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Introduction

There are four known different ways in which elementary particles can interact
in the world we observe. These are the four fundamental interactions: grav-
ity, strong and weak nuclear interactions and the electromagnetic one. It is
an extended belief that these interactions are different manifestations of the
same phenomenon of Nature, such as electricity and magnetism are different
ways in which the electromagnetic interaction manifests. One ambitious chal-
lenge in Theoretical Physics is to find a unique theory able to describe all the
phenomena we observe: a theory of everything.

Symmetry

Our present understanding of the fundamental interactions is based on symme-
try principles. Formally, the presence of a symmetry is given by the invariance
of a theory under a certain group of transformations. A crucial point is that
symmetries in Nature seem to be realized locally rather than globally. In
Physics, this is considered a principle. There many examples that support it.

The Standard Model of the elementary particles describes the four fundamental
interactions. However, the description it provides for the strong, weak and
electromagnetic interactions is strickingly different from that for gravity.

On the one hand, the strong, weak and electromagnetic interactions, which
are important at short distances, are described by a relativistic quantum field
theory with gauge group SU(3) x SU(2) x U(1), i.e. it is a theory invariant
under a local SU(3) x SU(2) x U(1) symmetry. This theory provides a com-
plete description of these three interactions and agrees extremely well with
experiments. This is true at least up to the energy scale which it has been
experimentally verified (~ 0.2 TeV). But, why does it agree so well with ex-
periments if it does not include gravity? The point is that the gravitational
interaction is much weaker than the other three interactions, and therefore its
contribution can be completely neglected in current experiments. There are
other particular problems inherent to the SU(3) x SU(2) x U(1) theory, such



as a “huge” number of free parameters (19) which must be imposed by hand
in order to agree with experiments.

On the other hand, we have gravity, which is important at very long distances.
General Relativity provides the right description of gravity at a classical level.
This theory relies on the Principle of General Covariance. This is nothing but
considering that the laws of Physics (and therefore the laws of Nature) must
be the same independently of the way we describe them.

General Relativity can also be constructed as the gauge theory of the Poincaré
group [117], i.e. it is a theory invariant under local Poincaré symmetry. Con-
trary to the case of the SU(3) x SU(2) x U(1) theory, this construction is
not of Yang-Mills type and contains some unusual features!. One reason for
this, is that the symmetries taken into account for this construction are space-
time symmetries, while in the case of the SU(3) x SU(2) x U(1) theory the
symmetries are internal.

However, General Relativity is a classical theory. Upon quantization, the the-
ory becomes non-renormalizable. As we have learned from quantum field the-
ory, this may mean that we are neglecting some fundamental structure of the
theory. In other words, the theory will be valid only up to a certain energy
scale. At higher energy scales, both quantum and gravitational effects be-
come relevant, and a quantum theory of gravity is needed to describe Physics
adequately. This takes place at energies at which the structure of spacetime
is affected by quantum uncertainties. Such a scale of energy is given by the
Planck mass (~ 10" GeV), which is the energy at which the Schwarzschild
radius of a particle becomes comparable with its Compton wavelength. The
search for a quantum theory of gravity is one of the major problems in Theo-
retical Physics.

A crucial property of the SU(3) x SU(2) x U(1) theory is that it includes
both the carriers of interactions (the gauge bosons) and the particles that
interact (fermions). Then, this theory describes both force and matter. The
bosonic or fermionic nature of particles is determined by their spin: integer
spin for bosons and half-integer spin for fermions. All known particles are
either fermions or bosons. Therefore, in the search for a theory of everything,
it is natural to ask if both fermions and bosons can be considered as members
of the same entity. From a theoretical point of view, this possibility looks very
attractive, as it implies a higher level of unification. If it existed, matter and
force would be different manifestations of the same phenomenon!

'We will explain this construction in chapter 1.



Examining the S matrix, one finds that it allows for an additional symme-
try, which is, precisely, a symmetry rotating bosons into fermions (and vice-
versa) [77]. It is known as supersymmetry. Unfortunately, there is no direct
experimental evidence confirming its existence, but, due to the power and
elegance of such an idea, it is strongly believed that an evidence will even-
tually emerge. In fact, an ambitious challenge of the CERN Large Hadron
Collider (LHC) is to look for the supersymmetric partners of the particles in
the SU(3) x SU(2) x U(1) theory.

If Nature has any form of supersymmetry, it may probably be realized locally.
A crucial point is that global supersymmetry transformations generate global
spacetime translations, and therefore local supersymmetric field theories are
theories of general coordinate transformations, i.e. theories of gravity. These
are known as supergravity theories, and can be understood as supersymmetric
extensions of General Relativity.

Analogously to the case of General Relativity, we can construct supergravity
theories as gauge theories of an extension of the Poincaré group to include
supersymmetry transformations (a Poincaré supergroup)?. There are many
possible supersymmetric extensions of the Poincaré group, each of them leading
to a different supergravity theory.

One way to extend the Poincaré supergroup is to consider higher-dimensional
(d > 4) groups. Higher-dimensional supergravities can be constructed as their
gauge theories. However, if we want to avoid the presence of higher spin fields
(spin>2) in interaction or more than one graviton in the supergravity theory,
the highest possible spacetime dimension turns out to be eleven [157]. More-
over, only one locally supersymmetric field theory can be constructed in eleven
dimensions [52,53]. This theory is known as N =1 d = 11 supergravity [46].

Another interesting class of supergravity theories are those constructed as
gauge theories of anti-de Sitter supergroups. They are known as gauged super-
gravities®. These theories typically contain a scalar potential in the Lagrangian
which acts effectively as a negative cosmological constant, such that they ad-
mit anti-de Sitter spacetime as a vacuum solution (by this we mean a solution
for which the anti-de Sitter supergroup is the group of superisometries). Anti-
de Sitter supergroups only exist up to seven spacetime dimensions [123], and,
therefore, gauged supergravities with anti-de Sitter vacua only be constructed
up to d = 7. Beyond this limit, gauged theories can be constructed up to ten

2This construction presents the same problems as those encountered in the case of General
Relativity. We will also see it in chapter 1.
3Standard (Poincaré) supergravities are also referred to as ungauged supergravities.



spacetime dimensions, but they admit no maximally (super)symmetric solu-
tions. Instead of anti-de Sitter spacetime, they admit domain wall vacuum
solutions.

An equivalent way to construct gauged supergravities is to make local the R-
symmetry group (or a part of it ) of an ungauged supergravity. In fact, gauged
supergravities have been typically constructed in this way by making use of
the Noether method.

Although the introduction of supersymmetry has provided many new pos-
sibilities in Physics, it is not enough to cancel the divergences of gravity: su-
pergravity theories are not consistent as quantum theories, since they are non-
renormalizable. Then, they are valid up to a certain energy scale, and therefore
cannot be theories of everything. Nevertheless, the study of supergravity theo-
ries is interesting by itself, but they are specially important because they arise
as the low energy limit of superstring theories.

Strings

String theory is nowadays the most promising candidate for a unified descrip-
tion of the fundamental interactions. It relies on the idea that the building
blocks of Nature are strings instead of pointlike particles. One way to explain
why the spatial extension of the strings has not been noticed experimentally is
the fact that it may be observable only at energies higher than those reached
in current experiments.

The quantization of the bosonic string, only consistent in 26 spacetime dimen-
sions, leads to an spectrum which includes a massless spin-2 field which can be
identified with the graviton, the gauge boson of the gravitational interaction.

However, the spectrum also contains a tachyon, a particle which generally sig-
nals an instability in the vacuum of the theory. Furthermore, this theory does
not contain fermions, whose presence is essential as they are the constituents
of matter.

The presence of fermions in the theory can be achieved by introducing su-
persymmetry, which in addition can be used to remove the tachyon from the
spectrum. We end up in this way with superstring theories. These theories
can be consistently quantized in ten spacetime dimensions, and only five ten-
dimensional superstring theories can be constructed: type ITA, type I1IB, type
I, heterotic Fg x Eg and heterotic SO(32).



These five theories differ in their field content and the amount of spacetime
supersymmetry. Type I superstring theory is a theory of open and closed
unoriented strings, while the others contain only closed strings. A crucial
difference between type II superstrings and the other three is that the latter
contain a non-Abelian gauge Yang-Mills sector while the former do not.

The problem now is that we were trying to find one theory of everything,
but we have found five possible candidates. However, there exists a web of
transformations, known as dualities, which relates the five superstring theories.
It is believed that all superstring theories are different perturbative limits of
a unique underlying 11-dimensional theory, commonly known as M-theory.
However, not much is known about this theory.

The study of string dualities led to the discovery of a class of non-perturbative
extended solitonic objects which, in addition to strings, appear in string theory.
They are dynamical hypersurfaces on which open strings can end, called D-
branes. There are non-renormalization theorems which imply that these non-
perturbative objects must have a faithful description also in the corresponding
low-energy limit of the theory. This is in fact the case and, in this limit,
they correspond to solutions describing extended objects. Type II superstring
theories contain D-branes, and therefore these theories turn out to admit not
only closed strings but also open strings, but these must end on a D-brane.
In the non-perturbative spectrum, type IIA superstring theory contains Dp-
branes with p even, while type 1IB theory includes those with p odd.

String/M-theory seems to require ten/eleven spacetime dimensions. In order
to make contact with the four-dimensional world we observe, there must be a
mechanism ensuring that six of the ten dimensions cannot be noticed at the
energy scales we are able to measure.

One possibility is to consider that the extra dimensions are compact and small
enough such that they can not be seen in present experiments. Mathematically,
we can reduce the number of dimensions via the Kaluza-Klein (or standard)
dimensional reduction procedure. Considering that the extra dimensions are
periodic (compact), every higher-dimensional field can be expanded in Fourier
series. This gives rise to an infinite tower of lower-dimensional fields, some of
which are massless. If the extra dimensions are sufficiently small, the contribu-
tion of the massive modes cannot be observed at low energies. Therefore, only
the zero modes are kept and one arrives to an effectively lower-dimensional
theory with no massive Kaluza-Klein modes at low energy.

However, there are many inequivalent ways in which a reduction can be per-
formed, each of them leading to a different lower-dimensional theory. More-



over, there is, a priori, no known criterion to choose a preferred compactifi-
cation. Apparently, string/M-theory is rich in possibilities but does not solve
this question. In fact, it still remains as an open problem.

Supergravity theories arise as the low energy limit of superstring theories,
1.e. they are field theories that give information about superstring theories at
low energies, describing only the low energy dynamics of the massless fields of
the string spectrum. Solutions to the supergravity equations of motion pro-
vide consistent target space backgrounds where strings can propagate. Many
non-perturbative properties of superstring theory, such as supersymmetry or
dualities, are present at the supergravity level, and provide useful tools to
explore the structure of string theory.

The low energy limit of M-theory is supposed to be described by N =1,d =11
supergravity. Since we believe that any string theory is to be derivable from
M-theory in a certain limit, we expect that any supergravity theory describing
the low energy classical limit of a string theory should somehow be related
to N = 1 d = 11 supergravity. From the supergravity point of view, this
connection is found when we are able to specify a reduction procedure which
connects 11-dimensional supergravity with a given theory, up to a duality
transformation. An standard example is type ITA supergravity, which can be
obtained from N = 1,d = 11 supergravity via a Kaluza-Klein reduction on a
circle.

Gauged /massive supergravities

Type IIA supergravity presents a problem: it does not allow for an 8-brane
solution representing the long range field emitted by a D8-brane, while we
expect that all the D-branes of type II superstrings have a representation in the
corresponding type II supergravity limit. Then, type IIA supergravity should
be extended in order to admit 8-brane solutions which could be associated to
the D8-branes.

Polchinski noticed [134] that there is a supergravity theory which could de-
scribe the low energy limit of type ITA superstring theory including D8-branes.
It is known as Romans’ theory or massive type IIA supergravity [140], and was
constructed via a deformation of type IIA supergravity by the introduction
of a parameter with dimensions of mass. Romans’ theory presents many dif-
ferences with respect to standard type IIA, such as a scalar potential for the
dilaton or a mass term for the Kalb-Ramond field. The theory also presents a
spontaneous breaking of (super)symmetry, such that there are no maximally



(super)symmetric vacuum solutions. In fact, the vacuum solution of this the-
ory is related to the D8-branes of type IIA superstring theory.

While the 11-dimensional origin of standard type IIA supergravity is well-
known, Romans’ theory is not derivable from N = 1,d = 11 supergravity via a
Kaluza-Klein reduction. This is also the case of a different kind of supergravity
theories, massive supergravities, of which Romans’ theory is the prime example.
The label ‘massive’ is due to the presence of mass terms for some fields of the
theory?. Although they are not gauged supergravities, both kind of theories
present many common properties, and we consider them as members of the
same class. Indeed, there are many gauged/massive supergravities whose 11-
dimensional origin is unknown.

Kaluza-Klein reductions on a torus do not lead to any gauged/massive su-
pergravity if the higher dimensional theory is ungauged/massless. In other
words, this kind of reduction does not introduce gauge coupling constants or
mass parameters in the reduced theory. Since 11-dimensional supergravity
does not contain this kind of parameters, toroidal Kaluza-Klein reductions of
this theory cannot end up with gauged/massive supergravities.

One possibility is to consider reduction procedures which introduce gauge cou-
pling constants or mass parameters. This can be achieved through a modifica-
tion of the reduction Ansatz. One example is the Kaluza-Klein reduction on a
sphere instead of a torus. This has served to obtain many gauged supergravi-
ties from higher-dimensional ungauged supergravities. However, it only works
in some cases and, moreover, there is no general understanding of why they
work. Notable examples are the S° reduction of type IIB supergravity [49],
and the S* [49,124] and S7 [49,173] reductions of N = 1,d = 11 supergravity.
They lead, respectively, to gauged maximal supergravities in five, seven and
four dimensions.

Scherk and Schwarz developed a reduction procedure, known as generalized
dimensional reduction, in which some fields of the higher-dimensional theory
are allowed to acquire a certain dependence on the internal coordinates in
the reduction Ansatz [150,151]. This dependence is introduced by gauging a
global symmetry of the higher-dimensional theory, and is such that, although
the higher dimensional fields depend on the internal coordinates, the reduced
theory is completely independent of them. In these reductions, parameters
with dimensions of mass are introduced in the reduced theory.

4Standard supergravities are sometimes called ‘massless’.



Gauged supergravity theories play an important role in the context of the
gauge/gravity correspondence. In its original form [72,118,176] (AdS/CFT
correspondence), it establishes that N' = 4 d = 4 super Yang-Mills theory with
gauge group U(N) is the dual of type IIB superstring theory on AdSsx S° in the
presence of N units of Ramond-Ramond five-form flux. The superconformal
field theory describes the dynamics in the worldvolume of the N coincident
D3-branes in the limit of decoupling gravity (low energy), which corresponds
to the near-horizon limit of the D3-branes. The AdS/CFT correspondence
conjectures that there is an exact map which relates a string phenomenon
taking place in the AdSs x S® background with a phenomenon occurring in
the gauge theory.

There are various generalizations of the AdS/CFT correspondence. One of
these extensions relates domain wall geometries with supersymmetric quan-
tum field theories (DW/QFT) [28,94]. There, it is proposed that string/M-
theory in a certain domain wall background (which usually breaks one half
of the supersymmetry) is dual to a quantum field theory which describes the
worldvolume dynamics of N coincident branes. The “near horizon” limit® of
the supergravity solution of the corresponding brane yields a compactification
to the domain wall spacetime proposed by the equivalence. Furthermore, the
R-symmetry of the supersymmetric quantum field theory living on the world-
volume of the domain wall must match the gauge group of the dual gauged
supergravity.

One interesting example is the case of the D6-brane. The “near-horizon” limit
of the D6-brane solution led to deduce the existence of an S? compactification
of type ITA supergravity which yields an SU(2) d = 8 gauged supergravity [28],
which does not admit a maximally (super)symmetric vacuum solution but
a one half supersymmetric domain wall. This theory was shown to be the
maximal d = 8 gauged supergravity obtained in [144] from N = 1,d = 11
supergravity via a Scherk-Schwarz generalized dimensional reduction on an
SU(2) manifold®.

There are many gauged/massive supergravity theories which cannot be ob-
tained by any sort of (known) dimensional reduction from d = 11 supergravity.
The most notorious example is precisely Romans’ theory.

®We use quotes because the near-horizon limit which is taken for the DW/QFT corre-
spondence is not the one of the solution in the string frame. This is because it is not clear
if the near-horizon limit of the string frame solution yields a limiting supergravity solution
as in the case of the D3-brane [68].

6This is completely equivalent to the reduction of type IIA supergravity on a 2-sphere
with the RR 2-form field strength proportional to the volume of the 2-sphere.



We are left with the possibility of modifying NV =1, d = 11 supergravity such
that a standard dimensional reduction of the new theory leads to Romans’
theory. However, there is a no-go theorem that asserts that this theory is
unique [11,52,53]. A way to evade this theorem is to introduce a Killing
vector in the Lagrangian. The presence of this vector breaks the 11-dimensional
Lorentz symmetry to the 10-dimensional one even if the theory is formally 11-
dimensional covariant. Since a Killing vector is dimensionful, a mass parameter
must also be introduced in the Lagrangian. This theory is known as “massive
11-dimensional supergravity” [19].

The standard dimensional reduction of “massive 11-dimensional supergravity”
in the direction of the Killing vector leads precisely to Romans’ theory. In a
sense, “massive 11-dimensional supergravity” is nothing but a way of rewrit-
ing Romans’ theory in an 11-dimensional fashion. The interesting point is
that it admits a generalization to include more than one Killing vector [122],
and this new theory can be understood as a way of rewriting gauged /massive
supergravities in an 11-dimensional manner.
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Summary of contents

Chapter 1 is an introductory chapter to supergravity theories. We will try
to explain how they can be constructed from symmetry principles and what
their relation to superstring/M-theory is.

In chapters 2 and 3 we will try to gain some insight on the 11-dimensional
origin of gauged/massive supergravity theories.

In chapter 2 we will try to find solutions to this problem by making use of
generalized dimensional reductions. We will perform a Scherk-Schwarz geomet-
rical reduction of d = 11 supergravity on a 3-dimensional manifold, such that
we end up with five d = 8 gauged maximal supergravities whose gauge groups
are the three-dimensional (non-)compact subgroups of SL(3,R). This way we
generalize the standard maximal SO(3) gauged supergravity in eight dimen-
sions. We will also construct the most general half-supersymmetric domain
wall solutions to these five gauged supergravities and study their upliftings to
11 dimensions.

The original work presented in this chapter is based on Ref. [4].

In chapter 3 we study various standard dimensional reductions (on an n-
torus) of an extension of “massive 11-dimensional supergravity”, and show how
many massive/gauged maximal supergravities can be systematically obtained
this way. We will focus mainly on the reductions to eight and five dimensions,
and compare the eight-dimensional theories with those found in chapter 2.

The material contained in this chapter is based on Refs. [2, 3].

Finally, in chapter 4 we will look for new solutions of gauged N = 2,d =
4 supergravity. We will extend the topological Kerr-Newman-AdS solutions
by including NUT charge and find generalizations of the Robinson-Bertotti
solution to the negative cosmological constant case with different topologies.
The supersymmetry properties of the new solutions will also be studied.

The material presented here is based on Ref. [1].
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Chapter 1
Supergravity

The main focus of this chapter is to show how supergravity theories can be
constructed from symmetry principles and explain how they are related to
string/M-theory.

1.1 Supersymmetry

Supersymmetry is a symmetry that rotates bosons into fermions and (vice-
versa) by changing the spin by 1/2. Dimensional arguments [125] show that
global supersymmetry transformations for a (globally) supersymmetric field
theory including bosons B and fermions F' (spin 1/2) are of the form

0B ~ €F,

(1.1)
dF ~ (0B)e,

where € is the spinorial parameter of the transformation. Consider now the
action of two consecutive infinitesimal global supersymmetry transformations
(1.1) of a bosonic field B (the argument works similarly for fermions F'). The
first one transforms B into F' and the second one rotates F' into 0B, i.e.

[0c,, 0e.] = %(527“61)(9”3. (1.2)

This means that two supersymmetry transformations lead to a spacetime trans-
lation, and therefore supersymmetry is a spacetime symmetry. In fact, it takes
its simplest form as a symmetry of superspace.

Superspace is an extension of ordinary spacetime to include extra anticommut-
ing coordinates, related to the fermionic degrees of freedom. The functions we

13
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define over this space are known as superfields. There is a supergroup, whose
associated superalgebra is represented by translations and rotations involving
both the spacetime and the anticommuting coordinates. Superfields transform
covariantly under these transformations. If superfields are expanded in Taylor
series in the fermionic coordinates, we obtain a finite number of terms (due
to the fact that these coordinates are anticommuting, ¢.e. their squares van-
ish), and the coefficients of the expansion are ordinary component fields. The
transformations of the component fields follow from a Taylor expansion of the
translated and rotated superfields. Though the superspace formulation has
been shown to be very useful to study supersymmetric field theories, we will
be mainly interested in the component field formulation.

Nature seems to exhibit symmetries locally rather than globally. If super-
symmetry is somehow a symmetry of Nature, it is then natural to ask if it
could also be realized as local symmetry. The interesting point is that global
supersymmetry transformations generate global spacetime translations, and
therefore we may expect a locally supersymmetric field theories to be a the-
ories of general coordinate transformations, i.e. theories of gravity! Let us
think on all this in terms of the algebras of the transformations.

Supersymmetry transformations are generated by spinorial, anticommuting
supercharges (Q®, which carry an spinorial index « because they are arranged
in sets that transform as spinors under the Lorentz group. The infinitesimal
parameters of the field transformations will therefore be anticommuting spinors
€*. Now, the anticommutator of two supersymmetry generators is of the form

{Q*, Q%Y =i(y'c ) P, (1.3)

where C is the charge conjugation matrix and P, are the generators of trans-
lations. Here we see again that two supersymmetry transformations lead to
a spacetime translation. The complete algebra in which (1.3) is included also
contains the Poincaré algebra, which is given by

[MaIn Mcd] = 5achd + 5bdMac - 5adec - 5bcMad )
(1.4)
[Pa; Mbc] = _260.[1) Pc] ’

and also the additional commutator

(@, Ma] = § (7w)” 5Q”, (1.5)
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where M,, are the generators of the Lorentz rotations. The complete super-
symmetry algebra is called the Poincaré superalgebra. Generically, any algebra
including supersymmetry generators is referred to as a superalgebra.

The Poincaré algebra contains the generators of translations P, and of Lorentz
rotations M. If we gauge translations and Lorentz rotations, we end up with
General Relativity [117]. Then, we can also make local all the symmetries
represented in a superalgebra and therefore expect to end up with a locally
supersymmetric extension of General Relativity which also includes matter
(fermions). These theories are known as supergravity theories, and will be
essential along all our work. But, first of all...

O how do we gauge a given set of global symmetries?

We have two possibilities at our dispossal: we can apply the the Noether method
or even gauge the (super)algebra of the transformations. Both methods lead
to the same results, but they are quite different. Let us describe them briefly.

The Noether method

The Noether method is a systematic prescription to derive an action with a
local symmetry from an action with a global symmetry. From a mathematical
point of view, it is not complicated (though it can be can be rather lengthy),
and has been shown to be very powerful. It works as follows.

Start with an action which is invariant under certain global transformations.
Then, the parameters of the transformation, say ¢!, are constants. If we now
use local parameters (functions) instead of global ones, then the variation of
the action is proportional to the derivatives of the parameters

§S / d*z0,0' j¥ (1.6)

which, as expected, vanishes when the parameters are constant. Integration
by parts shows that the variation above is (up to a total derivative)

0S5 /ddeI 0uJ7 (1.7)

which vanishes iff 9,57 = 0. The j}’s are the Noether currents associated
to the global symmetry. We have to add new terms to the original action
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so as to make it invariant under the new local symmetry. This leads one to
introduce gauge fields which couple to the Noether currents. At the level of the
action, new terms must be added until invariance under local transformations
is achieved, and we end up with a locally symmetric theory.

The Noether method has been used to construct many field theories, including
General Relativity (making local spacetime translations and Lorentz transfor-
mations) and many supergravity theories.

Gauging the algebras

A second method to construct a locally symmetric theories is to introduce a
gauge field associated to each symmetry, define a curvature for it (i.e. a field
strength) and construct an action quadratic in derivatives. This kind of action
ensures that the gauge fields will propagate. Further, we require that the
action is invariant under the gauge symmetries. In Yang-Mills gauge theories,
this action is taken to be quadratic in field strengths, but this is not the only
possibility. This method is commonly known as gauging of algebras'. Let us
explain the method in a generic case.

Let us explain this method in a generic case. Consider a d-dimensional Lie
(super)group G, and let {74} be a basis for the Lie (super)algebra of G. These
generators satisfy the commutation relations?

(T4, Ts] = fas® Te, (1.8)

where fap® are the structure constants. Corresponding to every generator we
introduce a gauge field, entering the algebra-valued vector field

A, = AT, (1.9)

where the vectors A,* transform in the adjoint representation of G. We define
covariant derivatives as

Note that this is an abuse of language, since algebras cannot be gauged. What one
really gauges is a symmetry (or a set of them). We will construct theories whose vacuum
solutions enjoy all the symmetries one gauges. To these vacuum solutions we associate a
global algebra corresponding to the set of symmetries (those that we gauge) and therefore
we commonly say that we “gauge the algebra”.

2Tf we are dealing with a superalgebra there will also appear anticommutators for the
fermionic generators.
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D,=0,+A,. (1.10)

Then, the commutator of two covariant derivatives leads to the curvature (field
strength)

D, D] = =Ry, (1.11)

such that

RI“/ =2 8['u./4y] + [Al“ Ay] = R[UJA TA ) (112)

whose components are given by

R, =20, A" + fec* AP AC. (1.13)

The field strengh satisfies the Bianchi identity

DR, =0. (1.14)

Let us see now the gauge transformations. The local gauge parameters A4
associated to the gauge fields enter an algebra-valued scalar field

A=A"Ty,. (1.15)

By construction, the action of an infinitesimal transformation of the gauge
field is the gauge covariant derivative of A

SaAy, = 0,A + A, A (1.16)

which, in components, reads

Sp A = 0, A + fpe? AP AC . (1.17)

Under gauge transformations the curvature transforms homogeneously
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6aR" = fec*APR,C . (1.18)

Finally, we arrive at the construction of the action. The idea is that this action
is quadratic in derivatives of the gauge fields, such that they are propagating
fields. A possibility is to try a Yang-Mills type action

S = / d%z R, R,.% QY7 (1.19)

where () are some constants which are determined by requiring invariance
under the gauge transformations. The action one finds is locally invariant
under the infinitesimal transformations in the algebra of G.

The method of gauging of algebras can been used generically to construct
gauge theories. We have pointed in the previous section that the symmetries
one makes local in order to obtain General Relativity are those entering the
Poincaré algebra. Then, we could try to construct this theory as a gauge theory
of the Poincaré group. If true, this would provide a strong connection between
gauge theories and gravity. This possibility is explored in the next section.

1.2 Gravity as a gauge theory

The starting point is the Poincaré algebra given in (1.4). We are going to
gauge the spacetime translations and Lorentz rotations generated by P, and
M, respectively. To this end, we introduce a gauge field for each generator:
e,* for the translations subalgebra and w,® for the Lorentz one. Then, we
have

A, = 3w, My, + €,°P, . (1.20)

Now, we introduce the gauge parameters

A=10""My +E°P,. (1.21)
The effect of the gauge transformations can be shown to be (see e.g. [63,125])
dw,® = —D,o%,

(1.22)
de,* = —Dug‘l—i-o“beub,
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where D stands for the gauge covariant derivative. Observe that, since P, does
not act on objects with Lorentz indices, D only contains in practice w,* and
not e,*. Moreover, notice that D has no relation with a geometrical covariant
derivative as it contains no Levi-Civita connection. This is due to the fact
that, by the moment, we have no metric but only gauge fields.

We now construct the gauge field strength

Ry, =20, A + [Au, A = 3R M, + Ry P, (1.23)

where

R = 205w, — wp e,
(1.24)
R = 2Dpey.

Finally, we arrive at the construction of the action. If we construct it quadratic
in curvatures as in (1.19), we arrive to an action which does not reproduce the
equations of motion of General Relativity. Then, we have found that this
theory cannot be constructed as a pure Yang-Mills gauge theory. But, let us
relax the assumption of an action quadratic in curvatures and try to construct
ad hoc an action leading to General Relativity. It turns out that, in order to
arrive to the right result, we must impose two conditions:

1. R,,* must vanish. It must be possible to derive this condition from the
action we construct.

2. The gauge fields e,* associated to spacetime translations must be invert-
ible, with the inverse fields e, * defined as

e.'et =0y = e,"e.” =9, (1.25)

The constraint R,,* = 0 can only be implemented if the action is linear in

the curvature components R,,%. The right action one must choose is the first
order action

S ~ /d4x Ruyabepcegd "7 €abed - (1.26)

Let us see the equations of motion derived from (1.26). For the field w, we
find
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R, =0, (1.27)

which turns out to be a relation between the w,®’s and the e,%s, such that
the former can be solved generically in terms of the latter. Explicitely

wabc(e) = _Qabc + cha - Qca,b 3 Qabc = 6auebya[uecl/] . (128)

Now, the equation of motion for e,* is

Gu =0, (1.29)

which is exactly the Einstein equation. Then, (1.28) reveals that the w,®’s
are composite fields, i.e. they do not propagate, and therefore all the degrees
of freedom of the theory are contained in the e,’s, as expected. In fact, we
can rewrite action 1.26 in the form

S~ /d%eR(e,w), (1.30)

which we identify with the Einstein-Hilbert action in Vierbein notation. It
is then tentative to identify the e,%’s with the Vierbein and the w’s with
the spin connection. A metric tensor can be constructed, which, as chosen by

Einstein, is g,, = eu“eybnab, where 7),, is the Minkowski tensor.

Now that we have identified the w,%’s and the e,%’s with the spin connection
and the Vierbein, it is worth making some comments on the construction we
have presented. First, the gauge covariant derivative D can now be identified
with the geometric covariant derivative V. Secondly, R,,* = 2De", is the
torsion of the spacetime, and the constraint R,,* = 0 implies V[,e%,; = 0,
which is precisely the Vierbein postulate. Finally, it is interesting to note
that, provided Dp,e®,; = 0, Poincaré gauge invariance and reparametrization
invariance are related as follows: the effect of an infinitesimal reparametriza-
tion generated by the world vector £ (dz* = &*) is identical to the effect of
a P, gauge transformation with parameter {* = e,*¢" plus a local Lorentz
transformation with parameter 0% = f“w,ﬂb.

Then, we have learned that General Relativity can be constructed as a
gauge theory of the Poincaré group. Although it is not a pure Yang-Mills



21

gauge theory, it contains some of the elements of these kind of theories. The
construction is rather ad hoc, but it gives the Vierbein a gauge field inter-
pretation, and also reveals which constraints are necessary to relate Poincaré
gauge invariance with reparametrization invariance. Nevertheless, there are
many questions for which we have no answer, such as the need to impose in-
vertibility of the Vierbein. In this sense we understand that, strictly speaking,
General Relativity is not a pure gauge theory of the Poincaré group, but it can
be constructed following the same steps, up to a certain point.

One of the facts that differences the gauge theory of the Poincaré group (GR)
from a Yang-Mills theory is that the former has an action which is not quadratic
in field strengths. A slight improvement of this situation was achieved by Mac-
Dowell & Mansouri in [117]. They considered the anti-de Sitter group SO(2, 3)
and constructed General Relativity with a cosmological constant following the
construction we have presented. Upon a Inénii-Wigner contraction (essentially,
the zero cosmological constant limit), the group SO(2, 3) becomes the Poincaré
group 1S0O(1,3). This algebras can be understood as as a deformation of the
Poincaré algebra in which the generators of translations P, do not commute.
After some redefinitions of the SO(2, 3) generators, one finds that the algebra
can be written as

[Maba Mcd] = (5achd + (5bdMac - (5adec - 5bcMad ;
[Paa Mbc] = _2(5(1[() Pc] ) (1.31)
[Pa7 Pb] = _QQMab ’

where ¢ is a constant. It is easy to see that, in the limit ¢ = 0, one recovers
the Poincaré algebra and the results given above. The main point found by
MacDowell & Mansouri is that a quadratic action leading to the right results
(General Relativity with a cosmological constant A ~ g*) can be constructed.
However,this approach still leaves some questions unanswered, like, e.g. the
need to impose invertibility of the Vierbein.

If General Relativity can be constructed as a gauge theory of the Poincaré
group, then, presumably, extensions of this group will lead (upon gauging) to
theories which include General Relativity. Supersymmetric extensions of the
Poincaré group should therefore lead to supersymmetric extensions of General
Relativity. They are known as supergravity theories.
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1.3 From supersymmetry to supergravity

Let us start with the construction of the simplest supersymmetric extension of
General Relativity. This supergravity theory is obtained by gauging the sim-
plest supersymmetric extension of the Poincaré algebra: the Poincaré super-
algebra (see section 1.1). Since it has one more generator, the gauge potential
has one more component 1, i.e.

{Mu . P, QY — Ay =2w, My + €," Py + Q. (1.32)

gauging

The new field compensates local supersymmetry transformations. It is a
Rarita-Schwinger field, which describes a massless spin-3/2 particle: the grav-
itino. It has two possible helicity states (+3/2) which are the superpartners of
the two helicity states of the graviton (£2), i.e. the graviton and the gravitino
constitute a supermultiplet. The quantum field theory will have the same num-
ber of bosonic and fermionic states at each mass level, a property of linearly
realized supersymmetry.

The curvature is now

Ry, = %RW‘“’Mab + R Po+ RuaQ®, (1.33)
and the action for the theory, known as N = 1,d = 4 supergravity, is just the
Cartan-Sciama-Kibble (CSK) theory (see, e.g. [82,143]) for a Rarita-Schwinger
field coupled to gravity

S~ /d4xe {R(e,w) + """ P57 Dp(w)ibe } - (1.34)

This is precisely a CSK theory with a Rarita-Schwinger field which is invariant
under local supersymmetry transformations

dc€®, = —iey"Y, dethy = Dye. (1.35)

We can now have bilinears of fermions which give rise to non-vanishing torsion,
given by

T[u/a ~ fg/_]“’}/a’lljy . (136)
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Setting all the fermions to zero is always a consistent truncation and any
purely bosonic General Relativity solution will also be a solution of N =
1,d = 4 supergravity. In fact, as noted previously, this theory is the simplest
supersymmetric extension of General Relativity.

In general, supergravity theories have been constructed by applying the
Noether method. However, the gauging of superalgebras provides an inter-
esting connection with gauge theories and we will adopt this point of view to
present many possible extensions of the supergravity theory constructed above.

Generalizing the superalgebra we can generalize the supergravity theory. Then,
we must think on generalizations of the four-dimensional Poincaré superalge-
bra. There are various possibilities:

e Add more supercharges.
e Consider a different number of spacetime dimensions.

e Relax Poincaré invariance. This can be achieved in two ways. First,
we can add quasi-central charges. These are operators that commute
with the supercharges but transform as p-forms under Lorentz transfor-
mations. The second possibility is to consider a different bosonic subal-
gebra, such as (anti-)de Sitter or a conformal algebra.

In the following we are going to explain separately these possibilities, but
they can be combined, and, in general, the supergravity theories which we are
interested in combine more than one of these extensions®. We will also give
some examples of supergravity theories which will be of interest for us.

1.3.1 Extended supergravity

A possible extension of the Poincaré superalgebra is to consider the addition of
more supercharges Q**, i = 1... N, to the algebra. Then, we are considering
that there are N different supersymmetry transformations instead of only one.
However, the supercharges arrange in sets that transform as spinors under the
Lorentz group. In d = 4, the irreducible spinors are Majorana (and therefore
real) and have four components. The superalgebras one is then left with,
usually called N-extended d = 4 Poincaré superalgebras, admit central charges

3There is another possible extension: we could add supersymmetric matter, i.e. add
fermions which are not contained in the supermultiplet of the graviton. However, we are
not interested in this possibility.
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ZU = _ZI" (1.37)

that appear in the anticommutator of two supercharges

{Q™,Q"F} =is¥(y*Cc )P, —i(C )29, (1.38)

and commute with all generators, i.e. they are central elements of the algebra
(hence the label ‘central’).

In extended supersymmetry, the spinor charges transform reducibly under the
Lorentz group and comprise N irreducible spinors. There exists a group Hg
of rotations of the spinors which commutes with the Lorentz group and leaves
the superalgebra invariant. It is commonly known as the R-symmetry group®.
In four dimensions we have Hr = U(N).

Gauging N-extended Poincaré superalgebras we obtain N-extended Poincaré
supergravities. The gauge potential contains N gravitini ¢,'* and also N(N —
1)/2 Abelian vector fields A¥,, associated to the central charges

.Au = %wuabMab + euaPa + %Aijllzij + ilitan : (1'39)

The action now contains the kinetic terms of N gravitini and of N(N — 1)/2
Abelian vector fields A%, with field strengths F*/ ,, = 2 8[uAij v}, but this is not
the whole story, as the counting of bosonic and fermionic states immediately
shows: there are additional scalar fields and fermionic fields in the theory that
cannot be accounted for with our heuristic formulation®. The scalars appear
always in a non-linear o-model, couple in a non-trivial fashion to the vector
fields and usually have no potential.

If we do not want to deal with the problem of higher spin fields in interaction or
more than one graviton (and we will always try to avoid them), the maximum
number of supercharges is 32 [157]. Since four-dimensional irreducible spinors
are real and have four components, the 32 supercharges are arranged in 8 sets
of irreducible spinors. Therefore, N = 8 is the maximum number of allowed
supersymmetries in four spacetime dimensions.

“To be precise, Hg is defined as the largest subgroup of the automorphism group of the
superalgebra that commutes with the Lorentz group.
5See [36] for a more rigorous formulation.
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1.3.2 Higher dimensional supergravity

If we want to construct higher-dimensional supergravity theories, we simply
have to gauge superalgebras whose spacetime bosonic subalgebras are higher-
dimensional. In the Poincaré case this is straightforward but only up to d = 11,
for which we have N = 1.

The kind of spinor allowed in a theory depends on the number of spacetime
dimensions. As we have seen, in d = 4 the irreducible spinors are 4-component
Majorana and then we have N = 8. In d = 11 (with Poincaré invariance),
the irreducible spinor is also Majorana and has 32 components, so all the
supercharges form a 32-component spinor such that we have N = 1. Beyond
d = 11 we need more that 32 supercharges and therefore we run into the same
problems we found in going beyond N = 8 in d = 4. Similar arguments lead
to the maximum number of allowed supersymmetries for other dimensions.

As we will see in section 1.5, higher-dimensional supergravities appear natu-
rally in the context of string/M-theory. A very complete guide to the literature
on supergravities in diverse dimensions can be found in [145].

1.3.3 Extended objects

If the condition of Poincaré invariance is relaxed, the superalgebra admits
quasi-central charges Z,, . q,), Where a; are (flat) Lorentz indices. These are
operators that commute with the supercharges but transform as p-forms under
Lorentz transformations. They appear in the superalgebra as

{Qa ,Qﬂ} — ’i(’YaC_l)aﬂPa + 1% (,Ya1...apc—1)aﬂ Zal...ap . (1.40)

If we now gauge the superalgebra, the gauge potential must include a new field
Cual...ap

Al‘ = %w”,abMab + eu,aPu, + I%Cualluapzal...ap + &u OéQa I (]"41)

which actually appears in the supergravity action as a (p + 1)-form potential
C with field strength G(,12) = (p +2)0C(p11)- The gauge transforma-

K1 f(p41)
tions of the new gauge fields are generated by the Z,, , ’s.

This kind of charges were shown in [8] to appear in theories which extended ob-
jects, and are of capital importance in the case of higher dimensional theories.
This can be seen as follows.
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These (p+ 1)-form potentials naturally couple to the worldvolume of extended
objects of p spatial dimensions, usually referred to as p-branes. Indeed, in the
corresponding supergravity theory, one finds classical solutions that include
the (p + 1)-dimensional Poincaré group in their isometry group and represent
the long-range fields sourced by a flat p-brane®. This explains why Poincaré
invariance is broken if quasi-central charges are included, as the presence of
the p-branes break the Lorentz symmetry of the vacuum. Moreover, as the
Za,..a, S generate gauge transformations, their associated conserved charges
will be the gauge charge of the corresponding p-brane.

1.3.4 Gauged supergravity

The last extension of the Poincaré superalgebra we are going to consider is the
consideration of a different spacetime bosonic subalgebra. Interesting candi-
dates are de Sitter (dS) and anti-de Sitter (AdS). There are more possibili-
ties, like, e.g. Heisenberg algebras, but they have never been used to gauge
supergravities. dS superalgebras lead to inconsistent field theories (ghosts,
non-unitarity...). Then, we will be mainly interested in N-extended AdS su-
peralgebras”.

Let us restrict, by the moment, to the four-dimensional case: N-extended
d = 4, AdS superalgebras (we will comment later on the higher-dimensional
cases). The supercharges Q' transform as spinors under the bosonic AdS
subalgebra generated by the M,’s and the P,’s. On top of these, we are
forced to introduce bosonic generators T% that rotate the supercharges and
also appear in their anticommutator. These generators are “extensions” of the
central charges Z/’s which appear in extended superalgebras (see Eq. (1.38)).
However, due to the modification of the bosonic subalgebra, they are no longer
central (e.g. they rotate the supercharges). In fact, in the limit in which the
Poincaré bosonic subalgebra is recovered (via a Inonii-Wigner contraction in
the (A)dS case), the T% become central and we identify them with the Z%’s
in (1.38).

Now the T%’s generate the R-symmetry of the theory, or, at least, a part of
it. Therefore, we will find a theory with local R-symmetry. These theories are
commonly known as gauged supergravities®, and contain a set of vectors with
gauge group Hy (or G € Hg). Any of these subgroups can be used in the

6There are many interesting and quite complete reviews on p-branes. See, e.g [156].

" Another interesting possibility is to consider pp-wave algebras, but, to the best of our
knowledge, they have not been used yet to construct supergravity theories.

8Supergravity theories in which the R-symmetry is not local are therefore commonly
referred to as ungauged.
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construction, but let us focus on the simplest example: G = SO(N).

The superalgebra for the SO(N) case can be written as in (1.31) plus the
additional non-vanishing (anti)commutators

{Qia ’ Qjﬁ} — iéij(,yac—l)aﬂpa + g (,Yab) Mab - i(c—l)aﬂTij ’
[T, TH] = g (5T + §1T — sitTik — sikTil) (1.42)
[Qia ’ Tjkj| - 9 g 51’[ij]0¢ ’

Written in this form, it is easy to see that, in the g = 0 limit, we are left with
an extended superalgebra. Now, as the T%’s generate an SO(N) symmetry,
we have to introduce an SO(N) vector field with N(N — 1)/2 components
A", the gauge parameter being g. Moreover, their non-trivial action on the
supersymmetry generators imply that the N gravitini ¢, will be charged
under the SO(N). Then, we have

.Au = %wuabMab + euaPa + %AijuTij + I:EZLan : (1'43)

Gauged supergravities contain in their action terms of order O(g) and O(g?).
The terms linear in the gauge coupling are gauge field interactions and fermionic
masslike terms. Note that we say ‘masslike terms’ and not ‘mass terms’. This
is because any of these terms has the form of a mass term for a fermion in
Minkowski spacetime. However, the vacuum solution is now anti-de Sitter,
and the mass must be computed with respect to this asymptotically space-
time and not with respect to Minkowski. In anti-de Sitter space, fermions are
“massless” precisely iff these terms are present.

One of the O(g?) terms in the Lagrangian is interpreted as a cosmological
term. In the cases with V =1, 2 this term is a negative cosmological constant,
while for N > 2, there are also scalars present in the theory and there is no
longer a cosmological constant but a scalar potential which has an extremum
at a negative value and acts as an effective negative cosmological constant.

So far, we have shown how to construct gauged supergravities in d = 4. If
d >4, SO(N) is not necessarily a subgroup of Hg (see table 1.1 for the list of
the R-symmetry groups for maximal extended supersymmetry in d spacetime
dimensions). To understand this we simply have to take into account the kind
of spinors one can have in d dimensions. In the case we have studied (d = 4),
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the spinors are Majorana and therefore the supercharges are real, and can be
rotated with SO(N).

d 11 | 10A | 10B 9 8 7 6 5 4

He | 1| 1 | 50@) | S0@) | U@2) | Usp4) | Usp(4) x Usp(4) | Usp(®) | U(8)

Table 1.1: The R-symmetry groups of the maximal extended supersymmetry in d space-
time dimensions. The labels ‘A’ and ‘B’ for the two types of maximal extended Poincaré
superalgebras that can be constructed in ten spacetime dimensions. The supergravity the-
ories associated to them are usually known as type ITA and type IIB supergravity.

The study of the representations of supersymmetry in anti-de Sitter [123] re-
veals that AdS superalgebras exist only up to d = 7. This does not mean that
gauged supergravities cannot be constructed for d > 7. In fact, such construc-
tions are possible up to d = 10, but they have been tipically constructed by
the gauging of a subgroup of Hg of an ungauged supergravity via the Noether
method. In fact, the associated superalgebras are generally not well-known.

We have previously explained that the superalgebra one gauges to construct
a supergravity theory corresponds to the superisometries of the asymptotic
solutions, i.e. vacua. Then, the gauging of an AdS superalgebra leads to
theories for which AdS spacetime is a vacuum solution. This is only possible up
tod ="7. For d > 7, the theories present a spontaneous breaking of symmetry
and supersymmetry, <.e. no maximally symmetric and supersymmetric vacuum
solution. The true vacuum solutions turn out to be domain wall spacetimes.
We will study theories with this property in section 1.6.

1.3.5 N =1 d =11 supergravity

An important example of higher-dimensional superalgebras is the N =1,d =
11 Poincaré superalgebra, a.k.a. M-superalgebra®. It admits two quasi-central
charges for p = 2,5

A oA PR ap . P af . A s af .
{Q“,QB } = (F“C*l) P+l (rab(,'*l) i+ 2 (ral"'%c—l) A
(1.44)

9The label ‘M’ is due to the fact that it is related to the conjectured M-theory. See [164]
for an interesting discussion on the great amount of information this superalgebra contains.
10All along our work hats will be used to denote 11-dimensional objects.
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Then, the gauge potential includes a potential ) ,;a’;

A, = %d}ﬁai)Maf) + éﬁapa + %éﬂ&BZAai, + 7;,1@@& ) (1.45)

which appears in the N =1 d = 11 supergravity action as a 3-form potential.
One may wonder why there is no gauge field associated to the 5-form central
charge. This is because it appears as the dual of the 3-form potential.

The theory was constructed in [46] via the Noether method. We give its action
and symmetries in appendix (B). N = 1 d = 11 supergravity has the very
particular feature that, unlike the d < 11 cases, is the only supersymmetric
field theory that can be constructed in eleven dimensions [52,53].

Note that we have not included a gauge field for the 5-form quasi-central
charge. This is because it appears as the dual field of the 3-form potential.
Therefore, N = 1 d = 11 supergravity can couple to a 2-brane and, through the
dual 6-form potential, to a 5-brane. The quasi-central charges that appear in
the superalgebra correspond to these objects and there are classical solutions
associated to them. One of the main properties of these solutions is that they
are half supersymmetric.

1.4 Kaluza-Klein dimensional reduction

The idea of extra dimensions was born when Kaluza [98] proposed a five di-
mensional theory of General Relativity as a candidate to unify gravity and
electromagnetism. Later on, Klein proposed that, in this framework, the elec-
tric charge could be quantized if the extra dimension was a circle [102]. This
is what we usually call compactification.

The world we observe seems to be four-dimensional. This is true at least up
to the energy scale we are able to measure (~TeV’s). Then, if Nature is really
five- (or more) dimensional, there must be some “mechanism” ensuring that
the fifth dimension cannot be noticed at least up to the scale of TeV’s. This
can be achieved by considering that the extra dimension is compact and very
small.

Considering that the extra dimensions are compact, the higher-dimensional
fields can be expanded in Fourier series. This gives rise to an infinite tower of
lower-dimensional fields with different masses, of which only one is massless.
The contribution of the massive modes at low energies can be neglected if the
extra dimensions are sufficiently small. Then, only the zero modes are kept
and one arrives to an effectively lower-dimensional theory. This is the notion of
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dimensional reduction''. Let us show the idea in detail by the use of a simple
example: a free 5-dimensional massless, complex scalar field ¢!2.
The action that describes the system is
~ 1 ~\ 2
S=- / &3 (8(/5) , (1.46)
R

where /£ is a coupling constant. This action leads to the sourceless Klein-
Gordon equation

V24 =0. (1.47)

Let us compactify our theory on a circle down to four dimensions. The coordi-
nates split as 2% = {2#, 2}, where z parametrizes a periodic space, for example
a circle of radius £. As the space is periodic, any field ¢ defined over it satisfies

~ ~

o(z,2) = ¢(z, 2 + 2nl) , (1.48)

and therefore it can be expanded in Fourier series as

B(z,z) = ¥/t (g). (1.49)

neZ

Therefore, we have infinite d-dimensional ¢ fields (modes) with masses pro-
portional to n/¢. If we substitute the expansion (1.49) in (1.47), we find that
each mode satisfies a 4-dimensional Klein-Gordon equation for massive fields

V2 = ()] 6 (@) = 0. (1.50)

Let us now reduce the theory. We take the radius of the circle to be sufficiently
small, 7.e. we look at the system from a distance much larger than the radius.

1 Note that compactification and dimensional reduction are different concepts. Compact-
ification means that some dimensions are taken to be compact, while reduction means that,
due to certain considerations (small size...), the higher dimensional theory is effectively lower
dimensional. When we compactify a theory, we usually consider that the compact space is
small enough to reduce the theory, but, in general, a compactification does not imply a
reduction.

12Tn this section, hatted objects are 5-dimensional while no hats are used for 4-dimensional
objects.
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Let us consider that its size is of the order of the Planck length. Then, the
masses of all modes with n # 0 will be of order of the Planck mass, and
therefore at low energies we can neglect these modes and consider only the
massless one (n = 0), which is independent of the internal direction. Retaining
only this mode is equivalent to take the limit / — 0. Hence, the reduced theory
will not depend on the internal direction and will be effectively d-dimensional.

Finally, after integration on z, the 5-dimensional action (1.46) is rewritten as
a 4-dimensional action

S = % /d‘*fc (855(0))2 , (1.51)

where k = £/2m{ is interpreted as the effective 4-dimensional coupling con-
stant.

In the case of gravity this analysis cannot be straightforwardly applied,
as the Fourier modes cannot be interpreted as 4-dimensional metrics, but the
underlying idea is exactly the same. The Fourier expansion leads to an infinite
tower of massive modes which combine via a Higgs mechanism and represent
massive spin-2 particles, 7.e. massive gravitons. If the size of the circle is of
the order of the Planck length, their massess are of the order of the Planck
mass, and therefore can be neglected.

Then, we are left with the zero mode, a 5 X 5 symmetric matrix. It can be de-
composed into a 4 x4 symmetric matrix which we interpret as the 4-dimensional
graviton, 4-dimensional vector A, and a scalar k. This decomposition can be
seen in the 5-dimensional Vielbein as

) et Ay ) et —A,
(6:") = , (&) = , (1.52)

where A, = e,/'A,.

One of the problems of the original Kaluza-Klein idea to unify gravity and
electromagnetism, is that they were not able to explain the presence of the
scalar field k.

In the context of string/M-theory, the spacetime we have to deal with is 10/11-
dimensional. The KK reduction provides a mechanism to reduce the theories
down to four dimensions. One generically chooses the compact space to be a
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direct product of circles, i.e. a torus. If the size of the torus is small enough, the
massive modes can be neglected and the theory is effectively lower-dimensional.
In this context, the scalar field is no longer a problem but plays the role of the
dilaton.

In appendix B we give some standard dimensional reductions of 11-dimensional
supergravity which are of our interest, such as the reduction on a circle, which
leads to type IIA supergravity.

1.5 String/M theory and supergravity

We have shown how to construct supergravity theories and we have explained
many of their properties. These theories are interesting by themselves and
have been extensively studied in the literature. However, they turn out to be
specially important because they describe the low energy limit of superstring
theories.

String theory arises as a theory based on the consideration that the building
blocks of Nature are strings instead of pointlike particles. Different particles
can be seen as different oscillation modes of the strings. A possible way to
explain why we have not been able to notice the spatial extension of the strings
is to consider that it can only be observed at energies higher than those that
can be reached in present-day experiments.

A fundamental property of string theory is that it can be consistently quan-
tized. The quantization of the simplest model, the bosonic string, leads to an
spectrum that includes a massless two-index field, which can be decomposed
in its symmetric part (a massless spin-2 field), antisymmetric part (known as
the Kalb-Ramond field) and the trace, a scalar field, known as the dilaton.
A crucial point is that the a massless spin-2 field can be identified with the
gauge boson of the gravitational interaction, the graviton. Then, the quantized
version of the bosonic string leads to a quantum theory of gravity.

Requiring Poincaré invariance, the quantum theory turns out to be consistent
only in 26 spacetime dimensions, i.e. the bosonic string propagates in a 26-
dimensional target space. In principle, this does not represent a problem, since
we can consider, e.g. that the 22 extra dimensions are so small that cannot be
observed in current experiments.

One of the problems of the bosonic string is that it only contains bosons, and
therefore cannot be a theory of everything. Furthermore, the spectrum also
includes a tachyon, a particle which signals an instability in the vacuum of the



33

theory.

Fermions can be introduced in the bosonic string by introducing supersym-
metry. Moreover, it turns out that the tachyon can be consistently removed
from the spectrum via the GSO projection. Supersymmetric string theories are
known as superstring theories. If Poincaré invariance is required, the quantum
theories are only consistent in ten spacetime dimensions. Apart from non-
critical theories, only five ten-dimensional tachyon-free superstring theories
can be constructed: type IIA, type IIB, type I, heterotic Fs x Eg and het-
erotic SO(32), which differ in their field contents and the amount of spacetime
supersymmetry.

The low energy behaviour of superstring theories is described by super-
gravity theories, i.e. These field theories describe the low energy dynamics
of the massless fields of the string spectrum, and a lot of information about
superstring theories can be extracted from the study of their corresponding
supergravity theories!®. This is the reason why supergravity theories are so
important and why their study is essential to understand string theory.

1.5.1 String dualities and M-theory

A duality is a transformation that relates different regimes of a theory or even
different theories. In the last decade it was found that the five different su-
perstring theories are connected through duality transformations. In addition,
these properties are also reflected in the supergravity limit, and provide useful
tools to study the structure of string theory. There are two main types of
duality in string theory: T-duality and S-duality.

T-duality is a transformation which relates different compactifications of
string theory. Let us consider the simplest example: the compactification on
a circle. A closed string theory, say A, is T-dual to another string theory, say
B, if theory A compactified on a circle of radius R4 is equivalent to theory B
compactified on a circle of radius Rp given by

al

Rp=—
B RA’

(1.53)

13For instance, solutions to the supergravity equations of motion provide consistent target
space backgrounds where strings can propagate.
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upon exchange of Kaluza-Klein and winding modes!'*. Higher-dimensional in-
ternal spaces can also be considered, and the T-duality group is enlarged by
taking into account the symmetries of the internal space. At the level of the
superstring theories, type IIA and type IIB are T-dual to each other, as well
as heterotic SO(32) and heterotic Eg X Ej.

S-duality is a non-perturbative duality transformation that relates strong
and weak coupling regimes. Basically, it states an equivalence between a
string theory at coupling gs; and (perhaps another string theory) at coupling
1/gs. Therefore, it provides a powerful tool to extract information of the non-
perturbative regime of a theory through the study of a perturbative regime
(the S-dual picture). It is thought that type I and heterotic SO(32) super-
string theories are S-dual to each other, while type IIB is S-self-dual.

The strong coupling pictures of type IIA and heterotic Eg x FEg are quite
different because they are believed to be described not by a superstring theory
but by an eleven-dimensional theory.

From the supergravity point of view, we know that type ITA supergravity can
be derived from N = 1 d = 11 supergravity upon a Kaluza-Klein reduction
on a circle. The radius of the eleventh dimension is proportional to the string
coupling constant (the value of the dilaton). At weak coupling, the size of the
eleventh dimension is very small and the theory is effectively ten-dimensional.
However, at infinite coupling, the eleventh dimension opens up, such that the
strong coupling limit of type ITA supergravity is N = 1 d = 11 supergravity
[175].

Horava and Witten [83] found that something similar occurs in the case of
the heterotic Eg x Eg theory, whose strong coupling limit is believed to be
described by N =1 d = 11 supergravity on S'/Z,.

All this seems to indicate that the five superstring theories are connected
to each other and, indeed, it is believed that they are different perturbative
limits of a unique underlying theory, known as M-theory. However, microscopic
degrees of freedom of this theory are still unknown, One of the few things that
we know about it, is that its low energy limit is described by N =1 d = 11
supergravity.

An outcome of the study of string dualities was the discovery of D-branes
[134]. These objects are the carriers of the Ramond-Ramond charges, and form

147 = /o is the string length.
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a new class of non-perturbative extended solitonic objects which also appear
in string theory. These objects are dynamical hypersurfaces on which open
strings can end. Type II superstring theories (which are theories of closed
strings) contain D-branes, so they can also contain open strings, but these
must always end on a D-brane. In the non-perturbative spectrum, type IIA/B
superstring theory contain Dp-branes with p even/odd.

There are non-renormalization theorems which imply that D-branes must have
a faithful description in the corresponding low-energy limit of the theory, i.e.
at the supergravity level. In this limit, they correspond to solutions which
describe extended objects. Precisely, type ITA supergravity allows for p-brane
solutions with p even, while type IIB includes those with p odd.

Many non-perturbative properties of superstring theory, such as supersym-
metry or dualities, are present at the supergravity level, and provide very useful
tools to explore the structure of string theory. The study of supergravity theo-
ries may provide new insights in string/M-theory and may help to understand
it better. In this thesis, we study supergravity theories with this purpose.

1.6 Massive supergravity

Gauged supergravities contain a scalar potential which follows from the gaug-
ing of the R-symmetry group. Generically, the vacuum of these theories is no
longer Minkowski but anti-de Sitter spacetime or a domain wall solution. This
does not only occur in gauged supergravities: there is another kind of super-
gravity theories that also contain a scalar potential, but where no symmetry
has been gauged. They are constructed via a deformation of standard su-
pergravity theories through the introduction of a parameter to be interpreted
as a mass for certain fields'®, and so they are commonly known as massive
supergravities. The label massless will be used to refer to the standard ones.

As the deformations which lead to massive supergravity theories are not a
consequence of the gauging of a symmetry group of the theory, the motivation
for their construction is, in principle, conceptually different from that of gauged
supergravities. However, they share a lot of properties, and therefore we may
consider both kind of theories as members of the same class.

The most notorious example of a massive supergravity theory was found

15Tt is, however, strange to have a massive supergravity gauge field. We will comment on
this later and see that it is perfectly reasonable in this kind of theories.
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by Romans in [140], where, up to quartic fermion terms, a new supergravity
theory was constructed via a deformation of type ITA supergravity'¢. This
theory introduced no new degrees of freedom and respected gauge and super-
symmetry invariance iff these transformations were slightly modified in order
to accommodate the deformation, represented by a parameter m with the di-
mensions of a mass. The new theory, known as Romans’ theory or massive
type ITA supergravity, shows many differences with respect to standard type
ITA, such as scalar potential for the dilaton, a mass term for the Kalb-Ramond
field or a spontaneous breaking of (super)symmetry such that no maximally
(super)symmetric vacuum solutions can be found.

Many questions might arise at this point. What is the effect of the scalar
potential? Is it reasonable to have a massive Kalb-Ramond if it is one of the
fields of a supergravity multiplet in which all the fields zero mass? What is the
vacuum of the theory? Let us leave our questions unanswered by the moment.

Romans’ theory did not receive much attention until Polchinski [134] argued
that this theory is closely related to the existence of the 9-form potential of
type ITA superstring theory. Further support to this suggestion was given
in [15], where type ITA supergravity is deformed to accommodate a 9-form
potential instead of a parameter. We refer to this construction as BRGPT
theory, and we will see that it is a strong candidate to describe the low energy
limit of type ITA superstrings. It was also suggested in [134,136] that the
expectation value of the dual of the 10-form field strength associated to the 9-
form potential was basically the mass parameter m used by Romans to deform
type IIA supergravity.

In the following subsection we are going to show how to construct Romans’
theory at the bosonic level and its relation with superstring theory, such that
the questions above will find an answer. This analysis will help us to un-
derstand the basic properties of massive supergravities and to establish their
possible relation to string theory.

1.6.1 Romans’ theory

If supergravity theories are the effective field theories describing the low energy
behaviour of the different string theories, then all the D-branes must have a
representation in the corresponding supergravity theory. However, type ITA/B
supergravities only include those representations for the D0,2,4,6- and D(-
1),1,3,5,7-branes, respectively, i.e. there is a supergravity p-brane solution
for each of these branes. The problem is that there is no representation for

16Tt was completely constructed in [35] using superspace methods.
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D8/D9-branes in type IIA/IIB supergravities. Both D8/D9-branes introduce
no new degrees of freedom as they do not correspond to propagating states,
but their presence in the corresponding theory has non-trivial effects. In the

following we will analyze the case of the D8-branes!”.

O Including the D8-brane in type IlA supergravity

A D8-brane is a 9-dimensional object which couples to a 9-form gauge potential
Cl9), whose field-strength, G(1¢), is 10-dimensional. It lives in a 10-dimensional
spacetime, so, via Hodge duality, the 10-form field strength can be dualized
into a O-form field strength (i.e. a scalar field), say M (x), which must satisfy
a Bianchi identity, given by

dM(z) = 0, (1.54)

implying that M (z) must be a constant, say m. Therefore, the kinetic term
for a D8-brane in a supergravity action will be proportional to m?, and, as
D-branes are represented in supergravity through Ramond-Ramond fields, it
is reasonable to expect no dilaton factor for it in the string frame.

O So... what are we looking for?

If we want to find a type IIA supergravity theory that includes all the even
D-branes, we need to find a deformation of type IIA supergravity which allows
for the presence of a constant parameter in its action, in which must appear,
up to a dilaton factor, a constant kinetic term. This parameter represents the
D8-brane.

A theory satisfying these requirements is precisely Romans’ theory [140], Its
bosonic action in the string-frame reads

1"D9-branes are spacetime filling branes, and therefore open strings are allowed to end
anywhere. In this sense, a D9-brane is basically a Neumann boundary condition. Cancella-
tion of tadpoles and anomalies in type IIB with D9-branes requires their number to be 32
and orientifolding the theory, such that the theory presents two orientifold 9-planes which
cancel the total Ramond-Ramond charge of the D9-branes. This way one ends up with type
I string theory.
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SRomans = 167rGN(10)/d x\/g{e [R 4 (9¢) 213|H2]
= [sm? + Gy + Gy | (1.55)

144\/_ € [0C(3)0C3B + im 0C 3 B3+80m2B5}}

where G and G are the RR 2- and 4-form field strengths, defined by

G(g) = 280(1) +mB,
(1.56)
G(4) = 480(3) +4 C(l) H +3mB?,

and

H =30B. (1.57)

is the NSNS 3-form field strength. Note that this action contains the kinetic
term we were looking for: it is constant and has no dilaton factor in the
string frame. These conditions do not conclude but only support the idea that
Romans’ theory includes D8-branes. This would be confirmed if we found an
8-brane solution breaking one half of the supersymmetries with mass inversely
proportional to the string coupling constant. We will come back to this issue
later.

Since the theory has been deformed from type ITA supergravity, it seems rea-
sonable that both field strengths and Lagrangian are now invariant under some
new bosonic gauge transformations which are deformations of the massless
ones. The new gauge transformations are

(50(3) = 33/\(2) - 3mBA(1) - HA(O) .
The supersymmetry transformation rules that leave invariant the action for

Romans’ theory are also a deformation of the usual type ITA supersymmetry
transformations. The new rules for the fermions of the theory are given by
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551/}# = {a” — i (ﬁl’u 1F11 HIJ) } €+ €¢Zn ﬁ G(Q")F“ (—Fll)n€,

SN = [Po+ gl H] e+ 5e? Sne 52 GOV (<Iy)"e,
(1.59)

where we have identified

GO =m. (1.60)

If m = 0 is set everywhere, standard type ITA supergravity is recovered (see
appendix B).

We have seen how the theory is and its possible relation to superstring theory
via the inclusion of D8-branes in type ITA supergravity. Let us try to go further
in our understanding.

0O What's the effect of ‘mass-deforming’ type |IA supergravity?

Let us now come back to the massive gauge transformations given in (1.58).
The variations containing Ay and A3 are nothing but the massless gauge
transformations, i.e. the massive theory is also invariant under A and Ay
transformations. However, it is no longer invariant under A(;y transformations.
These are invariances iff 6C(1) and dC/3) are deformed. The required deforma-
tion (1.58) implies that the vector field Cy) can be completely gauged away
by absorbing it into the Kalb-Ramond field'®, with the consequence that the
field strength for C(;) becomes a mass term for B, and the action reads

SRomans = 167rGN(10) /d Ox\/g{e [R 4 a¢) + 23-H2]
— [%m2 + imQBQ 24|GZ i| (161)

144 \/_

Those fields that behave as C(1) are usually called Stickelberg fields, and are
auxiliary fields whose gauge transformations are as that of C(y) in (1.58).

€ [0C(3)0C (3B + im 8C(3) B* + Zm?B"] } ,

18We usually say that the B field “eats” the vector.
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Had we started with action (1.61), which is not gauge invariant, and had we
wanted to make the theory formally invariant under this kind of transforma-
tions, we would have had to introduce the U(1) Stiickelberg field C(y). In
this way, the action can be written in a formally gauge invariant manner. We
would have arrived then to action (1.55). This is the simplest example of a
mechanism known as Stickelberg mechanism that will be at work in all the
cases we are going to study.

The physical interpretation of the gauging away of the vector is that in the
physical spectrum of the theory there are no there are no quantum excitations
associated to this vector field and the quantum excitations associated to the
2-form are massive.

We can wonder how this can happen in supergravity theories since all the fields
in the supergravity multiplet should have the same mass (zero). The reason
why, is that supersymmetry is partially and spontaneously broken: massive
supergravity theories as formally invariant under a certain modification of the
full supersymmetry transformations of the massless theory. However, the vac-
uum of these theories breaks part of the symmetry and in that vacuum the
supergravity multiplet becomes reducible into a massless supergravity multi-
plet and massive matter multiplets. We have written the theory in a form in
which all the gauge symmetries of the massless theory are formally present,
but in the vacuum those symmetries responsible for the masslessness of the
2-form are spontaneously broken. This is the reason why we call this theory a
massive supergravity and why we say that the supersymmetry is spontaneously
broken.

Although we have not written the complete theory, as the fermionic contribu-
tions have been omitted, we believe that a Stiickelberg mechanism takes place
also at the fermionic level. The theory is formally invariant under N = 2 super-
symmetry transformations, and so there are two gravitinos and two dilatinos.
We think that one of the gravitinos is massive, whose mass term is written as
a kinetic term for one of the dilatinos. This dilatino is a fermionic Stiickelberg
field. Both bosonic and fermionic Stiickelberg mechanisms together give rise to
a super-Stickelberg mechanism such the N = 2 d = 10 supergravity is reduced,
via the spontaneous breaking of supersymmetry, intoa N = 1 d = 9 supergrav-
ity multiplet plus massive matter multiplets which include both Kalb-Ramond
and gravitino massive fields.
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O What's happening in the vacuum?

It is easy to see that Minkowski spacetime is not a solution of Romans’ theory,
so... what is then the new vacuum solution?

We have seen that the D8-brane is represented in the action for Romans’ theory
(in the string frame) through a kinetic-like term of the form

/dl% r [—%mQ] | (1.62)

This kinetic term is different from the usual ones (those for the other D(2n)-
branes) in the sense that it is fized, i.e. it is not a function of the coordinates
but a constant, so it does not lead to any additional degrees of freedom, and
therefore is not ruled out automatically by supersymmetry considerations!®.

In the Einstein frame, the kinetic term (1.62) reads

1
/dmx lg] [—§m265¢/2] : (1.63)

i.e. it is a scalar potential for the dilaton field ¢. It is not a proper cosmological
constant in the sense that it is not constant in the Einstein frame, and, in fact,
there is no 10-dimensional (anti-)de Sitter solution. However, it is commonly
referred to as the cosmological constant term of Romans’ theory and we will
also adopt this terminology.

The key point is the following: m represents the contribution of the D8-brane
to the theory, so, as it is a parameter of the theory and therefore its value is
fixed, it is not possible to switch off the D8-brane. Hence, all the solutions of
the theory must feel the presence of the D8-brane?, and in this sense one can
interpret the D8-brane as a background for the massless type IIA supergravity,
i.e.

Romans’ theory is nothing but massless type IIA supergravity in a
background of a D8-brane.

19A similar argument was used many years ago in [7,54] to introduce a cosmological
constant in four-dimensional field theories by making use of a four-form field strength. In [7] a
4-dimensional massive theory was obtained performing a Kaluza-Klein dimensional reduction
of a 5-dimensional theory with a 4-form field strength, whose dimensional reduction was
dualized to give a cosmological-type term. Hawking used this argument in the search for a
mechanism for the variation of the cosmological constant [81].

20This is what happens, for example, in General Relativity with non-zero cosmological
constant. All solutions of this theory feel the presence of the cosmological constant, the
reason being that the cosmological constant is a free parameter of the theory.
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With this interpretation®', we also expect the vacuum solution to feel the
presence of the D8, and in fact one could argue naively that the D8-brane
itself is a vacuum solution. We are going to think this way, but, as we will
see later, it will turn to be a non-trivial problem. Let us first see what our
‘vacuum solution’ is like.

The D8-brane solution is a domain-wall spacetime (a nine-dimensional hyper-
surface in a ten-dimensional spacetime) with non-trivial metric g,, and dilaton
¢, whose supergravity solution in the string frame is

ds®> = H_l/Qdffg) — HY2dy?,
(1.64)
e = H5/* ,

where d:i'%g) is Minkowski spacetime in nine dimensions representing the world-
volume of the D8, y is the transverse direction and H(y) is given by??

H(y) = +m(y — o), (1.65)

with yo an arbitrary integration constant. The Killing spinor equations (1.59)
for the 8-brane solution given above are solved for

e=H 8¢, Iye = =te. (1.66)

The sign in (1.65) depends on the “chirality” choice for the spinor € in (1.66).
Reality of the metric implies that H must be positive, and therefore ¢ must
change “chirality” at y = yo. We understand that this is possible because the
spinor blows up at this point, which, in principle, seems acceptable because
also the metric is singular at y = y,. In this sense, the theory admits a solution
for which

H(y) =mly — yol, (1.67)

which is a continuous function of y with a delta function singularity at y = yj,
where also the curvature tensor finds a delta singularity. This suggests the

21Tt is convenient to anticipate that this interpretation is not the right one, but it helps
in our understanding and, as we will see, it is very close to the correct interpretation.

22 As for every D-brane, H is a harmonic function of the transverse space. In the case at
hand, H must also satisfy 0y, H = m.
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interpretation of yq as the position of the 8-brane along the y-direction. This
is in fact the solution one finds considering an action consisting on that for a
8-brane placed at y = yo and that for the bulk (Romans’ Theory).

The spinor solution in (1.66) shows that the 8-brane solution breaks one half
of the supersymmetries, as expected from the fact that it represents (at the
classical level) one of the string theory D-branes. This result also agrees with
the idea that in Romans’ theory (and, in general, in all massive supergravities)
the supersymmetry is spontaneously broken, ¢.e. the theory has only N =1
supersymmetry (the supersymmetry of the D8-brane vacuum) but, formally,
the theory is invariant under N = 2 local supersymmetry transformations.
Some gauged supergravities also show this massive behaviour when they do
not have a maximally supersymmetric background. This will be the case of
the gauged d = 8 supergravities we will study in chapter 2.

The 8-brane solution also presents ISO(1,8) invariance, as the translational
invariance is broken in the y-direction. As the theory is formally invariant un-
der ISO(1,9) transformations, i.e. also the g.c.t.’s are spontaneously broken.

O A problematic vacuum solution

When we first wrote the action for Romans’ theory in (1.55) we supposed that
the theory included a representation for D8-branes, and it was a supposition
because we did not know if the theory admitted an 8-brane solution breaking
one half of the supersymmetries. We have shown that this is indeed the case.
We also supposed that the tension of this object was inversely proportional to
the string coupling constant. Is it really so?

The fact that geometrical conserved charges associated to a source can only
be defined and computed asymptotically leads to the notion of supergrav-
ity vacuum as the spacetime solution to which a certain class of spacetimes
asymptote. Every conserved geometrical charge, including the mass, can only
be defined and computed with respect to this vacuum, which, in this sense,
asymptotes to itself.

The 8-brane solution (1.64) asymptotes to itself, and so it can be considered as
a vacuum solution. This implies that, applying the Abbott & Deser approach,
the mass one computes for this spacetime is, by construction, zero, and so it
is not useful to calculate the mass of the 8-brane. There is an alternative way
to determine the mass for this spacetime: T-duality. If this 8-brane solution
is as a field theory realization of the D8-brane of type IIA superstring theory,
then T-duality must relate it to the 7- and 9- brane solutions of type IIB su-
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pergravity, and, via a chain of T-dualities, to any other brane. This was used
in [15] to show that, as expected, the mass of the 8-brane solution is inversely
proportional to the string coupling constant, and so it was proposed the iden-
tification of the 8-brane solution with the supergravity solution associated to
the D8-brane. However, this identification does not refer exactly to (1.64),
but to the single 8-brane solution of a theory which is a subtle but crucial
reformulation of Romans’ theory. Let us see it.

O One step further

An important advance in the understanding of the role of the 9-form potential
in supergravity was performed when Romans’ theory was reformulated in terms
of a Ramond-Ramond 9-form potential instead of a constant parameter [15],
a theory that we refer to as BRGPT theory. Moreover, as string theory is
supposed to have no free parameters, it is not satisfactory to have one in the
action of a possible candidate to describe the low energy limit of type ITA
superstrings.

Such a formulation implies a non-trivial generalization of Romans’ theory. The
solutions of the new theory are conceptually the same as those of Romans’,
but in the BRGPT theory there is no longer a constant parameter m but a
piecewise constant function, say M, which has an important implication: one
can have solutions in which the value of the cosmological constant is different
in different regions of spacetime. The discontinuities are 9-dimensional topo-
logical defects, i.e. domain walls, which act as sources of the 9-form potential
and are interpreted as D8-branes. A special case of this multi 8-brane solution
was previously found in [135].

The single 8-brane solution of BRGPT theory is the one which, via T-duality,
was shown in [15] to have mass inversely proportional to the string coupling
constant. Moreover, while in Romans’ theory the mass parameter is a param-
eter of the action and therefore it cannot be switched off (such that Minkowski
is not a solution), in the BRGPT theory the 9-form potential can be set to
zero, and Minkowski is therefore a vacuum solution (in which there are no
D8-branes).

O But... what is really m?

It was argued in [136] that the constant parameter m is the gauge charge of
the D8-brane. This is not exactly so, but m is directly related to the charge.
Let us consider the single D8-brane solution in the formulation of massive
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Type ITA Supergravity in terms of the 9-form potential. This solution has an
associated 10-form field strength given by

M(y)

VIl

where M (y) = 0,H is a piecewise constant function with the jump at y = y,
(the position of the brane) and e(1¢) is the 10-dimensional Levi-Civita pseudo-
tensor.

Go) = £(10) » (1.68)

Gauge field charges are generically computed by integrating the dual of the
gauge field strength over a sphere containing the source in the transverse space.
In the case at hand the transverse space is 1-dimensional, and so the sphere
surrounding the source is the “0O-dimensional sphere” S°, an space formed by
two points y = ¢, each on one side of the D8. The gauge charge is then given
by

Qps = /SO*G(lo) = M(+£) = M(-£), (1.69)

where ¢ > 1y. Reality of the metric requires M to be of the form

M = { mi, Yy < Yo, (170)
ma, Y > Yo,

implying QQpgs = ms — m; # 0. This shows the importance of the BRGPT
formulation of massive type ITA supergravity in [15], as in Romans’ Theory
the value of m is the same in all the spacetime, implying that the charge of
the D8 is zero, i.e. “there is no brane”?3. Therefore,

Romans’ theory dictates the dynamics of the different regions of
spacetime separated by a D8-brane, and the low energy limit of type
ITA superstring theory is described by the BRGPT theory.

If we consider a multi 8-brane solution by allowing delta singularities of H at
n + 1 ordered points y = yo < y1 < ... < ¥Yp, the picture is a spacetime with
(n + 2) regions with different values of m separated by the (n + 1) 8-branes,
with Romans’ theory (with different m’s) “living” in each of these regions.

ZRomans’ theory can also be interpreted as type ITA supergravity in the presence of a
D8&-brane placed at infinity.
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It is worth noticing that D8-branes do not exactly interpolate between these
regions, but simply separate them.

O Dirac quantization condition

An 8-brane couples to a 9-form potential C'gy with 10-dimensional field strength
G(10), whose dual is a 0-dimensional field strength associated to a “(-1)-form
potential”. The source of this potential is a “(-2)-brane”, an object still not
provided of physical meaning. Therefore, D8-branes are objects electrically
charged with respect to the gauge field C(g), but there are no magnetically
charged solutions. Hence, these objects do not satisfy a Dirac quantization
condition, a condition satisfied by all D-branes but the D8 and the D9, which,
at least, is a curious property.

1.7 Unification in eleven dimensions?

It is thought, perhaps ambitiously, that M-theory is powerful enough to unify
the superstring theories. Such a unification should be reflected somehow in the
low energy limit, i.e. it should be possible to relate the supergravity theories
associated to the different string theories with the supergravity description of
M-theory. Standard dimensional reduction on a torus together with dualities
indicate that this seems to be the case. However, these ‘tools’ are not enough
to give all gauged/massive supergravities an 11-dimensional origin. Among
these, Romans’ theory is the most notorious example, as it seems to have a
deep connection with string theory. So

what is the 11-dimensional origin of gauged/massive supergravities?

Two essential ingredients must be taken into account to understand this prob-
lem: the 11-dimensional theory and the reduction scheme. We need to in-
troduce somehow gauge couplings and/or mass parameters in order that the
reduced theory is gauged/massive. Then, one could think of introducing them
in any (or both) of the two ingredients. In chapter 2 we will deal with a possible
generalization of the Kaluza-Klein reduction. We will deal with this possibility
in chapter 2. The other possibility implies a modification of 11-dimensional
supergravity. However, this theory seems to be unique, so... how can it be
deformed? We will focus on this possibility in chapter 3.



Chapter 2

Getting masses from extra
dimensions

Many ungauged/massless supergravities arise from 11-dimensional su-
pergravity by applying a standard dimensional reduction on a torus. However,
this reduction procedure does not lead to any gauged/massive supergravity
if the higher dimensional theory is ungauged/massless. This is the case of
11-dimensional supergravity. We need to introduce gauge coupling constants
and/or mass parameters in the reduced theory. Then, it is natural to ask if
these parameters can be introduced through the reduction.

One way to do this is to perform a Kaluza-Klein reduction on a sphere instead
of a torus. This has served to obtain many gauged supergravities from higher-
dimensional ungauged supergravities. Some remarkable examples are the S°
reduction of type IIB supergravity [49], and the S* [49,124] and S7 [49,173]
reductions of N = 1,d = 11 supergravity. These reductions lead to gauged
maximal supergravities in five, seven and four dimensions, respectively.

However, Kaluza-Klein sphere reductions are only consistent works in some
cases. Then, it is natural to ask if

is it possible to generalize the Kaluza-Klein reduction procedure?

A possible answer to this question was provided by Scherk & Schwarz. Their
relevant work in this respect [150,151] was initially motivated by the study of
procedures that could generate theories with spontaneously broken supersym-
metry from higher dimensional theories with unbroken supersymmetry. Their
method, known as generalized dimensional reduction, extends the standard di-
mensional reduction procedure by the introduction of a certain dependence of
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some fields on the internal coordinates. A crucial point in the Scherk-Schwarz
technique is that, although the higher dimensional fields depend on the internal
coordinates, the reduced theory is completely independent of them.

In these reductions, the dependence on the internal coordinates is introduced
by gauging a global symmetry of the theory. Although a compact symmetry
was used in the original work, other global symmetries of a theory are also valid
for this purpose. The result is usually that parameters with dimensions of mass
are introduced in the reduced theory. We will distinguish between two versions
of generalized dimensional reduction, taking into account the kind of global
symmetry one uses to introduce the dependence on the internal coordinates.
If no geometrical origin is known for the global symmetry, the procedure will
be referred to as non-geometrical or SS1 reduction. On the other hand, if the
global symmetry is one of the symmetries of the compactification manifold
(and therefore has a well-known geometrical origin) the reduction scheme will
be referred to as geometrical or SS2 reduction.

The organization of the chapter is as follows. Section 2.1 is devoted to
explain the basics of generalized dimensional reductions, both geometrical and
non-geometrical. We comment first on the SS1 reduction and on some of its ap-
plications. After that, we use a toy model to explain the general features of the
SS2 reduction. In section 2.2 we perform an SS2 reduction of 11-dimensional
supergravity on a 3-dimensional manifold. This reduction leads to five d = 8
gauged maximal supergravities whose gauge groups are the non-compact sub-
groups of SL(3,R), among which the standard gauged maximal supergravity
in d = 8 [144] is included. We will classify the different theories according to
the Bianchi classification of 3-dimensional Lie groups. In section 2.3 we con-
struct the most general half-supersymmetric domain wall solution to these five
gauged supergravities. Section 2.4 contains the uplifting to 11 dimensions of
the domain wall solution and its relation to already known solutions. Our con-
clusions are presented in section 2.5. Appendix C contains some basic material
on the classification of 3-dimensional Lie algebras.

2.1 Generalized dimensional reductions

2.1.1 Non-geometrical generalized dimensional reduc-
tion

Generalized dimensional reduction associated to global symmetries with no
geometrical origin can be seen as the answer to the question ‘how do we di-
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mensionally reduce multivalued fields?” Let us consider a toy model which
exhibits the general features of this kind of reduction!: a real scalar field ¢
taking values on a circle of radius m. In practice, one takes a field living on
the real line and identifies

¢~ @+2rm. (2.1)

Now we consider that one of the coordinates (say z) is compact (e.g. a circle).
A single-valued field has to be a periodic function of the compact coordinate.
On the other hand, a multi-valued field is allowed to take a different value as
long as it is a multiple of 2rm because both values of the field are assumed to
represent the same Physics

o(x, z+2ml) = p(x,2) + 20 Nm ~ @(x, 2) . (2.2)

In standard Kaluza-Klein reduction one only considers single-valued fields, so
that the needed Fourier decomposition of any field ¢ reads

B, 2) = 30 60 (z) (23)

neZ

Dimensional reduction then means keeping the massless modes, i.e. ¢(?, only.
In the case of our multivalued field ¢, the above Fourier expansion is enhanced
to

~ mNz TN 2 n
Blw,2) = 155 Y (g (24)
neZ

The term linear in z is the responsible for the multivaluedness. This term is
non-dynamical, and therefore it introduces no new degrees of freedom, and
therefore the value of N cannot change (at least, classically). The above field
configuration is topologically non-trivial: the field is wound N around the
compact direction. N labels the different topological sectors, and is given by

N = lim — j[dga, (2.5)

z—oo 270m,

'In this section we use hats for d-dimensional objects and no hats for (d — 1)-dimensional
objects.
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which is nothing but the winding number.

The dimensional reduction is performed keeping only the zero modes, i.e. the
massless ones. Then, we consider the Ansatz

o(,2) = m?f 24 Oz . (2.6)

Now, the action for a field living on an S! is always invariant under arbitrary
shifts of the field, even if the field is to be identified under discrete shifts. This
then ensures that the lower dimensional theory does not depend on z. The
term linear in z gives rise to a term which plays the role of a mass term.

In the original work of Scherk and Schwarz [150], an Abelian U(1) phase
symmetry acting on the spinors was used, such that a spontaneous breaking
of supersymmetry was induced in the reduced theory. In its original form, the
SS1 was also applied in, e.g. the reduction on a 6-torus of the effective action
of the heterotic string on a 6-torus [137,159] to obtain gauged N =4 d = 4
supergravity with a positive semidefinite potential.

Other compact global symmetries that have been used to perform SS1
reductions are axion shifts, such that the axion is allowed to have a linear
dependence on the compactification coordinate [15]. In addition to the spon-
taneous supersymmetry breaking, gauge symmetries of some gauge fields are
also spontaneously broken in the reduction, with the corresponding appear-
ance of mass terms. Moreover, it is possible to set the masses to zero such
that the ungauged/massless theories are recovered. In all these cases, the re-
duction Ansatz only depends on one of the internal coordinates (apart from
the dependence on the ‘external’ coordinates). Of course, it is possible to have
higher dimensional internal spaces, but only one of the internal coordinates
appears in the Ansatz.

The axion shift symmetry of type IIB supergravity was exploited in [15] to
obtain a massive N = 2,d = 9 supergravity. This symmetry is part of a global
SL(2,R) of the N = 2B,d = 10 theory. If the full SL(2,R) symmetry is
exploited, a 3-parameter family of massive N = 2 d = 9 supergravity theories
is obtained [122] (see also [66]), some of which are gauged supergravities [45].

It was shown in [122] that SS1 reductions could be performed by a gauging
procedure, i.e. by the introduction of a gauge field associated to the global
symmetry. However, as the global symmetry is local only in the internal co-
ordinates, one must impose that the gauge field is non-vanishing and constant
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only in the internal directions. The fields which transform under the global
symmetry are given this way a linear dependence on the internal coordinates
in the reduction Ansatz.

Global scaling symmetries can also been employed in SS1 reductions. An
interesting example of this case can be found in [106], where a 10-dimensional
gauged supergravity theory was derived from d = 11 supergravity via an SS1
reduction which exploits a global scaling symmetry of the 11-dimensional equa-
tions of motion. The reduced theory is a massive deformation of type ITA
supergravity such that the 1- and 3-form potentials become massive via a
Stiickelberg mechanism in which these fields “eat” the dilaton and NS-NS 2-
form, respectively. However, the vector field of the theory is tachyonic and the
theory might be unstable. Unlike Romans’ theory, this massive supergravity
has no domain wall 8-brane solution but admits a de Sitter one, which uplifted
to 11 dimensions leads to flat space. As the global symmetry exploited in the
reduction is only a symmetry of the equations of motion, one has to resort to
the reduction of the equations of motion. Furthermore, there is no action from
which one can derive the equations of motion of the reduced theory.

So far, we have seen many cases in which global symmetries (axion shift
symmetries or scaling invariances) have been used to perform Scherk-Schwarz
reductions. As noted previously, these symmetries have no known geometri-
cal origin. We could now try to apply a similar procedure but considering
symmetries with a well-known geometrical origin, i.e. symmetries of the com-
pactification manifold.

2.1.2 Geometrical generalized dimensional reduction

The geometrical generalized dimensional reduction [151] corresponds to a re-
duction in which the global symmetries to be gauged are symmetries of the
compactification manifold. This gauging is consistent only if every field in the
theory carrying an internal index acquires a certain dependence on the internal
coordinates in the reduction Ansatz. The main consequences of such a gener-
alization of the KK Ansatz are that the KK vectors become non-Abelian and
that the internal space is no longer a torus, but a manifold with the symmetry
of the the KK vectors.

As a toy model, we are going to consider d-dimensional gravity, which exhibits
the general features of the reduction we are interested in. The action for our
toy model is
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S’:/d% 9 R, (2.7)

This action is, by construction, invariant under general coordinate transfor-
mations (g.c.t.’s). These transformations are generated by the infinitesimal
parameters £, which satisfy the algebra

where

Under a g.c.t., the d-dimensional metric transforms as

0g G = —€ 0pian — 20pu05)&" . (2.10)

Let us now reduce our toy model down to d dimensions on an n-dimensional
manifold (d = d + n), the splitting of the coordinates being ## = {z* z™}. In
standard dimensional reductions we truncate the spectrum and consider only
the zero modes of a Fourier expansion of the higher-dimensional fields. These
zero modes do not depend on the internal coordinates. Then, compatibility of
the KK Ansatz with (2.10) implies an splitting of the infinitesimal parameters
£i of the form

§g) = &),
(2.11)
ém(:ﬁ) = —a,""\"(z) + R,™2" +a™,

where a,,,™ are some constants?. In the reduced theory, these g.c.t.’s correspond
to

e G.c.t’s in the reduced theory, with parameters £*.

e GL(n,R) transformations with parameters R™,. These can be decom-
posed into SL(n,R) rotations, that act in the obvious way on all the
fields that have m,n indices, and SO(1, 1) rescalings.

2They can be set, without loss of generality, to d,,™.
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e Gauge transformations with parameters A". These parameters commute,
and so they act in an Abelian manner on the KK vectors A™,, i.e.

AA™, = 9™ (2.12)

e Global shifts of the internal coordinates a™, that do not act on the lower
dimensional fields.

The choice of z™-dependence in (2.11) is the most general choice one can make
in order to make it compatible with the KK Ansatz. However, this dependence
can be more general: the constants a,,” can be promoted to some functions of
the internal coordinates, such that now we have

§hi) = (),
A (2.13)
(@) = —(U™(2)A\"(z) + R,™2" + a™,

where U(z) is a n X n non-singular matrix. As (2.10) must hold for the choice
(2.13), the reduction Ansatz for the Vielbein must now be dependent on the
internal coordinates. Then, the Ansatz is of the form

et entA™,
(6:") = o
0 U,"e,
(2.14)
ea“ _(U_l)nmAna
(€a") = )

0 (Ufl)nm ein

where the d-dimensional Vielbein e,,*, vectors A,™ and scalars e,,,* only depend
on the z* coordinates.

O Which symmetries do arise from the new higher dimensional g.c.t.'s?

As before, £, A™ and R™,, are the infinitesimal parameters of the g.c.t’s, gauge
and GL(n,R) transformations, respectively. Again, the internal global shifts
a™ do not act on the lower dimensional fields. The difference arises in the
commutator of the gauge parameters, which, with the new Ansatz, leads to
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N (2) = foun® A™(2) N (), (2.15)

where

frn? = =20 )" (U 1), 0,Ug" . (2.16)

The functions f,,,? can only depend on the internal coordinates, and so, if
equation (2.15) is to be consistent, then the U(z)’s must be such that the
fmnP’s are constant®.

With the new setup, the gauge transformations with parameters A\ or \,,” =
—fmp" AP act now covariantly on all the fields that have m, n indices, e.g.

5Aemi = _eni)‘mn = fmpn)\peni, (217)

except for the vectors A™, that transform as gauge vectors with group G with
structure constants f,,,”, i.e.

SAA™, = QA — NP f, MA", = DA™ (2.18)

where D, is the d-dimensional gauge covariant derivative. The structure con-
stants f,,,? are dimensionful parameters with dimensions of mass, and deter-
mine the gauge couplings and masses in the reduced theory.

In order to ensure invariance of the d-dimensional action under the new internal
g.c.t.’s, the U(z)’s must satisfy a certain condition, which turns out to be [151]

Om [(U )" (2) U] =0, (2.19)

where |U| = det(U(z)). This condition is easily shown to be equivalent to

Therefore, the reduction of the action is only consistent if this condition is
satisfied. We will refer to these cases as class A gauged supergravities. How-
ever, the d-dimensional equations of motion are invariant even if the structure

3This is in fact one of the properties of a Lie group with generators K m) = (U )" 0.
See e.g. [71].
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constants have non-vanishing trace, and so for f,,,”* # 0 one has to resort
to a reduction of the field equations. These cases lead to the class B gauged
supergravities. Note that the embedding of the gauge group G C GL(n,R) is
described by

ga™ = X" (2.21)

where \¥ are the parameters of the gauge transformations. Therefore, in the
case of a non-vanishing trace, the gauge group G is a subgroup of GL(n,R) =
SL(n,R) ® SO(1,1) and not just SL(n,R). In other words, SO(1,1) is a
global rescaling under which the action is not invariant, such that the symme-
try group of the action is only SL(n,R). On the other hand, the equations of
motion are unaffected by this rescaling and they are therefore invariant under
the full GL(n,R), such that one can employ GL(n,R) in an SS2 reduction of
the equations of motion, while only SL(n,R) is valid if we wish to reduce the
action. Furthermore, it turns out that the equations of motion of class B super-
gravities cannot be integrated into an action. This is similar to what happens
in the 10-dimensional massive theory derived in [106], where the generalized
dimensional reduction employs a global rescaling symmetry of the equations
of motion which is not an invariance of the action. Also in this case no action
can be found for the reduced theory.

We know now that it is possible to obtain a Lie group from higher dimen-
sional g.c.t.’s through a certain dependence on the internal coordinates, and,
therefore, we expect the reduced theory to be a non-Abelian extension of the
theory one would obtain via a standard dimensional reduction.

O What are the U(z)'s?

Let us consider the z™’s as a system of coordinates on the manifold of a Lie

group G with n generators. Then, the infinitesimal generators of G can be
defined as

K= U10"0,, (2.22)

whose commutator is

[Kma Kn] = fmnp Kp 5 (223)
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where the f,,,?, defined in (2.16), are the structure constants of G. The 1-forms
o™ dual to the vectors K, satisfy

(0™, K, = 6™, (2.24)

are hence are given by

o™ =U,"dz". (2.25)

They satisfy the Maurer-Cartan structure equations

do™ = =5 frp™ 0™ NP, (2.26)

and so are the Maurer-Cartan 1-forms, such that the functions U(z) are nothing
but the components of the Maurer-Cartan 1-forms of the Lie group. This
implies that, unless f,,,7 = 0, the internal space is no longer a torus. Note
that this does not mean that the group manifold of the Lie group G is the
internal manifold.

Let us now proceed with the reduction of the action. The spin connections
derived from (2.14) are*

A _ A _ 1
Wabe = Wabc Wabi = — §€miFmab ’
~ _ 1 m ~ _
Wigh = S€mil " ab, Waij = =€ " Dolmj), (2.27)
. o . A .
Wija = —3€i"€" DaGmn, Wije = —Qijr — 28 (j) ,
where
Qi = —= fronPeMem 2.28
ijk—_ifmn € € €pk, ( . )

and

Tt is worth noticing that the spin connection @;jx # 0, while in standard dimensional
reductions it is zero. This new term makes the internal space be no longer a torus. As
we will see, it is also the responsible of the appearance of a scalar potential in the reduced
theory. Moreover, it gives rise to mass terms for some gravitinos in the reduced theory [151].
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F™ = 20A™ — f,,mA"AP . (2.29)

We decompose now the internal metric as

Grn = —K My, (2.30)

with K = |det(G)|"/" and M € SL(n,R), and perform a conformal rescaling
(so as to get the lower dimensional action in the Einstein frame)

G = K0 g, (2.31)

Rewriting the scalar field K as

K=e¢sV n ¢ (2.32)

and using the standard techniques, the reduced action is found to be

S = CU/ddx,/|gE| {Re+ 5 (D)} + 1Tr (M DM’

(2.33)
— 1M P My, F — €MV (M)}
where the scalar potential V is given by
1
V(M) = 1 [2/\/{”‘1 Fon® fog™ + Mqu"’"Mpsfmnpfqﬁ} ; (2.34)

and therefore depends on the choice of the gauge group . The numerical
factors Ny o are given by

_ a2 _(ntd-2d\ | 2
N, = —3 g R, ( ; ) s (2.35)

The global factor Cy in the action is defined by

Cy = / U], (2.36)
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and will converge or not depending on the manifold in which one is reducing. If
it converges, then the reduced theory may be seen as a compactification. If, on
the other hand, it diverges, the resulting action is a “non-compactification” of
the higher dimensional theory. This point should be clarified. In a compactified
theory the internal space is, at a certain energy scale, small enough to consider
that the theory is effectively lower dimensional. In a “non-compactification”,
although an Ansatz is chosen, we simply “freeze” the dynamics in the 2™’s (for
that Ansatz). Nevertheless, the procedure leads to a well-defined lower dimen-
sional gauged theory and, furthermore, can be used as a solution generating
transformation of the higher dimensional theory.

O So... what have we done?

We have extended the infinitesimal generators of the internal g.c.t.’s by al-
lowing an extra dependence on the internal coordinates, i.e. we have gauged
the isometries of the internal manifold. This produces massive deformations
parametrized by the structure constants f,,,”, which come from the reduction
over the group manifold. The choice f,,,? = 0 is the ungauged case and corre-
sponds to reduction over 7" leading to the trivial gauge group U(1)", which is
so due to the fact that the n-torus is a product of n circles, each of them car-
rying an U(1) gauge group, i.e. compactifying on a n-torus leads to the same
result than performing n dimensional reductions, each on a circle. This is not
the case if the structure constants are different from zero, since the internal
space is not a product of circles.

The full massless supergravity theory has, at least, a global SL(n, R) symme-
try group acting in the obvious way on the indices m,n. This symmetry is
generically broken if the structure constants are non-zero (such that theory is
no longer massless), which, under a SL(n,R) transformation, change as

fmnp — frlnnp = quRnT(R_l)spfqrs . (237)

Only transformations that leave the structure constants invariant (fp,? =
f1..?) are unbroken by the massive deformations. These include the infinitesi-
mal gauge transformations (2.17). As mentioned before, class A supergravity
theories can be obtained by the gauging of a certain symmetry group of the
ungauged theory. This group is precisely the unbroken group G C SL(n,R)
and is also a subgroup of the R-symmetry group of the ungauged theory.

So far, we have considered the reduction of pure gravity. In the reduction of a
theory which also includes gauge fields, one is forced to introduce a dependence
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on the z™’s for these gauge fields in order that the reduced theory is invariant
under the new transformations. This dependence turns out to be a factor of
U(z) per lower internal index and U~'(z) per upper internal index.

O What about the fermions?

In the original work [151], Scherk-Schwarz applied an SS2 reduction to d = 11
supergravity to obtain a deformation of N = 8 d = 4 supergravity with
three mass parameters and spontaneously broken supersymmetry. The 11-
dimensional gravitino splits down to four dimensions into 8 Majorana spin 3/2
fields and 56 Majorana spin 1/2 fields, 8 of which are eaten by the 8 gravitinos,
which become massive and, therefore, break spontaneously supersymmetry.
The masses (or the gauge group) can be chosen such that no gravitino is mass-
less and the supersymmetry is completely broken, or, on the other hand, the
choice can be made in such a way that only some of the gravitinos are massive
and some supersymmetry is preserved. However, there is no general pattern
for this behaviour. Some cases will present spontaneously broken supersym-
metries and some others will not, depending on the higher dimensional theory,
the dimension of the internal space and the choice of gauge group, but there
will always be a massive gravitino per spontaneously broken supersymmetry.

2.2 Reduction of d = 11 supergravity on a 3-
manifold

The standard d = 8 gauged maximal supergravity is the SO(3)-gauged theory
of Salam and Sezgin [144], which was constructed by applying an SS2 reduction
procedure to d = 11 supergravity. The analysis of [144] can be generalized to
a 3-dimensional manifold corresponding to other Lie algebras, not only SO(3).

The SS2 reduction Ansatz for the 11-dimensional Vielbein is

e’%‘peu“ e%‘PLmiAlmu
6,0 = , (2.38)
0 e:? L, U,

where the label ‘1’ has been added to the KK vectors for later convenience.
The Ansatz for the 3-form potential in flat indices is
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A~ 1 ~
= m
Cabc =e2? Cabca Cabi = Lz Bmab 3
~ 1 ~
—5 m n A2 -
Caij =¢ 2¥ emanz’ Lj Aap, ijk = € wﬁ,’jkg, (239)

which in curved components reads

C =C+3A" By, + 36,mp Al AP A?P 4 €y L AT AT AP
Con = U [By + 2€4np AT AP + €4, £ AT ALP] |

. 2.40
Con = U, U,"T [equAQP + €grpl AP ( )

A

Conp = UnTU, U, €4rs L.

The eleven-dimensional gauge transformations of the 3-form that preserve the
above Ansatz are generated by the 2-form x;; with components

X = Xy — 2A[1um Xujm + €mnp A[lumAzlz]n)‘M ’
Xum = Un? [Epq — €gnp AT A?P] (2.41)

an = UqunT €qrs )\25 5
which correspond to the following gauge transformations

e Gauge transformations of the 3-form

6,C =30x. (2.42)

e Massive gauge transformations

520 = —3F1m2m7 5EBm = QDEm: 52A2m = %6mnpfnpqzq’ (243)

where

DY, = 0%, — fun?A"S, . (2.44)
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e Gauge transformations of the vector fields A2™

SAA™ =DN*™ | §AB = —2€mnp OA' MNP (2.45)

where

DA™ = BON™ — 5™ frpleqs ATTA™ (2.46)

The field strengths associated to the 8-dimensional potentials which are invari-
ant under the above transformations are

G =49C + 6F'™B,, , F'™ =29A'™ — f, mAlm AP
(2.47)
Hp =3DBpy + 3emnp F' "A?P, F*™ = 2DA*™ — 3™ f,9B, .

The two vector field strengths form a doublet F!™, I = 1,2. The scalar field
strength for the scalar fields is now given by

Dan = aan + qu(m|pA1 qM|n)p, (248)

where we have defined the local SO(3) invariant scalar matrix

an = LmiLnjdij , (249)

with J;; the internal flat metric. As in the massless case (see appendix B), the
two-dimensional SL(2,R)/SO(2) scalar coset is parametrized by the dilaton
¢ and the axion ¢ can be parametrized via the local SO(2) invariant scalar
matrix

L e
W= - , (2.50)
Sm(7) \ ge(r) 1

where 7 = ¢ + 1e®.

Finally, the Ansatz for the fermionic fields is the same as for the massless case,
namely
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7&& = e<p/12 (wa - %Fari/\i) ) @Zz = e¢/12/\i’ €= e—cp/12€. (2'51)

Hence, the full 8-dimensional field content consists of the following 128 + 128
field components:

{eua’,Lmi,gp,f’ AIm7Bm7C7 wll’)\i}' (252)

We are now ready to give the complete bosonic action and supersymmetry
transformations for the d = 8 class A gauged supergravity theories obtained
from SS2 reduction of d = 11 supergravity. The action is given by

S ! : C’U/dsx\/|gE\ {RE + %Tr (DMM™)’ + %Tr (aww1)?

B 167rG§\1,1
- 1F”"/\/t W F/™ + L M™H, — 1 e v
4 mn 2.3 ™ 2.4
1 1
6324 lom
—8¢™" H,,H, B, — 8GOLC — 16 H,,, (F*™ + (F'™)C]} , (2.53)

e [GGl — 8GH,,A*™ 4+ 12G(F*™ + (F'™)B,,

where the potential V reads

V=17 2M™ f10n® fog™ + M™IM™ My frrn® for®] - (2.54)

The d = 8 supersymmetry transformations for the fermions are
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0y = 2Vue+ %L[i\mDuLmlj]Fije + ieﬂp/Zfiijiijué
+576?*T'L,™(T 0 —100,'T?)F},, € + ze~#0,le
+e?2(T /P0¢ — 46, YTV G, psee
+ L™ (T 2P0 — 66,/T%°) Hpypse
+45€ e DTIL KT 7P — 106 /T#) (F2m + (FY e

6Ni = LL"LIMPMpnlje — 2olie — e 922,50 — fini)T%e
FRP L Mo e+ e T+ 55(267 — T)LH e
+ie e DILE (30K — TF)(F*™ + (' ™)e

+5e Tdle,
(2.55)

where we have used the abbreviations fijx = L™ L;" Lk fmn?. Of course, the
ungauged /massless limit (f,,,” = 0) provides the d = 8 ungauged supergrav-
ity theory obtained via a standard dimensional reduction on a 3-torus (see
appendix B).

2.2.1 The Bianchi classification

The structure constants of all 3-dimensional Lie algebras can be parametrized
by a symmetric matrix that we denote by Q™" and which will play the role of
mass matrix, and by a vector a,, satisfying Q™"a,, = 0 (see, e.g., [167]):

fmn? = €mngQ¥ + 25[mpan] . (2.56)

The trace of the structure constants vanishes if and only if the vector vanishes,
i.e. a,, = 0. Restricting to the class A gauged supergravities we can therefore
take frn” = €mngQ% and all the different cases that we are going to consider
will be characterized by a choice of mass matrix Q.

Note that in terms of the mass matrix the potential (2.54) reads
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V=-1e?{[Tr(MQ)]* - 2Tt (MQMQ)} . (2.57)

The symmetric mass matrix Q has six different mass parameters. However, by
applying symmetries of the massless 8D theory one can relate different choices
of Q™" by field redefinitions, via transformations as (2.37). We would like to
use the GL(3,R) symmetry of the massless 8-dimensional theory.

Employing these symmetries we can transform Q™ — +(RTQR)™" with R €
GL(3,R). Now consider an arbitrary symmetric matrix Q™" with eigenvalues
Am and orthogonal eigenvectors @,,. Taking R = (c1i1, colls, c3ts) € GL(3,R)
with ¢; # 0 we find that

an — ZE(RTQR)mn = idiag(c12/\1, C22)\2, C32/\3) . (258)

Thus, all cases with the same signature are related by field redefinitions. With-
out loss of generality we will use the freedom of field redefinitions to take

an = %dlag(chv 92, q3) . (259)

The different d = 8 gauged supergravities will arise from choosing all possible
ranks and signatures for the mass matrix Q™". Actually, this diagonalization
plus the choice a,,, = (a,0,0) is the basis of the Bianchi classification of all real
3-dimensional Lie algebras from Bianchi type I to Bianchi type IX. Thus, each
choice of mass matrix corresponds to a choice of Lie algebra and therefore of
gauge group. Restricting to the class A theories we only consider the algebras
with a = 0°:

Bianchi types I, II, VI,, VII,, VIIL, IX . (2.60)

All algebras with @ = 0 are subalgebras of the Lie algebra of SL(3,R). For
useful details about the Bianchi classification, see appendix C. The five non-
trivial cases with @ = 0 are given in table 2.1 while Bianchi type I corresponds
to the massless case Q = 0 and thus is an ungauged supergravity. This case
corresponds to the Abelian Lie algebra U(1)3.

5The sub-index 0 in Bianchi type VIy and Bianchi type VII, indicate that these class A
Lie algebras can be obtained as the limit a — 0 of the class B Bianchi type VI, and Bianchi
type VII, Lie algebras (see appendix C).



Bianchi | Q = ;diag | Group
II (0,0,q) | Heisenberg
VI | (0,-q,q) | 1SO(1,1)
VI, | (0,q,9) | ISO(2)
VIII (g,—q,q) SO(2,1)
IX (4,9, 9) S0(3)
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Table 2.1: The different mass matrices and corresponding Bianchi classifications and gauge
groups. The SO(3) result was previously obtained in [144].

The structure constants for class A supergravities in the form we have ex-
plained can be generated using a particular frame in the internal directions.
The explicit coordinate dependence of the components of the Maurer-Cartan
1-forms in this frame turns out to be

1 0 51,32
m
U™y = 0 C231 —C1,325231 )

det U #1, (2.61)

0 53,21  C1,32C231

where we have used the following abbreviations (a, b,c = 1,2, 3):

Cab,c = COS( \/ ianb Zc) ) Sa,b,c = Qa/Qb Sin( \/ iQaq{) zc) . (262)

Note that the U-matrix is independent of z3. It is always possible to choose
a frame where 23 is a manifest isometry. We distinguish the following three
different cases:

1. The matrix Q is non-singular. In this case 2% is the only manifest
isometry. In the compact case we are dealing with the Salam-Sezgin case
in which the group manifold is equal to S3. The presence of the manifest
z3-isometry direction is related to the fact that S can be viewed as a
Hopf fibration over S%. One consequence of this fact is that the d = 8
class A supergravities can also be obtained by reduction of the massless
ITA theory. For instance, the Salam-Sezgin theory can alternatively be
obtained by reduction of the massless IIA theory over S?. The latter
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reduction naturally occurs in the context of the DW/QFT correspon-
dence [28]. In the non-compact case the SO(3) gauging gets replaced by
an SO(2,1) gauging. This case can be understood as an analytic con-
tinuation of the Salam-Sezgin theory or as a “non-compactification” of
d = 11 supergravity.

2. The matrix Q is singular, e.g. Q = %diag(o,qQ,q;;). In this case there
is an additional isometry in the z2-direction:

1 0 0
Ur,=1 0 cos o —v/@/@3sina | det U =1, (2.63)
0 +/q3/qsina cos

with a = 4/ %ngg,zl. This means that the resulting d = 8 class A gauged

supergravities can also be obtained by a reduction of the massless 9-
dimensional theory.

3. The matrix Q is doubly-degenerate, e.g. Q = %diag(0,0,qg). In this
case the U-matrix is given by

1 0 0
vra=0 1 0], detU=1, (2.64)
0 2g32' 1

and again the resulting d = 8 class A gauged supergravity has its origin
in the massless 9-dimensional theory.

2.3 The domain wall solutions

The aim of this section is to look for domain wall (DW) solutions of the d = 8
maximal gauged supergravities of class A found in the previous section. We
will require that our solutions preserve one half of the supersymmetry. We
consider the following Ansatz:

ds? = g(y)%dz:®> — f(y)?dy?, M= M(y),
(2.65)
e = oly), e=c¢y).

It only includes the metric and the scalars, while all other fields are vanishing
except the SL(2,R)/SO(2) scalar ¢ which we have set to some constant. It
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turns out that there are no half-supersymmetric domain walls for non-constant
L.

The Killing spinor equations that our solutions need to satisfy are

(51/)” = 28,; - %(/)“6 + %@uﬁ + ie_“’ﬁfijkl“ijkl“ue = 0,
5)\7, = —PiijE - %@@er — %6_(‘0/2(2_][”‘19 — fjki)ije = 0,

where we have used

Ppuij + Quij = L™ DLy, Py = P, @, =QuT”,  (2.66)

with P symmetric and traceless and ) antisymmetric. The Killing spinor of
our solutions must also satisfy the condition

(1 —+ Fy123)e = 0, (267)

which implies a breaking of one half of the supersymmetries. Indices 1, 2,3
refer to the internal manifold directions.

To make life easier in the search for solutions we take the following explicit
representative of the L,,"’s®:

e—0/V3 €7¢/2+a/2\/§>7<1 e¢/2+a/2x/§X2
L= 0 e~9/2+0/2V3  9/240/2V3y | (2.68)
0 0 e¢/2+0/2\/§

which contains two dilatons, ¢ and o, and three axions”, x1, x2 and x3.

The domain wall solutions we present below are valid both for non-singular
and singular mass matrices Q. We find the following most general class A
solution:

6The matrix L, describes the five-dimensional SL(3,R)/SO(3) scalar coset of the in-
ternal space. It transforms under a global SL(3,R) acting from the left and a local SO(3)
symmetry acting from the right. We can fix the SO(3) local gauge symmetry such as to
consider an explicit representative.

“"We call the scalars £, x1, x2 and x3 axions and the scalars ¢, ¢ and o dilatons since (in
the ungauged case) the axions only occur with a d = 8 spacetime derivative whereas the
dilatons also occur without such a derivative.
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ds® = H%d:vg - H_%dyQ,

¢ — HY, "= H w5h?, ¢ = H3h > (hhy— C?),
x1=Cihi!,

X2 = xix3 + Cohi!,

X3 = (C1Cy + Cshy) (hihy — C2) 7", (2.69)

where the dependence on the transverse coordinate y is governed by

H(y) = hihohs — C3hy — Cohy — C2hs — 2C,0,Cs,
h=qy+Csyy, ha=qy+Cs, h3=qy+Cs. (2.70)

The corresponding Killing spinor is quite intricate so we will not give it here.
Note that the solution is given by three harmonic functions h;, he and hz. We
will call the general solution a triple domain wall.

The general solution has six integration constants Cf, ... ,Cs. The constants
Cy, Cs and Cy are related to the positioning of the domain walls in the trans-
verse space. These form a threshold bound state of n parallel domain walls,
where n equals the rank of the mass matrix. It turns out that, provided that
one of the charges ¢, g» or g3 is non-zero, one can eliminate one of the con-
stants Cy, C5 or Cg by a redefinition of the variable y. Therefore we effectively
always end up with at most two constants.

The first three constants C7, C5 and C5 can be understood to come from the fol-
lowing symmetry. The mass deformations do not break the full global SL(3, R)
symmetry; indeed, they gauge the 3-dimensional subgroup of SL(3,R) that
leave the mass matrix Q invariant. Thus, one can use the unbroken global
subgroup to transform any solution®, introducing three constants. In our so-
lution these correspond to C4, C5 and C3 and thus these can be set to zero
by fixing the SL(3,R) frame. From now on we will always assume the frame
choice C; = Cy = (5 = 0 unless explicitly stated otherwise. This results in

M= H*2/3diag(h2h3, hlhg, hlhg) , H = h1h2h3 ,
(2.71)
Xl = X2 = X3 = 0 .

8Note that one can not use the unbroken local subgroup of SL(3,R) (the gauge transfor-
mations) since this would induce non-vanishing gauge vectors and thus would be inconsistent
with our Ansatz (2.65).
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Very similar structures for domain walls were found in [10]. It is interesting
to note that, in this SL(3,R) frame, the expression for the Killing spinor
simplifies considerably and reads e = H'/*8¢,.

The triple domain wall can be truncated to double or single domain walls when
restricting the constants Cy, Cs and Cg. The single domain walls correspond
to the situation where the positions of the parallel domain walls coincide. In
table 2.2 we give the three possible truncations leading to single domain walls.
The Bianchi IT case was given in [44] and the Bianchi IX case in [28] (up to
coordinate transformations). It is interesting to note that the Bianchi VIIj
case has vanishing potential. The domain wall is carried by the non-vanishing
massive contributions to the BPS equations. The same mechanism occurs in
SO(2) gauged d = 9 supergravity [24].

Bianchi || Q = %diag hq ho hs Uplift
11 (0,0,q) C, Cs | C+qy| (2.81)
VI, (0,9,9) Cy |C+aqy|C+ay| (2.79)
IX (¢:4.9) | C+ay|C+aqy|C+qy| (2.76)

Table 2.2: The single domain walls as truncations of the triple domain wall solution. We
give the three possible truncations and indicate the equation where the uplifted solution to
d =11 is given (see the next section).

The triple domain wall solution we found in this section can be interpreted
as follows. One can view the (0,0, g) solution, having one harmonic function,
as the basic solution. The other solutions can then be obtained as threshold
bound states of this solution with the SL(3,R)-rotated solutions (0, ¢,0) and
(g,0,0). This is clear at the level of the charges. We now see how, similarly,
a composition rule at the level of the solutions can be established. One can
thus view the solutions with a rank-1 mass matrix as building blocks for the
general solution.

Reality of the solutions requires that the three functions h; must be positive.
This implies that the solutions are valid only in certain regions (along the y-
direction), which depend on the choice of gauge group. Furthermore, we are
going to see that one can only take an asymptotic limit in some cases. In the
following we analyze the different cases in terms of the possible signatures of
the mass matrix. Let us define C~'Z = —Cyy3 and y; = C~’,/qZ the values of y
where the functions h; are zero. If the mass matrix is Q = Zdiag(q:, o, ¢3),

- 2
then
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The SO(3) case: Q = idiag(q,q,q), with ¢ > 0. Then, the h;’s are
positive for y > y;. Therefore, the solution is only valid for y > y,, with
Yo = mazx (Y1, Y2, ys)- The asymptotic region is reached for y — +oo. In
this limit, the triple domain wall solution reads

ds? = Hizda? — H 12dy?,
e? = Hi, (2.72)
M = |Q|1/3 Q—l ’

where H = |Q| 3. It is interesting to notice that the matrix of scalars M
in this solution extremizes the scalar potential (2.57) (see appendix D).

The SO(2,1) case: Q = 1diag(q, ¢, —¢), with ¢ > 0. Then positivity of
h; requires y > y;2 and y < ys3. Therefore, there will exist a domain of
validity if and only if y3 > ¥ 2. The solutions are valid in (yo, y3), where
now yo = max(y1,y2). This domain is compact and no asymptotic region
can be defined. In a sense, this is because two of the three single domain
walls find an asymptotic region for y — oo, while the third one reaches
its asymptotics for y — —o0.

The ISO(2) case: Q = %diag(q,q,O), with ¢ > 0. The solutions are
valid for y > yo, with yo = max(y1,y2). An asymptotic region can be
defined and is reached for y — +o0.

The ISO(1,2) case: Q = ildiag(q, —¢,0), with ¢ > 0. The region of
validity is (y1,y2) and exists if and only if y, > y;. No asymptotic region
can be defined.

The Heisenberg case: Q = %diag(q,o, 0), with ¢ > 0. The solutions
are valid for y > ;. The asymptotic region is reached for y — 4o00.
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2.4 Uplifting to 11 dimensions

In this section we consider the uplifting of the triple domain wall solutions
(2.69) to eleven dimensions. We find that upon uplifting, using the frame of
(2.71), the triple domain wall solutions becomes a purely gravitational solu-
tions with a metric of the form

ds? = dazs? — ds,?, (2.73)
where
2 2 2
ds2=H3dy?+Hs (L4229 2.74
Sy 2dy” + 2hlJth+h3 (2.74)

Here 01, 0y and o3 are the Maurer-Cartan 1-forms defined in (2.25), H =
hihohs and the three harmonics hq, hy and hs are defined in (2.70). The uplifted
solutions are all 1/2 BPS.

The solutions (2.74) are cohomogeneity one solutions of different Bianchi types.
The SO(3) expression of this 4-dimensional metric was obtained previously in
the context of gravitational instanton solutions as self-dual metrics of Bianchi
IX type with all directions unequal [12]. We find that the metric of [12] is
related to a triple domain wall solution of 8-dimensional SO(3)-gauged super-
gravity. More recently, the Heisenberg, ISO(1,1) and ISO(2) cases and their
relations to domain wall solutions were considered in [69, 106], whose results
are related to ours via coordinate transformations.

It is remarkable that in all cases the uplifted solutions have metrics that contain
a 7d Minkowski metric as a factor. This does not happen for the uplift of
domain walls in 4d and 7d gauged maximal supergravities [10]. In the following
discussion we will focus on the 4-dimensional part of the eleven-dimensional
metric since it characterizes the uplifted domain walls.

In section 2.3 we argued that for non-vanishing ¢;, go or g3, one of the three
constants Cy, C5 or Cg in the harmonic functions can be eliminated by a
redefinition of the variable y. Without loss of generality we can take g3 > 0.
In that case, the constant Cs can be eliminated by the change of variables
y = 17* — Ce/q3 in the metric (2.74). If we also rescale the three charges by
q; = 4¢; we obtain

dss® = (kikoks) V2 [dr? + 12 (kokso? + kikso? + kikeo?)] (2.75)



72

where k; = ¢; + Si’f‘74 fori =1,2,3, s, = Cz'_|_3 — qu(;/q;),. Note that s3 = 0 and
then k3 = ¢s. As anticipated, the metric (2.75) depends only on two constant
parameters s; and s9, which are restricted by the gauge group dependent
condition —s; < gr*, with 4 = 1,2, in order to satisfy the requirement k;(r) >
0.

In general the metrics (2.75) have curvatures that both go to zero as r=% for
large r and diverge at r = 0, r = (—s1/¢1)"/* and r = (—s2/G2)"/*, producing
incomplete metrics [12,56]. There are two exceptions to this behavior. The
first one corresponds to the case in which s; = s, = 0. The constants can take
these values because §; and ¢, are non-zero and therefore this solution can be
reached only for the non-degenerate cases. It is easy to see that for the SO(3)
gauging (§; = ¢2 = g3 = 1) the metric is locally flat space-time

ds,? = dr® +r*((0")? + (0°)* + (¢°)?), (2.76)

where 7 is the radius of the 3-dimensional spheres. Notice that this is precisely
the uplifting of the Bianchi IX single domain wall located at y = —C/q.

The second exception corresponds to the SO(3) gauging with s; = s9 = s < 0,
and is known as the Eguchi-Hanson (EH), or Eguchi-Hanson II, metric [56]

(G1=¢=33=1),

-1
ds,® = (1 + %) dr?® + r*(o7 + 03) + (1 + ;4) o3 . (2.77)

In fact, the EH metric is the only complete and non-singular hyper-Kéahler
4-metric admitting a tri-holomorphic SO(3) action. Its generic orbits are RP3
[12,67,70].

Another case that we want to emphasize, although it is singular, is obtained
in the SO(3) gauging by choosing s; = s # 0 and s, = 0. This metric is called
the Eguchi-Hanson I (EH-I) metric [56] (¢1 = ¢o = 3 = 1)

-1
dsi? = (1+ %) (dr* +r20%) + (1+ %) (02+02).  (278)

It is possible to give similar expressions for the SO(2,1) gauging.

The uplifted metrics for the singular mass matrices can be obtained directly
from (2.75). As an example of a contraction we take ¢ = 0 in (2.75) and
consider the special cases of the EH metrics (2.77) and (2.78), i.e. we take
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s1 =8 =5 <0 (EH-II) or sy = s # 0,59 = 0 (EH-I). We thus obtain the
contracted EH metrics with 1.SO(2) isometry in which the SO(3) orbits are
flattened to ISO(2) orbits. We find that the expression for the contracted
EH-I metric is given by (¢ = ¢z = 1)

s\ —1/2 s\ 1/2
dss? = (ﬁ) (dr? +r’o?) + (r_4) (02 +03), (2.79)

while the expression for the contracted EH-II metric reads (¢ = s = 1)

2 (S s
dsi? = (50 + )
4
+ TQ((I + %)1/203 (141 )*1/205) . (2.80)

Notice that the contracted EH-I metric with 1SO(2) isometry is precisely the
4-dimensional part of the uplifted metric for the Bianchi VIl single domain
wall.

The metrics with Heisenberg isometry are obtained by a further contraction
Gi = Go = 0 in the metric (2.75). Again, among these metrics there is one
special case that can also be obtained by a contraction of the contracted EH
metric with isometry 7SO(2). Notice that it is not possible to have a contracted
EH-I metric with Heisenberg isometry since we must satisfy the condition
—s; < @r*. The expression for the contracted EH metric with Heisenberg
isometry is (g5 = 1)

1
ds,? = (:—4) dr® +1°(07 +03) + (;4) o3
= (&) drtertantdat) £ (5) @2, (280)
r rt | |

where s, = s. This is the 4-dimensional part of the uplifted metric for the
Bianchi IT single domain wall. This contraction was considered in [70].
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2.5 Conclusions

We have reduced d = 11 supergravity on a 3-dimensional manifold via the
S5S2 generalized dimensional reduction. The analysis led us to consider two
classes of d = 8 gauged maximal supergravity theories which we refer to as
class A or B. Class A contains supergravities obtained by reducing the 11-
dimensional action and an action for them is available, while the supergrav-
ities of class B were derived from the d = 11 equations of motion and have
no action. Specifically, we have derived and studied only class A, which con-
tains 5 supergravities corresponding to the five different subgroups of SL(3, R):
SO(3),50(2,1),180(2),ISO(1,1) and the Heisenberg subgroup.

The results we have found are similar to the d = 9 case [24]: in both cases
a GL(11 — d,R) group (d = 8,9) and its subgroups are the main characters.
The group GL(11 — d,R) appears naturally in ungauged maximal supergrav-
ities in d dimensions as part of its duality group since they can be obtained
by toroidal compactification of 11-dimensional supergravity. It is natural to
expect the existence of gauged supergravities associated to the subgroups of
GL(11 — d,R). Some cases are already well known, for instance the d = 5
maximal supergravities with gauge groups SO(6 —[,1) (all of them subgroups
of SL(6,R)) constructed in [73,131].

An interesting outcome of our analysis is the existence in 8 dimensions of a
generic triple domain wall solution (2.69). It can be interpreted as n parallel
single domain walls where n is the rank of the mass matrix. For the gauging of
SO(3), this result is similar to that of [10]. There, the scalar content was the
coset SL(n,R)/SO(n) while we have the product of n = 3 with an additional
n = 2 coset. Note that, in the gauged cases, our coset cannot be reduced
to the SL(3,R)/SO(3) by truncation of the SL(2,R)/SO(2) scalars. It is
interesting that the structure of [10] extends to more general scalar contents
and to the other Bianchi classes. It leads one to expect a similar n-tuple
domain wall result in other dimensions. In fact, we verified that in d = 9 with
scalar content SO(1,1) x SL(2,R)/SO(2) the earlier results on domain wall
solutions in gauged d = 9 supergravity [24] can be written as a generic double
domain wall solution via coordinate transformations.

The domain wall solutions we have found are not valid everywhere along the
y-direction. Reality of the solutions imposes restrictions on the domains of
validity, which are dependent on the choice of gauge group. For the gauge
groups SO(2,1) and ISO(1,2) the regions of validity are compact and no
asymptotic limit can be taken, while for the other three cases the regions
are semi-infinite and one can take an asymptotic limit. A nice property of the
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SO(3) case is that its asymptotic solution extremizes the scalar potential. This
does not occur for the other cases where an asymptotic limit can be taken.

The relation between d = 8 domain-wall solutions and gauged supergravities
that we have discussed fits naturally in the domain wall/QFT correspondence
scheme [28,94]. As discussed in [28], taking the near-horizon limit of the D6-
brane leads to the d = 8 SO(3) gauged supergravity. Taking the near-horizon
limit of the direct reduction of the D6-brane to d = 9 dimensions leads to the
d = 8 150(2)-gauged supergravity. A further direct reduction to a 6-brane in
d = 8 dimensions leads to the d = 8 Heisenberg gauged supergravity.

We believe that a crucial difference between class A and B theories is that
the Maurer-Cartan 1-forms for traceful structure constants probably have no
additional isometry. Therefore, in contrast to the class A case, these reductions
cannot be reproduced by any known reduction of the massless IIA theory.
Cohomogeneity one solutions of class B Bianchi type have been considered in
the literature [69]. It would be interesting to see whether these solutions can
be reduced to 1/2 BPS domain wall solutions of the corresponding class B
d = 8 gauged supergravity.

The uplifting of the tripe domain wall solution to d = 11 dimensions leads
to a purely gravitational solution whose metric is the direct product of a
7-dimensional Minkowski metric and a non-trivial 4-dimensional Euclidean
Ricci-flat metric. The 4-metrics are solutions of 4-dimensional Euclidean grav-
ity. Among them we find generalizations of the Eguchi-Hanson solution to
different (class A) Bianchi types. It is interesting to note that the uplifting
does not lead to the most general 4-metric with SO(3) isometry. The complete
non-singular SO(3)-invariant hyper-Kéhler metrics in four dimensions are the
Eguchi-Hanson, Taub-NUT and Atiyah-Hitchin metrics. The absence of the
Taub-NUT and Atiyah-Hitchin metrics in our analysis is related to the fact
that only the (generalized) Eguchi-Hanson metric allows a covariantly constant
spinor that is independent of the SO(3) isometry directions [65]. In performing
the SS2 reduction we have assumed that our spinors are independent of the
group manifold coordinates and this assumption is thus not compatible with
the Taub-NUT and the Atiyah-Hitchin metrics. It would be interesting to see
whether we can relax the SS2 procedure such that the Taub-NUT and Atiyah-
Hitchin metrics also obtain a half-supersymmetric domain wall interpretation
in d = 8 dimensions or whether we should view them as d = 8 domain walls
with fully broken supersymmetry.

In the same spirit one can hope to extend the SS1 reduction, for example as ap-
plied in [24]. In that paper the spinors generally were transforming under the
SL(2,R) duality symmetry and, consequently, the spinors were given depen-
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dence on the internal direction. However, for contracted manifolds, our Ansatz
with dependence on z; only, see (2.63), can be interpreted as a reduction from
the massless d = 9 theory. In this case we have taken the spinors to be in-
dependent of the internal direction. We therefore have two reduction Ansatz
that only differ in the fermionic sector. Therefore, both the SS1 and SS2 re-
duction procedures might be amenable to extension and it would be desirable
to understand the differences between the resulting gauged supergravities.

The Scherk-Schwarz mechanism is a very powerful and elegant procedure
which modifies the standard dimensional reduction scheme in such a way that
parameters with dimensions of mass appear in the reduced theories. Therefore,
it provides an 11-dimensional origin to many gauged/massive supergravity
theories. However, not all of them can be obtained this way, and, in fact,
the 11-dimensional origin of many gauged/massive supergravity theories, the
most notable example being Romans’ theory, remains obscure. So, perhaps,
we should adopt a different point of view. If it is not enough to modify the
reduction procedure, why don’t we modify the higher dimensional theory?



Chapter 3

Eleven-dimensional massive
supergravity

Generalized dimensional reductions introduce gauge coupling constants
and/or mass parameters in the reduction Ansatz and therefore lead to lower
dimensional gauged/massive theories even if the higher-dimensional theory is
ungauged /massless. In this way, we find an 11-dimensional origin of many
gauged /massive supergravities. However, many of these theories cannot be
obtained by any sort of (known) dimensional reduction from d = 11 super-
gravity. Romans’ massive type ITA supergravity is the prime example.

Another example can be read from the ungauged N = 2, d = 8 supergravity.
This theory contains two SU(2) triplets of vector fields. The two triplets are
related by S1(2,R) S-duality transformations. It should be possible to gauge
SU(2) using as SU(2) gauge fields any of the two triplets. If we gauge the
triplet of Kaluza-Klein vectors, we get the theory that Salam & Sezgin obtained
by Scherk-Schwarz reduction of 11-dimensional supergravity (see chapter 2).
It is not known how to derive from standard 11-dimensional supergravity the
“S-dual” theory that one would get gauging the other triplet, that comes from
the 11-dimensional 3-form.

N =1 d = 11 supergravity is believed to be the 11-dimensional theory
from which all supergravity theories describing the classical limit of a string

theory should be derived. However, no known reduction procedure leads to
the gauged/massive supergravity theories listed above. Then, we could ask if

is it possible to deform 11-dimensional supergravity?

Let us focus on Romans’ theory as a relevant example of a gauged/massive

7
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supergravity with unknown 11-dimensional origin. This theory is basically the
extension of type ITA supergravity which includes D8-branes (see section 1.6).
The 11-dimensional objects from which D8-branes might arise (if any) are
“M8”- or “M9”-branes, depending on whether the reduction is direct or double,
respectively. While there is no indication for the existence of M8-branes, M9-
branes have been conjectured to exist from the study of the M-superalgebra
[91,164], which is given by

A oA PN aff . PPN af . PSRN ap
{Q“,Qﬁ}:(racl) Pa-l—%(l““bC*l) za,~,+§(ra1"'a5c*) AN

The dual of the 2-form central charge 2@8 is a 9-form, and therefore suggests the
existence of an 11-dimensional half-supersymmetric 9-brane. Hence, it seems
reasonable to think that in the search for an 11-dimensional origin of Romans’
theory one is basically looking for an 11-dimensional supergravity including
M9-branes. Standard d = 11 supergravity does not (seem to) allow for such
solutions, so we can think on possible deformations of d = 11 supergravity
in order that a standard dimensional reduction of the new theory leads to
Romans’ theory. Furthermore, since 9-branes in d = 11 are domain walls,
we are basically looking for extensions of 11-dimensional supergravity which
include a cosmological constant term. As we will see, making such an extension
turns out to be a non-trivial problem. There are various different proposals.

A ‘standard’ cosmological constant term in d = 11

The simplest possibility is the addition of a cosmological constant term to
d = 11 supergravity. However, there are no-go theorems [11,52,53] which
assert that this extension is not possible if 11-dimensional covariance is to be
preserved. Then, any modification of this theory must be somehow “exotic”.
Furthermore, although the extension was possible, the cosmological term in
d = 11 would not lead to the correct dilaton potential of Romans’ theory,
and therefore a standard dimensional reduction of such a ‘cosmological d = 11
supergravity’ would not lead to Romans’ theory.

MM-theory

It was noticed in [86] that the equations of motion of d = 11 supergravity can
be slightly modified by solving the superspace constraints with a conformal
spin connection W ~ w + k rather than the usual one w. This means that
w takes values in the tangent space group Spin(1,10), while @ takes values in
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CSpin(1,10). The only condition to be satisfied is that the conformal part of the
curvature vanishes, i.e. dk = 0. If the spacetime is simply connected (e.g. 11-
dimensional Minkowski spacetime M, ), then k is exact and the modification is
nothing but a field redefinition. However, in non-simply connected spacetimes
the modification is non-trivial and leads to an extension of the 11-dimensional
equations of motion [87]. This theory has been referred to as MM-theory [38].

The simplest example of a non-simply connected spacetime, M;, x S', was
considered in [87]. One can take k = m dz, with m a constant with dimensions
of mass and dz the tangent vector to the circle. A standard reduction of MM-
theory (on My, x S') on the circle leads to a massive deformation of type ITA
supergravity in which the 1- and 3-form RR fields become massive by “eating”
the dilaton and NS-NS 2-form, respectively, the vector field being tachyonic.
The reduced theory admits no domain wall 8-brane solution, but a de Sitter
solution can be found.

The extension of d = 11 supergravity which leads to MM-theory is only possi-
ble in the equations of motion, and therefore dimensional reductions can only
be applied to this set of equations. Moreover, it has been observed that it is
not possible to relate Romans’ theory and the massive type IIA supergrav-
ity derived from MM-theory by means of any field redefinition [87,106] and
therefore they are considered as different theories. Hence, MM-theory does
not provide Romans’ theory with an eleven-dimensional origin and, still, our
question remains unanswered.

The 10-dimensional theory obtained in [87] is exactly the massive supergravity
theory derived in [106] via an SS1 reduction of 11-dimensional supergravity
exploiting a global scaling symmetry of the 11-dimensional equations of motion
(see chapter 2.). So we have two conceptually different constructions which
lead to the same results. Although we will not study these constructions, it
would be interesting to understand their relation.

Eleven-dimensional massive supergravity

A somewhat different but complementary way of studying the problem of the
eleven dimensional origin of Romans’ theory is to study the effective world-
volume (WV) actions of the objects present in the theory. Such a point of
view was adopted in [111,127] to study the M-theory origin of the massive
D2-brane! of Romans’ theory.

LOf course, all branes are massive in the sense that their gravitational mass is not zero.
We refer here to massless/massive branes as those branes which are solutions of a mass-
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It was shown in [153,163] that the massless D2-brane worldvolume action can
be rewritten as a massless M2-brane action. The main point of it is that it
requires that the Born-Infeld vector is Poincaré dualized (in the worldvolume)
into an embedding coordinate. The M2-brane WV action leads to the D2-
brane WV action upon standard dimensional reduction on a circle. These
branes are solutions of two different supergravity theories, which are also re-
lated via standard dimensional reduction: d = 11 supergravity leads to type
ITA supergravity upon dimensional reduction on a circle.

One could follow the same reasoning for the massive case and try to find
the WV action of the massive M2-brane, an object which, upon dimensional
reduction on a circle, would lead to the massive D2-brane. The theory of which
the massive M2-brane would be a solution would then be, in principle, an 11-
dimensional supergravity theory related to Romans’ theory via dimensional
reduction.

It was noticed in [111,127] that the WV action of the massive M2-brane is a
gauged sigma model obtainable from the massless M2-brane WV action by the
gauging of an isometry. This implies the appearance of a Killing vector in the
WYV action. A similar property was observed previously for KK-monopoles
[18], and their WV action was proposed to be a gauged sigma model. A
crucial difference between massive M2-branes and KK-monopoles is that the
latter arise as solutions of d = 11 supergravity while the former do not.

The study of the massive M2-brane was extended in [19] to a generic massive
M-brane, and it was shown that the general WV theory of any of these branes
is given by a gauged sigma model. Preserving gauge invariance in the gauging
requires the introduction of certain modifications to the 11-dimensional super-
gravity theory. These modifications were shown to be the same for all mas-
sive M-branes, and consequently a new supergravity theory for these branes
was constructed [19]. We usually refer to this theory as eleven-dimensional
massive supergravity or, for short, BLO theory. It requires the existence of
a Killing isometry, such that an explicit Killing vector must be included in
the Lagrangian. In coordinates adapted to the isometry, the 11-dimensional
fields do not depend on that coordinate. The explicit presence of the Killing
vector in the action breaks 11-dimensional covariance, and the action is only
10-dimensional covariant. In this sense, we may say that we have simply
rewritten a 10-dimensional theory in an 11-dimensional fashion.

A Killing vector is dimensionful, so it must be accompanied by a parameter
with dimensions of mass. When this parameter is set to zero, the Killing

less/massive supergravity theory.
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vector disappears from the action and d = 11 (massless) supergravity is re-
covered. Hence, BLO theory can be understood as a deformation of standard
11-dimensional supergravity that breaks the 11-dimensional Lorentz symime-
try to the 10-dimensional one. One of the new features that BLO theory
introduces is the presence of a cosmological constant-type term. This term is
proportional to the (squared) mass parameter and to the (fourth power of the)
modulus of the Killing vector. However, the no-go theorems of [11,52,53] can
now be evaded as the theory is not 11-dimensional covariant.

The standard dimensional reduction of BLO theory on a circle in the direc-
tion of the Killing vector leads to Romans’ theory, as expected. Indeed, one
can understand BLO theory as a way of rewriting Romans’ theory in an 11-
dimensional fashion.

One could think on generalizing BLLO theory so as to include more than one
Killing vector. This extension was constructed in [122], and we will refer to it
as BLO, theory, where the subindex n indicates the number of isometric di-
rections. As in the original case, the Killing vectors are accompanied by mass
parameters, now entering an n X n symmetric matrix. This theory can also be
understood as a deformation of d = 11 supergravity which, due to the presence
of the n Killing vectors, breaks the 11-dimensional Lorentz symmetry to the
(10 — n)-dimensional one even if the theory is formally 11-dimensional covari-
ant. Analogously to the case of BLO theory, we can understand BLO,, theory
as a way of rewriting an (11 — n)-dimensional gauged/massive supergravity
in a 11-dimensional manner. Then, we can use it as a systematic prescrip-
tion to obtain gauged/massive supergravity theories by choosing the number
of Killing vectors and reducing the theory on an n-torus [2,3,122].

The complete BLO theory including fermions has not been written yet, but the
supersymmetry transformation rules were derived in [21], and also reproduce
those of Romans’ theory after the dimensional reduction. The supersymmetry
transformations when n Killing vectors are present were obtained in [66].

The aim of this chapter is to explore some of the different gauged/massive
supergravity theories that BLO,, theory leads to upon dimensional reduction
on an n-torus.

The organization of the chapter is as follows. In section 3.1 we construct
BLO theory and show how it leads to Romans’ theory upon dimensional re-
duction in the direction of the Killing vector. We also comment on a possible
interpretation of the theory. The generalization of BLO theory to include a
arbitrary number of Killing vectors is presented in section 3.2, where we also
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comment on the dimensional reduction of the theory on an n-torus. Section 3.4
contains the reduction to nine dimensions in the direction of two Killing vec-
tors, leading to a family of N = 2 d = 9 gauged /massive supergravity theories
which can also be obtained from a non-geometrical Scherk-Schwarz reduction
of type 1IB supergravity. Section 3.5 is devoted to the reduction of BLOj3
theory on a 3-torus to obtain N = 2 d = 8 gauged/massive supergravity the-
ories, which we compare with the 8-dimensional supergravities obtained by
geometrical Scherk-Schwarz reduction of 11-dimensional supergravity in chap-
ter 2. We also outline in this section the reduction in the case of an arbitrary
number of Killing vectors. Section 3.6 is devoted to the reduction to five di-
mensions (n = 6), where we propose an equivalence with the 5-dimensional
gauged supergravity theories constructed in [73,131]. Finally, our conclusions
and discussion are presented in section 3.7.

3.1 BLO theory

The field content of 11-dimensional massive supergravity or BLO theory is the
same as that of d = 11 supergravity, i.e. the Elfbein and the 3-form potential,
and it presents no new degrees of freedom. We need to introduce a Killing
vector in the action such that

,fchﬂ,g = £,50ﬁ”ﬁ =0. (31)

Let us construct first the 1-form massive gauge parameter Xﬂ

A =m (i;%), (3.2)

where y is the 11-dimensional gauge parameter, and 7,7 denotes the con-
traction of the last index of the covariant tensor 7" with the vector v, e.g.
(ixC)uy = kPCyyp. For any 11-dimensional tensor 7', we define the massive
gauge transformations as

Aa A

65T = Nk Topiyy — = Nk Ty o150+ (3.3)

According to this general rule, the massive gauge transformation of the 11-
dimensional metric gz, and of any 11-dimensional form of rank r A, .., are
given by
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0xGur = —2k( o),
(3.4)
oA, = (=)'T AR (%A) fiz-fir]
which, together, imply
oz 19l = 0,
(3.5)

5 A2 = 0.

However, the 3-form of massive 11-dimensional supergravity does not trans-
form homogeneously under massive gauge transformations, but

5,0 = 30% — 34 (zkc) , (3.6)

which allows us to see it as a sort of connection. The massive 4-form field
strength is given by

G = 49C +m3 (sz>2 , (3.7)

and transforms covariantly, according to the above general rule, so

5;G* = 0. (3.8)

The action for the proposed massive 11-dimensional supergravity then reads

$ = sk [/ {9) — 2467 — KyapK?% — b db)n GOV

—jmAk[* — G [9090C = §maCC (i, O)F + Fm*C (i C’H} |
where

Ko = % (Taei) + Tier — Taée) ) (3.10)
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is the contorsion tensor, and the torsion tensor is defined by

A N A ~

T[“; = m(Z‘AC)ﬁ,;kﬁ. (3.11)

The action is invariant under massive gauge transformations up to total deriva-
tives.

Finally, the supersymmetry transformations under which BLO theory is in-
variant (up to total derivatives) are given by [21]

Ly = {vﬂ(w+K) + 5 [F&bédﬂ - 8F”“é2] Gated

(3.12)
—%m|l§:\2fﬂ -+ %ml;'ﬂ]:?,;fﬁ} €.

As we have seen, the construction of massive eleven-dimensional supergravity
theory requires the existence of an isometry. This is reflected in the action
with the explicit appearance of the Killing vector associated to the isometry. In
adapted coordinates, the fields do not depend on that coordinate, and therefore
it is not properly an 11-dimensional theory. Therefore, BLO theory can be
considered as way of rewriting a 10-dimensional theory in an 11-dimensional
fashion. In fact, we expect this 10-dimensional theory to be Romans’ theory.

3.1.1 From BLO theory to Romans’ theory

Let us now reduce BLO theory in the direction of the Killing vector, say z,
and see that we end up with Romans’ theory. The reduction Ansatz for the
11-dimensional fields is the Kaluza-Klein one, namely

eié%ua 6%4)0(1);&
0 39
(3.13)
e%‘pea“ —e%¢0(1)a

C;wp = C(3);u/p; Cuug = B,uua (314)
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such that the field content (in stringy notation) is

{gulla &, B, C(3)uupa C(l)ua Vs A} (3.15)

and with a mass parameter? m.

The standard dimensional reduction techniques lead to the following string-
frame bosonic action

S = 167 G(10) /dlox\/g{e [R 4 8¢) 213|H2}
= [Im? + m? (G)” + o (G| (3.16)

~th = € [0C)0Cp B+ 5mdC B3+80m235}}

where G110 = Gy(Y/27R, with R the radius of the circle. In the action
above, G® and G® are the RR 2- and 4-form field strengths
G(g) = 280(1) +mB, G(4) = 460(3) — 12630(1) + 3mB? , (3.17)

and H is the NSNS 3-form field strength

H =30B. (3.18)

The bosonic action and field strengths above are exactly those of Romans’
theory. Let us see now the gauge invariances and supersymmetry transforma-
tions.

The field strengths and the Lagrangian are invariant under the bosonic gauge
transformations

§B = 20Ay

§C® = 30A«) — 3mBAy) — HAy),

2This is the parameter mpg of refs. [24,25].
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where the gauge parameters A, A1), Ay are related to the 11-dimensional
ones Xz» and £ (the generator of infinitesimal g.c.t.’s) by

X = A(2) s Xpz = %/A\u = A(l)/w éﬁ = A(0) : (3.20)

The massive gauge invariance of this theory does not lead to a gauged super-
gravity just because the dimensional reduction of the massive gauge parameter
only gives a 1-form.

The Ansatz for the fermionic fields and supersymmetry parameter is

e=cc%¢, e = €89 (20 — 1T,0) | b, = LesT N, (3.21)

and leads to the supersymmetry transformation rules

0Py = {au - i (ébu + %Fll Hu)} €+ %ed)zgigﬁ Gl (=T11)" €,

SA = [Po+ sl H] e+ 5e? 30203520 Bony (—Ta)" €.
(3.22)

where

G =m. (3.23)

As expected, we have obtained the transformations of Romans’ theory. There-
fore, BLO theory leads to Romans’ upon standard dimensional reduction on
a circle, at least at the level of the bosonic action and the supersymmetry
transformations. But... is BLO theory just a way of rewriting Romans’ theory
in an 11-dimensional form?

3.1.2 An interpretation of BLO theory

The mass parameter of BLO theory appears always together with the Killing
vector, which implies the existence of an isometric direction. If we set the
mass parameter to zero, then the isometry “disappears” and we are left with
standard d = 11 supergravity. This fact allows for an interesting interpretation
of the theory [21]. Let us come back for a moment to Romans’ theory to start
our discussion.
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The inclusion of D8-branes in type IIA supergravity leads to the BRGPT the-
ory, a ‘generalization’ of Romans’ theory. The BRGPT theory admits domain
wall solutions which separate regions of spacetime with different values of the
cosmological constant, and the dynamics in these regions is described by Ro-
mans’ theory. One possible value of the cosmological constant is zero, and, in
that region, low energy Physics is adequately described by standard (massless)
type ITA supergravity.

BLO theory admits a domain-wall solution which breaks one half of the su-
persymmetries [21]. This solution is nothing but the uplift to d = 11 of the
8-brane solution of Romans’ theory. However, the 8-brane solution which is
supposed to represent the long-range field emitted by the D8-brane is a solution
of the BRGPT theory and not of Romans’. Then, we would expect BRGPT
theory to have an “11-dimensional” formulation, whose 9-brane solution would
be the uplift of the 8-brane solution of BRGPT. One could interpret this solu-
tion as the supergravity solution associated to an M9-brane (sometimes called
KK9-brane).

To this end, BLO theory was reformulated in terms of a 10-form gauge potential
instead of the mass parameter [146]3, where also a target space solution of a
KK9-brane was obtained. As expected, it was shown to lead to the D8-brane
solution of BRGPT theory upon direct standard dimensional reduction on a
circle.

The KK9-brane solution found in [146] is a domain wall which separates regions
of spacetime with different values of the mass parameter m. In a region in
which the mass parameter is zero, no isometric direction is present and the
dynamics is described by standard d = 11 supergravity, while the dynamics
in regions with m # 0 is governed by BLO theory. Note that this is the
straightforward uplift of the picture of a D8-brane in BRGPT theory.

Therefore, although BLO theory can be understood as just a way of rewriting
Romans’ theory in an 11-dimensional manner, we could also interpret it (or,
better, its generalization to include a 10-form potential) as 11-dimensional
supergravity in a background of M9-branes, which implies the existence of an
isometric direction [21].

3The WV action and Wess-Zumino term for the KK9-brane were constructed as those of
gauged sigma models in [57] and [146], respectively.
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3.2 Generalizations of BLO theory

In this section we are going to construct BLO,, theory following the lines
outlined in section 3.1 for the construction of BLO theory. The latter is nothing
but BLO,, theory with only one Killing vector (n = 1) and with the mass
matrix set to Q™" = —md™".

The standard assumption in toroidal dimensional reductions is that all the
fields of this theory are independent of n internal coordinates z™. It means
that the metric admits n mutually commuting Killing vectors /Ac(n) associated
to the internal coordinates by

~

km)" Op

0
Let us introduce now an arbitrary symmetric mass matrix Q™. With these
elements (the Killing vectors and the mass matrix) we are going to deform the
massless theory.

The massive gauge parameter 1-form is now defined as

A = Qi %, (3.25)

and the massive gauge transformations for any 11-dimensional tensor T are
given by

A ~

6Ty = =A™

A A

k)" Ty

A

fi1 fofir T T /\(n)ﬂrk(n)ﬁTﬂl...ﬂTAg , (326)

which for the 11-dimensional metric and for any 11-dimensional form A of rank
r read

A ~

Oxno = —2hkm) @A ™),
X (3.27)
Sehpge = (/A (ig A) o
As in the n = 1 case, the transformations above imply
o/1gl = 0,
(3.28)

5 A2 = 0.
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The massive gauge transformations of 11-dimensional 3-form are

65,C = 30% — 3%")@',;(”)0“. (3.29)

The massive 4-form field strength is given by

A

G =40C -3Q™i; Ciy C, (3.30)

and transforms covariantly, so

5;G*=0. (3.31)

The action for BLO,, theory then reads

S = m/dllﬁf\/ 4| {R(f]) — ﬁ(tﬁ — kﬂﬁﬁkﬁﬁﬂ + %Qm”d/:?(m)’lﬁfc(n)é’

HH Q™ k) ony 3)? — (Q™ iy i (m) )

1 _¢& 871810 I0mn (Y ;. N A
~H oCoce +2qmacciy, Ci C

27 nymn ~ ~ ~ ~ A
+2QmQraci. Ci, Ci; Ci; 0]}
SOQ Q k)™ “k@n) k) k) ’

(3.32)
where the contorsion and torsion tensors are defined, respectively, as
Kai)é = % (Taeiz + Tiyea - Tai;e) ] (3.33)
and
Tp” = —Q™ (i,;(m)é),wff(n)ﬁ- (3.34)

Let us now comment briefly on the fermions of the theory. The above theory
is a straightforward generalization to arbitrary n of the n = 2 case obtained
by uplifting of the gauged/massive N = 2,d = 9 supergravities constructed in
Ref. [122] by non-geometrical Scherk-Schwarz reduction of the N = 2B,d = 10
theory. This construction was made for the bosonic sector only, but can be
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made for the full supergravity Lagrangian, as shown in Ref. [66]. Once the full
gauged/massive N = 2,d = 9 supergravity is constructed it can be uplifted to
d = 11 and then generalized to arbitrary n. This was done for the fermionic
supersymmetry transformation rules in [66] and they were found to have the
form

S0y = {Vﬂ(@ +K) + 55 [F&bédﬂ - SF”édéﬁ] Gabed
(3.35)
— 35k Q k(Lo + %km)ﬂQ"mk(m)ﬁF’?} é.

3.3 Dimensional reduction of BLO,, theory

By construction, BLO,, theory is meant to be compactified in the n-dimensional
torus parametrizes by the coordinates z™. After that dimensional reduction,
the explicit Killing vectors in the action disappear and one gets a genuine
(11 — n)-dimensional field theory. In the next few sections we will consider
it as a systematic prescription to get gauged/massive supergravity theories in
(11 — n) dimensions, which we will study for several values of n. We have
previously shown how BLO theory (n = 1) leads to Romans’ theory upon
dimensional reduction on a circle. Let us now study the n > 1 cases. We
will mainly concentrate in the case with n = 2, 3,6, though a reduction for
arbitrary n is outlined in section 3.5. In all cases, we will use the Kaluza-Klein
Ansatz, i.e. the same Ansatz we employ for the reduction of the standard
11-dimensional supergravity.

Also by construction, there is a natural action of the group Gi(n,R) in these
theories, all the objects carrying m,n indices (including the mass matrix)
transforming in the tensor representations. The subgroup of Gl(n,R) that
preserves the mass matrix will be a symmetry group of the theory.

The gauge invariances of the gauged /massive supergravities that we will obtain
are encoded in the 11-dimensional massive gauge transformations parametrized
by the 1-forms A Their dimensional reduction will give rise to further mas-
sive gauge transformations parametrized by 1-forms and associated to mas-
sive 2-forms )\,(im) and will also give rise to (Yang-Mills) gauge transformations
parametrized by the scalars A" wwhere the subindex n corresponds to an inter-
nal direction. These scalars exist when there is more than one Killing vector
and are antisymmetric in the indices m, n and correspond to orthogonal gauge
groups. This is consistent with the fact that the gauge vectors come from the
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components C’,mm and naturally carry a pair of antisymmetric indices corre-
sponding to the adjoint representation of an orthogonal group.

The field content of the reduced theories and the structure of the theories
themselves depend on the number of isometric directions one is considering.
However, there are common properties:

e there will always be n 2-form potentials coming from the 11-dimensional
3-form which become massive by “eating” n Stiickelberg vectors, which
are the vectors coming from the metric;

e the gauge vector fields, which are only present for n > 2, always come
from the 11-dimensional 3-form:;

e the scalar sector coming from the metric are a dilaton and n(n + 1)/2
scalar fields entering a matrix L,,’ which parametrizes an Sl(n, R)/SO(n)
coset.

e there will be a scalar potential for the scalar fields coming from the
metric. We comment on it in the next subsection. For n > 3, also the
scalar fields coming from the 11-dimensional 3-form enter the potential.

It is important to recall that a fully supersymmetric theory is obtained for each
value of n. In the next sections we are going to see how known gauged /massive
supergravities arise in the dimensional reduction of the action for BLO,, theory
in the direction of the n Killing vectors /%(m).

The scalar potential

Before turning to some explicit dimensional reductions, let us comment on the
general reduction “cosmological constant” term in BLO,, theory. This term is
of the form

/ a" /T3] { 5@y i) 1)° — (Q iy iy )° } (3.36)

and reproduces, upon dimensional reduction, a scalar potential term. In the
n = 1 case, the scalar potential is nothing but the dilaton potential of Romans’
theory. For n > 2 it gives rise to a term which in the Einstein frame reads*

4This result is obtained writing the Ansatz for the internal metric as Gmp = €29/™ M.
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/ d g Sl {=V) (3.37)

where the potential V reads

V= —% & [[Tr(MQ)J? — 2Tr (MQMQ)} | (3.38)

with N a constant given by

4 d [ n
N=— —E'f‘g m, (339)

and M is an Si(n, R) matrix given by

The extrema of the potential are found to be (see appendix D)

Momn = Q™ Q) (3.41)

where the potential reaches the value

1
Vo = —in(n — 2)|det Q| &M% (3.42)

Note that the signature of M is (+---+) and therefore, in virtue of (3.41),
the potential can only be minimized when the signature of the mass matrix is
(+---+). In the cases with such a mass matrix, the potential is extremized
with respect to M but not with respect to the dilaton ¢. This is basically
telling us that the effective potential in the ‘vacuum’ is a dilaton potential,
such that the ‘vacuum’ solutions are domain walls. However, there is an ex-
ception: n =6 (d = 5). In that case one finds X = 0, such that the potential
only depends on M. The effective potential is then a constant, and the vac-
uum solution is not a domain wall but anti-de Sitter spacetime. This looks
reasonable as we expect BLOg compactified on a 6-torus to be the five dimen-
sional gauged supergravity constructed in [73,75,131]. We will come back to
this in section 3.6.
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3.4 Gauged/massive N = 2 d = 9 supergravi-
ties from BLO,

The reduction of the n = 2 case in the direction of the two Killing vectors
gives gauged/massive N = 2, d = 9 supergravities characterized by the mass
matrices Q™" [24,25,45,92,122,126]. The theories obtained this way were also
found via a non-geometrical Scherk-Schwarz reduction from N = 2B,d = 10
supergravity [122].

The field content of these theories is

{g,ul/: ®, Lmia Cul/pa Bmul/a Vua Amua %, /\Z} . (343)
The Ly, parametrize an SI(2,R)/SO(2) coset. The field V,, comes from the 11-
dimensional 3-form components C),,,, and will be a gauge field. Its presence
is the main new feature with respect to the n = 1 case. The gauge group
will depend on the choice of mass matrix, as we are going to see. As in all

cases, there will always be the same number of 2-forms B, ,, and Kaluza-Klein
vectors A™, that play the role of Stiickelberg fields for the 2-forms.

Explicitly, the Kaluza-Klein Ansatz for the bosonic fields is

_ 1 V7 .
Y, a 4 1AM
e WVi'e,* eePLytA™,

V7

0 es L,
(3.44)
eviPe t  —esif AM,
(éa”) = ,
0 e%ﬁwLim
and®
Cup = Cuvp— %Am[uBm\ vl + 3N ViuA™ A g
éuum = Bmul/ - 27]mn‘/[uAnu] ) (345)

C/J,mn = nmnvu .

5The definition of C),, is not the most naive C’abc ~ Cype because in this case one is
interested in recovering exactly the theories obtained by non-geometrical Scherk-Schwarz
reduction from N = 2B,d = 10 supergravity [122].
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The gauge parameter X, gives rise to a scalar parameter o, two vector pa-
rameters A, and a 2-form parameter x,:

)A(/w = Xuv )A(um = /\mu ) Xmn = Nmn0 , (346)

The gauge vector V,, transforms under the group generated by the single® local
parameter o(x)
0oV =00 . (3.47)

To find which is the one-parameter gauge group we have to look at the 4,
transformations of the fields that carry SI(2,R) indices m,n:

doLm® = —oLp'm",,
5(7Amu = O'mmnAnu ) (348)
50Buum = —UBmw,m"m + 277mn8[u0'An,,} ,

that leave invariant all the field strengths except for that of B,,,, that trans-
forms covariantly. This tells us that the gauge group of the 9-dimensional
theory is the group generated by the 2 x 2 traceless matrix m™, = —Q"Pny,,
which is a generator of a subgroup of SI(2,R). By construction, it is the
subgroup that preserves the mass matrix Q™": it transforms according to

Q' = AQAT, A=e™, (3.49)

such that the condition that it is preserved A~'Q = QAT translates into

mQ = —Qm7, (3.50)

which is trivially satisfied for m = —Qn on account of the property m? =

—pmn~L.

It is clear that the theories obtained can be classified first by the sign of the
determinant of the mass matrix o> = —4det Q , which is an SL(2, R) invariant:

6Some of the gauged/massive N = 2,d = 9 theories presented in [25] have a 2-parameter
non-Abelian gauge group and, therefore, cannot be described in this framework even if we
allowed for more general, non-symmetric mass matrices.
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class I o? = 0, class IT o > 0 and class III o? < 0 [24,92]. These classes should
be subdivided further into SI(2,Z) equivalence classes since the theories are
equivalent only when they are related by SI(2,Z) transformations. However,
it should be clear that theories within the same a? class have the same gauge
group, the difference being a change of basis which is an SI(2,R) but not an
S1(2,Z) transformation.

Thus, all theories in class IIT (a2 < 0) have gauge group SO(2) and all theories
in class IT (a? > 0) have gauge group SO(1,1). The theories in class I (a? = 0)
are all equivalent to one with

Q= ( e 8 ) , (3.51)

which is just the reduction of the n = 1 case (Romans’ theory) considered in
the previous section. The group is now SO(1,1), with

A=<(1] ";”) . (3.52)

The transformation laws of the fields of this theory are rather unconventional
but the theory is still a gauged supergravity.

From a combination of different terms we get the scalar potential

V (g, M) = Le¥7*Tr (m? + mMmT M) . (3.53)

Its presence suggests the existence of domain-wall (7-brane) solutions which
will be the vacua of the different theories obtained from different mass ma-
trices. In fact, these domain-wall solutions correspond to different 7-brane
solutions of the N = 2B,d = 10 theory: each kind of 10-dimensional 7-brane
is characterized by its SI(2,7Z) monodromy A and it is possible to reduce the
N = 2B,d = 10 theory in the Scherk-Schwarz generalized fashion admit-
ting this monodromy for the different fields. The result is a gauged/massive
N = 2,d = 9 supergravity with a mass matrix Q related to A = €?™™ as
explained above. The domain-wall solutions and their 10-dimensional origin
and monodromies have been studied in detail in Ref. [24]. A study of the
non-conformal 8-dimensional field theories living in the “boundaries” of these
solutions and their relations is still lacking.

The 2-forms B,,,, are also invariant under the standard 2-form gauge trans-
formations
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(5)‘Bm,w = 28[,1)\‘,,4,,] . (3.54)

This is possible because these transformations are supplemented by the massive
gauge transformations of the KK vectors

SA™, = Q™ Ay (3.55)

that leave invariant the field strength

Fm;u/ = 2a[pAmu] - anBn/u/ ) (356)

which would allow us to gauge them away giving explicit mass terms to the 2-
forms. It is in this way (Stiickelberg mechanism) that there is no clash between
the gauge invariance under J, and the 2-form gauge transformations d,.

The full bosonic action for this theory can be found in [122], and the fermionic
supersymmetry transformation rules were derived in [66].

3.5 Gauged/massive N = 2 d = 8 supergravi-
ties from BLO;

The reduction of next case n = 3 in the direction of the three Killing vectors
gives 8-dimensional gauged theories [2,3]. In this section we are going to use
the general formalism and field definitions that will be valid in any dimension
to show that in the general case n one can get SO(n — [,1)-gauged (11 — n)-
dimensional supergravities.

The field content of these theories is

{Guv 0,4, Lin", Coavip, Bowrs Vinnur A™ s ¥, A} (3.57)

where the indices m,n = 1,2,3 are SI(3,R) indices and also, simultaneously,
gauge indices. The L,,’ parametrize now an SI(3, R)/SO(3) coset and the three
vector fields V;,, , gauge a 3-dimensional group which should be a subgroup of
SI(3,R)".

"In the general case we will have Si(n,R) indices, the L, will parametrize an
Sl(n,R)/SO(n) coset and instead of one scalar £ one gets {ppp (here lpnp = €mnpf). Fur-
ther, we will have n(n — 1)/2 gauge vectors Viun .
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The Ansatz for the bosonic fields is the same as the one used in appendix B
for the standard dimensional reduction of massless 11-dimensional supergravity
on a 3-torus. The 11-dimensional field strength is decomposed with the same
structure, but with differences in the definition of the field strengths, due to
the presence of massive terms.

The new 8-dimensional field strengths are defined as

Guvpe = 401,Cupo) + 6By, [WF1 " po] = 3Bm [u| Q™" Br o] »
Hyppp = 3a[u|Bmlvp] + 3Vinn [uFlnvp] )
(3.58)
Fronww = 200 Vinn ] + 2Vinp [/ Q" Vg 11 5
Flmu,, =20, A™,) — Q™" By -

to which we have to add the covariant derivative of the SI(3, R)/SO(3) scalars®

DLy’ = 0,Lp" — Vi QP L," . (3.60)

The complete d = 8 gauged/massive action can be written as

8In the general case we also have to add the covariant derivative of the Lmnp scalars
Dylmnp = Oulmnp = 3Vim|q Q" Ejnp)r » (3.59)

that reduces to a partial derivative in d = 8 when £,,p = €mnpf.
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5 = m/d%\/@ {Rp +1Te (DMM 1) + 4T (090 1)’

_%FzmanW”F]n + QL;;.HmanHn — ﬁe‘pGQ e

1

— g — € [
6%2% /195l
—8GoLC — 8™ H,, H, B, + 2H,,Q™" B, (C{ + 6B,A%?)

GGl —8GH,,A*™ + 12GG 5 B — 16H, G5 C

—3B,,Q™ B, (Ge + 2H,, A2 ™ + 3B, G + 2066)

+4C f," A2 P A? 4H,,, — 120 f,,"A? PGY, B,

+3 (B,QY By )’ £ — ZEL B, QU B, fg A2 P A2 4 BT] } ,
(3.61)

where Gx® = Gy /Vol(T?). In the action above we have written F,, =
emnpF?P and, as for the massless case (see appendix B), we have introduced
the abbreviation

Gy = F>™ + (F' ™. (3.62)
W is a scalar symmetric SI(2,R)/SO(2) matrix
L P Re(r)

W= _ , (3.63)
S\ ge(r) 1

7 being the complex scalar field

T =10+’ (3.64)

The scalar potential reads

V=—1e? (0 +e*) {[Tr (QM)]* — 2Tr (QM)?} . (3.65)
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Let us now analyze the different gauge symmetries of the theory. The 2-form
Xuo decomposes now into a 2-form X, 3 vector parameters A, , which will
be associated to the massive gauge invariances of the 3 2-forms B,,,,, and 3
scalars O,y = —0nm’

)A(;w = Xuv )zum = )\mua Xmn = Omn - (366)

It is also convenient to define

o™ = QMo . (3.67)

These are going to be the infinitesimal generators of the gauge transformations.
Observe that, depending on the choice of Q™?, ¢™, can contain an equal or
smaller number of independent components than o,, and, thus, the gauge
group can have dimension 3 or smaller.

Under the §, transformations'®

dsLm' = —Lpto™,,

0 Ay = oM AT,
O Vny = DuOmn, (3.69)
OcBmu = —Bnuwo"m + 2000mn A",

0Cup = 30 Omn A" A"y,
the field strengths and covariant derivatives transform covariantly, ¢.e.
0,G = 0, 0o Hyy = —Hpo" ’ 0o Fran = _2Fp[n0pm] ) 0o F™ = o™p F" ’

6:DLy' = —(DL," )0, 06Dty = —3(Daginp)0%m) -
(3.70)

9In the general case we will get n vector parameters associated to the massive gauge
invariances of the n 2-forms B, ;,, and n(n — 1)/2 scalars o,,n = —0pm.-

10Tn the general case the gauge transformations of these fields take the same form but the
scalars £y, transform covariantly

6aemnp = _3€q[npa'qm] . (368)

This transformation vanishes in d = 8 when £y = €mnpl.
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Finally, the parameters ), , generate massive gauge transformations under
which

6)\Amu = an)\nua
N\Bmuw = 20 m (3.71)

0ACup = —6A™0)Am| g,

leaving invariant all the field strengths. In this and all cases this invariance
can be used to eliminate the 3 (n) KK vector fields A™, giving masses to the
3 (n) 2-forms By, .

So far, we have obtained a set of gauged supergravity theories in which the
gauge group depends on the choice of mass matrix Q™". The gauge group is the
subgroup of SI(3,R) (Sl(n,R) in the general case) obtained by exponentiation
of 0™, that preserves the mass matrix Q™. For n = 3 it is not difficult
to classify all the gauge groups that appear by comparing with the Bianchi
classification of all real 3-dimensional Lie algebras!!. We have already done
this classification in chapter 2, where we found a similar set of theories via
geometrical generalized dimensional reduction from d = 11 supergravity on a
3-dimensional manifold. However, the set of theories we have obtained now is
different from that of chapter 2. Let us comment on their relation.

Both set of theories contain gauged supergravities. The field contents are
identical, only the couplings are different: in the SS case (that of chapter 2)
the gauge vector fields are the KK ones A'™ and the Stiickelberg vector fields
are the ones coming from the 3-form A%™, while in our case these roles are
interchanged (the 2-forms are always massive). Some of the couplings to the
scalars ¢ and ¢ are also different.

Actually it is convenient to describe the differences between both 8-dimensional
theories through the action of the global SI(2,R) duality symmetry that the
(equations of motion of the) massless theory enjoys (see appendix B). The
scalars ¢ and ¢ can be combined in the complex scalar 7 = a + 7e¥ that
parametrizes the coset SI(2,R)/SO(2) and undergoes fractional-linear trans-
formations under SI(2,R). Under this group, the vector fields form 3 doublets
(Alm A%m) while the 2-forms are singlets'?. The 4-form field strength G un-
dergoes electric-magnetic duality rotations.

1 This study is more complicated for n > 3 and, further, the real Lie algebras are not clas-
sified in general, but only for n = 3 (the Bianchi classification) and n = 4. See e.g. Ref. [105]
and references therein.

12 Actually, the 2-forms are singlets after a field redefinition.
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The differences between the two 8-dimensional gauged theories are associated,
precisely, to the SI(2,R) transformation

S = ( R ) (3.72)

that interchanges the vector fields A'™ and A*™ and transforms 7 into —1/7.
It also interchanges G! and G?, where

G'=aG, G? = —e**G - 1G, (3.73)

i.e. G (in the massless case) transforms as a doublet under SI(2,R) (just like
the doublet F'™). This duality is reflected in the scalar potential, which in
our case is given by

i

Sm(r)

V=-—

{[Tr (QM)]? — 2Tr (AM)?} (3.74)

1
2

while in SS’s case is (see eq. (2.57))

{(Tr M)? — 2Tr (M?)} . (3.75)

1
_ 1 .2
Vss = =39 Sm(7)

Thus, in a sense, we can view our theory as the S-dual of SS’s although, in
practice, one cannot perform such a transformation directly on the gauged
theories and, rather, one has to do it in the ungauged one. The difference
between the theories lies in which triplet of vectors do we gauge.

3.6 Gauged/massive N = 8 d = 5 supergravi-
ties from BLOg

From the discussions and examples in the previous sections it should be clear
that in the n = 4 case we will obtain SO(4 — [,1)-gauged 7-dimensional su-
pergravities etc. A particularly interesting case is the n = 6 one, in which
we expect to obtain SO(6 — [,1)-gauged N = 8,d = 5 supergravities which
were constructed in Refs. [73,131]. This offers us the possibility to check
our construction and show that, as we have claimed, it systematically gives
gauged /massive supergravities.
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The derivation of the 5-dimensional theory from “massive 11-dimensional su-
pergravity” offers no new technical problems and the action, field strengths
etc. can be found applying the general recipes explained in the previous sec-
tion and are given explicitly in appendix E. One of the highlights of this
derivation is the field content, which is of the general form

{g!w, ¥, a, gmnp; Lmia Bmuu: anua Amua fp )\z} J (376)

where now the m, n, p indices are SI(6,R) indices and where we have dualized
the 3-form C,,, into the scalar a. The scalars ¢ and a can be combined
again into the complex 7 that parametrizes an SI(2,R)/SO(2) coset. In the
ungauged /massless theory this SI(2, R) global symmetry and the more evident
S1(6,R) are part of the Eg duality group of the theory that only becomes
manifest after the 6 2-forms are dualized into 6 additional vector fields'?.

As usual, this is also the field content of the ungauged theory. This is already
a surprise since in Refs. [73,131] it was argued that the theory could only
be consistently gauged if the 6 KK vector fields A™, were dualized into 6
92-forms B, uv Which, together with the already existing 6 2-forms B,,,, and
via a self-dual construction, could describe 6 massive 2-forms. Once there
are no massless higher-rank fields with SI(6, R) indices left, the theory can be
consistently gauged. In the theory that we get, the same goal is achieved by
the Stiickelberg mechanism: the 6 KK vector fields A™, are not dualized but
are gauged away leaving mass terms for the already existing 6 2-forms B, ..

Another interesting point is the form of the scalar potential V(¢, £;np), given
in (E.6). The first term, which is universal for all the gauged /massive theories
we are studying and is the only one that survives the consistent truncation
Amnp = 0, is independent of the scalar ¢ that measures the volume of the
internal manifold. As shown in appendix D, this universal term is always
minimized for M = I,,«, when Q = ¢1,,»,, and the value of the potential for
n = 6 is constant, such that the vacuum solution is AdSs as in Refs. [73,131].
Not only the vacuum is the same: in Ref. [75] it was shown that there is a
consistent truncation of the scalars that leaves the same potential (the first
term of Eq. (E.6)) for the remaining scalars and thus, in spite of the apparent
differences it is plausible that the two untruncated potentials are completely
equivalent.

If the field content is equivalent, the symmetries of the theory are the same,
the vacuum is the same and, presumably, the potentials are equivalent, we can

13The bosonic action of the massless theory with C),, dualized into a and the By,
dualized into vector fields N™, is given in section B.4.
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expect to have obtained a completely equivalent form of the SO(6—1,)-gauged
N = 8,d = 5 theories constructed in Refs. [73,131]. To make more plausible
this equivalence we would like to show that these theories have identical equa-
tions of motion, but this is extremely complicated for the full theories and
we will content ourselves with showing the equivalence of the self-dual and
Stiickelberg Lagrangians for charged 2-forms ignoring all the scalars for the
sake of simplicity.

3.6.1 Self-duality versus Stuckelberg

The gauging of N = 4,d = 7 [130] and N = 8,d = 5 [73,131] supergravity
theories presents many peculiar features and problems absent in other cases.
All these problems were resolved using the self-duality mechanism [161,162].
Before comparing it with the Stiickelberg mechanism, we will review the above
mentioned problems and the reasoning that lead to the use of the self-duality
mechanism to solve them in the 5-dimensional case.

In the usual gauging procedure one gauges the symmetry group of all the
vector fields present in the ungauged theory. In one version of N = 8,d =5
ungauged supergravity in which all 2-forms have been dualized into vectors,
there are 27 vector fields, but there is no 27-dimensional simple Lie group, and
therefore the standard recipe does not work. The origin of the gauged theory
from IIB supergravity compactified on S° [48,74,101] suggested the gauging
of the isometry group of the internal space, the 15-dimensional SO(6). Eg )
being the global symmetry group of the ungauged theory and Usp(8) the
local composite one, the idea was to gauge an SO(6) subgroup of the Usp(8)
embedded in Eg'*. All bosonic fields are in irreducible representations of
FEg) and in general transform as reducible representations under SO(6). In
particular, the 27 of vector fields breaks, under SO(6), as 27 = 15 + 6 + 6.
The 15 is precisely the adjoint of SO(6). This raises a second problem: how
to couple the two sextets of Abelian vector fields to the 15 SO(6) Yang-Mills
fields.

On the other hand, the superalgebra of the gauged theory was expected to be
SU(2,2|4). The irreducible representation of this superalgebra in which the
graviton is contained also contains two sextets of 2-index antisymmetric tensor
fields (2-forms). This and other reasons [74,101] suggested the replacement of
the two sextets of Abelian vector fields by two sextets of 2-form fields, but there
is also a problem in coupling these fields to the Yang-Mills ones: it is not pos-

14U sp(8) contains SI(2,R) x SI(6,R) as a subgroup, and the SO(6) to be gauged is in
S1(6,R). One may also gauge a non-compact group SO(6 — [,1) instead of SO(6).
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sible to reconcile both gauge invariances simultaneously. Replacing ordinary
derivatives by Yang-Mills covariant ones breaks the local gauge invariance of
the antisymmetric fields, which means that there are more modes propagating
than in the ungauged theory. But there is a way out: the antisymmetric fields
must satisfy self-dual equations of motion. We will describe them below.

Once the twelve vectors have been replaced by the self-dual 2-form fields one
finds that the latter do not satisfy Bianchi identities, and for consistency the
model must be gauged [73,131]. This, in turn, implies that, naively, the gauged
theory does not have a good g — 0 limit, although the limit can be taken after
elimination of one of the 2-form sextets [162]. In the (Stiickelberg) formulation
we have derived, the ¢ — 0 limit can always be taken.

In the next two subsections we are going to construct Stiickelberg formulations
for a massive, uncharged 2-form field and for a sextet of massive 2-form fields
charged under SO(6) Yang-Mills fields and we will show that they lead to
equations of motion fully equivalent to those obtained from self-dual formula-
tions. The Stiickelberg formulations we present below are just simplifications
of the gauged /massive N = 8,d = 5 supergravity theory we have obtained.

Uncharged case

We start from the standard action for a massive 2-form field

S[B] = / b { L H? — 1m?B?) | (3.77)

where H = 30B. The equation of motion for B derived from (3.77) is the
Proca equation

(O+m*)B,, =0. (3.78)
The action given in (3.77) is not gauge invariant. To recover formally gauge

invariance we introduce in the action a Stiickelberg field A,, such that the
action is now

S[B, A] = /d%{ﬁHz —1F?}, (3.79)

where
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H =30B,
(3.80)
F=20A—-—mB.
The equations of motion for these fields are
O, H"P —mF" =0,
(3.81)

0 Fm =0,

and now we have invariance under the following “massive gauge transforma-
tions”:

0A =mA,
(3.82)
0B =20A.

The vector A, does not propagate any degrees of freedom, since it can be
completely gauged away. In fact, setting A, = 0 we recover the Proca equation.
So, as we know, the introduction of the Stiickelberg field is just a way of re-
writing the theory described by (3.77) in a formally gauge invariant way.

Now, to connect with the self-dual formulation, we dualize the vector A, into
a two-form B,,, for which we add a Lagrange multiplier term in the action.
Then

ws

S[B,B,F] = /d% {ﬁm —1F? + Le0B(F + mB)} . (3.83)
The equation of motion for F' = dA is
F="H=1eH, (3.84)

where H = 30B. Inserting Eq. (3.84) into (3.83) one gets

2:3! 2:3!

S[B,B| = /d% {LH2 + 2 H? 4 %eﬁB} : (3.85)
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The action above contains two 2-forms, but it describes the degrees of freedom
of only one massive 2-form. Observe that this action is invariant under the
gauge transformations

6B = 20%, 6B = 20%. (3.86)

Using this gauge invariance, the equations of motion derived from (3.85) can
always be integrated to yield!®

*H=+mB,
. (3.87)
*H=—-—mB,

which are precisely the equations of motion that one can derive directly from
the self-dual action:

Ssp[B, B] = / d°z {—§m232 —im?B? - %eﬁB} : (3.88)
Therefore, the self-dual action (3.88) and the action (3.85) (and, therefore, the
Stiickelberg action Eq. (3.79)) are classically equivalent, since they lead to the
same equations of motion.

Our next step is to establish a relation between the Stiickelberg and self-dual
actions for a sextet of SO(6)-charged, massive 2-forms.

The SO(6) charged case

Let us consider now six massive two forms coupled to the 15 SO(6)-vector
fields V,,,. The Stiickleberg action for them can be read off from the action
describing the 5-dimensional gauged/massive supergravity, given explicitly in
appendix E setting Q™ = md™". To simplify matters we truncate all the
fields that are not relevant for our problem (in particular, all the scalars) and
we work in flat spacetime. We are left with

15These two equations can be combined to get the Proca equation.
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where

H,, = 30B,, + 3V Fr, = Hyy + 3V Fr
F, =20A,, —mB,,, (3.90)

Fon = 20Vin + 2mVip, Vi .
where D is the SO(6) covariant derivative. This action is invariant under

0A,, = OmnAn + mA,,
Vi = DO (3.91)
0B, = 20\, + 200, Ap + Moy By,

In order to dualize the vectors A,, into two-forms B,, we follow exactly the

same steps as in the uncharged case, and the (much more complicated) equa-
tion we find for F;, is

Fi = PV ) | CF) o Hyf V| (392)

where

Pon” v (V') = G 17 — 307 1, Vi Wi (3.93)

Then, the action in terms of the dual fields B,, reads

S[Bm, Bma Vi) = /d533 {Q.L&HmHm + i(*ﬁm + Hp%m)lpﬁ}z(*ﬁn + HyVin)

1 FonFon + S5 €FnBin |
(3.94)
The action given in (3.94) describes only the degrees of freedom of the six

massive 2-forms B,,, coupled to the vector fields V,,,. This action is invariant
under the following gauge transformations
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OVin = DOn
8B, = PT;}L { (d)\n - %e dS\anp> — %6 [(Bp - %quV},q) Danp] } )

6B = Pk { (0 = bedM Vi) =S¢ [ (B, = LeByVog) Dowy] } -

(3.95)
The equations of motion derived from (3.94) are
Du]:mnlw = imZCVpUJ/\B[m\paBm] 0A s

*H, = —m[B,, + %eanBn] ,

which can also be derived from the self-dual action:

m

Ssp[Bum, Vinn] = / &Pz {—im2§£§m ~ L FnFun — 2eBEnNDB,, } , (3.97)

where

() o(53) e

and D is the SO(6) covariant derivative acting on B,

0B, — mV,,, B,
DB, = ) ) } (3.99)
0B,, + mV,,,B,

Observe that the SO(6) charges of B,, and B,, are opposite.

Action (3.97) is precisely the kind of action that appears in the standard form
of N =8,d =5 gauged supergravity.
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3.7 Conclusions

In this chapter we have reviewed the “massive 11-dimensional supergravity”,
a.k.a. BLO theory [19] and its generalization to include n Killing vectors,
known as BLO,, theory [122]. This generalization can understood as a way
of rewriting (11 — n)-dimensional supergravity theories in an 11-dimensional
fashion. In fact, we have considered BLO,, theory as a systematic prescription
to get gauged/massive supergravity theories in (11 — n) dimensions, which we
have studied for several values of n.

The reduction of the n = 2 theory in the direction of the two Killing vectors
turns out to give all the SO(2 — [,])-gauged N = 2,d = 9 supergravities
obtained by non-geometrical Scherk-Schwarz reduction from N = 2B,d = 10
supergravity [66,122]: each of these theories is determined by a traceless 2 x 2
matrix m™, of the sl(2,R) Lie algebra which is related to the mass matrix.

The reduction of the n = 3 theory gives rise to the “S-dual” theories of the
gauged supergravities we obtained in chapter 2 from d = 11 supergravity via
a geometrical generalized dimensional reduction. The “S-duality” group is
broken in the gauging and therefore is only valid in the ungauged/massless
limit, though it is reflected in the scalar potential.

Generically, the theories obtained in this way are (11 — n)-dimensional super-
gravity theories with 32 supercharges determined by a mass matrix Q™". They
are covariant under global Sl(n,R) duality transformations that in general
transform Q™" into the mass matrix of another theory'® of the same family.

The subgroup of Si(n,R) that preserves the mass matrix is a symmetry of
the theory and at the end it will be the gauge group. If we use Si(n,R)
transformations and rescalings to diagonalize the mass matrix so it has only
+1,—1,0 in the diagonal, it is clear that SO(n,n — ) will be amongst the
possible gauge groups and corresponds to a non-singular mass matrix. These
theories with non-singular mass matrices have n(n —1)/2 vector fields coming
from the C’Wm components of the 11-dimensional 3-form and transforming
as SO(n—1,1) 1 =0,...,n gauge vector fields plus n 2-forms with the same
origin and n Kaluza-Klein vectors coming from the 11-dimensional metric that
transform as SO(n — [,1) n-plets . The n vectors act as Stiickelberg fields for
the 2-forms which become massive. In this way the theory is consistent with

16n all cases we expect the entries of the mass matrix Q™" to be quantized and take integer
values in appropriate units, since they are related to tensions and charges of branes which
are quantized in string theory. The duality group is then broken to Sl(n,Z) [90]. Theories
related by Sl(n, Z) transformations should be considered equivalent from the string theory
point of view.
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the SO(n —1,1) gauge symmetry.

Finally, all these theories have a scalar potential that contains a universal term
of the form

V= —1e {[Tr(QM)]° — 2Tr(QM)?} | (3.100)

where M is a (symmetric) Sl(n,R)/SO(n) scalar matrix, plus, possibly, other
terms form the scalars that come from the 3-form. That scalar potentials
of this form appears in several gauged supergravities was already noticed in
Refs. [75,144]. The d =5 case is special because X = 0. This is related to the
invariance of the Lagrangian under the N = 2B,d = 10 SI(2, R) symmetry.

Some of these theories are known, albeit in a very different form. The case
n = 6 is particularly interesting: we get SO(6 — [,1)-gauged N = 8,d = 5
supergravities which were constructed by explicit gauging in Refs. [73,131],
with 15 gauge vectors that originate in the 3-form, 6 Kaluza-Klein vector fields
that originate in the metric and give mass by the Stiickelberg mechanism to
6 2-forms that come from the 3-form. That is: the field content (but not
the couplings nor the spectrum) is the same as that of the ungauged theory
that one would obtain by straightforward toroidal dimensional reduction. In
fact, the ungauged theory can be recovered by taking the limit Q — 0 which
is non-singular. In Refs. [73,131] the gauged theories were constructed by
dualizing first the 6 vectors into 2-forms that, together with the other 6 2-forms,
satisfy self-duality equations [161] and describe also the degrees of freedom of
6 massive 2-forms. In this theory the massless limit is singular and can only
be taken after the elimination of the 6 unphysical 2-forms [162].

Thus, we have, presumably, two different versions of the same theory in which
the 6 massive 2-forms are described using the Stiickelberg formalism or the self-
duality formalism. However, we have not shown the whole equivalence between
both formulations (at the classical level), but only worked out some simple
cases. It is worth noticing that something similar happens in d = 7, although
we get SO(4—1,1)-gauged theories and in the literature only SO(5—1, 1)-gauged
theories have been constructed [129,130].

The cosmological term in BLO theory allows for the existence of domain
wall solutions which separate regions of spacetime with different values of the
cosmological constant. However, this is seen when the mass parameter is dual-
ized into a 10-form potential and source terms for this potential are included.
This is exactly what happens in the case of Romans’ theory, whose “dual pic-
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ture” is BRGPT theory. The latter admits domain wall solutions separating
regions in which the dynamics is described by Romans’ theory.

The rewriting of BRGPT in an 11-dimensional fashion can be seen as the “dual
picture” of BLO theory. This theory admits domain wall solutions separating
regions with different values of the mass parameter, BLLO theory describing
the dynamics between the 10-dimensional domain walls. Then, as the mass
parameter in BLO theory is related to the existence of an isometric direction,
one can have regions with m = 0, such that the isometry disappears and d = 11
standard supergravity describes adequately the dynamics.

What about BLO,, theory? In this theory there are $n(n+1) mass parameters.
There is no available formulation with all the mass parameters dualized into
gauge fields. If it existed, we would expect the theory to admit domain-wall
solutions separating regions with different number n of isometric directions.
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Chapter 4

Topological
Kerr-Newman-Taub-NUT-AdS
spacetimes

The presence of a negative cosmological constant is enough to invalidate
the classical theorems [64,80] in which it is proven that at any given time black-
hole horizons are always topologically spheres. In fact, asymptotically anti-
de Sitter (aAdS) black-hole solutions are known such that the constant-time
sections of their event horizons are not topologically spheres [6,26,31,88,107—
109,119,120,154]. In particular, a AdS Schwarzschild black holes with horizons
with the topology of Riemann surfaces of arbitrary genus (henceforth called
topological black holes) were given in Ref. [166]. The charged generalization
in the framework of the Einstein-Maxwell theory with a negative cosmological
constant (topological aAdS Reissner-Nordstrom (RN-AdS) black holes) was
studied in Ref. [29]. The generalization to the rotating case (topological a AdS
Kerr-Newman (KN-AdS) black holes) was found and studied in Ref. [103]
using the general Petrov type D solution of Plebanski and Demianski (PD
solution) [133] (which contains in different limits all these topological black-
hole solutions) and other methods. AAdS black holes with exotic horizons
with different topologies are also known in higher dimensions [26], in theories
with dilaton [32] and Lovelock gravity [33].

The supersymmetry properties of aAdS black holes were first studied by Ro-
mans in the context of N = 2,d = 4 gauged supergravity [141] for RN-AdS
black holes with spherical horizons. Later on, Kostelecky and Perry studied the
supersymmetry properties of KN-AdS black holes [104]. Caldarelli and Klemm
extended Romans’ results to the case of topological RN-AdS black holes and
extended and corrected Kostelecky and Perry’s in the spherical KN-AdS case

113
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in Ref. [34].

The supersymmetry properties known are far from being understood. In the
recent, years we have learned how to interpret many supersymmetric solutions
as intersections of “elementary” supersymmetric solutions preserving half of
the supersymmetries. Each additional object in the intersection breaks an
additional half of the remaining supersymmetry *.

In N = 2,d = 4 gauged supergravity, however, Romans discovered solutions
that preserve just 1/4 of the supersymmetry, characterized by a magnetic
charge inversely proportional to the coupling constant. The simplest of those
solutions only has magnetic charge (zero mass and electric charge) equal to the
minimal amount of magnetic charge allowed by Dirac’s quantization condition.
It is really difficult to understand this fact using the paradigm of intersection
of elementary objects.

Our goal in this chapter is to try to gain some insight into this problem by
examining more general cases an calculating, if possible, the amount of su-
persymmetries preserved by the solutions [1]. We first present topological
Kerr-Newman-Taub-NUT-AdS solutions and cosmological generalizations of
the Robinson-Bertotti solution and then study their supersymmetry properties
together with those of the general Plebanski-Demianski solution from which
all of them can be obtained through different contractions. We will see that,
generically, these solutions preserve only 1/4 of the available supersymmetries
in presence of angular momentum. Our second main result will be the identi-
fication of a sort of electric-magnetic duality symmetry of the supersymmetric
Plebanski-Demianski solutions that involves the mass and NUT charge.

The chapter is organized as follows: in section 4.1 we describe N =2,d =4
gauged supergravity. In section 4.2 we describe the solutions whose supersym-
metry properties we are going to study. Section 4.3 is devoted to the study of
the integrability conditions of the Killing spinor equation for the topological
KN-TN-AdS solutions. In section 4.3.3 and section 4.3.4 we perform the same
analysis for RB-AdS and the general PD solutions respectively. Finally, we
present our conclusions in section 4.4.

!Except in Hanany-Witten-like cases in which one can add one more object to an in-
tersection without breaking any further supersymmetry. Needless to say that here we use
“object” in a loose and general way that may include gravitational instantons, certain kinds
of singularities, etc.
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4.1 N =2,d =4 gauged supergravity

The N = 2,d = 4 supergravity multiplet consists of the Vierbein, a couple of
real gravitini and a vector field

feu, = ( i ) A, (4.1)

respectively. With this multiplet one can construct two different supergravity
theories: standard (ungauged) N = 2,d = 4 supergravity and gauged N =
2,d = 4 supergravity. The former can be understood as the zero-coupling limit
of the latter and the second as the theory one obtains by gauging the SO(2)
symmetry that rotates the gravitini. The gauged N = 2,d = 4 supergravity
action for these fields in the 1.5 formalism is

S = /d4$6 {R(e,w) + 69° + 26_15Wp07/;u'757u (ﬁp + igAp‘72> Yo — F?

+‘7(m)w(«7(e)/w + *7(m)ul/)} ) (4.2)
4.2

where D is the SO(2, 3) gauge covariant derivative

75“ =V, - %g%, (4.3)

F is the standard vector field strength, F is the supercovariant field strength
and we also define for convenience F by

F,, = 20,A,,
Fuu = F;w + tj(e)uu ) (44)

Fuw = Fu+ Ty
where we have also defined
Tow = Wuo®P,,

B (4.5)
\T(m);w = —iﬁuu’wwp%a%ba-
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We see that the gauge coupling constant g is related to the cosmological con-
stant by

A =-3¢%. (4.6)
The equation of motion for w,? implies that it is given by
Wabe — _Qabc + cha - Qcab )
Qu® = Qu(e) + 3Tu°,

Qabc(e) = 6“aeuba[ueu]ca

L T = iy
It is assumed that this equation has been used everywhere (1.5 formalism).

The Maxwell equation and Bianchi identity are

Ou(e F*) = %€UAPU1[_JA’YS’Yp02wU )
(4.8)
Ou(e*F*™) = 0.

Observe that the divergences of J, and J,, are two topologically conserved
currents that appear as electric-like and magnetic-like sources for the vector
field in the Maxwell equation

Ou(eF™) = +0,(eT2") + 0u(e i) + 4N 57,0705 . (4.9)

They are naturally associated to the electric and magnetic central charges of
the N = 2,d = 4 supersymmetry algebra. The third term in the r.h.s. of the
above equation is associated to the gravitino electric charge and it is, therefore,
proportional to the gauge coupling constant. Finally, the Einstein and Rarita-
Schwinger equations are

0 = G*—3¢%" — 2T (V) * — 2T(A)a“,

0 = e le®P 5y, (ﬁp + igAp02> Yy — 1 (F‘“’ + i*F“V75) o, ,
(4.10)
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where the equation of motion for w,® has been used and where

[ TW)d* = —5e™ b5 (ﬁpﬂgApo?) Vo
< _Z_ZGHVpUq/;V,%,}/pawa ) (4.11)
| T)# = FurFr, = be P2,

Apart from invariance under general coordinate and local Lorentz transforma-
tions the theory is invariant under U(1) gauge transformations

A, = A, +0ux,

u
(4.12)
g, = TNy,
and local N = 2 supersymmetry transformations
dee, = —iey*,,
0cA, = —iea’y,, (4.13)
55% = ﬁué,
where the 75“ is the supercovariant derivative defined by
D, =D, +igA,o* + 1 Fy,0°. (4.14)

In the ungauged case, the theory enjoys chiral-dual invariance which inter-
changes the Maxwell and Bianchi equations and the topologically conserved
electric and magnetic charges (and, therefore, the associated central charges).
In the gauged theory, the gauge coupling breaks this invariance.

We are going to work with purely bosonic solutions of this theory. They obey
the bosonic equations of motion

V. =0,
V= 0, (4.15)

R,ul/ = 2T,uu(A) - 3929uu7
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where 7),,(A) is just the standard energy-momentum tensor for an Abelian
gauge field:

TIUJ(A) = Fupru - iguuFZ . (416)

These equations of motion are duality-invariant. However, the gravitino super-
symmetry rule (even with fermionic fields set to zero) is not duality-invariant
and the supersymmetry properties of duality-related bosonic solutions are not,
in general, the same.

4.2 The solutions

In this section we display and describe the solutions whose supersymmetry
properties will later be studied. For simplicity we start with the unrotating
RN-TN-AdS although they are included in the general KN-TN-AdS case.

4.2.1 Topological RN-TN-AdS Solutions

These solutions generalize, by including NUT charge N, the topological RN-
AdS black hole solutions found in Ref. [29]. There are three cases labeled by
the parameter X whose value is essentially the sign of one minus the genus of
the horizon and therefore takes the values 1,0, —1 for the sphere (genus zero),
the torus (genus 1) and higher genus Riemann surfaces, respectively. In the
three cases the metric can be written in the form

( A R?
ds? = 23 (dt+ wydp)® — Ter — R?d03%,

) A = [PR'+ (R+4g°NY)(r? — N?) — 2Mr + | Z]?] (4.17)

L RZ — 7’2+N2,

where dQ)3 is the metric of the unit sphere, the plane and the upper half plane
respectively

df? +sin?0dy?, N = +1,
dQg =< db? + dy?, N = 0, (4.18)

df? + sinh?fdy?, N = -1,
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wy 1s the function

2N cos @, N = +1,
wy =4 —2N§6, N = 0, (4.19)
—2N cosh @, N = -1,

and the vector potential is given by

Ay = (Qr— NP)/R?,

cosf[P(r* — N%) + 2NQr|/R?, for X = +1,
A, = —0[P(r* — N*) + 2NQr]/R?, for X = 0,
—cosh@[P(r* — N*) +2NQr]/R?, for ® = -—1.

(4.20)

It is understood that one has to take the equation of the last two spacetimes
by a discrete group in order to get a torus or a Riemann surface of arbitrary
genus.

These solutions are valid in the g = 0 case. In that limit (with N = 0), we
can speak of black holes only if X = +1, which are solutions which can have
a regular event horizon, in agreement with [64,80]. With g # 0 (still with
N = 0) and we recover the solutions of Ref. [29] in which M is the mass, @
the electric charge, P the magnetic charge and Z = @ + ¢P. Some of these
cases are black holes with regular horizons of different topologies.

For ¢ = 0, N # 0 we recover the standard RN-TN solutions in which those
parameters are still the physical parameters? and N is the NUT charge. When
the product gV # 0 it is no longer clear that M, (), P are the true mass, electric
and magnetic charges that appear in the superalgebra. This is similar to what
happens in the rotating case [104] in which the true charges are combinations
of the parameters M, P, () appearing in the solution with the product ga.

2A definition of the mass of Taub-NUT spaces cannot be given in the standard form
because these solutions do not go asymptotically to any other vacuum solution. The same
happens in the 5-dimensional KK monopole solution, studied in Refs. [27,51]. However,
as different from the KK monopole, the TN solution is not ultrastatic and the tricks used
in those references to define and calculate the mass of the KK monopole do not seem to
apply to this case. A definition inspired in the AdS/CFT correspondence has been given in
Refs. [37,121].
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It is useful to have a general form of the solutions valid for the three cases
N =1,0,—1. To have such a general expression we define the coordinate u

—cosf, N = +1,
u =4 0, R = 0, (4.21)
cosh @, N = -1,
and then
( A , R? R?
ds? = = (dt — 2Nudp)” — TdTQ — %du2 — R? S(u)dy?,

A, = (Qr—NP)/R?, (4.22)

A, = —u[P(r*—N? +2NrQ]/R?,

Su) = N1 —-u?)+1-N2,

where A\ and R are as above.

4.2.2 Topological KN-TN-AdS Solutions

These solutions generalize the topological KN-AdS solutions given in Ref. [34,
103] to the non-zero NUT charge case. In the t,7,u,p coordinate system
(which is Boyer-Lindquist-type) they can be written as follows:



121

( 5 A 2 2 2
ds? = m{dt—[ﬂ\fu—a(}l —u)]dqa} —

R%(r,u)

X dr?

R, SW)

S = g (1 + N4 ) dp o ac]

Ay = [Qr — P(N + au)]/R?*(r,u),

1
4 Ap = VP + N>+ R [Qr — P(N + au)]/R*(r,u),
A= gt (R4 N2a2g? 4+ 69°N?) 2 — 2Mr + | 2]
—N? (X - 382a%g% + 3g2N?) + a? (1 + X — 8?) |

Su) = S(u)+ (a®¢?u® + 4ag*Nu) (u? — V?) |

\ R*(r,u) = 2 + (N 4 au)”
(4.23)

with S(u) as above.

The above form of the potentials is valid only for a # 0. However, the field
strength components read

Foo = R(ru)*[Q(r* — (N + au)?) — 2Pr(N + au)] i)
2
Fyy = —R(r,u)™{P(r* — (N +au)?) + 2Qr(N + au)} ,

such that the a — 0 limit of the field strength is perfectly well defined.

4.2.3 Topological RB Solutions

In ungauged N = 2,d = 4 supergravity, the extremal RN black hole can be
seen as a soliton interpolating between two supersymmetric vacua: Minkowski
spacetime at infinity and RB in the near-horizon limit. The RB spacetime is
the product AdS; x S? where both factors are maximally symmetric spaces
with opposite curvatures that cancel each other. The same thing occurs with
other p-branes in higher dimensions [28,68] where the role of the RB spacetime
is played by AdS,.» x S®P. Here we present a generalization of the RB
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spacetime to the case of gauged N = 2,d = 4 supergravity (cosmological
Einstein-Maxwell theory) whose supersymmetry properties we will study later.
They are the product of AdS, with a sphere S?, a torus 72 or a higher-genus
Riemann surface ¥, in which now the curvature of the AdS, spacetime is
not completely canceled by the other factor space but they add up to the
4-dimensional cosmological constant

((ds* = K2t — K%r?dﬁ — L 2S(u) 'du® — L 2S(u)dy? ,

\ Foo = « (4.25)

\ Fos = -0,
where the constants K, L, «, 8 satisfy

g2 = %{KQ - NLQ} )
(4.26)
o + 2 = J(K? + NL?) .

The field strength is covariantly constant and in this coordinate system has
constant components which correspond to the vector potential components

A = —ar,
(4.27)
A, = —B/L%u.

The X = —1, K? = 212 solution, which has special supersymmetry properties,
has been given in [30].

4.2.4 PD Solutions

Plebanski and Demianski found most general Petrov type D solution of the
cosmological Einstein-Maxwell theory [133]. This general solution contains
as limiting cases all the known solutions, and, in particular the topological
KN-TN-AdS solutions presented above (which in their turn, also contain the
RN-TN-AdS solutions presented at the beginning). We will show this explicitly
at the end of the section.

The PD solution depends on the constants® M, N, Q, P, E, o and, of course, g,
and, in Boyer coordinates 7,0, p, ¢, reads [133]

3These constants are different from the constants M, N, @, P that appear in the previous
solutions.
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P+, pP+¢t,, P
dg® — dp® —
o(q) ! Po) T pP+g

Foo = (#+p)72[Q(¢* —p?) — 2Ppq| ,

(
ds®> = p2Q4(_q()12 (dr — ]02do)2 -

5 (dT + q2d0)2 ,

Fys = —(¢*+p°)2[P(¢® — p*) +2Qpq] ,

Q) = ¢*¢*+E¢®*—2Mg+ Q* + «,

L P(p) = ¢*p*—Ep*+2Np—P? + .

(4.28)
This class of solutions has a scaling invariance given by
g — Kq, M — kM, N — &°N,
P — Kp, Q — k2Q, P — k?P,
(4.29)
T = k7T, E — &2E, a — ko,

o — K_3O,

which can be used to bring one of the charges to a given value. This scaling
freedom remains if one of the charges happens to be nil.

The curvature is determined by M, N, Q and P and one can see that when
they are zero, the Weyl tensor vanishes. This then means that, in that case,
the solution is locally AdS,.

Obtaining the Topological KN-TN-AdS Metric from PD’s

Performing in Eq. (4.28) the coordinate change (see the analogous discussion
in [103])

qg = r, T = t+ [a'N?+aR?p,
(4.30)
p = N+au, o = ale,

and the following redefinitions of the parameters M = M, Q =Q, P = P,
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E = X+ N2g2¢? + 6¢°N?,
N = N(R — N2a2¢2 + 4g°N?) | (4.31)
a = a®(1+R8-N8%) — N?2(N - 3R%¢%¢% + 3¢°N?) + P?,

we go from the PD metric to the KN-TN-AdS metric as written down in
Egs. (4.23).

Note that the choice of the redefinitions is largely dictated by the factorizability
of P.
4.3 Supersymmetry and integrability conditions

The bosonic part of the supercovariant derivative for gauged N = 2 supergrav-
ity is

D, =V, + gA,io® + 2 Fyuo®, (4.32)

where V, is the SO(2,3) gauge-covariant derivative. The Killing spinor equa-
tion is

A

D,e=0, (4.33)

and a necessary condition for it to have solutions is the integrability condition

[75“, 754 e=0. (4.34)
One finds [141]

[f)“,f)u]e = 10 P Yay + 20 ¥ (Fly + i*Fus) io?
(4.35)

+4Fu (37" Y + 1w ®) i02} e = 0.

We study first the non-rotating case RN-TN-AdS case.
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4.3.1 Supersymmetry of Topological RN-TN-AdS Solu-

tions

Introducing the Vierbein 1-forms

e = AN/2/R(dt+wydyp), e = XY?Rdr,

e2 = Rdb, e3 = ROydyp,
we find
Foo = (Q(r* = N?)—2NPr)/R*,
Fy3; = —(P(r* — N?)+2NQr)/R*,
ViFp = —2X\Y2/R7[Q(r® — 3rN?%) — P(3r2N — N?)] ,
Vi*Fy = —2\2/R7[P(r® — 3rN?) + Q(3r>N — N®)] ,

(4.36)

(4.37)

(4.38)

(the remaining components of V,Fj. can be found using the Bianchi identities

or the Maxwell equations, which are satisfied) and

1 01 _ 02 _ 03 _ 12 _ 13 _ 1 23 _
_5001 - 002 - C'03 - C'12 - C'13 - _5023 - Cl )

00213 = _CO?,12 = 01203 = _01302 = _%(;12301 = 02’
Cr = [Mr®— (3N?(R —4¢g°N?) + |Z]?) r?
—3N2Mr + N (N%(X — 4¢°N?) + |Z|?)] /RS,
Co = —N[(N—4¢2N?)r® +3Mr?

— (BN?(R — 4¢g2N?) +2|Z*)r — MN?] /RS,

(4.39)

Plugging all this into the integrability conditions we get the following condi-

tions on the parameters:
0 = g[MP + QN(R+4¢°N?)] ,

0 - B+B_ 3
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where we have defined

B: = (M FgNQ)*+ N?(R+ gP +4g°N?)?
(4.43)
— (R*£2gP+5¢°N?)|Z|2.

The first condition plays the role of a constraint which is automatically satisfied
in the well-known g = 0 case, while the second implies B, = 0 which should
be the (saturated) Bogomol'nyi bound of gauged N = 2,d = 4 supergravity
and actually reduces to the well-known Bogomol'nyi bound of ungauged N =
2, d = 4 supergravity in asymptotically flat spaces (X = +1), generalized so as
to include NUT charge (see Refs. [5,14,96]), i.e. M? + N? = Q? + P?. For
g = 0 and arbitrary X we get

M? +W*N? = R(Q* + P?). (4.44)

A detailed analysis of the different cases in which the constraints is satisfied and
the Bogomol’nyi bound is saturated gives as a result the four cases represented
in table 4.1.

The first case corresponds to AdS, itself in standard spherical coordinates,
which is maximally symmetric and preserves all supersymmetries. The second
case can be shown to describe, at least locally, AdS, as well (the Weyl tensor
vanishes and the space is maximally symmetric). There are, thus, two different
values of the parameter N that correspond to the same spacetime.

In the third and fourth cases we have taken for the sake of convenience () and
N as independent parameters. The third case is a generalization to g N # 0 of
the standard M = |@| case of ungauged N = 2, d = 4 supergravity where @ is
arbitrary which preserves 1/2 of the supersymmetries. Here, a non-vanishing
magnetic charge proportional to N is induced. As a matter of fact, it admits
the limits ¢ — 0 and/or N — 0 with the same amount of supersymmetry
preserved.

There are two particularly interesting limits: the often neglected g = 0,X =0
case which (setting N = 0 for simplicity and rescaling the coordinates 6, ¢
which do not represent angles anymore) corresponds to the solution

ds? = Q—thQ _r (dr? + d6? + dy?)
7.2 Q2 ¥ )
(4.45)
Q

At = — .
r
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This solution belongs to the Papapetrou-Majumdar class
ds®> = H™2%dt> — H?dz?,

A, = +H!, (4.46)

00H = 0,

where the harmonic function H has been chosen to depend on only one coor-
dinate H = |@|z and not on y, 2.

The second interesting limit () — 0 also gives a supersymmetric configuration
that preserves 1/2 of the supersymmetries with only magnetic and NUT charge
and zero mass.

The fourth case in table 4.1 preserves 1/4 of the supersymmetries and only
exists for g # 0. It is a generalization to N # 0 of Romans’ global monopole
solution [141]. We see that the presence of both NUT and electric charge
implies that the mass parameter has to be finite. On the other hand, it admits
the limits @ — 0 and/or N — 0 with the same amount of supersymmetry
preserved.

4.3.2 Supersymmetry of KN-TN-AdS Solutions

We choose the Vierbein 1-forms

0 A2 2 2
= dt — (2Nu — a(N° — d
e R(r,u)[ (2Nu — af u?)) dy] ,
R(r,u)
el = T dr,
() (4.47)
R(r,u
2 = S )du,
81/2(u)
3 = 24 N2 4+ R%%)d dt
e R(r,u)[(r+ + N2a®)dy + adt],
on which the field strength components read
Foo = R(r,u) *[Q(r? — (N +au)?) — 2Pr(N + au)] ,
(4.48)

Fy3 = —R(r,u)™*{P(r* — (N + au)’®) + 2Qr(N +au)} ,
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M N | @ p X | SUSY
0 0 [0 0 41| 1
0 % 0 0 -1 1
|QV/R+4g2N?| | any | any | £N/X+4¢2N? | any %
[2gNQ| any | any + N%ggj]\ﬂ any i

Table 4.1: In this table we represent the different combinations of values for the parame-
ters M, N, Q, P, X of the general RN-TN-AdS solution Eq. (4.17) for which there are Killing
spinors and the fraction of supersymmetry preserved. The first two cases correspond locally
to AdS. The last two cases are the two general solutions of the constraint and Bogomol’'nyi
bound equations and admit different limits with the same amount of supersymmetries pre-
served. In particular, the third case preserves the same amount of supersymmetry in the
particular cases Q@ = 0, N = 0,8 = +1 (for any @) and N = £1/2¢,X = —1. The fourth
case preserves the same amount of supersymmetry in the cases @ = 0, N = 0 (for any
Q@) and g = 0. In this last case, electric-magnetic invariance is preserved and @ can be

substituted by /@2 + P2.
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We only need to calculate

Cor = —2R7C[M(r® —3rX?) + N(R — N2a2¢? + 4g°N?)(3r2X — X?) — Z2(r? — X?)]
Cozs = 2R7C[M(3r2X — X%) + N(X — R2a¢? + 4¢>N?)(3rX2 — 1*) — 22%rX] ,
ViFy = —2R\2[Q(r® - 3rX?) — P(3r?X — X3)] ,

VoFy = —2aR77SY2{P(r® - 3rX?) + Q(3r’X — X%} |
(4.49)

where we used the abbreviation X = N + au. As in the RN-TN-AdS case the
other components of the integrability condition turn out to be proportional to
the 01 component. From this, one obtains the constraint and generalization of
the Bogomol’nyi bound

0 = g[MP+NQEXR-Ra’g?+4¢°N?)]
(4.50)
0 - B+Bf 3

where now

B: = M?+ N?(XN—N2%a%g% + 4¢9°N?) — [(R + N2a?¢? + 6¢>N?)
(4.51)

+2¢g4/a®(1 + X — 82) — N2 (X — 382a%¢2 + 3¢2N?)| 72,

The fact that the bound factorizes into the product By B_ is difficult to see
directly from the calculation but easy to deduce from the results we will find
in the general PD case. It can be checked that the (saturated) bound obtained

is exactly the same, when N = 0, as the one given by Caldarelli and Klemm
in Ref. [34].

We can now try to analyze different solutions to these two equations. This is
a very complex problem and it would only make sense to explain in detail a
classification of the solutions if the different classes had different amounts of
unbroken supersymmetry. However, in all the cases that we have been able
to analyze we have not found any single supersymmetric solution with a # 0
preserving 1/2 of the supersymmetries. In fact, adding angular momentum to
the RN-TN-AdS solutions that do preserve 1/2 of the supersymmetries always
seems to break an another half leaving only 1/4 unbroken.
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For instance, the solution with M = @Q = 0,P = +(2¢g) '(X — N2a¢?¢? +
49°N?),X = +1 preserves 1/2 with a = 0 and only 1/4 with a # 0. The same
effect takes place in all the instances studied.

4.3.3 Supersymmetry of Topological RB Solutions

To check supersymmetry of the topological RB solutions we only need

00101 = % {K2 - NLZ} = 2g2 s (452)

since the vector field strengths is covariantly constant. The integrability con-
dition then reads

g [91 — ay®io® + By*i0”]e = 0. (4.53)

Obviously, for g = 0 one finds Robinson-Bertotti which does not break any su-
persymmetry. When g # 0 however, one finds, just by taking the determinant
of the above equation, that one has to satisfy

a = 0
B = 1y
which then break half of the available supersymmetry. Plugging the above
equations into Eq. (4.26), one finds that

(g£B)?+a*=0 — { (4.54)

N=-1 , K?=2L%, (4.55)

which means that K? = 4¢? and L? = 2¢2. This is the solution found in
Ref. [30].

We could have found this solution also as the near-horizon limit of the N
generalization of Romans’ global monopole [141]. In that case we have P = j;—:
and with X = —1 and all other charges vanishing we find that there is a horizon

at 2¢g%r? = 1. At this radius the solution can be approximated by

ds? = dgPr?dt? — odr? — oL (d6? + sinh?(0)dg?) |

49272
. -1 (4.56)
Fy = —g‘(@) = F9.

which is just the supersymmetric RB-like solution discussed above. We then
see that we have supersymmetry enhancement at the horizon from 1/4 to 1/2.
Observe that the presence of electric charge would have meant the complete
annihilation of supersymmetry at the horizon.
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4.3.4 Supersymmetry of the PD General Solution

As in the foregoing cases, one finds that all the components of the integrability
condition are equivalent, so we will only write down the components of the
Weyl tensor and the covariant derivative of the vector field strength to calculate
the integrability condition in the 01 direction.

—2(p+q)?

Ciow = 0+ 72)° [—M(1 — 3p*¢*) + N(3pg — p*¢®) + Z°(p — ¢) (1 — p*¢*)] ,
Ciozs = % [~M(3pg — 3p°¢®) — N(1 — 3p*¢?) + Z*2pq(p — q)] ,
ViFy = % [Q(1 = 3p’°q + p°¢® — 3p°¢®) + P(3pq — p’¢* + p* — 3p'¢’)] ,
VoFy = 2Ap+a)P [P(1 - 3p%q + p°¢® — 3p*¢°) — Q(3pq — P*¢* + p* — 3p*¢?)] ,

(1+p2?)72
(4.57)

Plugging these expressions into the integrability condition and calculating the
determinant, one finds that the following conditions need to be satisfied in
order for the solution to be supersymmetric

(4.58)
0 = B+B_ ,

where, now

By =W? — (E +29a'/?)72, (4.59)

and we have defined W? = M? + N? and Z? = Q? + P?. One can check that
these conditions are invariant under the scalings in Eq. (4.29) and they give
the integrability equations of the RN-TN-AdS and KN-TN-AdS cases after
the redefinitions (4.31).

Again we find a constraint on the charges and a generalization of the (sat-
urated) Bogomol’'nyi bound By = 0. The advantage of the parametrization
of the PD solution is, first of all, that the second integrability condition fac-
torizes completely and that B, is extremely simple and is almost identical to
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the standard bound for asymptotically flat, ungauged, N = 2,d = 4 super-
gravity solutions, being electric-magnetic duality-invariant and invariant under
gravito-electric-magnetic duality that rotates M into N and vice-versa. These
duality invariances are broken by the constraint g [MP + NQ] = 0 which is,
nevertheless invariant under simultaneous rotations with the same angle

M = cosfM —sin6N, Q = cosfQ +sinbP,

N = sindM + cosfN, PP = —sinfQ + cosHP.
(4.60)

Actually, assuming that g # 0 one can eliminate completely the constraint,
getting a pair of equations

M2 = (E+290'/?)Q?,
(4.61)
N2 = (E+2ga'/?)P?,

which hold even if some of these charges (but not g) vanish. These equations
rotate into each other under the above duality transformations.

The rotation parameter is always bounded above:

al/? < +E/2g. (4.62)

When this bound is saturated, then both M = 0 and N = 0, while Q and
P remain arbitrary. This is always the case when E = (0. Finally, the only
supersymmetric solution with Z = 0 is AdS,.

A calculation of the rank of the integrability condition shows that all these
configurations will generically break three-fourths of the available supersym-
metries. This was to be expected from our results in the KN-TN-AdS case. On
the other hand, we have not been able to find any combination preserving up
to 1/2 of the available supersymmetry which is not the RN-TN-AdS solution.

4.4 Conclusions
In this chapter we have presented new solutions which generalize the already

known topological black holes and the standard Robinson-Bertotti solution.
We have considered the presence of a non-vanishing (negative) cosmological
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constant, and we have looked for solutions with non-zero NUT charge. We
have also explored their supersymmetry properties finding that generically they
preserve only 1/4 of the supersymmetry. The only solutions that preserve 1/2
are non-rotating ones and the addition of angular momentum seems to break
a further half of the remaining supersymmetries.

A somewhat surprising result that deserves further study is the fact that the
most general family of supersymmetric solutions of this theory (i.e. the su-
persymmetric Plebanski-Demianski solutions) is invariant under a continuous
SO(2) group of electric-magnetic duality transformations. Had we not included
in our study NUT charge, the existence of that symmetry would have passed
completely unnoticed. Its meaning is, however, obscure. After all, the charges
that undergo the duality rotation in its simplest, linear form, are not the phys-
ical charges. In terms of the physical charges, the duality transformations are
very nonlinear.
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Summary and conclusions

Let us now summarize the main results we have presented.

Chapter 2

In this chapter we have reduced d = 11 supergravity on a 3-dimensional
manifold via the SS2 generalized dimensional reduction. The reduced theories
are d = 8 gauged maximal supergravity theories which we classify in two
classes, A and B.

Class A contains supergravities obtained by reducing the 11-dimensional ac-
tion, and an action for the reduced theories is therefore available. The structure
constants of the gauge groups in class A are traceless and are completely spec-
ified by a 3 x 3 mass matrix. On the other hand, supergravities in class B
can only be obtained from the reduction of the d = 11 equations of motion.
The gauge groups can now have traceful constants, and there is no action from
which the equations of motions of these theories can be derivable.

We have derived and studied only class A, which contains five gauged su-
pergravities whose gauge groups correspond to the five different subgroups
of SL(3,R). For class B supergravities, the gauge groups are subgroups of
GL(3,R).

Also, we have found a generic half-supersymmetric domain wall solution to all
class A supergravities. This solution can be interpreted as n parallel single
domain walls where n is the rank of the mass matrix. We have compared our
solution with previously known domain wall solutions in 8- and 9-dimensional
gauged supergravities [10,24]. Another point that we have discussed is how
the relation between d = 8 domain-wall solutions and gauged supergravities
fits naturally in the domain wall/QFT correspondence scheme [28,94].

The Maurer-Cartan 1-forms of class A gauged supergravities can always be
written in a frame with a manifest isometry. Then, all theories in class A
can be derived from standard type ITA supergravity. We believe that the
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Maurer-Cartan 1-forms for class B theories probably have no additional isom-
etry. Therefore, in contrast to the class A case, these reductions cannot be
reproduced by any known reduction of the massless ITA theory.

We have uplifted the triple domain wall solution to 11 dimensions and found
that it leads to a purely gravitational solution whose metric is the direct prod-
uct of a 7-dimensional Minkowski metric and a non-trivial 4-dimensional Eu-
clidean Ricci-flat metric. The 4-metrics are solutions of 4-dimensional Eu-
clidean gravity. Some of these solutions are generalizations of the Eguchi-
Hanson solution to different (class A) Bianchi types.

However, all possible non-singular SO(3)-invariant hyper-Kéhler metrics in
four dimensions are the Eguchi-Hanson, Taub-NUT and Atiyah-Hitchin met-
rics, while only the (generalized) Eguchi-Hanson metric is found in the up-
lifting. This is due to the fact we have considered an Ansatz in which the
spinors are independent of the internal coordinates, which is not compatible
with the Taub-NUT and the Atiyah-Hitchin metrics. Only the (generalized)
Eguchi-Hanson metric allows a covariantly constant spinor that is indepen-
dent of the SO(3) isometry directions [65]. We could try to perform a Scherk-
Schwarz reduction in which the spinors were allowed to depend on the internal
coordinates, and see if the Taub-NUT and Atiyah-Hitchin metrics admit a
half-supersymmetric domain wall interpretation in eight dimensions.

One can hope to extend in this way the SS1 reduction (as in [24]), so both
the SS1 and SS2 reduction procedures might admit an extension, and, if so,
it would be interesting to understand the differences between the resulting
gauged supergravities.

Chapter 3

“Massive 11-dimensional supergravity” (BLO theory) was originally little
more than the straightforward uplift of Romans’ theory. This is nothing but
a way of rewriting the latter in an 11-dimensional fashion. For consistence,
the theory must include in the action an explicit Killing vector, which is ac-
companied by a mass parameter (the mass parameter of Romans’ theory). By
construction, the reduction of the theory in the direction of the Killing vector
leads to Romans’ theory.

A similar construction with n Killing vectors (BLO,, theory) contains an n x n
mass matrix. This theory can also be understood as a way of rewriting (11—n)-
dimensional supergravity theories in an 11-dimensional fashion. In this chapter
we have used BLO,, theory as a systematic prescription to get gauged /massive
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supergravity theories in (11 — n) dimensions, focusing on the reductions to
eight and five dimensions.

The reduction of the n = 3 case gives rise to a set of 8-dimensional gauged
supergravities, which can be considered as the “S-dual” theories of the gauged
supergravities obtained in chapter 2 from d = 11 supergravity via an Scherk-
Schwarz generalized dimensional reduction. The “S-duality” group is broken
in the gauging and therefore is only valid in the ungauged/massless limit, but
it is reflected in the scalar potential.

For the n = 6 case we find a family of SO(6 — [,1)-gauged N = 8,d = 5
supergravities which we identify with those which were constructed by explicit
gauging in Refs. [73,131]. Presumably, we have found an alternative way
of writing these theories with a Stiickelberg formalism, instead of self-duality
formalism of Refs. [73,131]. However, we have not shown the whole equivalence
between both formulations (at the classical level), but only worked out some
simple cases. A nice feature of the Stiickelberg formulation is that there is no
problem in taking the massless limit, while in the self-duality formalism this
limit is singular and can only be taken after the elimination of some unphysical
fields needed to gauge the theory [162].

Chapter 4

In this chapter we have presented first new solutions of gauged N = 2
d = 4 supergravity generalizing the already known topological black holes and
standard Robinson-Bertotti solution. We have also identified the limits in
which some of the new solutions can be obtained from the most general Petrov
type D solution (Plebanski-Demianski solution).

We have studied the supersymmetry properties of the new solutions, and we
have found that generically only 1/4 of the supersymmetry is preserved. The
only solutions that preserve 1/2 are non-rotating ones and the addition of
angular momentum seems to break a further half of the remaining supersym-
metries.

An outcome of our analysis is the fact that the most general family of super-
symmetric solutions of this theory is invariant under a continuous SO(2) group
of electric-magnetic duality transformations. However, its meaning is not clear
to us.
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Appendix A

Conventions

In this appendix we give the conventions we have used.

A.1 Geometry

Greek indices p, v, p, ... for world (coordinate basis) tensor indices, and Latin
a,b,c... indices 0,1,... are tangent space (Lorentz, Vielbein basis) indices.
We use hats for 11-dimensional objects and no hats for 8-dimensional objects.
We symmetrize and antisymmetrize with weight one.

We use mostly minus signature (+ — ---—). n is the Minkowski spacetime
metric and the spacetime metric is g. Lorentz and world indices are related
by the Vielbeins e,* and inverse Vielbeins e,*, that satisfy

eauebyguu = Tab , e,uaeubnab = Guv - (Al)

We denote by V the total covariant derivative (with respect to g.c.t.’s
and local Lorentz transformations) and by D the Lorentz covariant derivative.
Acting on tensors and spinors (1) they are defined by

Vufu = augy + Pupyfp s
,Duga = aﬂga + wubagb ) (A'Q)

V,ﬂﬁ = (9“’(/1 - iwuabraﬂpa

where I'y, stands for the antisymmetric product of two gamma matrices to be
defined shortly.
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We define the corresponding curvature tensors (and torsion) by the Ricci
identities

Vi,V & = Ru."(I)& +T,,°V,E°,

(A.3)
[Dua Du] £ = Ruvba(w)gba
and the curvatures are given in terms of the connections by
R/wpa(r) = 28[“1“,,]p" + 211[u|/\aru]pl\ )
(A.4)
Ru’(w) = 20wy’ — 20pa® wpe’ -
Imposing the Vielbein postulate
Ve =0, (A.5)
the two connections are related by
wuab = Fuab + ea”aue,,b , (A.6)
and the curvatures of both connections are now related by
R,.,°(T) = ep“e"bRwab(w) ) (A.7)
If we impose the metric postulate
V,ugpa = 07 (A8)
then the connection can always be written in the form
F;u/p = { ? } + K;wp = Puup(g) + Klu/pa (Ag)
%

where

{ g } = 19" {0u9vo + 00 Guo — oG} - (A.10)
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are the Christoffel symbols and K is the contorsion tensor given in terms of
the torsion tensor by
K,’ = %g”" {Tyor + Toop — Tpo } - (A.11)

If, on top of the metric postulate, we impose the Vielbein postulate, then the
relation between I' and w implies

Wape = wabc(e) + Kabc 5
wabc(e) = _Qabc + cha - Qcab ; (A12)
Qaup® = eq'er”Opuesy -

w(e) is the spin connection related to the Levi-Civita connection I'(g).
A.2 Eleven-dimensional gamma matrices and
spinors

Our 11-dimensional gamma matrices satisfy the anticommutation relations

{f‘@, fi’} = o (A.13)

It is possible to choose (in a way consistent with all the properties that we are
going to enumerate) the eleventh gamma matrix I''? to be

[0 =400 .19, (A.14)

They are in a purely imaginary (i.e. Majorana) representation, i.e.

[i* = 14, (A.15)

We have the property

[Orero =rat, (A.16)

The Dirac-conjugation matrix D is the real antisymmetric matrix
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D =il", (A.17)
and, thus, we have
PP NN
P fin-in -1 = (—1)In/2 (p1> , (A.18)

We choose a charge conjugation matrix equal to the Dirac conjugation matrix

C=D=il", (A.19)
which satisfies
cT=Cct=C1'=-C, (A.20)
and
CIe (¢~ = —197. (A.21)
This last property implies
Ctrtn 1 = (1) (parean ) T (A.22)

The standard definition of the Dirac conjugates and Majorana conjugates and
our specific choice of Dirac and charge conjugation matrices C = D imply that
the Majorana condition

~

A=), (A.23)
is equivalent to requiring that all components of a Majorana spinor are real.
Finally, we have the useful identity

fal...@n . (_1)[n/2]—|—1 Aal...ani,l...gu_nﬁ

= ——— €

(11— n)! b - (A.24)



Appendix B

Eleven-dimensional supergravity
and standard dimensional
reductions

In this appendix we write down some of the supergravity actions (and their
symmetries) which may be useful all along our work. We start writing down
the action for 11-dimensional supergravity and the gauge and supersymmetry
transformations that leave it invariant. After that, we perform a standard
dimensional reduction on a circle and arrive to type IIA supergravity. For
convenience, further Kaluza-Klein reductions to eight and five dimensions are
also included.

B.1 Eleven-dimensional supergravity

The fields of N =1 d = 11 supergravity are the metric, a 3-form potential and
a 32-component Majorana gravitino

~

{@ﬁa,cﬂﬁﬁ,ﬂﬂ} - (B.1)

The field strength for the 3-form potential is

G =40C. (B.2)

which is obviously invariant under the gauge transformation

§C =30%, (B.3)
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where x is a 2-form.

The action for the bosonic fields of the theory is

~ 1 A Aa

where Gy is the 11-dimensional Newton’s constant.
The supersymmetry transformations under which the action (B.4) is invariant
are

L%y,

M

5géﬂ = -

N

Sethy = 2%é+ﬁ(f@ﬁ‘r%—sfﬁ%ﬁﬂ@)@édm, (B.5)

~

0:Caop = 5€Ll70 9y,

up to bilinears in fermions, where €, the parameter of the transformations, is
a Majorana spinor.

B.2 Reduction on a circle: type IIA super-
gravity

In this section we give the dimensional decomposition of the 11-dimensional
fields which leads to type IIA supergravity. The reduction is performed on
a direction, say z, which lives in a circle S'. Of course, all the fields are
independent of this coordinate.

Considering the following Ansatz for the Elfbein
i 1 . a a
0 €%¢ 0 67%¢
the 3-form potential Cjy5

N

C/wp =CW® wp

oy

uvz — Buu ’ (B?)
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gauge parameter X

)2,1“/ = Auu(?) ’ )A(,ug = Au(l) ) (B8)

and the generator of 11-dimensional infinitesimal g.c.t.’s

we find the type IIA supergravity bosonic field content

{gull: ¢, Bul/a C(g)uvp’ C(l)u} . (BlO)

The field strengths for the NS-NS 2-form and the Ramond-Ramond potentials
are

H = 30B,
G = 20Cqy, (B.11)
Gu = 40C3 +4Cq H
which are invariant under the following gauge transformations
0B = 20Aq),
0Cqy = 0Ny, (B.12)

The bosonic action (in the string-frame) is

SHA = 167rGN(10)/d Ox\/g{e [R 4 a¢) + 23|H2}
(B.13)

212,G2 214,G2 — mT 660 60(3)B} y

where Gy = Gy /27 R, with R the radius of compactification!. The
following Ansatz for the fermionic fields and supersymmetry parameter

!Note that we have taken the coupling constant equal to one.
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o=

e=e %, e = €5 (200, — 10N , ), = Bes®T )\, (B.14)

and the decomposition for the gamma matrices

) ) (B.15)
[0 = 4o .19,

we arrive to the type ITA supersymmetry transformation rules for the fermions

5€wu = Vue o érll Hue + z%ed) ZZj ﬁ G(Qn)ru (_Fll)n €,
(B.16)
SA = [Pp+ gqlu H] e+ 5?3070 G2 GO (—Tn)"e,

where € is the parameter of the transformations.

B.3 Reduction on a 3-torus: (ungauged) su-
pergravity in eight dimensions

In chapters 2 and 3 we study some massive/gauged supergravity theories that
arise, respectively, from generalized dimensional reduction of standard (mass-
less) 11-dimensional supergravity on a 3-manifold and from dimensional re-
duction reduction of 11-dimensional massive supergravity on a 3-torus. Both
ways lead to massive/gauged supergravity theories which are deformations of
the massless/ungauged ones, which are recovered when the mass parameters
are set to zero. Therefore, it is convenient to have at hand the action, fields and
(super)symmetry transformation rules for the massless/ungauged theories. In
this section we are going to perform now the standard dimensional reduction
of 11-dimensional supergravity on a 3-torus.

The Kaluza-Klein Ansatz for the Elfbein is

) et entA™, ) et —A™,
(") = 1> (ea") = : (B.17)
0 em' 0 e;™

where A™, = ¢, #A™,. We define the internal metric on 7% by
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Gon = emienj = —emienjéij ) (B.18)

Under global transformations in the internal space

2= (R—l T)mnxn-i-am, REGL(?),R), (B.19)

objects with internal space indices (the internal metric G = (G,,) and the
KK vectors A, = (A™,)) transform as follows:

—

G' = RGR" A = (RHT4,. (B.20)
We know that GL(3,R) can be decomposed in Si(3,R) x Rt x Z, and any
matrix R, forgetting its Z, part (we will focus on GL(3,R)/Zy ~ SI(3,R) x
R*), can therefore be decomposed into

R=cA, A€eSI(3,R), ceR". (B.21)

We want to separate fields that transform under the different factors. First we
define the symmetric SI(3, R) matrix?

M = —G/|det G|*/?, (B.23)

and the scalar

V|det G| = e”. (B.24)

Now, under SI(3,R) only M and fi‘u transform:

M = AMAT, A = (A HTA,, (B.25)

u

2The scalars matrix M it can be expressed in terms of the internal Driebein L,,* as

Mupn = L' Ly 845, (B.22)

where d;; is the internal flat metric. Although in this section we will keep M explicitely, in
general we will introduce the internal Driebein notation in the Ansatz for the Elfbein.
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that is, ffu transforms contravariantly, while under R rescalings only ¢ and
A, transform:

o' =¢p—loge, AL = c/TN. (B.26)

For future convenience, we label the KK vector with an upper index 1, i.e. A'™ .

Using the standard techniques with the above Elfbein Ansatz, and rescaling
the resulting 8-dimensional metric to the Einstein frame

uv = eitp/?’gE e (B27)

one finds

/Vol(T3)d”:f: 7] [R} - /d%\/@ [Rg + 1 (0¢)?

(B.28)
HITr (MM ) — Le e P M, F17

where

F'™ =20A'™ . (B.29)

The kinetic term for M is just an SI(3,R)/SO(3) sigma model.

The fields arising from C’,;,;,g are {Clp, Buym, A>™,,a}. We decompose the
11-dimensional 3-form by identifying objects with flat 11- and 8-dimensional
flat indices (up to factors coming from the rescaling of the metric) as

éabc = ew/zcabca
éabm = ecp/?)Bmaba (B30)

— 6 A2
Camn - 6m'npe(p/ A paa

which implies, for curved components
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ONVP = Clp + 3A1m[uB\m\ vp] T 3€mnpA1m[uA1nvA2pp] + €mnp fAlm[uAl nVAlpp] )

élwm = Bn, pv T 26mnpAln[uAQpV] + €mnp EAln[uAlpu] )
Coomn = €mnpA®? ) + €mnpl AP,
C’mnp = €mnp L -

(B.31)

These fields inherit the following gauge transformations from 11-dimensional

gauge and general coordinate transformations of C:

§C = 30x — 6AL™OL,, + BemppAl™ AIONZP |
5By = 205, — 26y AImONP | (B.32)

JA?™ = gN\2™
In particular we see that this choice implies that these potentials do not trans-

form under reparametrizations of the internal torus §A'™ = dA'™. The gauge-
invariant field strengths of the above fields are

G =40C + 6F'™B,, ,
H,, = 30By, + 3€mn, F1 " AP, (B.33)
F?m = 29A%™

and lead to the following non-trivial Bianchi identities:

0G =2F'™H,, ,
(B.34)
0H,, = %emonlnFQP,

Using now

eim Gjn ka €Emnp = det(efl) €ijk » (B35)
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with det(e ') = e ¥, we get the following decomposition of the 11-dimensional
4-form field strength into the above 8-dimensional field strengths:

a — »2¢/3
Gabcd =e€ v/ Gabcda

~

— 2, m
Gabci - e(p/ €; Hmabc;

A B.36
Gabz’j = 672(‘0/3 €ijk epk [F2pab + gFlpab] ’ ( )

N

— ,—5¢/6
Gaije = €% €45, 0 L .

We can now reduce the kinetic term of the 11-dimensional 3-form. The result
can be combined with the result of the reduction of the Einstein-Hilbert term,
giving

/d“:f: 4] [R_ ﬁ(;?] -
VO](T3) /dSJT\/ |gE| [RE + %TI" (8/\/1/\/1’1)2 + iTI" (8WW71)2

_inmanWUF]n + LHmanHn — ﬁe‘pGQ] y

2-3!

(B.37)

where we have introduced the symmetric SI(2,R)/SO(2) matrix

L R Re()
W= _—— , (B.38)
() \ ge(r) 1
where 7 is the standard complex combination

T =10+ 1e". (B.39)

Let us now reduce the Chern-Simons term also using tangent space indices and
taking into account the definition, in any dimension

eul--'ud — |g‘ eal..-adealul . _eadﬂd . (B40)
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The final result is

S = ftew [ @ay/Iox] {Re+ YT @MM ) 4 {Tr@WW )

—iF'LmanWUF]n + QngleanHn - LethZ ’

2-4!

—wig o ¢ [GGL = 8GH, A" + 12G(F*™ + (F'™) By,
8P H,,, H, B, — 8G0aC — 16H,,(F?™ + (F'™)C]}
(B.41)

where Gx® = Gn"/Vol(T?). The kinetic terms (except for that of C) are
explicitly invariant under Si(2,R) transformations

W = AWAT Fim! = pim (A—l)j A€ Sl(2,R), (B.42)

and SI(3,R) transformations

M = KMKT, Fz’mI:Fin(K—l)nm,

(B.43)
H' = K,"H,, K ¢€S5I3R).

The kinetic term of C' and the Chern-Simons term are not invariant as a matter
of fact. However, let us look into the equations of motion of C'. We can write
them, together with the Bianchi identity, in the following form:

oG =2F'"™H,, (B.44)

where

G'=G, G2=-¢*G-(G. (B.45)

G* transforms as a doublet under SI(2,R) (just like the doublet F*™) and
therefore, the above equation of motion is covariant under Si(2,R) electric-
magnetic duality transformations. The remaining equations of motion are
covariant under SI(2,R) transformations as well. The structures are very sim-
ilar to those of N = 4,d = 4 supergravity (see e.g. Ref. [112]), the obvious
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difference being that in four dimensions we dualize 2-form field strengths and
in eight dimensions we dualize 4-form field strengths. This duality was first de-
scribed in Ref. [95] and is part of a series of electric-magnetic dualities present
in type II theories in any dimension (the 6-dimensional version was studied in
Ref. [13] and a general discussion can be found in Ref. [113]).

The representation for the gamma matrices we use is
r« = I xIs,

(B.46)
[M = Tyxol, [g=4l°T"...T7, T2=1

)

which, together with the following Ansatz for the 11-dimensional gravitino and
supersymmetry parameter

Yo = e#/12 (¢a_%rari)\i)a
i o= e?lPN, (B.47)

— ef‘p/IQC .

>

lead the supersymmetry transformation rules for the 8-dimensional fermionic
fields

Sy = 2Vue+ Lm0, L€ + e?/2T"L™(T 2P — 106 *T*)F},,, €
+36 P0ae 4 ge?/2(L 1P0¢ — 45 ' TP) G, psce
+3s D L™ (L /7 — 60,/ T7°) Hypy i€
+e ? e 'TIL (D P — 106 Y T°) (F2m™ + LF ™ e,

8N = LLLI"IM,lie — 29¢Tie + 1e?/2L " My ' e
+yige?"Tiffe + 55(20;" = T,))L;"H €
+oie el LE(36F —TF) ("™ + tF'™)e

+3e ¢Tidle,
(B.48)
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Let us summarize our results. The full 8-dimensional field content consists of
the following 128 + 128 field components (omitting spacetime indices on the
potentials):

{euaaana(paga Am7 Vm,Bm,C, wu’)"i} ) (B49)

with bosonic field strengths given by Egs. (B.29, B.33) and bosonic action given
by Eq. (B.41). The scalars parametrize SI(3,R)/SO(3) and Si(2,R)/SO(2)
sigma models. The action has the global invariance group Si(3,R) but the
equations of motion are also invariant under SI(2, R) electric-magnetic duality
transformations.

B.4 Reduction on a 6-torus: (ungauged) su-
pergravity in five dimensions

In chapter 3 we study the massive/gauged supergravity theories arising from
dimensional reduction of 11-dimensional massive supergravity on a 6-torus.
It is again convenient to have at hand the explicit expressions for the mass-
less/ungauged theories.

The Kaluza-Klein Ansatz for the Elfbein is

_1 1 ;
e 3%e,* es¥L,'A™,

0 €69 L,
(B.50)
e3%e t —esP A™
(e = ,
0 e"s¥ L;™
and for the 3-form potential
éabc = 6¢Cab¢:a éabi = ew/zLimBmaba
(B.51)
Coij = L™Lj"Vina, Cije = € ?PLM™L"LiPlpy,

which, in curved components, are
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Cup = Cup+

SA™ ) Bl vp) + 3Vinn (u AL Ay + Lp AT (3 AT A

uvm  — Bmuu - 2an [uAnu] + EmnpAnuApl/a

umn  — anu + EmnpApu )
Cmnp = gmnp .

The 11-dimensional 4-form field strength decomposes as

A

Gabcd

A

Gabci

A

Gab 1j

N

Ga 15k

such that the field strengths are

(B.52)
= e%(pGabcda
5
= eg(pLim Hma.bc ’
(B.53)
= 6%@ Liijn [anab + gmnp Fpab] ’
= 62 L L;"LiPOy by
Gvpo = 48[/JCVPU} + 6B [ F" p 5
Hr yvp = 30y B vp) + 3Vin (uf " vp) »
(B.54)

an/w = 28[H|an|u] )

Fm,, = Qa[uAm,,] .

The 5-dimensional supergravity action is therefore



155

- m/d% VIgel {Re+ 3 (09) + 1Tr (MM 1)
_ie<ﬂFm(A)anF"(A) - ﬁeQ‘PGQ + ZL?"eipHmanHn

LM F MM Fyy 4 e MMM MP5 0L s

(B.55)
~ e o € (26 Oy by + 12 H Foglrs
+ 24 Hp0lppgVis + 27 Frn Fpg Vs + 36 Frn0lpgr Bs
4400, 00,,C] ) .
where Gx®) = Gy /Vol(T*), and
Foun = Fon(V) + Lyunp FP(A) . (B.56)

Dualizing now the three-form and two-form fields C' and B,, into the scalar
and vector potentials @ and N™, respectively, as

G = e %G,
) (B.57)
H, = e¥*H,,
where
G = 0a— €™ Oy Lyrs
(B.58)

Hy, = My, [20N™ — 5oe™T5UF, by, + a FM(A)] .

we find that, in terms of the dual fields, action (B.55) reads



156

§ = m/d% V95| {RE + 1 Tr (6/\/[/\/[*1)2 +3 (D) + %672()0@2
—LePF™ (A) My F"(A) — Le ¢ By M H,

— LM F MM Fyy + e MMM MP5 0,0 g

_ﬁ \/EI—E‘ (€™ (27 FrnnFpgVies — 12mnp For (V) F* (A) Vass)

—6% F™(A) Fyp (V)N }
(B.59)



Appendix C

Bianchi classification of
3-dimensional Lie algebras

In this appendix we will discuss the Bianchi classification of three-dimensional
Lie algebras. We will also show how different algebras are related via an-
alytic continuation or group contraction. We compare our results with the
CSO(p, q,r) notation which is often used in the supergravity literature.

We assume that the generators of the three-dimensional Lie group satisfy the
commutation relations (m = 1,2, 3)

[Tma Tn] = fminp 3 (Cl)

with constant structure coefficients f,,,? subject to the Jacobi identity

fm[npfq'r]p =0. (02)

For three-dimensional Lie groups the structure constants have nine components
and can be conveniently parameterized by

Jrn® = €mng@? + 20  ay) - (C.3)

Here QP? is a symmetric matrix. The Jacobi identity implies QP%a, = 0. Having
a, = 0 corresponds to an algebra with traceless structure constants: f,,” = 0.

Of course, Lie algebras are only defined up to changes of basis 75, = R,," T,,.
This can always be used [152,167] to transform QP? into a diagonal form and
aq, to have only one component. We will take QP? = %diag(ql,qQ,qg) and
aq = (a,0,0). The commutation relations then take the form
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[Tl, TQ] = %q?,Tg - CLT2 s [TQ, T3] = %Q1T1 y [Tg, Tl] = %QQTQ + CLTg . (C4)
The different three-dimensional Lie algebras have been classified and are given
in table C. There are 11 different algebras, two of which are a one-parameter
family. Of these, only SO(3) and SO(2,1) are simple, while the rest are all
non-semi-simple [78,152]. Note that for a # 0 the rank of Q can not exceed
two due to the Jacobi identity.

Class | Bianchi | a | (¢1, g2, ¢3) Group CSO(p,q,r)
A I |o0| (0,0,0) U@1)? (0,0,3)
A II 0] (0,0,1) | Heisenberg (1,0,2)
A Vi 0| (0,—-1,1) | I1SO(1,1) (1,1,1)
A VII 0| (0,1,1) 150(2) (2,0,1)
A VIII 01 (1,-1,1) SO(2,1) (2,1,0)
A X1 0| (1,1,1) SO(3) (3,0,0)
B V|1 (0,0,0)

B v 1] (0,0,1)
B |1 (0,-1,1)
B | VL |al(0,-1,1)
B | VIL |a| (0,1,1)

Table C.1: The different three-dimensional Lie algebras in terms of components of their
structure constants and the Bianchi and C'SO(p, ¢, r) classification. Note that there are two
one-parameter families VI, and VII, with special case VIy, VIIy and VI; =III.

We will now show relations between all algebras of Class A, ¢.e. having a = 0.
Our starting point will be SO(3). Its generators take, in our basis with Q =
sdiag(1,1,1), the form
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T1 ==

N[

-1
(C.5)

One can obtain the other algebras with ¢ = 0 from these SO(3) generators
by the analytic continuation and/or contraction. Define the operations A,
(analytic continuation) and C; (contraction) by

Ty = ATy, Ty — ATy, (C.6)

with A = ¢ for A; and A — 0 for C;. Its effect on the parameters of the algebra
reads

Q = jdiag(q:, 32, 93) = Q = jdiag(X’q1, 42, 43) - (C.7)

Thus from SO(3) one can obtain SO(2,1) by an A operation and 1SO(2) by
a C operation. Similarly, the other Class A algebras are related by various
analytic continuations and contractions, as shown in figure C.1.

It is instructive to compare the discussion of the previous paragraph with the
CSO(p,q,r) notation which is often used in the supergravity literature, see
e.g. [89,93]. In our case p+ g+ r = 3 but the CSO(p, q,r) classification of
contracted algebras is valid more generally. The CSO(p, ¢, r) group is a group
contraction of SO(p + r,¢) and can be obtained as follows. One defines the
starting point C'SO(p, q,0) = SO(p, q). The effect of analytic continuation in
one of the p directions is

A, CSO(p,q,7) > CSO(p—1,9+ 1,7), (C.8)

while the effect of contraction is

Cy: CSO(p,q,7) > CSO(p—1,q,7+1). (C.9)

This defines all Class A algebras in terms of the C'SO(p, ¢, ) classification, as
shown in table C. These can all be obtained from the semi-simple algebras
SO(3) or SO(2,1) by various contractions. Using the fact that CSO(p, q,7) ~
CSO(q,p,r) one can see that Class A exhausts the possibilities of distributing
p,q,r subject top+q+1r = 3.
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Heisenberg
(0,0,1)

Figure C.1: Relations between groups associated to the 3D Class A Lie algebras.
The boxes give the groups and the components Q™" = %diag(ql, g2, q3) of the struc-
ture constants. The arrows give the operations: the dashed arrow corresponds to
the reversible analytic continuation, the solid arrow to the irreversible group con-
traction. These analytic continuations and contractions are defined in (C.8) and

(C.9).



Appendix D

Extrema of the scalar potential

In this appendix we extremize the generic potential appearing in the super-
gravity theories which we study in chapters 2 and 3.

The generic potential reads

V= -1 {[Tr(MQ)]” - 2Tr(MQMQ)} . (D.1)

where X is a constant. M is an Sl(n,R)/SO(n) scalar matrix and Q isan xn
mass matrix.

Due to the exponential dependence on the dilaton, there are no extrema with
respect to this field (if X # 0), and therefore it is reasonable to think on the
simplest vacua as those that minimize V with respect to M. From the fact
that the potential is not extremized with respect to the dilaton follows that
the dynamics of this field will be non-trivial.

In order to extremize the potential we must take into account the constraints
on M, namely

M symmetric g1 = Mpp — Mpm =0,
(D.2)
Unit determinant : g =det M —-1=0,
which, together with the Euler-Lagrange equation
oV 0 0
_— + )\1 I + )\2 92 = 0 y (D?))

oM, OM My

provide the solution for M that extremizes the potential. The auxiliary fields
A1 are the Lagrange multipliers associated to the constraints g; . The first
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constraint in (D.2) simply implies symmetricity with respect to the internal
indices in the equations, so we can solve the equations taking into account only
the second constraint and then imposing symmetricity. However, symmetricity
appears automatically in these calculations, such that we must only solve

FEuler — Lagrange ?;/}\Etj\;b) + /\a/\a/tgmn =0, (D4
Unit determinant g=det M —1=0.

where ) is the Lagrange multiplier associated to the constraint g. Then, equa-
tion (D.3) reads

2 Tr (MQ) Q™ — 4 (QMQ)™ + AM™ =0, (D.5)

which is solved for

MOmn = |Q|1/n (Q_l)mn ) (DG)
with

A=2(2—n)|Q", (D.7)

where |Q| is the determinant of the mass matrix. The value that the potential
reaches in these extrema is

Vo= —1in(n—2) QY M. (D.8)

2

Two cases deserve special mention:

e If X = 0 the potential is also extremized with respect to the dilaton, and
therefore the potential in the extrema behaves as a pure cosmological
constant. The sign of the cosmological constant corresponds to anti-de
Sitter space. This is the case of the gauged supergravity theories in
five dimensions we derive from BLOg in chapter 3, in which a vacuum
solution is precisely anti-de Sitter spacetime.

e If n = 2 the value that the potential reaches in the extrema is zero.
This case corresponds to 9-dimensional gauged/massive supergravities
in chapter 3, in which, although the potential is zero, the superpotential
is not and hence domain wall solutions can be found.



Appendix E

Reduction of BLOg theory to
five dimensions

In this appendix we give explicitely the reduction of BLOg theory on a 6-torus
in the direction of the six Killing vectors. The general procedure can be read
from section 3.5 and so we will present the results with no further explanation.

The Ansatz for the Elfbein and 3-form potential are the same as those for the
massless case, given, respectively, in (B.50) and (B.51). The 11-dimensional
4-form field strength decomposes as

A

Gabcd

N

Gabcz’

~

Gabij

Gaijk

Gijri

€39Glaped ;

€39 Li™ Hyn abe ,

es? L™ L™ [Fronab + Loy FPab) (E.1)
e 8% L™ L;" LiP Dy Ly »

e%(p LiijnLkalq [—3QTS€r[mn£PQ]5} ?

where D is the covariant derivative. Note that the term Gijkl is ‘new’ in
our analysis in the sense that it is zero for n < 3. This term gives a new
contribution to the scalar potential.

The new 5-dimensional field strengths are defined as
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Guvpe = 48[u0vpa] + 6B, [qulmpo] — 3By, [uV\anBnlpcf] )

Hypwp = 38[uIBMIWJ] + 3Vin [uFlnvp] )

(E.2)
Frrm = 2004 Vinn| 1] + 2Vip [ Q" Vgl ) »
Flmw, =20, A™,) — Q™" By -
to which we have to add the covariant derivative of the scalars
Dylrmnp = Oulmnp — 3Vimlqu QY Ljnp)yr - (E.3)

The expressions for the massive gauge transformations are the same as those
given in (3.69) and (3.71).

Finally, the d = 5 massive action reads



165

ﬁ/d%\/w {RE +1(0¢)” + 1Tt (DMM 1)
—1e PF (A Mpn F"(A) — 5me 2°G? + 55¢ Y Hy M™ H,

— LM Fy MM T,y + L e MMM MPDL, Dlgyy — V

S o€ {2G Dl by + 12 HonFoplars + 24 Hu Dby Vo

+ 27 FrunFpaVes + 36 FrunDlpgr By + 4 Dy DLy s C
+9Q" [2(GVyn + 4H By 4 2F 1 C) Lpgulrsw

+ 2 (Glynp + 12H Ve + 18F 1 By + 3Dy C) Vi lrs
+ (4Hlpg + 18F i Vg + 9Dy By) Bulrsw

+ 4 (2Hmlnpg + 9FmnVpg + 6DlimnpBg) Vi Viw

+12 (Frnlpar + 2DlnpVr) BoVaw + 3Dlynplyrs By B |
+ 35 Q™ Q™ [9 (4mnplaroVow + 3Vimnlpgulrsw) BBy

+ 8 (WonnlpgyVew + 16 B lnpolarw) Vie By

+ 24 3V Vo Vw + 6Binlp Ve + 120 lpgu) VeaViy

+ 36 Cmmolpqulrsz By 1 1}
where Gnx©® = GxY /Vol(T®), and we have defined

Fon = Fun(V) + Linnp FP(A) . (E.5)

The scalar potential ) is given by
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Vo= -3 {r(MQ)* - 2Ty (MQMQ)
_%etp [(QMQ)™IM™ MPS — 2 QMIM™ QP?] Lonnplyrs

M MMM (3 @) (3l @) }
(E.6)

A consistent truncation of this theory is to keep only the metric and to set all
the fields to zero (the dilaton can be set to a constant). The vacuum solution
is anti-de Sitter spacetime. This is a further indication that these theories are
in fact the gauged supergravities obtained in [73,131].
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