinnon particle [30]. The Bartnik-McKinnon particle
and its black hole-type generalizations [418], are in fact families of unstable solutions
indexed by a discrete parameter and evade the non-Abelian baldness theorem by being
bald, i.e. they have no asymptotic charge. It is worth pointing out that even though these
solutions are only known numerically, they have been proven to exist [394].

The classification of the possible EYM solutions for the gauge group SU(2) [395] sug-
gests that one has to add more fields to the theory in order to get “essentially non-Abelian”
black-hole or gravitating monopole solutions with non-vanishing charges. Investigations
of solutions to the EYM theory coupled to a Higgs field in the adjoint representation [293]

1Finite-energy, multi-center solutions of the Yang-Mills or Yang-Mills-Higgs system which do not satisfy
the Bogomol’nyi equation like those in Refs. [278,280,283] are also known.

2For more comprehensive reviews see e.g. Refs. [417].
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in the BPS-limit, a theory that is closer to the one we are going to study than EYM,
shows that a globally well-defined ’t Hooft-Polyakov monopole exists and furthermore the
existence of other Bartnik-McKinnon-like solutions.

As far as 4-dimensional supergravity is concerned we have the (supersymmetric)
Harvey-Liu [231] and the Chamseddine-Volkov [130] regular gravitating monopole solu-
tions to gauged N = 4, d = 4 supergravity; in N = 2, d = 4 theories there are analytical
solutions describing global monopole solutions and non-Abelian black hole solutions with
and without asymptotic magnetic charge. Needless to say, all the solutions mentioned in
this little historical exposé describe the fields corresponding to a single object. To our
knowledge, there are no known, essentially non-Abelian multi-object analytic3 solutions
and this article intends to fill this gap by constructing static solutions describing the in-
terplay between an ’t Hooft-Polyakov monopole and a Dirac monopole of opposite charge
in two generic classes of gauged N = 2, d = 4 models.

As we stressed in the introduction, in the theories we have called N = 2, d = 4
SEYM the gauge group does not contain any part of the R-symmetry group. Indeed, in
general (ungauged) N = 2, d = 4 theories, the global symmetry group G can be written
as

G = GV ×Ghyper × SU(2)R ×U(1)R , (5.1)

where GV and Ghyper stand for the isometry groups of the special and quaternionic Kähler
manifolds respectively. When a (necessarily non-Abelian) subgroup of GV is gauged (as in
N = 2, d = 4 SEYM theories) the scalar potential is positive semidefinite, which allows for
asymptotically De-Sitter and asymptotically flat solutions (such as the ones we construct
in this paper). This is in contradistinction to theories in which a subgroup of SU(2)R

(or the complete SU(2)R) is gauged via Fayet-Iliopoulos terms4 in whose case the scalar
potential becomes negative definite, the solutions thus being asymptotically anti-De Sitter.
Lately, an intense effort has been devoted to the construction of black-hole solutions of
theories with Abelian gaugings (that is, theories in which a subgroup U(1) ∈ SU(2)R has
been gauged); see, for instance, Refs. [97, 209, 224, 242, 285, 412] and references therein.
The case in which the full SU(2)R has been gauged remains as unexplored as challenging,
even though the general form of the timelike supersymmetric solutions of this theory has
been given in Ref. [322].

This chapter is organized as follows: in section 5.1 we review the theories we are
going to work with (N = 2, d = 4 Super-Einstein-Yang-Mills theories) and the recipe for
constructing timelike supersymmetric solutions (black holes, in particular). In section 5.2
we apply that recipe to construct single, static supersymmetric black-hole and monopole

solutions of two particular examples of SU(2)-gauged N = 2, d = 4 SEYM: the CP3

model (quadratic) (5.2.2 ) and the ST[2, 4] model (cubic) (5.2.3). We use as seeds for these
solutions the single-center solutions of the Bogomol’nyi equations reviewed in section 5.2.1.
In section 5.3 we construct multi-black-hole solutions for the same models using the multi-
center solutions of the Bogomol’nyi equations reviewed in section 5.3.1. Our conclusions
are contained in section 5.4. In the Appendices we review a particularly interesting single-

3Numerical, multi-center solutions have been found previously, though. See, e.g. Refs. [279,281]. Some
of those solutions can be embedded in N = 1, d = 4 supergravity. However, representing massive objects,
they can never be supersymmetric in that theory. The embedding in higher-N supergravities is much more
difficult (if possible at all). We thank J. Kunz for pointing these works to us.

4The overall U(1)R group cannot be gauged in this way. The Abelian gaugings discussed in the literature
deal with a subgroup U(1) ∈ SU(2)R.
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center solution of the SU(2) Bogomol’nyi equations which appears in different guises: as
a “Lorentzian meron” (Appendix C.1), as the Wu-Yang monopole (Appendix C.2) or as
a solution of the Skyrme model (Appendix C.3). A higher-charge generalization of this
solution is reviewed in Appendix C.4.

5.1 N = 2, d = 4 SEYM and its supersymmetric black-hole
solutions (SBHSs)

In this section we are going to introduce the class of theories that we have called N = 2,
d = 4 SEYM theories and we are going to review the recipe to construct all their timelike
supersymmetric solutions, presented in Ref. [245]. We shall be extremely brief. The
interested reader can find more details in Refs. [183, 244, 353]; our conventions are those
of Refs. [244,245,353].

5.1.1 The theory

N = 2, d = 4 SEYM theories can be seen as the simplest N = 2 supersymmetrization
of the Einstein-Yang-Mills (EYM) theories. They are nothing but theories of N = 2,
d = 4 supergravity coupled to n vector multiplets in which a (necessarily non-Abelian)5

subgroup of the isometry group of the (Special Kähler) scalar manifold has been gauged
using some of the vector fields of the theory as gauge fields6.

We will only be concerned with the bosonic sector of the theory, which consists
on the metric gµν , the vector fields AΛ

µ (Λ = 0, 1, · · · , n) and the complex scalars Zi

(i = 1, · · · , n). The action of the bosonic sector reads

S[gµν , A
Λ
µ, Z

i] =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

−2<eNΛΣF
Λµν ? FΣ

µν − V (Z,Z∗)
]
.

(5.2)

In this expression, Gij∗ is the Kähler metric, DµZ
i is the gauge-covariant derivative

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (5.3)

FΛ
µν is the vector field strength

FΛ
µν = 2∂[µA

Λ
ν] − gfΣΓ

ΛAΣ
µA

Γ
ν , (5.4)

NΛΣ is the period matrix and, finally, V (Z,Z∗) is the scalar potential

V (Z,Z∗) = −1
4g

2=mNΛΣPΛPΣ . (5.5)

Since the imaginary part of the period matrix is negative definite, the scalar potential
is positive semidefinite, which leads to asymptotically-flat or -De Sitter solutions.

5 The theory becomes identical to the ungauged one when the gauge group is Abelian.
6 A global symmetry group can be gauged if it acts on the vector fields in the adjoint representation.

Furthermore, it is required to be a symmetry of the prepotential; see e.g. ref. [245] for more details.
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In the above equations, kΛ
i(Z) are the holomorphic Killing vectors of the isometries

that have been gauged7 and PΛ(Z,Z∗) the corresponding momentum maps, which are
related to the Killing vectors and to the Kähler potential K by

iPΛ = kΛ
i∂iK − λΛ , (5.6)

kΛ i∗ = i∂i∗PΛ , (5.7)

for some holomorphic functions λΛ(Z). Furthermore, the holomorphic Killing vectors and
the generators TΛ of the gauge group satisfy the Lie algebras

[kΛ, kΣ] = −fΛΣ
ΓkΓ , [TΛ, TΣ] = +fΛΣ

ΓTΓ . (5.8)

For the gauge group SU(2), which is the only one we are going to consider, we use
lowercase indices8 a, b, c = 1, 2, 3 and the structure constants are fab

c = −εabc, so

[ka, kb] = +εabckc , [Ta, Tb] = −εabcTc . (5.9)

We will use the fundamental representation, in which the generators are proportional
to the standard Pauli matrices9 σa

Ta ≡ + i
2σ

a , ⇒ Tr(TaTb) = −1
2δab . (5.11)

The equations of motion of the theory can be written in the following form:

Gµν + 2Gij∗ [D(µZ
iDν)Z

∗ j∗ − 1
2gµνDρZ

iDρZ∗ j
∗
]

+4MMNFMµ
ρFNνρ + 1

2gµνV (Z,Z∗) = 0, (5.12)

D2Zi + ∂iGΛµν ? F
Λµν + 1

2∂
iV (Z,Z∗) = 0, (5.13)

Dν ? GΛ
νµ + 1

4g
(
kΛ i∗DµZ

∗i∗ + k∗Λ iDµZ
i
)

= 0 , (5.14)

where GΛµν is the dual vector field strength

GΛ ≡ <eNΛΣF
Σ + =mNΛΣ ? FΣ , (5.15)

FMµν is the symplectic vector of vector field strengths

(
FM

)
≡
(
FΛ

GΛ

)
, (5.16)

7 The employed notation associates a Killing vector to each value of the index Λ in order to avoid the
introduction of yet another class of indices and the embedding tensor (See e.g. the reviews [413]); it is
understood that not all the kΛ need to be non-vanishing.

8These will be a certain subset of those represented by Λ,Σ, . . ..
9These are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σaσb = δab + iεabcσc . (5.10)
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MMN is the symmetric 2(n+ 1)× 2(n+ 1) matrix defined by

(MMN ) ≡

 =mNΛΣ +RΛΓ=mN−1|ΓΩRΩΣ −RΛΓ=mN−1|ΓΣ

−=mN−1|ΛΩRΩΣ =mN−1|ΛΣ

 , (5.17)

and
Dν ? GΛ

νµ = ∂ν ? GΛ
νµ + gfΛΣ

ΓAΣ
ν ? GΛ

νµ . (5.18)

Most of the literature and earlier work on non-Abelian black-hole and monopole so-
lutions has been carried out in the context of the Einstein-Yang-Mills (EYM) and Einstein-
Yang-Mills-Higgs (EYMH) theories. Before closing this introduction, it is worth discussing
the relation between those and the theories we are considering here. The main differences
of the latter w.r.t. the former are the complexification of the Higgs field and the presence of
a non-trivial period matrix. A further difference is the possibility of having more general
scalar manifolds, which is reflected in the expressions of the gauge-covariant derivatives
of the scalar fields. Solutions to the N = 2, d = 4 SEYM theory have a chance of being
also solutions of the EYMH theory if they have covariantly-constant scalars with identical
phases (e.g. all of them purely imaginary). Then, if the scalar potential vanishes on the
solutions, they also have a chance of being solutions to the EYM system as well; as we are
going to see, some of the solutions found in Refs. [244,245] are also solutions of the EYM
theory and have the same metric as the EYM solutions of Refs. [113,429].

5.1.2 The recipe to construct SBHSs of N = 2, d = 4 SEYM

To construct timelike supersymmetric solutions of the N = 2, d = 4 SEYM theory,
it suffices to follow this recipe [244, 245] to find the elementary building blocks of the

solutions, which are the 2(n+ 1) time-independent functions (IM ) =
(
IΛ

IΛ

)
:

1. Take a solution of the Bogomol’nyi equations

F̃Λ
mn = − 1√

2
εmnpD̃pIΛ, (5.19)

for a gauge field ÃΛ
m (m = 1, 2, 3 labels the 3 spatial coordinates) and a real

“Higgs” field IΛ. D̃pIΛ is the covariant derivative in the adjoint representation

with gauge field ÃΛ
m. Observe that this equation has to be solved in the gauged

(non-Abelian) and ungauged (Abelian) directions. The integrability condition in the
Abelian directions is the familiar requirement that the IΛ be harmonic functions on
R3.

2. Find the functions IΛ by solving these equations:

D̃mD̃mIΛ = 1
2g

2
[
fΛ(Σ

Γf∆)Γ
Ω IΣI∆

]
IΩ . (5.20)

In the non-Abelian directions these equations can, in many cases, be solved by taking
IΛ ∝ IΛ, but currently we only know how to generate non-trivial solutions to them
in the cases where the gauge doublet (ÃΛ, IΛ) describes a non-Abelian Wu-Yang
monopole; Observe that IΛ = 0 is always a solution, but the physical fields may be
singular in some models.

In the Abelian directions, the IΛ are just independent harmonic functions on R3.
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3. Given the functions IM , we must find the 1-form on R3 ωm by solving the following
equation:

∂[mωn] = εmnpIMD̃pIM = εmnp

(
IΛD̃pIΛ − IΛD̃pIΛ

)
. (5.21)

The integrability conditions of this equation impose constraints on the integration
constants of the functions IM in exactly the same manner as in the ungauged case
[31,159].

In the case of static solutions, i.e. when ω = 0, the above equation becomes a
constraint on the integration constants of the functions IM that will have to be
solved. Observe, however, that this constraint is independent of the specific N = 2,
d = 4 model and only depends on the choice of gauge group; possible restrictions on
the solution to said constraint can come from the desired behaviour of the physical
fields in the full solution.

4. To reconstruct the physical fields from the functions IM we need to solve the stabi-
lization equations, a.k.a. Freudenthal duality equations, which give the components
of the Freudenthal dual10 ĨM (I) in terms of the functions IM [189]; These relations
completely characterize the model of N = 2, d = 4 supergravity.

Equivalently, the Ĩ can be derived from a homogeneous function of degree 2 W (I)
called the Hesse potential as [31,324,331]

ĨM = 1
2
∂W
∂IM −→ W (I) = ĨMIM . (5.22)

5. The metric takes the form

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm , (5.23)

where ω = ωmdx
m is the above spatial 1-form and the metric function e−2U is given

by

e−2U = ĨM (I)IM = W (I) . (5.24)

6. The scalar fields are given by

Zi =
Ĩi + iIi

Ĩ0 + iI0
. (5.25)

7. The components of the vector fields are given by

AΛ
t = − 1√

2
e2U ĨΛ , (5.26)

AΛ
m = ÃΛ

m + ωm AΛ
t . (5.27)

After having gone through the steps of the recipe, one ends up with a supersymmetric
solution to a chosen N = 2, d = 4 EYM theory and what remains to be done is to analyze
the constraints coming from imposing appropriate regularity conditions such as the absence
of naked singularities.

10 In Refs. [244,245,320] the components of the Freudenthal dual are denoted by RM .
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5.2 Static, single-SBHSs of SU(2) N = 2, d = 4 SEYM and
pure EYM

Following the recipe given in section 5.1.2, we are going to construct static, single-center
SBHSs of SU(2) N = 2, d = 4 SEYM. Some of the solutions will simultaneously solve the
equations of motion of the EYM and EYMH theories.

The first step consists in finding a solution ÃΛ
m, IΛ of the SU(2) Bogomol’nyi equa-

tions in R3 Eqs. (5.19).

5.2.1 Single-center solutions of the SU(2) Bogomol’nyi equations in R3

Before we search for solutions of the Bogomol’nyi equations it is worth reviewing the origin
and meaning of those equations in the context of the SU(2) Yang-Mills-Higgs theory (in
the Bogomol’nyi-Prasad-Sommerfield (BPS) limit in which the Higgs potential vanishes).

The SU(2) Yang-Mills-Higgs system

With the normalization in Eq. (5.11) and writing F ≡ F aTa,Φ ≡ ΦaTa, the action of the
YMH theory in our conventions reads

SYMH = −2

∫
d4xTr

{
1
2DµΦDµΦ− 1

4FµνF
µν
}
, (5.28)

and the corresponding equations of motion are

DµF
µν = g[Φ,DνΦ] , (5.29)

D2Φ = 0 . (5.30)

For static configurations Ftm = DtΦ = 0, the action can be written, up to a total
derivative, in the manifestly positive form

SYMH = −2

∫
d4xTr

{
−1

4

(
Fmn ∓ εmnpDpΦ

)(
Fmn ∓ εmnpDpΦ

)}
, (5.31)

which leads to the conclusion that static field configurations satisfying the first-order
Bogomol’nyi equations [72]

Fmn = ±εmnpDpΦ , (5.32)

extremize the action Eq. (5.28) and are solutions of the full Yang-Mills-Higgs equations.
Indeed, if we act with Dm on both sides of the equation and use the Ricci identity and
the Bogomol’nyi equation we get the Yang-Mills equation:

DmFmn = ∓εnmpDmDpΦ = ∓1
2gεnmp[Fmp,Φ] = −g[DnΦ,Φ] . (5.33)

If, instead, we act with εpmnDp and use the Bianchi identity, we get the Higgs equation:

0 = εpmnDpFmn = ±DpDpΦ . (5.34)

Observe that the source of the Yang-Mills field, the Higgs current g[Φ,DΦ], not only
vanishes when the Higgs field is covariantly constant DΦ = 0 but also when Φ and DΦ
are parallel in su(2).

106



Chapter 5. N = 2 Einstein-Yang-Mills’ static two-center solutions

Eqs. (5.32) are identical to the ones that arise in N = 2, d = 4 SEYM theory, (5.19)
upon the identification of the vector fields and

1√
2
Ia = ∓Φa . (5.35)

The hedgehog ansatz

In order to construct static, single-center black-hole-type solutions, it is natural to look
for spherically symmetric solutions of Eqs. (5.32). Substituting the hedgehog ansatz

∓ Φa = δamf(r)xm , Aam = −εamnxnh(r) (5.36)

in the Bogomol’nyi Eqs. (5.32) we get an equivalent system of differential equations for
f(r) and h(r):

r∂rh+ 2h− f(1 + gr2h) = 0 ,

r∂r(h+ f)− gr2h(h+ f) = 0 .
(5.37)

After Prasad and Sommerfield [373] found the solution describing the ’t Hooft-
Polyakov monopole in the BPS limit, Protogenov [374] classified all spherically symmetric
solutions to the SU(2) Bogomol’nyi equations: the ones that can be used to generate
BH-like spacetimes are a 2-parameter family (fµ,s, hµ,s) plus a 1-parameter family (fλ, hλ)
given by

rfµ,s =
1

gr
[1− µr coth (µr + s)] , rhµ,s =

1

gr

[
µr

sinh (µr + s)
− 1

]
,

rfλ =
1

gr

[
1

1 + λ2r

]
, rhλ = −rfλ .

(5.38)

The parameter s is known in the black-hole context as the Protogenov hair parameter
[319]. The BPS ’t Hooft-Polyakov monopole [373] is the only globally regular solution
of this family (which explains why it is the only one usually considered in the monopole
literature11) and corresponds to s = 0. In the s→∞ limit we get

− rfµ,∞ =
µ

g
− 1

gr
, rhµ,∞ = − 1

gr
, (5.39)

which, for µ = 0, coincides with the Wu-Yang monopole [428] given in Eq. (C.15), and
is a solution of the pure Yang-Mills theory. This is possible because the Higgs current
g[Φ,DΦ] vanishes even though Φ is neither zero nor covariantly constant12. With a non-
trivial Higgs field, though, we can assign a well-defined monopole charge to it: for any µ
and s

1

4π

∫
S2
∞

Tr(Φ̂F ) =
1

g
, Φ̂ ≡ Φ√

|Tr(Φ2)|
. (5.40)

The same field configuration can be seen as a Lorentzian meron (see Appendix C.1)
and as a solution to the Skyrme model (see Appendix C.3), and, crucially, it is related

11 After coupling the system to gravity, the singularities of the other solutions may become “harmless”
if they can be covered by regular event horizons.

12Actually, the only field configuration in this ansatz with a vanishing Higgs current is this one.
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to the SU(2)-embedded Dirac monopole by a singular gauge transformation (see Ap-
pendix C.2). Since the metric is oblivious to gauge transformations, singular or not,
the Wu-Yang monopole gives rise to solutions whose metric is identical to that of Abelian
case.13 The same applies to the higher-charge generalizations of the Lorentzian meron/Wu-
Yang monopole reviewed in Appendix C.4.

If fact, this mechanism can be used to generate Wu-Yang monopoles of higher charge
from the well-known Dirac monopole solutions of charge higher than 1 embedded in SU(2),
as reviewed in Appendix C.4. The metric cannot see the difference between the non-
Abelian and the Abelian fields given in Eq. (5.39).

The 1-parameter family is singular for all values of the parameter λ, which also
appears in black-hole solutions as hair. The magnetic charge measured at spatial infinity
vanishes according to the above definition. However, it can be argued that these solutions
do describe a magnetic monopole placed at the origin whose charge is screened: the
entropy of black hole associated to this field has the same form as that of the black hole
associated to the Wu-Yang monopole. Observe that, for λ = 0, the solution is identical to
the Wu-Yang monopole with µ = 0, Eqs. (5.39).

The Protogenov trick

As it turns out, many regular monopole solutions can be deformed by adding a parame-
ter s to the argument µr, generating a family of solutions that contains the original one
(s = 0) and, typically, a new and simpler solution in the s→∞ limit. We will refer to this
procedure as the Protogenov trick and it can be justified as follows: let us consider, for
instance, the ’t Hooft-Polyakov monopole. Since the Bogomol’nyi equation is polynomial,
having elementary functions such as hyperbolic functions in the solution means that they
must cancel amongst themselves and that only their derivatives contribute to the polyno-
mial part of the solution. This means that one should be able to deform the dependency
of the elementary functions introducing a shift s of the radial coordinate and still solve
the Bogomol’nyi equations.

Of course, the cancellations necessary for having a regular solution will not work out
anymore (assuming they did work for s = 0) and one will end up with a family of singular
solutions. We will use this trick later.

5.2.2 Embedding in the SU(2)-gauged CP3
model

The CP3
model

As we already explained, the CPn models have n vector supermultiplets and are defined
by the quadratic prepotentials

F = − i
4ηΛΣXΛXΣ , (ηΛΣ) = diag(+− · · ·−) . (5.41)

The n physical scalar fields can be defined as

Zi ≡ X i/X 0 , (5.42)

13 Of course there are measurable differences between these two situations, see e.g. Refs. [113,232].
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and they parametrize the symmetric space U(1, n)/(U(1) × U(n)). It is convenient to
define Z0 ≡ 1, ZΛ ≡ XΛ/X 0 and ZΛ ≡ ηΛΣZ

Σ. In the X 0 = 1 gauge, the Kähler potential
and the Kähler metric are given by

K = − log (Z∗ΛZΛ) , Gij∗ = −eK
(
ηij∗ − eKZ∗i Zj∗

)
, ⇒ 0 ≤

∑
i

|Zi|2 < 1 . (5.43)

The above metric is the standard (Bergman) metric for the U(1, n)/(U(1)×U(n)) symmet-
ric spaces [63]. The covariantly holomorphic symplectic section V and the period matrix
NΛΣ are given by

V = eK/2

 ZΛ

− i
2ZΛ

 , NΛΣ = i
2

[
ηΛΣ − 2

ZΛZΣ

ZΓZΓ

]
. (5.44)

The isometry subgroup SU(1, n) acts linearly, in the fundamental representation, on
the coordinates XΛ

X ′Λ = ΛΛ
ΣXΣ , with Λ†ηΛ = η , and det Λ = 1 . (5.45)

This linear action induces a non-linear action on the special coordinates:

Z ′Λ =
ΛΛ

ΣZ
Σ

Λ0
ΣZΣ

. (5.46)

The Kähler potential is invariant under these transformations up to Kähler transformations
K′ = K + f + f∗ with

f(Z) = log
(
Λ0

ΣZ
Σ
)
. (5.47)

The n(n+2) infinitesimal generators Tm of su(1, n) in the fundamental representation
are defined by

ΛΛ
Σ ∼ δΛ

Σ + αm Tm
Λ

Σ , with ηT †mη = −Tm , and Tm
Λ

Λ = 0 . (5.48)

Substituting this definition into Eq. (5.46) we find an expression for the holomorphic
Killing vectors14.

Z ′Λ = ZΛ + αmkm
Λ(Z) , km

Λ(Z) = Tm
Λ

Σ ZΣ − Tm0
Ω ZΩZΛ , (5.49)

and, from this expression, we also find explicit expressions for the holomorphic functions
λm(Z) and the momentum maps

λm = Tm
0

ΣZ
Σ , Pm = ieKTm

Λ
ΣZ

ΣZ∗Λ = ieKηΛΩTm
Λ

ΣZ
ΣZ∗Ω . (5.50)

Although the theory is invariant under the whole SU(1, n) group, the prepotential
is invariant only under the subgroup of SU(1, n) with real matrices, SO(1, n), which is the
largest group that we could eventually gauge. However, the requirements that the vectors
must transform in the adjoint representation restricts the possibilities to either SO(1, 2) or
SO(3) (if n ≥ 2 or n ≥ 3, respectively); we are going to consider the latter case embedded

into the minimal model admitting this gauge group, namely CP3
.

14The km
0(Z) component vanishes identically, as it must, but it is convenient to keep it.
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In this model, the adjoint indices a, b, c, . . . and the fundamental indices i, j, k, . . .
take the same values 1, 2, 3 and we will only use the latter. The infinitesimal transforma-
tions of the scalars are

δαZ
i = αjTj

i
kZ

k , whereTj
i
k = fjk

i = −εjki , (5.51)

and the momentum maps, holomorphic Killing vectors etc. take the values

Pi = −ieKεijkZjZ∗ k , ki
j = εijkZ

k , λi = 0 . (5.52)

This means that the gauge-covariant derivative of the scalars is just that of a complex
adjoint SO(3) scalar

DµZ
i = ∂µZ

i − gεijkAjµZk, (5.53)

and that the scalar potential takes the form

V (Z,Z∗) = −1
2g

2eKεijkεimnZ
jZ∗k

∗
ZmZ∗n

∗
= 1

2g
2
∣∣∣~Z × ~Z∗

∣∣∣2 . (5.54)

The solutions

To construct the solutions of this model15 we just have to follow the recipe spelled out in
section 5.1.2. We will only consider static solutions (so ω = 0 and ÃΛ

m = AΛ
m). First

of all, we need a solution of the Bogomol’nyi Eqs. (5.19). These equations split into an
Abelian part (the 0th component) and the non-Abelian part (the i = 1, 2, 3 components):

F 0
mn = − 1√

2
εmnp∂pI0 , (5.55)

F imn = − 1√
2
εmnpDpIi . (5.56)

The Abelian equation is solved by

I0 = A0 +
p0/
√

2

r
, (5.57)

where A0 is an integration constant and p0 is the normalized Abelian magnetic charge.
The non-Abelian set of equations can be solved making the identification Eq. (5.35) and
using Protogenov’s solutions Eqs. (5.38).

The second step in the recipe (finding solutions IΛ to Eqs. (5.20)) will be solved,
for the sake of simplicity, by choosing another harmonic function in the Abelian direction
and vanishing functions in the rest:

I0 = A0 +
q0/
√

2

r
, Ii = 0 . (5.58)

The third point in the recipe, combined with the staticity of the solutions implies
the following constraint on the integration constants:

A0q0 −A0p
0 = 0 . (5.59)

15All these solutions have already been presented in Refs. [244, 245, 319]. We review them here for
pedagogical reasons and also for the sake of making easier the comparison with the solutions of other
models.
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Another constraint will arise from the normalization of the metric at infinity. The solution
is completely determined and, now, we only have to write the physical fields and make, if
necessary, sensible choices of the values of the physical parameters to make the solutions
regular.

In order to write the physical fields we need the solutions of the Freudenthal duality
equations of this model. These are given by (see, e.g. Ref. [90])

(ĨM ) =

(
ĨΛ

ĨΛ

)
=

(
−2ηΛΣIΣ
1
2ηΛΣIΣ

)
, ⇒ e−2U = 1

2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , (5.60)

and the metric function and the physical scalars are given by

e−2U = 1
2(I0)2 + 2(I0)2 − (rf)2, (5.61)

Zi =

√
2rf

I0 + 2iI0
δim

xm

r
. (5.62)

At least one of the two functions I0, I0 must be different from zero for the metric
function to be positive. Then, there are two possible cases, depending on the vanishing of
the Abelian charges p0, q0:

I. p0 = q0 = 0 The only regular solution is the one with s = 0 (the ’t Hooft-Polyakov
monopole). In this solution, the integration constants satisfy the normalization
condition

1
2(A0)2 + 2(A0)2 = 1 + (µ/g)2 . (5.63)

They are also related to the asymptotic values of the scalars. These cannot be con-
stant, in general, because the scalars transform under local SU(2) transformations,
but they are covariantly constant and their asymptotic values are determined by a
single gauge-invariant complex parameter that we call Z∞:16

Zi ∼ Z∞δim
xm

r
, Z∞ ≡

µ/g

1 + (µ/g)2

(
1√
2
A0 −

√
2iA0

)
, 0 ≤ |Z∞|2 < 1 .

(5.64)

These expressions lead to the following identification of the integration constant µ
in terms of the physical parameters:

µ2 =
|Z∞|2

1− |Z∞|2
g2 , (5.65)

and to the following expression for the mass of the solution

Mmonopole =

√
|Z∞|2

1− |Z∞|2
1

g
. (5.66)

This asymptotically flat solution has no singularities nor horizons (one finds a
Minkowski spacetime in the r → 0 limit, hence zero entropy and temperature).
Globally-regular solutions of this kind [130,231] are sometimes called global monopoles.

16Observe that the scalar potential of this theory, Eq. (5.54), vanishes at infinity for those solutions,
which is why they are asymptotically flat.
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Observe that a solution of the ungauged theory with

H0 = A0 , H0 = A0 , H1 = A1 +

√
2

gr
, (5.67)

in which the non-Abelian monopole is replaced by an Abelian monopole with the
same charge, would have the same asymptotic behavior but it would mean having a
naked singularity at some value of r > 0.

II. p0q0 6= 0 17 Solving Eq. (5.59) the metric can be written in the form

e−2U =
1

1− |Z∞|2
H2 − (rf)2, (5.68)

Zi =
2β

p0 + 2iq0

rf

H
δim

xm

r
, (5.69)

where H is the harmonic function

H ≡ 1 +
β

r
, β2 = (1− |Z∞|2)WRN(Q)/2 , WRN(Q) ≡ 1

2(p0)2 + 2(q0)2 ,

(5.70)
and the integration constant µ is still given by Eq. (5.65). We have expressed all
the constants (except for Protogenov’s hair parameter s and λ) in terms of physical
constants. Observe that the isolated solution f∗ has µ = 0 and corresponds to
Z∞ = 0. These identifications allow us to compute the mass and entropy of all the
possible solutions in terms of the physical parameters. We get a completely general
mass formula and two formulae for the entropy, one for the s 6= 0 solutions and
another one for the s = 0 and the isolated solutions (which corresponds to Z∞ = 0):

M =

√
1
2

WRN (Q)

1− |Z∞|2
+Mmonopole, (5.71)

S/π = 1
2WRN(Q)− 1

g2
, for s 6= 0 and Z∞ = 0, (5.72)

S/π = 1
2WRN(Q), for s = 0 , (5.73)

where Mmonopole is given by Eq. (5.66).

The entropy is moduli-independent as in the ungauged case and both the entropy
and the mass are independent of the hair parameters s and λ.

Observe that the charge of the BPS ’t Hooft-Polyakov monopole s = 0 does not
contribute to the entropy which suggests that it must be associated to a pure state
in the quantum theory. The non-Abelian field of the isolated solution does not
contribute to the mass at infinity (Mmonopole = 0 for Z∞ = 0) but there is a magnetic-
charge contribution to the entropy, which suggests that there really is a magnetic
charge but it is screened at infinity. Further support for this interpretation comes

17It is easier to work with both charges non-vanishing. The results will still be valid when we set one of
them to zero.
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from the near-horizon limit of the scalars, which is the covariantly-constant function
of the charges

Zih =
1/g

1
2p

0 + iq0
δim

xm

r
. (5.74)

even for the isolated case, when no magnetic charge is observed at infinity.

In the case of the 1-parameter (λ) family, neither the mass nor the entropy depend
on λ.

Some of the solutions in this family can also be seen as solutions of the pure EYM
theory. They are identical to those obtained in Refs. [113, 429]. As discussed at the end
of section 5.1.1, we need to tune the parameters of the solutions so as to get covariantly
constant scalars which do not contribute to the energy-momentum tensor This is only
possible for the s → ∞ solutions (Wu–Yang monopoles) for which rf is a harmonic
function. In that case

Zi = Z δim
xm

r
, Z =

1/g
1
2p

0 + iq0
= Z∞ . (5.75)

The metric is identical to that of a Reissner-Nordström black hole. These solutions
were called black hedgehogs in Ref. [245] and black merons in Ref. [113] because the gauge
field of the Wu–Yang monopole can also be understood as Lorentzian meron solution.

A closely related solution with non-covariantly constant scalars was obtained in a
different context in Ref. [270].

5.2.3 Embedding in SU(2)-gauged ST[2, n] models

The ST [2, n] models

The ST [2, n] models are cubic models with nV = n+1 vector supermultiplets and as many
complex scalars and, as all other cubic models, they can be embedded in type II String
Theory compactified Calabi-Yau 3-folds and then uplifted to M-theory. They can also be
obtained from corresponding models of N = 1, d = 5 supergravity compactified on S1.

A generic cubic model is defined by the prepotential

F = − 1

3!
dijk

X iX jX k

X 0
, (5.76)

where d is completely symmetric in its indices; the ST [2, n] models are characterized by
d-tensors with non-vanishing components d1αβ = ηαβ where (ηαβ) = diag(+ − · · ·−) and
where the indices α, β take n values between 2 and n+ 1.

The scalar Z1 = X 1/X 0 plays a special role and parametrizes a SL(2,R)/SO(2)
coset space. For this and other reasons, it is called axidilaton and we will denote it by
τ . The other n scalars parametrize a SO(2, n)/(SO(2)×SO(n)) coset space and will be
denoted by Zα = Xα/X 0 (α = 2, · · · , n). The Kähler metric and 1-form connection are
the products of those of the two spaces.

Using this notation and using the gauge X 0 = 1, the canonical symplectic section Ω,
the Kähler potential K and the components of Kähler 1-form Qi and of the Kähler metric
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Gij∗ are given by

Ω =



1
τ
Zα

1
2τηαβZ

αZβ

−1
2ηαβZ

αZβ

−τηαβZβ

 , e−K = 4=m τ ηαβ=mZα =mZβ,

Qτ =
1

4=m τ
, Qα =

ηαβ=mZβ

2ηγδ=mZγ =mZδ
,

Gττ∗ =
1

4(=m τ)2
, Gαβ∗ =

ηαγ=mZγ ηβδ=mZδ

[ηεϕ=mZε =mZϕ]2
−

ηαβ
2ηεϕ=mZε =mZϕ

.

(5.77)

The reality of the Kähler potential constrains the values of the scalars. The model
has two branches characterized by

=m τ > 0 , ηαβ=mZα =mZβ > 0 , (5.78)

and
=m τ < 0 , ηαβ=mZα =mZβ < 0 , (5.79)

that will be distinguished where required by + and − indices, respectively.

Only the subgroup SO(1, n) ⊂SO(2, n) acts linearly (in the fundamental representa-
tion) on the special coordinates Zα and the group SO(3) acts in the adjoint (for instance)
on the coordinates α = 3, 4, 5 if n ≥ 4. We take n = 4 for simplicity and denote the
α = 3, 4, 5 indices by a, b, · · · = 1, 2, 3. For the sake of simplicity we will write Za instead
of Za+2 for Z3, Z4, Z5 etc. The generators and structure constants of so(3) and their

action on the scalars are the same as in the CP3
model with obvious changes of notation:

(Ta)
b
c = fac

b = −εacb , δαZ
a = αb(Tb)

a
cZ

c = −εabcαbZc = αbkb
a(Z) , (5.80)

(τ and Z2 are inert) so the holomorphic Killing vectors and the momentum maps are

ka
b(Z) = εabcZ

c , Pa = − i
2

εabcZ
bZ∗ c

∗

ηαβ=mZα =mZβ
. (5.81)

The scalar potential has a structure similar to that of the CP3
model, but more

complicated. We will not give it here since it is not needed anyway.

The solutions

To find solutions to this non-Abelian model we just need to follow the recipe. First, we
find the functions IΛ and the spatial components of the vector fields AΛ

m by solving the
Bogomol’nyi equations

FΛ
mn = − 1√

2
εmnp∂pIΛ , I = 0, 1, 2, (5.82)

F a+2
mn = − 1√

2
εmnpDpIa+2 , a = 1, 2, 3, (5.83)
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(we will suppress the +2 in the non-Abelian indices in most places). The Abelian equations
are solved by harmonic functions and the non-Abelian ones by making the identification
Eq. (5.35) with the Higgs field and using Protogenov’s solutions Eqs. (5.38), as we did in

the CP3
model.

Next, we have to find the functions IΛ by solving Eqs. (5.20). In the Abelian
directions Λ = 0, 1, 2 we can simply choose harmonic functions and in the non-Abelian
ones we take Ia = 0. This choice gives non-singular solutions, as we are going to see. We
will also set some of the harmonic functions to zero for simplicity.

The Hesse potential defined in Eq. (5.22) can be found from Shmakova’s solution
of the stabilization (or Freudenthal duality) equations for cubic models [389]; it can be
written as

W(I) = 2
√
J4(I) , (5.84)

with the quartic invariant J4(I) given by

J4(I) ≡ (IαIβηαβ + 2I0I1)(IαIβηαβ − 2I1I0)− (I0I0 − I1I1 + IαIα)2 . (5.85)

This potential does not vanish for the choice Ia = 0, as we advanced and it will
remain non-singular if we set I0 = I1 = I2 = 0. In other words: the only non-trivial
components of IM are I1, I2, Ia+2, I0. With this choice the metric function is given by

e−2U = W(I) = 2
√
−2I1I0 ηαβIαIβ = 2

√
−2I1I0[(I2)2 − IaIa] . (5.86)

As instructed by the recipe in section (5.1.2), we can calculate the Ĩ from Eq. (5.22),
which for our choice of non-trivial components of IM means that Ĩi = 0 (i = 1, · · · , 5);
this implies that all the scalars are purely imaginary and given by

Zi = i
Ii

Ĩ0
, where Ĩ0 =

2I1ηαβIαIβ

W(I)
. (5.87)

It is convenient to write all of them in terms of τ = Z1

Zα =
Iα

I1
τ , τ = i

e−2U

2ηαβIαIβ
. (5.88)

In the two (+ and −) branches of the model corresponding, respectively, to the
upper and lower signs ±=m τ(±) > 0 and, since e−2U > 0, we must choose the functions
Iα(±) so that

± ηαβIα(±)I
β
(±) = ±

[
(I2

(±))
2 − Ia(±)I

a
(±)

]
> 0 . (5.89)

In order for W(I) to be real the I(±) 0 and I1
(±) must be chosen so as to satisfy

± I1
(±)I(±) 0 < 0 . (5.90)

(We will suppress the ± subindices in what follows, to simplify the notation, except
where this may lead to confusion.)

Observe that with our choice of non-vanishing components of IM the r.h.s. of
Eq. (5.21) vanishes automatically, whence the staticity condition ω = 0 does not impose
any constraint.
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According to the preceding discussions, the non-vanishing components of IM will
be assumed to take the form

I1 = A1 +
p1/
√

2

r
, I2 = A2 +

p2/
√

2

r
, Ia =

√
2 δamx

mf(r) ,

I0 = A0 +
q0/
√

2

r
,

(5.91)

where f(r) is fµ,s or fλ in Eqs. (5.38), p1, p2, q0 are magnetic and electric charges and
A1, A2, A0 are integration constants to be determined in terms of the asymptotic values of
the scalars and the metric. These constants must have the same sign as the corresponding
charges

sign(A1,2) = sign(p1,2) , sign(A0) = sign(q0) , (5.92)

as the functions I1, I2 and I0 are required to have no zeroes on the interval r ∈ (0,+∞)
in order to avoid naked singularities there. Then, the above constraint on the signs of
I1 and I0 translates into the following constraints on the signs of the charges in the two
branches:

sign(p1)sign(q0) = ∓1 . (5.93)

Defining as in the CP3
case the asymptotic value Z∞ of the adjoint scalars by

Za∞ ≡ Z∞ δam
xm

r
, (5.94)

and imposing the normalization of the metric at infinity it is not hard to express the
integration constants µ,A1, A2, A0 in terms of the moduli (the asymptotic values of the
scalars =mτ∞,=mZ2

∞ and =mZ∞) and the coupling constant g

A1 =
sign(p1)|=mτ∞|√

2χ∞
,

A2 =
sign(p2)|=mZ2

∞|√
2χ∞

,

µ =
g|=mZ∞|

2χ∞
,

A0 = 1
2
√

2
sign(q0)χ∞ ,

(5.95)

where we have defined the combination (real in both branches of the theory)

χ∞ ≡
√
=mτ∞ [(=mZ2

∞)2 − (=mZ∞)2] . (5.96)

The mass of the solutions in terms of the moduli and the charges is

M = 1
4

χ∞
|=mτ∞|

|p1|+ 1

2χ∞
|q0| ± 1

2

|=mτ∞=mZ2
∞|

χ∞
|p2| ± |=mτ∞=mZ∞|

χ∞

1

g
. (5.97)

In the above expressions we have used two consistency conditions:

sign(=mZ∞) = ∓sign(p1) , sign(=mZ2
∞) = ±sign(p1)sign(p2) . (5.98)
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These expressions for the integration constants and the mass are valid both for the 2- and
1-parameter families, the latter being recovered by setting =mZ∞ = 0 everywhere. The
contribution of the monopole charge 1/g to the mass disappears because it is screened.

Observe that the positivity of the mass is not guaranteed in the − branch for arbi-
trary values of the charges and moduli: it has to be imposed by hand.

Let us now study the behavior of the solution in the near-horizon limit r → 0. For
fµ,s 6=0 and fλ the metric function behaves as

e−2U ∼
√
−2p1q0 [(p2)2 − (2/g)2]

1

r2
, (5.99)

which corresponds to a regular horizon in both branches. The solutions will describe
regular black holes if the charges and moduli are such that M > 0. Observe that in the −
branch it is possible to chose those such that M = 0 with a non-vanishing entropy.

In the fµ,s=0 case with p2 6= 0 the solution is only well defined in the + branch
because there is no 1/r contribution from the monopole in the r → 0 limit and it is
impossible to satisfy the inequality −ηαβIαIβ > 0 in that limit. In this case (the +
branch with p2 6= 0) we have

e−2U ∼
√
−2p1q0(p2)2

1

r2
, (5.100)

which corresponds to a regular horizon.

In the fµ,s=0 case with p2 = 0 there are two possibilities:

1. We can set p1 = q0 = 0. Then, in the r → 0 limit, e−2U is the moduli-dependent
constant 2

√
−2A1A0(A2)2. There is neither horizon nor singularity and the solution,

which is a global monopole, belongs to the + branch (this also guarantees that the
mass is positive).

2. We can keep both p1 6= 0 and q0 6= 0, setting A2 = 0 and profit from the fact that, in
this limit ΦaΦa goes to zero as r2. The solution is only well defined in the − branch.
The metric function takes the constant value

e−2U ∼

√
+p1q0

µ4

g2
, (5.101)

We have, as far as the metric is concerned, a global monopole solution (as long as
M > 0), but since we need two Abelian charges switched on, namely p1 and q0, the
scalar fields and the gauge fields are singular at r = 0. As before, it is possible to
tune the moduli and charges so that M = 0.

The near-horizon limits of the scalars are, in the fµ,s 6=0 and fλ cases

=mτh =

√
−2p1q0 [(p2)2 − (2/g)2]

2 [(p2)2 − (2/g)2]
,

=mZ2
h =

p2

p1
=mτh ,

=mZah =
2=mτh

gp1
δam

xm

r
,

(5.102)
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and, in the fµ,s=0 case with p2 6= 0, we get the same results up to the contribution of the
monopole which disappears (formally, 1/g = 0).

5.2.4 Embedding in pure SU(2) EYM

The scalars can only be trivialized for the Wu-Yang monopole s = ∞. In that case, it is
easy to construct a double-extremal black hole with constant scalars and the metric is, as
usual, Reissner-Nordström’s.

5.3 Multi-center SBHSs

To construct multi-center SBHSs we can use the same recipe as in the single-center case
but we need multi-center solutions of the Bogomol’nyi equations. We start by discussing
these.

5.3.1 Multi-center solutions of the SU(2) Bogomol’nyi equations on R3

In the Abelian case, the multicenter solutions of the Bogomol’nyi equations are associated
to harmonic functions with isolated point-like singularities. They are the seed solutions of
the multi-black-hole solutions of the Einstein-Maxwell theory [140, 228, 252, 309, 358, 359]
and N = 2, d = 4 supergravities [31, 37, 42, 159]. In the non-Abelian case, the hedgehog
ansatz is clearly inappropriate and more sophisticated methods need to be used. Only a
few explicit solutions are known, even though solutions describing several BPS objects in
equilibrium are, on general grounds, expected to exist. For instance, there is no explicit
solution describing two BPS ’t Hooft-Polyakov monopoles in equilibrium (see however
Ref. [357]).

Perhaps not surprisingly, the only general families of explicit solutions available in-
volve an arbitrary number of Wu-Yang or Dirac monopoles embedded in SU(2). The
simplest of these only involve Wu-Yang monopoles and formally, it can be obtained from
solutions describing Dirac monopoles embedded in SU(2) via singular gauge transforma-
tions [371], generalizing the constructions reviewed in Appendices C.2 (minimal charge)
and C.4 (higher charge). As we have explained at length in the preceding sections, the
metric is completely oblivious to these gauge transformations and takes the same form as
in the Abelian cases. We will not study such solutions in this section.

In Refs. [138], using the Nahm equations [342], Cherkis and Durcan found new
solutions describing one or two, charge 1, Wu-Yang monopoles embedded in SU(2) in the
background of a single BPS ’t Hooft-Polyakov monopole.18 We are going to use the first of

them to construct multi-center solutions of the CP3
and ST [2, 4] models of N = 2, d = 4

SEYM. Let us review the Cherkis-Durcan solution first: take the BPS ’t Hooft-Polyakov
monopole to be located at xn = xn0 and the Wu-Yang monopole at xm = xm1 . We define

18 In Ref. [71] Blair and Cherkis generated a solution describing an arbitrary number of charge 1 Wu-
Yang monopoles in the presence of an ’t Hooft-Polyakov monopole; one can easily generalize this solution
to one describing an arbitrary number of charge n(> 0) Wu-Yang monopoles in the background of an ’t
Hooft-Polyakov monopole, by coalescing n charge 1 Wu-Yang monopoles. Needless to say, the Protogenov
trick works as expected. For the sake of simplicity of exposition, we will not consider this more general
solution in this article.
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the coordinates relative to each of those centers and the relative position by

rm ≡ xm − xm0 , um ≡ xm − xm1 , dm ≡ um − rm = xm0 − xm1 , (5.103)

and their norms by respectively, r, u and d. The Higgs field and gauge potential of this
solution (adapted to our conventions) are given by [138]

±Φa =
1

g
δam

{[
1

r
−
(
µ+

1

u

)
K

L

]
rm

r
+

2r

uL

(
δmn − rmrn

r2

)
dn
}
, (5.104)

Aa = −1

g

[
1

r
− µD + 2d+ 2u

L

]
εamnr

mdxn

r
+ 2

K

L

εnpqd
nupdxq

uD
δam

rm

r

− 2r

uL
δam

(
δmn − rmrn

r2

)
εnpqu

pdxq , (5.105)

where the functions K,L,D of u and r are defined by

K ≡
[
(u+ d)2 + r2

]
cosh µr + 2r(u+ d) sinh µr , (5.106)

L ≡
[
(u+ d)2 + r2

]
sinh µr + 2r(u+ d) cosh µr , (5.107)

D = 2 (ud+ umdm) = (d+ u)2 − r2 . (5.108)

The function D is clearly zero along the direction19 um/u = −dm/d signaling the
possible presence of a Dirac string in Eq. (5.105); that this is however not the case is
demonstrated in Ref. [71].

In the models that we are going to study, the Higgs field enters the metric in the
combination ΦaΦa, which takes the value

ΦaΦa =
1

g2

{[
1

r
−
(
µ+

1

u

)
K

L

]2

+
4|~r × ~d|2

u2L2

}
. (5.109)

To better understand this solution one will consider several limits:

1. The limit in which we take the BPS ’t Hooft-Polyakov anti-monopole infinitely far
away, keeping the Dirac monopole at xm1 : in this limit d → ∞, rm ∼ −dm while u
remains finite. The Higgs and gauge fields take the form

±Φa ∼ −1

g
δam

(
µ+

1

u

)
dm

d
, (5.110)

Aa ∼ −1

g

(
1 +

dm

d

um

u

)−1

εmnp
dm

d

um

u
d
up

u
. (5.111)

The gauge field should be compared with the embedding of a Dirac monopole with
a string in the direction −dm into the direction δamd

mT a of the gauge group,
Eqs. (C.11) and (C.17) with sm = −dm.

19 This is the half of the line that joins r = 0 to u = 0 that stretches from the Dirac monopole u = 0 to
infinity in the direction opposite to the ’t Hooft-Polyakov monopole at r = 0
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2. The limit in which we take the Dirac monopole infinitely away, keeping the BPS
’t Hooft-Polyakov anti-monopole at xm0 : In this limit d → ∞, um ∼ dm while r
remains finite. The Higgs and gauge fields become those of a single BPS ’t Hooft-
Polyakov anti-monopole at xm0 .

3. In the limit in which we are infinitely far away from both monopoles (r → ∞,
u→∞), which remain at a finite relative distance, the Higgs and gauge fields take
the form

±Φa = −
[
µ

g
+O(|x|−2)

]
δam

xm

|x|
, (5.112)

Aa = −1

g
εamn

xmdxn

|x|2
+

1

2g
δam

xm

|x|

(
εnpqd

nxpdxq

|x|2

)
. (5.113)

The first term in the gauge potential is identical to that of a Wu-Yang anti-monopole
(compare with Eq. (C.2)). This is also the asymptotic behavior of the BPS ’t Hooft-
Polyakov monopole. The Higgs field is asymptotically covariantly constant and, in
particular

ΦaΦa ∼ µ2

g2
+O(

1

|x|2
) . (5.114)

4. The limit in which we approach the center of the BPS ’t Hooft-Polyakov anti-
monopole rm → 0, um → dm

ΦaΦa ∼ 1

4g2d2(1 + µd)2
+O(r) . (5.115)

This limit is finite and only vanishes when the Dirac monopole is taken to infinity
d→∞.

For finite values of d, Eq. (5.109) says that ΦaΦa can only vanish along the line that
stretches from r = 0 to u = 0 so ~r× ~d = 0. Substituting rm = αdm in ΦaΦa we get a
function of α and of the parameter µd. Plotting the functions of α for different values
of µd we find that they have a single zero, which is also a local minimum. At this
minimum the second derivative does not vanish, and therefore, there, ΦaΦa ∼ O(r2),
as in the single-monopole case. However, the value of this second derivative depends
on the direction.

5. The limit in which we approach the singularity of the Dirac monopole um → 0,
rm → −dm

ΦaΦa → 1

g2

{
1

u2
+

(
1

d
− µ

)
1

u

}
+O(1) . (5.116)

Growing Protogenov hair

As we have argued in section (5.2.1) we can add a Protogenov hair parameter s to the
Cherkis & Durcan solution by simply replacing the argument µr of the hyperbolic sines
and cosines in the functions K and L by the shifted on µr + s. We do not need to write
explicitly the solution, but we do need to reconsider the different limits studied for the
s = 0 case:
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Figure 5.1: The zeros of the Higgs density as measured by r as a function of the dimen-
sionless separation µd.

1. In the limit in which we take the BPS ’t Hooft-Polyakov-Protogenov anti-monopole
infinitely away, keeping the Dirac monopole at xm1 the Higgs and gauge fields become,
to leading order, those of the Dirac monopole with the Dirac string in the direction
−dm, as in the s = 0 case (See Eqs. (5.110) and (5.105)).

2. In the limit in which we take the Dirac monopole infinitely away, keeping the BPS
’t Hooft-Polyakov-Protogenov anti-monopole at xm0 the Higgs and gauge fields be-
come those of a single BPS ’t Hooft-Polyakov-Protogenov anti-monopole at xm = xm0
(the first two equations (5.38)).

3. In the limit in which we are infinitely far away from both monopoles (r → ∞,
u→∞), which remain at a finite relative distance, the Higgs and gauge fields take
the same form as in the s = 0 case, Eqs. (5.112-5.114).

4. The limit in which we approach the singularity of the BPS ’t Hooft-Polyakov-
Protogenov anti-monopole rm → 0, um → dm (for s 6= 0)

±Φa ∼ 1

g
δam

[
1

r
−
(
µ+

1

d

)
coth s+O(r)

]
rm

r
, (5.117)

⇒ ΦaΦa ∼ 1

g2r2
+O

(
1

r

)
, (5.118)

which is similar to the behaviour near the Dirac monopole as in Eq. (5.116) (with u
replaced by r).

5. The limit in which we approach the singularity of the Dirac monopole um → 0,
rm → −dm we have the same behavior as in the s = 0 case Eq. (5.116).

The solutions with Protogenov hair have another limit, namely the one in which
s→∞; this case will be studied separately.
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The s→∞ limit solution

In this limit we get a solution that describes the same Dirac monopole together with a
(µ 6= 0) Wu-Yang anti-monopole:20

±Φa =
1

g
δam

[
−µ+

1

r
− 1

u

]
rm

r
, (5.119)

Aa =
1

g

εamnr
mdxn

r2
+

1

g

εnpqd
nupduq

u(ud+ urdr)
δam

rm

r
. (5.120)

This solution is a particular example of a more general family describing an arbi-
trary number of Dirac monopoles in the background of a Wu-Yang anti-monopole. These
solutions can be obtained from a solution describing only Dirac monopoles embedded in
SU(2) via a singular gauge transformation that only removes the Dirac string of one of
them, which becomes the Wu-Yang anti-monopole. The general family of solutions can be
written in the form:

Φ = ΦWY +HU , A = AWY + CU , (5.121)

where U is the SU(2) (and su(2)) matrix defined in Eq. (C.1) and where ΦWY and AWY

are the Higgs and Yang-Mills fields of a Wu-Yang monopole, given, respectively, by

∓ ΦWY =
1

2g

[
−µ+

1

r

]
U , (5.122)

and by Eq. (C.2) and where H is a function and C a 1-form on R3. If we substitute
into the Bogomol’nyi equations (5.32) and use, on the one hand, that they are satisfied
by the pair AWY,ΦWY, and, on the other hand, that U is covariantly constant with the
connection AWY we arrive at the Dirac monopole equation

dC = ?(3)dH . (5.123)

The integrability condition of this equation is d?(3)dH = 0 so H is any harmonic function.
We can choose it to have isolated poles at the points xm = xmi i = 1, · · · , N

H =
∑
i

pi
2ui

, umi ≡ xm − xmi , (5.124)

in which case C is the 1-form potential of N Dirac monopoles with charges pi which can
be constructed by summing over the potentials of each individual monopole:

C =
∑

Ci , dCi = ?(3)d
pi

2ui
. (5.125)

The expression for each of the Ci is of the form Eq. (C.11) where we can, in principle,
choose the direction smi of each Dirac string independently:

20 One can see fairly easily that in the limiting solution one can, as far as the Bogomol’nyi equations
are concerned, allow for µ to be negative; for finite values of s this is impossible.
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Ci =
pi
2

(
1− smi

si

umi
ui

)−1

εmnp
smi
si

umi
ui
d
upi
ui
, (no sum over i). (5.126)

This solution of the Yang-Mills-Higgs system shares two important properties with
the original Wu-Yang monopole and which are related to the fact that they are related to
Abelian embeddings by singular gauge transformations:

1. Both Φ and DΦ are proportional to U :

Φ =

(
− µ

2g
+

1

2gr
+H

)
U , DΦ = d

(
− µ

2g
+

1

2gr
+H

)
U , (5.127)

and, therefore, commute with each other, so the Higgs current vanishes and the
gauge field is, by itself, a solution of the pure Yang-Mills theory.

2. The gauge field strength is also proportional to U , the coefficient being the field
strength of an Abelian gauge field:

F (A) = d(B + C)U , (5.128)

which implies that the energy-momentum tensors are related as in the single-center
case.

These solutions can be generalized even further, by allowing the the charge of the
“original” Wu-Yang monopole at r = 0 to be n/g (that is: using the generalization of
the Wu-Yang monopole due to Bais [22] which is studied in Appendix C.4). If we now
substitute into the Bogomol’nyi equations (5.32) the ansatz

Φ = Φ(n) +HU(n) , A = A(n) + CU(n) , (5.129)

where U(n), A(n) and Φ(n) are given, respectively, in Eqs. (C.28),(C.29) and (C.34), H is a
function and C a 1-form on R3, and use that they are satisfied by the pair A(n),Φ(n) and
that U(n) is covariantly constant with the connection A(n), we arrive again at the Dirac
monopole equation (5.123).

Since all these solutions are related to Abelian embeddings, they contribute to the
black-hole solutions as the Abelian solutions. We will not consider them in what follows.

5.3.2 Embedding in the SU(2)-gauged CP3
model

We can use the Cherkis & Durcan solution of the SU(2) Bogomol’nyi equations reviewed
in the previous section as a seed solution for a multicenter solution of N = 2, d = 4 SEYM,
adding the same harmonic functions as in the single-center case (I0, I0) or a generalization
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with poles at the locations of the monopoles r = 021 and u = 0. More explicitly, we take

I0 = A0 +
p0
r/
√

2

r
+
p0
u/
√

2

u
,

I0 = A0 +
qr,0/
√

2

r
+
qu,0/

√
2

u
,

Ii = ∓
√

2Φi(r, u) ,

Ii = 0 ,

(5.130)

where Φi(r, u) is the Higgs field of the Cherkis & Durcan solution. The metric and scalar
fields take the form

e−2U = 1
2(I0)2 + 2(I0)2 − ΦiΦi , (5.131)

Zi =
∓
√

2Φi

I0 + 2iI0
. (5.132)

The normalization of the metric and scalars at infinity leads to the same relations
between the integration constants A0, A0, µ and the physical constants Z∞, g as in the
single-center case, namely

1√
2
A0 +

√
2iA0 =

Z∗∞
|Z∞|

1√
1− |Z∞|2

, µ =
|Z∞|√

1− |Z∞|2
g . (5.133)

The integrability conditions of Eq. (5.21) are, in this case,

I0∂m∂mI0 − I0∂m∂mI0 = 0 , (5.134)

and lead to the following relations between the integration constants:

A0(qr,0 + qu,0)−A0(p0
r + p0

u) = 0 , (5.135)

J − 1√
2
d(A0qu,0 −A0p

0
u) = 0 , (5.136)

where we have defined the constant

J ≡ p0
rqu,0 − qr,0p0

u . (5.137)

The first equation is equivalent to Eq. (5.59) for the total charges and the second
equation determines the relative distance d in terms of J and A0qu,0−A0p

0
u provided that

J 6= 0. When that is the case, the solution is not static and has an angular momentum J
directed along the line that joins the monopoles Jm = Jdm/d. The corresponding 1-form

21The location of the BPS ’t Hooft-Polyakov anti-monopole is not completely clear: it is sometimes
argued that the center of the monopole is the point at which the Higgs vanishes and the full gauge
symmetry is restored. As we have discussed, that point is not r = 0. We could try to place the poles of the
harmonic functions at that point, but, given that its location is not known analytically and the expansion
of ΦaΦa around it is difficult to compute, we will not try to do that here.
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ω can be constructed by the standard procedure of the Abelian case. However, since this
complicates the analysis of the regularity of the solutions, we will stick to the static case
and require J = 0.

In order to have regular solutions, the charges at each center must be chosen as in
the corresponding single-center case: since there is an Abelian monopole at u = 0, we
must switch on either p0

u or qu,0 to have a regular horizon there. We can treat them both
as non-vanishing with no loss of generality. Then, there are two possibilities:

I. p0
r = qr,0 = 0: Only for s = 0 (’t Hooft-Polyakov anti-monopole at r = 0) has the

solution a chance of being regular at r = 0. Solving Eq. (5.135) the solution can be
written in the form

e−2U =
1

1− |Z∞|2
H2 − ΦiΦi , (5.138)

Zi =
2β

p0 + 2iq0

Φi

H
, (5.139)

where H is the harmonic function

H ≡ 1 +
β

u
, β2 = (1− |Z∞|2)WRN(Qu)/2 , WRN(Qu) ≡ 1

2(p0
u)2 + 2(qu,0)2 .

(5.140)

The free parameters of this solution are the charges p0
u, qu,0 and the single modulus

|Z∞|.

Studying the u→ 0 limit we find a black hole with entropy

Su/π = 1
2WRN(Qu)− 1

g2
, (5.141)

as in the corresponding single-center case.

In the r → 0 limit e−2U is constant. The positivity of the constant is guaranteed if
Su is positive. The total entropy of the solution is just the entropy of the black hole
at u = 0 and the Dirac monopole does contribute to it.

The mass of the solution, expressed in terms of the independent parameters of the
solution, p0

u, qu,0 and |Z∞| takes the form

M = Mr +Mu , (5.142)

Mr = −Mmonopole , (5.143)

Mu =

√
1
2

WRN (Qu)

1− |Z∞|2
+Mmonopole , (5.144)

where Mmonopole is given by Eq. (5.66). The contributions of the monopole and the
’t Hooft-Polyakov monopole to the mass cancel each other.

II. p0
r or qr,0 6= 0 We can treat both charges as non-vanishing with no loss of generality.
Solving Eqs. (5.135) and (5.137), we can write the solution as in Eqs. (5.138) and
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(5.139) where, now,

H ≡ 1 +
βr
r

+
βu
u
, β2

r,u = (1− |Z∞|2)WRN(Qr,u)/2 ,

WRN(Qr,u) ≡ 1
2(p0

r,u)2 + 2(qr,u,0)2 .

(5.145)

The free parameters of this solution are the charges p0
u, qu,0 and |Z∞| and either p0

r

or qr,0, since they must be proportional to those of the other center. The areas of
each of the horizons are as in the single-center case. In particular, the BPS ’t Hooft-
Polyakov monopole (s = 0) does not contribute to the entropy of the r = 0 center.
The mass is given by

M = Mr +Mu , (5.146)

Mr =

√
1
2

WRN (Qr)
1− |Z∞|2

−Mmonopole , (5.147)

Mu =

√
1
2

WRN (Qu)

1− |Z∞|2
+Mmonopole , (5.148)

and the contributions of the monopole and anti-monopole cancel each other. In the
s→∞ limit it can be easily seen that the solution is completely regular everywhere
(e−2U only vanishes at r = 0 and u = 0) if the Abelian charges as chosen so that the
horizons are regular. This guarantees that all the terms in e−2U are positive. For
finite s this is more difficult to proof analytically, but, since the Higgs field has a
better behavior than in the s → ∞ case, it is reasonable to expect that it will also
be true. We have checked numerically that this is so in several examples.

5.3.3 Embedding in the SU(2)-gauged ST[2, 4] model

The metric and scalar fields of the solution are now given by

e−2U = 2
√
−2I1I0[(I2)2 − 2ΦaΦa] , (5.149)

Z1 ≡ τ = i
e−2U

2[(I2)2 − 2ΦaΦa]
, Z2 =

I2

I1
τ , Za =

√
2Φa

I1
τ , (5.150)

where Φa is the Higgs field of the Cherkis & Durcan solution (deformed with the Pro-
togenov hair parameter s) and where the harmonic functions I1, I2 and I0 are allowed to
have poles at r = 0 and u = 0:

I1 = A1 +
p1
r/
√

2

r
+
p1
u/
√

2

u
, I2 = A2 +

p2
r/
√

2

r
+
p2
u/
√

2

u
,

I0 = A0 +
qr,0/
√

2

r
+
qu,0/

√
2

u
.

(5.151)

As in the CP3
case, the Abelian charges at each center must be chosen with the

same criteria as in the corresponding single-center case. This means, in particular, that
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the Abelian charges at u = 0, p1
u, qu,0 must be non-vanishing. p2

u may need to be activated,
depending on the branch we are considering. At r = 0, for s 6= 0 we get exactly the same
possibilities, but, for s = 0 there are two possibilities:

1. p1
r , qr,0, p

2
r non-vanishing. We find a black hole at r = 0 in the + branch.

2. p1
r = qr,0 = p2

r = 0. e−2U is a complicated d-dependent constant in the r = 0 limit
and we get a global monopole.

Here we find an important difference with the single-center case, due to the fact
that ΦaΦa is a finite constant in the r → 0 limit instead of going to zero as r2: there is
no solution with p1

rqr,0 6= 0 and p2
r = 0. In order to have such a global monopole solution

with p1q0 6= 0 and p2 = 0 in equilibrium with the monopole at u = 0 one may try to place
those charges at the point at which ΦaΦa = 0, but the resulting solution may not be well
defined there because the limit of the metric function depends on the direction from which
we approach that point.

The entropy of the solution is the sum of the entropies of both centers (vanishing

for global monopoles). As in the CP3
case, the monopole at each center does contribute

to the center entropy (except for global monopoles). The contributions of the monopole
and anti-monopole to the mass cancel each other:

M = 1
4

χ∞
|=mτ∞|

|p1
u + p1

r |+
1

2χ∞
|qu,0 + qr,0| ± 1

2

|=mτ∞=mZ2
∞|

χ∞
|p2
u + p2

r | . (5.152)

5.4 Conclusions

In this chapter we have discussed the construction of supersymmetric multi-object solu-

tions in N = 2, d = 4 EYM theories, specifically in the so-called CPn≥3
and ST[2, n]

models. These models were chosen due to their workability, the fact that they allow for a
SU(2) gauging and (in the second case) for their stringy origin. Starting with a deforma-
tion of the solutions to the SU(2) Bogomol’nyi equation found by Cherkis and Durcan that
adds to the ’t Hooft-Polyakov monopole Protogenov hair, we have been able to construct
bona fide two-center solutions. These solutions describe a Dirac monopole embedded in
SU(2) in the presence of either a global monopole (the supergravity solution corresponding
to the ’t Hooft-Polyakov monopole) or a non-Abelian black hole (a supergravity solution
with an ’t Hooft-Polyakov-Protogenov monopole). In order to make the comparison with
the single-object case easier, we included a detailed discussion of the embeddings of the
spherically symmetric solutions to the SU(2) Bogomol’nyi equations into the two models,
and expressed the whole solution in terms of charges and moduli of the physical fields.

The constructed solutions are all static. It would be very interesting to study dyonic
solutions and to see how this interplays with the Denef constraint; the stumbling block in
this respect is not so much the Bogomol’nyi equation as the equation (5.20); for the moment
the only general solution we know of is to take IΛ ∼ IΛ in the gauged directions, but this
automatically solves the Denef constraint. The only case for which we can find non-trivial
dyonic solutions is for the multi-Wu-Yang solutions, or if you like the s→∞ limit of the
deformed Cherkis and Durcan’s solution; we refrain from discussing these solutions here
as, due to gauge invariance, even taking into account the singular gauge transformation,
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the restriction coming from the Denef constraint is basically the one corresponding to the
Abelian theory.

A natural question that follows from the results presented here and in Refs. [244,
245,319] is whether we could use a charge k SU(2) monopole to construct globally regular
solutions; the answer is yes: observe that the construction of globally regular solutions in
section (5.2) hinges exclusively but crucially on the fact that the used monopole solution
is regular and is such that ΦaΦa ≤ lim|~x|→∞ΦaΦa. A charge-k monopole may be rather
difficult to construct but the regularity is guaranteed and also the last needed ingredient
is known to be satisfied: indeed, using the Bogomol’nyi equation (5.32) one can show that

∂m∂m ΦaΦa = F ammF
a
mm ≥ 0 . (5.153)

This equation together with the Hopf maximum principle and the regularity, implies
that the function ΦaΦa is bounded from above by its value on the sphere at infinity, which
is exactly what one needs.

As was said in the introduction, the creation and study of non-Abelian solutions
to d = 4 supergravity theories is in its infancy and this holds doubly so for the higher
dimensional theories. One possible reason is that the structure of supersymmetric solutions
to higher supergravities (see e.g. Refs. [43, 114]) is more entangled than the one given in
the recipe in section 5.1.2. For example, naively one would expect that Kronheimer’s link
of monopoles on R3 to instantons on GH-spaces, would carry over to the supersymmetric
solutions as in d = 4 the base space is R3 and that in d = 5 must be hyper-Kähler; i.e. one
would expect the instanton equation to show up in the recipe for cooking up 5-dimensional
supersymmetric solutions. Perhaps it does, but it definitely is not obvious where and how
it is making its appearance in such a clear-cut manner as in d = 4.

The 4- and 5-dimensional EYMH theories are, however, related by dimensional
reduction/oxidation, whence the solutions to the cubic models presented in here could
be oxidized to 5-dimensions and can be studied with the hope of unraveling the structure
of 5-dimensional supersymmetric solutions.
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6
Non-extremal branes

This chapter is based on

Pablo Bueno, Tomas Ort́ın and C. S. Shahbazi, “Non-extremal branes”,
Phys. Lett. B743 (2015), 301 – 305. [arXiv:1412.5547 [hep-th]] [93].

Supergravity branes have played a rôle of outermost importance in String Theory
since they were discovered to be the macroscopic counterparts of many String Theory
microscopic extended objects, during the second String Revolution [367]. However, strictly
speaking, this correspondence is limited to the extremal cases, which have been thoroughly
studied in the literature. Much less attention has been paid to non-extremal Supergravity
branes (which are regular in general, in contrast to the extremal ones), since they do not
obey first order differential equations and its String Theory interpretation is less clear.
In this chapter we are interested in further understanding the structure of general non-
extremal Supergravity branes and its behaviour under electric-magnetic duality.

In reference [153], a generalization of the FGK-formalism [173] to an arbitrary num-
ber of space-time dimensions d and worldvolume dimensions (p+1) was presented. The
d-dimensional class of theories considered in [153] describes gravity coupled to a given
number of scalars φi , i = 1, . . . , nφ, and (p+1)-forms AΛ

(p+1) ,Λ = 1, . . . , nA, and are given
by the following, two-derivative, action

S =

∫
ddx
√
|g|
{
R+ Gij(φ)∂µφ

i∂µφj + 4 (−1)p

(p+2)!IΛΩ(φ)FΛ
(p+2) · F

Ω
(p+2)

}
, (6.1)

where FΛ
(p+2) = (p+2)dAΛ

(p+1) are the (p+2)-form field strengths and the scalar dependent,

negative definite, matrix IΛΩ (φ) describes the couplings of scalars φi to the (p + 1)-forms
AΛ

(p+1). The generic space-time metric considered in [153] was

ds2
(d) = e

2
p+1

U
[
W

p
p+1dt2 −W−

1
p+1d~z 2

(p)

]
− e−

2
p̃+1

U
γ(p̃+3) , (6.2)

γ(p̃+3) = X
2

p̃+1

[
X 2 dρ2

(p̃ + 1)2
+ dΩ2

(p̃+2)

]
, (6.3)

where X ≡
(

ω/2

sinh (ω2 ρ)

)
, ~z(p) ≡

(
z1, . . . , zp

)
are spatial worldvolume coordinates and

d = p + p̃ + 4 so p̃ is the number of spatial dimensions of the dual brane. dΩ2
(p̃+2)

stands for the round metric on the (p̃ + 2)-sphere of unit radius, and ω is a constant that
corresponds to the non-extremality parameter of the black-brane solution. In other words,
the black-brane is extremal if and only if ω = 0.
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Chapter 6. Non-extremal branes

Assuming the space-time background (6.2) and that all the fields of the theory de-
pend exclusively on the radial coordinate ρ, the equations of motion of (6.1) are equivalent
to the following set of ordinary differential equations [153]

Ü + e2UVBB = 0 , (6.4)

φ̈i + Γjk
iφ̇jφ̇k + d−2

2(p̃+1)(p+1)e
2U∂iVBB = 0 , (6.5)

(U̇)2 + (p+1)(p̃+1)
d−2 Gijφ̇iφ̇j + e2UVBB = c2 , (6.6)

where VBB stands for the so-called black-brane potential

VBB (φ, q) ≡ 2α2 2(p + 1)(p̃ + 1)

(d− 2)

(
I−1
)ΛΩ

qΛqΩ , (6.7)

and c2 is a real semi-definite positive constant given by

c2 ≡ (p + 1)(p̃ + 2)

4(d− 2)
ω2 − (p̃ + 1)p

4(d− 2)
γ2 , (6.8)

and γ is another constant whose origin will be clear in a moment. Notice that the system of
differential equations above only involves the metric factor U and the scalar fields φi, since
the (p+1)-forms can be eliminated in terms of the corresponding charges qΛ ,Λ = 1, . . . , nA,
by explicitly integrating the Maxwell equations.

Remarkably enough, it turns out that W can also be explicitly integrated yielding

W = eγρ , (6.9)

where γ is the (integration) constant which appears in (6.8).

In [153] it was argued that in order to have a regular black-brane solution, we must

have 1 γ = ω and therefore c2 = ω2

4 .

To sum up, in reference [153] it was found that the above ansatz corresponds to a
black-brane solution (not necessarily regular) of the theories defined by the generic action
(6.1) if equations (7.68), (7.72) and (6.6) are satisfied.

6.1 Electromagnetic dual solutions

It can be seen that the FGK system of equations is completely fixed once we know the
following data: the Riemannian metric Gij of the non-linear sigma model, the number p of
spatial dimensions of the brane and the matrix IΛΩ describing the couplings of the scalars
and the (p+1)-forms. Actually, the FGK-system is invariant under the interchange

p↔ p̃ , (6.10)

which however does not leave invariant the space-time metric, which represents now the
metric of a p̃ brane. A p̃ brane naturally couples to a (p̃ + 1)-form, that is, to the

1In the ansatz at hand, the event horizon (if any) will correspond to ρ→ +∞, whereas spatial infinity

will be at ρ→ 0+. In order for the worldvolume metric to be regular in the near horizon limit, eU ∝ e
ωρ
2

and W ∼ eωρ, which fixes γ = ω.
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magnetic duals of the electric (p+1)-forms AΛ
(p+1). Therefore, in order to properly perform

the interchange (6.10) we also have to change the electric matrix Iel of couplings to the
magnetic Imag one. Schematically the transformation is

p↔ p̃ , Iel ↔ Imag . (6.11)

The only term in the FGK-system that depends on IΛΩ is the black-brane potential VBB.
Therefore, if (

I−1
)ΛΩ

el
qΛqΩ =

(
I−1
)ΛΩ

mag
q′Λq
′
Ω , (6.12)

where q′Λ = AΩ
ΛqΩ, A ∈Gl(nA,R), then the FGK-system is invariant under the transfor-

mation (6.11), up to a redefinition of the charges, and therefore with the same solution
of the FGK-system we can construct two space-time solutions, the electric-brane solution
and the magnetic-brane solution. In order to see when condition (6.12) holds, we have
to change from electric variables AΛ

(p+1) to the magnetic ones Ã(p̃+1)Λ in the action (6.1).

The equations of motion and the Bianchi identities for the electric fields AΛ
(p+1) are

d
(
IΛΩ ∗ FΩ

(p+2)

)
= 0 , dFΛ

(p+2) = 0 . (6.13)

Now we define
G(p̃+2)Λ = IΛΩ ∗ FΩ

(p+2) . (6.14)

and thus the equations of motion for the electric vector fields can be written as a Bianchi
identity for G(p̃+2)Λ

dG(p̃+2)Λ = 0⇒ G(p̃+2)Λ = dÃ(p̃+1)Λ locally . (6.15)

Equation (6.14) can be inverted as follows

FΛ
(p+2) = (−1)(d−1)+(p+2)(p̃+2)

(
I−1
)ΛΩ ∗G(p̃+2)Ω (6.16)

Substituting equation (6.16) in equation (6.1), we deduce that

Imag = I−1
el . (6.17)

Given equation (6.17) and equation (6.12) we obtain that a sufficient condition to obtain
the same FGK-system for electric and magnetic branes is that there exists a matrix A ∈
Gl(nA,R) such that the following self-duality condition holds

I−1 = AIAT . (6.18)

Without invoking supersymmetry we can say little more beyond equation (6.18), since
the couplings in the action (6.1) are in principle arbitrary aside from some regularity
conditions. Supersymmetry, however, constrains the couplings and therefore it is easier to
analyze when equation (6.18) is satisfied.

Supergravity non-linear sigma models are constrainted by supersymmetry and re-
lated to the couplings of the (p+1)-forms and the scalars of the theory. Let us now consider
the general situation of an extended ungauged Supergravity, where the scalar manifold is
a homogeneous space of the form

MS =
G

H
, (6.19)
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and the matrix I of the couplings between the (p+1)-forms and the scalars is a coset
representative, namely I ∈ G

H . The coset element I must be taken in a particular repre-
sentation, namely I is in the representation R(G) that acts on the charges of the corre-
sponding electric p-forms of the theory. This is the standard situation happening in an
extended Supergravity in diverse dimensions. From the self-duality condition (6.18) we
are interested in coset representatives I such that there exists a matrix A ∈ Gl(nA,R)
satisfying

I−1 = AIAT . (6.20)

There is a sufficient condition on G such that the self-duality condition (6.20) is implied.
Let us assume that the Lie group leaves invariant a bilinear form B ∈ V ∗ ⊗ V ∗, where V
is the nA-dimensional representation vector space of G, or in other words, qΛ ∈ V . The
condition of G leaving invariant B can be rewritten as follows

RTBR = B , R ∈ R(G) , (6.21)

where R(G) is the corresponding representation of G as automorphisms of V . Now, the
self-duality condition does not have to be satisfied by an arbitrary element in G but for
an element in G/H which, in the representation R(G) must be symmetric in order to be
an admissible I 2. Assuming then that RT = R we can rewrite (6.21) as follows

R−1 = B−1RB , R ∈ R(G) , (6.22)

and therefore if

BT = B−1 , (6.23)

then equation (6.20) is satisfied and the corresponding FGK model is self-dual, meaning
that the system of differential equations to be solved for the electric p-brane and the
corresponding magnetic p̃-brane is exactly the same.

There are several Supergravities where condition (6.23) holds. Just to name a few:
Type-IIB Supergravity, where G =Sl(2,R), H =SO(2) so B = antidiag(1,−1); nine-
dimensional N = 2 Supergravity, where G =Sl(2,R)×O(1, 1) and H =O(2), quotienting
only the first factor and B = antidiag(1,−1) × diag(1,−1); four-dimensional N = 8
Supergravity, where G =E7(7) acting on the 56 irrep. on the charges, H =SU(8)/Z2 and
B is the symplectic form in the 56-dimensional vector space; four-dimensional N = 6
Supergravity, with G =SO∗(12), H =U(6) and B is the identity matrix, etc.

6.2 The (p, q)-black-string of Type-IIB Supergravity

Let us see how this works in an particular example, namely the (p, q)-black-strings and
(p, q)-5-black branes of Type-IIB Supergravity. First, we will use the effective FGK vari-
ables to construct the non-extremal (p, q)-black-string, new in the literature, and then, we
will show how in the FGK framework this solution is actually the same as the non-extremal
(p, q)-5-black-brane, also new. Before getting started, let us review the basic properties of
the extremal (p, q)-string of Schwarz [382].

From the stringy perspective, a (extremal) (p, q)-string is a bound state of Type-
IIB String Theory composed of p D-strings (D1s), charged under the RR two-form C(2),

2Even if it is non-symmetric, when contracting with FΛ
(p+2) in (6.1) only the symmetric part survives.
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and q fundamental strings (F1s), with charge under the NS-NS two-form B. Type-IIB
Supergravity is invariant under a global SL(2,R) symmetry, so all the states of the theory
are accomodated in multiplets of such group. In particular any state can be generated
from another one living in the same multiplet by applying a SL(2,R) transformation.
This is the case for the D1 and F1 solutions, which are related to each other via this
IIB S-duality. Similarly, we can generate a (p, q)-string starting from one of them, and
performing a general enough SL(2,R) transformation. This was done for the first time
by Schwarz [382], who also gave the corresponding Supergravity version of the solution.
In fact, from the Supergravity perspective, all these states correspond to extremal black
strings charged under one or both two-forms. All these solutions are nevertheless singular,
given that the corresponding black-string singularities are naked. As we will see, this
behavior is cured in the non-extremal case, and we will be able to construct a regular
non-extremal (p, q)-black-string solution.

The relevant truncated Type-IIB Supergravity Lagrangian is

S =

∫
d10x

√
|g|
[
R+

1

2

∂µτ∂
µτ̄

(=mτ)2 +
1

2 · 3!
HTM−1H

]
(6.24)

where H ≡ dB, with BT ≡
(
C(2), B

)
and M ≡ 1

=mτ

(
|τ |2 <eτ
<eτ 1

)
with =mτ > 0

is the coset representative of the space SL(2,R)/SO(2) parametrized by the axidilaton
τ ≡ C(0) + ie−Φ. Since black strings in ten dimensions have p = 1 and p̃ = 5, let us set 3

d = 10 , p = 1 , p̃ = 5 (6.25)

in the FGK effective action (6.1). Now, the key point to notice is that the action (6.24) is a
particular case of (6.1), by taking nφ = 2 , nA = 2 and making the following identifications

φ1 = C(0) , φ
2 = e−Φ , Gij = e2Φ δij

2
, I(φ) ≡ −1

8
M−1 , (6.26)

where i, j = 1, 2 and τ = C(0) + ie−Φ. We thus obtain that the black-brane potential for
this truncation of Type-IIB Supergravity is given by

− VBB (φ, q) =MΛΩqΛqΩ = eΦ
(
|τ |2 p2 + q2 + 2pqC(0)

)
, (6.27)

where Λ,Ω = 1, 2 and we have defined α2 = 1
24·3 and q1 ≡ p, q2 ≡ q. Therefore, in order to

obtain the black-string solutions of the theory (6.24) we just have to solve the system of
ordinary differential equations given by (7.68), (7.72) and (6.6) assuming equations (6.25),
(6.26) and (6.27). Notice that M is definite positive and therefore VBB (φ, q) in (6.27) is
negative definite.

In reference [153], it was shown that for regular extremal black-brane solutions, the
value φH of the scalars at the black-brane horizon obeys

∂iVBB (φH , q) = 0 , i = 1, . . . , nφ . (6.28)

The solutions φH of equation (6.28) are the so-called black-brane attractors, and generalize
to black-brane solutions the popular concept of black-hole attractor. Notice that equation

3There should be no confusion about the p that denotes the number of spatial dimensions of a given
brane and the p in the (p, q)-strings, which corresponds to its charge under C(2).
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(6.28) completely fixes the value of the scalars at the horizon in terms of the charges, as
long as there are no flat directions. Taking the black-brane potential as in (6.27), one
easily finds that (6.28) has no solutions for the (p, q)-black-string system, meaning that
there does not exist any extremal regular black-string solution of Type-IIB Supergravity
with non-trivial scalars.

The most general extremal solution of this kind was constructed by Schwarz in [382].
It is given, in standard coordinates by

ds2
E = H−

3
4

[
dt2 − dz2

]
−H

1
4d~x2 , (6.29)

Btz = a
(
H−1 − 1

)
,M = aaTH−

1
2 + bbTH

1
2 ,

where

H = 1 +
h

r6
, (6.30)

r2 ≡ ~x2 and aT = (a1, a2) and bT = (b1, b2) are two constant vectors to be expressed in
terms of the physical parameters of the solution and subject to the constraint aT ηb =
a1b2− a2b1 = 1. The relation betweenM and H can be inverted to obtain the expression
for the axidilaton, which reads

τ =
a1a2 + b1b2H

a2
2 + b22H

+
i
√
H

a2
2 + b22H

. (6.31)

It is not difficult to recover the D1 and F1 solutions from the (p, q)-black-string one by
setting C(0) = 0 and q = 0 or p = 0 respectively in each case.

The standard coordinates can be related to the FGK ones through the change r =
ρ−

1
6 . It is straightforward to check that equations (7.68), (7.72) and (6.6) with c = 0

are satisfied by Schwarz’s (p, q)-black-string (6.29) 4. We find that the singular extremal
(p, q)-black-string can be generalized to a regular non-extremal solution, given by

ds2
E = H−

3
4
[
Wdt2 − dz2

]
−H

1
4

[
W−1dr2 + r2dΩ2

(7)

]
, (6.32)

Btz = ±a
(
H−1 − 1

)
, τ =

a1a2 + b1b2H

a2
2 + b22H

+
i
√
H

a2
2 + b22H

,

H = 1 +
h

r6
, W = 1 +

2c

r6
, h = c+

2√
3

√
|VBB∞|+

3c2

4
,

a1 =

(
q C(0)∞ + p|τ∞|2

)
eΦ∞√

|VBB∞|
, b1 = − q√

|VBB∞|
,

a2 =

(
q + pC(0)∞

)
eΦ∞√

|VBB∞|
, b2 =

p√
|VBB∞|

,

VBB∞ ≡ −eΦ∞
(
q2 + 2pqC(0)∞ + p2|τ∞|2

)
,

where we have expressed all the parameters of the solution in terms of the corresponding
physical quantities (charges q and asymptotic values of the axion and dilaton). The FGK

4In particular, the relation between U(ρ) and H(r) is given by H(r)−
3
4 = eU(ρ).
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variables in which this solution was obtained are related to the standard ones by the
change of variables

r6 =
2c

e2cρ − 1
, H(r)−3/4 = eU(ρ)e−cρ . (6.33)

It can be easily seen that the general non-extremal solution we have found reduces to
all the known solutions, namely, the non-extremal D1-brane by taking C(0) = 0, q = 0; the
non-extremal F1-string by setting C(0) = 0, p = 0; and Schwarz’s extremal (p, q)-string
by taking the c→ 0 limit. This non-extremal (p, q)-black-string posseses the same metric
as the non-extremal D1 and F1, and an axidilaton with both real an imaginary parts
having the same expression as Schwarz’s extremal (p, q)-string (6.29) (although everything
depends now also on the non-extremality parameter c = ω/2).

As we explained before, the FGK equations (7.68), (7.72) and (6.6) are blind under
electric-magnetic duality for a broad class of bosonic actions. That is indeed the case of
the action (6.24). Indeed, all the equations of motion of the FGK-formalism coming from
(6.24) are invariant under the interchange p↔ p̃ , Iel ↔ Imag. The only subtlety appears
in the black-brane potential. Since M−1 = ηTM η , this goes from

− V (C(2),B)

BB = qTMq = eΦ
(
|τ |2 p2 + q2 + 2pqC(0)

)
, (6.34)

in the electric version of the action, to

− V (C(6),B
(6))

BB = qT5Mq5 = eΦ
(
|τ |2 p2

5 + q2
5 + 2p5q5C(0)

)
, (6.35)

in the magnetic one, provided that we define the charges q5 as

q5 = (p5, q5)T ≡ ηq = (q,−p)T , η =

(
0 1
−1 0

)
. (6.36)

Hence, in the effective FGK variables, pairs consisting of a black string and a 5-
black-brane solving the equations of motion of the corresponding ten-dimensional action
appear as a single solution. This corresponds in general to a black string of charges (p, q)
under (C(2), B) and a 5-black-brane with charges (q,−p) under (C(6), B

(6)). Also, the
fact that both black-brane potentials are equivalent implies that no regular 5-black-brane
extremal objects exist.

The known 5-brane solutions of Type-IIB Supergravity correspond to the non-
extremal D5-brane, the non-extremal S5 and the analogous of Schwarz’s extremal black-
string, the (p, q)-5-brane of Lu and Roy [307]. Using the very same solution of the FGK
system (6.32) it is straightforward to construct the non-extremal (p, q)-5-brane, which can
be easily seen to reduce to the known cases just mentioned.

6.3 Double-extremal black-branes

As we have explained, there is a black-brane attractor mechanism at work for extremal
black-branes (ω = 0), which fixes the scalars at the horizon as the critical points φH of the
black-brane potential. Indeed, assuming regularity of the scalars at the horizon as well as a
regular Riemannian scalar metric, the value of the scalars at the horizon φH for an extremal
black-brane solution satisfies (6.28). We will use now the FGK-formalism for black-branes
to prove the existence of a universal 5 black-brane solution with constant scalars, and a

5In the sense that it will have the same expression for any theory of the form (6.1).
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universal near-horizon behaviour, if condition (6.28) is satisfied. In this case, however,
such condition will appear as a constraint from imposing the scalars to be constant (often
refered to as double-extremality) and not from requiring the non-extremality parameter c
to vanish. Indeed, for constant scalars, the FGK system of equations reduces to

Ü + e2UVBB = 0 , (6.37)

∂iVBB = 0 , (6.38)

(U̇)2 + e2UVBB = c2 . (6.39)

Note that equations (6.37), (6.38) and (6.39) do not depend on the number p of spatial
dimensions of the brane. Notice also that VBB(q) will be now a constant constructed from

the product of the constant nA × nA kinetic matrix
(
I−1
)ΛΩ

and the charge vectors qΛ,
see (6.7). Thus, a double-extremal black brane will in general be charged under the nA
(p+1)-forms AΛ

(p+1) present in the theory.

Equation (6.38) can be automatically solved if the black-brane potential has at least
one critical point, something that must be analyzed in a case by case basis and that we
will assume henceforth. Equation (6.37) is the derivative of equation (6.39), and thus
we are left with a single equation. This was to be expected, provided there is only one
variable left to be integrated, namely U . Equation (6.39) can be explicitly integrated and
the solution is given by

e−2U =
|VBB| sinh2 (cρ+ s)

c2
, (6.40)

where s is an integration constant. Normalizing the metric to obtain Minkowski space-time
at spatial infinity fixes s to be given by

s = arcsinh

(
c√
|VBB|

)
. (6.41)

Therefore, inserting equation (6.40) into the general metric (6.2) we obtain a complete
(p1, p2, ..., pnA)-p-black-brane solution with constant scalars which solves the theory (6.1).
The metric factor e−2U is well defined for ρ ∈ [0,+∞) and therefore the solution contains
a horizon at ρ→ +∞ and is regular. Taking the extremal limit c→ 0 we obtain

e−2U =
(

1 +
√
|VBB|ρ

)2
, (6.42)

which corresponds to a regular extremal universal black-brane solution. We can obtain now
the near-horizon geometry of the extremal solution simply by taking the limit ρ→ +∞ in
the general extremal metric where now U is given by equation (6.42). Making the change
of coordinates ρ = rp+1 and relabeling ~z and t we can rewrite the final result as follows

lim
ρ→∞

ds2
(d) =|VBB|

1
p̃+1

[
(p + 1)2

(p̃ + 1)2

1

r2

[
dt2 − d~z 2

(p) − dr
2
]

+ dΩ2
(p̃+2)

]
, (6.43)

which corresponds to the space AdS(2+p) × Sp̃+2. Notice that the near-horizon geometry
(6.43) is itself a solution of the equations of motion, and corresponds again to a universal
solution with constant scalars. Let us remind the reader that in order for both the universal
black-brane solution, or the near-horizon solution to exist, the only requirement is that
the nφ scalars present in the theory can be consistently chosen to be constant. This is
equivalent to requiring the black-brane potential to have a critical point.
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A simple case in which we can easily construct the double-extremal solution corre-
sponds to N = 2, d = 5 supergravity coupled to one vector multiplet. A model of this
theory gets completely determined by specifying a completely symmetric tensor CIJK (see,
e.g. [153], for details), which in this case reads C011 = 1/3. The black-brane potential of
the model reads

− VBB =
1

3

[(
p0
)2
e
−2
√

2
3
φ

+ 2
(
p1
)2
e

√
2
3
φ
]
, (6.44)

being φ the only scalar of the theory, and p0, p1 the charges under the 2-forms B0µν and
B1µν dual to the graviphoton and the 1-form of the vector multiplet respectively [153].
Now, (6.44) has a critical point for

φh =

√
2

3
log

(∣∣∣∣p0

p1

∣∣∣∣) , (6.45)

at which
− VBB(φh, p) =

[
|p0|(p1)2

]2/3
. (6.46)

Therefore, the double-extremal black string of this model is given by

e−2U =

[
|p0|(p1)2

]2/3
sinh2 (cρ+ s)

c2
, (6.47)

with

s = arcsinh

(
c

[|p0|(p1)2]1/3

)
. (6.48)
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7
Lifshitz-like solutions with hyperscaling violation in

supergravity

This chapter is based on

Pablo Bueno, Wissam Chemissany, Patrick Meessen, Tomas Ort́ın and C. S. Shahbazi,
“Lifshitz-like solutions with hyperscaling violation in ungauged supergravity”,

JHEP 1301 (2013) 189. [arXiv:1209.4047 [hep-th]]. [88].

Pablo Bueno, Wissam Chemissany and C. S. Shahbazi,
“On hvLif-like solutions in gauged Supergravity”,

Eur. Phys. J. C (2014) 74:2684. [arXiv:1212.4826 [hep-th]]. [87].

7.1 HvLf solutions in ungauged supergravity

The gauge/gravity duality [219, 311, 423] has proven to be an outstandingly successful
and fruitful framework for probing the physics of strongly coupled field theories. The
paradigmatic AdS/CFT correspondence, which established the physical equivalence be-
tween d = 4, N = 4 Super-Yang-Mills and type-IIB String Theory on AdS5×S5 [311] has
been extended over the years in a variety of ways in the hope of accounting for the physics
of more realistic quantum field theories, such as QCD and condensed matter systems (see,
e.g., [1, 116,229,369] for reviews on these subjects).

One such extension consists of considering systems in which, albeit scaling symmetry
is respected, space and time do not scale in the same way, so conformal (and Lorentz)
invariance is broken. This is the case of the so-called Lifshitz fixed points, characterized
by a dynamical critical exponent z, which determines the anisotropic scaling in the time
direction t

t→ λzt , xi → λxi , i = 1, ..., d , (7.1)

being xi the d spatial dimensions of the (d+ 1)-spacetime in which the field theory under
consideration is defined. The class of (d+ 2)-dimensional dual spacetime geometries with
the appropriate symmetries can be written, in some coordinate system, as [261,287,410]

ds2 = − L
2

r2z
dt2 +

L2

r2

[
dr2 + d~x2

(d)

]
, (7.2)

which reduces to AdSd+2 in the Poincaré patch for z = 1. Embedding solutions of this kind
(and others which asymptote to them) into gravity and String Theory models and studying
their properties in the holographic framework has been subject of study in numerous
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previous works (see, e.g. [24, 60, 125, 134, 163, 213, 217, 225, 230]), and remains an active
area of research.

A further generalization can be achieved by considering the following family of space-
time metrics [131]

ds2 = L2r
2(θ−d)
d

[
−r−2(z−1)dt2 + dr2 + d~x2

(d)

]
. (7.3)

These geometries (which are conformally Lifshitz) include, in addition to z, another ex-
ponent, customarily named θ, and are characterized by the following transformation rules
under rescalings of the coordinates

t→ λzt , xi → λxi , r → λr , ds2 → λ
2θ
d ds2 . (7.4)

A system whose thermal entropy scales as Sth. ∼ T d is said to possess a hyperscaling
behaviour. When the dynamical exponent is present, this scaling gets modified to Sth. ∼
T
d
z . It can be seen that in field theories with the kind of scaling defined by (7.4), thermal

entropy scales in turn as Sth. ∼ T
d−θ
z [213, 246], and so, from the thermodynamic point

of view, d − θ acts as the effective number of space-like dimensions of the system [246].
The fact that Sth. does not scale with its naive power of the temperature corresponds
therefore to a violation of the hyperscaling behaviour [178, 246] (the hyperscaling case
being obviously θ = 0)1, and the above class of metrics has been consequently named

hyperscaling-violating Lifshitz metrics (hvLf in short). Although the r
2θ
d factor spoils

dimensional analysis in (7.3), this can be easily restored by including an additional scale

rF : r
2θ
d → (r/rF )

2θ
d , which we will often fix to 1 henceforth.

So far, hvLf metrics (7.3) with θ 6= 0 have only been found in solutions to Einstein-
Maxwell-dilaton-type effective actions of the form [6,98,131,146,165,166,179,199,203,250,
274,286,350,360]2,

S =
1

16πGN

∫ √
|g|
{
R+ 1

2∂µφ∂
µφ− Z(φ)FµνFµν − 2Λ− V (φ)

}
. (7.5)

In the first part of this chapter, we are going to show how to construct systematically
solutions of ungauged supergravity (theories which do not fit, in general, in the action
(7.5)) whose metrics are, or approach in certain limits, hvLf metrics with certain values
of z and θ. The first of our constructions makes use of the FGK formalism originally
developed to study static, spherically symmetric, asymptotically flat, black hole solutions
of 4-dimensional ungauged supergravity theories [173], and we start by reviewing this
formalism in Section 7.2. We will then generalize the FGK formalism to metrics which are
not spherically symmetric. The main result is that there are (at least) two cases in which
the equations of motion of the metric function and scalar fields are identical to those of
the spherically symmetric one. Thus, one can use the solutions of the standard black hole
case and construct solutions with entirely different spacetime metrics.

In section 7.3 we study the behaviour of the new solutions in the neighborhood of
the values of the radial coordinate corresponding, in the original solution, to the inner and
outer horizons, spatial infinity and the curvature singularity. We will find hvLf metrics in

1From the holographic perspective, this would correspond to the entropy of a black brane whose space-
time metric asymptotes to one of these solutions [250].

2Although in some cases these actions are embedded in string theory or supergravity [9,162,220,343,361]
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some of these limits. In Section 7.4 we investigate how hvLf metrics arise in other limits
of more standard metrics and propose other procedures to construct, in particular, su-
persymmetric hvLf spacetimes by smearing extremal supersymmetric black hole solutions
of 4-dimensional N = 2 supergravity. In Section 7.3 we briefly discuss the generalization
of these results to higher dimensions. A brief discussion of our results can be found in
Section ?? and the appendix contains a summary of properties of hvLf metrics.

7.2 The generalized FGK formalism

Following Ref. [173] we consider the action

I=

∫
d4x
√
|g|
{
R+ Gij(φ)∂µφ

i∂µφj + +2=mNΛΣF
Λ
µνF

Σµν − 2<eNΛΣF
Λ
µν ? F

Σµν
}
,(7.6)

where NΛΣ is the complex scalar-dependent (period) matrix. The bosonic sector of any
ungauged supergravity theory in 4 dimensions can be put in this form. The number of
scalars labeled by i, j, · · · and of vector field labeled by Λ,Σ, · · · , the scalar metric Gij and
the period matrix NΛΣ depend on the particular theory under consideration.

Since we want to obtain static solutions, we consider the metric

ds2 = e2Udt2 − e−2Uγmndx
mdxn , (7.7)

where γmn is a 3-dimensional (transverse) Riemannian metric to be specified later. Us-
ing Eq. (7.7) and the assumption of staticity of all the fields, we perform a dimensional
reduction over time in the equations of motion that follow from the above general action.
We obtain a set of reduced equations of motion that we can write in the form3

∇m
(
GAB∂mφ̃B

)
− 1

2∂AGBC∂mφ̃
B∂mφ̃C = 0 . (7.8)

Rmn + GAB∂mφ̃A∂nφ̃B = 0 . (7.9)

∂[mψ
Λ∂n]χΛ = 0 , (7.10)

where all the tensor quantities refer to the 3-dimensional metric γmn and we have defined
the metric GAB

GAB ≡

 2
Gij

4e−2UMMN

 , (7.11)

in the extended manifold of coordinates φ̃A =
(
U, φi, ψΛ, χΛ

)
, where

(MMN ) ≡

 (I + RI−1R)ΛΣ −(RI−1)Λ
Σ

−(I−1R)Λ
Σ (I−1)ΛΣ

 , RΛΣ ≡ <eNΛΣ , IΛΣ ≡ =mNΛΣ .

(7.12)
Eqs. (7.8) and (7.9) can be obtained from a three-dimensional effective action

I =

∫
d3x
√
|γ|
{
R+ GAB∂mφ̃A∂mφ̃B

}
, (7.13)

3See Ref. [173] for more details on this reduction.
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but we still need to add the constraint Eq. (7.10).

If we now decide to consider spherically-symmetric transverse metrics only, as it is
appropriate to describe single, static black holes, we can choose, as in Ref. [173]

γmndx
mdxn =

dτ2

W 4
−1

+
dΩ2
−1

W 2
−1

, (7.14)

where W−1 is a function of the (inverse) radial coordinate τ to be determined and

dΩ2
−1 ≡ dθ2 + sin2θ dφ2 , (7.15)

is the metric of the round 2-sphere of unit radius. With this choice, Eq. (7.10) is auto-
matically solved, the equation of W−1(τ) can be integrated completely, giving

W−1(τ) =
sinh (r0τ)

r0
, (7.16)

and we are left with just

d

dτ

(
GAB

dφ̃B

dτ

)
− 1

2∂AGBC
dφ̃B

dτ

dφ̃C

dτ
= 0 , (7.17)

GBC
dφ̃B

dτ

dφ̃C

dτ
= 2r2

0 . (7.18)

The integration constant r0 is the non-extremality parameter : when r0 vanishes, the metric
describes extremal black holes (if the solution satisfies the necessary regularity conditions).

The electrostatic and magnetostatic potentials ψΛ, χΛ only appear through their
τ -derivatives. The associated conserved quantities are the magnetic and electric charges
pΛ, qΛ and can be used to eliminate completely the potentials. The remaining equations
of motion can be put in the convenient form

U ′′ + e2UVbh = 0 , (7.19)

(U ′)2 + 1
2Gijφ

i ′φj ′ + e2UVbh = r2
0 , (7.20)

(Gijφj ′)′ − 1
2∂iGjkφ

j ′φk ′ + e2U∂iVbh = 0 , (7.21)

in which the primes indicate differentiation with respect to τ and the so-called black-hole
potential Vbh is given by4

− Vbh(φ,Q) ≡ −1
2Q

MQNMMN , (QM ) ≡
(
pΛ

qΛ

)
. (7.22)

Eqs. (7.19) and (7.21) can be derived from the effective action

Ieff [U, φi] =

∫
dτ
{

(U ′)2 + 1
2Gijφ

i ′φj ′ − e2UVbh

}
. (7.23)

4As in Ref. [190], we adopt the sign of the black-hole potential opposite to most of the literature on
black-hole attractors, conforming instead to the conventions of Lagrangian mechanics.
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Eq. (7.20) is nothing but the conservation of the Hamiltonian (due to absence of explicit
τ -dependence of the Lagrangian) but with a particular value of the integration constant
(r2

0).

A fair number of solutions of this system for different theories of 4-dimensionalN = 2
supergravity coupled to vector supermultiplets are known (see e.g. Ref. [190, 331]). They
describe single, charged, static, spherically-symmetric, asymptotically-flat, non-extremal
black holes which generalize the Reissner-Nordström solution and have two horizons that
coincide when the non-extremality parameter r0 vanishes. The metric covers the exterior
of the outer (event) horizon when the (inverse) radial coordinate5 τ takes values in the
interval (−∞, 0), whose limits are, respectively, the event horizon and spatial infinity. The
interior of the inner (Cauchy) horizon corresponds to the interval (τs,+∞), whose limits
are, respectively, the singularity and the inner horizon.

We may also be interested in spacetime metrics which are not spherically symmetric,
in which case we have to use a different transverse metric. In principle, these metrics
are not appropriate to describe isolated, static black holes but here we are ultimately
interested in Lifshitz metrics with a transverse metric invariant under the 2-dimensional
Euclidean group, Thus, we can take, for instance, the following simple generalization of
the spherically-symmetric transverse metric Eq. (7.14):

γmndx
mdxn =

dτ2

W 4
κ

+
dΩ2

κ

W 2
κ

, (7.24)

where Wκ is a function of τ and dΩ2
κ is the metric of the 2-dimensional symmetric space

of curvature κ and unit radius:

dΩ2
−1 ≡ dθ2 + sin2θ dφ2 , (7.25)

dΩ2
+1 ≡ dθ2 + sinh2θ dφ2 , (7.26)

dΩ2
0 ≡ dθ2 + dφ2 . (7.27)

In these three cases the equation for Wκ(τ) can be integrated and the results are

W−1 =
sinh r0τ

r0
, (7.28)

W1 =
cosh r0τ

r0
, (7.29)

W±0 = ae∓r0τ , (7.30)

where a is a real arbitrary constant with dimensions of inverse length.

It turns out that if we follow now for the κ = 0,+1 cases the procedure described
above for the κ = −1 case we arrive to exactly the same system of equations (7.19)-(7.21)
and, therefore, to the same effective action Eq. (7.83). It follows that all the solutions
for

(
U, φi

)
obtained in the spherically-symmetric case κ = −1 are also solutions for the

5Observe that τ has dimensions of inverse length, since r0 has, conventionally, dimensions of length.
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κ = 0,+1 cases as well. In other words: every solution of the system of equations (7.19)-
(7.21) provides us with four different solutions of the original theory, by simply using the
four different transverse metrics.

Since, as mentioned above, there exists a number of solutions of those equations
that describe single, static, asymptotically-flat non-extremal black holes when we take
κ = −1 [190, 324, 331], we can simply take those solutions and study them setting κ = 0
or +1 in the transverse metric. Observe that one integration constant has been fixed to
normalized the metric at spatial infinity, something we may not need to do in the κ = 0,+1
cases, but the normalization could be changed at any moment, if necessary.

In what follows we are going to study the asymptotic behaviour of generic solutions
(U, φi), normalized to describe single, static, asymptotically-flat non-extremal black holes
for κ = −1 when we take the transverse metric with κ = 0.

7.3 Solutions with Lifshitz-like asymptotics

Since we are going to use the metric functions e−2U corresponding to charged, spherically-
symmetric, asymptotically-flat, non-extremal black-hole solutions, we start by reviewing
their asymptotic behaviors at the outer (+) and inner (−) horizons6 (placed, respectively,
at τ = −∞ and τ = +∞) and at spatial infinity τ = 0.

• The standard normalization of these asymptotically-flat black holes requires that

lim
τ→0−

e−2U = 1 . (7.31)

• When τ approaches the two horizons, τ → ∓∞, the metric function behaves as

e−2U ∼ S±
4πr2

0

e∓2r0τ , (7.32)

where S+ (resp. S−) is the entropy of the outer (resp. inner) horizon, which is
assumed to be non-vanishing (which is equivalent to require regularity of the black-
hole solution). If we use the spherically-symmetric transverse metric the spacetime
metric approaches in these limits a product of a Rindler metric and a 2-sphere of
area 4S±. Studying the Rindler metric by conventional methods one finds that the
temperatures of the horizons T± obey the Smarr-like relation [204]

r0 = 2S±T± . (7.33)

• e−2U vanishes for some value of τs ∈ (0,+∞) at which the physical singularity of the
black-hole spacetime lies. We may also want to study the behaviour of e−2U near
this value of τ but we do not know of any general result on this respect. We will
have to study each particular case separately.

To find new solutions, we are going to plug black-hole metric functions in the general
static metric Eq. (7.7) with the transverse metric Eq. (7.24) with κ = 0, i.e. with Eq. (7.27)
and Eq. (7.30). It is convenient to set a = 1/r0 so no new length scale is introduced in
the metric, which takes two possible forms:

ds2
(±) = e2Udt2 − e−2U

[
e±4r0τr4

0dτ
2 + e±2r0τr2

0

(
dθ2 + dφ2

)]
. (7.34)

6Uncharged, static black holes only have outer horizon. The discussion of the behaviour of the metric
function in the interior of the inner horizon does not apply to them.
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Asymptotic behaviour of ds2
(−): Using the general properties of the metric function

e−2U described above it is easy to see that in the limit τ → −∞ this metric behaves as

ds2
(−) ∼

4πr2
0

S+
e2r0τdt2 − S+

4πr2
0

e−2r0τ
[
e−4r0τr4

0dτ
2 + e−2r0τr2

0

(
dθ2 + dφ2

)]
. (7.35)

The change of coordinates

r ≡ e−r0τ , t̃ ≡ 4πr2
0

S+
t/r0 , x1 ≡ θ , x2 ≡ φ , (7.36)

brings the metric to the form

ds2
(−) ∼

S+

4π
r4
[
r−6dt̃ 2 − dr2 − dxidxi

]
, (7.37)

which is a hvLf metric of the form Eq. (7.3) with z = 4, θ = 6 and radius

` ∼ r0 , (7.38)

up to dimensionless factors (functions of the quotient S+/r
2
0); observe that this asymptotic

hvLf space lies in the class of Ricci flat hvLf spaces in Eq. (E.8).

The metric ds2
(−) is regular at τ = 0. Spatial infinity is not there because the radial

distance between points with τ = 0 and points with τ < 0 is finite and not infinite, as in
the black-hole case. For τ equal to a certain τs, e

−2U = 0 and the metric will be singular,
as in the black-hole case. Finally, in the τ → +∞ limit the metric is the product of
Rindler spacetime times R2, which can be understood as a flat event horizon with the
same temperature as that of the inner horizon of the associated black-hole solution.

Asymptotic behaviour of ds2
(+): The analysis is completely analogous to the previous

case: in the limit τ → −∞ we find a flat event horizon whose temperature is that of
the outer horizon of the associated black hole, there is a singularity at τ = τs and a
hyperscaling Lifshitz metric in the τ → +∞ limit. The Lifshitz radius is, once again,
` = r0.

7.3.1 Examples

The Schwarzschild black hole: This is the only uncharged, static, spherically-symmetric,
black-hole solution of the class of theories we are considering and has only one horizon
(the event horizon) at (conventionally) τ → −∞ in these coordinates, which only cover
the exterior. The metric function for the Schwarzschild black hole in these coordinates is

e−2U = e2Mτ , (7.39)

The spacetime metric ds2
(−) constructed with the Schwarzschild metric function takes the

explicit form

ds2
(−) = e−2Mτdt2 − e−2MτM4dτ2 −M2

(
dθ2 + dφ2

)
. (7.40)

In the coordinates

e−MτM ≡ r , (7.41)
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it reads
ds2

(−) = r2d(t/M)2 − dr2 −M2
(
dθ2 + dφ2

)
. (7.42)

which is the product of a 2-dimensional Rindler spacetime (Ri2) with R2. The temperature
of the flat horizon would be that of the Schwarzschild black hole T ∼M−1. Observe that
this is not just the asymptotic behaviour of the metric: the metric is everywhere identically
Ri2×R2. As is well-known, this metric is just a wedge of the Minkowski spacetime which
can be recovered by analytical extension of this metric.

Observe that the above metric makes sense for τ ∈ (−∞,+∞) or r ∈ (0,+∞) since
as discussed above, there is not spatial infinity at τ = 0.

The metric ds2
(+) is in this case

ds2
(+) = e−2Mτdt2 − e6MτM4dτ2 − e4MτM2

(
dθ2 + dφ2

)
, (7.43)

and, in the coordinates
eMτ ≡ r , (7.44)

it takes the form

ds2
(+) = r−2d(t/M)2−r4M2dr2−r4M2

(
dθ2 + dφ2

)
= M2r4

{
r−6dt2 − dr2 − dθ2 − dφ2

}
,

(7.45)
which is the z = 4, θ = 6, ` ∼ M hvLf metric everywhere in the spacetime, and not just
asymptotically. Yet again, this metric is defined for all values of τ or for all r ∈ (0,+∞).

The Reissner-Nordström black hole: The embedding of the Reissner-Nordström
black hole in pure 4-dimensional N = 2 supergravity (the supersymmetrization of the
Einstein-Maxwell theory). The metric function of this solution in the τ coordinates is [190]

e−2U =

[
cosh r0τ −

M

r0
sinh r0τ

]2

, r2
0 ≡M2 − |Z|2 , (7.46)

where
Z = 1

2p− iq , (7.47)

is the central charge of pure 4-dimensional N = 2 supergravity in the chosen conventions.

It is evident that the asymptotic behaviour of the metrics ds2
(±) fits in the general

case discussed above. Having the explicit form of the metric, we can also study the
behaviour of the spacetime metric near the singularity at τs at which e−2U (τs) = 0. It is,
however, easier to do it in the coordinates in which the metric function has the standard
form

e−2U =
r2

(r − r+)(r − r−)
, r± = M ± r0 . (7.48)

The coordinate transformation that relates these two forms of the metric function is

r = −
[
cosh r0τ −

M

r0
sinh r0τ

] [
sinh r0τ

r0

]−1

. (7.49)

If we make this coordinate transformation in the full ds2
(±) metrics, they take the form

ds2
(±) =

(r − r+)(r − r−)

r2
dt2 − r4

0r
2

(r − r±)(r − r∓)5
dr2 − r2

0r
2

(r − r∓)2
(dθ2 + dφ2) . (7.50)
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According to the general discussion, we should find the singularity in the extension
of the metric beyond τ = 0 to positive values of τ . This corresponds in these coordinates
to values of r “beyond r = +∞”. Thus, we define the coordinate u ≡ 1/r which overlaps
with r for u > 0 and extends the metric for u ≤ 0. In these coordinates the metric takes
the form

ds2
(±) = (1−r+u)(1−r−u)dt2− r4

0

(1− r±u)(1− r∓u)5
dr2− r2

0

(1− r∓u)2
(dθ2 +dφ2) , (7.51)

and, in the u→ −∞ limit it approaches the metric

ds2
(±) = r+r−u

2dt2 − r4
0

r±r5
∓u

6
du2 − r2

0

r2
∓u

2
(dθ2 + dφ2) , (7.52)

which can be put in the hvLf form with z = 3, θ = 4 (which implies C(θ, z) = 0) with
the coordinate change r′ ≡ 1/u using rescaled the coordinates t̃ ≡ r±t/r

2
0, ρ ≡ r′/r∓,

x1 ≡ √r+r−/r0θ, x
2 ≡ √r+r−/r0φ.

Observe that the two consecutive coordinate changes r = 1/u, u = 1/r′ mean that
we can get the same result taking the limit of the metric when r approaches r = 0 (which
corresponds to the value τ = τs) “from the left”. In fact, the same result is obtained if we
take the near-singularity limit from the right.

Summarizing, the interior of the inner horizon region r < r− has, therefore, two
boundaries, at r = r− and at r = 0. When the metric approaches r = r− from the
left, the metric ds2

(+) approaches a hvLf metric with z = 4 and θ = 6 and the metric

ds2
(−) approaches Ri2 × R2, as we have seen before. When r approaches r = 0 the metric

approaches a hvLf metric with z = 3, θ = 4.

The fact that a hvLf metric can describe the near-singularity limit of a metric
that has been obtained as a deformation of a regular black-hole metric is very sugges-
tive. Observe that the deformed metric Eq. (7.50) differs from the standard Reissner-
Nordström metric in factors of (r − r±), which are irrelevant in the r → 0 limit, and in
the 2-dimensional metric dΩ2

κ which has κ = −1 for the standard, spherically symmetric
Reissner-Nordström black hole. In the next section we are going to see that there is a
limit of the Reissner-Nordström black hole in which dΩ2

−1 approaches dΩ2
0. The near-

singularity limit of this Reissner-Nordström black hole will be described by a hvLf metric
with z = 3, θ = 4.

7.4 More hvLf metrics

In this subsection we want to discuss some other ways of obtaining hvLf spacetimes.

7.4.1 hvLf spaces from limiting procedures

A 2-sphere looks locally (in small enough patches) like a plane. Thus, we can flatten
dΩ2
−1 by looking at a small neighborhood of θ = π/2 and we can study near-horizon and

near-singularity limits of standard, spherically-symmetric, black-hole solutions. The near-
horizon limits will give, obviously, Ri2×R2 metrics (or AdS2×R2 metrics in the extremal
cases).
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Let us consider the near-singularity limit of the Reissner-Nordström black hole in a
small patch around θ = π/2:

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2(dθ2 + dφ2)

∼ r+r−
r2

dt2 − r2

r+r−
dr2 − r2(dθ2 + dφ2) , (7.53)

which can can be put in the hvLf form with z = 3, θ = 4 and ` =
√
r+r− with the

coordinate change r/
√
r+r− → r, t/

√
r+r− → t.

We can also take the near-singularity limit of the Schwarzschild metric with negative
mass in a neighborhood of θ = π/2

ds2 =

(
1 +

2|M |
r

)
dt2 −

(
1 +

2|M |
r

)−1

dr2 − r2(dθ2 + dφ2)

∼ 2|M |
r

dt2 − r

2|M |
dr2 − r2(dθ2 + dφ2) , (7.54)

which can be put in the hvLf form with z = 4, θ = 6 and ` = |M |/2 with the coordinate
change 2r/|M | → ρ2, 4t/|M | → t.

7.4.2 Supersymmetric hvLf spaces from smearing

As was mentioned briefly in Section 7.2, the extremal limit (r0 → 0) of the 4-dimensional
metric describes a single static black hole and the natural question, one we have been
ignoring, is what happens in the case κ = 0.

The first thing that changes is the asymptotic behaviour of e−2U , which for an
extremal black hole reads

lim
τ→−∞

e−2U =
S

π
τ2 , (7.55)

where S is the entropy of the black hole. The second thing is that the extremal limit of W±κ
is just the constant a which has the dimension of inverse length, whence the 4-dimensional
metric becomes

ds2
0 = e2U dt2 − e−2U

[
d(a−2τ)2 + d~x2

]
, (7.56)

where we have defined x1 = θ/a and x2 = φ/a. It is straightforward to see that in the
region τ → −∞ this leads to a hvLf space with θ = 4 and z = 3. Similarly to what happens
in the Schwarzschild black hole case in Section 7.3.1, one can see that the extremal RN
black hole of electrical charge q, which has e−U = 1− |q|√

2
τ , is this asymptotic hvLf.

Now we are going to see that this solution is just a particular case of a very wide
class of solutions with hvLf asymptotics.

One of the most interesting features of the extremal RN black hole is that it is
supersymmetric in pure 4-dimensional N = 2 supergravity. As is well known, the most
general supersymmetric static solution of this theory can be written, using Cartesian
coordinates in the transverse space ~y3 ≡ (y1, y2, y3) as

ds2
susy = e2Udt2 − e−2U d~y 2

3 , (7.57)
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where the metric function has the form7

e−2U = 1
2(H0)2 + 2(H0)2 , (7.58)

where H0 and H0 are two real harmonic functions in the flat transverse space which satisfy
the staticity constraint

H0∂mH0 −H0∂mH
0 = 0 ,m = 1, 2, 3 . (7.59)

In these coordinates, the standard, spherically symmetric (κ = −1), purely electric ex-
tremal RN black hole corresponds to the choice of harmonic functions

H0 = 0 , H0 = 1 + 1√
2

|q|
|~y3|

. (7.60)

However, other choices (usually discarded when one is only interested in black holes)
are possible and are also supersymmetric. For instance, one can consider harmonic func-
tions that depend on only one of the transverse coordinates, say y3 ≡ ρ. This corresponds,
physically, to the smearing of the spherically-symmetric solution in the (y1, y2) plane and,
mathematically, to the substitution of the factor 1/r by ρ in all the harmonic functions
of the spherically-symmetric solution. The staticity constraint Eq. (7.59) is automatically
satisfied is it was in the spherically-symmetric solution.

From the the extremal RN solution, this choice gives the new smeared solution

ds2 = 1
2(H0)−2dt2 − 2(H0)2

[
dρ2 + dyidyi

]
, H0 = 1 + 1√

2
|q|ρ , (7.61)

and this solution is identical to the κ = 0 solution in Eq. (7.56)8 with τ = −ρ. Furthermore,
the z →∞ limit, which gives the θ = 3, z = 4 hvLf space corresponds to the choice

H0 = 1√
2
|q|ρ , (7.62)

and, therefore, it is an exact, supersymmetric solution.

Once this connection between hvLf metrics and smeared supersymmetric black holes
of 4-dimensional N = 2 supergravity has been established, we can systematically construct
supersymmetric hvLf metrics using the well-known systematic procedure to construct all
the supersymmetric black hole solutions of any 4-dimensional N = 2 supergravity coupled
to vector supermultiplets [37, 159, 301, 320] and choosing harmonic functions that depend
on only one coordinate in transverse space. The ρ→∞ limit is the same in all the cases
(namely a θ = 3, z = 4 hvLf spacetime), provided that the original, spherically-symmetric
solution has a regular near-horizon limit. The scalar fields, which have non-trivial profiles
in the smeared solutions, become constant in the ρ → ∞ limits, just as they do in the
black-hole near-horizon limits.

There are, however, more possibilities, if we start from supersymmetric black holes
with singular horizon. A good example is provided by the supersymmetric D0-D4 black

7We use the conventions of Ref. [190].
8Observe that, in the non-extremal case, we cannot view the κ = 0 solutions as the smearing of κ = −1

solutions.

149



Chapter 7. Lifshitz-like solutions with hyperscaling violation in supergravity

holes embedded in the STU model [35, 49, 164]9. After the smearing, the three complex
scalars Zi, i = 1, 2, 3 and metric function of these solutions are given by

Zi = −4ie2UH0H
i , (7.63)

e−2U = 4
√
H0H1H2H3 , (7.64)

where the four harmonic functions H0, H
1, H2, H3 are

H0 = s0

{
a0 + 1√

2

|q0|
|~y3|

}
,

H i = s(i)

{
a(i) + 1√

2

|p(i)|
|~y3|

}
,

(7.65)

where a0, a
i are constants related to the asymptotic (r → ∞) values of the scalars, q0, p

i

are electric and magnetic charges and s0, s
i are the signs of those charges. Only two sets

of signs of charges lead to supersymmetric and regular black holes: all charges positive or
negative. In particular, none of these charges can vanish.

The associated smeared solutions are given by Eqs. (7.63) and (7.64) with the har-
monic functions given by

H0 = s0 {a0 + b0ρ} ,

H i = s(i)
{
a(i) + b(i)ρ

}
.

(7.66)

The constants b0, b
i, which we can take to be positive, are related to electric and magnetic

fluxes. The staticity condition Eq. (7.59) is satisfied for any values of the constants and,
in particular, we can take any number of them to vanish.

When all the b0, b
i constants are different from zero, we can take all the a0, a

i to
vanish or take the ρ → ∞ limit. In both cases e−2U = 4

√
b0b1b2b3ρ

2 and we get a θ = 3,
z = 4 hvLf spacetime with constant scalars.

When one of them (b0, for instance) vanishes we must keep a0 6= 0, and we get

Zi = −i a0b
i

√
a0b1b2b3

ρ−1/2 , e−2U = 4
√
a0b1b2b3ρ

7/2 (7.67)

which is a θ = 7/2, z = 5/2 hvLf spacetime, now with non-trivial scalars. Other choices
of vanishing constant b lead to different scalar profiles by the same θ and z.

It is easy to see that, for n = 0, · · · , 4 non-vanishing constants b, one gets a hvLf
spacetime with θ = 2 + n/2 and z = 1 + n/2 and various scalar profiles. Perhaps not
surprisingly C(θ,z) = (4− n)/n and only vanishes for n = 4.

7.4.3 Higher dimensional generalization

In ref. [321] the FGK formalism was Generalised to higher dimensional cases, and it is only
natural to consider the higher dimensional generalizations of the results presented in the

9Again, we use the notation and conventions of Ref. [190] where the details can be found.
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foregoing sections, starting off by the ones in Section 7.2: the D-dimensional generalization
of the FGK metric reads

ds2 = e2Udt2 − e−
2
d−1

U

[
dρ2

(d− 1)2 W
2d/(d−1)
κ

+
hij dx

idxj

W
2/(d−1)
κ

]
, (7.68)

where h is the metric of a d-dimensional Riemannian Einstein space; this metric is nor-
malized such that

R (h)ij = (d− 1) κ hij . (7.69)

The normalization is such that a d-sphere with the round metric has κ = −1.

A so-so calculation then shows that the conditions for the resulting FGK equations
of motion to be κ as well as Wκ independent, are

Wκ Ẅκ − Ẇ 2
κ = κ and Ẅκ = B2 Wκ ; (7.70)

B plays the rôle of the D-dimensional non-extremality constant which on dimensional
grounds can be written as rd−1

0 . The solutions to the conditions (7.70) are

W−1 =
sinh (Bρ)

B
, W±0 = a e∓Bρ and W1 =

cosh (Bρ)

B
. (7.71)

By looking at the, in general, fractional powers of W that appear in the metric (7.68), we
see that in contradistinction to the 4-dimensional case, the putative horizon lies at ρ→∞
which means that the near-horizon behaviour for a non-extremal black hole implies

lim
ρ→∞

eU ∼ e−Bρ . (7.72)

The above means that given a solution to a D-dimensional FGK system, we can as before
deform the κ = −1 solution as in Section 7.2, and obtain new solutions with properties
similar to the ones encountered in the foregoing sections. For example, concerning the
ρ→∞ behaviour of the metric we see that

The W+
0 case: In this case the ρ→∞ spacetime is hvLf with

θ =
d(d+ 1)

d− 1
and z =

2d

d− 1
, (7.73)

which, as one can see from Eq. (E.8), corresponds to the Ricci flat hvLf spaces.

The W−0 case: Together with the condition (7.72), we see that the resulting ρ → ∞
spacetime is a Rindler wedge times Rd.

In the κ = −1 case, the validity of the ρ-coordinate, i.e. ρ ∈ [0,∞) is principally
determined by W−1 and one imposes conditions on eU in order to obtain metrics describing
the spacetime outside the outer horizon. In particular, the zero of W−1 at ρ = 0, together
with the regularity of eU there, allows for the identification of ρ = 0 with asymptotic
spacetime. W0 is, however, an all-together different beast and the naive validity of the
coordinate, i.e. ρ ∈ [0,∞), can be extended till one encounters a zero or a pole in eU ; the
former signaling a horizon, the latter a singularity. Let us illustrate this point with
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The 5-dimensional STU model: The FGK equations for the 5-dimensional STU
model are completely separable, whence the full analytical solution is known. The general
solution satisfying Eq. (7.72) and having constant scalars in the limit ρ → ∞ is given by
(see e.g. [323,331])

e−3U =
|q1q2q3|
B3

sinh (α1 + Bρ) sinh (α2 + Bρ) sinh (α3 + Bρ) , (7.74)

where the q are the electrical charges and the α’s are some real constants; in the κ = −1
case they are chosen such that U(ρ = 0) = 1 and one obtains a Minkowski space with the
regular normalization. In the κ = 0 case, however, the point ρ = 0 is not asymptotic and
there is therefore no need to impose said condition on the α’s. In fact, let 0 < α1 ≤ α2 ≤
α3, then we can extend the definition of ρ to the point ρs = −α1/B, where we have added
a subscript to highlight the fact that at that point we’re facing a curvature singularity.

As in Section 7.3.1 we can consider the near-singularity metric: in general we will
find a hvLf space and the characteristic parameters (θ, z) will depend on the order of the
zero of e−3U in Eq. (7.74). Denoting this number by p, whence p = 1, 2 or 3,10 we see that
the near-singularity hvLf is given by

θ = 3 +
p

2
, z = 1 +

p

2
whence C(θ,z) =

2(3− p)

p
≥ 0 , (7.75)

and, furthermore, the null energy condition (E.7) is always satisfied.

In higher dimensions we can also construct hvLf solutions by smearing extremal,
supersymmetric black-hole solutions. The procedure is entirely similar to the one followed
in four dimensions.

In a higher-dimensional context, it is natural to consider the following brane-like
generalization of the hvLf metric (7.3)

ds2
d+2 = `2r−2(d−θ)/d

[
r−2(z−1)

(
dt2 − dyadya

)
− dr2 − dxidxi

]
, a = 1, · · · , p , i = 1, · · · d .

(7.76)
The p = 0 case is the original hvLf metric and a metric with d = 0 and p =6= 0 can be
rewritten as a p = 0, d 6= 0 by a coordinate change.

It should come as no surprise that we can obtain metrics of this kind by smearing
extremal supersymmetric p-brane metrics. As an example, consider the 10-dimensional
Dp-brane solutions in the Einstein frame

ds2 = H
p−7

8 [dt2 − d~y 2
p ]−H

p+1
8 d~x 2

8−p ,

C(p+1) ty1···yp = ±e−φ0(H−1 − 1) ,

e−2φ = e−2φ0H
p−3

2 .

(7.77)

In all cases, we can take11

H ∼ ρ , (7.78)

10 To wit: p = 1 implies α2 > α1, p = 2 means α3 > α2 = α1 and p = 3 means α3 = α2 = α1. Let
us in passing observe that the case p = 3 corresponds to the deformation of the 5-dimensional Reissner-
Nordström black hole.

11In the p = 8 case there is no smearing involved, since there is only one transverse dimension.
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and put the metric in the form

ds2 ∼ ρ
p+1

8

{
ρ−1[dt2 − d~y 2

p ]− dρ2 − d~x 2
8−p
}
,

C(p+1) ty1···yp = ∼ ρ−1 ,

e−2φ ∼ ρ
p−3

2 ,

(7.79)

which is of the above form with p = p, z = 3/2 and θ = (8− p)(p+ 17)/16 for p < 8. The
case p = 0 (the D0-brane) is a standard hvLf metric with d = 8, θ = 8.5 and z = 3/2, which
satisfies the null energy condition (E.7) but does not avoid the null curvature singularity
in the IR region (ρ → ∞). The string coupling constant reads eφ = r3/4, which goes to
zero in the UV. The case p = 8, after a change of coordinates % ≡ ρ3/2 is also a standard
hvLf metric (p = 0) with d = 8, θ = 25/3 and z = 1 which also satisfies the null energy
condition (E.7) but is singular in the IR region (r →∞).

7.5 HvLf solutions in gauged supergravity

Let us now extend the previous analysis to a general class of gravity theories coupled to
scalars and vectors, up to two derivatives, in the presence of a scalar potential, in principle
arbitrary. We will focus later on 4-dimensional N = 2 Supergravity in the presence of
Fayet-Iliopoulos terms.

In section (7.6) we dimensionally reduce the general action of gravity coupled to
an arbitrary number of scalars and vectors in the presence of a scalar potential assuming
a general static background which naturally fits the anisotropic scaling properties which
correspond to hvLf -like solutions. In section (7.7) we adapt the general formalism to
the Einstein-Maxwell-Dilaton system. In section (7.8) we focus on 4-dimensional N = 2
Supergravity in the presence of Fayet-Iliopoulos terms (which produce the appearence
of a scalar potential in the corresponding supergravity), were we exploit the symplectic
structure of the theory in order to obtain further results. We also embed a particular
truncation of the t3-model in Type-IIB String Theory compactified on a Sasaki-Einstein
manifold times S1. In section (7.9) we perform an analysis of the properties of purely hvLf
solutions for the general class of theories considered. In addition, we provide a general recip
to obtain hvLf -like solutions of a particular class of Einstein-Maxwell-Dilaton systems,
reducing the problem to the resolution of an algebraic equation. We apply the procedure
to obtain explicit solutions, some of them embedded in String Theory.

7.6 The general theory

We are interested in Lifshitz-like solutions with hyperscaling violation (hvLf of the four-
dimensional action

S =

∫
d4x
√
|g|
{
R+ Gij∂µφi∂µφj + 2IΛΣF

Λ
µνF

Σµν − 2RΛΣF
Λ
µν ? F

Σµν − V (φ)
}
,

(7.80)
that generalizes the action considered in Ref. [173, 190] by including a generic scalar po-
tential V (φ). We will take care of the constraints imposed by N = 2 supersymmetry on
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the field content, the kinetic matrices (IΛΣ(φ) < 0, RΛΣ(φ)), the scalar metric Gij(φ) and
the scalar potential V (φ) later on.

The idea now is to dimensionally reduce the action (7.80) using an appropriate ansatz
for the metric. Since hvLf solutions are in particular static, a first step is to constrain the
form of the metric to be

ds2 = e2Udt2 − e−2Uγmndx
mdxm , m, n = 1, . . . , 3 , (7.81)

A sensible choice for γ, that fits the anisotropic scaling properties that we look for in a
hvLf solution, is given by

γ = γmndx
mdxm = e2W

(
dr2 + δabdx

adxb
)
, a, b = 1, 2 , (7.82)

where eW is an undetermined function of the “radial” coordinate r. We now proceed to
dimensionally reduce the lagrangian (7.80) with the choice of metric given by Eqs. (7.81)
and (7.82).

Assuming that all the fields are static, only depend on r, and following the same
steps as in Refs. [173, 321]12, one arrives to a set of equations of motion for the variables
U(r), W (r), φi(r) that can be derived from the following effective action

(′ = d
dr

)
S =

∫
dr eW

{
2U ′ 2 − 2W ′ 2 + Gijφi ′φj ′ − 2e2(U−W )Vbh + e−2(U−W )V

}
, (7.83)

if we set the value of the Hamiltonian (which is conserved, due to the lack of explicit
r-dependence of the Lagrangian) to zero, that is:

2U ′ 2 − 2W ′ 2 + Gijφi ′φj ′ + 2e2(U−W )Vbh − e−2(U−W )V = 0 . (7.84)

The one-dimensional effective equations of motion are given by

e−W
[
eWU ′

]′
+ e2(U−W )Vbh +

1

2
e−2(U−W )V = 0 , (7.85)

e−W
[
eW
]′′

+ e−2(U−W )V = 0 , (7.86)

e−W
[
eWGijφj ′

]′ − 1

2
∂iGjkφj ′φk ′ + e2(U−W )∂iVbh −

1

2
e−2(U−W )∂iV = 0 , (7.87)

to which we have to add the Hamiltonian constraint (7.84). The kinetic term for the
scalars, as well as the scalar potential V (φ) and the black hole potential Vbh(φ,Q), can be
solely expressed in terms of U and W, i.e.,

V = −e2U−2W
[
W ′′ +W ′ 2

]
,

Vbh(φ,Q) = −1

2
e2W−2U

[
2U ′′ + 2U ′W ′ −W ′′ −W ′ 2

]
, (7.88)

Gijφi ′φj ′ = −2
[
−U ′′ − U ′W ′ + U ′ 2 +W ′′

]
.

Eqs. (7.88) are useful in order to obtain, given a particular metric, the behavior of different
quantities, like V (φ) and Vbh(φ,Q), or φi for models with small enough number of scalars,
in terms of the coordinate r. Of course, only metrics compatible with the equations of
motion will yield consistent results.

12A related procedure, used to obtain non-extremal AdS4 black hole solutions can be found in [284]
and [285]. For related Refs. about solutions in gauged Supergravity see [28,29].
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7.6.1 Constant scalars: generalities

For constant scalars φi, the potential V (φ) and the black hole potential Vbh(φ,Q) become
constant quantities, the former playing the role of a cosmological constant and the latter
of a generalized squared charge, magnetic and electric. In the case of constant scalars, Eq.
(7.87) is not identically satisfied, but it becomes the following constraint

e4(U−W )∂iVbh =
1

2
∂iV . (7.89)

We have two different options in order to fulfil Eq. (7.89).

Constant scalars as double critical points: ∂iVbh = 0, ∂iV = 0. Of course, the
system of equations given by

∂iVbh = 0, ∂iV = 0 , (7.90)

is overdetermined. However, let’s assume that a consistent solution to (7.90) exists and is
given by

φi = φic (Q, φ∞) , (7.91)

i.e., the values of the scalars are fixed in terms of the electric and magnetic charges, and
we have included a dependence on φ∞ to formally consider the existence of flat directions.
We will see later on that, in fact, Eq. (7.90) happens in 4-dimensional N = 2 Supergravity.
The equations of motion reduce to

e−W
[
eWU ′

]′
+ e2(U−W )Vbh +

1

2
e−2(U−W )V = 0, (7.92)

e−W
[
eW
]′′

+ e−2(U−W )V = 0 , (7.93)

together with the hamiltonian constraint

2U ′ 2 − 2W ′ 2 + 2e2(U−W )Vbh − e−2(U−W )V = 0 . (7.94)

Metric functions identified: eU = βeW , β ∈ R+ and 2β4∂iVbh = ∂iV (φ) . In
this case, the equations of motion imply

2β4∂iVbh = ∂iV , 2β4Vbh = V . (7.95)

Assuming Eqs. (7.95), there is a unique solution, which is precisely AdS2×R2. Eqs. (7.95)
can be understood as necessary and sufficient conditions for a gravity theory coupled
to scalars and vector fields, up to two derivatives, to contain an AdS2 × R2 solution.
Therefore, given a particular theory of such kind, with a specific potential V (φ) and black
hole potential Vbh(φ), one only has to impose Eqs. (7.95) in order to check the existence
of an AdS2 × R2 solution. The parameter β can be always found to be

β4 =
V

2Vbh
, (7.96)

and we are left with
1

2
∂i log Vbh = ∂i log V . (7.97)

Eq. (7.97) is a system of nv equations for at least nv variables (the nv constant scalars),
and hence in general it will be compatible and the theory will contain an AdS2 × R2

solution. Only in pathological cases the system (7.97) will be incompatible and the theory
will fail to contain an AdS2 × R2 solution.
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7.7 The Einstein-Maxwell-Dilaton model

Before we discuss the possible embeddings of Eq. (7.80) in gauged Supergravity and
String Theory, let’s consider the Einstein-Maxwell-Dilaton (E.M.D.) system, whose action
is characterized by the following choices, to be made in Eq. (7.80)

FΛµν = Fµν , IΛΣ = I =
Z(φ)

2
< 0, RΛΣ = R = 0, φi = φ, Gij =

1

2
. (7.98)

Hence, the E.M.D. action reads

SEMD =

∫
d4x
√
|g|
{
R+

1

2
∂µφ∂

µφ+ Z(φ)F 2 − V (φ)

}
, (7.99)

i.e., we consider a single vector field and a single scalar field. Moreover, the coupling given
by R is taken to be zero, which greatly simplifies the black hole potential Vbh(φ,Q), which
is therefore given by

Vbh(φ,Q) =
1

4

[
Z(φ)p2 + Z(φ)−1q2

]
, (7.100)

where q and p are the electric and magnetic charges, respectively. The equations of motion
take the form

e−W
[
eWU ′

]′
+ e2(U−W ) 1

4

[
Zp2 + Z−1q2

]
+

1

2
e−2(U−W )V = 0 , (7.101)

e−W
[
eW
]′′

+ e−2(U−W )V = 0 , (7.102)

e−W
[
eWφ′

]′
+ e2(U−W )∂φZ

2

[
p2 − q2

Z2

]
− e−2(U−W )∂φV = 0 , (7.103)

and the hamiltonian constraint reads

2U ′ 2 − 2W ′ 2 +
1

2
φ′ 2 +

e2(U−W )

2

[
Zp2 + Z−1q2

]
− e−2(U−W )V = 0 . (7.104)

For non-constant scalars, Eq. (7.103) is automatically satisfied if

V = −e2(U−W )
[
W ′

2
+W ′′

]
, (7.105)

φ′
2

= 4
[
−U ′2 + U ′W ′ + U ′′ −W ′′

]
, (7.106)

and Z is such that

Z =
1

p2

[
Υ±

√
Υ2 − p2q2

]
, if p, q 6= 0, (7.107)

Z =
2Υ

p2
if q = 0, p 6= 0 (7.108)

Z =
q2

2Υ
if p = 0, (7.109)

where

Υ = 2Vbh = e2(W−U)
[
−2U ′W ′ +W ′

2 − 2U ′′ +W ′′
]
. (7.110)
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Theories with conventional and sensible matter have to satisfy the null-energy condition
(NEC) nµnνT

µν ≥ 0, where nµ is an arbitrary null vector and Tµν is the correspon-
dent energy-momentum tensor. This condition translates, for the E.M.D. case, into the
following constraints

Υ ≤ 0, φ′
2 ≥ 0. (7.111)

Hence, it is equivalent to the requirement of a semi-negative definite black hole potential,
and a semi-positive definite kinetic term for the scalar field, compatible with the condition
Z (φ).

Another coordinate system: A-B-f coordinates.

There is another system of coordinates which we will use along these sections, and that
will be useful for different purposes. It is related to the U -W system of coordinates by the
following identifications:(

dr

dr̃

)2

= f−1(r̃), e2U = e2(A(r̃)+B(r̃))f(r̃), e2W = e4A(r̃)+2B(r̃)f(r̃) , (7.112)

giving rise to the metric

ds2
f = `2e2A(r̃)

[
e2B(r̃)f(r̃)dt2 − dr̃2

f(r̃)
− δijdxidxj

]
, (7.113)

which has proven to be useful (see e.g. [250], [162]) in order to obtain solutions exhibiting
hvLf asymptotics when f(r̃) is a function of r̃ that obeys

f (r̃h) = 0, r̃h ∈ R+ lim
r̃→r̃0

f (r̃) = 1 . (7.114)

The equations of motion (7.101), (7.102) and (7.103) can be rewritten accordingly as13

e−2A−B
[
e2A+Bf

[
A′ +B′ +

f ′

2f

]]′
+ e−2A 1

4

[
Zp2 + Z−1q2

]
+

1

2
e2AV (φ) = 0(7.115)

e−2A−B
[
f1/2

[
e2A+Bf1/2

]′]′
+ e2AV (φ) = 0(7.116)

e−2A−B [e2A+Bfφ′
]′

+ e−2A∂φZ

2

[
p2 − Z−2q2

]
− e2A∂φV (φ) = 0 ,(7.117)

where ′ = d
dr̃ . The Hamiltonian constraint is given by

− 2f

[
3A′

2
+ 2A′

[
B′ +

f ′

2f

]]
+
f

2
φ′ 2 +

e−2A

2

[
Zp2 + Z−1q2

]
− e2AV (φ) = 0 . (7.118)

Again, for non-constant dilaton this set of equations is equivalent to14

V =
e−2A

2

[
−3f ′[2A′ +B′]− 2f

[
2A′′ +

[
2A′ +B′

]2
+B′′

]
− f ′′

]
, (7.119)

φ′
2

= 4
[
−A′′ +A′B′ +A′

2
]
, (7.120)

Υ = −e
2A

2

[
f ′
[
2A′ + 3B′

]
+ 2f

[
2A′B′ +B′′ +B′

2
]

+ f ′′
]
. (7.121)

13From now on, we will use always the symbol ”r” to denote the ”radial” coordinate, independently of
which coordinate system we use, which will be specified by other means.

14Eqs. (7.107), (7.108), (7.109) hold.
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7.8 N = 2 Supergravity with F.I. terms

The action (7.80) has great generality and basically covers any possible theory of gravity
coupled to abelian vector fields and scalars up to two derivatives. However, in order to
embed our results in String Theory, it is convenient to focus on the bosonic sector of
4-dimensional N = 2 Supergravity, which is a particular case of (7.80). More precisely,
we are going to consider gauged 4-dimensional N = 2 in the presence of nv abelian vector
multiplets, where the gauge group is contained in the R-symmetry group of automorphisms
of the supersymmetry algebra. Normally one refers to this theory as 4-dimensional N = 2
Supergravity with Fayet-Iliopoulos terms (from now on, N = 2 FI to abridge) [14]. The
general lagrangian of N = 2 FI is given by

S =

∫
d4x
√
|g|
{
R+ 2Gij∗∂µzi∂µz∗ j

∗
+ 2=mNΛΣF

ΛµνFΣ
µν

−2<eNΛΣF
Λµν?FΣ

µν − Vfi (z, z∗)
}
.

(7.122)

The indices i, j, . . . = 1, . . . , nv run over the scalar fields and the indices Λ,Σ, . . . =
0, . . . , nv over the 1-form fields. The scalar potential generated by the F.I. terms reads

Vfi (z, z∗) = −3|Zg|2 + Gij∗DiZgDj∗Z∗g , DiZg = ∂iZg +
1

2
∂iKZg , (7.123)

where K is the Kähler potential, Zg is given by15

Zg ≡ Zg (z, z∗) = gMVM = VMgNΩMN = −gΛMΛ + gΛLΛ , (7.124)

and the gM is a symplectic vector related to the embedding tensor θM , that selects the
combination of vectors that gauges U(1) ⊂ R-symmetry group, as follows16

gM = gθM , (7.125)

g being the gauge coupling constant. The corresponding one-dimensional effective action
and the hamiltonian constraint are given, respectively, by

S =

∫
dr eW

{
U ′ 2 −W ′ 2 + Gij∗zi ′zj

∗ ′ − e2(U−W )Vbh +
1

2
e−2(U−W )Vfi

}
, (7.126)

U ′ 2 −W ′ 2 + Gij∗zi ′zj
∗ ′ + e2(U−W )Vbh −

1

2
e−2(U−W )Vfi = 0 . (7.127)

The black-hole potential takes the simple form

− Vbh(z, z∗,Q) = |Z|2 + Gij∗DiZDj∗Z∗ , (7.128)

where

Z = Z(z, z∗,Q) ≡ 〈V | Q〉 = −VMQNΩMN = pΛMΛ − qΛLΛ , (7.129)

is the central charge of the theory.

15We assume the conventions of [320].
16Supergravity gaugings are originally electric, breaking therefore the symplectic covariance present in

the ungauged case. The embedding tensor formalism allows to formally keep the theory simplectically
covariant by introducing magnetic and electric gaugings.
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Constant scalars and supersymmetric attractors. In section (7.6) we studied the
case of constant scalars in the general theory (7.80). We found that, besides the solution
AdS2 ×R2, there was another possible solution, if Eq. (7.90) holds. We will see now how
this is always possible in N = 2 FI. The general theory of the attractor mechanism in
ungauged 4-dimensional Supergravity proves that, for extremal black holes, the value of
the scalars at the horizon is fixed in terms of the charges QM , and given by the so called
critical points or attractors, i.e., solutions to the system

∂iVbh (Q, φ) |φc
= 0 . (7.130)

There might be some residual dependence in the value at infinity if the potential has
flat directions. If the scalars are constant, they have to be given again by (7.130) in the
extremal as well as in the non-extremal case. It can be proven that there is always a class
of attractors, called supersymmetric, which obey

∂i |Z| |φc = 0 , and DiZ |φc = 0 , (7.131)

and therefore, given the definitions (7.123) and (7.128), they also obey (7.90) if QM ∼ gM .
Hence, setting the scalars to constant values given by the supersymmetric attractor points
of the black hole potential is always a consistent truncation, provided that gM is identified
with QM , which besides fixes the value of the black hole potential and the scalar potential
exclusively in terms of the charges.

7.8.1 The t3-model

In this section we consider a particular N = 2 FI model which can be embedded in String
Theory. In particular we start from Type-IIB String Theory compactified on a Sasaki-
Einstein manifold to five dimensions. This theory can be consistently truncated as to yield
pure N = 1, d = 5 Supergravity with Fayet-Iliopoulos terms, which, due to the absence
of scalars, introduce a cosmological constant. Further compactification on S1 gives us the
desired four dimensional theory, which is defined by [124,125,202,299]

nv = 1, F (X ) = −
(
X 1
)3

X 0
, g0 = g1 = g0 = 0⇒ Vfi (t, t∗) =

−β2

=mt
, (7.132)

where β2 = g2
1/3, and we have defined the inhomogeneous coordinate on the Special Kähler

manifold SU(1, 1)/U(1), by

t =
X 1

X 0
. (7.133)

This theory is known as the t3-model, and although the String Theory embedding re-
quires the gauging specified in Eq. (7.132), we are going to study it in full generality,
particularizing only at the end.

The canonically normalized symplectic section V is, in a certain gauge,

V = eK/2


1
t
t3

−3t2

 , (7.134)
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where the Kähler potential is

K = − log
[
i (t− t∗)3

]
. (7.135)

As a consequence, the Kähler metric reads

Gtt∗ =
3

4

1

(=mt)2
, (7.136)

and the central charge

Z =
p0t3 − 3t2p1 − q0 − q1t

2
√

2=mt3
. (7.137)

The period matrix NIJ is, in turn, given by

ReNIJ =

(
−2<3 3<2

3<2 −6<

)
, ImNIJ =

(
−(=3 + 3<2=) 3<=

3<= −3=

)
, (7.138)

where we use the notation: < ≡ <et, = ≡ =mt. The general expressions of Vbh and Vfi,
which can be obtained using Eqs. (7.123), (7.124), (7.128) and (7.129) read

Vbh =− 1

6=3

[
3=6p02

+ 9=4
[
p1 − p0<

]2
+ =2

[
q1 + 6p1<− 3p0<2

]2
(7.139)

+3
[
q0 + <

[
q1 + 3p1<− p0<2

]]2]
,

Vfi =− 1

3=

[
g2

1 + 3g1

[
g1<+ g0

[
=2 + <2

]]
+ 9

[
g0

[
−g1 + g0<

]
+ g12 [=2 + <2

]]]
.

(7.140)

Let’s consider the truncation <et = 0. In order to satisfy all the original equations of
motion (those with <et arbitrary) in such a case, we must impose the additional constraints

∂<Vbh(< = 0) = ∂<Vfi(< = 0) = 0. (7.141)

These conditions explicitly read

3=p0p1 − 2
p1q1

=
− q0q1

=3
= 0, (7.142)

3g0g
0 + g1g

1 = 0, (7.143)

and are satisfied (without loss of generality in the functional form of the potentials) if we
make

p1 = q1 = 0; g0 = g1 = 0 ∨ g0 = g1 = 0. (7.144)

Thus, setting <et to zero in a consistent manner notably simplifies the expressions for the
potentials

Vbh = −1

2

[
q2

0

=3
+ p02=3

]
, (7.145)

V I
fi = −

[
g2

1

3=
+ g1g

0=
]
, V II

fi = −
[
−3g0g

1

=
+ 3g12=

]
(7.146)
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The action is, making the redefinition t ≡ <+ ie
− φ√

3 , given by

SI<=0 =

∫
d4x
√
|g|
{
R+

1

2
∂µφ∂

µφ− 2e−
√

3φ
(
F 0
)2

+
g2

1

3
e
φ√
3 + g1g

0e
− φ√

3

}
, (7.147)

SII<=0 =

∫
d4x
√
|g|
{
R+

1

2
∂µφ∂

µφ− 2e−
√

3φ
(
F 0
)2 − 3g0g

1e
φ√
3 + 3g12

e
− φ√

3

}
, (7.148)

where we have already set A1
µ to zero, in order to make the truncation consistent with the

corresponding equation of motion.

Embedding the t3-model system in the E.M.D. As it can be trivally verified, we
have just obtained the action (7.99) with

Z(φ) = −2e−
√

3φ, q2 = 4q2
0, p2 = p02

, (7.149)

and the scalar potential of the E.M.D. system (Eq. (7.182)) given by

V (φ) = c1e
− φ√

3 + c2e
+ φ√

3 ; cI1 = −g1g
0, cII1 = −3g12

, cI2 = −g
2
1

3
, cII2 = 3g0g

1. (7.150)

Hence, we find that our axion-free t3-system with those particular choices of Z and V gets
embedded in the E.M.D. model and, for g0 = g1 = g0 = 0, also in String Theory in the
way explained at the beginning of this section. In such a case, Eq. (7.147) clearly becomes

SST =

∫
d4x
√
|g|
{
R+

1

2
∂µφ∂

µφ− 2e−
√

3φ
(
F 0
)2

+
g2

1

3
e
φ√
3

}
. (7.151)

7.9 hvLf solutions

In this section we are going to construct (purely and asymptotically) hvLf solutions to Eq.
(7.80). After establishing some results on the properties of the solutions corresponding to
the pure hvLf case in the general set-up of Eq. (7.88), we focus on the E.M.D. system,
obtaining the hvLf solutions allowed by the embedding of our axion-free Supergravity
model in this system. Then, we provide a recipe to construct asymptotically hvLf solutions
to these theories in the presence of constant and non-constant dilaton fields.

7.9.1 Purely hvLf solutions: general remarks

The hvLf metric in four dimensions, given by

ds2 = `2rθ−2
(
r−2(z−1)dt2 − dr2 − δijdxidxj

)
, (7.152)

is recovered in our set-up for specific values of U(r) and W (r), namely

e2U(r) = `2rθ−2z, e2W (r) = `4r2(θ−z−1) . (7.153)

For purely hvLf solutions, the equations of motion can be further simplified by direct
substitution of (7.153)

(θ − 2z)(θ − z − 2) + 2r4−θ`−2Vbh + rθ`2V = 0(7.154)

(θ − z − 1)(θ − z − 2) + rθ`2V = 0(7.155)

r−2(θ−z−1)
(
r2(θ−z−1)Gijφj ′

)′
− 1

2
∂iGjkφj ′φk ′ + r2−θ`−2∂iVbh −

1

2
rθ−2`2∂iV = 0 .(7.156)
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The Hamiltonian constraint reads

(2− θ)(3θ − 4z − 2) + 2r2Gijφi ′φj ′ + 4r4−θ`−2Vbh − 2rθ`2V = 0 . (7.157)

Eqs. (7.88) can be also adapted to the purely hvLf case. We find

V = −`−2X(θ,z)r
−θ, Vbh(φ,Q) =

1

2
`2Y(θ,z)r

θ−4, Gijφ̇iφ̇j =
1

2
W(θ,z)r

−2 , (7.158)

where

X(θ,z) = (θ − z − 2)(θ − z − 1), (7.159)

Y(θ,z) = (θ − z − 2)(z − 1), (7.160)

W(θ,z) = (θ − 2)(θ − 2z + 2) . (7.161)

Eqs. (7.154)-(7.157) are the general equations of motion that need to be solved in order
to find a hvLf solution to any theory that belongs to the class defined by Eq. (7.80).
Likewise, Eq. (7.158) provides the behaviour of the black hole potential and the scalar
potential, in terms of the variable r, for any hvLf solution consistent with the equations
of motion. Gij is positive-definite, therefore

Gijφi ′φj ′ ≥ 0⇔W(θ,z) ≥ 0, Gijφi ′φj ′ = 0 ⇔ φi ′ = 0 ∀i , (7.162)

and hence we can establish the following result: all the scalar fields of any purely hvLf
solution of any theory describable by Eq. (7.80) are constant iff θ = 2, or z = 1 + θ/2. In
addition, Vbh is, in our conventions, a negative definite function, hence Vbh ≤ 0⇔ Y(θ,z) ≤
0. These two conditions on the sign of W(θ,z) and Y(θ,z) are equivalent to imposing the
null-energy condition (NEC) to our purely hvLf solutions, as we commented before, and
define a region of acceptable solutions in the (θ, z)-plane, as we shall see.

It is possible to stablish some general results for the hvLf solutions of any theory
describable by Eq. (7.80) attending to the vanishing of V , Vbh and/or Gijφ̇iφ̇j . Let’s
proceed.

1. θ = 2
In this situation Gijφ̇iφ̇j = 0, and

V = −`−2z(z − 1)r−2, (7.163)

Vbh = −1

2
`2z(z − 1)r−2. (7.164)

The NEC imposes z ∈ (−∞, 0] ∪ [1,+∞), and we have the two special cases: θ = 2, z = 0
(which corresponds to Rindler spacetime) and θ = 2, z = 1 (which is Minkowski
space-time) for which V = Vbh = 0 as well.

2. z = 1 + θ
2

We have again Gijφ̇iφ̇j = 0, and

V = −`−2

(
θ

2
− 3

)(
θ

2
− 2

)
r−θ, (7.165)

Vbh = −1

2
`2
(
θ

2
− 3

)
θ

2
rθ−4. (7.166)
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The NEC translates into θ ∈ [0, 6], and we have three more special cases: the Ricci
flat one: θ = 6, z = 4 corresponding to V = Vbh = 0 (this is a particular case of the
general formalism developed in [88] for ungauged 4-dimensional N = 2 Supergrav-
ity); θ = 4, z = 3, which corresponds to V = 0, Vbh = −`2 (also in agreement with
the results of [88]); and θ = 0, z = 1, which is nothing but the AdS4 space-time in
a conformally flat representation, and the only solution with vanishing black hole
potential, and constant (non-zero) scalar potential compatible with the equations:
Vbh = 0, V ≡ Λ = −`−26.

3. z = 1, θ 6= 2, z 6= 1 + θ
2

We have Vbh = 0, whereas

V = −`−2 (θ − 3) (θ − 2) r−θ, (7.167)

Gijφ̇iφ̇j =
1

2
(θ − 2)θ r−2. (7.168)

The NEC becomes now θ ∈ (−∞, 0] ∪ [2,∞), and we have the limit case θ = 3, z = 1
which will be a particular case of the family considered in the next paragraph.

4. z = θ − 2, θ 6= 2, z 6= 1 + θ
2

This situation imposes V = Vbh = 0, whereas

Gijφ̇iφ̇j =
1

2
(θ − 2)(6− θ) r−2. (7.169)

The NEC reads θ ∈ [2, 6]. These will be solutions of the Einstein-Dilaton system for
Gij = 1

2δij , i = 1, and

φ = φ0 +
√

(θ − 2)(6− θ) log r. (7.170)

5. z = θ − 1, θ 6= 2, z 6= 1 + θ
2

We have now V = 0, while

Vbh = −1

2
`2 (θ − 2)

θ

2
rθ−4. (7.171)

Gijφ̇iφ̇j =
1

2
(θ − 2)(4− θ) r−2, (7.172)

and the NEC becomes θ ∈ [2, 4].

Another particularly interesting case corresponds to the Einstein-Maxwell system with a
cosmological constant: Gijφ̇iφ̇j = 0, V ≡ Λ. However, this could only be realized for
θ = 0, z = 1, which imposes the vanishing of Vbh. Hence, there is no purely hvLf solution
(for non-vanishing vector fields) for such model.

Purely hvLf in the E.M.D.

If we particularize now to the E.M.D. system, we find

V = −`−2X(θ,z)r
−θ, (7.173)

Υ = 2Vbh = `2Y(z,θ)r
θ−4, (7.174)

φ = φ0 +
√
W(z,θ) log(r) ⇒ r = e

φ√
Z . (7.175)
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Figure 7.1: Purely hvLf (θ, z) plane. Red lines correspond to Gijφ̇iφ̇j = 0, the blue ones
to Vbh = 0, and those in green to V = 0. The shaded regions represent solutions which
satisfy the NEC.

Therefore, V and Vbh written as functions of φ, must take the form

V (φ) = −`2X e−
θφ√
Z , (7.176)

Vbh(φ) =
1

2
`2Ye

(θ−4)φ√
Z . (7.177)

This means, on the one hand, that any E.M.D. theory susceptible of containing hvLf solu-
tions has a scalar potential which depends on φ through one single exponential (becoming
a constant when θ = 0, θ = 2 or z = 1 + θ/2 (φ = φ0 in the last two cases)) [64]. On the
other hand, the gauge coupling function is constant for θ = 4, and again if φ = φ0.

t3-model

Let’s see now what the situation is for the truncation of the t3-model considered in the
previous section. In this case, V I,II = c1e

−φ/
√

3 + c2e
φ/
√

3 with c2 = 0 ⇒ c1 = 0 in the
case I, and c1 = 0 ⇒ c2 = 0 in the case II. Since we can only keep one of the exponentials
(in order to match V with Eq. (7.176)), the only possibility is setting g0 = 0 (c1 = 0)
in the case I (which leaves us with the String Theory embedded model), and g0 (c2 = 0)

in the case II. In both situations, Z(φ) = −2 e−
√

3φ. In I there exists one only solution,
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which is magnetic, and corresponds to θ = −2, z = 3/2, g2
1 = 297/(4`2) and p2 = 11`2/4.

On the other hand, case II admits one only solution (magnetic as well) for θ = 1, z = 3,

g12
= 4/`2, and p2 = 8`2. Both solutions satisfy the NEC, as it was desirable, and have a

running dilaton given by Eq. (7.175) with Z = 12 and Z = 3 respectively.

7.9.2 Asymptotically hvLf in the E.M.D.

Non-constant scalar field

In order to construct new solutions with hvLf asymptotics, we switch now to A-B-f
variables. The required form for A and B is

e2A = rθ−2, e2B = r−2(z−1). (7.178)

With this election, Eq. (7.120) can be directly integrated, yielding

φ = φ0 +
√

(θ − 2)(θ + 2− 2z) log(r). (7.179)

Υ and V , in turn, become17

V =
1

2
r−θ

[
[1− θ + z]

[
2 [θ − 2− z] f + 3rf ′

]
− r2f ′′

]
, (7.180)

Υ = rθ−4
[
f [(θ − 2− z)(z − 1)]− r

2

[
(1 + θ − 3z)f ′ + rf ′′

]]
. (7.181)

In order to tackle the problem of constructing asymptotically hvLf metrics, and taking
into account the form of V (φ) and Z(φ) for our axion-free model (and others present in
the literature), we can start by considering these functions to have the generic form

V (φ) = c1e
−s1φ + c2e

s2φ + c3, (7.182)

Z(φ) = d1e
−t1φ + d2e

t2φ + d3. (7.183)

The form of V (φ) is motivated by the expression of Vfi appearing in the axion-free t3

model, as well as in other String Theory truncations present in the literature (see, e.g.
[148], [213]). On the other hand, additional terms to the single-exponential gauge coupling
have been introduced to mimic the quantum corrections appearing from String Theory
(see, e.g. [227]), in an attempt to cure the logarithmic behavior of the dilaton, which
blows up in the deep IR, pointing out the non-negligibility of quantum corrections in
this regime. The expressions for V (φ) and Z(φ) can be introduced in Eqs. (7.180) and
(7.107), (7.108) or (7.109) (depending on whether we are searching for electric, magnetic
or dyonic solutions) using Eq. (7.181). Once this is done, we are left with two second-order
differential equations for f(r) which can in general be converted into a first order equation
plus a constraint that remains to be fulfilled. Obtaining the general solution in the presence
of so many arbitrary parameters (c1, c2, c3, d1, d2, d3, s1, s2, t1, t2, z and θ) seems not
to be possible and therefore we are forced to consider further simplifications, keeping in
mind that the procedure does work for other set-ups in which Z(φ) and V (φ) are given by
a different choice of the parameters in (7.182) and (7.183). Taking into account the form

17Recall that Z is given in term of Υ in Eqs. (7.107), (7.108) and (7.109) depending on the case
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of the potentials obtained in the axion-free t3 model, let’s assume s1 = s2, d2 = d3 = 0
(we allow t1 to be positive or negative)

V (φ) = c1e
−s1φ + c2e

s1φ + c3, (7.184)

Z(φ) = d1e
−t1φ. (7.185)

The general form of the blackening factor, valid in all cases (electric, magnetic and dyonic),
reads

f(r) =
c3r

θ

D3
+
c2r

θ+s1∆

D2
+
c1r

θ−s1∆

D1
+
d1p

2r4−θ−t1∆

2Dp
+
q2r4−θ+t1∆

2d1Dq
+Kr2−θ+z , (7.186)

where ∆ =
√

(θ − 2)(θ − 2z + 2), K is an integration constant, and

D1 = (θ − 2)(2− 2θ + s1∆ + z), (7.187)

D2 = (θ − 2)(2− 2θ − s1∆ + z), (7.188)

D3 = (θ − 2)(2− 2θ + z), (7.189)

Dp = (θ − 2)(2− t1∆− z), (7.190)

Dq = (θ − 2)(2 + t1∆− z). (7.191)

As we said, there is an additional (non trivial) constraint to be satisfied

f ′′(r)− 2rθ−2

[
−c3 − c1r

−s1∆ − c2r
s1∆ − 1

2
r−θ(θ − z − 1)

[
2(−2 + θ − z)f(r) + 3rf ′(r)

]]
= 0.

(7.192)
At this point, there are several ways to construct solutions. On the one hand, it is possible
to impose values to z and θ and find the corresponding potentials admitting solutions for
particular blackening factors. On the other hand, it is possible to fix the coefficients in
the exponents of Z and V and find the blackening factors allowed by Eq. (7.192). We
will proceed along the lines of the second possibility, looking for solutions embedded in
the Supergravity t3 model. Before doing so, let’s consider the general case in which the
exponents in Z(φ) and V (φ) are such that s1 = θ/∆, t1 = (4− θ)/∆, and c2 = q = 0. The
result is a family of solutions for arbitrary values of z and θ determined by

c1 =
d1p

2(θ − z − 1)

2(1− z)
, (7.193)

f(r) =
d1p

2

2(1− z)(z − θ + 2)

[
1−Kr2+z−θ

]
, (7.194)

which is well known (see, e.g. [162], [213], [131])

f(r) ∼ 1−Kr2+z−θ. (7.195)

The same family can also be found for electric solutions setting s1 = θ/∆, t1 = (θ− 4)/∆,
and c1 = p = 0. In that case, the solution is given by

c1 =
q2(θ − 1− z)

2d1(1− z)
, (7.196)

f(r) =
q2

2d1(1− z)(z − θ + 2)

[
1−Kr2+z−θ

]
. (7.197)
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t3-model

1. Magnetic solutions. As we saw, a consistent truncation of the t3-model can be
embedded in the E.M.D. system for s1 = 1/

√
3, t1 =

√
3, c3 = 0. It turns out

that setting q = 0, it is possible to construct two families of solutions which, in
the apropriate cases, asymptote to the purely hvLf ones constructed in the previous
subsection. The first one is determined by

c1 = 0, θ = 2

(
1− ∆√

3

)
, c2 = Ap2, (7.198)

where A is a constant depending on z and θ. The blackening factor is given by

f(r) = Cp2r

(
2− ∆√

3

)
+Kr

(
2∆√

3
+z
)
, (7.199)

where C is another z, θ-dependent constant. Needless to say, the metric will not, in
general, asymptote to a hvLf (with exponents z, θ) as r → 0 except for particular
values of θ and z. However, if we choose θ = −2, z = 3/2, c2 = −9p2, we find

f(r) =
4p2

11

[
1−Kr

11
2

]
. (7.200)

The second family is characterized by

c2 = 0, θ =

(
2− ∆√

3

)
, c1 = Ap2, (7.201)

where A is another constant, and the blackening factor reads

f(r) = Cp2r

(
2− 2∆√

3

)
+Kr

(
∆√
3

+z
)
. (7.202)

If we set θ = 1, z = 3, it becomes

f(r) =
p2

8

[
1−Kr4

]
(7.203)

which, as we will see in a moment, is a particular a case of a dyonic solution admitted
by the model.

2. Electric solutions. Similarly, we can construct two families of electric solutions.
The first one is characterized by

c1 = 0, θ =

(
2 +

∆√
3

)
, c2 = Aq2, (7.204)

where, once more, A is a constant depending on z and θ. The blackening factor is
given by

f(r) = Cq2r

(
2+ 2∆√

3

)
+Kr

(
− ∆√

3
+z
)
, (7.205)

whereas for the second

c1 = Aq2, θ = 2

(
1 +

∆√
3

)
, c2 = 0, (7.206)
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f(r) = Cq2r

(
2+ ∆√

3

)
+Kr

(
− 2∆√

3
+z
)
. (7.207)

In contradistinction to the magnetic cases, for no values of (θ, z) the above solutions
take the form of Eq. (7.195). This is obviously connected to the fact that no
purely hvLf electric solutions exist in this model for non-constant dilaton and scalar
potential, as we saw before.

3. Dyonic solutions. It is possible to show that a dyonic solution does exist for θ = 1,
z = 3, c2 = 0, and c1 = −3p2/2, with a blackening factor given by

f(r) =
p2

8

[
1−Kr4 +

q2

p2
r6

]
. (7.208)

The corresponding metric Eq.(7.113) reads (after the redefinitions dR2 = 8dr2/p2,
dT 2 = 8dt2/p2)

ds2
f =

L2

R


[
1−KR4 +

p4q2

512
R6

]
dT 2

R4
− dR2[

1−KR4 + p4q2

512 R
6
] − d~x2

. (7.209)

It asymptotes to a hvLf as R → 0 with θ = 1, z = 3, and to a different one as
R→∞ with θ = 5/2, z = 3/2 as it can be seen by taking the limit in the previous
expression, and defining ρ ∼ R−2

ds2
f
R→+∞∼ L2

R

[
R2dT 2 − dR2

R6
− d~x2

]
, (7.210)

ds2
f

[R→+∞, R−2=ρ]∼ L2ρ1/2

[
dT 2

ρ
− dρ2 − d~x2

]
, (7.211)

which corresponds to θ = 5/2, z = 3/2. The value of K can be fixed in a way such
that ∃ Rh ∈ R+ / f(Rh) = 0, or chosen to get a positive-definite metric in the whole
spacetime.

In the previous section, we constructed two consistent truncations of this model
(which we called ”I” and ”II”). The first one is such that c2 = 0 ⇒ c1 = 0, and hence
the solution can be embedded in that model only for a vanishing Vfi and magnetic charge.
For the second, in turn, we get the conditions g0 = 0,

(
g1
)2

= p2/2. It is interesting
to investigate how the solution gets modified by turning off the electric or the magnetic
charge. Obviously, setting q = 0 does not change the R → 0 behavior, but does change
the R→ +∞ one. In such a case, the metric becomes

ds2
f

[R→+∞,R−1=ρ]∼ ρ
[
dT 2 − dρ2 − d~x2

]
, (7.212)

which is conformal to Minkowski, and corresponds to a hvLf with θ = 3, z = 1. On the
other hand, restoring q and setting p = 0, imposes the vanishing of Vfi, and the solution
is θ = 3, z = 1 as R→ 0, and again θ = 5/2, z = 3/2 as R→ +∞.

168



Chapter 7. Lifshitz-like solutions with hyperscaling violation in supergravity

It turns out that there exists another dyonic solution for θ = 5/2, z = 3/218. This is
somehow ”dual” to the previous one, as it presents the same IR and UV behavior but

with both regimes interchanged. It is characterized by c1 = 0, c2 = −3q2

8 , and

f(r) = 2p2

[
1−Kr +

q2

16p2
r3

]
. (7.213)

In our ”I” truncation, cI2 = −g2
1/3 ⇒ g2

1 = 9q2/8. Making the redefinitions dR2 =
dr2/(2p2), dT 2 =

√
2pdt2, it reads

ds2
f = L2R1/2


[
1−KR+

pq2

4
√

2
R3

]
dT 2

R
− dR2[

1−KR+ pq2

4
√

2
R3
] − d~x2

. (7.214)

As R→ +∞, this becomes

ds2
f

[UV, R=ρ−2]∼ L2

ρ

[
dT 2

ρ4
− dρ2 − d~x2

]
, (7.215)

up to constants, which corresponds to a hvLf with θ = 1, z = 3.

Constant scalar field

Let’s consider now the case of a constant scalar field, φ′ = 0. As explained in section 7.6,
we consider

∂φVbh = ∂φV = 0. (7.216)

In this case, the potential and the coupling become constant and we can write V = Λ,
Z = −Z2

0 . When Z and V are given by Eqs. (7.183) and (7.182), Eq. (7.216) translates
into

∂φVbh(φ = 0) = ∂φZ

(
p2 − q2

Z2

)
|φ=0 = (−t1d1 + t2d2)

(
p2 − q2

(d1 + d2)2

)
= 0, (7.217)

∂φV (φ = 0) = (s2c2 − s1c1) = 0, (7.218)

where we have imposed φ = 0 to be a critical point of the potentials. We choose to fulfill
the first condition demanding (d1 + d2)2 = q2/p2 which, when d1 = 0, reads d2 = −|q/p|.
On the other hand, the second condition is s1c1 = s2c2, that becomes c1 = c2 when both
exponents (s1 and s2) coincide. After imposing these constraints, V and Z become

V = c2

(
s2

s1
+ 1

)
+ c3 ≡ Λ(= 2c2 + c3 if s2 = s1), (7.219)

Z = −
∣∣∣∣qp
∣∣∣∣ ≡ −Z2

0 . (7.220)

We have two cases: z = 1 + θ/2 and θ = 2 (and the one in the intersection: z = 2, θ = 2).

18One may wonder why we did not find a purely hvLf for these values of the exponents in the previous
subsection. The reason is that for θ = 5/2, z = 3/2 we have X(θ,z) = 0, which implies the vanishing of Vfi

in the purely hvLf case. In fact, to recover the pure solution, we have to set K = q = c2 = 0, and since we
have already set c1 = 0, this would make Vfi = 0.
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1. z = 1 + θ
2 , θ 6= 2. In this situation, it is possible to find a solution which imposes no

further constraints on V and Vbh. This reads

f(r) = −Kr3−θ/2 +

[
12Z2

0r
4−θ − 2Λrθ

]
3(θ − 2)2

. (7.221)

The case z = 1, θ = 0, in which we expect to recover AdS4 asymptotically is a par-
ticularization of this. The blackening factor reads then

f(r) = −Λ

6
−Kr3 + Z2

0r
4, (7.222)

Assuming a negative cosmological constant, Λ = −|Λ|, this can be rewritten as

f(r) =
|Λ|
6

[
1−Kr3 +

6Z2
0

|Λ|
r4

]
. (7.223)

If we define dT 2 = |Λ|dt2/6, dR2 = 6dr2/|Λ|, the metric Eq. (7.113) becomes

ds2
f =

L2

R2


[
1−KR3 +

|Λ|Z2
0

6
R4

]
dT 2 − dR2[

1−KR3 +
|Λ|Z2

0
6 R4

] − d~x2

 , (7.224)

which, of course, asymptotes toAdS4 asR→ 0, and is such that ∃Rh ∈ R+ / f(Rh) =
0 for K > 0. Similarly, the metric blows up as R → ∞, behaving as a hvLf with
θ = 4, z = 3. Indeed,

ds2
f
R→∞∼ L2

R2

[
R4dT 2 − dR2

R4
− d~x2

]
(7.225)

up to constants; if we make now the change ρ ∼ 1/R

ds2
f
ρ→0∼ L′2ρ2

[
dT 2

ρ4
− dρ2 − d~x2

]
, (7.226)

we find a hvLf metric with θ = 4, z = 3 as we have said. If we plug these values
θ = 4, z = 3 in Eq. (7.221) we find a new solution, which behaves asymptotically as
this one (with the IR and UV regions interchanged). Indeed, its blackening factor
reads

f(r) = Z2
0

[
1−Kr +

|Λ|
6Z2

0

r4

]
, (7.227)

and with the redefinitions dR2 = dr2/Z2
0 , dT

2 = dt2/Z2
0

ds2
f = L2R2


[
1−KR+

|Λ|Z2
0

6
R4

]
dT 2

R4
− dR2[

1−KR+
|Λ|Z2

0
6 R4

] − d~x2

 . (7.228)

As R→ 0, it becomes a hvLf with θ = 4, z = 3, and as R→∞,

ds2
f = L2R2

[
dT 2 − dR2

R4
− d~x2

]
, (7.229)
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which we can rewrite as (ρ = 1/R)

ds2
f =

L′2

ρ2

[
dT 2 − dρ2 − d~x2

]
, (7.230)

which is AdS4.

2. θ = 2. This case imposes the constraint Z2
0 = −Λ

2 , and can be solved for any value
of z. The general form of f(r), which applies for z 6= 2 is now

f(r) =
2Z2

0r
2

(z − 2)2
+ rzK1 + r2(z−1)K2, (7.231)

whereas for z = 2 we have

f(r) = 2r2 log(r)
[
K2 + Z2

0 log(r)
]

+K1r
2. (7.232)

For example, if we consider the case θ = 2, z = 1, we inmediatly find the asymptot-
ically flat metric (as r → 0)

f(r) = 1−Kr + 2Z2
0r

2, (7.233)

ds2
f = l2

{
dt2
[
1−Kr + 2Z2

0r
2
]
− dr2[

1−Kr + 2Z2
0r

2
] − d~x2

}
, (7.234)

for which, once more ∃ rh ∈ R+ / f(rh) = 0 for K > 0. As r →∞, up to constants,
it behaves as

ds2
f

[R→+∞]∼ l′
2 [
e2Rdt2 − dR2 − d~x2

]
, (7.235)

where we defined R = log r. This is nothing but AdS2 × R2. On the other hand, if
we set θ = 2, z = 2, from Eq. (7.232) we find

f(r) = 2r2 log(r)
[
−K + Z2

0 log(r)
]

+ r2 [R=log r]
= e2R

[
1−KR+ 2Z2

0R
2
]
, (7.236)

ds2
f = l2

{
dt2
[
1−KR+ 2Z2

0R
2
]
− dR2[

1−KR+ 2Z2
0R

2
] − d~x2

}
(7.237)

which is nothing but Eq. (7.234).

7.10 Conclusions

We have started by describing several procedures to construct, from known black-hole
and black-brane solutions of any ungauged supergravity theory, non-trivial gravitational
solutions whose “near-horizon” and “near-singularity” limits are Lifshitz-like metrics with
hyperscaling violation which depend on the physical parameters of the original black-hole
solution.

In particular, this shows that hvLf metrics are very generic, and not restricted to
particular EMD models as frequently assumed in the previous literature.
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Since the new solutions can be constructed from any black-hole solution of any
ungauged supergravity, many of them can be easily embedded in String Theory.

In the last sections, we have studied purely hvLf and hvLf -like solutions of the
general class of theories defined by the Lagrangian (7.80), which covers any theory of
gravity coupled to an arbitrary number of scalars and vector fields up to two derivatives.
We have obtained the general effective one-dimensional equations of motion that need to be
solved in order to obtain hvLf -like solutions. The general analysis is intended to complete
the case-by-case results present in the literature in a unified framework: given a particular
kinetic matrix (IΛΣ(φ), RΛΣ(φ)), a scalar metric Gij(φ) and a scalar potential V (φ), the
equations of motion of the theory follow trivially by plugging them into (7.85)-(7.87) and
the Hamiltonian constraint (7.84). For this broad family of theories, we have discussed the
existence and properties of purely hvLf solutions attending to the presence (or absence)
of non-constant scalar fields and non-vanishing black hole and scalar potentials.

In the context of N = 2 FI Supergravity, we have studied the t3-model, for which we
have explicitly constructed two consistent axion-free embeddings in the E.M.D. system,
one of which is, in turn, embedded in Type-IIB String Theory for a particular choice of
embedding tensor θM .

In addition, we obtained the general form of the f(r) function (for the set of metrics
determined by Eqs. (7.178) and (7.113)), up to a constraint, for a rather general family of
(Supergravity inspired) scalar and black-hole potentials, and explicitly constructed some
dyonic solutions for the t3 truncations considered. We have provided a straightforward
procedure to construct asymptotically hvLf solutions covered by Eqs. (7.178) and (7.113)
for the family of theories specified by Eqs. (7.184), reducing the task to solving a single
algebraic constraint given by Eq. (7.192).

We have avoided, on purpose, the term black hole to denote the hvLf -like solutions
obtained in this chapter. The reason is that, although may of the solutions look like black
holes, a proof (for example by constructing the corresponding Penrose-Carter diagram) is
still missing. Therefore, any results obtained from them implicitly assuming that they do
represent a black hole must be interpreted carefully, knowing that those would be yet to
be proven statements.
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Holographic entanglement entropy in hvLf

geometries

This chapter is based on

Pablo Bueno and Pedro F. Ramı́rez,
“Higher-curvature corrections to holographic entanglement

entropy in geometries with hyperscaling violation”,
JHEP 1412 (2014) 078. [arXiv:1408.6380 [hep-th]] [94].

Let us consider again the familiy of Lifshitz-like metrics with hyperscaling violation
defined in the previous chapter. In order to have a clear interpretation of a constant r
slice (with r → 0) of the geometry defined by (7.3) as the boundary of the metric, let
us consider θ < d metrics from now on1. θ > d would correspond to a negative effective
number of spatial dimensions according to the arguments previously explained. Also,
when θ > 0, hvLf metrics suffer from a curvature UV-singularity in the Einstein frame:
indeed, the Kretschmann invariant scales as RµνρσR

µνρσ ∼ r−4θ/d. In appearance, this
means that hvLf metrics with θ < 0 are completely reliable in the UV, whereas those with
0 < θ < d need to be completed asymptotically, something which is usually performed
through the assumption that spacetime is described by (7.3) only above some scale rF ,
but asymptotes to some well-behaved solution, such as AdSd+2, as r << rF . As explained
in [136], this statement is imprecise. The authors argue that hvLf geometries with θ 6= 0
typically require a UV-divergent (linear) dilaton, which allows one to tune the curvature
singularity (appearing in the cases in which 0 < θ < d) by changing to an appropriate
Weyl frame, and completely absorb it in such scalar field. The linear running character
of the dilaton is a characteristic feature of general hvLf backgrounds (with θ 6= 0) so one
needs to be careful when interpreting the UV physics from the field theory perspective not
only for θ > 0, but also for θ < 02. We will come back to this in the discussion section.

There are several ways in which holography allows us to study the properties of
the dual quantum field theories (QFTs). A prominent example is the computation of
entanglement entropy (EE), which will be the subject of this chapter.

Entanglement entropy has indeed become an essential tool in fields as diverse as
condensed matter [8, 218, 292, 364], quantum information [345, 425], String Theory and
quantum gravity [68, 73, 101, 236, 295, 310, 336, 347, 378, 379, 400, 415], and QFT [100, 117,
119,123,275,276,388].

1The formulation of the holographic dictionary for hvLf geometries has been addressed in [135,136].
2We thank Robert C. Myers and Ioannis Papadimitriou for their comments and explanations about this

point
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Chapter 8. Holographic entanglement entropy in hvLf geometries

As explained in the introduction, the ultraviolet (UV) behaviour of the EE for
general (d+ 1)-dimensional QFTs is expected to be [119]:

S =
kd−1

δd−1
+ ...+

k1

δ
+ k0 log

l

δ
+ S0 , (8.1)

where δ is a short distance cutoff, S0, k0 and ki constants, and l is a characteristic length
of A. The coefficient of the leading term is proportional to the area of the boundary of
A (kd−1 ∼ ld−1), a behaviour which is usually argued to be caused by the entanglement
between degrees of freedom living at both sides of ∂A. This is the so-called area law [73,
400] of entanglement entropy. When the leading term in EE depends on the characteristic
length of A in a different fashion, we speak about a violation of this law. One such
kind of violation occurs when the leading contribution to S contains a factor which scales
logarithmically with the characteristic length of A (see below). Another example of this
happens when the leading term scales with a power of l different from the dimension of
∂A (see, e.g. [333]).

An interesting point to notice is the fact that k0 is universal in the following sense:
if we shift δ → δε, the coefficients ki are shifted by ki → kiε

−i, whereas k0 remains the
same by virtue of the properties of the logarithm (the shift is absorbed in S0). As a
consequence, k0 is independent of the regularization prescription (and usually related to
the central charge of the underlying QFT in the case of CFTs).

As we have said, although the area law turns out to hold for a vast range of systems,
it is well-known that this is not always the case. A paradigmatic example is given by 2D
CFTs, where EE scales logarithmically with the length of A, l, and k0 turns out to be
proportional to the central charge of the theory [100,238]

S =
c

3
log

l

δ
. (8.2)

In higher dimensional theories, violations of the area law appear in QFTs with Fermi
surfaces [326,407,426]. In such cases, S acquires a logarithmic dependence on the charac-
teristic length of A

S ∼ (lkF )(d−1) log(lkF ) , (8.3)

being kF the Fermi momentum3, and the area law is violated. It has been argued that
certain QFTs with Fermi surfaces might be holographically engineered by considering the
family of hvLf metrics in the case θ = d − 1 [162, 246, 349], as we will review in section
8.2; indeed in these cases, the HEE exhibits a logarithmic violation of the area law (note
that the case θ = 0 precisely corresponds to AdS3). Also, as observed in [162], the leading
term in the HEE expression will not respect this law for any value of (d− 1) ≤ θ ≤ d.

In the context of holography, EE for theories dual to Einstein gravity can be com-
puted through the Ryu-Takayanagi prescription [379]4. According to this, the holographic
entanglement entropy (HEE) for a certain region A living in the boundary of some asymp-
totically AdSd+2 spacetime is given by

SEG = ext
m∼V

[
A(m)

4G

]
, (8.4)

3Such behaviour comes from the effective 2D CFT which governs the physics of modes at the Fermi
surface [385,407]

4Remarkably, this prescription has been recently proven under certain conditions in [296].
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where m are codimension-2 bulk surfaces homologous to A with ∂m = ∂A, and A(m) is the
d-dimensional volume (area) of m. Hence, HEE in theories with an Einstein gravity dual
is obtained by extremizing the area functional over all possible bulk surfaces homologous
to A whose boundary coincides with ∂A.

The situation changes when we start considering higher-curvature terms in the bulk
Lagrangian. In such cases, the Ryu-Takayanagi prescription does not produce the correct
answer for the HEE. Actually, (9.8) might be somehow regarded as a generalization of the
Bekenstein-Hawking formula for the entropy of black holes [27,39,233], which suggests that
the expression for the EE in the presence of higher-derivative gravities might be obtained
by applying the same generalization to Wald’s formula, which gives the black hole entropy
in this class of theories [420]5

SWald =
1

4G

∫
H
d2y
√
hH

∂L
∂Rµνρσ

εµνερσ . (8.5)

However, in [247] this was shown to be wrong, since this expression would produce in-
correct universal terms. Alternative expressions yielding the right terms are known for
Lovelock gravities [247, 256, 381] as well as for curvature-squared theories [185, 336]. Re-
markably enough, a general formula for any theory involving arbitrary contractions of the
Riemann tensor L(Rµνρσ), which seems to satisfy several consistency checks, has been
recently proposed by Dong [161] (see also, e.g. [65, 66, 103, 170])). The corresponding
expressions would contain a Wald-like term as well as additional terms involving contrac-
tions of extrinsic curvatures (which vanish in the case of a Killing horizon) with second
derivatives of the Lagrangian with respect to the Riemann tensor.

In this chapter we are going to study the effects of including higher-order curvature
terms in the gravity Lagrangian on the HEE formula for hvLf geometries. The motivation
for this study is manyfold. On the one hand, studying higher-order gravity Lagrangians
in the holographic context is intrinsically interesting, given that such terms generically
appear as α′ corrections in the appropriate String Theory embedding, corresponding to
moving away from the infinitely coupled regime in the dual field theory. Secondly, as we
have explained, hvLf geometries have been shown to provide interesting violations of the
area law of EE for certain values of θ and, particularly interestingly, logarithmic terms
for θ = d − 1, in whose case they have been argued to be intimately related to certain
condensed matter systems. A natural question to ask is how the inclusion of higher-
curvature terms will alter the structure of the HEE and whether these modifications can
lead to new logarithmic terms, which might contain universal information about the dual
theory (see the discussion about the UV interpretation of hvLf metrics in section 8.3).
Also, the expressions for HEE in higher-order Lagrangians which are known at present
are restricted to a handful of theories, as explained before, and have not been proven
in general. This makes interesting to check how they perform in different situations,
probing whether they produce sensible results in the different cases. An example of this
is given by Gauss-Bonnet gravity in d = 2 (4-dimensional spacetime). In such case, the
HEE (which can be obtained using the so-called Jacobson-Myers (JM) functional [256])6

should not change with respect to the Einstein gravity case, since the equations of motion
are unchanged in this case, and any remainder of λGB should be completely removed by
including the boundary term prescribed in the JM functional.

5In (8.5), L is the gravity Lagrangian, H stands for the horizon, hH is the induced metric on it and εµν
is a binormal to H.

6See section 8.1.
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In the next section we study the structure of divergences of HEE for a stripe in
the boundary of hvLf metrics when θ ≤ 0, for higher-order gravities. We start with
curvature-squared, for which the HEE functional is known [185], dealing with the cases
of R2, Gauss-Bonnet and Ricci2. We will find that a single new divergence appears in all
cases, and how it cannot become logarithmic for any value of θ except for θ = 0, d = 1,
corresponding to the well-known AdS3 case. However, extending the analysis to higher-
curvature (nth-order) gravities we will find that new logarithmic divergences will show up
for

θ =
d(d− 1)

d− 2(n− 1)
, (8.6)

provided d < 2(n − 1). We will therefore find that an infinite family of hvLf geometries
produces new logarithmic contributions to the HEE formula when these geometries are
embedded in higher-curvature gravities. For R2 gravity we will be able to compute the
O(λ1) correction to the universal constant term as well. Also, in the section devoted to
Gauss-Bonnet gravity, we show explicitly that the boundary term in the JM functional
exactly cancels the bulk surface contribution when d = 2, as expected.

In section 8.2 we study the case 0 < θ < d, for which we consider a UV AdS-
completion of the geometry, following the steps of [349]. We will find that (8.6) holds
for the appearance of logarithmic contributions to the HEE, with the difference that now
d > 2(n−1). However, both conditions together will turn out to restrict the allowed values
of θ > 0 to the well-known case of θ = d − 1 [162, 246, 349], corresponding to Einstein
gravity.

In section 8.3 we summarize our findings, comment on possible extensions and con-
clude.

Finally, in appendix D we consider the case in which the anisotropic scaling occurs
along a spatial direction instead of time, which can be understood as a double Wick
rotation of the standard hvLf geometry [7,154], and analyze how this changes the discussion
of the previous sections. New logarithmic terms are found here for some combinations of
z, θ and d.

8.1 HEE for hvLf geometries in higher-curvature gravities
I: θ ≤ 0

◦ Einstein gravity.
Before considering higher-curvature corrections, let us start reviewing the Einstein gravity
result for the HEE of hvLf geometries. We do so here for the class of metrics with θ ≤ 0,
which we study in this section. Along this chapter we will consider an entangling region
A consisting of a multi-dimensional infinite strip s of width l and infinite length LS →
+∞ (this length plays the role of an IR cut-off), s = {(tE , r, x1, x2, ..., xd) s.t., tE = 0,
x1 ∈ [−l/2, l/2], x2,...,d ∈ (−LS/2,+LS/2)}. As explained in the introduction, HEE for
field theories dual to Einstein gravities7 can be computed using the Ryu-Takayanagi pre-
scription [379]

SEG =
1

4G

∫
m
ddx
√
gm , (8.7)

7By this we mean theories with Lagrangians given by L = R− 2Λ + Lother fields.
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where m is the bulk surface homologous to A, with ∂m = ∂A, which extremizes the above
functional, and gm is the determinant of the induced metric on m.

The translational symmetry of the strip along the directions 2, ..., d allows us to
parametrize the entangling surface m as r = h(x1). For our hvLf geometry (1.114), the
induced metric on such a surface reads

ds2
m = L2h

2(θ−d)
d

[[
1 + ḣ2

]
dx2

1 + d~x2
(d−1)

]
, (8.8)

where d~x2
(d−1) ≡ dx

2
2 + ...+dx2

d. Using this expression and the fact that m must be mirror
symmetric with respect to the plane x1 = 0, we find

SEG =
LdL

(d−1)
S

2G

∫ l/2

0
dx1 h

(θ−d)

√
1 + ḣ2 , (8.9)

The Lagrangian does not depend explicitly on x1, so we have a conserved quantity

h
(θ−d)
∗ =

h(θ−d)√
1 + ḣ2

, (8.10)

where h∗ is the turning point of the surface, in which ḣ|h∗ = 0. Substituting this expression
in (8.9), we find

SEG =
LdL

(d−1)
S h

(θ−d+1)
∗

2G

∫ 1

δ/h∗

u(θ−d)du√
1− u2(d−θ)

, (8.11)

where we made the change of variable u = h/h∗ and introduced the UV cut-off (h(x1)→
δ)↔ (x1 → ±l/2). The turning point is related to the strip width through

l

2
=

∫ l/2

0
dx1 = h∗

∫ 1

0

u(d−θ) du√
1− u2(d−θ)

= h∗

√
πΓ
(

1+d−θ
2(d−θ)

)
Γ
(

1
2(d−θ)

) . (8.12)

These two integrals allow us to obtain the final expression for the entanglement entropy
of the strip

SEG =
LdL

(d−1)
S

2G(d− θ − 1)

δ−(d−θ−1) − (l/2)(θ−d+1)

√πΓ
(

1+d−θ
2(d−θ)

)
Γ
(

1
2(d−θ)

)
(d−θ) . (8.13)

This is the beautiful formula found in [162]. As we can see, the scaling behavior of the
HEE gets modified with respect to the AdSd+2 case [378] by factors with dimensions of
(length)θ. In particular, we find a corrected exponent for the divergent term of order

B0 ≡ d− θ − 1 . (8.14)

Of course, B0 is always positive for θ < 0. One can introduce an intermediate scale
rF as explained in the introduction, which would modify the factors δθ → (δ/rF )θ and
(l/2)θ → (l/(2rF ))θ. When θ = 0, we recover the usual AdSd+2 expression [378]

SEG =
LdL

(d−1)
S

2G(d− 1)

δ−(d−1) − (l/2)(1−d)

[√
πΓ
(

1+d
2d

)
Γ
(

1
2d

) ]d , (8.15)
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which in the limit case of d = 1, corresponding to AdS3, yields a logarithmic divergence

SEG =
L

2G
log

[
l

δ

]
. (8.16)

It is well-known that hvLf geometries can produce logarithmic terms in the HEE for
θ = d−1. However, given that these cases correspond to metrics with 0 < θ < d for d ≥ 2,
we will review them in section 8.2, along with the corresponding new higher-order terms.

◦ Higher-curvature corrections to HEE.
We are interested now in considering higher-order curvature corrections to the bulk action
and see how they affect the HEE expression for hvLf geometries. In general, the gravita-
tional action will be given by Einstein’s gravity plus an (infinite) sum of higher-curvature
terms with small coupling constants (otherwise, the semiclassical approximation would
not make sense)

Ig =
1

16πG

∫
dd+2x

√
g

[
R+

d(d+ 1)

L̃2
+ L̃2

[
λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ
]

+ L̃4O(R3)

]
,

(8.17)
being L̃ a length scale which would coincide with the AdSd+2 radius L for Einstein gravity,
but would be different in general otherwise, and λ1,2,3,... dimensionless couplings.

The next step would correspond now to choose some matter content and solve the
equations of motion for the corresponding fields trying to determine if our hvLf family
of metrics (7.3) can be embedded into the theory. The case of curvature-squared gravity
was studied in [350], where the authors consider an EMD system with general curvature-
squared corrections. For our purposes, it suffices to recall the fact that hvLf geometries are
indeed solutions of the corresponding equations of motion, and are expected to appear as
well as solutions to similar EMD gravities with even higher-curvature corrections. Another
interesting piece of information we can extract from [350] is the fact that the NEC arising
in a general EMD curvature-squared gravity reduces in general to a pair of conditions on
(z, θ) and the couplings of the new terms, plus the well-known NEC of the Einstein gravity
case [162]

(z − 1)(z − θ + d) ≥ 0 , (8.18)

(d− θ)(d(z − 1)− θ) ≥ 0 , (8.19)

which in the case under consideration in this chapter, i.e., d > θ, reduces to the condition
z ≥ 1. From now on, we restrict ourselves to this case, although as we will see, our results
would not get modified for z < 1 since z will not appear in the exponents of the different
terms in the HEE expressions for our hvLf geometries8.

Unfortunately, computing HEE in general higher-curvature gravities is a very hard
task at present because Dong’s recipe [161] turns out to be difficult to apply in most
cases, with some exceptions such as Lovelock [247,256], curvature-squared [185] and f(R)
gravities [161, 420]. Nevertheless, making use of the results found in curvature-squared
gravity plus some general arguments, which we will discuss in a moment, we will to try
to say something about the structure of divergences of the HEE in any higher-curvature
gravity for our hvLf geometries.

8The situation will change in appendix D, where we will consider a doubly Wick-rotated version of
(1.114).
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There are two steps one needs to take in order to successfully obtain the HEE ex-
pression in any higher-curvature gravity for any background, assuming the HEE functional
is known. The first is extremizing such a functional, whereas the second corresponds to
evaluating the on-shell integral. The first one is undeniably harder in general, since the
equations of motion we pretend to solve will usually be of high order in derivatives, and
very non-linear. However, we can note the following: in the HEE expression we will find
in general a sum of divergent terms coming from the on-shell evaluation of the integral
near the boundary, plus a constant term related to the bulk contribution. In geometries
in which the higher the order of the curvature term the faster it goes to zero in the UV,
we will find an expression consisting of a leading Einstein gravity divergence plus pos-
sible subleading divergences coming from the higher-order terms, plus a constant term.
The question is now how the fact that the entangling surface is different in higher-order
gravities with respect to the Einstein gravity case affects the HEE expression, given that
the functional we need to extremize is different. We expect the surface to be significantly
different away from the UV, where the new terms become large, producing therefore new
corrected constant terms. However, as we approach the boundary, where the divergences
are to appear, the higher-order terms will die out, and the shape of the entangling surface
should not differ much from the Einstein gravity one. This is analogous to computing the
area for different surfaces sharing boundary with the extremal area one, m. The result
will of course differ, but the order of the divergences will be the same as the one found for
m. Thus, it is reasonable to expect that the new divergent terms (if any) appearing in the
HEE expression for higher-curvature terms will be produced from the evaluation of the
on-shell integral using the surface which extremizes the area functional of Einstein gravity,
without having to find the surface which extremizes the new functional. In other words,
the new entangling surface should not change the structure of divergences with respect
to the one with extremal area and this has two interesting consequences. First, we can
identify the order of the divergences of higher-order gravity terms using the extremal area
surface, and second, every new divergence will appear at order O(λ) in the corresponding
gravitational coupling. Therefore, any term of order O(λ2) or higher will appear next to
a constant, arising from the bulk contribution to the integral.

At this point it is convenient to stress that the study of the structure of divergences of
the HEE is physically motivated by the fact that it allows us to determine the dependence
of the different terms with the size of the entangling region. In particular, we can use this
to check if the area law holds, unveil the presence of universal terms, etc.

Let us now turn to the real calculations. We are going to study in full detail the
case of R2 gravity, in which we will be able to compute the corrected extremal surface.
This will allow us to illustrate how the above argument works, and use it to compute
the structure of divergences for general curvature-squared gravities, including the more
involved cases of Gauss-Bonnet and Ricci2 gravities. We will finish this section showing
how the results found for these theories allow us to conjecture the form of all divergences
in any higher-order curvature gravity for our hvLf metrics. Let us start with curvature-
squared gravities.
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8.1.1 R2 gravity

The most general curvature-squared gravity action can be written in terms of three con-
tractions involving the Riemann tensor. These can be chosen to be

Icurv2 =
1

16πG

∫
dd+2x

√
g

[
R+

d(d+ 1)

L̃2
+ L̃2

[
λ1R

2 + λ2RµνR
µν + λGBX4

]]
, (8.20)

where X4 = R2 − 4RµνR
µν + RµνρσR

µνρσ is the Gauss-Bonnet term, which in four bulk
dimensions corresponds to the Euler density of the spacetime manifold.

In the case of R2 gravity, the HEE functional9 is given by [185]

SR2 =
1

4G

∫
m
ddx
√
gm

[
1 + 2λ1L̃

2R
]
. (8.21)

For our hvLf metrics (1.114) the Ricci scalar reads

R = κ
r−2θ/d

L̃2
, (8.22)

where we have defined the constant

κ ≡ −2L̃2

L2

[
z2 + zd+

d+ 1

2

[
d− 2θ − θ

d
(2z − θ)

]]
. (8.23)

As a curiosity, there are certain combinations of (z, θ) for which κ vanishes, meaning that
the R2 contribution identically vanishes, and does not produce any correction at all with
respect to the Einstein gravity result. The corresponding curves for which this happens
are shown in Figure 8.1. Leaving this case aside, the expression for the entanglement

2 4 6 8 10
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z

Figure 8.1: Curves (θ, z) for which the Ricci scalar of hvLf metrics vanishes. d = 1 is
depicted in yellow, whereas darker lines correspond to d = 2, 3, ...

9The functional proposed by [185] for the HEE of curvature-squared gravities has been used in several
works, including [2, 3, 67].
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entropy of the strip becomes, using (9.60)

SR2 =
LdL

(d−1)
S

2G

∫ l/2

0
dx1 h

(θ−d)

√
1 + ḣ2

[
1 + 2κλ1h

−2θ/d
]
. (8.24)

Since the functional does not depend on x1 explicitly, there is again a first integral which
we can use to write the expression for ḣ in terms of h. We have√

1 + ḣ2 =
f(h)h(θ−d)

f(h∗)h
(θ−d)
∗

, with f(x) ≡
[
1 + 2κλ1x

−2θ/d
]
, (8.25)

where h∗ is again the turning point of the surface, characterized by ḣ|h∗ = 0. We can use
this relation to rewrite (8.24) in terms of u ≡ h/h∗ as

SR2 =
LdL

(d−1)
S hθ−d+1

∗
2G

∫ 1

δ/h∗

du
u(θ−d)f(uh∗)√

1− u2(d−θ) f(h∗)2

f(uh∗)2

, (8.26)

where we have introduced again an ultraviolet cut-off h→ δ to account for the divergent
terms. Note that despite the intricated appearance of the integrand it is already possible
at this level to keep track of those divergences. Indeed we can study its behaviour in the
limit u→ 0

lim
u→0

u(θ−d)f(uh∗)√
1− u2(d−θ) f(h∗)2

f(uh∗)2

= u(θ−d)
[
1 + 2κλ1(uh∗)

−2θ/d
] [

1 +O
(
u2(d−θ)

)]
, (8.27)

so the terms with a negative power in u, and therefore those resulting into divergences, arise
from the product u(θ−d)

[
1 + 2κλ1(uh∗)

−2θ/d
]
. This agrees with what we anticipated in our

previous discussion: had we taken the Einstein gravity surface (9.60), and computed the
HEE integral (8.24), we would have found the same divergent terms. It is also important
to stress that this expression is valid for any value of the coupling λ1, so if we expanded
in powers of λ1, the only divergence would appear at order O(λ1), as anticipated. Taking
into account (8.27) we find that the entanglement entropy is of the form

SR2 =
LdL

(d−1)
S

2G

[
1

B0
δ−B0 +

2κλ1

B1
δ−B1

]
+ S0 , (8.28)

with

B0 ≡ d− θ − 1 , (8.29)

B1 ≡ B0 +
2θ

d
, (8.30)

and S0 being a constant term which we will discuss later. As we can see, the inclusion of the
R2 term introduces a new divergence in the HEE. This contribution is not dominant, and
the leading divergence is again the Einstein gravity, one as expected. It is also impossible to
produce a logarithmic divergence from this term, since this would correspond to θ = d(d−1)

(d−2) ,
which is larger than 0 for any d > 1. An exception is d = 1, θ = 0, which would correspond
to AdS3, for which both B0 and B1 would be logarithmic. In the special case of Lifshitz
geometries, θ = 0, the Ricci scalar is constant and the entanglement entropy diverges as

SR2 |θ=0 = (1 + 2κ|θ=0λ1)SEG|θ=0 , (8.31)
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where SEG|θ=0 is just the HEE for a strip in AdSd+2 (recall that, although z 6= 1 in
general, the dynamical exponent does not enter into the HEE expression for Einstein
gravity), which can be read from (8.13), and

κ|θ=0 = −2L̃2

L2

[
z2 + zd+

d(d+ 1)

2

]
. (8.32)

As we can see, the dynamical exponent does appear in the HEE formula (through κ) when
we consider this curvature-squared contribution, as opposed to the Einstein gravity case10.
However, it does not contribute to the exponents of the divergences, and it will not do
so for any higher-curvature gravity, simply because the induced metric on any entangling
surface extremizing the corresponding functional will not depend on z in general, given
that it only appears in the gtt component of the hvLf metric (1.114). In order to make z
appear in the exponents of the HEE terms, we need to consider an anisotropic scaling of
a spatial coordinate instead of time. This will be studied in appendix D. The appearance
of the new divergence δ−B1 is a distinctive feature of hvLf geometries: for AdS or even
Lifshitz geometries, the inclusion of additional higher-curvature terms in the bulk action
just shifts the coefficient in front of δ−B0 , without producing any new divergent term.

Coming back to R2 gravity, in order to extract information about the finite term
S0 in (8.28) we are going to consider the case λ1 << 1 (which is a reasonable assumption
as we are considering the higher-curvature terms to be corrections to the leading Einstein
gravity action), so we can Taylor-expand around λ1 = 0. We do so in the expression for
the entanglement entropy up to order λ1 and perform the integration afterwards. The
result reads

S0 = −
LdL

(d−1)
S

2G

{
G0h

−B0
∗

B0
+ 2κλ1h

−B1
∗

[
G0

(B0 + 1)
+G1

[
1

B1
− 1

(B0 + 1)

]]}
+O(λ2

1) ,

(8.33)
where we defined the constants

G0 ≡

√
πΓ
(

B0+2
2(B0+1)

)
Γ
(

1
2(B0+1)

) , G1 ≡

√
πΓ
(

2+2B0−B1
2(B0+1)

)
Γ
(

1+B0−B1
2(B0+1)

) . (8.34)

The turning point h∗ is in this case related to the strip width through

l

2
=

∫ l/2

0
dx1 = h∗

∫ 1

0

f(h∗)u
(d−θ) du

f(uh∗)
√

1− u2(d−θ) f(h∗)2

f(uh∗)2

. (8.35)

At first order in λ1, we can perform the integral and invert the expression to find

h∗ =
l/2

G0

[
1 +

2κλ1

(B0 + 1)

[
l/2

G0

](B0−B1) [
1− G1

G0

]]
. (8.36)

Substitution into (8.33) leads to a kind simplification, and the full entanglement entropy
expression at this order is finally given by

SR2 =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ 2κλ1

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]}
+O(λ2

1) .

(8.37)

10The fact that a Lifshitz geometry (θ = 0) produced an unaltered HEE with respect to the AdS case
for Einstein gravity was first observed in [397].
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This expression is exact at linear order in λ1. The Einstein gravity result, given by the
first two terms, is corrected by a divergent plus a constant term at first order, plus a
constant contribution of order O(λ2

1).

8.1.2 Gauss-Bonnet gravity

Let us now turn to the case of Gauss-Bonnet gravity. The HEE functional for this theory
was proposed in [247] and, as we mentioned, corresponds to a particular case of the JM
functional, suitable for Lovelock gravities. Including the boundary term, which we will
make use of for d = 2, the expression reads

SGB =
1

4G

∫
m
ddx
√
gm

[
1 + 2λGBL̃

2Rm
]

+
λGBL̃

2

G

∫
∂m

dd−1y
√
g∂mK , (8.38)

where Rm is the Ricci scalar of m, ∂m is the (d − 1)-dimensional boundary of m, h∂m
stands for the determinant of the induced metric on ∂m, and K is the trace of its extrinsic
curvature.

In the case of our hvLf geometries, the Ricci scalar of the induced metric on m (9.60)
reads

Rm =
(d− 1)(d− θ)h−2θ/d

(1 + ḣ2)2L2

[(
ḣ2 + ḣ4

)((d− 2)θ

d2
− 1

)
+

2hḧ

d

]
. (8.39)

As we can see, it identically vanishes for d = 1, which was expectable since the Gauss-
Bonnet term X4 is identically zero in 3D gravity11.

The way to proceed now is again trying to extremize (8.38) and evaluate the on-shell
integral. The simplest case and, at the same time, one of singular interest, is given by d = 2.
There, the Gauss-Bonnet contribution reduces to a boundary term, and does not modify
the gravitational equations of motion. From the HEE perspective, the integral of the Ricci
scalar of a 2D surface embedded in a certain manifold (which is precisely the expression
we have here) is proportional to its Euler characteristic, which is a topological quantity,
independent of the geometry of m. Therefore, when d = 2 we expect the entangling surface
to be the same as in Einstein gravity and the Gauss-Bonnet bulk contribution ∝

∫
Rm to

be cancelled by the boundary term involving the integral of the extrinsic curvature of ∂m.
Let us explicitly show that this is indeed the case for hvLf geometries.

It is straightforward to check that the equations of motion for h(x1) do not get
modified, and we have the very same first integral as in the Einstein gravity case (8.10),
which we rewrite here for convenience

h
(θ−2)
∗ =

h(θ−2)√
1 + ḣ2

. (8.40)

The Ricci scalar on m simplifies to

Rm =
(θ − 2)

hθ∗L
2

[
u−θ − (θ − 1)u(4−3θ)

]
, (8.41)

11The same would occur for d = θ, so no corrections to HEE are produced by this term in such a limit
case.
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where we have used again u ≡ h/h∗. We can now compute the integral involving the bulk
terms in (8.38). The result is a sum of the Einstein gravity term (8.13) and the following
divergence

1

4G

∫
m
ddy
√
gm

[
2λGBL̃

2Rm
]

=
(2− θ)L̃2LSλGB

2G

1

δ
. (8.42)

Interestingly, the exponent of the divergence does not depend on θ. In order to verify the
cancellation of this term with the boundary one, we need to compute the metric induced on
∂m, and the trace of the extrinsic curvature of such boundary understood as an embedding
on m. ∂m is characterized by h→ δ, x1 = const. We find, after some algebra

√
g∂m = Lδ( θ−2

2
) , (8.43)

K∂m =
(θ − 2)

2

δ−
θ
2

L
,

and hence
λGBL̃

2

G

∫ LS

0
dx2
√
g∂mK =

(θ − 2)L̃2LSλGB
2G

1

δ
. (8.44)

As we can see, this contribution exactly cancels the intrinsic curvature contribution of
(8.42), as expected.

In the case d > 2 things get much more involved. The functional we pretend to
extremize contains derivatives of h(x1) up to order two, so no first integral is available now.
Similarly, although the equations of motion are second-order as well, and not fourth-order
as one would expect for a random second-order gravity12, they turn out to be impossible
to treat analytically. However, as we argued before we do not need to obtain the surface
extremizing (8.38) in order to obtain the divergent terms in the HEE expression (although
we would if we wanted to provide the corresponding corrected constant terms). Indeed, let
us use (8.10) to compute the divergences produced by the bulk integral in (8.38). Following
the same steps as for R2 gravity we find13

SGB =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ ξλGB

[
δ−B1

B1
+ c1,GB

]}
+O(λ2

GB) , (8.45)

where now

ξ ≡ L̃2

L2
(d− 1)(d− θ) , (8.46)

and c1,GB is a constant term that should be computed using the entangling surface ex-
tremizing (8.38). As we can see, the expression is completely analogous to the one found
for R2 gravity (8.37): added to the Einstein gravity contribution we find a single diver-
gence of the same order as the one encountered in that case plus a constant correcting the
universal term. The fact that the divergences produced by R2 and Gauss-Bonnet gravi-
ties match is not trivial, given that in the first case we are simply adding a term scaling
as ∼ u−2θ/d (see (8.24)) to the “1” of Einstein gravity in the HEE integral, whereas for
Gauss-Bonnet we find two terms when we substitute ḣ(h) and ḧ(h) in (8.39) and (8.38)):
one scaling like the R2 one, plus another one going as ∼ u−2θ/d+2(d−θ) which, however,

12Recall Gauss-Bonnet is a particular Lovelock gravity, which is the most general family of higher-order
gravity theories in any dimension with second-order equations of motion.

13For the case d = 3, the appearance of B1 in Gauss-Bonnet was anticipated in [290].
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does not produce divergences when θ ≤ 0. In this case, the dynamical exponent does not
appear in the curvature-squared contribution, simply because it does not appear in the
pull-back metric on m and, as a consequence, in Rm. Let us see what happens for our
last curvature-squared theory: Ricci-squared gravity.

8.1.3 RµνR
µν gravity

For this theory, the entanglement entropy functional reads [185]

SRicci2 =
1

4G

∫
m
ddx
√
gm

[
1 + λ2L̃

2

(
R(â)

(â) − 1

2
K(â) 2

)]
. (8.47)

In this expression, the first term stands for the contraction of the Ricci tensor associated
to the spacetime metric with the two mutually orthogonal unit vectors normal to the
entangling surface m, n(â), â = 1, 2 according to

R(â)
(â) ≡ Rµνnµ(â)n

ν
(b̂)
δ(â)(b̂) . (8.48)

The second term is the sum of the squares of the two extrinsic curvatures of m

K(â)
µν = ∇µn(â)

ν , (8.49)

associated to those two vectors

K(â) 2 ≡ gµνgρσK(â)
µν K

(b̂)
ρσ δ(â)(b̂) . (8.50)

For the hvLf metrics (1.114), the two vectors normal to the entangling surface m associated
to our strip are given by

n(1) =
rz−θ/d

L
∂t , n(2) =

r1−θ/d

L
√

1 + ḣ2

(
∂r − ḣ∂x1

)
. (8.51)

Making use of this we can evaluate the above expressions to get

R(â)
(â) − 1

2
K(â) 2 =

h−2θ/d

d2L2

[
d(d+ dz − 2θ)(θ − d− z) +

d
[
θ2 + d((1− z)z − θ)

]
1 + ḣ2

(8.52)

−

[
(θ(d+ 1)− d(d+ z))(1 + ḣ2) + dhḧ

]2

2
[
1 + ḣ2

]3

 .
Following our previous steps, we can make use of (8.10) to determine the divergences in
the HEE for this theory. The result is

SRicci2 =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ γλ2

[
δ−B1

B1
+ c1,Ricci2

]}
+O(λ2

2) , (8.53)

where now

γ ≡ L̃2

L2

(d+ dz − 2θ)(θ − d− z)
d

, (8.54)

and c1,Ricci2 is the correction to the constant term at first order in λ2. Again, we find the
same kind of term as in the two previous cases. In light of this, we conclude that B1 =
2θ/d+d− θ− 1 is the only new divergent term produced at the level of curvature-squared
gravities when θ < 0. As we already said, this means that no additional logarithmic
divergences can appear at this order of curvature for this class of metrics.
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8.1.4 Higher-curvature gravities and new logarithmic terms

In the previous subsections we have studied the structure of terms of HEE for general
curvature-squared gravities in the case of an entangling region A consisting of a strip in
the boundary of hvLf metrics with θ ≤ 0. The result is that, in spite of the different terms
appearing for the distinct HEE functionals in the various curvature-squared theories, we
find that one single additional divergent term appears. This might suggest that if we
moved on and considered even higher curvature gravities, one single additional divergence
would appear at each order in curvature (this would mean, e.g., that the 10 independent
curvature-cubed gravities [158], with their different corresponding functionals would give
rise to the same single divergent term, and so on). Although this conjecture seems to ask
for stronger evidence, it is important to notice that at the curvature-squared gravities level
we are already considering the two kinds of terms that are expected to appear in the HEE
functional at all orders in curvature [161], namely: contractions of curvature bulk tensors
with normal vectors to the entangling surface m, and contractions of extrinsic curvatures
of m with bulk tensors. If our conjecture was right, we could extract the divergent term
common to all theories at each order in curvature by computing the HEE expression for
the simplest higher-order gravity in each order. This is, of course, Rn gravity.

For an Rn gravity or, more in general, for an f(R) gravity

If(R) =
1

16πG

∫
dd+2x

√
g

[
R+

d(d+ 1)

L̃2
+ λf(R)f(R)

]
, (8.55)

(where λf(R) is now a dimensionful coupling), the HEE functional is known to be [161]

Sf(R) =
1

4G

∫
m
d2x
√
gm

[
1 + λf(R)

df(R)

dR

]
, (8.56)

and so for f(R) = Rn, λf(R) = λRnL̃
2(n−1) and

SRn =
1

4G

∫
m
d2x
√
gm

[
1 + nλRnL̃

2(n−1)R(n−1)
]
. (8.57)

We can actually extremize this functional and find the HEE expressions following exactly
the same steps as in the case of R2. The result is

SRn =
LdL

(d−1)
S

2G

[
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ nκ(n−1)λRn

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]]
+O(λ2

Rn) ,

(8.58)
where B1 is now given by

B1 =
2(n− 1)θ

d
+ d− θ − 1 . (8.59)

G0 and G1 are again given by (8.34) taking the new value of B1. As we can see, (8.58)
includes the O(λRn) correction to the universal term as well as a divergence of order B1.
This is always subleading with respect to B0 and, interestingly, it becomes logarithmic
when

θ =
d(d− 1)

d− 2(n− 1)
, (8.60)
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provided that 2(n − 1) > d. This value of θ resembles the θ = d − 1 famous result for
which a logarithmic divergence is found in the HEE for Einstein gravity (n = 1), as we
will review in a moment. However, this new set of divergences is found for θ < 0, whereas
the other occurs with θ = d− 1 ≥ 0. Obviously, when n = 2, the only possibility is d = 1,
which makes θ = 0 and reduces to the AdS3 case already studied at the beginning of the
section. For n > 2, however, the situation is much richer, and we find a plethora of new
logarithmic divergences (see Figure 8.2).
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Figure 8.2: Values of n and d for which the corresponding Rn gravities produce terms
including a logarithmic dependence on l for certain values of θ ≤ 0. The graph extends to
the n > 6, d > 6 region in an obvious way.

When (8.60) is satisfied and 2(n− 1) > d, the HEE expression becomes

SRn =
LdL

(d−1)
S

2G

[
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ nκ(n−1)λRn

[
log

[
l

δ

]
+ cRn

]]
, (8.61)

where now

B0 =
2(n− 1)(d− 1)

2(n− 1)− d
, (8.62)

and cRn is a constant correcting the universal term. Therefore, we see that starting
from curvature-cubed gravities, introducing higher-order terms in the gravitational action
allows one to find new logarithmic contributions to the HEE for hvLf geometries. In both
(8.58) and (8.61) we find a leading divergence whose coefficient scales with the area of
the boundary of our entangling region. However, while in (8.58) the coefficient of the
subleading term is also proportional to ∂A, in (8.61) we find a different scaling, provided
there appears a factor which depends logarithmically on the width of the stripe l.

If our guess is right, (8.58) (and (8.61) when it applies) would be the right expression
(swapping κ, λRn and so on for the corresponding parameters) for the HEE of a strip in
the boundary of a hvLf geometry with θ ≤ 0 for any higher-order gravity of n-th order in
the Riemann tensor.

187



Chapter 8. Holographic entanglement entropy in hvLf geometries

8.2 HEE for hvLf geometries in higher-curvature gravities
II: 0 < θ < d

In this section we turn to the case of 0 < θ < d, corresponding to hvLf metrics whose
curvature invariants diverge in the UV (as r → 0). In order to do so, we follow the
steps of [349] and consider these hvLf metrics to be completed asymptotically by an AdS
geometry14. Hence, we will assume them to hold only above certain scale rF .

Again, HEE for this class of hvLf spacetimes was studied for Einstein gravity, e.g.,
in [349] and [162]. In order to be consistent with the conventions in [349], whose results
we plan to generalize here, let us make a change of coordinates in (1.114)

r = R
d

(d−θ) , (8.63)

and let us relabel R → r so there is no confusion between the radial coordinate and the
Ricci scalar. Our hvLf geometries read now

ds2 =
L2

r2

[
− dt2

r
2d(z−1)
d−θ

+ r
2θ
d−θ dr2 + d~x2

(d)

]
. (8.64)

The idea is to start with a metric of the form

ds2 =
L2

r2

[
−f(r)dt2 + g(r)dr2 + d~x2

(d)

]
, (8.65)

and require it to be asymptotically AdSd+2 while assuming it to posses some intermediate
hvLf-like behaviour

g(r) '
[
r

rF

] 2θ
d−θ

, (r >> rF ) , (8.66)

g(r) ' 1 , (r << rF ) ,

f(r) '
[
r

rF

] 2d(1−z)
d−θ

, (r >> rF ) ,

f(r) ' 1 , (r << rF ) .

Now, if we parametrize the entangling surface as x1 = F (r), computing the induced metric
to obtain the area-functional is straightforward, and the result reads [349]

SEG =
LdLd−1

S

2G

∫ r∗

δ

dr

rd

√
g(r) + Ḟ (r)2 . (8.67)

r∗ is the turning point now, where Ḟ (r) diverges. For this functional there is a first integral
given by

Ḟ =
rd

rd∗

√
g(r)

1− r2d/r2d
∗
, (8.68)

so in the end we find

SEG =
LdLd−1

S

2G

∫ r∗

δ

dr

rd

√
g(r)

1− r2d/r2d
∗
. (8.69)

14See [162] for a different approach, analogous to the one we follow in the previous section.
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The turning point is related to the strip width through

l

2
=

∫ r∗

0
dr
rd

rd∗

√
g(r)

1− r2d/r2d
∗
. (8.70)

In order to compute these integrals, we need to specify what the exact functional form of
g(r) is. However, we can simplify the issue by assuming the entangling surface to probe
deep into the IR, so r∗ >> rF [349]. In such a case, (8.69) and (8.70) can be estimated
making use of (8.66), and the result is [349]

SEG =
LdLd−1

S

2G

[
δ−(d−1)

(d− 1)
+

c

rd−1
F

l−B0

r−B0
F

+ ...

]
, (8.71)

where c is a numerical constant and the dots refer to subleading contributions which we are
neglecting in the limit r∗ >> rF . Therefore, we find an area-law term, plus a term which
depends on the intermediate scale rF . When θ = d − 1, (8.71) produces a logarithmic
dependence on rF [349],

SEG =
LdLd−1

S

2G

[
δ−(d−1)

(d− 1)
+

c

rd−1
F

log

[
l

rF

]
+ ...

]
. (8.72)

This expression resembles the EE expression expected for a QFT with a Fermi surface
[407,426]

S = α
Ld−1
S

δd−1
+ βLd−1

S kd−1
F log(lkF ) + ... , (8.73)

being kF de Fermi momentum and α, β numerical positive constants. We see that the
parameter rF can be thus interpreted as the Fermi surface scale rF ∼ k−1

F .

In order to study the effect of higher-curvature gravities we should repeat the analysis
of section 8.1 and start considering curvature-squared gravities one by one. However,
taking into account that our approach relies on approximating the spacetime geometry
by two different metrics, namely AdS in the UV and hvLf above some scale rF without
specificating its exact form, the calculations for the Gauss-Bonnet and Ricci2 terms become
rather filthy and obscure the main goal of this section, which is nothing but studying the
kind of terms that one should expect from general higher-order gravities. Therefore, let
us stick to Rn gravity, for which we can find the surface extremizing the HEE functional
for the general metric (8.65) and make a treatment as rigorous as the one performed
in [349] for Einstein gravity. Following previous steps we find the expression for the HEE
functional to be

SRn =
LdLd−1

S

2G

∫ r∗

δ

dr

rd
T (r)

√√√√ g(r)

1− T (r∗)2

T (r)2
r2d

r2d
∗

, (8.74)

where
T (x) ≡

[
1 + nλRnL̃

2(n−1)R(n−1)(x)
]
, (8.75)

with the turning point being related to l/2 by

l

2
=

∫ r∗

0
dr
rd

rd∗
T (r)

√√√√ g(r)

1− T (r∗)2

T (r)2
r2d

r2d
∗

. (8.76)
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It is a tedious but otherwise straightforward calculation to perform the previous on-shell
integral and rewrite it in terms of l at order O(λRn)15. The final result is

SRn =
LdLd−1

S

2G

[
δ−(d−1)

(d− 1)
(1 + λRnc0) +

c

rd−1
F

l−B0

r−B0
F

+
c1λRn

rd−1
F

l−B1

r−B1
F

+O(λ2
Rn)

]
, (8.77)

where, just as in the θ ≤ 0 case

B0 ≡ d− θ − 1 , (8.78)

B1 ≡ B0 +
2θ(n− 1)

d
, (8.79)

and c0, c1 are numerical constants. As we can see, the kind of terms appearing here
resembles those found for θ ≤ 0 geometries. In particular, the term with the power B1

produces a logarithmic term when

θ =
d(d− 1)

d− 2(n− 1)
, (8.80)

as long as d > 2(n − 1) and θ < d. This seems to generalize the case θ = d − 1 to
Rn gravities for positive values of the hyperscaling violation exponent. However, θ < d
imposes the following constraint on the order of the gravitational theory admitting such
a term

3− 2n > 0 , (8.81)

which of course is only satisfied for n = 1. This reduces to the well-known case of Einstein
gravity corresponding to θ = d−1. Therefore, as opposed to the θ ≤ 0 case, we do not find
additional logarithmic terms in this case for any higher-curvature gravity. Nevertheless,
it is not clear that B1 is the only new contribution susceptible of arising in this case for
general nth-order gravities. Further study in this direction would be desirable.

8.3 Discussion and perspectives

In this chapter we have considered the effects of higher-order gravity Lagrangians on
the HEE expression for geometries with hyperscaling violation. Although the cut-off
dependence of the HEE In section 8.1 we have argued that for θ ≤ 0, in order to extract
the structure of terms for general higher-curvature gravities, it suffices to evaluate the
corresponding on-shell functionals on the extremal area surface, without having to obtain
the new surfaces extremizing those functionals, something that would be nevertheless
necessary for obtaining the right corrected constant terms. This argument is explicitly
illustrated for R2 gravity, for which we can actually extremize the new functional and find
the first-order correction to the universal term of the HEE. Our results show that for a
general curvature-squared gravity, in addition to the Einstein gravity divergence (δ−B0 ,
with B0 = d− θ − 1), there appears a single new one, at order O(λ) in the gravitational
coupling of the form δ−B1 , with B1 = 2θ/d+ d− θ − 1.

15It is interesting to note that expanding in powers of λRn and neglecting higher order contributions is
right in this case because the term which goes with the coupling in T (r) scales as ∼ 1/r2θ(n−1)/d, with a
positive exponent for θ > 0, so when we evaluate the integral at r → r∗ >> rF , the term involving λRn is
small, and the expansion makes sense.
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The fact that, in spite of the different structure of the corresponding HEE functionals
for R2 (8.37), Gauss-Bonnet (8.45) and Ricci2 (8.53) gravities, we find only one divergence
of the same order in all cases led us to conjecture that this result extends to arbitrary
nth-order gravities, so the divergent term found for Rn, B1 = 2(n − 1)θ/d + d − θ − 1
, would be the only one appearing for any other theory of that order in curvature when
θ ≤ 0. It might be that the result does not extend to n ≥ 3 and that new divergent terms
appear when those nth-order Lagrangians differ from the simple Rn case. Even if that
were the case, that would imply that we are forgetting new contributions, not that B1

gets substituted by them. Indeed, the on-shell evaluation of the Wald-like term [161]

∂L
∂Rµνρσ

εµνερσ , with εµν = n(â)
µ n(b̂)

ν ε(â)(b̂) , (8.82)

will always contain at least one term scaling with the (n− 1)th power of the Ricci scalar,
which is precisely the one giving rise to B1. Therefore, B1 will always be there for nth-
order gravities, although in some cases it might be followed by other divergences appearing
for n ≥ 3.

We have observed that the behaviour arising from Einstein gravity gets corrected for
higher-order gravities (at least) by the addition of a new divergent term in which the cut-off
scales with a different power, depending on θ, but which is also proportional to the area of
the entangling region boundary. Area-law usually tells us about local correlations amongst
UV degrees of freedom in the boundary theory. Our findings seem to be suggesting that
such correlations get significantly modified when the higher-order couplings are turned
on, something which happens to be distinctive of general hvLf geometries with respect
to the cases of AdS or Lifshitz without hyperscaling violation, for which the structure of
divergences remains unchanged (θ = 0 and so B0 = B1 = d − 1) and the only difference
produced by the inclusion of such terms is a shift on the coefficient in front of δ−(d−1) (see
(8.31) [397]). Nevertheless, it is important to note that, as explained in the introduction,
hvLf backgrounds with θ 6= 0 generically suffer from a linearly divergent dilaton in the
UV. This obscures the interpretation of the structure of divergences found in the HEE
expression in terms of the degrees of freedom of the dual theory (which, to the best of
our knowledge, is not known at present for general hvLf backgrounds). The situation is
similar to that found for non-conformal branes, where the dual theory is known to be
SYM (with d 6= 4). In that case, the dilaton, which is related to the YM coupling, also
runs in the UV, which means that the theory is either asymptotically free or it needs a
UV completion (depending on the dimension). In order to determine what the case is, one
needs the exact relation between the dilaton and the coupling. When the YM coupling
blows up in the UV, supergravity is not a valid description and S-duality needs to be used.
For hvLf metrics, however, the dual theory is not known and the approach taken in the
literature is more phenomenological/engineering-like since the supergravity result is taken
to define what is meant by the dual theory16. Either way, comparing the results found in
sections 8.1 and 8.2, we see that, regardless of the approach we take in computing HEE
for these geometries, to wit: either assuming them to be valid descriptions in the UV (as
in [162]), or considering some AdS completion (as in [349]), we find that the structure of
the result does not change, and the novelty is always related to the appearance of a new
term Λ−B1 , being Λ the scale at which the hvLf geometry is reliable.

16We thank again Robert C. Myers and Ioannis Papadimitriou for the explanations appearing in this
paragraph.
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Coming back to our results, as we saw, the new term found becomes logarithmic
when d < 2(n− 1) for hvLf geometries with

θ =
d(d− 1)

d− 2(n− 1)
, (8.83)

which extends the famous result of θ = d− 1 valid for Einstein gravity to negative values
of θ. For Einstein gravity (n = 1) B0 = B1 and this becomes the leading divergence,
whereas in the rest of cases (n > 1) we have an area-law-like term with the cut-off scaling
as δ−B0 plus the subleading logarithmic term.

Trying to extend this also to the 0 < θ < d range, we considered the hvLf geometry
to be UV-completed by AdSd+2, arising the former above some scale rF and computed
HEE in that case for Rn gravity. We found that B1 was the only new contribution again.
However, for 0 < θ < d we saw that this exponent could not vanish for any n except n = 1,
reducing to the well-known case θ = d − 1. In our computation we assume the turning
point to probe the IR region, r∗ >> rF , in order to be able to approximate the on-shell
integrals. It could be that an exact calculation making also use of an exact geometry
interpolating between hvLf and AdS in the UV such as the one proposed in [349] gives
rise to additional contributions to the HEE when embedded in higher-curvature gravities
(and possibly including new logarithmic terms in some cases). Clarifying this possibility
and, in general, proving (or refuting) our conjecture on the presence of B1 as the only
new divergence for general gravities would be interesting. Of course, this looks like a hard
task at present.

As we have seen, the fact that all contributions coming from higher-curvature terms
are subleading with respect to the Einstein gravity ones forbids these to produce violations
of the area law, although we have shown that in certain cases they would yield universal
terms which contain factors scaling logarithmically with the stripe width. Therefore,
according to our results, only in the exotic case in which the considered gravitational
theories did not include the Einstein gravity term could the HEE exhibit new violations
of the area law.

In Figure 8.3 we show the values of n and θ for which Rn (and general nth-order
gravities) introduce logarithmic terms for different values of d. The points on the horizontal
line n = 1 as well as those on the axis θ = 0 correspond, respectively, to the cases already
known in the literature, namely: hvLf with θ = d − 1 and AdS3, whereas those in the
quadrant n > 0, θ < 0 are the new ones (extending infinitely for larger values of n and
−θ).
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Figure 8.3: Values of n and θ for which Rn gravities produce logarithmic divergences for
different values of d. Orange dots correspond to d = 1 and those in blue to d = 6.

Finally, the results obtained here should be extendable to other entangling regions
different from the strip, such as cylinders, m-spheres and, ideally, arbitrary entangling
regions. In principle, we expect subleading divergences to appear when more complicated
entangling surfaces are considered. These would be produced by geometric integrals along
the entangling surface (see [378] for an account of this for pure AdSd+2). It would be of
most interest to investigate how these divergences get modified in hvLf backgrounds. For
n-spheres, for example, this has not been accomplished yet (to the best of our knowledge);
not even in the simplest case of Einstein gravity.
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This chapter is based on

Pablo Bueno and Robert C. Myers,
“Corner contributions to holographic entanglement entropy”,

in preparation.

Pablo Bueno, Robert C. Myers and William Witczak-Krempa
“Universality of corner entanglement in gapless quantum matter”,

in preparation.

Entanglement entropy (EE) has emerged as a useful tool in a variety of research
areas, including condensed matter physics [8,218,292,364], quantum information [345,425],
quantum field theory (QFT) [100,117,119,123,275,276,388] and quantum gravity [68,73,
101, 295, 310, 347, 378, 379, 400, 415]. In the context of quantum field theory, we define
the EE for a spatial region V as: S = −Tr (ρV log ρV ), where ρV is the reduced density
matrix computed by integrating out the degrees of freedom in the complementary region
V . The focus of the discussion in this chapter comes from considering the EE for a
three-dimensional conformal field theory (CFT), which will have an expansion of the form

SEE = c1
A
δ
− q log (H/δ)− 2πc0 +O (δ/H) , (9.1)

where A, H and δ are, respectively, the perimeter of the entangling surface, some macro-
scopic length characteristic of the geometry (e.g., we could choose H = A) and a short-
distance cut-off needed to regulate the calculation. Of course, the first term in this ex-
pansion is the celebrated ‘area law’ contribution to the EE [73,400]. However, the dimen-
sionless coefficient c1 of this linear divergence depends on the details of the regulator and
so cannot be used to characterize the underlying CFT. In contrast, in the absence of the
logarithmic term (see below), the constant c0 is a universal constant intrinsic to the CFT
and also the geometry of the (smooth) entangling surface.1 For example, when the latter
is a circle, c0 plays the role of a ‘central charge’ in the F -theorem [121,257,277,340,341].

Another universal contribution in eq. (9.1) is the one proportional to log(H/δ),
which arises when the entangling surface (the boundary of the region V ) contains cor-

1Of course, in gapped systems with topological order, this finite contribution would correspond to the
topological entanglement entropy [226,275,294].
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ners [118, 120, 180, 237]2,3 — see figure 9.1. Hence the dimensionless coefficient q is a
function of the opening angle, i.e., q = q(Ω). In our discussion, we focus on the contri-
bution of a single corner in the entangling surface. If several corners were present, the
coefficient of logarithmic contribution to the EE would simply involve the sum of indepen-
dent contributions q(Ωi) where Ωi is the opening angle of the i’th corner. The form of the
function q(Ω) is constrained by various properties of entanglement entropy [118,120,237]:
for pure states, the fact that SEE(V ) = SEE(V ) requires that q(Ω) = q(2π − Ω). Further,
strong subadditivity imposes

q(Ω) ≥ 0 , ∂Ωq(Ω) ≤ 0 and ∂2
Ωq(Ω) ≥ |∂Ωq(Ω)|

sin Ω
for Ω ≤ π , (9.2)

i.e., q(Ω) is a positive convex function on the range 0 ≤ Ω ≤ π.

Figure 9.1: (Colour online) A corner in the entangling surface with opening angle Ω.

In fact, the functional form of q(Ω) is precisely constrained in particular limits. For
small opening angles, the function has a pole with

lim
Ω→0

q(Ω) ≡ κ

Ω
+ · · · . (9.3)

As we will review in appendix F, this form for small angles can be fixed by using a
conformal mapping to relate the universal corner contribution to the EE corner to the
universal contribution for a narrow strip. Of course, q(Ω) vanishes when the entangling
surface becomes smooth, i.e., q(π) = 0. Further, we can expect that q(Ω) is smooth in
the vicinity of Ω = π and hence the constraint q(Ω) = q(2π−Ω) (for pure states) requires
that to leading order,

q(Ω) ' σ (π − Ω)2 + · · · , (9.4)

for Ω ∼ π. In fact, this constraint will require that q(Ω) can be represented in a Taylor
series with only even powers of (π − Ω) [118]. Hence we may use q(Ω) in the limits
Ω → 0 and Ω → π to define two interesting coefficients, κ and σ, which characterize the
underlying CFT.

The corner contribution to the entanglement entropy has been studied in a variety
of systems: free scalar and fermion field theories [118–120], calculations at a quantum
critical point [19], numerical simulations in interacting lattice models [251, 263, 264, 391],
interacting scalar field theories [262] and also holographic calculations with Einstein grav-
ity in the bulk [237]. The results obtained in the literature suggest that q(Ω) contains

2Our discussion focuses on three-dimensional CFT’s, however, similar logarithmic contributions may
appear in theories which break conformal symmetry [94,162,246,248,349].

3The generalization to higher-dimensional singular surfaces was performed in [339].
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interesting and unambiguous information about the underlying quantum field theory. In
particular, it appears to be an interesting measure of the number of degrees of freedom —
see, e.g., [118, 120, 262]. By the latter proposition, we would expect that the coefficients,
κ and σ, will themselves characterize the number of degrees of freedom in the underlying
CFT.4 Motivated by this idea, we will take the liberty to refer to these coefficients as
‘central charges,’ in a certain abuse of notation.

In this chapter, we will study the universal term arising from the presence of corners
in the entangling surface for three-dimensional holographic conformal field theories. One
of our objectives is to study if the corner charges above have any simple relation to any
other known constants, which provide a similar counting of degrees of freedom and might
be accessed with more conventional probes of the theory, or if κ and σ are really distinct
quantities. As we will discuss below, we can not make a meaningful comparison if the bulk
theory corresponds to Einstein gravity. Hence our approach will be to study the corner
contributions for a family of extended holographic models which include higher curvature
interactions in the bulk gravity theory. Generally, any quantities in the corresponding
dual boundary theories, e.g., the corner term, will now depend on the new (dimensionless)
gravitational couplings for these higher order terms. This additional dependence on the
new couplings allows us to make a nontrivial comparison of κ and σ with various other
constants in the boundary CFT’s. In particular, we will compare with the coefficients
appearing in the universal terms in the EE of a strip and of a disk, in the thermal entropy
density, and in the two-point function of the holographic stress tensor.

In fact, beyond the corner charges, the entire functional form of q(Ω) is characteristic
of the underlying CFT. Hence another interesting question to consider is how this function
changes with the inclusion of higher curvature interactions in the bulk. In this case, we
find that for all of the holographic models studied here, q(Ω) is only modified by an
overall factor but the functional dependence on Ω is not modified by the new gravitational
interactions. However, as discussed in section 9.3.1, we do not believe that this behaviour
is universal and that the functional form of q(Ω) will be modified with sufficiently general
higher curvature theories in the bulk. One simple consequence of q(Ω) not being changed
here is that the two corner charges are simply related in all of our holographic models,
i.e., we will see that κ/σ = 4 Γ(3/4)4. Hence we focus most of our discussions on the small
angle charge κ in the following.

A final question, which we consider below, is whether our holographic analysis can
reveal any features of the corner contribution which are universal to all three-dimensional
CFT’s. We examine this question briefly in section 9.3.2 by comparing our holographic
results with the corner terms in the free QFT’s with a conformal scalar and with a massless
fermion, as were calculated in [118–120].

Let us now summarize our key results:

The results for the ratios of the corner charge κ with other various coefficients in
the dual boundary theory are given in Table 9.1. The most interesting ratio is κ/CT , the
corner charge over the central charge appearing in two-point function of the stress tensor
(9.100), which is independent of all of the gravitational couplings. Hence this ratio is
universal for the broad class of holographic CFT’s studied here.

In fact, as we noted above, the functional form of q(Ω) is not modified by any of

4Refs. [119,120] discussed σ for this purpose in the context of free field theories.
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the higher curvature interactions, except for an overall factor. Given the above result, the
entire function q(Ω)/CT is universal for the broad class of holographic CFT’s studied here.
This normalization then provides an interesting way to compare the corner contribution
between any general three-dimensional CFT’s. Comparing our holographic result with the
corresponding free field results,5 we see that the free field curves agree with the holographic
result remarkably well — see figure 9.6. The free fermion and scalar curves deviate for
the holographic result by at most 2.4% and 11%, respectively. Hence we suggest that
the holographic expression for q(Ω)/CT , which is easily evaluated across the full range of
Ω = 0 to π, provides a good bench mark with which to compare the analogous results for
general three-dimensional CFT’s.

The maximum discrepancy between the holographic and free field results for q(Ω)/CT
occurs as Ω→ 0 but somewhat surprisingly they agree perfectly in the limit Ω→ π. That
is, the holographic CFT’s and the two free field theories exhibit the same ratio

σ

CT
=
π2

24
. (9.5)

Hence we are lead to conjecture that this ratio is in fact a universal constant for general
conformal field theories in three dimensions.

The remainder of the chapter is organized as follows: In section 9.1, we first review
the holographic calculation of the entanglement entropy for a corner in the boundary of
AdS4 with Einstein gravity in the bulk. Then in section 9.1.1, we study the effects of
adding various higher curvature interactions to the bulk gravity theory on the universal
corner term. In doing so, we show that the functional form of qE(Ω) is universal to all of the
theories considered here and evaluate the corner charge κ appearing in each case. In section
9.2, we compare this corner charge in the higher curvature theories with similar quantities
appearing in other physical observables, i.e., the coefficients appearing in the universal
contribution in the entanglement entropy of a strip and of a disk, in the thermal entropy
density and in the two-point correlator of the stress tensor. In section 9.3, we summarize
our results. We also discuss the possibility of modifying the shape of the extremal surface
in the holographic entanglement entropy in more general higher curvature theories of
gravity, and hence modifying the functional form of q(Ω) in the dual boundary theories.
We also comment on the relation between our holographic results and the analogous results
obtained for free field theories. In appendix F, we explain the conformal mapping which
relates the corner charge κ with the coefficient of the universal term in the entanglement
entropy of a strip. In appendix G, we compute the corner contribution for a general f(R)
theory and explain in some detail the linearized equations of motion used to compute the
two-point function of the stress tensor. Finally in appendix H, we present the integrals
used in [118–120] to evaluate the coefficient σ for the free massless scalar and fermion
theories and show that when evaluated with sufficient precision that they yield the simple
rational values predicted by our conjecture (9.5).

9.1 Corner term in holographic entanglement entropy

In this section we study the corner contribution to the entanglement entropy for holo-
graphic CFT’s dual to higher curvature theories of gravity. In particular, we will consider

5Similar comparisons were made in [120], but without normalizing by the central charge CT .
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bulk actions which contain general curvature-squared interactions and which are functions
of Lovelock densities [381]. However, we begin by reviewing the calculation of the corner
contribution to holographic entanglement entropy with just Einstein gravity in the bulk,
which was originally performed in [237].

The bulk geometry will be four-dimensional Euclidean anti-de Sitter space in Poincaré
coordinates6

ds2 =
L̃2

z2

(
dz2 + dt2E + dρ2 + ρ2dθ2

)
, (9.6)

which is a solution for Einstein gravity coupled to a negative cosmological constant

I0 =
1

16πG

∫
d4x
√
g

[
6

L2
+R

]
(9.7)

as long as we set L̃ = L. The dual boundary theory then lives in the flat three-dimensional
geometry with metric ds̃2 = dt2E + dρ2 + ρ2dθ2. The region for which we calculate the
entanglement entropy will be defined as V = {tE = 0, ρ > 0, |θ| ≤ Ω/2}, as illustrated in
figure 9.1. Hence the entangling surface ∂V has a corner with opening angle Ω at the
origin. Note that in the following, at as well as the usual short-distance cut-off δ, we will
also introduce an infrared regulator scale, i.e., ρmax = H, to ensure that the entanglement
entropy does not diverge.

Figure 9.2: (Colour online) A kink in a constant Euclidean time slice tE = 0 in the
boundary of AdS4.

Now, the corresponding holographic entanglement entropy (HEE) is computed using
the Ryu-Takayanagi prescription for the entanglement entropy of conformal field theories
dual to Einstein gravity [378, 379].7 According to this, the entanglement entropy of a
certain region V in our four-dimensional boundary theory is given by

SEE(V ) = ext
m∼V

[
A(m)

4G

]
, (9.8)

where m are codimension-2 bulk surfaces which are homologous to V in the boundary
(and in particular ∂m = ∂V ), and A(m) denotes the area of m. Figure 9.2 illustrates the
extremal bulk surface for the region V defined above.

6See appendix C for conventions.
7This prescription has been recently proven under certain conditions in [296].
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Now following [237], we parametrize the bulk surfaces m as z = z(ρ, θ) for the present
case of corner region V . Further, the scaling symmetry of AdS, along with the fact that
there is no other scale in the problem, allow us to limit the ansatz for the extremal surface
to z = ρ h(θ), where h(θ) is a function satisfying h → 0 as θ → ±Ω/2. With this ansatz,
the induced metric on the surface becomes

ds2
m =

L̃2

ρ2

(
1 +

1

h2

)
dρ2 +

L̃2

h2

(
1 + ḣ2

)
dθ2 +

2L̃2ḣ

ρ h
dρ dθ . (9.9)

where ḣ ≡ dh/dθ. The entanglement entropy functional becomes then

SEE =
1

4G

∫
m
dθ dρ

√
γ =

L̃2

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ε

0
dθ

√
1 + h2 + ḣ2

h2
, (9.10)

where γ denotes the determinant of the induced metric (9.128), we have introduced a UV
cut-off at z = δ and h0 ≡ h(0), which will be the maximum value of h(θ). As we already
mentioned above, the ρ integral is also cut-off as some large distance H. Finally, the
angular cut-off ε is defined in such that at z = δ, ρ h(Ω/2− ε) = δ. Extremizing the above
expression yields the equation of motion for h(θ), which reads

ḧ(h+ h3) + h4 + 3h2 + 2(ḣ2 + 1) = 0 . (9.11)

However, the corresponding ‘Hamiltonian’ is a conserved quantity, since there is no explicit
θ dependence in eq. (9.10). Therefore we find the following first integral

1 + h2

h2
√

1 + h2 + ḣ2
=

√
1 + h2

0

h2
0

, (9.12)

where we used ḣ(0) = 0. We can use eq. (9.12) to replace ḣ in terms of h and trade the
integral over θ for one over h. After some algebra, eq. (9.10) becomes

SEE =
L̃2

2G

∫ H

δ/h0

dρ

ρ

∫ √(ρ/δ)2−1/h2
0

0
dy

√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

, (9.13)

where we have also substituted y =
√

1/h2 − 1/h2
0. Near the boundary (y → ∞), the

integrand behaves as √
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

∼ 1 +O
(

1

y2

)
. (9.14)

Therefore, the y integration diverges in the limit that δ → 0. However, we can isolate this
divergence by adding and subtracting one to the integrand. Hence we recast eq. (9.13) as

SEE =
L̃2

2G

∫ H

δ/h0

dρ

ρ

∫ ∞
0
dy

[√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

− 1

]
+
L̃2

2G

∫ H

δ/h0

dρ

ρ

√
ρ2

δ2
− 1

h2
0

. (9.15)

In the limit that δ → 0, this expression can be further simplified to produce the final result

SEE =
L̃2

2G

H

δ
− q(Ω) log

(
H

δ

)
−

(
πL̃2

4Gh0
+ q(Ω) log(h0)

)
+O(

δ

H
) , (9.16)
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where the function q(Ω) is given by

qE(Ω) =
L̃2

2G

∫ ∞
0

dy

[
1−

√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

]
. (9.17)

The result in eq. (9.16) has precisely the expected form given in eq. (9.1), i.e., the first term
in eq. (9.16) is, of course, the area law contribution, whereas the second is the universal
contribution associated with the corner. The last one is the constant term, which does
not have a universal character in the present situation.
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Figure 9.3: (Colour online) (a) Ω/π as a function of h0 and (b) 2G
L̃2
q as a function of Ω/π.

In the second panel, the dashed lines correspond to the approximate expressions derived
in eqs. (9.20) and (9.23) for small opening angles (red) and the smooth limit (orange),
respectively.

In eq. (9.17), we have added a subscript ‘E’ to denote this function as the corner
contribution with Einstein gravity in the bulk. The dependence of qE(Ω) on the opening
angle is implicit on the right-hand side of eq. (9.17) through the dependence of h0 on Ω.
The latter can be determined by evaluating

Ω =

∫ +Ω/2

−Ω/2
dθ =

∫ h0

0
dh

2h2
√

1 + h2
0√

1 + h2
√

(h2
0 − h2)(h2

0 + (1 + h2
0)h2)

(9.18)

and the result is shown in figure 9.3(a). The coefficient of the corner term is then plotted
in figure 9.3(b) and we can see that qE(Ω) does indeed satisfy all the various constraints
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explained in the introduction, e.g., see eq. (9.2). For small values of the opening angle,
i.e., Ω→ 0, we find

Ω =
2
√
π Γ
(

3
4

)
Γ
(

1
4

) h0 −

[
3Γ
(

3
4

)2 − Γ
(

1
4

)
Γ
(

5
4

)]
6
√

2π
h3

0 +O(h5
0) , (9.19)

qE(Ω) =
L̃2

2πG
Γ
(

3
4

)4 1

Ω
− L̃2

G

π Γ
(

1
4

)
48
√

2 Γ
(

3
4

)3 Ω +O(Ω3) , (9.20)

which is shown as the dashed red line in figure 9.3(b)8. Comparing the latter with eq. (9.3),
we see that in this holographic model, the universal ‘central charge’ associated with the
small angle limit of the corner contribution is

Einstein gravity : κE =
L̃2

2πG
Γ
(

3
4

)4
. (9.21)

Considering the limit of a smooth entangling surface, i.e., Ω→ π − ε, we have

ε =
π

h0
+O(h0) , (9.22)

qE(π − ε) =
L̃2

8πG
ε2 +O(ε4) , (9.23)

which is shown as the dashed orange line in figure 9.3(b). Comparing this result with
eq. (9.4), we see that the universal ‘central charge’ associated with the limit of a nearly
smooth entangling surface in this holographic model is

Einstein gravity : σE =
L̃2

8πG
. (9.24)

Another interesting case to consider is a right-angled corner, i.e., Ω = π/2, for which we
find

qE (π/2) ' 0.11823
L̃2

G
' 0.32944κE ' 2.9714σE . (9.25)

This case naturally arises in numerical calculations of entanglement entropy, e.g., [262].

9.1.1 Higher curvature gravity

Having reviewed the calculation for Einstein gravity in the bulk, we now turn to considering
the effect of higher curvature interactions in the bulk theory. For such cases, the Ryu-
Takayanagi prescription must be generalized, as was first considered in [154, 184, 247]. In
particular, the Bekenstein-Hawking formula on the right-hand side of eq. (9.8) must be
replaced by a new entropy functional which accounts for the new gravitational interactions.
Hence eq. (9.8) is replaced by

SEE(V ) = ext
m∼V

Sgrav(m) , (9.26)

where the entropy functional Sgrav depends on the details of the gravitational theory. This
is a familiar idea in the context of black hole entropy where the Wald entropy formula

8Notice that eq. (9.20) fits the exact qE(Ω) curve remarkably well for not so small angles.
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[254, 255, 420] extends A/(4G) with higher curvature corrections. A natural suggestion
would be that the HEE should be calculated by extremizing the Wald entropy evaluated
on the bulk surfaces m, however, it was shown that this approach would be incorrect since
it fails to produce the proper universal contributions to the entanglement entropy [247].
The latter universal terms are properly reproduced in the special case of Lovelock gravity
[154, 247] using an alternative entropy functional [256] — see below. More generally the
appropriate entropy functional is the Wald entropy plus additional terms involving the
extrinsic curvature, which would vanish if evaluated on the Killing horizon of a stationary
black hole [103,161,185,336]. There has been an effort to extend the derivation [296] of the
Ryu-Takayanagi prescription to higher curvature theories of gravity [21,65,66,103,161,327]
and a general formula was proposed for theories involving interactions with contractions
of arbitrary powers of the Riemann tensor (but no derivatives of the curvature). While
this general expression was shown to satisfy several consistency checks [161], it seems that
it must still be further refined for general theories involving cubic and higher powers of the
curvature [21, 66, 327]. In any event, the correct entropy functional is known for general
curvature-squared gravity in the bulk and we will use this to determine the modifications
to the corner contribution in HEE for these theories in section 9.1.1.

To go beyond curvature squared gravity, we turn to the generalized Lovelock theories
considered by [381]. In these theories, the Lagrangian is given by an arbitrary functional of
extended ‘topological’ densities, i.e., scalars constructed from the curvature tensor which
if integrated over a manifold of the appropriate dimension would yield the Euler charac-
teristic. Hence Lovelock gravity [303, 304] would be the simplest example in which the
Lagrangian is a linear functional of these topological densities. Another well-known class
of theories which take this form would be f(R) gravity [399] since the Ricci scalar corre-
sponds to the Euler density for two-dimensional manifolds. In studying these generalized
Lovelock theories, [381] proposed a formula for the gravitational entropy which satisfied a
classical increase theorem for linearized perturbations of Killing horizons. We interpret the
fact that their definition applies for at least small deviations away from a Killing horizon,
as evidence that it will yield the correct gravitational entropy in the more general context
of evaluating HEE. Then applying this prescription allows us to evaluate the modifications
to the corner contribution in HEE for a certain class of theories involving cubic and higher
powers of the curvature in section 9.1.1.

It is worth stressing that most often we will be working perturbatively in the grav-
itational couplings for the higher curvature interactions. We will try to make clear when
our expressions are valid for general values of the new couplings and when they correspond
to perturbative approximations.

Curvature-squared gravity

The bulk action of the most general curvature-squared gravity can be written as

I2 =
1

16πG

∫
d4x
√
g

[
6

L2
+R+ λ1L

2R2 + λ2L
2RµνR

µν + λGBL
2X4

]
, (9.27)

where
X4 = RµνρσR

µνρσ − 4RµνR
µν +R2 (9.28)

is the Gauss-Bonnet term, i.e., the Euler density for four-dimensional manifolds. Hence
the last interaction does not effect the gravitational equations of motion since we are
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working with four bulk dimensions. However, as we will see, this term still contributes a
topological term to the entropy functional. The AdS4 metric in eq. (9.6) is still a solution
of the full equations of motion for any value of λ1 and λ2 provided L̃ = L.9

The expression for the entanglement entropy in this family of theories is given by
eq. (9.26) where Sgrav takes the form [161,185,247,336]

S2 =
A(m)

4G
+
L2

4G

∫
m
d2y
√
γ

[
2λ1R+ λ2

(
Rââ −

1

2
K âKâ

)
+ 2λGBR

]
, (9.29)

where γij , K
â
ij and R are, respectively, the induced metric, the second fundamental form

and the intrinsic Ricci scalar of the bulk surface m — see appendix C for a complete
description of our conventions.10 Before proceeding with detailed calculations of HEE, let
us make some general observations about the expected results.

First, it is worthwhile to note that the gravitational action (9.27) would also include
various boundary terms, e.g., see [168, 334], and that similar boundary terms should be
expected to appear in the entropy functional (9.29). However, while the addition of such
boundary terms may effect the coefficient in the area law contribution to the entanglement
entropy (9.1) in the boundary theory, one can infer from the local geometric form of these
boundary terms that they will not modify the logarithmic contribution to SEE [247]. Again,
the robustness of the logarithmic term here is a reflection of the fact that it is a universal
contribution whose value is independent of the precise details of the UV regulator. Of
course, since our interest lies in determining the universal corner term q(Ω), we will ignore
any boundary terms that might be added to eq. (9.29).

Next, let us examine the form of the entropy functional in eq. (9.29). The λ1 and
λ2 terms both contain contributions involving the curvature of the background spacetime
geometry. However, since we are evaluating the HEE in empty AdS4, the latter terms are
just constants, e.g., R = −12/L̃2. Hence the entropy functional is not modified by these
terms except for a shift in the overall factor multiplying the area of bulk surface.11

We also note that any surface which extremizes the area, as in eq. (9.8), will satisfy
K â = γijK â

ij = 0. Now looking at eq. (9.29), we see that the λ2 contribution includes

a term that is quadratic in K â. Hence an extremal area surface will also be a saddle
point of this term. That is, if we deform away from the extremal area surface by some
deformation parameterized by a small parameter ε, then we will have K â ∼ O(ε) and
K âKâ ∼ O(ε2). Therefore extremal area surfaces will also extremize the new contribution
(or any other contribution) to the HEE functional that is quadratic in the trace of the
extrinsic curvature.12

Lastly since we are working with a four-dimensional bulk spacetime, m will be a two-
dimensional manifold and hence

∫
m

√
γR, appearing as λGB contribution in eq. (9.29), will

be proportional to a topological invariant (namely, the Euler characteristic) of m, up to

9This result is special to four dimensions. With a higher dimensional bulk, one would generally find
L̃2 = L2/f∞ where f∞ is a function of all three of the dimensionless couplings, λ1, λ2 and λGB.

10The last term in eq. (9.29) corresponds to a particular case of the Jacobson-Myers entropy functional
for Lovelock gravities [256].

11This simple shift may not arise when we are evaluating HEE in more general backgrounds, but this is
a general result for backgrounds which are Einstein geometries, i.e., Rµν = −3/L̃2 gµν .

12The full equations arising from extremizing the new functional will be very non-linear in general and
so there may be other saddle points for which K â 6= 0. However, we will also demand that the bulk
surfaces reduce to the corresponding extremal area surfaces in the limit that λi → 0. Therefore, these new
non-linear solutions (if they exist at all) would be discarded since they would not satisfy this condition.
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boundary terms. Therefore just as the corresponding interaction in the bulk action (9.27)
does not modify the gravitational equations of motion, this term in the HEE functional will
not contribute to the equations determining the bulk surface which extremizes eq. (9.29).

Given the above discussion, we conclude that the extremal area surface for any
given entangling region in the boundary of pure AdS4 will also extremize the HEE func-
tional (9.29) for the same calculation of entanglement entropy in the boundary theory
dual to curvature-squared gravity. The only effect of the ‘higher curvature’ corrections in
eq. (9.29) will be to change the final entanglement entropy by an overall factor depending
on the new couplings, λ1, λ2 and λGB. In the problem of interest, this indicates that
the corner coefficient q(Ω) will only be changed by this same overall factor. Hence the
charge (9.21) is multiplied by an overall factor but the functional dependence of q(Ω) on
the opening angle is precisely the same as compared to Einstein gravity. We note that the
above observations actually have broader applicability and that this result will apply to
a wide class of theories beyond the special case of curvature-squared gravity — we return
to a discussion of this point in section 9.3. Let us now turn to the detailed calculations
to see how the different contributions in eq. (9.29) affect the universal corner term in HEE.

R2 gravity

If we focus on the simplest case of R2 gravity, i.e., set λ2 = 0 = λGB, the gravitational
entropy functional reduces to

S2 =
A(m)

4G
+
L2λ1

2G

∫
m
d2y
√
γ R =

A(m)

4G
(1− 24λ1) , (9.30)

where we substituted R = −12/L2 to produce the last expression. Therefore, as discussed
above, the corresponding corner coefficient is simply multiplied by an overall factor relative
to the Einstein gravity13

q(Ω) = (1− 24λ1) qE(Ω) (9.31)

and the corresponding charge becomes

κ = (1− 24λ1) κE . (9.32)

RµνR
µν gravity

In the case of RµνR
µν gravity, the HEE functional becomes

S2 =
A(m)

4G
+
L2λ2

4G

∫
m
d2y
√
γ

(
Rââ −

1

2
K âKâ

)
(9.33)

=
A(m)

4G
(1− 6λ2)− λ2

8G

∫
m
d2y
√
γ

[
2(1 + ḣ2) + 3h2 + h4 + (h+ h3)ḧ

]2

(
1 + h2 + ḣ2

)3 .

where the expression in the second line was produced by first substitutingRââ = g⊥µνRµν =
−6/L2 and by evaluating K âKâ for the bulk surface defined by z = ρ h(θ) — see appendix

13As we describe in appendix G, these results can be straightforwardly extended to the case of a general
f(R) gravity.
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C for details. Varying the above expression will produce a nonlinear differential equation
for h(θ) which, because of the last term, involves third and fourth order derivatives, as
well as first and second order derivatives. However, as we explained above, the solution
should still be the same extremal area surface which we found with Einstein gravity. The
latter occurs because the geometric form of the equation determining the extremal area
surface is precisely K â = 0. Indeed comparing with eq. (9.11), we see that the factor in
the numerator of the last term above is precisely the equation determining the profile h(θ)
with Einstein gravity. Because this factor is squared, the profile satisfying eq. (9.11) will
also satisfy the full equation of motion coming from eq. (9.33) and further, in evaluating
the HEE, the last term will not contribute because this factor simply vanishes. Hence the
HEE and in particular, the corner coefficient, is determined by the Bekenstein-Hawking
term, as with Einstein gravity but now multiplied by an additional factor. Therefore the
charge defined by the corner term as in eq. (9.3) becomes simply

κ = (1− 6λ2) κE . (9.34)

Gauss-Bonnet gravity

For pure Gauss-Bonnet gravity, eq. (9.29) reduces to

S2 =
A(m)

4G
+
L2λGB

2G

∫
m
d2y
√
γR . (9.35)

Above, we argued that the second term would not affect the profile of the bulk surface
nor contribute to the universal corner contribution. With the bulk profile z = ρ h(θ), it is
not difficult to show that the combination

√
γR can be written as a total derivative (see

appendix C for details)

√
γR =

d

dθ

[
2

ρ

ḣ

h
√

1 + h2 + ḣ2

]
. (9.36)

In fact, this is sufficient to conclude that the universal corner contribution will be identical
to that in eq. (9.17), as expected.

However, let us examine the contribution of the Gauss-Bonnet term to the HEE in
more detail. Using eq. (9.36), this contribution can be written now as

∆SGB =
L2λGB

2G

∫
m
d2y
√
γR = −L

2λGB

G

∫ H

δ/h0

dρ

ρ

[
ḣ

h
√

1 + h2 + ḣ2

]θ=Ω/2−ε

θ=0

. (9.37)

We can make use of eq. (9.12) to replace ḣ in terms of h. By doing so, and recalling that
h(Ω/2− ε) = δ/ρ and h(0) = h0, the above expression reduces to

∆SGB = −L
2λGB

G

H

δ
+O(1) . (9.38)

Hence, including the Einstein gravity, the final result for the HEE in this case becomes

SEE =
L2

2G

H

δ
(1− 2λGB)− qE(Ω) log

(
H

δ

)
+O(1) . (9.39)

Hence the (nonuniversal) coefficient of the area law term has be modified here but the
corner contribution is precisely the same as with just Einstein gravity in the bulk.
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It was commented above that the entropy functional (9.29) might be supplemented
by boundary terms but that the logarithmic term in the HEE, i.e., the corner contribution,
is unaffected by such terms [247]. Gauss-Bonnet gravity provides an illustrative exercise
since there is a natural boundary term to be added gravitational entropy functional [247]

S2 =
A(m)

4G
+
L2λGB

2G

∫
m
d2y
√
γR+

L2λGB

G

∫
∂m
dy
√
γ̃K , (9.40)

where ∂m is the one-dimensional boundary of m at the cut-off surface z = δ. Further γ̃ and
K denote the determinant of the induced metric and the trace of the extrinsic curvature,
respectively, on this boundary. It is straightforward to evaluate these quantities and to
produce the result

∆S
′
GB =

L2λGB

G

∫
∂m
dy
√
γ̃K =

L2λGB

G

∫ H

δ/h0

dρ

δ
=
L2λGB

G

H

δ
+O(1) . (9.41)

Adding this contribution to eq. (9.39) leaves

SEE =
L2

2G

H

δ
− qE(Ω) log

(
H

δ

)
+O(1) (9.42)

and we see that with the additional boundary term in eq. (9.40), there is no λGB depen-
dence in either the area law term or the logarithmic contribution in the entanglement
entropy. The latter reflects the fact that with the additional boundary term, the Gauss-
Bonnet contribution in eq. (9.40) is a purely topological contribution. In any event, as
expected, the universal corner contribution remains unaffected by the addition of this
boundary term, which implicitly represents a modification of the regulator used to define
the entanglement entropy in the dual QFT.

To summarize our results for curvature-squared gravity (9.27) in the bulk, we found
that the functional form of q(Ω) is not modified. Rather the holographic expression only
differs from that in the Einstein gravity by some overall factor. Hence the charge defined
by the small Ω limit, as in eq. (9.3), becomes

κ = (1− 24λ1 − 6λ2) κE , (9.43)

where the Einstein charge κE is given eq. (9.21).

Generalized Lovelock gravity

Recall that Lovelock gravities [303, 304] are the most general higher curvature gravity
theories with second-order equations of motion. The corresponding action can be written
as

ILL =
1

16πG

∫
dd+1x

√
g

d(d− 1)

L2
+R+

b d+1
2 c∑

p=2

λpL
2p−2L2p(R)

 , (9.44)

where λp are dimensionless couplings and L2p correspond to the dimensionally extended
2p-dimensional Euler densities

L2p(R) ≡ 1

2p
δ
ν1ν2...ν2p−1ν2p
µ1µ2...µ2p−1µ2p R

µ1µ2
ν1ν2 · · ·Rµ2p−1µ2p−2

ν2p−1ν2p−2 . (9.45)
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Here δ
ν1ν2...ν2p−1ν2p
µ1µ2...µ2p−1µ2p denotes a totally antisymmetric product of 2p Kronecker deltas. Hence

when p = (d + 1)/2, L2p is topological and when p > (d + 1)/2, L2p simply vanishes. Of
course, the cosmological constant and Einstein terms in eq. (9.44) could be incorporated
into the sum as L0 and L2, respectively. Recently, there has been renewed interest in these
theories in the context of the AdS/CFT correspondence where these theories provide toy
models of holographic CFT’s in which the central charges differ from one another, e.g.,
see [?] and the references therein. For this class of theories (9.44), HEE is evaluated with
eq. (9.26) using the following entropy functional [154,247]

SJM =
A(m)

4G
+

1

4G

∫
m
dd−1y

√
γ

b d+1
2 c∑

p=2

p λp L
2p−2L2p−2(R) , (9.46)

where now L2p−2(R) is constructed with the intrinsic curvature tensor of the induced
metric on m.

Recently, Sarkar and Wall proposed a generalization of the Lovelock theories with
an action of the form [381]

ISW =
1

16πG

∫
dd+1x

√
g f(L0,L2,L4, · · · ,L2k) , (9.47)

where f is some general function of the extended Euler densities up to k = b(d + 1)/2c
— we will assume that f is a polynomial. Hence these new generalized Lovelock theories
might also be seen as an extension of f(R) gravity [399]. In general, the gravitational
equations of motion will involve fourth order derivatives of the metric in these new theories.
However, the motivation to considering these theories is to examine the second law of black
hole thermodynamics in higher curvature theories. In fact, [381] found an expression
for the gravitational entropy which satisfies a classical increase theorem for linearized
perturbations of Killing horizons

SSW =
1

4G

∫
dd−1y

√
γ

b d+1
2 c∑

p=1

p
∂f

∂L2p(R)
L2p−2(Rm) . (9.48)

Certainly, this expression also reduces to that in eq. (9.46) when f is linear and the
action (9.47) is simply the Lovelock action (9.44). We take these facts, in particular, that
eq. (9.48) applies for (at least small) deviations away from a Killing horizon, as evidence
that it will yield the correct gravitational entropy in the more general context of using
eq. (9.26) to evaluate HEE.

Hence we will use the generalized Lovelock theories (9.47) as framework to examine
the corner contribution in HEE. Since we are working in a four-dimensional bulk spacetime,
all of the L2p with p = 3, 4, ... will vanish identically. Therefore, we can only construct
the new gravity action with powers of the Ricci scalar R and the four-dimensional Euler
density X4, given in eq. (9.28). Hence we consider supplementing the standard cosmological
constant and Einstein terms in eq. (9.7) with higher curvature interactions of the form

4Iv,w =
λv,w

16πG

∫
d4x
√
g L2v+4w−2Rv Xw4 , (9.49)

with integers v, w ≥ 1. Then using eq. (9.48), the corresponding entropy functional
becomes

4Sv,w =
λv,w
4G

∫
m
d2y
√
γ L2v+4w−2

[
v Rv−1Xw4 + 2wRvXw−1

4 R
]
. (9.50)
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Now we are evaluating this expression in a pure AdS4 background (9.6) and so it may be
simplified by substituting R = −12/L̃2 and X4 = 24/L̃4 to yield

4Sv,w = (−1)v−1 22v+3w−4 3v+w−1 λv,w
G

∫
m
d2y
√
γ
[
v − wL2R

]
f v+2w−1
∞ . (9.51)

Note the power of f∞ = L2/L̃2 appearing in the integrand above. We have kept this
factor here to indicate that in general after solving the gravitational equations, one finds
that the curvature scale L̃ no longer coincides with the scale L set by the cosmological
constant. In particular, we find

1− f∞ + (−1)v22v+3w−23v+w−1 (2− v − 2w)λv,w f
v+2w
∞ = 0 . (9.52)

However, note that if we are working perturbatively in the coupling, we have f∞ = 1 +
O(λv,w).

With the simplifications produced by working in AdS4, the modifications to the
entropy functional have reduced to a term proportional to the area of the bulk surface and
another involving an integral of the intrinsic Ricci scalar over m. Hence at this point, we
can turn to our results from the previous subsection where both terms were encountered
before. In particular, neither term modifies the profile of the extremal surface in the bulk
and further the area term only changes the corner contribution by an overall factor while
the term involving R does not contribute to this universal term at all. More precisely,
given the precise results in eq. (9.51), we find that the charge associated with the corner
term becomes

κ =
[
1− (−1)v 22v+3w−2 3v+w−1 v λv,w +O(λ2

v,w)
]
κE , (9.53)

where the result is expressed to leading order in the perturbative expansion in the coupling.

To make this analysis more concrete, let us extend the general curvature-squared
theory (9.27) with the generalized Lovelock interactions which are third- and fourth-order
in the curvature

I =
1

16πG

∫
d4x
√
g

[
6

L2
+R+ L2

(
λ1R

2 + λ2RµνR
µν + λGBX4

)
(9.54)

+L4
(
λ3,0R

3 + λ1,1RX4

)
+ L6

(
λ4,0R

4 + λ2,1R
2X4 + λ0,2X 2

4

) ]
.

Then the final expression of the corner coefficient and the corresponding charge take the
simple form

q(Ω) = α qE(Ω) and κ = ακE (9.55)

where to leading order in the dimensionless couplings, the overall coefficient is given by

α = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 +O(λ2) . (9.56)

Of course, qE(Ω) and κE are the corresponding quantities evaluated for Einstein gravity,
as given in eqs. (9.17) and (9.21), respectively. The fact that the functional form of q(Ω)
is unchanged results because the higher curvature contributions to the entropy functional
studied here do not modify the profile of the extremal surface in the bulk. We do not
expect that this behaviour is completely universal and it may be modified in theories with
even more general higher curvature interactions. We will come back to this point in the
discussion section.
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9.2 Comparison with other charges

By considering the limit of a small opening angle in eq. (9.3), we identified a ‘central
charge’ that appears in the entanglement entropy of regions where boundary has corners.
When evaluated for holographic CFT’s dual to Einstein gravity, the result (9.21) is pro-
portional to the ratio L̃2/G ∼ L̃2/`2Planck. The latter ratio is well known to be indicative of
the number of degrees of freedom in the boundary theory. However, for Einstein gravity,
the same ratio is ubiquitous for physical quantities involving a similar count of degrees of
freedom, e.g., the entropy density of a thermal bath. The pervasiveness of L̃2/G arises
since this is the only dimensionless parameter that is intrinsic to the bulk theory with
Einstein gravity. By considering higher curvature theories for the bulk gravity, as in the
previous section, we are introducing more dimensionless couplings and we can begin to
distinguish the various charges in the boundary theory, e.g., see [85,247,335]. Our objec-
tive here is to use our holographic results to determine if the corner charge κ should be
considered a new and distinct charge or if it is proportional to charges already appearing
in other physical quantities. In particular, in the following, we compare κ to the analogous
charges appearing in: 1) the entanglement entropy of an infinite strip; 2) the entanglement
entropy of a disk; 3) the entropy density of a thermal bath and 4) the two-point function
of the stress tensor. Again, with Einstein gravity in the bulk, all of these quantities are
proportional to L̃2/G. While the same is true (with our conventions) with the higher cur-
vature theories, the additional dimensionless couplings also give each a unique signature,
as we will see in the following.

9.2.1 Entanglement entropy for a strip

We begin with the entanglement entropy of an infinite strip. For a general three-dimensional
CFT, the result will take the form [119,338]

SEE = c1
2H

δ
− ã H

`
+O(δ) (9.57)

where ` is the width of the strip and H is a long distance scale introduced to regulate the
length of the strip, i.e., the area of the entangling surface is 2H. The universal coefficient
ã can be isolated with

ã =
`2

H

∂SEE
∂`

. (9.58)

We will find that ã = κ in our HEE calculations below. In fact, this result holds for
general three-dimensional CFT’s and has a simple explanation since there is a conformal
transformation that (essentially) relates the corresponding entanglement geometries — see
appendix F.

Holographic calculations of the entanglement entropy of a strip were first carried
out in [378,379] with Einstein gravity in the bulk. To start, we write AdS4 metric as

ds2 =
L̃2

z2

(
dz2 + dt2E + dx2

1 + dx2
2

)
. (9.59)

Let us parameterize the strip in the boundary as the region B= {tE = 0, x1 ∈ [−`/2, `/2]}.
As noted above, we also introduce an IR regulator by, e.g., making the x2 direction periodic
with period 4x2 = H and with H � `. The translational symmetry along x2 allows us to
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parametrize the entangling surface m as z = h(x1), so the induced metric on the surface
becomes

ds2
m =

L̃2

h2

([
1 + ḣ2

]
dx2

1 + dx2
2

)
, (9.60)

where ḣ = ∂x1h. Focusing on Einstein gravity [237, 378, 379], we look for surfaces m
extremizing the area functional, which in this case is given by

SB =
L̃2

4G
H

∫ `/2

−`/2
dx1

1

h2

√
1 + ḣ2 . (9.61)

Since the integrand does not depend on x1 explicitly, there is conserved first integral which
can be used to write

ḣ = −
√
z4
∗ − h4

h2
, (9.62)

where z∗ is the maximal value of z reached by the extremal surface. The latter can be
identified in terms of ` through

` = 2

∫ `/2

0
dx1 = 2

∫ z∗

0

h2 dh√
z4
∗ − h4

=

√
2√
π

Γ
(

3
4

)2
z∗ . (9.63)

The final result for the entanglement entropy with Einstein gravity in the bulk is

SB =
L̃2

2G

H

δ
− L̃2

2πG
Γ
(

3
4

)4 H

`
, (9.64)

Hence the corresponding universal coefficient is

ãE =
L̃2

2πG
Γ
(

3
4

)4
, (9.65)

which exhibits the expected factor of L̃2/G, and further comparing with eq. (9.21), we see
that ãE = κE.

This calculation of HEE is easily extended to the higher curvature theories consid-
ered in section 9.1.1, taking into account the general remarks made there. We use the
prescription (9.26) with the generalized entropy functionals for those theories given in
eqs. (9.29) and (9.50). However, as we found before, the terms involving the trace of the
extrinsic curvature do not contribute, those with the intrinsic Ricci scalar only contribute
boundary terms and those involving bulk curvatures only modify the Einstein result by an
overall factor. It is straightforward to verify these expectations with explicit calculations
and the final result is

SB = β
L̃2

2G

H

δ
− α L̃2

2πG
Γ
(

3
4

)4 H

`
, (9.66)

where α is precisely the same factor given in eq. (9.56). The coefficient β appearing in the
area law term is another function of the couplings λi, which is not needed here but does
not coincide with α in general.14 Hence the final result for the universal coefficient is

ã = α ãE , (9.67)

and so we find that ã = κ in all of these examples. As noted above, this is in fact a general
result for three-dimensional CFT’s.

14In fact, the same factor β appears below in the HEE calculation for a disk.
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9.2.2 Entanglement entropy for a disk

For a general three-dimensional CFT, the entanglement entropy of a disk will take the
form [122,222]

SEE = c1
2πR

δ
− 2π c0 +O(δ) (9.68)

where R is the radius of the disk. The universal coefficient c0 can be isolated here by
evaluating [297]

ã =
1

2π

(
R
∂SEE
∂R

− SEE
)
. (9.69)

Of course, in this case, the universal constant c0 plays the an important role as the
central charge in the F -theorem, i.e., it decreases monotonically in renormalization group
flows [121,257,277,340,341].

The HEE for a disk was first calculated for Einstein gravity using eq. (9.8) in [378,
379]. However, this calculation was later extended to general higher curvature theories of
gravity in the bulk [122,341]. Making use of a conformal transformation in the boundary
CFT, the problem of calculating the entanglement entropy for a disk can be mapped to the
question of evaluating the thermal entropy of the CFT in a particular curved background.
The latter can then be evaluated as the Wald entropy of the corresponding horizon in
bulk spacetime with a general gravitational theory in the bulk. The horizon actually
appears as an ‘observer’ horizon upon transforming the bulk AdS geometry to AdS-Rindler
coordinates and the extremal area surface in the standard calculation coincides with the
bifurcation surface of this horizon, e.g., see [172].

Our calculations of HEE for the disk followed the prescription outlined in section
9.1.1, using eq. (9.26) with the entropy functionals in eqs. (9.29) and (9.50). Using the
AdS4 metric in eq. (9.6), let us parameterize the disk in the boundary as the region
D = {tE = 0, ρ ≤ R}. We write the profile of the bulk surface m as z = h(ρ) with no
dependence on θ because of the rotational symmetry of the disk. The induced metric on
m then becomes

ds2
m =

L̃2

h2

([
1 + ḣ2

]
dρ2 + ρ2dθ2

)
, (9.70)

where ḣ = ∂θh. The extremal area surface becomes the hemisphere [378,379]

ρ2 + z2 = R2 with z ≥ 0 . (9.71)

Now in general, the entropy functional for higher curvature theories can be written as the
Wald entropy plus terms which are at least quadratic in the extrinsic curvature [103,161].
However, one can readily verify that the extrinsic curvature of the above bulk surface
(9.71) vanishes and hence any extrinsic curvature terms will vanish to first order if we
make variations of this surface. Since the Wald entropy only involves bulk curvatures,
this entropy reduces to the area functional multiplied by an extra overall factor, as in the
previous section. Hence eq. (9.71) still remains the extremal surface when calculating the
HEE of a disk for any general higher curvature theory in the bulk. Hence with eqs. (9.29)
and (9.50) for the theories in section 9.1.1, evaluating the HEE yields

SD = β
L̃2

2G

R

δ
− β L̃2

2G
, (9.72)
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where 15

β = 1−24λ1−6λ2−2λGB +432λ3,0 +48λ1,1−6912λ4,0−864λ2,1−96λ0,2 +O(λ2) . (9.73)

Hence the universal charge for the corresponding holographic CFT’s becomes

c0 = β c0,E = β
L̃2

4πG
, (9.74)

where c0,E denotes the result for Einstein gravity, i.e., c0,E = L̃2/(4πG). Note that with
Einstein gravity, the ratio of the universal charges for the corner and the disk is relatively
simple, i.e.,

κE
c0,E

= 2Γ
(

3
4

)4
. (9.75)

However, comparing eqs. (9.67) and (9.74), as well as eqs. (9.56) and (9.73), we see that
there is no simple relation between κ and c0 in the general theories. In particular, we have

κ

c0
= 2 Γ

(
3
4

)4 (
1− 2λGB − 24λ1,1 + 288λ2,1 + 96λ0,2 +O(λ2)

)
(9.76)

and so this ratio depends on the precise value of the gravitational couplings in the higher
curvature theories.

9.2.3 Thermal entropy

Another quantity which might be used to characterize the number of degrees of freedom
in a system is the thermal entropy. For a three-dimensional CFT, the thermal entropy
density takes the form

s = cS T
2 . (9.77)

The coefficient cS is another interesting ‘central charge’ which is readily calculable in a
holographic setting. Of course, the thermal bath in the boundary theory is dual to a planar
AdS4 black hole and we need only calculate the entropy density of the event horizon. For
Einstein gravity, the black hole solution can be written as

ds2 =
L̃2

z2

(
dz2

f(z)
− f(z)dt2 + dx2

1 + dx2
2

)
with f(z) ≡ 1− z3

z3
H

, (9.78)

where z = zH is the position of the event horizon. The Hawking temperature is given by
T = 3/(4πzH) and the horizon entropy is given by the Bekenstein-Hawking formula, which
yields

Sthermal =
1

4G

∫
z=zH

√
h d2x =

L̃2

4Gz2
H

V2 , (9.79)

where V2 ≡
∫
dx1dx2. Now dividing by the spatial volume V2 yields the entropy density

and substituting the temperature for zH produces an expression of the expected form given
in eq. (9.77). The corresponding central charge is

cS,E =
4π2

9

L̃2

G
. (9.80)

15For a general theory with action (9.49), the corresponding expression is

β = 1 + (v + w)(−1)v−122v+3w−23v+w−1λv,w +O(λ2
v,w) .
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Here again, we see the ubiquitous factor of L̃2/G and hence the ratio with the corner
charge yields a fixed numerical factor, i.e.,

κE
cS,E

=
9

8π3
Γ
(

3
4

)4
. (9.81)

Curvature-squared gravity

Just as with empty AdS4, the black hole metric (9.78) is also a solution of the general
curvature-squared gravity for any value of the parameters λ1, λ2 and λGB provided L̃2 =
L2. Hence the only difference from the above calculations is that the horizon entropy
is now given by the Wald entropy formula [254, 255, 420]. Alternatively, we can use the
generalized entropy functional in eq. (9.29) since the two expressions only differ by terms
involving the extrinsic curvature and the latter vanishes on the event horizon of the AdS4

black hole. We find, in agreement with [393]

s = (1− 24λ1 − 6λ2)
4π2L̃2

9G
T 2 (9.82)

and therefore the corresponding central charge becomes

cS = γ2 cS,E with γ2 = 1− 24λ1 − 6λ2 . (9.83)

Comparing to eq. (9.43), we see that for curvature-squared gravity, the thermal entropy
charge is modified by the same overall factor that appears in the corresponding corner
charge. Hence for this family of holographic theories, the ratio of these two charges
remains unchanged from the numerical factor (9.81) that appears with Einstein gravity.

Generalized Lovelock gravity

The black hole metric in eq. (9.78) is no longer a solution of the equations of motion for
general theories of the form (9.49). Hence in order to explore how the thermal entropy
gets modified here, we must first correct the black hole solution to linear order in the
coupling λv,w. We parametrize the modified solution as

ds2 =
L̃2

z2

(
dz2

f(z) [1 + λv,wf2(z)]
− f(z) [1 + λv,wf1(z)] dt2 + dx2

1 + dx2
2

)
, (9.84)

where f1(z) and f2(z) are two nonsingular functions to be determined. This ansatz was
chosen so that the position of the horizon remains at z = zH. In order to obtain f1(z)
and f2(z), we substitute the above metric into the Einstein action (9.7) modified by the
addition of a higher curvature interaction as in eq. (9.49) and expand to second order in
the coupling λv,w.16 From the second order action, we determine the linearized equations
of motion for f1(z) and f2(z) and then solve them with the boundary conditions that
both functions decay as z → 0 and remain nonsingular at z = zH. Below we describe
the solution and the results for the thermal entropy for each of the generalized Lovelock
interactions up to quartic order in the curvatures, shown in eq. (9.54).

16Since we are working perturbatively in λv,w, it is sufficient to consider each higher curvature interaction
(9.49) separately. Of course, the first order variations by f1(z) and f2(z) vanish identically here because
to leading order, the metric solves the Einstein equations of motion.
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In general, the Hawking temperature of the solution will be given by

T =
3

4πzH

(
1 +

f1(zH) + f2(zH)

2
λv,w +O(λ2

v,w)

)
, (9.85)

as one can easily check.

a) R3 and R4 gravity

For these two particular theories, as well as any theory with only Rv interactions (i.e.,
w = 0), the original AdS4 black hole solution (9.78) does not get corrected at any order in
the couplings λv,0, i.e., f1(z) = f2(z) = 0. The uncorrected black hole solves the equations
of motion of these theories provided the curvature scale satisfies eq. (9.52), which was also
required for the pure AdS4 metric (9.6) to be a solution in the new theory. Note that for
v = 3 and 4, we find the constraints 1−f∞+144λ3,0f

3
∞ = 0 and 1−f∞−3456λ4,0f

4
∞ = 0,

respectively.

The horizon entropy is computed using the expression in eq. (9.48). However, since
the Ricci scalar of the Schwarzschild-AdS4 background equals that of the pure AdS4 so-
lution, the corrected thermal entropy for these theories differs from the Einstein gravity
result by just a overall constant factor which is precisely the same as the λ3,0 and λ4,0

contributions to α in eq. (9.56). That is, we find

s = γa cS,E T
2 with γa = 1 + 432λ3,0 − 6912λ4,0 +O(λ2) . (9.86)

b) RX4 gravity

For this theory, the AdS curvature is given by 1 − f∞ + 24λ1,1f
3
∞ = 0 — recall that

f∞ ≡ L2/L̃2. The planar black hole (9.78) no longer solves the equations of motion and so
we proceed as described above to find the corrected solution to first order in the coupling.
The two functions f1 and f2 are

f1(z) = −
18z3(z3 + z3

H)

z6
H

, (9.87)

f2(z) =
6z3(11z3 − 3z3

H)

z6
H

.

With the new metric, the Hawking temperature becomes

T1,1 =
3

4πzH

(
1 + 6λ1,1 +O(λ2

1,1)
)
. (9.88)

Using eq. (9.50), the thermal entropy then becomes

s = γb cS,E T
2 with γb = 1 + 24λ1,1 +O(λ2

1,1) . (9.89)

We note that γb again agrees with the analogous factor appearing in the corner coefficient
(9.53) for v = 1 = w.

We stress that, as opposed to the theories with w = 0, the on-shell Gauss-Bonnet
term X4 is no longer the same in the black hole background as in the pure AdS4 solution
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(hence eq. (9.50) no longer reduces down to eq. (9.51)). Computing the horizon entropy
as a function of the horizon position yields

s = (1 + 36λ1,1 +O(λ2
1,1))

L̃2

4πGz2
H

. (9.90)

It is only when we express the entropy density as a function of the physical temperature
(9.88) that we cover the factor γb in eq. (9.89). Actually, it is possible to show that different
parametrizations of the corrected solution give rise to different expressions for s(zH) and
T (zH), which nevertheless conspire to produce the same physical result when the entropy
density is written in terms of the temperature.

c) R2X4 gravity

In this case, the curvature scale is determined by 1−f∞−576λ2,1f
4
∞ = 0, and the functions

parameterizing the corrected black hole (9.84) are

f1(z) =
432z3(z3 + z3

H)

z6
H

, (9.91)

f2(z) =
−144z3(11z3 − 3z3

H)

z6
H

.

Further, the Hawking temperature becomes

T =
3

4πzH

(
1− 144λ2,1 +O(λ2

2,1)
)
, (9.92)

while the entropy density is given by

s = γc cS,E T
2 with γc = 1− 576λ2,1 +O(λ2

2,1) . (9.93)

Here again, γc agrees with the analogous factor appearing in the corner coefficient (9.53)
for v = 2 and w = 1.

d) X 2
4 gravity

The last nontrivial interaction at fourth order in curvature corresponds to the square of
the Gauss-Bonnet density, X 2

4 . To begin, let us note that interactions of the form X w
4

with w ≥ 2 are not topological and do modify the gravitational equations of motion in
four dimensions. It is only the linear term, i.e., w = 1 (and v = 0), which leaves the
equations of motion unchanged.

Now in this case, we have 1− f∞ − 96λ2,1f
4
∞ = 0 and

f1(z) =
8z3(11z6 + z3z3

H + z6
H)

z9
H

, (9.94)

f2(z) =
8z3(67z6 − 83z3z3

H + z6
H)

z9
H

.

The Hawking temperature is given by

T =
3

4πzH

(
1− 8λ0,2 +O(λ2

0,2)
)
, (9.95)
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and the thermal entropy density becomes

s = γd cS,E T
2 , with γd = 1 + 16λ0,2 +O(λ2

0,2) . (9.96)

Here, the factor γd receives a correction which is first order in λ0,2 while the corresponding
factor in the corner coefficient does not, e.g., see eq. (9.56). Hence, we have found the first
example for which the agreement is broken between the charges defined by the thermal
entropy density and by the corner contribution of the entanglement entropy.

Gathering together all of the first order contributions from the new interactions
appearing in the fourth-order action (9.54), we have that the thermal entropy density in
the dual boundary theory takes the expected form (9.77) where the corresponding charge
takes the form

cS = γ cS,E (9.97)

where the Einstein result cS,E is given in eq. (9.80) and

γ = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 + 16λ0,2 +O(λ2) . (9.98)

Comparing with eqs. (9.55) and (9.56) for the corner contribution of the entanglement
entropy in the same theories, we see

κ

cS
=

9

8π3
Γ
(

3
4

)4 (
1− 16λ0,2 +O(λ2)

)
. (9.99)

That is, the ratio κ/cS is independent of most of the additional dimensionless couplings
in eq. (9.54) and it would still be given by the same numerical factor found for Einstein
gravity in eq. (9.81) for the class of theories with λ0,2 = 0.

9.2.4 Stress tensor two-point function

Let us now turn to the two-point function for the stress tensor, which is particularly inter-
esting since it defines a central charge for CFT’s in any spacetime dimension. Evaluated
in the vacuum, the functional form of this two-point correlator is completely fixed by
conformal symmetry and energy conservation and for a d-dimensional CFT, it takes the
form [169,356]17

〈Tab(x)Tcd(0) 〉 =
CT
x2d
Iab,cd(x) , (9.100)

where

Iab,cd(x) ≡ 1

2
(Iac(x) Idb(x) + Iad(x) Icb(x))− 1

d
δab δcd (9.101)

and

Iab(x) ≡ δab − 2
xa xb
x2

. (9.102)

Below we will focus on d = 3 but as remarked above, the above expressions provide a
definition of CT for CFT’s in any spacetime dimension. In particular, eq. (9.100) is the
standard definition of the central charge c in two-dimensional CFT’s, i.e., CT = c, while

17Note that in this section unhatted indices from the beginning of the Latin alphabet run over the
d-dimensional boundary of AdSd+1.
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for four dimensions, CT = 40 c/π4 where c is the coefficient of the Weyl-squared term in
the trace anomaly.

Of course, in a holographic framework, the stress tensor is dual to the normaliz-
able mode of the metric [219, 423] and so evaluating eq. (9.100) requires determining the
two-point boundary correlator of the gravitons in the AdS vacuum. This is a standard
calculation in the context of Einstein gravity [85, 298] and one finds for three boundary
dimensions

CT,E =
3

π3

L̃2

G
. (9.103)

Once again, we see the ubiquitous factor of L̃2/G and comparing with the corner coefficient
(9.21), we have

κE
CT,E

=
π2

6
Γ
(

3
4

)4
. (9.104)

In order to investigate how the two-point function (or equivalently the graviton
propagator) is modified by the introduction of higher curvature terms in the bulk, let us
first recall that generically these new interactions will result in the appearance of higher-
order derivatives in the gravitiational equations of motion. Hence the metric will contain
additional propagating degrees of freedom beyond the usual massless spin-two graviton.
Therefore in a holographic context, the metric will also couple both to the stress tensor
and some new tensor operator, which is generically nonunitary.18 We can understand
the latter, i.e., that generically the new operator generates negative norm states in the
boundary CFT, with the following analogy from [341]: Consider a massless scalar field in
flat space whose equation of motion has been corrected with a fourth-order term,(

� +
λ

M2
�2

)
φ = 0 , (9.105)

where M2 is some high energy scale and λ, the dimensionless coupling of the higher
derivative interaction in the action. Then, the propagator for this field will read

1

q2 − λ q4/M2
=

1

q2
− 1

q2 −M2/λ
. (9.106)

Here the q2 = 0 pole will correspond to the usual massless mode, whereas that at q2 =
M2/λ is related to a new massive degree of freedom. Regardless of the sign of λ, the
sign of the second term in the propagator above will be negative and so the extra mode
is a ghost. Of course, if we are working perturbatively in λ, these new degrees of freedom
appear at very high energy scales. Hence if we should restrict our attention to energies
much less than M/λ1/2, the new scalar ghost will not go on-shell. In the holographic
context, the additional ghost modes create negative norm states in the bulk theory and so
they must be dual to new nonunitary operators in the boundary theory. Further, let us
note that the curvature scale plays the role of the mass above, i.e., L2 ∼ 1/M2, and so we
can expect that the conformal dimension of these operators to be set by the inverse of the
gravitational couplings, i.e., ∆2 ∼ 1/λ. Hence if we consider the CFT on the background
R× Sd−1, the new operator would again be associated with high energy states.

18Of course, this is a typical feature of holographic theories with higher curvature interactions in the
bulk, but it can be evaded in special cases. For example, f(R) gravity can be re-expressed as Einstein
gravity coupled to a scalar field [399]. Hence in this case, the additional CFT operator will be a scalar,
which can be unitary in the appropriate circumstances.
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The above example also highlights that in a perturbative framework, the extra
degrees of freedom are highly in the vicinity of the physical pole. Hence our strategy in
studying the graviton propagator will be to organize the linearized gravitational equations
of motion which make this suppression manifest and allow us to easily identify the proper
kinetic term of the physical modes. In general, writing out the linearized equations of
motion for the graviton would be a very complex task but it can simplified here in two
ways, as discussed in [337]. First, we are interested in the holographic version of eq. (9.100)
which is evaluated in the vacuum and so we need only study the metric fluctuations in
the AdS4 background. That is, we consider a perturbed metric: gµν = ḡµν + hµν , where
ḡµν is the AdS4 metric (and hµν � 1 for all µ, ν = 0, 1, 2, 3). In particular then, the
background curvature tensor takes the form R̄µνσρ = −1/L̃2 (δµσ δ

ν
ρ − δµρ δνσ), which

greatly simplifies the form of the linearized equations of motion. That is, they can be
expressed entirely in terms of covariant derivatives acting on hµν . In order to further
simplify the resulting expressions, which are still rather involved in general, we can use
diffeomorphism invariance to choose a convenient gauge. In the following, we restrict
ourselves to a transverse traceless gauge,19 i.e., ∇̄µhµν = 0 and ḡµνhµν = 0.

With these choices, the linearized Einstein equations become

GLµν = −1

2

[
�̄ +

2

L̃2

]
hµν = 8πGTµν , (9.107)

where GLµν denotes the linearized Einstein tensor. We have included the stress tensor
Tµν for some additional matter fields to the right-hand side because in the following, it
will be important to establish the normalization of Newton’s constant, or alternatively
of the graviton kinetic term. The linearized equation which results from our complete
fourth-order gravity (9.54) turns out to read20

− α

2

[
�̄ +

2

L̃2

]
hµν −

λ2L
2

2

[
�̄ +

2

L̃2

]2

hµν = 8πGTµν , (9.108)

where α is precisely the constant given by eq. (9.56). Interestingly, none of the higher-order
terms considered, except for the RµνR

µν interaction, produce fourth-order derivatives con-
tributions to the linearized equation for the physical graviton hµν in the AdS4 background
in this gauge, which is a rather striking phenomenom.21 It would be certainly interesting
to classify the families of higher-order gravities for which this behavior is encountered at
each order in curvature. We will not pursue such a goal here.

The left-hand side of eq. (9.108) is organized in a way which makes obvious the sup-
pression of the second term in the vicinity of the physical pole, i.e., for (�̄+2/L̃2)hµν ' 0.
However, the higher curvature terms still make their presence felt through the appearance
of α which modifies the coefficient of the leading Einstein-like term. As commented above,
one can interpret this new coefficient as modifying the normalization of Newton’s constant,

19Let us comment that in the perturbative framework discussed here, the physical degrees of freedom
still correspond to a massless spin-two graviton and so this gauge can still be applied here. Note that the
traceless condition eliminates the possibility of identifying new scalar degrees of freedom, e.g., as appear
in f(R) gravity — see footnote 18. However, these modes are regarded as unphysical with our current
perturbative perspective.

20This result agrees with that found in [393] for four-dimensional curvature-squared gravities.
21In appendix G, we perform the detailed calculation in a general gauge for f(R) gravity, in which the

same structure is found, and show how the fourth-order terms go away in this gauge.
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i.e., Geff = G/α or as having modified the normalization of the graviton kinetic term. In
any event, the net effect is to modify the previous holographic calculation of the two-point
correlator for Einstein gravity by an overall factor of α. Hence in the higher curvature
theory (9.54), we reproduce the desired expression in eq. (9.100) where the central charge
is now given by

CT = αCT,E = α
3

π3

L̃2

G
, (9.109)

where again, α is precisely the same constant given by eq. (9.56). Of course, we could also
write this expression as CT = 3L̃2/(π2Geff), i.e., the general result has the same form as
that for the Einstein theory except that G is replaced by Geff. Therefore, the correction
to the central charge appearing in the two-point correlator of the stress tensor (9.100)
matches that appearing in the universal corner term. Hence all of the higher curvature
theories considered here yield the same ratio (9.104) as in the Einstein theory, i.e.,

κ

CT
=
π2

6
Γ
(

3
4

)4 ' 3.7092 . (9.110)

One might hope that this is a universal result extending beyond holography. However,
in the discussion section below, we will show that this result does not hold in simple free
field theories.

9.3 Discussion

In this chapter, we have studied the universal term arising from the presence of corners
in the entangling surface for three-dimensional holographic conformal field theories. In
general, this coefficient of the logarithmic term in eq. (9.1) is a function of the opening
angle at the corner q(Ω). As we will discuss below, the precise form of this function
depends on the details of the underlying CFT, however, as explained in the introduction,
this function is constrained to behave as q(Ω) ' κ/Ω in the limit of small opening angles
and as q(Ω) ' σ (Ω − π)2 in the limit of a nearly smooth entangling surface. Hence,
eqs. (9.3) and (9.4) define two coefficients, κ and σ, which can be used to characterize
different CFT’s. Motivated by the idea that the corner contribution provides a useful
measure of the number of degrees of freedom in the underlying theory, we referred to
these constants as ‘central charges.’ In our holographic calculations, we found that the
overall form of q(Ω) did not change and so the two charges were simply related in all of
holographic models, i.e., κ/σ = 4 Γ(3/4)4. Hence we focus on the small angle charge κ
in the following discussion. In particular, one goal was to see if this corner charge had a
simple relation to any other known ‘charges,’ which provide a similar counting of degrees
of freedom and might be accessed with more conventional probes of the theory, or if κ is
really a distinct quantity.

Our approach was to study κ for an extended holographic model involving higher
curvature interactions in the bulk gravity theory, as described in section 9.1. In particular,
we evaluated the corner term for an entangling surface with a sharp corner on the boundary
of AdS4, using holographic entanglement entropy (9.26). The final result,

κ = ακE , with α = 1−24λ1−6λ2+432λ3,0+24λ1,1−6912λ4,0−576λ2,1+O(λ2) , (9.111)

and

κE =
L̃2

2πG
Γ
(

3
4

)4
, (9.112)
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gives κ for the broad class of gravitational theories described by the action (9.54). Our
general result is proportional to L̃2/G (i.e., the AdS scale squared over Newton’s constant)
but it is also a function of the eight dimensionless couplings appearing in the action (9.54).
Next, in section 9.2, we evaluated several charges appearing in different physical quantities
within the same holographic framework. In particular, we studied the analogous charges
appearing in the universal terms in the EE of a strip and of a disk, in the thermal entropy
density, and in the two-point function of the holographic stress tensor. All of these charges,
as well as κ, are simply proportional to L̃2/G with Einstein gravity in the bulk and so
they can not be distinguished from one another in the corresponding holographic CFT’s.
However, these charges also become dependent on the additional gravitational couplings
with higher curvature gravity in the bulk. Our calculations were perturbative in the λi
and hence the results are only linear in these couplings. However, this still allowed us
to distinguish the various different charges in the boundary CFT. Hence, this extended
holographic model provides an interesting framework to investigate our goal stated above,
namely, to determine if the corner charge can be considered distinct or if it has a simple
relation to another known central charge.

Of course, we do not have a top-down construction where the action (9.54) emerges
as the low energy effective action for, e.g., some string theory compactification. Rather our
perspective is that such extended holographic models provide an interesting framework to
test general properties of CFT’s, i.e., if there are certain properties common to all CFT’s
then they should be satisfied by the holographic CFT’s defined by these models. This
approach has found success in a number of interesting contexts, such as the discovery of
the F-theorem [340, 341]. Below, we also look to test a simple conjecture, motivated by
our holographic results, with calculations for free massless quantum field theories.

Another caveat in our analysis is that for the generalized Lovelock theories (9.47), the
appropriate gravitational entropy functional to use in evaluating the HEE (9.26) is given
by eq. (9.48). Recall that present evidence [21, 66, 327] suggests that the general formula
for the entropy functional proposed in [161] must be further refined for higher curvature
theories involving cubic and higher powers of the curvature. However, we argued that
the use of eq. (9.48) is well motivated by the somewhat complementary analysis of [381]
examining the second law of black hole thermodynamics in these higher curvature theories.
However, it would be useful to verify this more directly when a fuller understanding of
HEE in higher curvature theories emerges.

A summary of the ratios corresponding to the different charges computed in this
chapter with respect to κ can be found in Table 9.1.
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Constant Ratio

Strip HEE κ/ã = 1

Disk HEE κ/c0 = 2 Γ
(

3
4

)4 (
1− 2λGB − 24λ1,1 + 288λ2,1 + 96λ0,2 +O(λ2)

)
Thermal entropy κ/cS = 9

8π3 Γ
(

3
4

)4 (
1− 16λ0,2 +O(λ2)

)
〈Tab(x)Tcd(0)〉 κ/CT = π2

6 Γ
(

3
4

)4
Table 9.1: Ratios comparing the corner charge κ with similar physical coefficients.

We have seen that our holographic calculations yield κ = ã, where the latter is the
coefficient of the universal term in the EE of a strip, as defined in eq. (9.58). However,
this is a universal result that is expected to hold for any CFT on the basis of a conformal
mapping which relates the two entanglement entropy calculations — see appendix F. Hence
this result can be considered a check of our holographic calculations.

On the other hand, the charge c0 corresponding to the universal constant in the EE
of a disk is a distinct charge. Of course, the latter is the central charge which decreases
monotonically in RG flows, according to the F -theorem [121,257,277,340,341]. The inde-
pendence of these two charges is illustrated by eq. (9.76), which shows that the ratio κ/c0

depends on λGB, λ1,1, λ2,1 and λ0,2. Hence these two charges depend on the details of the
corresponding boundary theories in different ways. Alternatively, the ratio is independent
of the remaining four gravitational couplings, λ1, λ2, λ3,0 and λ4,0. Hence there are also
broad classes of theories with the same ratio κ/c0 but it is not a universal feature common
to all CFT’s.

The thermal entropy density for the holographic theories was calculated as the en-
tropy density of the corresponding AdS4 planar black hole. In this case, eq. (9.99) shows
that κ/cS is not universal but only depends on λ0,2, the coupling for the (X4)2 interaction
in eq. (9.54). However, the fact that this particular example produces a mismatch suggests
that this ratio will also depend on other new couplings for more general higher curvature
theories. In fact, our findings seem to suggest that the generalized Lovelock theories with
w = 0 or 1 and arbitrary v will respect the agreement between the charges, whereas those
with w ≥ 2 will not. We have explicitly verified that this is the case for v = 1 and w = 2.22

Eq. (9.110) shows that the ratio κ/CT is the same for all of the holographic theories
which we studied, where CT is the central charge appearing in the two-point function
(9.100) of the stress tensor. Hence eq. (9.110) matches the result (9.104) for Einstein

gravity with κ/CT = π2Γ
(

3
4

)4
/6, at least to first order in the gravitational couplings.

It is natural to conjecture that this ratio is a universal quantity for all CFT’s, even
beyond holography. Some further suggestive results can be found in [339], which studied
singular entangling surfaces in holographic models in higher dimensions. In particular,
the holographic model examined there had Gauss-Bonnet gravity in the bullk and it was
found that for an entangling surface with a conical singularity, CT controls the coefficient
for the universal contribution in the limit of a small opening angle. We will test this simple
conjecture below with massless free field theories finding that this result does not hold in
those simple field theories.

To close let us observe that a consequence of our results is that CT and cS are found
to disagree in general for holographic CFT’s. Supporting evidence of this disagreement
for general holographic theories can be found in [341], where it was shown that these two

22That is, κ/cS depends on λ1,2 but κ/CT still takes the standard Einstein value (9.104).
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charges are not the same for quasi-topological gravity [335,337].

9.3.1 Shape of the extremal surface

In our holographic investigation of the corner contribution, we found that none of the
higher curvature interactions which we studied led to any modification in the functional
form of q(Ω). Rather it remained exactly the same as in Einstein gravity, i.e., q(Ω) =
α qE(Ω) where the constant α is given in eq. (9.56). This result is related to the fact that
all of the corresponding entropy functionals were extremized by extremal area surfaces
in the AdS4 background, just as in Einstein gravity. Further our discussion in section
9.1.1 suggests that this result is not simply a consequence of working to first order in a
perturbative treatment of the gravitational couplings. Hence one may wonder whether
this is a general feature of HEE in the AdS4 vacuum for any higher curvature theory of
gravity in the bulk. However, we argue that the latter is, in fact, not a universal result.

First we observe that the curvature tensor takes the simple form

Rµνρσ = − 1

L̃2
(gµρ gνσ − gµσ gνρ) (9.113)

in the AdS4 background. Hence as in the examples in section 9.1.1, the terms in the
entropy functional constructed with background curvatures will reduce to an integral of
some constant over the bulk surface m, i.e., they multiply the Bekenstein-Hawking contri-
bution by some constant factor. Similarly, any terms involving a mixture of background
curvatures and extrinsic curvatures will reduce to an integral of some scalar constructed
purely from extrinsic curvatures (and possibly derivatives of the extrinsic curvatures).
Therefore, we should consider whether in general such extrinsic curvature terms can lead
to modifications in the shape of m — and functional corrections to q(Ω), as a consequence.
Of course, the intuitive answer, which we confirm below, is that a sufficiently complicated
contraction of extrinsic curvatures will have a nontrivial effect on the shape of m.

Following the discussion in section 9.1.1, we first observe that any term which con-

tains two or more factors of the trace of the extrinsic curvature, e.g., K âK âijK b̂
ijK

b̂, will

always leave the extremal area surface unchanged. The reason is simply that K â = 0 is
the equation of motion determining the profile on an extremal area surface. Hence, the
variation of a term with two or more factors of K â will produce terms which still contain
this factor and so will vanish on any extremal area surface. On the other hand, one might
guess that if the term K â

ijK
âij appears in the entropy functional that it will modify the

shape of the bulk surface, but we argue that in fact it also leaves the extremal area surface
unchanged. This term is actually produced by a curvature squared interaction of the form
RµνρσR

µνρσ [185,336]. However, this term can be easily rewritten as a linear combination
of R2, RµνR

µν and X4 interactions, i.e., see eq. (9.28). For a pure AdS4 background,
we have argued in section 9.1.1 that extremal area surfaces always extremize the entropy
functionals corresponding to each of these three interactions, so the same must be true

with K â
ijK

âij . However, we find that terms of the form
(
K â
ijK

âij
)n

with n ≥ 2 are not

extremized by the extremal area surface and so we expect contributions of this kind (if
they appear in the HEE formula) will modify the functional form of qE(Ω). Similarly,

cyclic contractions of extrinsic curvatures, e.g., K â
k1k2

K âk2k3 ...K d̂kn−1knK d̂ k1
kn

, would also
modify the profile of the bulk surface so they would also change the functional form of the
corner function.
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Hence it is relatively simple to find terms which, if they appear in the gravitational
entropy functional, would modify the profile of the bulk surface in the calculation of HEE.
Hence the general expression for the universal corner term for arbitrary high curvature
theories might be expected to take the form

Scorner = −q(Ω) log

(
H

δ

)
, where q(Ω) = α qE(Ω) + r(Ω) , (9.114)

where r(Ω) would be a new function of the opening angle which would depend on some
gravitational couplings. If we consider the higher curvature terms as small corrections to
Einstein gravity, as for the perturbative calculations in this chapter, it should be clear that
r(Ω) would be highly suppressed with respect to the qE(Ω) contribution, since it would
only start appearing with interactions that are cubic or higher-order in the curvature. On
the other hand, as explained in appendix F, even if such functions correct the functional
form of qE(Ω) for certain higher-order gravities, the small angle behavior of q(Ω) is still
constrained to take the form

lim
Ω→0

q(Ω) = lim
Ω→0

(α qE(Ω) + r(Ω)) =
κ

Ω
+ · · · . (9.115)

Further, as explained in the introduction, we will have

lim
Ω→π

q(Ω) = lim
Ω→π

(α qE(Ω) + r(Ω)) = σ (π − Ω)2 + · · · , (9.116)

in the limit of a nearly smooth entangling curve. That is, eqs. (9.3) and (9.4) will still define
the universal corner charges, κ and σ, for any holographic theory irrespective of the details
of the entropy functional. However, let us note that for Einstein gravity and for all of the
holographic theories studied here, these charges are simply related by κE/σE = 4 Γ(3/4)4.
In general high curvature theories where the corner term is modified as in eq. (9.114),
there will be no reason to expect that this simple relation still holds for these two charges.

Of course, we are not at present able to provide an explicit example of a higher
curvature interaction which contributes such an ‘interesting’ extrinsic curvature term to
the graviational entropy functional. However, in this regard, we are simply restricted by
the current limitations in understanding how to construct the entropy functional given
a particular interaction in the bulk action [21, 66, 327]. Still we do see no reason why
these more complicated extrinsic curvature terms can not be produced by sufficiently
complicated higher curvature interactions.

9.3.2 Comparison with QFT calculations

The holographic calculations performed here are expected to produce q(Ω) for certain
strongly coupled three-dimensional CFT’s dual to our bulk gravity theories. On the other
hand, similar field theoretical results are also available for a wide range values of Ω in the
case of a free scalar and a free fermion [118–120].23 Further, it was argued [118,346] that
the holographic result for the corner contribution qE(Ω) with Einstein gravity qualitatively
agrees with these free field results. Given how dissimilar the underlying field theories are in
this comparison, even a qualitative agreement may seem somewhat surprising. However,

23Most other results in the literature, e.g., see [251, 262–264, 391], are given only for a particular value
of the opening angle, i.e., for Ω = π/2 which is easily studied on a square lattice.
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recall that the behaviour of q(Ω) is fixed on general grounds both for small angles and for
Ω ' π, i.e., see eqs. (9.3) and (9.4), respectively. Further, given the universal form of qE(Ω)
at least for the broad range of holographic theories considered in this chapter, we find it
interesting here to make a quantitative comparison of q(Ω) for the holographic and free
field theories. In order to make such a comparison, we must start by normalizing q(Ω) for
the various theories. A convenient choice is to consider q(Ω)/κ which will then approach
1/Ω for small angles for any field theory. For all of the holographic theories which we
studied, we will have qE(Ω)/κE since the common factor of α in eq. (9.55) cancels in the
ratio. Of course, qE(Ω) is determined numerically by evaluating the integrals in eqs. (9.17)
and (9.18), while κE is given by eq. (9.21). The corresponding charges for the free field
theories were determined in [118–120] as

κscalar ' 0.0397 and κfermion ' 0.0722 . (9.117)

Now the free field results shown in figures 9.4 and 9.5 represent Taylor expansions of q(Ω)
around Ω = π to fourteenth order, which were obtained in [119, 120]. These expansions
give a reliable enough approximation for values of the opening angle which are not too
small. In particular, the figures also show the lattice results obtained for q(Ω) at Ω = π/4,
π/2 and 3π/4 in [118] using the numerical method developed in [363].
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Figure 9.4: (Colour online) We show q/κ for AdS/CFT (orange), a free scalar (blue), a
free fermion (red) and the lattice points (squares) obtained numerically for three values
of Ω [118]. We also include the black dashed curve giving the 1/Ω behavior which all of
the functions will approach for small angles.

In figures 9.4 and 9.5 we see, first of all, how the Taylor expansions for the free
theories are in good agreement with the corresponding lattice results. Hence the red and
blue lines in these figures can be reasonably trusted at least for angles larger than π/4.
As we see in figure 9.5, the holographic function qE(Ω)/κE turns out to agree with the
corresponding free fermion result within a 2% over this whole range where the results are
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Figure 9.5: (Colour online) We show (q/κ)free/(q/κ)holo both for the free scalar (blue),
the free fermion (red) and the corresponding lattice results (squares). We also show the
interpolated curves obtained using the 14 coefficients of the Taylor expansions around
Ω = π as well as the coefficients κ in the small opening angle expansions (dashed blue and
red). The black dashed line would correspond to the value for which the ratios are equal.
Both theories will in fact approach the black square at the end of this line, i.e., at Ω = 0.

reliable. Similarly, the function for the free scalar deviates from the holographic result by
no more than 11% in this range. In the small angle region, the three corner contributions
normalized by κ in figure 9.4 will all approach 1/Ω (shown as the black dashed line). Of
course, we only see the latter behaviour is realized for the holographic result, for which
we have the exact function over the whole range of Ω. The exact curves for the free scalar
(fermion) would lie somewhere in between the black and the blue (red) curves in the
intermediate region and so these curves will tend to lie slightly above those obtained with
the Taylor series expansion around Ω = π. Hence the exact results for the free fields would
be in even better agreement with the holographic curve than we have estimated above.
Figure 9.5 is also useful to determine a better estimate of where the Taylor expansions
stop being reliable. Focusing on the lattice results in this figure, one might expect that the
ratios (q/κ)free/(q/κ)holo for both the scalar and the fermion will decrease monotonically
for increasing Ω over the full range from Ω = 0 to π. This would indicate that the
expansions are starting to fail in the vicinity where their slopes become zero, i.e., around
Ω/π ∼ 0.35 for the fermion and Ω/π ∼ 0.27 in the case of the scalar.

As we have seen, the ratio κ/CT equals the Einstein gravity result (9.104) for all
the higher curvature theories considered here — at least, for perturbative calculations
to linear order in the additional gravitational couplings. However, we might ask if this
result applies quite generally for any three-dimensional CFT. Given that for the free field
theories, we have at our disposal the values of κ in eq. (9.117), it is interesting to compare
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these corner charges to the corresponding values of CT , which can be found in [356]:

CT, scalar =
3

32π2
, CT, fermion =

3

16π2
. (9.118)

Hence the ratios become:

κ

CT

∣∣∣
holo
' 3.7092 ,

κ

CT

∣∣∣
scalar

' 4.17945 ,
κ

CT

∣∣∣
fermion

' 3.8005 . (9.119)

All of these ratios are rather close to each other but we do not have precise agreement.
In particular, the fermion result differs from the holographic one by approximately 2.4%
whereas the scalar ratio is off by approximately 11%. Of course, an open question which
remains is whether this ratio is a universal quantity for all holographic theories, however,
we can only begin to address this question when a better understanding is established for
holographic entanglement entropy in general higher curvature theories.

In fact, it was not only the ratio κ/CT but rather the entire function q(Ω)/CT which
was universal for all our higher curvature theories. Hence, even though we found that the
universality of κ/CT did not extend beyond holographic CFT’s, we may ask more broadly
if there are any features of the corner contribution which are universal for general three-
dimensional CFT’s. Hence in figure 9.6, we plot (q(Ω)/CT )free/(q(Ω)/CT )holo for the free
scalar (blue) and the free fermion (red). The figure also includes the corresponding lattice
points24 as well as the points at Ω/π = 0, which correspond to (κ/CT )free/(κ/CT )holo. As
can be expected from figures 9.4 and 9.5, we see that in general the corner contribution
evolves slightly differently for the three cases as Ω runs from 0 to π. The ratios plotted
in figure 9.6 are essentially the same in figure 9.5 except that we have changed the nor-
malization by considering q(Ω)/CT rather than q(Ω)/κ. Hence again, the both ratios in
the new figure seem to be monotionically decreasing starting from (κ/CT )free/(κ/CT )holo

at Ω = 0 — see eq. (9.119). The remarkable feature in figure 9.6 is that both curves seem
to reach precisely 1 at Ω = π. That is, it appears that the ratio σ/CT is equal for the two
field theories and for our holographic theories!

Recall that we argued the behavior of q(Ω) was constrained for general CFT’s near
Ω = π and eq. (9.4) defined the charge σ with q(Ω) ' σ (π − Ω)2 + · · · . In particular, we
found in eq. (9.23) that for Einstein gravity

σE =
L̃2

8πG
, (9.120)

and so given the universal form of q(Ω) for all our holographic theories in eq. (9.55), we
have

σ = ασE , (9.121)

with α given again by eq. (9.56). Further in all of our holographic theories, we also have
a fixed ratio:

σ

CT
=

σE
CT,E

=
π2

24
' 0.411234 . (9.122)

We can easily compare this result with the ratio σ/CT for the free conformal scalar and the
massless fermion, since σ is simply the first coefficient in the Taylor expansions presented

24Although, the Taylor expansions and the lattice points seem to differ here, they are actually in good
agreement and it is just that the vertical scale has been expanded here. In particular, the disagreement is
less than approximately 2.5% in all cases.
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Figure 9.6: (Colour online) We show (q/CT )free/(q/CT )holo both for the free scalar (blue),
the free fermion (red) and the lattice points (squares). We also include the interpolated
curves obtained using the 14 coefficients of the Taylor expansions around Ω = π as well
as the coefficients κ in the small opening angle expansions (dashed blue and red). The
black dashed line would correspond to the value for which the ratios equal 1. The dots
in blue and red at Ω = 0 correspond to the small angle values of the ratios, namely
(κ/CT )free/(κ/CT )holo.

in [118–120], and the corresponding values are

σscalar ' 0.0039063 , and σfermion ' 0.0078125 . (9.123)

Hence using the values of CT given in eq. (9.118), the desired ratios become

σ

CT

∣∣∣
scalar

' 0.411235 , and
σ

CT

∣∣∣
fermion

' 0.411235 . (9.124)

Hence as expected from figure 9.6, the free field ratios show a striking agreement with the
holographic result, i.e., they agree with a precision of at least 0.0003%! We might keep
in mind that while the free field values for CT in eq. (9.118) are exact, the corresponding
values of σ in eq. (9.123) are only the approximate results of a numerical computation
[118–120]. Hence the precision of the agreement between eqs. (9.122) and (9.124) is as
good as could be expected.

We are emboldened then to conjecture that the ratio σ/CT is in fact a universal
constant for all three-dimensional CFT’s, i.e.,

σ

CT
=
π2

24
(9.125)

for general conformal field theories in three dimensions. This conjecture can be used to
predict the exact values of σscalar and σfermion,

σscalar =
1

256
, and σfermion =

1

128
. (9.126)
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Of course, these values match the results shown in eq. (9.117) within the accuracy limits
set by the calculations in [118–120]. However, we can do even better by going back to the
original free field computations and evaluating the required integrals with an improved
accuracy. The required calculations are described in appendix H and we find that the
agreement between our prediction for σscalar and σfermion, given by eq. (9.126), and the
previous calculations for the free field results can be extended to an accuracy of one part
in 1012. We emphasize the required integrals (H.2) and (H.3) are extremely complicated
and they are not even similar. Yet they seem to conspire to produce the simple rational
numbers (9.126) predicted by holography. We feel this is striking evidence in favour of our
new conjecture above!

9.4 Conventions and notation

In this chapter, Greek indices run over the entire AdS4 background, whereas Latin letters
from the second half of the alphabet i, j, ... represent directions along the entangling surface
m. m is a (co)dimension-two bulk surface with a pair of independent orthonormal vectors
orthogonal to it nµâ (â = 1̂, 2̂), where the hatted indices from the beginning of the Latin
alphabet denote tangent indices in the transverse space, so that δâb̂ = nµân

ν
b̂
gµν . Tangent

vectors to m are defined in the usual way as tµi ≡ ∂xµ/∂yi, being xµ and yi coordinates in
the full AdS4 background and along the surface, respectively. The corresponding induced
metric on the surface is thus given by γij ≡ tµi t

ν
j gµν (and its determinant det γij ≡ γ),

whereas the extrinsic curvatures associated to the two normal vectors nµâ read K â
ij ≡

tµi t
ν
j∇µnâν , being ∇µ the covariant derivative compatible with gµν . Also, we will denote by

K â the trace of each extrinsic curvature defined through K â ≡ γijK â
ij . Finally, by K â2

we mean the sum of the squares of the two extrinsic curvatures: K â2 ≡ K âK b̂δâb̂. The

transverse metric can be defined as g⊥µν ≡ nµân
ν
b̂
δâb̂, and allows us to project bulk tensors

in the transverse directions, e.g., Rââ ≡ g⊥µνRµν .

We write Euclidean AdS4 in Poincaré coordinates as

ds2 =
L̃2

z2

(
dz2 + dt2E + dρ2 + ρ2dθ2

)
. (9.127)

The induced metric on surfaces m parametrized as tE = 0, z−ρh(θ) = 0, such as the ones
suitable for the kink, reads

ds2
m =

L̃2

ρ2

(
1 +

1

h2

)
dρ2 +

L̃2

h2

(
1 + ḣ2

)
dθ2 +

2L̃2ḣ

ρ h
dρ dθ , (9.128)

where ḣ(θ) ≡ ∂θh. From this one finds

√
γ =

L̃2

ρh2

√
1 + h2 + ḣ2 . (9.129)

The resulting orthonormal vectors orthogonal to the surface read

n1̂ =
z

L̃
∂t , (9.130)

n2̂ =
z

L̃
√

1 + h2 + ḣ2

(
∂z − h ∂ρ −

ḣ

ρ
∂θ

)
. (9.131)

229



Chapter 9. Corner contributions to holographic entanglement entropy

For our pure AdS4 background, we find the following expression for the projection of the
Ricci tensor appearing in eq. (9.29)

Rââ = g⊥µνRµν = −6/L̃2 . (9.132)

The extrinsic curvature associated to n1̂ vanishes, whereas the one corresponding to n2̂

turns out to read

K 2̂
ij =

 − L̃(h2+1)

ρ2h2
√
h2+ḣ2+1

− L̃ḣ

ρh
√
h2+ḣ2+1

− L̃ḣ

ρh
√
h2+ḣ2+1

− L̃(h2+ḧh+ḣ2+1)
h2
√
h(θ)2+ḣ2+1

 . (9.133)

From this we can easily obtain the contraction appearing in eq. (9.29)

K â2
=

[
2 + 3h2 + h4 + 2ḣ2 + h(1 + h2)ḧ

]2

L̃2
(

1 + h2 + ḣ2
)3 . (9.134)

Finally, the Ricci scalar of the entangling surface reads

R =
2(−(1 + 2h2)ḣ2 − ḣ4 + (h+ h3)ḧ)

L̃2(1 + h2 + ḣ2)2
. (9.135)

From this and eq. (9.129), it is not difficult to check that the product
√
γR is a total

derivative. Indeed, we find

√
γR =

2(−(1 + 2h2)ḣ2 − ḣ4 + (h+ h3)ḧ)

ρh2(1 + h2 + ḣ2)3/2
=

d

dθ

[
2

ρ

ḣ

h
√

1 + h2 + ḣ2

]
. (9.136)
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A
Generating solutions of cubic models

A.1 Generating new solutions via duality

As mentioned in Section 2.6.5, a necessary and sufficient condition for a solution to be
generating is that all the Sl(2;R) invariants of the theory are independent when evaluated
on the charges and moduli of that solution [16,61,62,149]. In this appendix we are going to
study whether or not and why the solution considered in that section is a generating one.
We start by stating some general properties which we, then, apply to the (toy) axidilaton
model and then to the t3 model.

There are in general 5 independent invariants that characterize each N = 2 sym-
metric supergravity model. They are [126]:

i1 = |Z|2 , (A.1)

i2 = Gij∗ZiZ∗j∗ , (A.2)

i3 = −1
3<e [ZN3(Z∗)] , (A.3)

i4 = 1
3=m [ZN3(Z∗)] , (A.4)

i5 = Gij∗CijkC∗i∗j∗k∗Gjl
∗Gkm∗Gj∗lGk∗mZ∗l∗Z∗m∗ZlZm , (A.5)

where Z is the central charge, Gij∗ the inverse Kähler metric,

Zi ≡ DiZ , (A.6)

are the “matter” central charges,

Cijk ≡ DiVMDjDkVM , (A.7)

and

N3(Z∗) ≡ CijkGil
∗Gjm∗Gkn∗Z∗l∗Z∗m∗Z∗n∗ . (A.8)

All these invariants are function of the charges and the scalars but their combination
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Appendix A. Generating solutions of cubic models

J4(Q) = (i1 − i2)2 + 4i4 − i5 , (A.9)

depends quartically on the charges only. Sometimes it is advantageous to work with J4(Q)
instead of i5.

A.1.1 2-charge generating solutions of the axidilaton model

The minimal number of non-vanishing charges that are necessary for an extremal, super-
symmetric1, black hole of axidilaton theory to be regular is two. Taking into account the
form of the Hesse potential Eq. (2.77) and of the axidilaton Eq. (2.78), it is easy to see that
there are only two possible non-singular 2-charge configurations, namely (p0, p1, 0, 0)T and
(0, 0, q0, q1)T .

In this model, the tensor Cijk vanishes identically, and so does N3(Z∗) and the
invariants i3, i4, i5. The model is characterized by the two invariants i1 and i2, which are,
respectively, the squares of the absolute values of the true and fake central charges at
infinity

i1 = |Z(λ∞,Q)|2 , i2 = |Ẑ(λ∞,Q)|2 , (A.10)

and both are independent for any 2-charge solution (for <eλ∞ = 0 or not) and, in prin-
ciple, it should be a generating solution. However, depending on our choice of harmonic
functions, the regular solutions with two charges may have a vanishing <eλ∞ and the
subgroup of Sl(2;R) that generates a non-vanishing <eλ∞, which consists of matrices of
the form

(
1 β
0 1

)
do not leave invariant the 2-charge configurations. Therefore, the Sl(2;R)

orbit of the regular 2-charge configurations may not cover the full parameter space.

It is interesting to see how the impossibility of generating a solution containing
the maximal number of independent parameters arises in practice in this simple case,
starting from a configuration characterized by the charges (0, 0, q̂0, q̂1)T and the moduli
λ̂∞ = i=m λ̂∞ (we reserve the unhatted symbols for the final charges and moduli). This
solution is determined by two harmonic functions:

(ĤM ) =



0

0

s√
2

{
(=m λ̂∞)1/2 − |q̂0|τ

}
s√
2

{
(=m λ̂∞)−1/2 − |q̂1|τ

}


, (A.11)

where

s ≡ sgn(q̂0) = sgn(q̂1) . (A.12)

1The discussion can also be held for the non-supersymmetric solutions to this model, reaching the same
conclusions.
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The Sl(2;R) rotated solution will depend on the original physical parameters q̂0, q̂1,=m λ̂∞
plus the parameters of the Sl(2;R) transformation a, b, c, d (only 3 of which are indepen-
dent). We have to determine q̂0, q̂1,=m λ̂∞, a, b, c, d in terms of the final physical parame-
ters to write the rotated solution in terms of its own physical parameters only.

Sl(2;R) acts on the charge vector through the matrix Eq. (2.57) so
p0

p1

q0

q1

 =


d −c

a b
−b a

c d




0
0
q̂0

q̂1

 =


−cq̂0

bq̂1

aq̂0

dq̂1

 . (A.13)

From these relations we determine a, b, c, d in terms of the final and original charges:

a = q0/q̂0 , b = p1/q̂1 , c = −p0/q̂0 , d = q1/q̂1 . (A.14)

On the other hand, from the transformation rule Eq. (2.48) we get

<eλ∞ =
bd+ ac(=m λ̂∞)2

d2 + c2(=m λ̂∞)2
, =mλ∞ =

=m λ̂∞
d2 + c2(=m λ̂∞)2

, (A.15)

and replacing in these relations the transformation parameters a, b, c, d by the values in
Eq. (A.14), we get 2 equations that relate the 3 original to the 6 final physical parameters:

p0q0(q̂1)2(=m λ̂∞)2 +
<eλ∞
=mλ∞

(q̂0q̂1)2=m λ̂∞ − p1q1(q̂0)2 = 0 , (A.16)

=mλ∞(p0)2(q̂1)2(=m λ̂∞)2 − (q̂0q̂1)2=m λ̂∞ + =mλ∞(q1)2(q̂0)2 = 0 . (A.17)

The invariance of W implies that

q̂0q̂1 = p0p1 + q0q1 , (A.18)

and allows us to eliminate q̂1 from the above two equations. We can solve (A.16) and
(A.17) for =m λ̂∞ as a function of the 6 final physical parameters and q̂0 and, for both
equations, we find =m λ̂∞q̂−2

0 as a function of those 6 parameters:

=m λ̂∞q̂−2
0 = f1(Q, λ∞) , =m λ̂∞q̂−2

0 = f2(Q, λ∞) . (A.19)

The consistency condition f1(Q, λ∞) = f2(Q, λ∞) determines one of the two final real
moduli as a complicated function of the final charges. In other words: the final solution
cannot have 6 independent physical parameters, which implies that the original solution
is not a generating solution.

On top of this, there seems to be another problem: we cannot solve separately the
3 original physical parameters in terms of the 6 final ones. “Fortunately” only the com-
bination =m λ̂∞q̂−2

0 appears in the rotated solution or, equivalently, in the HM variables.
Using Eqs. (A.13,A.14) and (A.18) we find the these are given by
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HM = AM − 1√
2
QMτ ,


A0

A1

A0

A1

 =


s√
2
p0(=m λ̂∞q̂−2

0 )1/2

s√
2
p1(p0p1 + q0q1)−1(=m λ̂∞q̂−2

0 )−1/2

s√
2
q0(=m λ̂∞q̂−2

0 )1/2

s√
2
q1(p0p1 + q0q1)−1(=m λ̂∞q̂−2

0 )−1/2

 ,

(A.20)

In the supersymmetric case we know that we can construct a new solution which
has, on top of the two non-trivial harmonic functions, two constant ones. If we write all
of them in the form

ĤM = ÂM − 1√
2
Q̂Mτ , (A.21)

then (Q̂M )T = (0, 0, q̂0, q̂1)T and, according to the general results of Ref. [191],

(ÂM ) =
1√

2=m λ̂∞
=m


q̂1λ̂
∗
∞ − iq̂0

|q̂1λ̂∗∞ − iq̂0|


i

λ̂∞
−iλ̂∞

1


 . (A.22)

This solution has two independent charges at any generic point in moduli space and
should be a generating solution. The difference with the previous case is that, instead of
the Eqs. (A.15), we can invert (2.48) and use Eqs. (A.14) and (A.18) to get two independent
real equations that do not lead to constraints in the final physical parameters:

λ̂∞q̂
−2
0 =

1

(p0p1 + q0q1)

q1λ∞ − p1

p0λ∞ + q0
. (A.23)

The only combinations of the 4 original physical parameters that appear in the
rotated solution are precisely the real and imaginary parts of λ̂∞q̂

−2
0 and we obtain a

solution with 6 independent physical parameters.

A.1.2 2-charge solutions of the t3 model

Again, the minimal number of non-vanishing charges that a regular, extremal, black hole of
this model can have is two. A choice of charge vector that leads to regular supersymmetric
and non-supersymmetric black holes is (0, p1, q0, 0)T . In the supersymmetric case, the
coefficient of − 1√

2
τ in HM (that we call attractor in the context of this formalism) is

given by

(BM ) = (QM ) =


0
p1

q0

0

 , (A.24)

and in the non-supersymmetric one, by
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(BM ) =


0
p1

−q0

0

 . (A.25)

In order to see if these charge configurations lead to generating solutions, we study
the values of the invariants. For cubic models with prepotential of the form

F = 1
3!dijk

X iX jX k

X 0
, (A.26)

one has Cijk = eKdijk. The prepotential of the t3 model is given in Eq. (2.163) and has
d111 = −5 so Cttt = 3

4(=mt)−3. For this model it can be proven that only three invariants
are independent and that the other two can be written as a their combination. Specifically,
one finds that [128]

i4 = −
√

4
27 i

3
2i1 − i23 , (A.27)

i5 = 3
4 i

2
2 , (A.28)

and we can take, as independent basis of invariants i1, i2 and i3 (which we can replace by
J4).

Now let us evaluate these invariants for the solutions with charge vector (0, p1, q0, 0)T .
The result is

i1 =
3

20(=m t∞)3

∣∣−5
2p

1t2∞ − q0

∣∣2 , (A.29)

i2 =
1

20(=m t∞)3

∣∣−5
2p

1t∞(t∞ + 2t∗∞)− 3q0

∣∣2 , (A.30)

i3 = − 1

75(=m t∞)6
<e
{
− i

8

(
−5

2p
1t2∞ − q0

) [
−5

2p
1t∞(t∞ + 2t∗∞)− 3q0

]3}
,(A.31)

and it is easy to see that if <e t∞ = 0 (the axion-free case) they simplify to

i1 =
3

20(=m t∞)3

[
5
2p

1(=m t∞)2 − q0

]2
, (A.32)

i2 =
1

20(=m t∞)3

[
5
2p

1(=m t∞)2 + 3q0

]2
, (A.33)

i3 = 0 , (A.34)

We see then that in the axion-free case only two invariant are independent and
according to the argument in [61] the solutions cannot be seed (generating) solutions.

It is necessary to have <e t 6= 0 for the the three invariants i1, i2, i3 6= 0 to be
independent from each other and the two-charge solution to be a generating solution.
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B
Special functions

B.1 The Lambert W function

The Lambert W function W (z) was firstly introduced by Johann Heinrich Lambert in
1758 [291]. Along its history, it has found numerous applications in different areas of
physics (mostly during the 20th century) [20,51,99,144,147,197,308,314,344,383,398].

W (z) is defined (implicitly) through the equation

z = W (z)eW (z) , ∀z ∈ C . (B.1)

Since f(z) = zez is not injective, W (z) is not uniquely defined, and W (z) stands for the
whole set of branches solving (B.1). For W : R → R, W (x) has two branches W0(x)
and W−1(x) defined respectively in the intervals x ∈ [−1/e,+∞) and x ∈ [−1/e, 0) (See
Figure 3). Both functions coincide in the branching point x = −1/e, where W0(−1/e) =
W−1(−1/e) = −1. Therefore, the defining equation x = W (x)eW (x) admits two different
solutions in the interval x ∈ [−1/e, 0).

W  (x)

W  (x)

-1

0

H-1 � e, -1L

0.5 1.0

-3

-2

-1

Figure B.1: The two real branches of W (x).

The derivative of W (z) reads
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dW (z)

dz
=

W (z)

z(1 +W (z))
, ∀z /∈ {0,−1/e} ;

dW (z)

dz

∣∣∣∣
z=0

= 1 , (B.2)

and is not defined for z = −1/e (the function is not differentiable there). At that point
one finds

lim
x→−1/e

dW0(x)

dx
=∞, lim

x→−1/e

dW−1(x)

dx
= −∞ . (B.3)

B.2 The Exponential Integral function

The Exponential Integral Ei [z] , z ∈ C is a special function on the complex plane. For
real non-zero values x it is defined as follows

Ei(x) = −
∫ ∞
−x

e−t

t
dt . (B.4)

We only need the Exponential Integral function evaluated in the real numbers since in
our solutions it appears only with a real argument, although in the definition of the
prepotential (4.2) it appears with an argument that can be in general complex.

-4 -2 2 4

-5

5

10

15

20

EiHxL

Figure B.2: The Exponential Integral function on the real axis.

Ei(x) is negative for x ∈ (−∞, c), where c ∼ 0, 375, zero in x = c and positive for x > c.
In addition, limx→0Ei(x) = −∞.
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C
SU(2) Yang-Mills solutions

C.1 The SU(2) Lorentzian meron

A Lorentzian meron is a classical solution to the pure SU(2) (Lorentzian) Yang-Mills theory
such that the 1-form gauge field A defining it, is proportional to a pure-gauge configuration,
which in our conventions would be 1

gdUU
−1 where U(x) ∈ SU(2). In Ref. [113] U(x) was

chosen to be of the hedgehog form

U ≡ 2
xm

r
δamTa , U † = U−1 = −U , ⇒ U2 = −12×2 . (C.1)

and it was shown that A solves the Yang-Mills equations if the proportionality coefficient
is 1/2, that is

A =
1

2g
dUU−1 = − 1

gr2
εamnx

mdxnTa . (C.2)

As we will see, this gauge field is nothing but the gauge field of the Wu-Yang SU(2)
monopole given in Eq. (C.15).

Since the field strength of a pure gauge configuration vanishes, we find that F (A)
can be written in these two specially simple ways which we will use in Appendix C.3:

F (A) = 1
2dA = g[A,A] = ?(3)d

1

2gr
U , (C.3)

Now we can write the non-Abelian field strength F (A) in terms of F (B), where
F (B) is the field strengths of the Dirac monopole of unit charge Eq. (C.6) that we will
review in the next section

F (A) = F (B)U , F (B) = ?(3)d
1

2gr
, (C.4)

and the energy-momentum tensor of A in terms of that of B

Tµν(A) = −1
2Tr[Fµρ(A)Fν

ρ(A)− 1
4ηµνF

2(A)] = Fµρ(B)Fν
ρ(B)− 1

4ηµνF
2(B) = Tµν(B) .

(C.5)
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C.2 The Wu-Yang SU(2) monopole

The Wu-Yang SU(2) monopole [428] is a solution of the SU(2) Yang-Mills theory that
can be obtained from the embedding of the Dirac monopole in SU(2) via a singular gauge
transformation (see, e.g. Ref. [390] and references therein). To fix our conventions, it is
convenient to start by reviewing the Wu-Yang construction of the Dirac monopole [427].

C.2.1 The Dirac monopole

The U(1) field of the Dirac monopole, that we will denote by B is defined to satisfy the
Dirac monopole equation1, which can be written in several forms:

F (B) ≡ dB = ?(3)d
1

2gr
= − 1

2g
dΩ2 , 2∂[mBn] = − 1

2g
εmnp

xp

r3
, (C.6)

where dΩ2 is the volume 2-form of the round 2-sphere of unit radius

dΩ2 = −1
2εmnp

xm

r
d
xn

r
∧ dx

p

r
= sin θdθ ∧ dϕ . (C.7)

The value of the magnetic charge has been set to g−1 and it is the minimal charge allowed
if the unit of electric charge is g.

The above equation does not admit a global regular solution.

B(±) = − 1

2g
(cos θ ∓ 1)dϕ , (C.8)

are local solutions regular everywhere except on the negative (resp. positive) z axis (the
Dirac strings). A globally regular solution can be constructed by using B± in the upper
(lower) hemisphere and using the gauge transformation

B(+) −B(−) = −d
(

1

g
ϕ

)
, (C.9)

to relate them in the overlap region. If the gauge group is U(1) where the radius of the
circle is the inverse coupling constant 1/g, the gauge transformation parameter can have
a periodicity 2πn/g with n ∈ N. This is the well-known Abelian Wu-Yang monopole
construction [427]. In our case, since the period of ϕ is 2π, we get 2π/g, which is the
smallest value allowed p = 1/g. The solution that describes the monopole of charge n
times the minimum is n times this one p = n/g.

It is useful to have the expression of B(±) in Cartesian coordinates:

B(±) =
1

2g

[(0, 0,∓1)× (x1, x2, x3)] · d~x
r2(r ± x3)

, (C.10)

in which the singularity at r = ∓x3 becomes evident. In this form, one can easily change
the position of the monopole from the origin to some other point xm0 and the position of
the Dirac string from the half line that starts from the origin in the direction −(0, 0,∓1) to

1This equation is just the Abelian version of the Bogomol’nyi equation.
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the half line that starts at the monopole’s position xm0 hand has the direction sm relative
to that point:

B(s) =
1

2g

(
1− sm

s

um

u

)−1

εmnp
sm

s

un

u
d
up

u
, (C.11)

with

um ≡ xm − xm0 , u2 ≡ umum , s2 ≡ smsm . (C.12)

C.2.2 From the Dirac monopole to the Wu-Yang SU(2) monopole

Let us consider the Abelian B(+) solution in Eq. (C.8) and let us embed it in SU(2) as
the 3rd component of the gauge field

A(+) ≡ 2B(+)T3 , F (A(+)) = 2F (B)T3 . (C.13)

The SU(2) gauge transformation (which is evidently singular along the negative z axis
and makes the whole Dirac string singularity, but the endpoint at the coordinate origin,
disappear)

U (+) ≡ 1√
2(1 + z

r )

[
1 +

z

r
+ 2

(x
r
T2 −

y

r
T1

)]
, (C.14)

relates the gauged field A(+) to

A =
1

g
εamndx

mx
n

r2
Ta , A(+) = U (+)A(U (+))−1 +

1

g
dU (+)(U (+))−1 , (C.15)

which is the gauge field of the Wu-Yang SU(2) monopole. As we have mentioned in the
previous appendix, this is also the gauge field of the Lorentzian meron Eq. (C.2). The
gauge transformation also relates T3 to U in Eq. (C.1) and the Abelian vector

U (+)U(U (+))−1 = 2T3 . (C.16)

The fact that the Lorentzian meron is the Wu-Yang monopole, which is related by
a gauge transformation to the Dirac monopole makes the relation Eq. (C.5) trivial.

This construction can be generalized to more general positions of the Dirac string:
if we consider embedding of the Dirac monopole solution B(s) in Eq. (C.11) into SU(2)

A(s) ≡ −2B(s) s
m

s
δm

aTa , (C.17)

it is easy to see that the gauge transformation

U (s) ≡ 1√
2
(
1− sm

s
um

u

) [1− sm

s

um

u
− 2εmn

a s
m

s

un

u
Ta

]
, (C.18)

relates it to the same Wu-Yang monopole field Eq. (C.15)
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A(s) = U (s)A(U (s))−1 +
1

g
dU (s)(U (s))−1 . (C.19)

C.3 The SU(2) Skyrme model

In this appendix we are going to show that the Lorentzian meron (Wu-Yang monopole) is
also associated to a solution of the equations of motion of the SU(2) Skyrme model [392]
written in the form [112]

SSkyrme = −1
2

∫
d4x

{
1
2RµR

µ +
λ

16
SµνS

µν

}
, (C.20)

where

Rµ ≡ V −1∂µV , Sµν ≡ [Rµ, Rν ] , V (x) ∈ SU(2) . (C.21)

The equations of motion are

∂µR
µ +

λ

4
∂µ[Rν , F

µν ] = 0 . (C.22)

If we take V = U−1 (U given by Eq. (C.1)), then we can write R = 2gA where A is
Lorentzian meron’s gauge field Eq. (C.2) and

∂µR
i µ = −2g∂mA

i
m = 0 ,

∂µ[Rν , F
µν ]i ∼ ∂m

(
Aim
r2

)
= 0 .

(C.23)

C.4 Higher-charge Lorentzian merons and Wu-Yang monopoles

The construction of a Lorentzian meron can be generalized by using a generalization of
the unit outward-pointing vector xm/r denoted by ξm and defined by [22]

(ξm) ≡ 1

r

(
=m(x2 + ix1)n

ρn−1
,
<e(x2 + ix1)n

ρn−1
, x3

)
, ρ2 ≡ (x1)2 + (x2)2 , (C.24)

or, in spherical coordinates,

(ξm) ≡ (sin θ sinnϕ, sin θ cosnϕ, cos θ) , (C.25)

and which reduces to xm/r for n = 1. The essential properties of ξm are

dξm ∧ dξn = −nεmnpξpdΩ2 , (C.26)

−1
2εmnpξ

mdξn ∧ dξp = ndΩ2 = ?(3)d
n

r
, (C.27)
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The generalization of the meron solution is constructed in terms of the generalization
SU(2) matrix in Eq. (C.1)

U(n) ≡ 2ξmδamTa , U †(n) = U−1
(n) = −U(n) , (C.28)

and takes the form

A ≡ 1

2g
dU(n)U

−1
(n) . (C.29)

The field strength is given by

F (A(n)) = 1
2dA = g[A,A] = ?(3)d

n

2gr
U(n) , (C.30)

and can be related to that of a Dirac monopole of charge p = n/g

F (B(n)) = ?(3)d
n

2gr
, F (A(n)) = F (B(n))U(n) , (C.31)

which is given by the expressions studied at the beginning. The energy-momentum tensor
of A is also equal to that of the Abelian monopole of charge n/g B. These fields can
also be related to the embedding of the charge n/g Dirac monopole into SU(2) with a
generalization of the gauge transformation Eq. (C.18)

U
(s)
(n) ≡

1√
2
(
1− sm

s ξ
m
) [1− sm

s
ξm − 2εmn

a s
m

s
ξnTa

]
, (C.32)

relates it to the meron gauge field:

U
(s)
(n)U(n)(U

(s)
(n))
−1 = −2

sm

s
δm

aTa , U
(s)
(n)A(n)(U

(s)
(n))
−1+

1

g
dU

(s)
(n)(U

(s)
(n))
−1 = nB

(s)
(n)2

sm

s
δm

aTa .

(C.33)

To check that this gauge field solves the Yang-Mills equations of motion we first
stress that, with the above connection, U(n) is a covariantly-constant adjoint field. Then,
auxiliary the adjoint Higgs field

Φ(n) ≡
(
− µ

2g
+

n

2gr

)
U(n) , (C.34)

satisfies

DΦ(n) = d
n

2gr
U(n) , (C.35)

and the pair A(n),Φ(n) satisfies the Bogomol’nyi equations (5.32) and, as a consequence
the equations of motion of the Yang-Mills-Higgs system. The last equation implies that
Φ(n) and DΦ(n) commute so the Higgs current vanishes and A(n) also solves the sourceless
Yang-Mills equations.
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D
HEE for a doubly-Wick-rotated hvLf geometry

In this appendix we study HEE for a class of geometries for which the anisotropic scaling
occurs along one of the spatial dimensions instead of time [7, 154]

ds2 = L2r
2θ
d

(
−dt

2

r2
+
dr2

r2
+
d~x2

(d−1)

r2
+
dy2

r2z

)
. (D.1)

This can be understood as obtained through a double Wick rotation of the usual hvLf
metric (7.3). Indeed we just have to apply the following transformation to it

t→ iy , xd → it , (D.2)

where xd stands for the dth spatial coordinate. This makes the geometry covariant under
the following transformations

y → λzt , t→ λt , xi → λxi , i = 1, ..., d− 1 . (D.3)

HEE in the framework of Einstein gravity has been already studied for this geometry
in [7,154]. Here we are going to extend the study to the case of Rn gravity to illustrate how
the result changes with respect to the usual hvLf case. The motivation to consider such a
perversion is to make the dynamical exponent z appear in the exponents of the divergent
terms in the HEE expression. This indeed results in the production of new divergences,
which become logarithmic in a certain subset of the parameter space.

The region at the boundary for which we compute the entanglement entropy is the
same as in the rest of the article, with the particularity that now we have anisotropic
spatial scaling. We consider the strip to extend infinitely (up to the IR cut-off LS →∞)
along the special scaling coordinate, so s = {(tE , r, x1, x2, ..., xd−1, y) s.t., tE = 0, xd−1 ∈
[−l/2, l/2], x1,...,d−2 ∈ (−LS/2,+LS/2), y ∈ (−LS/2,+LS/2)}. The procedure used here
is the same as that of section (8.1), so we will skip redundant discussions.

The HEE functional is

SRn =
1

4G

∫
m
d2y
√
gm

[
1 + nλRnL̃

2(n−1)Rn−1
]
. (D.4)

The Ricci scalar for (D.1) is the same as that for (7.3), that is, R = κr−2θ/d/L̃2. We can
parametrize the entangling surface m as xd−1 = h(r), so that the metric induced in such
surface is

ds2
m = L2r

2θ
d

[
dy2

r2z
+
(

1 + ḣ2
) dr2

r2
+
d~x2

d−2

r2

]
, (D.5)
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The expression for the entanglement entropy becomes

SRn =
LdL

(d−1)
S

2G

∫ r∗

δ
dr

√
1 + ḣ2f(r)r(θ−d−z+1) , with f(x) ≡

[
1 + nκ(n−1)λRnx

−2θ(n−1)/d
]
,

(D.6)
r∗ being the turning point of the surface, where ḣ|r∗ = ∞. The functional has a first
integral associated to h, so we can express ḣ in terms of h. By doing so and after some
rearrangement we find

SRn =
LdL

(d−1)
S rθ−d−z+2

∗
2G

∫ 1

δ/r∗

du
u(θ−d−z+1)f(uh∗)√

1− u2(d−θ+z−1) f(r∗)2

f(ur∗)2

. (D.7)

We need d − θ + z − 1 > 0 for the perturbative analysis to be consistent. Under this
condition the expression looks exactly like the one in section 8.1 after promoting (d−θ)→
(d− θ + z − 1). This implies the following result for the HEE

SRn =
LdL

(d−1)
S

2G

{
δ−B0

B0
− (l/2)−B0GB0

0 G0

B0
+ nκ(n−1)λRn

[
δ−B1

B1
− (l/2)−B1GB1

0 G1

B1

]}
+O(λ2

Rn) ,

(D.8)
with

B0 ≡ d− θ + z − 2 , (D.9)

B1 ≡ B0 +
2θ(n− 1)

d
, (D.10)

G0 ≡

√
πΓ
(

B0+2
2(B0+1)

)
Γ
(

1
2(B0+1)

) , G1 ≡

√
πΓ
(

2+2B0−B1
2(B0+1)

)
Γ
(

1+B0−B1
2(B0+1)

) . (D.11)

The divergence with B1 becomes logarithmic when

θ =
d(d+ z − 2)

d− 2(n− 1)
, (D.12)

which gives a broad range of possibilities. However, we still need to take into account the
NEC, which are different with respect to those for the standard hvLf case. For Einstein
gravity, this is computed as GµνN

µNν ≥ 0, Nµ being appropriate null vectors and Gµν the
Einstein tensor. For higher-curvature gravities, we will find additional conditions involving
the couplings of the theory, which we assume to be susceptible of being satisfied by tuning
those. For this metric a convenient null vector is

N r =
sr
L
r1−θ/d , N i =

si
L
r1−θ/d , Ny =

sy
L
rz−θ/d , (D.13)

N t =

√∑
s2
i + s2

r + s2
y

L
r1−θ/d . (D.14)

with the sµ being positive constants. The NEC produces two inequalities

d(z − 1)z + θ(d− θ) ≤ 0 , (D.15)

(z − 1)(z + d− θ) ≤ 0 . (D.16)
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After some algebra, one can see that these limit the allowed values of z to lie in the interval

1−
√

1 + 4θ θ−dd

2
≤ z ≤ 1 . (D.17)

So for each dimension d and each order in curvature n, any metric with z satisfying (D.17)
will give rise to a logarithmic contribution as long as (D.12) is satisfied.
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E
Some properties of the hvLf metrics

The hvLf metric (7.3) is spatially homogeneous and covariant under the scale transforma-
tions

xi → λxi , t→ λzt , r → λr , ds2
d+2 → λ2θ/dds2

d+2 , (E.1)

where λ is a dimensionless parameter. Observe that this means that the Lifshitz radius `
is only defined up to dimensionless factors. The Ricci tensors of metrics (7.3) are given by

Rtt =
(dz − θ)(d+ z − θ)

d r2z
(E.2)

Rrr =
(d+ z)θ − d(z2 + d)

d r2
(E.3)

Rij =
(θ − d)(d+ z − θ)

d r2
δij . (E.4)

This geometry generically suffers from a null curvature singularity at r =∞ except
for a specific set of parameter values. The singularity exists even though all curvature
invariants remain finite. The tidal forces diverge as [385]

C(θ,z)r
2C(θ,z)+d , C(θ,z) =

d(z − 1)− θ
d− θ

(E.5)

where we have restricted to C(θ,z) > 0 for which the singularity is a null curvature singu-
larity as surfaces of constant r become null as r goes to infinity. We distinguish several
cases:

• For θ = 0 we simply get the result in [240] which is appropriate for Lifshitz scaling.
Ways for resolving the null curvature singularities have been presented in [26,227].

• The case of θ = 0 and z = 1 is the non-singular result of pure AdS.

• There are non-singular results for

C(θ,z) = 0 , or C(θ,z) + 1 ≤ 0 . (E.6)

The null energy condition in the bulk gives the conditions

C(θ,z) ≥ 0, (z − 1)(d+ z − θ) ≥ 0, (E.7)

which rules out the non-singular condition C(θ,z)+1 ≤ 0 and leaves the condition C(θ,z) = 0.
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There is a class of Ricci-flat hvLf spaces: they are characterized by

θ =
d(d+ 1)

d− 1
and z =

2d

d− 1
−→ C(θ,z) = 0 . (E.8)

These spaces always solve the null energy condition and are regular in the IR interior
(r →∞).
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F
From the kink to the strip

As we used in the main text, the small angle limit of q(Ω) defines a universal charge κ,
which can be used to distinguish different CFT’s. The form of eq. (9.3) is fixed for general
theories due to the existence of a conformal map relating the corner geometry to a strip.
This mapping is discussed in detail in Appendix A of [339] and we only review the salient
points here. As a consequence of this mapping, the expressions for the universal terms in
the entanglement entropy match for both geometries, at least in the limit of small Ω or a
narrow strip width. However, as we will see below, this mapping does not fix the form of
q(Ω) over the entire range of the opening angle.

Let us now describe the conformal mapping: Let the CFT be defined in the back-
ground geometry which is simply R3, with the coordinates used in section 9.1,

ds2 = dt2E + dρ2 + ρ2dθ2 . (F.1)

If we make the coordinate transformation, tE = r cos ξ and ρ = r sin ξ, the line element
above becomes

ds2 = dr2 + r2
(
dξ2 + sin2ξ dθ2

)
. (F.2)

Next we make the coordinate change r = LeY/L and remove the overall factor e2Y/L with
a Weyl transformation, to find the geometry

ds2 = dY 2 + L2
(
dξ2 + sin2ξ dθ2

)
, (F.3)

with Y ∈ (−∞,+∞). Of course, this conformal transformation is the usual exponential
map which takes R3 to R× S2.

The corner region for which we calculated the entanglement entropy in section 9.1
was defined in the original coordinates (F.1) as V = {tE = 0, ρ > 0, |θ| ≤ Ω/2} and so in
terms of the polar coordinates (F.2), this region becomes V = {r > 0, ξ = π/2, |θ| ≤ Ω/2}.
Finally in the cylindrical background (F.3), the corner region is mapped to an infinite
strip: V = {Y ∈ (−∞,+∞) , ξ = π/2, |θ| ≤ Ω/2}. In this geometry, the density matrix
would be represented by a path integral of the CFT over the cylinder with open boundary
conditions imposed along the strip, i.e., on surfaces just above and below ξ = π/2, along
the entire length of Y and in the range |θ| ≤ Ω/2. Hence the entire entanglement entropy
(9.1), including both the universal and nonuniversal contributions, for the corner geometry
in R3 is readily related to that for the strip in the cylinder geometry R× S2, as discussed
in [339]. However, we would like instead to related the entanglement entropy of the corner
region to that of a strip in flat space R3, as was discussed in section 9.2.1. This is where
the limit of small opening angle becomes important. When Ω� 1, the separation between
both sides of the strip is much smaller than the size of the sphere and the local radius of
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curvature, i.e., ` ≡ LΩ� L. Hence the latter scale is negligible and to leading order the
entanglement entropy resembles that for a strip in flat space, i.e.,

SEE = c1
2(Y+ − Y−)

δ
− ã Y+ − Y−

`
+O(δ/L, `/L) (F.4)

where Y+ and Y− is regulator scales introduced to cut-off the length of the strip in the
positive and negative Y directions [339] — compare to eq. (9.57). Given the preceding
transformations, we see that the universal contribution (proportional to ã) is mapped to

Suniv = − ã
Ω

log

(
ρmax
ρmin

)
= − ã

Ω
log

(
H

δ

)
, (F.5)

where we have made the natural substitutions: ρmax = H and ρmin = δ. We emphasize
that this expression only applies for Ω� 1 and hence we have recovered eq. (9.3) for the
corner contribution with κ = ã.

Let us add that the coordinate transformation in the bulk geometry implementing
the conformal mapping between the two boundary metrics (F.1) and (F.3) can be found
as follows: The AdS4 geometry can be described as a hyperbola embedded in the five-
dimensional Minkowski space

ds2 = −dU2 + dV 2 + dR2 +R2 dΩ2
2 . (F.6)

AdS4 is defined now as the subspace

− U2 + V 2 +R2 = −L2 . (F.7)

This constraint can be solved writing R = rL/z, U + V = L2/z, U − V = z + r2/z,
and the induced metric on the hyperbola reduces to the Poincaré coordinates on AdS4,
given in eq. (9.6). On the other hand, the constraint (F.7) is also satisfied by U =√
R2 + L2 cosh(Y/L), V =

√
R2 + L2 sinh(Y/L), in which case the induced metric be-

comes

ds2 =
dR2

1 + R2

L2

+

(
1 +

R2

L2

)
dY 2 +R2

(
dξ2 + sin2ξ dθ2

)
, (F.8)

which is the AdS4 geometry in global coordinates. Stripping off a scale factor of R2/L2

at large radius, the resulting boundary metric matches that in eq. (F.3). These bulk
coordinates can be used to compute the HEE for the kink in essentially the same way as
the calculation of section 9.1.
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G
Central charges in f (R) gravity

We parmeterize our general f(R) gravity action [399] as

If(R) =
1

16πG

∫
d4x
√
g

[
6

L2
+R+ λ̂ f(R)

]
, (G.1)

where we have made the cosmological constant and the Einstein term explict. We have
also introduced a dimensionless coupling λ̂ as a useful device to indicate the combined
strength of the higher curvature contributions in the following. The function f(R) can be
a general function of the Ricci scalar, which has a Taylor series expansion beginning at
order R2 or higher. Our perspective is that f(R) is parameterized by various dimensionless
couplings and the necessary dimensions are provided by the cosmological constant scale
L. For example, we would incorporate the three Ricci scalar terms in the action (9.54) as

λ̂ f(R) = L2 λ1R
2 + L4 λ3,0R

3 + L6 λ4,0R
4 . (G.2)

In this simple class of theories, the gravitational entropy functional is simply given by the
Wald entropy [372,381], i.e.,

Sf(R) =
1

4G

∫
m
d2y
√
γ
[
1 + λ̂f ′(R)

]
, (G.3)

where f ′(R) = ∂f(R)/∂R. For our pure AdS4 background, f ′(R) will be just a constant,
with R = R̄ = −12/L̃2 where

1

L2
=

1

L̃2

[
1− λ̂ f ′

(
−12/L̃2

)]
− λ̂

6
f
(
−12/L̃2

)
. (G.4)

Hence determining the HEE will amount to finding the extremal area surface and evalu-
ating eq. (9.8) with an additional overall coefficient of

α̂ = 1 + λ̂ f ′(R̄) . (G.5)

Hence with a corner in the boundary entangling surface, the expression for the HEE will
be a trivial generalization of eq. (9.16) with

Sf(R) = α̂

[
L̃2

2G

H

δ
− qE(Ω) log

(
H

δ

)
+O(1)

]
. (G.6)

However, we emphasize that the same overall factor (G.5) will appear in front of the
entanglement entropy for any entangling surface and, in particular, for the circle. Further,
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it can be shown that the planar black hole solution (9.78) to the (four-dimensional) Einstein
equations will also be a solution of the f(R) Lagrangian. Hence the thermal entropy, which
is computed by evaluating the horizon entropy using the same Wald formula (G.6), will
produce the Einstein gravity result (9.79) up to an overall factor given precisely by αf(R).
Hence for this class of theories, the ratios κ/c0 and κ/cS will match those in Einstein
gravity, as given in eqs. (9.75) and (9.81), respectively. Note that these results apply even
when the strength of the gravitational couplings is large, i.e., the fact that these ratios do
not change is not restricted to linear order in perturbative calculations.

In order to see what happens with the two-point function (9.100) of the stress tensor,
we can follow the steps of section (9.2.4) in order to find the linearized equations of motion
for the massless spin-two graviton in the AdS4 background. A remarkable fact about our
previous linearized equations (9.108) was that none of the theories considered except that
with an RµνR

µν interaction produced terms involving higher-order derivatives acting on
hµν after we imposed the transverse traceless gauge. That is, in general, these theories do
produce fourth-order derivatives of hµν in the linearized equations, but nevertheless these
contributions all vanish, with the exception of the λ2 term, after we set ∇̄µhµν = 0 = h ≡
ḡµνhµν . As an illustrative exercise, we explicitly demonstrate how this works in the case
of f(R) gravity, where the same behavior is encountered. The full linearized equations
arising from eq. (G.1) read

RLµν −
1

2
ḡµνR

L +

[
6

L̃2
− 3

L2

]
hµν + λ̂ Eµν = 0 , (G.7)

where

Eµν ≡ f ′(R̄)RLµν−
1

2
f(R̄)hµν+f ′′(R̄)

[
ḡµν�̄− ∇̄µ∇̄ν −

3

L̃2
ḡµν

]
RL− 1

2
f ′(R̄)ḡµνR

L , (G.8)

and where the linearized Ricci tensor and Ricci scalar can be written as

RLµν = − 4

L̃2
hµν +

1

L̃2
ḡµνh+

1

2

(
∇̄µ∇̄σhνσ + ∇̄ν∇̄σhµσ − �̄hµν − ∇̄µ∇̄νh

)
,

RL ≡ ḡµνRLµν − hµνR̄µν = ∇̄µ∇̄νhµν − �̄h+
3

L̃2
h . (G.9)

As we can see, these equations involve fourth-order derivatives of the perturbation and
its trace. However, in the transverse traceless gauge, it is straightforward to see that RL

vanishes and hence the fourth-order terms, which all appear in Eµν , also vanish. The
equations (G.7) are then notably simpler and after some massaging,1 they yield the result:

− α̂

2

[
�̄ +

2

L̃2

]
hµν = α̂ GLµν = 0 , (G.10)

where GLµν is again the linearized Einstein tensor in this gauge, as in eq. (9.107), and α̂ is
defined in eq. (G.5). Hence with this exercise, we see all the fourth-order terms explicitly
disappear from the linearized equations. Further, we can see the same overall constant
(G.5) will appear here in CT , as appeared in the corner contribution above. Therefore the
ratio κ/CT is again unchanged from the Einstein value (9.104) in the holographic CFT’s
dual to f(R) gravity.

1In particular, one needs to use eq. (G.4) in order to obtain eq. (G.10).
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When we impose the transverse traceless gauge, we are implicitly eliminating any
new degrees of freedom and focusing entirely on the physical spin-two graviton. We can
relax this condition here to see that f(R) gravity introduces an additional scalar degree
of freedom. In particular, the trace of the metric perturbation becomes a propagating
massive scalar field. In order to find its equation, we can take the trace of the full linearized
equations (G.7) without any gauge fixing. The result is

−

[
α̂+

12λ̂

L̃2
f ′′(R̄)

] [
∇̄µ∇̄νhµν +

3h

L̃2

]
(G.11)

+�̄h

[
α̂+

21λ̂

L̃2
f ′′(R̄)

]
+ 3λ̂ f ′′(R̄)

[
�̄∇̄µ∇̄νhµν − �̄2h

]
= 0 .

At this point, it is convenient to choose the gauge condition,

∇̄µhµν = ∇̄νh , (G.12)

because this choice actually eliminates the fourth-order derivatives in the previous equa-
tion. The remaining second-order equation then simplifies to

3λ̂ f ′′(R̄) �̄h−

[
α̂+

12λ̂

L̃2
f ′′(R̄)

]
h = 0 , (G.13)

which corresponds to the equation of motion for a massive scalar field, as long as f ′′(R̄) 6= 0.
That is, the trace h has become a dynamical degree of freedom in this case. On the other
hand, if f ′′(R̄) = 0 (e.g., as in Einstein gravity), the above equation is not dynamical and
would simply impose the tracelessness condition h = 0. That is, the spin-two graviton
would be the only propagating degree of freedome in this case.

We should also consider the traceless part of the metric perturbation, i.e.,

ĥµν = hµν −
1

4
ḡµν h . (G.14)

with the gauge condition (G.12). Combining this choice of gauge with eqs. (G.7) and
(G.13), we get

1

2

[
∇̄µ∇̄νh−

1

4
ḡµν�̄h

] [
α̂− 6λ̂

L̃2
f ′′(R̄)

]
− α̂

2

[
�̄ +

2

L̃2

]
ĥµν = 0 . (G.15)

which is an equation for the massive spin-2 field ĥµν alone. However, this is not an
homogenous equation. We can nevertheless define a new traceless tensor satisfying an
equation of the type of eq. (G.10). This is given by2

tµν ≡ ĥµν −

[
3λ̂f ′′(R̄)

α̂

] [
∇̄µ∇̄νh−

1

4
ḡµν�̄h

]
. (G.16)

Indeed, using (G.20) and (G.14), it can be shown that this tensor satisfies

− α̂

2

[
�̄ +

2

L̃2

]
tµν = 0 . (G.17)

2The procedure followed here for determining the physical spin-2 field closely follows [393], where the
analysis was done for curvature-squared gravities.
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So tµν represents the physical massless spin-2 graviton coupling to the holographic stress
tensor. Note that eq. (G.21) is trivial whenever f ′′(R̄) = 0 (like in Einstein gravity), so in
that case, the traceless part of ĥµν already corresponds to the massless mode.

It is interesting to consider the scalar degree of freedom more explicitly. Hence let
us consider the case of R2 gravity, for which we write λ̂ f(R) = λ1L

2R2. Hence we have
λ̂ f ′(R̄) = 2λ1L

2R̄ = −24λ1L
2/L̃2 and λ̂ f ′′(R̄) = 2λ1L

2. Further, as noted in section
9.1.1, the solution of eq. (G.4) is simply L̃ = L. Combining these expressions in eq. (G.13)
then yields [

λ1 �̄−
1

6L2

]
h = 0 , (G.18)

and hence h obeys the standard equation of motion for a free scalar with mass: m2 =
1/(6λ1L

2). Using the standard holographic dictionary [219,311,423], h is dual to a scalar
operator in the three-dimensional boundary CFT with

∆ =
3

2
+

√
9

4
+

1

6λ1
. (G.19)

Hence if λ1 is small and positive, h corresponds to a highly irrelevant operator with
∆ ' 1/

√
6λ1 and with positive norm. If λ1 is small and negative, ∆ becomes imaginary

indicating that the standard AdS/CFT dictionary is breaking down. In this limit, h
is a ghost-like scalar with a tachyonic mass which exceeds the Breitenloner-Freedman
bound [82,82]. Hence the bulk theory would be inherently unstable if we tried to interpret
the corresponding R2 gravity as a complete theory rather than as an effective low energy
theory.

On the other hand, eqs. (G.20) and (G.21) reduce, for R2 gravity, to

1

2

[
∇̄µ∇̄νh−

1

4
ḡµν�̄h

]
[1− 36λ1]− 1− 24λ1

2

[
�̄ +

2

L̃2

]
ĥµν = 0 , (G.20)

and

tµν ≡ ĥµν −
[

6λ1

1− 24λ1

] [
∇̄µ∇̄νh−

1

4
ḡµν�̄h

]
. (G.21)

in agreement with the results obtained in [306,393].
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H
Free field calculation of σ

In [119], the computation of the first fourteen coefficients corresponding to the Taylor
expansion of q(Ω) around Ω = π was made using the techniques of quantum field theory
for a free scalar and a free Dirac field.

As we saw in the discussion section, the ratio σ/CT corresponding to the coefficient
σ of the first term in such expansion (q(Ω) = σ · (Ω − π)2 + O(Ω − π)4) and the charge
in front of the stress tensor two-point function, CT — see eq. (9.100), appears to satisfy a
universal relation of the form

σ

CT
=
π2

24
. (H.1)

This result has been obtained using holographic techniques in the previous sections, and
turns out to hold for all the higher-order theories we have considered in this paper. In
addition, the numbers obtained using the numerical results in [119] for σscalar and σfermion

and those for CT scalar and CT fermion given in [356] satisfy eq. (H.1) both for the scalar and
the fermion with an accuracy better than ∼ 0.0003%. While the results obtained in [356]
— see eq. (9.118), are exact, the values of σscalar and σfermion can only be computed in
field theory numerically. In particular, they can be obtained by evaluation of the following
monstruous integrals1

σscalar =
1

2

∫ +∞

1/2
dm

∫ +∞

0
db
[
−4π(1− a)aH mµ sech2(πb)

]
, (H.2)

σfermion = −4

∫ +∞

1/2
dm

∫ +∞

0
db
[
mµH a(1− a)π cosech2(bπ)

]
(H.3)

+

∫ +∞

0
db

∫ +∞

1/2
dm

[
F m cosech2(bπ)

]
,

where

h ≡
2
(
(a− 1)a+m2

)
sin2(πa)

m2
(

cos(2πa) + cos
(
π
√

1− 4m2
)) , (H.4)

c ≡
π22a−1(1− a)a sec

(
1
2π
(

2a+
√

1− 4m2
))

Γ
(

1
2

(
−2a+

√
1− 4m2 + 3

))
mΓ(2− a)2Γ

(
a+ 1

2

(√
1− 4m2 − 1

)) ,

1We wish to thank Horacio Casini for sending us these integrals, which are the ones originally used
in [119].
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X1 ≡
2−2aΓ(−a)

(
−1

2π sinh
(πµ

2

)
− 1

2 i cosh
(πµ

2

) (
ψ(0)

(
a+ iµ

2 + 1
2

)
− ψ(0)

(
a− iµ

2 + 1
2

)))
µΓ(a+ 1)Γ

(
−a− iµ

2 + 1
2

)
Γ
(
−a+ iµ

2 + 1
2

)
(cos(2πa) + cosh(πµ))

,

X2 ≡ X1 with a replaced by (1− a),

T ≡
√
h(a2 − a+ (h+ 1)m2) ,

H ≡ −8π(a− 1)ac2X1T + 8π(a− 1)ahX2T − hc
16hcπ(a− 1)a

,

F ≡ −F1

F2
,

F1 ≡ a2
(
8πc2

(
m2 + 1

)
X1T + 8πh

(
m2 + 1

)
X2T − ch

)
− 16πa3T

(
c2X1 + hX2

)
+ a

(
−8πc2m2X1T − 8πhm2X2T + ch

)
+ 8πa4T

(
c2X1 + hX2

)
− ch(h+ 1)m2 ,

F2 ≡
8c h

(
a2 − a+m2

)2
(2a− 1)µ

,

µ ≡
√

4m2 − 1 ,

a ≡ bi+
1

2
(for the scalar) ,

a ≡ bi (for the fermion) .

Notice that (H.3) and (H.2) look very different and without further insights there
is a priori no reason to believe they should produce the same result (as they appear to do
up to a factor 2).

We can compute integrals (H.2) and (H.3) numerically with arbitrary precision (al-
though the computation time scales notably as we increase the precision). Our results
show that both (H.2) and (H.3) exactly produce the results predicted assuming that σ/CT
is a universal constat given by eq. (H.1), i.e.,

σscalar =
1

256
= 0.00390625 , σfermion =

1

128
= 0.0078125 . (H.5)

We have checked this is the case for a precision of ∼ one part in 1012. In particular, we
find

σscalar = 0.00390625000000(5) , σfermion = 0.00781250000000(7) , (H.6)

where the numbers in brackets are out of the accuracy ranges.
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I
Resumen

Esta tesis está dedicada al estudio de varios aspectos relacionados con la supergravedad,
los agujeros negros, y la holograf́ıa, áreas que juegan un papel crucial en el desarrollo
actual de la f́ısica teórica de altas enerǵıas.

Por un lado, los ĺımites de baja enerǵıa de las diversas teoŕıas de cuerdas se cor-
responden con teoŕıas de supergravedad, lo que teniendo en cuenta las propiedades sor-
prendentemente buenas (casi todas ellas al menos) de estas como candidatas a unificar
la gravedad y las demás interacciones en un marco único, hace a estas últimas dignas de
estudio. Por otro lado, si la supersimetŕıa es una simetŕıa fundamental de la naturaleza,
lo que podŕıa solucionar en mayor o menor medida varios de los problemas más funda-
mentales de la f́ısica, cierta teoŕıa de supergravedad ha de ser adecuada para describir la
f́ısica de nuestro universo, en un cierto rango de enerǵıas.

Los agujeros negros prometen jugar un papel esencial en la compresión de la nat-
uraleza cuántica de la gravedad. Por un lado, desde el punto de vista semiclásico, los
agujeros negros satisfacen las leyes de la termodinámica (y las magnitudes emergentes
involucradas están codificadas en diversos objetos relacionados con la geometŕıa de los
mismos), lo que pide a gritos una interpretación microscópica de los mismos. Por otro
lado, de acuerdo con la imagen clásica, los agujeros negros contienen regiones del es-
paciotiempo en las que las leyes de la gravedad y la mecánica cuántica son igualmente
importantes, por lo que una descripción conjunta de la f́ısica en esas regiones se hace
necesaria. Es en el contexto de la teoŕıa de cuerdas en el que la descripción microscópica
de la termodinámica de ciertas soluciones supersimétricas de tipo agujero negro ha sido
llevada a cabo con éxito, lo que sin duda es una prueba altamente no trivial superada
por la teoŕıa de cuerdas. Desafortunadamente, este cálculo no ha podido ser extendido
a soluciones no extremas, que por otro lado son la mayoŕıa, siendo las extremas, o las
supersimetŕıcas en particular, casos ĺımite de las anteriores. Mucho menos se sabe de las
solutionces no extremas, incluso desde el punto de vista de supegravedad.

La palabra holograf́ıa hace referencia a la existencia de una descripción f́ısicamente
equivalente de un cierto sistema en términos de una teoŕıa en una dimensión menor. La cor-
respondencia AdS/CFT nos proporciona la primera realización del principio holográfico,
y un marco perfecto para realizar numerosos cálculos correspondientes a ciertas teoŕıas
cuánticas de campos en el regimen de acoplamiento fuerte, que es bastante inaccesible
con los métodos usuales. Por otro lado, nos proporciona una puerta fascinante hacia el
entendimiento de la naturaleza cuántica de la gravedad y el espaciotiempo.

En esta tesis recopilamos los resultados obtenidos en [87–96]. En [89–91, 95, 96] de-
sarrollamos nuevos métodos para la obtención de soluciones de tipo agujero negro (muchas
de las cuales obtenemos expĺıcitamente) en teoŕıas de supergravedad N = 2, d = 4 y teoŕıa
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de cuerdas, aśı como otras conteniendo regiones de tipo hvLf en [87,88]. Aśı mismo, desar-
rollamos un método para la obtención de branas negras en teoŕıas generales, y construimos
la cuerda-(p, q) no extrema de la teoŕıa de cuerdas tipo-IIB [93]. Además, exploramos la
entroṕıa de entrelazamiento holográfica para teoŕıas de alto orden en curvatura para ge-
ometŕıas de tipo hvLf [91], aśı como la contribución del término universal a la entroṕıa
de entrelazamiento holográfica para superficies de entrelazamiento que contienen singular-
idades geométricas [92].
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En el caṕıtulo 2 [90] hemos mostrado cómo el formalismo H-FGK puede utilizarse para
simplificar la obtención de soluciones de tipo agujero negro en teoŕıas de supergravedad
N = 2, d = 4. Esto es posible gracias a que cualquier solución queda determinada
completamente por las HM , que son funciones que transforman linealmente bajo el grupo
de dualidad de la teoŕıa, y que pueden construirse como una combinación lineal de vectores
equivariantes. Además, mostramos cómo el formalismo permite conocer en qué casos
las HM han de contener términos no armónicos a través del cálculo del rango de una
matriz. Mostramos expĺıcitamente cómo esta técninca puede utilizarse en ciertos modelos
de supergravedad.

En el caṕıtulo 3 [89,95] definimos el concepto de agujero negro cuántico o cuerdoso
en el contexto de la teoŕıa de cuerdas tipo-IIA compactificada a d = 4 en una variedad de
tipo Calabi-Yau. En concreto, consideramos una truncación consistente de la teoŕıa que
deja de estar bien definida en el ĺımite en el que la corrección perturbativa en α′ se anula, y
construimos nuevas soluciones de tipo agujero negro genuinamente cuánticos no extremas
y con escalares no constantes. Además, consideramos la misma truncación en presencia de
la contribución no perturbativa (en α′) dominante en el prepotencial de la teoŕıa efectiva,
y construimos la primera solución supersimétrica de tipo agujero negro de este tipo. De
forma sorprendente, esta solución viene dada en términos de una función bivaluada en los
números reales, lo que sugiere la posibilidad de producir una violación de las conjeturas
de unicidad usualmente asumidas en la literatura de supergravedad. Mostramos que, no
obstante, solo una de las ramas es consistente en el contexto de teoŕıa de cuerdas.

En el caṕıtulo 4 [96] motivados por el último resultado de 3, construimos una teoŕıa
de supergravedad altamente no simétrica que admite soluciones de tipo agujero negro
regulares que vienen dadas en términos de dicha función bivaluada, y que pueden con-
struirse de forma tal que los valores asintóticos de los escalares aśı como las cargas de
ambas soluciones son iguales. De esta forma, mostramos que la conjetura de no-pelo no
funciona completamente en el contexto de supergravedad N = 2, d = 4. Argumentamos,
no obstante, que las soluciones responsables de la violación podŕıan tener problemas de
estabilidad.

En el caṕıtulo 5 [91] consideramos la teoŕıa de supergravedad N = 2, d = 4 acoplada
a multipletes SU(2) no abelianos, y construimos las primeras soluciones de tipo agujero
negro y monopolos globales con varios centros de la misma.

En el caṕıtulo 6 [93] desarrollamos un formalismo que permite construir automáticamente,
dada una solución de tipo brana negra de una cierta teoŕıa altamente genérica, la brana
dual electromagnética de la misma. Ilustramos el formalismo construyendo la cuerda (p, q)
no extrema de la teoŕıa de cuerdas tipo-IIB aśı como su dual 5-brana (p, q).
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En el caṕıtulo 7 [87,88] demostramos que se pueden construir soluciones asintóticamente
hvLf (en distintos ĺımites) a partir de soluciones de tipo agujero negro en teoŕıas de su-
pergravedad N = 2, d = 4 no gaugeada. Aśı mismo, hacemos un estudio pormenorizado
de la existencia de soluciones de este tipo en una clase genérica de teoŕıas que contiene
a cualquier supergravedad N = 2, d = 4 gaugeada con términos Fayet-Iliopoulos U(1), y
construimos soluciones expĺıcitas para un modelo concreto.

En el caṕıtulo 8 [94] estudiamos la entroṕıa de entrelazamiento holográfica para
geometŕıas de tipo hvLf. Además de calcular la forma genérica de esta para teoŕıas de
curvatura superior generales y obtener los términos universales en algunas de ellas, en-
contramos que para ciertos valores del parámetro θ se producen nuevas contribuciones
logaŕıtmicas a la misma, lo que generaliza el resultado conocido para la gravedad de Ein-
stein.

Por último, en el caṕıtulo 9 [92] estudiamos la contribución a la entroṕıa de en-
trelazamiento holográfica producida por la presencia de una singularidad geométrica en
la superficie de entrelazamiento. Además de extender los resultados conocidos para la
gravedad de Einstein y realizar diversas comparaciones con resultados de teoŕıa cuántica
de campos, estudiamos los efectos sobre este término de la introducción de términos de
curvatura superior en la acción de gravedad. En particular, demostramos que es posible
definir dos cargas, κ y σ, que contienen información no trivial y bien definida sobre la
teoŕıa en cuestión (para teoŕıas generales). Comparamos estas cargas con otras obtenidas
para otros observables f́ısicos. De forma reseñable, encontramos que los cocientes κ/CT y
σ/CT , donde CT es la constante análoga que aparece en la expresión de la función a dos
puntos del tensor de enerǵıa momento holográfico, se mantienen constante para todas las
teoŕıas de orden superior consideradas, lo que nos lleva a conjeturar que estas cantidades
podŕıan ser universales para teoŕıas holográficas generales. Comparando este resultado con
los correspondientes a un escalar y un fermión libre respectivamente, cuyos valores solo se
conocen aproximadamente, encontramos que el cociente σ/CT se mantiene igual en todos
los casos. Esto nos lleva a proponer que σ/CT = π2/24 es un resultado universal para
teoŕıas de campos conformes generales. Además, utilizamos este resultado para mejorar
los resultados de campos libres para σ (apéndice H), que podemos calcular exactamente
utilizando el resultado holográfico. Nuestro hallazgo explica también por qué los valores
σscalar y σfermion parecen diferir (y de hecho difieren) en un factor 2 exactamente.
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