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Chapter 1

Introduction

This thesis deals with four-dimensional Supergravity theories and solutions thereto.
Supergravities are very interesting theories for many reasons. In this introduction we
shall give a short overview of the main motivations for introducing Supersymmetry,
Supergravity and, last but not least, Superstring Theory. We will briefly describe how
supersymmetry might help to address some “problems” of the Standard Model, then
we shortly summarize some basic facts about Superstring Theory and its low energy
limit, Supergravity. In the second part of this introduction we will discuss gaugings
of Supergravity and its implications, focussing on the so-called tensor hierarchy. In
the section 1.3 we will describe schematically how to find supersymmetric solutions
to a given Supergravity theory. The outline of this thesis is given in the last section
of this introduction.

1.1 Supersymmetry, Supergravity and Superstring
Theory

In the last decades of the past century a new theory, Superstring Theory, arose.
There are two basic ingredients of Superstring Theory. First, there is the assumption
that the fundamental constituents of matter are not pointlike particles, but oscillating
one-dimensional objects: strings. The second basic ingredient of Superstring theory is
Supersymmetry (SUSY). We start by giving an overview of some open open questions
which supersymmetry, especially in the framework of Superstring Theory, might help
to answer.

The Standard Model (SM) of elementary particle physics is a spectacularly suc-
cessful theory of the known particles and their electroweak and strong interactions [1].
Experiments have verified its predictions with incredible precision, and all the parti-
cles predicted by this theory have been found apart from the Higgs boson, which is
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expected to be detected soon at particle accelerators, such as e.g. at LHC at CERN.
However, the Standard Model does not explain everything. For example, gravity is
not included in the Standard Model of particle physics. Due to its weakness (at
a typical energy-scale of particle physics, it is about 10−25 times weaker than the
weak force and 10−38 times than the strong nuclear force1) gravity is irrelevant for
describing the interactions of the matter studied by particle physicists.

While the electroweak and strong forces are transmitted by spin-1 particles, gravity
is supposed to be transmitted by a particle which carries spin 2, and in contrast to the
other forces, it acts on every particle. On the one hand, Quantum Field Theory is used
to explain the fundamental interactions at small distances, while on the other hand the
large scale structure of the universe is governed by gravitational interactions described
accurately by Einstein’s General Relativity. Trying to add gravity to the Standard
Model and in particular to combine General Relativity with Quantum Mechanics
leads to inconsistencies [2]. From a theoretical and conceptual point of view this is
fairly unsatisfactory since we assume that there should be a way to describe the four
fundamental forces within the framework of a unique underlying theory. The biggest
problems of the Standard Model, as recognized by its practitioners, are:

• The SM is a Yang-Mills gauge theory, in which the gauge group SU(3)c ×
SU(2)L × U(1)Y is spontaneously broken to SU(3)c × U(1)EM by the non-
vanishing vacuum expectation value (VEV) of a fundamental scalar field, the
Higgs field. Phenomenologically, the mass of the Higgs boson associated with
electroweak symmetry breaking must be in the electroweak range 〈h〉 ∼ 246
GeV. However, the contribution of radiative corrections to the Higgs boson mass
is nonzero, divergent and positive. While the corrections to the electron mass
are themselves proportional to the electron mass and quite small, even if we use
the Planck scale as cut-off the mass of Higgs particles is very sensitive to the
scale.the (mass)2 of the Higgs boson receives radiative corrections from higher-
order terms in perturbation theory and a fine tuning of 28 orders of magnitude
is necessary in order to obtain a phenomenologically viable Higgs mass. This
is possible but very unnatural. This is the so-called hierarchy problem and it is
the main motivation for introducing supersymmetry at the weak scale.

The best studied way of achieving this kind of cancellation of quadratic terms
(also known as the cancellation of the quadratic divergencies) is supersymmetry
(SUSY) [3]. Supersymmetry is a symmetry relating bosons and fermions: it
relates particles with integer spin to those of half-integer spin and vice versa,
thus assigning every particle a “superpartner” with spin differing by 1

2 . This
essentially means that the two basic groups of particles of the Standard Model of
Particle Physics, namely matter constituents (those with half-integer spin) and
intermediate particles, which carry the forces (those whose spin is an integer),
become related to each other. In principle every fermion is accompanied by a

1The exact strengths depend on the particles and energies involved.
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Figure 1.1.1: Left: A Higgs boson dissociating into a virtual fermion-
antifermion pair in the Standard Model. Right: A Higgs boson dissociating
into a virtual sfermion-antisfermion pair. This diagram cancels the one on the
left.

bosonic superpartner with the same mass2 and vice versa for the bosons. For
example, the quarks, which are fermions, are accompanied by squarks, which are
bosons. Similarly, the gluons, being bosons, are accompanied by gluinos, which
are fermions [2]. Thus, supersymmetric theories are characterized by equal
numbers of bosonic and fermionic degrees of freedom. In the supersymmetric
extension of the Standard Model the quadratic corrections to the Higgs boson
mass are automatically canceled to all orders in perturbation theory. This is due
to the contributions of superpartners of ordinary particles. The contributions
from bosonic loops cancel those from the fermionic ones because of an additional
factor -1 arising from Fermi statistics, as shown in Fig.1.1.1.

• The Standard Model cannot describe accurately the unification of the gauge
couplings in the framework of a The Standard Model fails to deliver gauge
coupling unification as envisaged by the paradigm of a Grand Unified Theory
(GUT). Supersymmetric extensions of the Standard Model do a far better job.

The philosophy of Grand Unification is based on a hypothesis: gauge symmetry
increases with energy in the sense that at high energies all (mass)2 become negli-
gible. Bearing in mind the unification of all forces of Nature on a common basis
and, neglecting gravity for the time being, the idea of GUTs is the following:
all known interactions are different branches of a unique interaction associated

2Since at today’s particle accelerators none of the predicted superpartners has been found yet, if
Supersymmetry is a symmetry of Nature, it must be broken (at least at low energy scale) by some
appropriate mechanism.
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to a simple (in the mathematical sense) gauge group.

Low energy =⇒ High energy

SU(3)C ⊗ SU(2)L ⊗ U(1)Y −→ GGUT

g3 g2 g1 −→ gGUT

Table 1.1.1: Unification of gauge couplings in a Grand Unified Theory.

1

1

1

1
α

α

α

α

1

3

2

M MW GUT
log E

Figure 1.1.2: Coupling constant unification in supersymmetric theories [4]. The
constants α3, α2 and α1 correspond to the three factors in SU(3)×SU(2)×U(1).

Although there is a big difference in the values of the coupling constants at
low energies of strong, weak and electromagnetic interactions, a unification is
possible at high energy [3]. The crucial point is the running of the coupling
constants. Their values depend on the energy scale at which they are measured
as well as on the particle content of the theory. After the precise measurement
of the SU(3) × SU(2) × U(1) coupling constants, it has become possible to
test the unification numerically. Using their values measured at low energies
one can extrapolate them to higher energies. It turns out that if one does so
in the framework of the Standard Model of particle physics the three coupling
constants do not meet in one point, whereas when taking the Minimal Super-
symmetric Standard Model (MSSM) they indeed do unify in one point MGUT,
as schematically shown in Fig. 1.1.2 (supposing that the SUSY masses are of
the order of 1 TeV [3]).

• Many attempts have been made to make General Relativity consistent with
Quantum Field Theory, especially within the framework of a theory which com-
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bines gravity with the strong and electroweak interactions. It is interesting
that in some of the most successful attempts Supersymmetry is used, either as
a global symmetry or as a local symmetry, therefore containing Supergravity.
“Super”-symmetry is a special instance of a Lie superalgebra, which roughly
speaking is a Lie algebra containing anticommutators as well as commutators.

The simplest four-dimensional Supersymmetry algebra is the so-called N = 1
SUSY algebra. It is the simplest extension of the Poincaré algebra obtained by
adding one fermionic chiral generator Q, also called supercharge, with commu-
tation relation. The N = 1 SUSY algebra can be written as [5]

{Q, Q̄} = 2σµPµ , (1.1.1)

{Q,Q} = {Q̄, Q̄} = 0 . (1.1.2)

The commutator of two infinitesimal SUSY transformations is

[ξQ, ηQ] = 2ξσµηPµ, (1.1.3)

with anti-commuting, also called Grassmann, parameters ξ and η. In the case
of global SUSY this describes a translation along the vector ξσµη. Choosing
the parameters ξ and η to be local, i.e. functions of a space-time point, one
finds that the right-hand side of Eq. (1.1.3) becomes 2ξ(x)σµη(x)Pµ which can
be understood as a local coordinate transformation. We see that SUSY is not
an internal symmetry, but a spacetime symmetry related through the SUSY
algebra to spacetime translations. The theory which is invariant under a gen-
eral coordinate transformation (GCTs) is General Relativity. Thus, making
SUSY local, one obtains General Relativity, or a supersymmetric generalization
thereof, Supergravity. In this sense Supergravity is the (non-Abelian) gauge
theory of Supersymmetry. After the construction of rigid supersymmetric theo-
ries in the early 1970’s, N = 1 d = 4 Supergravity was constructed in 1976 [6,7].
Note that the SM does include Special Relativity, but does not include General
Relativity or gravity. Therefore we are led to look for extensions of it and it
seems natural to include supersymmetry.

• With the ingredients of the Standard Model of particle physics alone we cannot
understand why its particle content is the way it is. The existence of three
families, for example, is an experimental fact and is built into the Standard
Model. The couplings of the Higgs field to fermions generate masses of quarks
and leptons, however their values are free parameters of the SM. There seems to
be no reason why the mass spectrum of quarks and leptons should stretch over
six orders of magnitude between the masses of the electron and the top quark.

• Other evidence for the existence of Physics Beyond the Standard Model is the
cold dark matter (CDM) of the universe, because the Standard Model does
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not provide a viable candidate for it. Under certain assumptions the lightest
supersymmetric particle (LSP) is neutral and stable and hence provides an
excellent candidate for CDM.

Thus, despite its spectacular success, the Standard Model of particle physics is not
“The End of Science” [2], but may be the low energy limit of some more fundamental
underlying theory.

Apart from the arguments given above, there are also more theoretical motivations
to study supersymmetry. The first to be mentioned is the Haag- Lopuszanski-Sohnius
theorem [8], which states that extended Supersymmetry is the most general extension
of the Poincaré and Yang-Mills-type symmetries of the S-matrix. Another reason why
Supersymmetry is believed to play an important role in particle physics is that it yields
non-renormalization theorems which work to all orders in perturbation theory. This is
due to the fact that many divergences in fermionic and bosonic loop diagrams cancel,
as is shown in Fig. (1.1.1) for the quadratic divergences for the Higgs mass. Non-
renormalization theorems avoid a mixing between low and high energy mass scales,
thus solving the hierarchy problem (see above). Furthermore, supersymmetry often
makes it possible to extrapolate results from the weak-coupling to the strong-coupling
regime, thereby providing information about strongly coupled theories:
Hitherto we restricted ourselves to the N = 1 Supersymmetry algebra. Although this
seems to be the only phenomenologically viable option, it is very interesting to study
extended Supersymmetry algebras, i.e. Supersymmetry algebras with more than one
supercharge (N ≥ 2). They play for example an important role in the study of the
properties of String Theory. The main implication of including N supercharges QA

(A = 1 . . .N) is the modification of the anticommutators Eqs. (1.1.1) and (1.1.2),
which for extended Supersymmtry take the form [5]

{QA, Q̄B} = 2δA
Bσ

µPµ , (1.1.4)

{QA, QB} = ZAB , (1.1.5)

where ZAB is referred to as a central charge, since it commutes with everything.
Extended supersymmetry algebras with central charges have special representations,
so-called short multiplets. The states in these representations, the BPS states, are
annihilated by some of the generators of the supersymmetry algebra. They are charac-
terized by the fact that they saturate the Bogomolny’i bound M ≤ |Z|, an inequality
between its mass and its charge. Even though both mass and charge may undergo
renormalization, this definite mass-charge relationship for BPS states is expected to
be protected from quantum corrections, since it is a consequence of the supersymme-
try algebra assuming that the full theory is supersymmetric.3 If it were violated, then
new states would appear out of nowhere and quantum corrections are not expected

3Thus the equality of mass and charge of BPS states is protected against quantum corrections,
but mass and charge separately may receive corrections, which depend on the particular theory one
is dealing with, especially on the number of supercharges.
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to produce these new degrees of freedom. This property of BPS states means that
supersymmetry plays a crucial role in the theory of supersymmetric black holes. It
turns out that unbroken supersymmetry is an important ingredient in the stringy cal-
culation of the black hole entropy by the counting of microstates of supersymmetric
black holes.

String Theory originally arose as an attempt to understand the strong nuclear
force between hadrons. It turns out that if one wants String Theory to include
also spacetime fermions, one needs to include Supersymmetry, which leads to Super-
string Theory. According to String Theory, different kinds of particles (with different
charges, masses ...) correspond to the same fundamental object, the string, in dif-
ferent excitation modes. Since the string’s length is of the order of the Planck scale
(10−35m) they are far too small to be identified as extended objects at today’s parti-
cle colliders. During the First Superstring Revolution in the 1980s it was found that
there are actually five different spacetime supersymmetric Superstring Theories, each
of them living in ten spacetime-dimensions: type I, type IIA, type IIB, heterotic
SO(32) and heterotic E8 × E8, which, as it was discovered later, are related to each
other by dualities (see below). All these five theories live in ten spacetime dimensions
and seem to be just special limits of a single underlying eleven-dimensional theory
called M-Theory. This immediately leads to the idea of compactification, in order to
make contact with our four-dimensional world.

One of the problems arising in String Theory is the so-called vacuum selection
problem: different compactifications of Superstring Theory down to four dimensions
may lead to very different physics , because the spectrum (and gauge group) of the
four-dimensional theory depends on the choice of six-dimensional internal manifold.
Supersymmetric compactifications provide a promising setting for obtaining realistic
supersymmetric models of particle physics: by compactifying down to four spacetime
dimensions, one might hope to make contact with particle physics phenomenology.

Figure 1.1.3:
Worldline vs world-sheet

Figure 1.1.4:
g = 1 surface

Figure 1.1.5:
g = 2 surface

There is only one fundamental (dimensionful) constant in String Theory, which
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governs the scale of the massive string excitations. This constant can be expressed
in terms of the Regge slope parameter α′ (which has mass dimension −2), the string
tension (energy per unit length) T = 1

2πα′ or in terms of the string length scale
l2s = 2α′.

Massive string excitations have masses of the order M ∼ 1√
α′

which are typically

of the order of the Planck mass. By definition, the low-energy limit of string theory
only involves processes at an energy scale E far below the Planck scale, i.e.

E2α′ ≪ 1. (1.1.6)

This means that in the low-energy approximation one can restrict the analysis to
the massless modes only and describe them by an effective theory. The massive
states of String Theory become important only at energy scales that are currently
out of reach. The low-energy effective theories of spacetime supersymmetric String
Theories always contain in their spectra a massless spin-2 particle (together with its
corresponding spin-3/2 superpartner) and consistency requires that these theories are
Supergravity (SUGRA) theories. As indicated above this is a good approximation, as
long as one considers processes with energies far below the Planck mass. At energy
scales much lower than the Planck scale, that is at length scales much larger than the
string length ls =

√
α′, the string behaves like a pointlike particle. Effects due to the

extension of the string are hidden in stringy α′-corrections.
Superstring Theory is well suited for constructing a quantum theory that unifies

the description of gravity and the other fundamental forces of nature. One of the most
important feature of Superstring Theory is that gravity is automatically incorporated
in the theory. The theory gets modified at very short distances/high energies but
at ordinary distances and energies gravity is present in exactly the form proposed
by Einstein. While ordinary Quantum Field Theory does not seem to be compatible
with gravity, String Theory requires gravity.

Supergravity plays for many reasons a key role in our understanding of String
Theory. It is very difficult to study full string theories, but studying its low-energy
effective theory, i.e. Supergravity, can give insight in concepts such as string dualities,
which for instance can relate strong-coupling and weak-coupling regimes in String
Theory.

All five String Theories contain a massless scalar field, the dilaton φ, whose vac-
uum expectation value φ0 = 〈φ〉 determines the string coupling constant gS = eφ0 .
Just as Feynman diagrams in Quantum Electro Dynamics, in Superstring Theory one
can do a power series expansion in the dimension-less string coupling constant. The
String Theory Feynman diagram is represented by a 2-dimensional Riemann surface
(see Fig.1.1.3), i.e. for oriented closed strinsg an orientable and closed surface of genus
g (a surface with g handles), which comes along with an factor g2g

S [4]. As an ex-
ample the world-sheet in Fig.1.1.4 is of genus 1, the one in Fig.1.1.5 is of genus 2.
However, there is a priori no reason why the string coupling constant gS should be
small. For this reason a lot of effort is made to understand non-perturbative aspects
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of string theory. After the discovery of dualities in the last decade of the past cen-
tury (Second Superstring Revolution) it was shown that Superstring Theory contains,
apart from the 1-dimensional strings, also higher-dimensional objects with p ≥ 2
spacial dimensions, referred to as p-branes. Of special interest is a subclass thereof,
the so-called D-branes: p-branes on which open strings can end. One of the most
important applications of D-brane physics is the counting of black hole microstates.
According to the Bekenstein-Hawking formula the entropy of a (classical) black hole
is given by SBH = 1

4A, where A denotes the area of the black hole event horizon.
The Bekenstein-Hawking entropy plays the role of the macroscopic or thermodynam-
ical entropy. Considering, then, the macroscopic Supergravity description of a black
hole to be an effective description of an underlying microscopic quantum theory, the
macroscopic Bekenstein-Hawking entropy should match the microscopic entropy

SBH = Smicro, (1.1.7)

where the microscopic or statistical entropy is given by

Smicro = lnN(M,J,Q), (1.1.8)

and where N is the number of different microstates of a black hole characterized by
the macroscopic variables M , J and Q.

D-brane techniques can be used to count the black hole microstates and it turns
out that the macroscopic and microscpic entropies of supersymmetric or “near super-
symmetric” black holes indeed agree. This was done first for a class of 5-dimensional
extremal black holes by Strominger and Vafa [9] and later on for other kinds of black
holes.

In this thesis we deal with different kinds of Supergravity theories in four spacetime
dimensions. Some, but not all d-dimensional Supergravities can be obtained as the
low-energy limit of some Superstring Theory compactified on a (10− d)-dimensional
manifold (we will discuss this in some more detail in Section 1.2). But there is also
another point of view, not taking into account any relation to (higher-dimensional)
String Theory, to study Supergravity for its own sake. The basic ingredients of Su-
pergravity are General Relativity (GR) and Supersymmetry. General Relativity is a
purely bosonic theory. Making GR supersymmetric then means introducing fermionic,
anti-commuting coordinates, thus generalizing the standard bosonic spacetime to su-
perspacetime. Depending on the dimension of the spacetime, one can introduce dif-
ferent kinds of Supergravity theories.

1.2 Gauged Supergravity and the p-form hierarchy

Gauged Supergravities can be considered as deformations of the ungauged theories.
While the undeformed theories by definition do no include a potential for the scalar
fields nor a cosmological constant, gauging Supergravity introduces a scalar potential
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and the theory is no longer determined by its kinetic terms only. The gauge coupling
constant plays the role of the deformation parameter. However, there are also other
types of deformations, which are not due to gaugings. In N = 1 Supergravity, for
example, one can always introduce a superpotential, independently of making some
global symmetry group local or not. Another way to deform supergravities are massive
deformations, see e..g. Romans’ massive N = 2A d = 10 Supergravity [10].

There are two ways of obtaining gauged Supergravity from the ungauged theory:
on the one hand one can consider the higher dimensional origin of gaugings by com-
pactification of ten or eleven-dimensional Supergravity on manifolds with fluxes; or, on
the other hand, one can directly deform the four-dimensional theory. If, for example,
we compactify ten-dimensional Supergravity on a six-torus T 6, we obtain maximal
N = 8 Supergravity in four dimensions (see Chapter 2.2.1). Note that compactifica-
tion on a torus does not break any supersymmetry, such that the lower-dimensional
theories are maximally supersymmetric. If one compactifies on a manifold which al-
lows for some of the higher dimensional p-form fields to acquire background fluxes
or a manifold provided with torsion etc., one generically ends up with a gauged Su-
pergravity theory in lower dimensions. In this thesis we will focus our attention on
the first approach and shall discuss how to obtain the gauged version of a given four-
dimensional theory by promoting some subgroup G of the global symmetry group H
to a local symmetry.

The first examples of gauged Supergravity were constructed in the early 1980’s,
and recent research has shown that gauged Supergravities can be constructed in a
systematic way by means of the so-called embedding tensor formalism [11]. This
formalism is independent of the dimension and the number of supersymmetries of the
respective theory. Furthermore, from the higher-dimensional point of view, it allows
us to encode some, but not obligatorily all [12], the flux/deformation parameters in
a single tensorial object, the embedding tensor [13].

We will denote collectively the electric and magnetic vector fields by the symplec-
tic vector AM

µ, because the global symmetry group G will always act on AM as a
subgroup of Sp(2n,R), where n denotes the number of (electric) vector fields appear-
ing in the theory, even though G can be a larger group than Sp(2n,R) and/or not be
contained in it (see Section 3.2.1). The fact that one can always dualize the electric
vectors appearing in the standard formulation of four-dimensional Supergravity into
magnetic vectors, is a property of the four-dimensional theory. We will see in the
following chapters how this works in detail. These Abelian vector fields are invariant
under the Abelian gauge transformations

δΛA
M

µ = −∂µΛM , (1.2.1)

where ΛM (x) is a symplectic vector of local gauge parameters.

As mentioned before, we are going to construct gauged Supergravity as a deforma-
tion of the ungauged theory, thus our starting point will be the ungauged theory with
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global symmetry group G. The generators TA of the Lie algebra g of the symmetry
group G satisfy the commutation relations

[TA, TB] = −fAB
CTC . (1.2.2)

where fAB
C are the structure constants of g.

Under this non-Abelian global symmetry the vectors of the theory transform as

δαA
M = αATA N

MAN , (1.2.3)

where TA M
N are the components of the matrices TA, TA M

N = (TA)M
N , that gener-

ate the Lie algebra g.
In order to gauge the symmetry group G we must promote the global parameters

αA to arbitrary spacetime functions αA(x) and make the theory invariant under these
new transformations. This is achieved by identifying these arbitrary functions with a
subset of the (Abelian) gauge parameters of the vector fields, ΛM and subsequently
using the corresponding vectors as gauge fields. This identification is conveniently
made through the use of the embedding tensor θA

M [11, 14–17]

αA(x) ≡ ΛM (x)ϑM
A . (1.2.4)

The embedding tensor approach provides a systematic way to study the most
general gaugings of a Supergravity theory and is a powerful technique to construct
gauged Supergravity theories for different gauge groups in a unified way. The embed-
ding tensor indicates what vector fields (electric or magnetic) gauge what symmetry.,
allowing us to treat all vector fields, gauged or not, on the same footing. Symplec-
tic invariance can, thus, be formally preserved after the gauging. This is one of the
main virtues of this formalism. The choice of the embedding tensor θA

M determines
completely a particular gauging of the theory, i.e. it determines G.

The embedding tensor is not completely arbitrary but must satisfy a number of
constraints which guarantee the consistency of the theory. In the case discussed in
this thesis, namely the four-dimensional one, the embedding tensor has to fullfill
three different constraints: two quadratic constraints and a linear one, the so-called
representation constraint. In the gauged theory, we then have to replace partial
derivatives by covariant derivatives, schematically:

d −→ D = d+ Γ(TA)θA
MAM . (1.2.5)

Here no gauge coupling constant g appears explicitly, but it is contained in the
embedding tensor, taking into account that different choices of the embedding tensor
correspond to different gaugings and thus describing in a natural and unified way
multiple gauge groups.

When constructing a matter-coupled Supergravity theory one usually concentrates
on the lowest rank fields that describe the physical states of the theory in question.
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Generically the bosonic states are represented by the graviton, and a set of matter
fields that generically are differential forms of low rank (d−2)/2 ≥ p ≥ 0 for d even and
(d − 3)/2 ≥ p ≥ 0 for d odd, respectively. To describe the coupling of Supergravity
to branes one is naturally led to consider the dual (d − p − 2)-form potentials as
well. For p 6= 0 and at leading order, the construction of the dual potentials is
rather straightforward as the original low-rank differential form fields always occur
via their curvatures. However, it might not always be possible to eliminate the original
potentials from the action in favour of their (magnetic) duals, since the bosonic gauge
transformations of the (d−p−2)-forms might become rather complicated and involve
the gauge transformations of their dual p-form fields. The first example for this
was found in [18], where the 3-form potential of eleven-dimensional Supergravity was
dualized into a 6-form potential, which turned out to transform under the gauge
transformations of the 3-form. In [19] a democratic formulation of ten-dimensional
type II Supergravity was achieved, i.e. a formulation of IIA/B Supergravity where
all R-R potentials C(p) (p = 0 . . . 9) are treated in a unified way (p odd in case of IIA
and p even for IIB, respectively). By virtue of the Bianchi identities of the curvatures
of the electric and magnetic potentials, the second-order equations of motion can be
derived as integrability conditions of the duality relations:

Bianchi identities & duality relations ⇔ equations of motion . (1.2.6)

For instance, in the case of IIA/IIB Supergravity the supersymmetry algebra can
be realized on all p-forms (0 ≤ p ≤ 10) with p odd (IIA) or p even (IIB). The
Bianchi identities and duality relations then give all equations of motion (except for
the Einstein equation). This is often referred to as the democratic formulation of
IIA/IIB Supergravity [19].

The idea of deriving the equations of motion of Supergravity from an underlying set
of Bianchi identities and first-order differential equations has been pursued in several
contexts in the Supergravity literature. It already occurs in the work of [18] for the
case of maximal Supergravity including massive IIA Supergravity [20]. Similar duality
relations are natural in the E11-approach to Supergravity [21–24]. Duality relations
also play an important role in encoding the integrability of a system, for instance in
maximal two-dimensional Supergravity [25].
The most important physical application of introducing all higher degree dual po-
tentials is related to the fact that, just as pointlike particles naturally couple to 1-
form potentials), higher degree p-forms couple naturally to objects with p− 1 spatial
dimensions. Part of this thesis is dedicated to the study of string-solutions of four-
dimensional N = 2 Supergravity [26] [27] and their coupling to 2-form potentials,
which are obtained when dualizing the scalars of the theory [28]. We will show how,
once the supersymmetry transformation law for the 2-form is known, to construct the
most general space-time supersymmetric worldsheet-action for the supersymmetric
string solutions. In four dimensions, apart from 2-forms, one can construct 3 and
4-form potentials, to which domain-walls and spacetime-filling branes, respectively,
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couple.

Before discussing the introduction of all possible p-form potentials in four dimensions,
let us consider the bosonic fields which appear in the standard formulation of four-
dimensional Supergravity. The basic constituent is the Supergravity multiplet, which
contains at least the graviton and a certain number N of gravitini (this is what

we will refer to as N -extended Supergravity). Further it contains N(N−1)
2 vectors

(graviphotons) for N ≥ 2 and a number of scalars for N ≥ 4. The gravitino has spin
3/2 and plays the role of the gauge field for Supersymmetry. The maximal number
of gravitini depends on the dimension of space-time. In 4 = 3 + 1 dimensions one can
have N = 1 upto N = 8 gravitinos, for larger values of N one would need particles
with spin larger than 2 and no consistent interacting theories exist for these cases [29].
The field content of four-dimensional Supergravity multiplets for different numbers of
supersymmetries is given in table 1.2.1.

A Supergravity whose field content is contained exclusively in the gravity multiplet,
is referred to as pure or minimal Supergravity. Further, for N ≤ 4, one can couple
different kinds of matter to the pure Supergravity theories. The kind of matter
which can be added depends on the number of supersymmetries. In Table 1.2.2
possible mattermultiplets are summarized for four-dimensional Supergravities. V
denotes possible vector multiplets, S multiplets whose bosonic content is only scalar
fields.

Vector multiplets are those containing s = 1 fields (vectors) as highest spin fields,
and the multiplets for N ≤ 2 with spin ≤ 1

2 are called hypermultiplets for N = 2 and
chiral multiplets for N = 1, respectively. Their field contents are given in Table 1.2.3.
An arbitrary number of these matter multiplets can be used for rigid supersymmetry
or can be added to the gravity multiplet in local supersymmetry (Supergravity).

The vectors in the matter multiplets and those possibly contained in the gravity
multiplet can be used to gauge a (possibly non-Abelian) global symmetry group. As
can be seen in Table 1.2.1, apart from N = 1 there is always at least one vector in the
gravity supermultiplet, which means that for N ≥ 2 one can gauge pure Supergravity,
i.e. without coupling it to additional ”external” matter.

One of the aims of this thesis is to study the extension of the set of standard bosonic
fields of four-dimensional Supergravity. We are going to show that we can consistently
add dual magnetic vectors, 2-forms, 3-forms and 4-forms to the standard set of bosonic
fields, which we were discussing in the previous paragraph. By “consistently” we
mean that we can define supersymmetry transformations for them such that the local
supersymmetry algebra closes on-shell. First we are going to consider the ungauged
theory. The inclusion of magnetic vector fields and 2-forms B was worked out in
detail in [28] and [30] for N = 2 and N = 1 ungauged Supergravity, respectively. It
turns out that gauging the theory leads to an entanglement between higher degree
forms, which does not appear in the ungauged case. Although 3- and 4-form fields
need not appear in the ungauged theory, since for vanishing coupling constant the
hierarchy can be consistently truncated, they appear naturally in the gauged theory.
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s N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 8

2 1 1 1 1 1 1 1
3
2 1 2 3 4 5 6 8
1 1 3 6 10 16 28
1
2 1 4 11 26 56
0 2 10 30 70

Table 1.2.1: Pure Supergravity multiplets in four dimensions according to spin s

susy 32 24 20 16 12 8 4

M N = 8 N = 6 N = 5
N = 4

V
N = 3

V
N = 2
V,S

N = 1
V,S

Table 1.2.2: Possible types of matter multiplets in four-dimensional Supergravity

s N = 1 N = 2 N = 3, 4

1 1 1 1
1
2 1 2 4
0 2 6

s N = 1 N = 2

1
2 1 2
0 2 4

Table 1.2.3: Field content of matter multiplets in four dimensions
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Our starting point will be the generalization of electromagnetic duality in four di-
mensions. While the standard electric vector fields appear in the action and carry
propagating degrees of freedom, the dual magnetic vectors are defined as their on-shell
Hodge duals. Let us consider the magnetic vector fields in the ungauged theory first.

The bosonic action of four-dimensional Supergravity generically takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗

+ℑmMΛΣF
Λ µνFΣ

µν −ℜeMΛΣF
Λ µν⋆FΣ

µν

]

,

(1.2.7)

where Zi denote the complex scalars of the theory which parameterize a Kähler
manifold4 and

⋆FΣ
µν ≡ 1

2
√

|g|
ǫµνρσF

Σ ρσ . (1.2.8)

The metric on the Kähler manifold is denoted by Gij∗ , where the index (j∗) i is a
(anti-)holomorphic index. The field strengths of the nV (Abelian) vectors AΛ

µ (Λ =
1 . . . nV ) are FΛ = dAΛ. The scalars couple to the vectors via some scalar-dependent
complex matrix MΛΣ(Zi, Z∗i∗). Moreover, the matrix ℑmMΛΣ must be negative-
definite to ensure the right sign of the vector kinetic term. Note that for constant
MΛΣ the last term in (1.2.7) is just a total derivative, while for MΛΣ(Zi, Z∗ i∗) a
function of the scalars, it describes a non-trivial coupling of the scalars to the vector
fields.

The field strengths FΛ of the vector potentials AΛ satisfy the Bianchi identity

⋆BΛ ≡ −dFΛ = 0 , (1.2.9)

and the equations of motion have the form

⋆EΛ ≡ −dFΛ , (1.2.10)

where we defined the dual field strength FΛ

FΛ ≡ 1

4
√

|g|
δS

δ ⋆ FΛ
. (1.2.11)

The Maxwell equations can be interpreted as Bianchi identities for the dual field
strengths, FΛ, ensuring the local existence of n dual vector potentials AΛ such that

FΛ = dAΛ . (1.2.12)

4For N = 1 the scalars parameterize a Kähler-Hodge manifold, for N = 2 a special Kähler

manifold. This will be discussed in detail in Chapter 2.
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It is convenient to combine the standard, electric, field strengths and potentials
and their duals Eq. (1.2.11) into a single 2nV -dimensional symplectic vector

FM ≡
(

FΛ

FΛ

)

= dAM ≡ d
(

AΛ

AΛ

)

, (1.2.13)

which allows us to write the Maxwell equations and Bianchi identities in the compact
form

dFM = 0. (1.2.14)

This set of extended equations of motion (Maxwell equations plus Bianchi identi-
ties) is invariant under general linear transformations

(

FΛ

FΛ

)′
=

(

AΣ
Λ BΣΛ

CΣΛ DΣ
Λ

)(

FΣ

FΣ

)

. (1.2.15)

However, consistency with the definition of FΛ Eq. (1.2.11) requires that the kinetic
matrix M appearing in the action Eq. (1.2.7) transforms at the same time and then
one finds that the Maxwell equations and Bianchi identities are formally invariant
under the transformations

F ′M ≡MN
MFN , (1.2.16)

with M ∈ Sp(2nV ,R) [31].

Note that the fact, that the vectorsAΛ and AΛ appear in pairs is a special property
of four-dimensional Supergravity, since only in four dimensions are vectors dual to
vectors. In general in even dimensions d = 2k there is a duality between (k−1)-forms
and (k − 1)-forms.

In the gauged theory the story is slightly more complicated. It turns out that for
general gaugings, i.e. using electric as well as magnetic vectors as gauge fields, one
needs to introduce a set of 2-forms in FM , in order to have a covariantly transforming
field strength for the vector fields

FM = dAM + 1
2X[NP ]

MAN ∧AP + ZMABA , (1.2.17)

where XM denote the generators of the gauge group and ZMA is essentially the
embedding tensor. It can be shown then that in order to have a covariant field
strength for the 2-form fields one needs to introduce 3-forms and so on. This bootstrap
procedure ends with the introduction of the top-form potentials. In this way one
obtains a complete tensor-hierarchy, i.e. a set of p-form fields, with 1 ≤ p ≤ 4,
which realizes an off-shell algebra of bosonic gauge transformations. Schematically
the covariant field strengths F(p+1) of the p-form field A(p) take the form

F(p+1) = DA(p) + · · ·+ Y(p+1)A(p+1) (1.2.18)
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where the constants Y(p+1) depend on the embedding tensor, showing clearly that in
the ungauged theory the hierarchy decouples.

The only input required for this construction is the number of electric p ≥ 1-form
potentials, the global symmetries of the theory and the representations of this group
under which the p-forms transform. Changing these data leads to different theories
that can be seen as different realizations of the low-rank sector of the same tensor
hierarchy.

The magnetic (d − p − 2)-forms do not introduce any new degrees of freedom.
As we just saw in the example of the vector field strength, this is ensured by first-
order duality-relations, which generically relate the electric p-forms to the magnetic
(d− p− 2)-forms.

Dual potentials are not only relevant to describe the coupling to branes but play
also a crucial role in the construction of a supersymmetric action for certain gauged
Supergravity theories.

Although usually supersymmetric actions involve, apart from the metric, only
electric potentials, using the embedding tensor approach, we are going to show that
the action must also contain a dual 2-form potential5, if one wants to consider a
magnetic gauging in d = 4, i.e. a gauging involving a magnetic vector field. In general
dimensions, p-form potentials of even higher rank are introduced. For instance, the
action corresponding to certain gaugings in d = 6 requires magnetic 2-form and 3-
form potentials [32]. This leads to the notion of a tensor hierarchy, which consists
of a system of potentials of all degrees (p = 1, . . . , d) and their respective curvatures,
which are related by Bianchi identities [17, 33].

1.3 Supersymmetric configurations and solutions of
Supergravity

Supersymmetric classical solutions of Supergravity theories have played, and continue
to play, a key role in many of the most important developments in string theory.
They are an important tool in the current research on many topics in superstring
theory, ranging from the AdS/CFT correspondence to stringy black-hole physics.
Not all locally supersymmetric solutions are necessarily interesting or need be useful
in the end, but it is clearly important to find and classify them all for every possible
Supergravity theory.

This goal has been pursued and reached in several lower-dimensional theories and
families of theories. The pioneering work was done in 1983 by Tod [34] in pure,
ungauged, N = 2, d = 4 Supergravity. It was subsequently extended to the gauged
case in Ref. [35], to include the coupling to general (ungauged) vector multiplets and
hypermultiplets in Refs. [26] and [27], respectively and some partial results on the

5In the context of N = 2, d = 4 Supergravity it has been shown how the local supersymmetry
algebra can be closed on some of these dual 2-form fields [28].
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theory with gauged vector multiplets have been recently obtained [36]. Research on
pure N = 4, d = 4 Supergravity was started in Ref. [37] and completed in Ref. [38].

In d = 5, the minimal N = 1 (sometimes referred as N = 2) theory was worked
out in Ref. [39] and the results were extended to the gauged case in Ref. [40]. The
coupling to an arbitrary number of vector multiplets and their Abelian gaugings was
considered in Refs. [41, 42]6. The inclusion of (ungauged) hypermultiplets was con-
sidered in [45]7 and the extension to the most general gaugings with vector multiplets
and hypermultiplets was worked out in [49].

The minimal d = 6 SUGRA was dealt with in Refs. [50, 51], some gaugings were
considered in Ref. [52] and the coupling to hypermultiplets was fully solved in Ref. [53].

All these works are essentially based on the method pioneered by Tod and made
more accessable by Gauntlett et al. in Ref. [39] using non-4d-specific techniques, which
we will use here. An alternative method is that of spinorial geometry, developed in
Ref. [54]. Some further works on this subject in 4 or higher dimensions are Refs. [55].

Another motivation to study supersymmetric solutions of Supergravity theories
is their importance for black hole thermodynamics: a microscopic interpretation of
black hole entropy in String Theory is best understood for supersymmetric black holes,
and various kinds of supersymmetric solutions have transformed our understanding
of quantum field theory via the AdS/CFT correspondence and its generalizations.

Let us denote symbolically by B and F the bosonic and fermionic fields of the the-
ory, respectively. Then, the Supersymmetry transformations of the fields are schemat-
ically of the form

δǫB ∼ ǭF (1.3.1)

δǫF ∼ ∂ǫ+Bǫ, (1.3.2)

where ǫ(x) denotes a spinorial parameter. A classical bosonic configuration (i.e. a
configuration B = {metric gµν , vectors Aµ, scalars φ and possibly higher-degree form
fields}, depending on the specific Supergravity theory, with vanishing fermionic fields
F = 0) is invariant under the infinitesimal supersymmetry transformation generated
by ǫ if it satisfies

δǫF ∼ ∂ǫ+Bǫ = 0. (1.3.3)

These equations are called Killing Spinor Equations (KSEs) and an ǫ(x) satisfying
the KSEs is accordingly called a Killing spinor. In Supergravities (which may have
one or more than one supercharge, N ≥ 1) a configuration is called supersymmetric
if there is at least one Killing spinor.

It is essential for the understanding of what follows to distinguish between super-
symmetric configurations and supersymmetric solutions of a theory. A set of bosonic
fields which admits a Killing spinor is called a supersymmetric configuration and may

6Previous work on these theories can be found in Refs. [43, 44].
7Previous partial results on that problem were presented in Refs. [46–48].
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not fullfill the equations of motion. By supersymmetric solution we mean a super-
symmetric bosonic field configuration, that leaves unbroken at least some amount
of supersymmetry and fullfills the bosonic equations of motion. We will see what
Supersymmetry can tell about solutions of the field equations and how it restricts
the number of independent equations of motion, in the sense that once dealing with
a supersymmetric configuration one does not have to impose all of the equations of
motion, but only a subset of them, in order to be sure that all the equations of motion
are satisfied.

Therefore, to achieve our goal of finding all the supersymmetric solutions of a
given Supergravity theory, it is in general much simpler to start with finding super-
symmetric configurations, since the equations of motion are second order differential
equations, whereas the KSEs are only of first order. Further, the supersymmetric
field configurations satisfy the so-called Killing Spinor Identities (KSIs), which can
be derived from the integrability conditions of the KSEs. These equations relate the
different (bosonic) equations of motion and their content is highly non-trivial, even
if each term vanishes separately on-shell. Since in this way they reduce the number
of independent equations that need to be imposed, they are of great avail in finding
supersymmetric solutions. This is reflected by the fact that supersymmetric solu-
tions are generically given in terms of a very small number of independent functions.
The general Killing Spinor Identities, which the bosonic equations of motion have to
satisfy in supersymmetric theories if the solutions admit Killing spinors, were found
in [56] and applied to the problem of finding the minimal set of equations of motion
in [57].

The Killing spinor identities can be derived from the supersymmetry variation of
the action in the following way [57]: demanding invariance of a generic action S under
supersymmetry transformations means

δǫS =

∫

ddx(δBSδǫB + δFSδǫF ) + surface terms = 0 , (1.3.4)

where S,B = δBS = δS
δB is the equation of motion of the fermion field B and analo-

gously for the fermions. Summation over the indices F , B is understood. Now we
vary this equation w.r.t. the fermionic fields

{S,BF2 δǫB + S,B (δǫB),F2 +S,F1F2 δǫF1 + S,F1 (δǫF ),F2 }|F=0 = 0. (1.3.5)

Since we are only interested in bosonic backgrounds, we are now going to set the
fermionic fields to zero, F = 0. The bosonic equations of motion S,B and the super-
symmetry variations of the fermions δǫF are necessarily even in fermions and thus
vanish for vanishing fermions, but on the first and the fourth term in Eq. (1.3.5) we
have to impose:

S,BF2 |F=0 = 0, (δǫF ),F2 = 0 . (1.3.6)

This leaves us with
{S,B (δǫB),F2 +S,F1F2 δǫF1}|F=0 = 0. (1.3.7)
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These equations are valid for arbitrary values of the bosonic fields and the super-
symmetry parameter ǫ. We are interested in supersymmetric bosonic configurations,
i.e. field configurations which admit (at least) one Killing spinor κ. In our schematic
way of writing the KSE, Eq. (1.3.3), is written as

δκF |F=0 = 0 , (1.3.8)

which implies tha a supersymmetric configuration always satisfies the Killing spinor
identities (KSIs)

S,B (δκB),F |F=0 = 0. (1.3.9)

Written in this form it is easy to see that the KSIs relate the bosonic equations of
motion of the theory, as already mentioned in the previous paragraph. In this sense
the KSIs help us to remarkably reduce the amount of work one needs to do in order to
verify that a supersymmetric configuration is also a solution to the classical equations
of motion. Note that while Eq. (1.3.4) relates bosonic equations of motion to fermionic
ones, the KSIs relate bosonic equations of motion to bosonic ones.

Observe that the Bianchi identities (involving vector field strengths, in the case
treated in this thesis, or p+ 1-form field strengths in the general case) do not appear
in the Killing spinor identities because the procedure used to derive them assumes the
existence of the potentials and, therefore, the vanishing of the Bianchi identities. Since
it is convenient to treat Maxwell equations and Bianchi identities on equal footing
to preserve the electric-magnetic dualities of the theory, it is sometimes convenient
to have the duality-covariant version of the above KSIs. These can be found by
performing duality rotations of the above identities or from the integrability conditions
of the KSEs.

How to find supersymmetric solutions?

Since one of the purposes of this thesis is to systematically find all the super-
symmetric solutions of d = 4 Supergravity, we should say a few words about what
we mean by ”finding solutions” and how we are going to proceed in order to find
all of them. Finding supersymmetric configurations of the theory means expressing
the bosonic fields of the theory in terms of a minimal set of independent variables
and/or structures in such a way that they admit Killing spinors, i.e. the Killing spinor
equations are sastisfied for at least one Killing spinor whose existence is to be proved.
The next step is to check which of these field configurations fullfill the equations of
motions, viz. to find supersymmetric solutions.

The basic strategy to find supersymmetric solutions of a given Supergravity theory
is to assume the existence of at least one Killing spinor, and to derive consistency
conditions (necessary conditions) in terms of bilinears constructed out of the Killing
spinor(s). In more detail:8

8We follow the procedure of [58], which we rewrite here for the sake of completeness.
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I Translate the Killing spinor equations and KSIs into tensorial equations.

Depending on the theory under consideration out of the Killing spinor ǫ one can
construct scalar, vector, and p- form bilinears M ∼ ǭǫ , Vµ ∼ ǭγµǫ , · · · that
are related by Fierz identities. These bilinears satisfy certain equations because
they are made out of Killing spinors, for instance, if the KSE is of the general
form

δǫψµ = D̃µǫ = [∇µ + Ωµ]ǫ = 0 , ⇒ ∇µM + 2ΩµM = 0 , (1.3.10)

The set of all such equations for the bilinears should be equivalent to the original
spinorial equation or at least it should contain most of the information contained
in it (but not necessarily all of it).

II One of the vector bilinears (say Vµ) is always a Killing vector which can be
timelike or null. These two cases are treated separately and are called timelike
case and null case, respectively.

III One can get an expression of all the gauge field strengths of the theory using
the Killing equation for those scalar bilinears: Ωµ is usually of the form FµνV

ν

and, then Eq. (1.3.10) tells us that FµνV
ν ∼ ∇µ logM . When V is timelike this

determines F completely and, when it is null, it determines the general form of
F . Of course, Eq. (1.3.10) is an oversimplified KSE and in real-life situations
there are additional scalar factors, SU(N) indices etc.

IV Up to now we found expressions for the bosonic fields of the theory which fullfill
certain conditions, which we derived from the KSEs as necessary conditions for
supersymmetry. The next step is to prove their sufficiency, that is we have to
show the existence of the Killing spinor(s) we assumed to exist. This may lead
to additional conditions on the Killing spinors, which may tell us the minimal
amount of unbroken supersymmetry in the most general setup. Once the ex-
istence of the Killing spinor(s) is ensured, we have found all supersymmetric
configurations of the theory.

V The KSIs relate the Maxwell equations, Bianchi identities and the other bosonic
equations of motion and guarantee that these sets of equations are combinations
of a reduced number of simple equations involving a reduced number of scalar
unknowns. solutions of the theory. The tricky part is, usually, identifying
the right variables that satisfy simple equations and finding these equations as
combinations of the Maxwell, Einstein etc. equations.

VI The equations of motion have to be imposed in order to find the supersymmetric
solutions of the theory. As outlined above, the KSIs are of great help at this.

VII Find interesting examples. Some of them are given in Chapter 5.
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1.4 Outline of this thesis

In Chapter 2 we are going to introduce the ungauged Supergravity theories we are
going to work with in this thesis. We describe the action, symmetries, bosonic equa-
tions of motion and supersymmetry transformations rules for ungauged N = 1, 2
Supergravities. Our next step will be to gauge these four-dimensional theories.

In Chapter 3 we are first going to introduce the embedding tensor formalism in
order to study the most general gaugings of four-dimensional Supergravity in a uni-
fied way. Then we compute the complete 4-dimensional tensor hierarchy, i.e. a set of
p-form fields, with 1 ≤ p ≤ 4, which realize an off-shell algebra of bosonic gauge trans-
formations. We show how this tensor hierarchy can be put on-shell by introducing a
set of duality relations, whereby introducing additional scalars and a metric tensor.
This so-called duality hierarchy encodes the equations of motion of the bosonic part
of the most general gauged Supergravity theories in four dimensions, including the
(projected) scalar equations of motion. We construct the gauge-invariant action that
includes all the fields in the tensor hierarchy and elucidate the relation between the
gauge transformations of the p-form fields in the action and those of the same fields
in the tensor hierarchy. The content of Chapter 3 is based on ref. [33].

After having introduced the gaugings of a generic four-dimensional Supergravity
theory, we are going to apply our results to N = 1, 2 Supergravity in Chapter 4.
We discuss N = 1 matter-coupled Supergravity with electric and magnetic gaugings
and N = 2 Einstein-Yang-Mills Supergravity. There we study the closure, up to
duality relations, of the N = 1 supersymmetry algebra on all the bosonic p-form
fields of the hierarchy, applying the results about the general four-dimensional tensor
hierarchy from the previous chapter, which was purely bosonic, including fermions.
The content of Chapter 4 is based on ref. [59, 60].

In Chapter 5 we will use the procedure described in section 1.3 in order to find
supersymmetric solutions to N = 2 Supergravity. In section 5.1 we will consider
ungauged d = 4, N = 2 Supergravity coupled to vector and hypermultiplets and
completely classify all its supersymmetric solutions. In section 5.2 we discuss the
solutions to N = 2 Einstein-Yang-Mills (EYM) Supergravity. This chapter is based
on refs. [27, 36, 59, 61].

In the last chapter of this thesis we extend the system of ungauged N = 2, d = 4
Supergravity coupled to vector multiplets and hypermultiplets with 2-form potentials
and show that the local supersymmetry algebra can be closed on them. We will discuss
the coupling of the 2-forms to the 1/2 BPS 1-brane solutions (stringy cosmic strings)
found in Chapter 5. This coupling to the one-dimensional solutions found earlier
[26, 27] was the main motivation for introducing 2-forms in N = 2 four-dimensional
Supergravity [28], which was done before the stucture of the general four-dimensional
tensor hierarchy was found. Further we construct the half-supersymmetric bosonic
world-sheet actions for these strings and discuss the properties of the corresponding
stringy cosmic string solutions. Chapter 6.1 is based on [28].
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A complete list of the publications which lead to this thesis can be found in
Appendix G.





Chapter 2

Ungauged N = 1, 2
Supergravity in four
dimensions

In this chapter we are going to describe briefly ungauged four-dimensional Super-
gravity with four and eight supercharges, respectively N = 1 and N = 2 theories,
in order to introduce the basic concepts needed for the investigations in the follow-
ing chapters. We will consider possible matter couplings, i.e. coupling to chiral and
vector-multiplets for N = 1 Supergravity and to vector- and hypermultiplets for the
N = 2 case (see Section 1.2). In Section 2.2.1 we will address the question of how
matter-coupled four-dimensional N = 2 Supergravity is obtained when compactifying
ten-dimensional type II Sugra on a Calabi-Yau threefold. Gaugings of N = 1, 2 d = 4
Supergravity theories will be considered in Chapter 4.

2.1 Ungauged matter coupled N = 1 Supergravity

The basic1 field content of any N = 1, d = 4 ungauged supergravity theory is

Gravity multiplet

• Graviton ea
µ

1In the ungauged classical theory (this work is only concerned with the classical theory) linear
multiplets can always be dualized into chiral multiplets and so we do not need to deal with them.
After the gauging, this is not possible in general, but the embedding tensor formalism will allow us
to introduce the 2-forms in at a later stage in a consistent form.
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• Gravitino Ψµ

nC chiral multiplets, i = 1 . . . nC

• Complex scalar Zi

• Chiralino χi

nV Vector multiplets, Λ = 1, · · · , nV

• Vector field AΛ
µ

• gauginos λΛ

The conventions used here are essentially those of Refs. [30] and [62]. The complex
scalars Zi parametrize an arbitrary Kähler-Hodge manifold with metric Gij∗ and the
field strengths of the Abelian vector fields AΛ are given by FΛ = dAΛ.

In the ungauged theory the couplings between the above fields are determined
by the Kähler metric2 Gij∗ , an arbitrary holomorphic kinetic matrix fΛΣ(Z) with
positive-definite imaginary part and an arbitrary holomorphic superpotential W (Z)
which appears through the covariantly holomorphic section of Kähler weight (1,−1)
L(Z,Z∗):

L(Z,Z∗) = W (Z)eK/2 , (2.1.1)

so its Kähler-covariant derivative given in Eq. (B.0.16) for q̄ = −1 is

Di∗L = eK/2∂i∗W = 0 . (2.1.2)

In absence of scalar fields, it is possible to introduce a constant superpotential
L = W = w.

The chirality of the spinors is related to their Kähler weight: ψµ, λ
Σ and χi have

the same chirality and ψµ, λ
Σ and χ∗i∗ have the same Kähler weight (1/2,−1/2) so

their covariant derivatives take the form of Eq. (B.0.18) with q = 1/2.

The action for the bosonic fields in the ungauged theory is

2The elements of Kähler geometry needed in this paper are reviewed in Appendix B.
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Su =

∫

[

⋆R− 2Gij∗dZ
i ∧ ⋆dZ∗ j∗ − 2ℑmfΛΣF

Λ ∧ ⋆FΣ + 2ℜefΛΣF
Λ ∧ FΣ − ⋆Vu

]

,

(2.1.3)
where the scalar potential Vu is given by

Vu(Z,Z∗) = −24|L|2 + 8Gij∗DiLDj∗L∗ . (2.1.4)

In absence of scalar fields the constant superpotential L = W = w leads to an
anti-de Sitter-type cosmological constant

Vu = −24|w|2 . (2.1.5)

The supersymmetry transformation rules for the fermions (to first order in fermions)
are

δǫψµ = Dµǫ+ iLγµǫ
∗ =

[

∇µ + i
2Qµ

]

ǫ+ iLγµǫ
∗ , (2.1.6)

δǫλ
Λ = 1

2 6FΛ+ǫ , (2.1.7)

δǫχ
i = i 6∂Ziǫ∗ + 2Gij∗Dj∗L∗ǫ . (2.1.8)

The last terms in Eqs. (2.1.6) and (2.1.8) are fermion shifts associated to the super-
potential which contribute quadratically to the potential Vu.

In absence of scalar fields and with constant superpotential L = W = w the
fermion shift in Eq. (2.1.6) can be interpreted as part of an anti-de Sitter covariant
derivative

δǫψµ = ∇µǫ+ iwγµǫ
∗ . (2.1.9)

The supersymmetry transformation rules for the bosonic fields (to the same order
in fermions) are

δǫe
a

µ = − i
4 ψ̄µγ

aǫ∗ + c.c. , (2.1.10)

δǫA
Λ

µ = i
8 λ̄

Λγµǫ
∗ + c.c. , (2.1.11)

δǫZ
i = 1

4 χ̄
iǫ . (2.1.12)

Note that N = 1 d = 4 Supergravity can be obtained by truncation of the N = 2
d = 4 theory [30].
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2.1.1 Perturbative symmetries of the ungauged theory

The possible matter couplings of N = 1, d = 4 supergravities are quite unrestricted.
As a result, the global symmetries of these theories can be very different from case to
case: depending on the couplings it is possible to have, at the same time, symmetry
transformations that only act on certain fields and not on the rest and symmetry
transformations that act simultaneously on all of them. Thus, it is not easy to describe
all the possible global symmetry groups in a form that is at the same time unified
and detailed without introducing a very complicated notation with several different
kinds of indices. We are going to try to find an equilibrium between simplicity and
usefulness.

Therefore, we are going to denote the group of all the global symmetries of the
theory we work with3 by G and its generators by TA with A,B,C = 1, · · · , rankG.
They satisfy the Lie algebra

[TA, TB] = −fAB
CTC . (2.1.13)

We denote by Gbos the subgroup of transformations of G that act on the bosonic
fields and its generators by Ta with a, b, c = 1, · · · , rankGbos ≤ rankG. They satisfy
the Lie subalgebra

[Ta, Tb] = −fabcTc . (2.1.14)

In N = 1, d = 4 supergravity we have G = Gbos×U(1)R and rankGbos = rankG −1.
We split the indices accordingly as A = (a, ♯). We may introduce a further splitting
of the indices of Gbos, a = (a, a) to distinguish between those that act on the scalars
(holomorphic isometries, belonging to the group4 Giso ⊂ Gbos) and those that do
not. These will be the subgroup GV ⊂ Gbos of those that only act on the vector
(super)fields and leave invariant the kinetic matrix fΛΣ, as we will see. We have,
then, Gbos = Giso ×GV.

Let us describe the U(1)R transformations first. Under a U(1)R transformation
with constant parameter α♯, objects with Kähler weight q are multiplied by the phase

e−iqα♯

. All the fermions ψµ, λ
Σ, χ∗ i∗ , have a non-vanishing Kähler weight 1/2, though.

All the bosons have zero Kähler weight and do not transform under U(1)R.
The superpotential L has a non-vanishing Kähler weight and therefore transforms

under U(1)R in spite of the invariance of the scalar fields. As a general rule, in presence
of a non-vanishing superpotential, U(1)R will only be a symmetry of N = 1, d = 4

3In this section we will use this notation only for the perturbative symmetries and later on we
will use the same notation for all symmetries. It should be easy to recognize from the context which
case we are talking about.

4Not all the isometries of the metric will be perturbative or even non-perturbative symmetries
of the full theory. They have to satisfy further conditions that we are going to study next. It is
understood that, in order not to have a complicated notation, we denote by Giso only those isometries
which really are symmetries of the full theory and not the full group of isometries of Gij∗ (although
they may eventually coincide).
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supergravity if the phase factor acquired by L in a U(1)R transformation can be
compensated by a transformation of the scalars that leaves invariant the rest of the
action. These transformations, which are necessarily isometries of the Kähler metric
will be described next, but we can already give two examples to clarify the above
statement.

1. Let us consider the case with no chiral superfields and, therefore, no scalars and
a constant L = W = w giving rise to the potential Eq. (2.1.5) and the gravitino
supersymmetry transformation Eq. (2.1.9). In this case U(1)R transforms the

complex constant w into e−iα♯

w and, therefore it is not a symmetry since sym-
metry transformations act on fields, not on coupling constants. Certainly, we
can never gauge these transformations since the local phases would transform a
constant into a function which is not a field.

2. Let us consider a theory with just one chiral supermultiplet, with Kähler po-
tential K = |Z|2 and superpotential W (Z) = wZ where w is some complex

constant so L = wZe|Z|2/2. In this case U(1)R transforms L(Z,Z∗) into

L′(Z,Z∗) = we−iα♯

Ze|Z|2/2. This transformation can be seen as a transfor-

mation of the scalar Z ′ = e−iα♯

Z which happens to leave invariant the Kähler
potential, metric etc. In this case U(1)R is a symmetry when combined with
the transformation of the scalar.

The Giso transformations with constant parameters αa act on the complex scalars
Zi as reparametrizations

δαZ
i = αaka

i(Z) . (2.1.15)

If these transformations are symmetries of the full theory they must, first, preserve
the metric Gij∗ and its Hermitean structure, which implies that the ka

is are the
holomorphic components of a set of Killing vectors {Ka = ka

i∂i + k∗
a

i∗∂i∗} that
satisfy the Lie algebra of the group Giso

[Ka,Kb] = −fabcKc . (2.1.16)

The holomorphic and antiholomorphic components satisfy, separately, the same Lie
algebra.

We can formally add to this algebra, vanishing “Killing vectors” Ka associated to
the transformations that do not act on the scalars (but do act on the vectors), so we
have the full algebra of Gbos

[Ka,Kb] = −fabcKc . (2.1.17)

Further, we can also add another vanishing Killing vector K♯, formally associated to
U(1)R and write the full Lie algebra of G
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[KA,KB] = −fAB
CKC , (2.1.18)

so the reparametrizations of the scalars Zi can be written

δαZ
i = αAkA

i(Z) . (2.1.19)

The Killing property of the reparametrizations only ensures the invariance of the
kinetic term for the scalars. In order to be symmetries of the full theory they must
preserve the entire Kähler-Hodge structure and leave invariant the superpotential and
the kinetic terms for the vector fields.

1. Let us start with the Kähler structure. The reparametrizations must leave the
Kähler potential invariant up to Kähler transformations, i.e., for each Killing
vector KA

£AK ≡ £KA
K = kA

i∂iK + k∗A
i∗∂i∗K = λA(Z) + λ∗A(Z∗) . (2.1.20)

This relation is consistent for A = a, ♯, if

ℜeλa = ℜeλ♯ = 0 . (2.1.21)

Furthermore, the reparametrizations must preserve the Kähler 2-form J

£AJ = 0 . (2.1.22)

The closedness of J implies that £AJ = d(ikA
J ) and therefore the preservation

of the Kähler structure implies the existence of a set of real functions PA called
momentum maps such that

iKA
J = dPA , (2.1.23)

which is also consistent for A = a, ♯ if the corresponding

Pa = P♯ = constant . (2.1.24)

There is a further constraint that the momentum map has to satisfy (equivari-
ance): Eq. (B.1.34)

It implies that these constant momentum maps can only be different from zero
for Abelian factors. These constants will be associated after gauging to the D -
or Fayet-Iliopoulos terms.

A local solution to Eq. (B.1.29) is provided by
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iPA = kA
i∂iK − λA , (2.1.25)

which, on account of Eq. (B.1.26) is equivalent to

iPA = −(k∗A
i∗∂i∗K − λ∗A) , (2.1.26)

which implies, for A = a, ♯

λa = −iPa , λ♯ = −iP♯ . (2.1.27)

where Pa and P♯ are real constants (Eq. (2.1.24)).

The momentum map can be used as a prepotential from which the Killing
vectors can be derived:

kA i∗ = i∂i∗PA . (2.1.28)

Observe that this equation is consistent with the triviality of the “Killing vec-
tors”Ka,K♯ and the constancy of the corresponding momentum maps Eq. (2.1.24).

2. If the Kähler-Hodge structure is preserved, any section Φ of Kähler weight (p, q)
must transform as5

δαΦ = −αA(LA −KA)Φ , (2.1.29)

where LA stands for the symplectic and Kähler-covariant Lie derivative w.r.t.KA

and is given by

LAΦ ≡ {£A + [TA + 1
2 (pλA + qλ∗A)]}Φ , (2.1.30)

where the TA are the matrices that generate G in the representation in which
the section transforms and satisfy the Lie algebra Eq. (B.1.37). This means that
the gravitino ψµ transforms according to

δαψµ = − i
2α

AℑmλAψµ . (2.1.31)

For A = a, ♯ we have just U(1)R transformations for each component Pa,P♯

different from zero. For A = a the transformations are still global but the
ℑmλAs are in general functions of Z,Z∗. These cannot be compensated by
U(1)R transformations.

5We do not write explicitly any spacetime, target space etc. indices.



32 Ungauged N = 1, 2 Supergravity in four dimensions

The chiralinos χi transform according to

δαχ
i = αA{∂jkA

iχj + i
2ℑmλAχ

i} , (2.1.32)

and the transformations of the gauginos will be discussed after we discuss the
transformations of the vector fields.

3. Let us now consider the invariance of the superpotential W . We can require,
equivalently, that the section L be invariant up to Kähler transformations. A
Kähler-weight (p, q) section Φ will be invariant if6

LaΦ = 0 , ⇒ £aΦ = −[Ta + 1
2 (pλa + qλ∗

a
)]Φ . (2.1.33)

Therefore, we must require for all A = a

KaL = −iℑmλaL , ⇒ δαL = −iαaℑmλaL , (2.1.34)

but we cannot extend straightforwardly the same expression for all A since, as
discussed at the beginning of this section, the corresponding transformations
(constant phase multiplications) are only symmetries when L = 0 or when they
are associated to transformations of the scalars and this is, by definition, not
the case when A = a, ♯.

We, therefore, write

δαL = −iαAℑmλAL , (2.1.35)

imposing at the same time the constraint7

(αaℑmλa + α♯ℑmλ♯)L = (αaPa + α♯P♯)L = 0 . (2.1.36)

4. The kinetic term for the vector fields AΛ in the action will be invariant8 if
the effect of a reparametrization on the kinetic matrix fΛΣ is equivalent to a
rotation on its indices that can be compensated by a rotation of the vectors, or
a constant Peccei-Quinn-type shift i.e.

6This condition only makes sense for transformations Ka that really act on the scalars.
7This constraint should be understood as a way to consider the cases L = 0 and L 6= 0 simulta-

neously: when L 6= 0 the symmetry transformations must satisfy (αaPa + α♯P♯) = 0 and they are
unrestricted when L = 0.

8It is at this point that the restriction to perturbative symmetries (symmetries of the action) is
made.
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δαfΛΣ ≡ −αa£afΛΣ = αa[TaΛΣ − 2Ta (Λ
ΩfΣ)Ω] , (2.1.37)

δαA
Λ = αaTaΣ

ΛAΣ , (2.1.38)

where the shift generator is symmetric TaΛΣ = TaΣΛ to preserve the symmetry
of the kinetic matrix.

Observe that for a = a, £afΛΣ = 0, and, for consistency, we must have
Ta (Λ

ΩfΣ)Ω = 0, i.e. the transformations Ta are those that preserve the kinetic
matrix. This is why we call the group generated by Ta the invariance group GV

of the complex vector kinetic matrix.

The iteration of two of these infinitesimal transformations indicates that they
can be described by the 2nV × 2nV matrices9

Ta ≡





TaΛ
Σ 0

TaΛΣ Ta
Λ

Σ



 , Ta
Λ

Σ ≡ −TaΣ
Λ , (2.1.39)

satisfying the Lie algebra

[Ta, Tb] = −fabcTc . (2.1.40)

As we have discussed some of the transformations generated by the Ka may only
act on the scalars and not on the vectors, for instance, because the kinetic matrix
does not depend on the relevant scalars. We assume that the corresponding
subset of 2nV × 2nV matrices Ta are identically zero. On the other hand, we
can formally add to these matrices another identically vanishing 2nV × 2nV

matrix T♯ so we have a full set of 2nV × 2nV matrices TA satisfying the Lie
algebra of G, Eq. (B.1.37).

Combining all these results we conclude that the gauginos transform according to

δαλ
Σ = −αA[TA Ω

ΣλΩ + i
2ℑmλAλ

Σ] . (2.1.41)

At this point there is no restriction on the group G nor on the nV × nV matrices
TA Λ

Σ, although one can already see that the lower-triangular 2nV ×2nV matrices TA

are generators of the symplectic group.

9Observe that this group is the semidirect product of the group that rotates the vectors, generated
by the matrices Ta Σ

Λ and the Abelian group of shifts generated by the matrices Ta ΛΣ. Evidently,
some of these matrices identically vanish. This is the price we have to pay to use the same indices
a, b, c, . . . for the generators of both groups.
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2.1.2 Non-perturbative symmetries of the ungauged theory

The non-perturbative symmetries to be considered are symmetries of the “extended”
equations of motion of the ungauged theory which are the standard equations of
motion plus the Bianchi identities of the vector field strengths:

dFΛ = 0 . (2.1.42)

The Maxwell equations that one obtains from the action Eq. (2.1.3) can be written
as Bianchi identities for the 2-forms GΛ

dGΛ = 0 , GΛ
+ ≡ fΛΣ(Z)FΣ + , (2.1.43)

where FΣ+ ≡ 1
2

(

FΣ + i ⋆ FΣ
)

.
This set of extended equations of motion (Maxwell equations plus Bianchi identi-

ties) is invariant under general linear transformations

(

FΛ

GΛ

)′
=

(

AΣ
Λ BΣΛ

CΣΛ DΣ
Λ

)(

FΣ

GΣ

)

. (2.1.44)

However, consistency with the definition of GΛ Eq. (2.1.43) requires that the
kinetic matrix transforms at the same time as

f ′ = (C +Df)(A+Bf)−1 . (2.1.45)

Then f ′ will be symmetric if

ATC−CTA = 0 , BTD−DTB = 0 , ATD−CTB = ξInV ×nV
, (2.1.46)

where ξ is a constant whose value is found to be ξ = 1 by the requirement of invariance
of the Einstein equations.

These conditions can be reexpressed in a better form after introducing some nota-
tion. We define the contravariant tensor of 2-forms GM , the symplectic metric ΩMN

and its inverse ΩMN which we will use to, respectively, lower and raise indices

GM ≡
(

FΛ

GΛ

)

, ΩMN =

(

0 InV ×nV

−InV ×nV
0

)

, ΩMN ΩNP = −δM
P .

(2.1.47)
Then, the Maxwell equations and Bianchi identities are formally invariant under the
transformations

G′M ≡MN
MGN , M = (MN

M ) =

(

A B
C D

)

, (2.1.48)

satisfying
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MT ΩM = Ω . (2.1.49)

i.e. M ∈ Sp(2nV ,R) [31]. Infinitesimally10

MN
M ∼ I2nV ×2nV

+ αATA N
M = αA





TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ



 , (2.1.50)

and the condition M ∈ Sp(2nV ,R) reads

TA [MN ] ≡ TA [M
P ΩN ]P = 0 . (2.1.51)

These transformations change the kinetic matrix and will only be symmetries of all
the extended equations of motion if they can be compensated by reparametrizations,
i.e. fΛΣ has to satisfy

αAkA
i∂ifΛΣ = αA{−TAΛΣ + 2TA (Λ

ΩfΣ)Ω − TA
ΩΓfΩΛfΓΣ} . (2.1.52)

The subalgebra of matrices that generate symmetries of the action (perturba-
tive symmetries) are those with TA

ΣΛ = 0, i.e. the lower-triangular matrices of
Eq. (2.1.39).

Observe that the transformations acting on the vectors are constrained to belong
to Sp(2nV ,R). This does not mean that the global symmetry group G ⊂ Sp(2nV ,R),
but that the group that we can gauge must be contained (embedded) in Sp(2nV ,R).
The generators TA corresponding to non-symplectic symmetries (in particular U(1)R),
must necessarily vanish.

The transformation rule of the kinetic matrix fΛΣ ≡ RΛΣ + iIΛΣ Eq. (2.1.45) can
be alternatively expressed using the Sp(2nV ,R) matrix

(

MMN
)

≡





IΛΣ IΛΩRΩΣ

RΛΩI
ΩΣ IΛΣ +RΛΩI

ΩΓRΓΣ



 , IΛΩIΩΣ = δΛΣ , (2.1.53)

which transforms linearly

M′ = MMMT . (2.1.54)

10We include identically vanishing generators associated to U(1)R etc. On the other hand, it is
clear that the index A refers now to more symmetries than in the perturbative case.
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2.2 Ungauged matter coupled N = 2 Supergravity

In this thesis we are going to study N = 2, d = 4 Supergravity coupled to nV vector
multiplets and nH hypermultiplets, thus we are dealing with the following fields:

Gravity multiplet

• Graviton ea
µ

• A pair of gravitinos ΨIµ, I = 1, 2

• Vector field Aµ

nV Vector multiplets, i = 1 . . . nV

• Complex scalar Zi

• A pair of gauginos λIi, I = 1, 2

• Vector field Ai
µ

nH Hypermultiplets

• 4 real scalars qu, u = 1 . . . 4nH

• 2 hyperinos ζα, α = 1 . . . 2nH

In the coupled theory we denote the vector fields collectively by AΛ
µ, Λ = 1 . . . n̄

where n̄ = nV + 1.

The action of the bosonic fields of the theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2huv∂µq

u∂µqv

+2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν⋆FΣ

µν

]

,

(2.2.1)
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The coupling of scalars to scalars is described by a non-linear σ-model with Kähler
metric Gij∗(Z,Z∗) (see Appendix B), and the coupling to the vector fields by a com-
plex scalar-field-valued matrix NΛΣ(Z,Z∗). These two couplings are related by a
structure called special Kähler geometry, described in Appendix C. The symmetries
of these two sectors will be related and this relation will be discussed shortly. The
4nH hyperscalars parameterize a quaternionic Kähler manifold (defined and studied
in Appendix D) with metric huv(q) [63]. Observe that the hypermultiplets do not
couple to the vector multiplets.

For convenience, we denote the bosonic equations of motion by

Eaµ ≡ − 1

2
√

|g|
δS

δea
µ
, Ei ≡ −

1

2
√

|g|
δS

δZi
, (2.2.2)

EΛµ ≡ 1

8
√

|g|
δS

δAΛ
µ
, Eu ≡ − 1

4
√

|g|
h

uv δS

δqv
. (2.2.3)

and the Bianchi identities for the vector field strengths by

BΛ µ ≡ ∇ν
⋆FΛ νµ . (2.2.4)

The explicit forms of the equations of motion can be found to be

Eµν = Gµν + 2Gij∗ [∂µZ
i∂νZ

∗ j∗ − 1
2gµν∂ρZ

i∂ρZ∗ j∗ ]

+8ℑmNΛΣF
Λ +

µ
ρFΣ−

νρ + 2huv [∂µq
u∂νq

v − 1
2gµν∂ρq

u∂ρq
v] ,(2.2.5)

Ei = ∇µ(Gij∗∂
µZ∗ i∗)− ∂iGjk∗∂ρZ

j∂ρZ∗ k∗

+ ∂i[FΛ
µν⋆FΛ

µν ] , (2.2.6)

EΛµ = ∇ν
⋆FΛ

νµ , (2.2.7)

Eu = Dµ∂
µqu = ∇µ∂

µqu + Γvw
u∂µqv∂µq

w , (2.2.8)

where we have defined the dual vector field strength FΛ by

FΛ µν ≡ −
1

4
√

|g|
δS

δ⋆FΛ
µν

= ℜeNΛΣF
Σ

µν + ℑmNΛΣ
∗FΣ

µν . (2.2.9)

Note that the Bianchi identities Eq. (2.2.4) and the Maxwell equations Eq. (2.2.7),
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respectively, can be written using differential form notation in the following way:

⋆BΛ = dFΛ , (2.2.10)

⋆EΛ = dFΛ . (2.2.11)

The equation of motion (2.2.7) can be interpreted as a Bianchi identity for the dual
field strength FΛ,

dFΛ = 0 , (2.2.12)

implying the local existence of n̄ = nV +1 dual vector fields AΛ, i.e. locally FΛ = dAΛ.
Now we define a vector of 2n̄ 2-forms

F ≡





FΛ

FΛ



 (2.2.13)

and then can summarize the equation of motion and Bianchi identity forAΛ, Eqs. (2.2.7)
and (2.2.4), respectively, as

dF = 0 . (2.2.14)

The symmetries of this set of equations of motion are the isometries of the Kähler
manifold and those of the quaternionic manifold. A prerequisite to understand the
following development is a study of the symplectic transformations. These are duality
symmetries of four dimensions, which are a generalization of electromagnetic duality
[64]. The Maxwell and Bianchi identities can be rotated into each other by GL(2n̄,R)
transformations under which they are a 2n̄-dimensional vector:

Eµ ≡





BΛ µ

EΛµ



 −→





A B

C D









BΛ µ

EΛµ



 , (2.2.15)

where A,B,C and D are n̄× n̄ matrices. These transformations act in the same form
on the vector F

F ′ = SF where S ∈ GL(2n̄,R) . (2.2.16)

The (2nV + 2)-dimensional vector of potentials

A ≡
(

AΛ

AΛ

)

, (2.2.17)

whose local existence is implied by Eqs. (2.2.14), transforms in the same way. How-
ever, since the dual potentials, AΛ, depend in a non-local way on the ‘fundamental’
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ones, AΛ, these transformations are non-local and are not symmetries of the action,
which only depends on the fundamental potentials, but only of the Maxwell equations
and Bianchi identities.
Now we are going to see, that consistency of this transformation rule with the defini-
tion of F̃ Eq. (2.2.9) requires the matrix

S =





D C

B A



 (2.2.18)

to belong to the symplectic subgroup of the general linear group:

S ∈ Sp(2n̄,R) ⊂ GL(2n̄,R) , (2.2.19)

or, which es equivalent,

ST ΩS = Ω with Ω ≡
(

0 1
−1 0

)

. (2.2.20)

While the duality rotation Eq. (2.2.13) is performed on the field strengths and their
duals, also the scalar fields are transformed (since they belong to the same multiplets)
by a diffeomorphism of the scalar manifold and, as a consequence, the matrix NΛΣ

changes. By definition it is

F ′
Λ = ℜeN ′

ΛΣF
′Σ + ℑmN ′

ΛΣ
⋆F ′Σ , (2.2.21)

and for the transformations to be consistently defined, they must act on the period
matrix N according to

N ′ = (DN + C)(BN +A)−1 ≡ N (Z ′, Z ′ ∗) . (2.2.22)

Furthermore, the transformations must preserve the symmetry of the period matrix,
which requires

DTB = BTD , CTA = ATC and DTA−BTC = 1 , (2.2.23)

i.e. the transformations must belong to Sp(2n̄,R) and only this subgroup of elements
S ∈ GL(2nV +2,R) can be a symmetry of all the equations of motion of the theory11.
The above transformation rules for the vector field strength and period matrix imply

ℑmN ′ = (BN ∗ +A)−1 TℑmN (BN +A)−1 , F ′Λ + = (BN ∗ +A)ΛΣF
Σ + ,

(2.2.24)

11This, in fact, is the largest possible electro-magnetic duality group of any Lagrangian depending
on Abelian field strengths, scalars and derivatives of scalars as well as spinor fields [31].
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so the combination ℑmNΛΣF
Λ +

µ
ρFΛ +

νρ that appears in the energy-momentum ten-
sor is automatically invariant. These transformations have to be symmetries of the
σ-model as well, which implies that only the isometries of the special Kähler manifold
which are embedded in Sp(2n̄,R) and those of the quaternionic manifold parameter-
ized by the hyperscalars are symmetries of all the equations of motion of the theory
(dualities of the theory).
For vanishing fermions, the supersymmetry transformation rules of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ , (2.2.25)

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ . (2.2.26)

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ , (2.2.27)

Here D is the Lorentz and Kähler-covariant derivative of Ref. [26] supplemented by
(the pullback of) an SU(2) connection AI

J described in Appendix D, acting on objects
with SU(2) indices I, J and, in particular, on ǫI as:

DµǫI = (∇µ + i
2 Qµ) ǫI + Aµ I

J ǫJ . (2.2.28)

UβI
u is a Quadbein, i.e. a quaternionic Vielbein, and Cαβ the Sp(m)-invariant metric,

both of which are described in Appendix D.
From this point on we will refer to the upper case Greek indices as symplectic

indices and to vectors X given by

X =

(

XΛ

XΛ

)

(2.2.29)

as symplectic vectors. Given two symplectic vectorsX and Y we define the symplectic-
invariant inner product, 〈X | Y 〉, by 12

〈X | Y 〉 = −XT ΩY = XΛY
Λ −XΛYΛ . (2.2.31)

When writing forms inside a symplectic inner product we will implicitly assume
that we are taking the exterior product of both. One should then keep in mind
that 〈X(p) | TY(q)〉 = (−1)pq〈Y(q) | TX(p)〉, where X(p) and Y(q) are p- and q-forms,

12Note that when dealing with gauged supergravities, we were using a slightly different notation.
Here we suppress the index M in the symplectic vector X, which in the previous sections we referred
to as XM . The symplectic-invariant inner product could equivalently written, using our former
notation, as

〈X | Y 〉 = −XMΩMN Y N = XM Y M = −XMYM . (2.2.30)
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respectively. Note that in the variation of the gravitini the hyperscalars only appear
via the SU(2) connection Aµ I

J , while in the variation of the gaugini the hyperscalars
do not appear at all.

The supersymmetry transformations of the bosons are

δǫe
a

µ = − i
4 (ψ̄I µγ

aǫI + ψ̄I
µγ

aǫI) , (2.2.32)

δǫA
Λ

µ = 1
4 (LΛ ∗εIJ ψ̄I µ ǫJ + LΛεIJ ψ̄

I
µ ǫ

J)

+ i
8 (fΛ

iεIJ λ̄
iIγµǫ

J + fΛ∗
i∗ε

IJ λ̄i∗
IγµǫJ ) , (2.2.33)

δǫZ
i = 1

4 λ̄
iIǫI , (2.2.34)

δǫq
u = UαI

u(ζ̄αǫI + CαβǫIJ ζ̄βǫJ) . (2.2.35)

Observe that the fields of the hypermultiplet and the fields of the gravity and vector
multiplets do not mix in any of these supersymmetry transformation rules. This
means that the KSIs associated to the gravitinos and gauginos will have the same
form as in Ref. [26] and in the KSIs associated to the hyperinos only the hyperscalars
equations of motion will appear.

For convenience, we denote the bosonic equations of motion by

Eaµ ≡ − 1

2
√

|g|
δS

δea
µ
, Ei ≡ −

1

2
√

|g|
δS

δZi
, (2.2.36)

EΛµ ≡ 1

8
√

|g|
δS

δAΛ
µ
, Eu ≡ − 1

4
√

|g|
H

uv δS

δqv
. (2.2.37)

and the Bianchi identities for the vector field strengths by

BΛ µ ≡ ∇ν
⋆FΛ νµ . (2.2.38)

Then, using the action Eq. (2.2.1), we find that all the equations of motion of
the bosonic fields of the gravity and vector supermultiplets take the same form as if
there were no hypermultiplets, as in Ref. [26], except for the Einstein equation, which
obviously is supplemented by the energy-momentum tensor of the hyperscalars

Eµν = Eµν(q = 0) + 2Huv [∂µq
u∂νq

v − 1
2gµν∂ρq

u∂ρq
v] . (2.2.39)

Furthermore, the equation of motion for the hyperscalars reads
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Eu = Dµ∂
µqu = ∇µ∂

µqu + Γvw
u∂µqv∂µq

w , (2.2.40)

where Γvw
u are the Christoffel symbols of the 2nd kind for the metric Huv.

The symmetries of this set of equations of motion are the isometries of the Kähler
manifold parametrized by the n̄− 1 complex scalars Zis embedded in Sp(2n̄,R) and
those of the quaternionic manifold parametrized by the 4m real scalars qu.

2.2.1 N = 2, d = 4 Supergravity from String Theory

In this chapter we are going to review the higher-dimensional origin of N = 2, d = 4
Supergravity, i.e. how it arises from compactification of ten-dimensional Superstring
Theory.

Type II Supergravity theories, being the low energy limits of type II superstring
theory, live in ten dimensions. To recover the four-dimensional spacetime of everyday
experience, we have to compactify the ten-dimensional theory on a six-dimensional in-
ternal manifold. The four-dimensional theory obtained upon compactification heavily
depends on the topology of the internal manifold (see below). If we compactify ten-
dimensional type II String Theory, which has 32 supersymmetries, on a six-torus T 6

for example, we are left with N = 8 supersymmetry in four dimensions because, due
to its trivial holonomy, a torus does not break any supersymmetry. If, on contrary,
one compactifies on a Calabi-Yau manifold13 CYn, which by definition has SU(n)
holonomy, some fraction of the available amount of supersymmetry is broken. In case
of compactification on a Calabi-Yau threefold CY3 three quarters of the supersym-
metries are broken. Schematically this can be explained in the following way: for an
orientable six-dimensional manifold parallel transport of a spinor along a closed curve
generically gives a rotation by a SO(6) ∼ SU(4) matrix, this is the generic holonomy
group. The 16 Weyl representation of the ten dimensional Lorentz group SO(1, 9)
decomposes with respect to SO(1, 3)⊗ SO(6) as

16⇒ (2L, 4̄) + (2R,4) (2.2.41)

The largest subgroup of SU(4) for which a spinor of definite chirality can be invariant
is SU(3). The reason is that the 4 has an SU(3) decomposition

4⇒ 3⊕ 1, (2.2.42)

i.e. it decomposes into a triplet and a singlet, which is invariant under SU(3). Since
the condition for N = 1 unbroken supersymmetry in four dimensions is the existence
of a covariantly constant spinor on the internal six-dimensional manifold, and only
the singlet pieces of 4 and 4̄ in Eq. (2.2.42) lead to covariantly constant spinors,

13A compact Kähler manifold with vanishing first Chern class is called a Calabi-Yau manifold.
For details about Kähler geometry see Appendix B.
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compactification on a manifold with SU(3) holonomy breaks 3/4 of the original su-
persymmetries. Imposing the Majorana condition in ten dimensions, it follows that
type II supergravity on a CY3 leads to N = 2 supergravity in four dimensions. Thus,
from the 32 supercharges we have in ten dimensions in case of type II supergravities,
we are left with 8 in four dimensions. In this way CY3 compactification of type II
supergravity leads to N = 2, d = 4 supergravity coupled to nV vector and nH hyper-
multiplets, where the numbers of multiplets is given in terms of topological invariants
of the Calabi-Yau manifold one is compactifying on.

The massless Kaluza-Klein modes associated with various fields in ten dimensions,
compactified on a Calabi-Yau space are given in Table 2.2.1. Let us see in some more
detail how the massless scalars in four dimensions are related to the ten-dimensional
theory, taking IIB as example. The bosonic fields of IIB supergravity are:14

GMN , BMN , φ, C, CMN , CMNPQ . (2.2.43)

Additionally the supergravity multiplet contains 2 gravitini and two dilatini with the
same chirality. The metric GMN , the dilaton φ and the two-form BMN come from
the NS-NS sector, whereas the axion C, the 2-form and 4-form CMN and CMNPQ

come from the R-R sector.
The axion, the dilaton and the duals of Bµν and Cµν lead to 4 real scalars, com-

bined in the so-called universal hypermultiplet, independently of the specific choice
of Calabi-Yau manifold; the topological origin of this fact is that h0,0 = 1 for any
Calabi-Yau threefold, where hp,q are the Hodge numbers of the Calabi-Yau. The
Hodge numbers of a generic Calabi-Yau threefold are conveniently displayed in the
so-called ”Hodge diamond”:

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3 =

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

1

0 0

0 h1,1 0

1 h1,2 h1,2 1

0 h1,1 0

0 0

1

14In the following upper case Latin indices M, L . . . denote ten-dimensional indices, while Greek in-
dices µ, ν . . . live in four dimensions and lower case Latin indices i, j . . . in the internal six-dimensional
space.
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Now let us consider metric deformations of the Calabi-Yau manifold. After fixing
the diffeomorphism invariance and taking into account the Ricci-flatness of Calabi-
Yau manifolds, the deformations δgij and δgī decouple and thus can be considered
separately. The purely holomorphic or anti-holomorphic components gij and gı̄̄, re-
spectively, are zero. However, one can consider variations to non-zero values, thereby
changing the complex structure15.

Thus metric deformations of the Calabi-Yau manifold give two types of moduli
[66], [67]:

• Kähler moduli : h1,1 real scalars due to deformations of gī:

δgī =

h1,1
∑

α=1

tαbαī, (2.2.44)

where we expanded δgij̄ in a basis of real (1, 1)-forms, which we denoted by bα,
α = 1 . . . h1,1, and tα are the Kähler moduli, and

• Complex structure moduli : h1,2 complex scalars due to the deformations of δgij :

Ωijkδg
k

l̄ =

h2,1
∑

a=1

tabaijl̄ (2.2.45)

where a complex (2, 1) form is associated to each variation of the complex struc-
ture. Here ba, a = 1 . . . h2,1, denote a basis of harmonic (2, 1)-forms and the
complex parameters ta are called the complex structure moduli. Ω denotes the
unique holomorphic (3, 0)-form of Calabi-Yau threefolds. It turns out that the
metric on the complex structure moduli space is Kähler with Kähler potential
given by [67]

K = − log(i

∫

Ω ∧ Ω∗). (2.2.46)

The 2-forms lead to 2 h1,1 scalars Bij̄ and Cij̄ and taking into account the self-
duality of the 5-form field-strength of the 4-form, there are h2,2 = h1,1 scalars Cijk̄l̄

arising from CMNPQ. These 4h1,1 scalars are part of h1,1 additional hypermultiplets.
Finally the h1,2 complex scalars (complex structure moduli) are associated to h1,2

vector multiplets.
Further, the spectrum of the low dimensional theory contains h3,0 (= 1) vectors

Cµijk in the gravity multiplet and h2,1 = h1,2 vectors Cµijk̄ associated to the vector
multiplets.

15Since a Calabi-Yau manifold is a Kähler manifold it admits by definition a complex structure.
A complex structure is a (1, 1)-tensor J that satisfies J2 = −1 (for more details see [65]).
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A B field spin-2 spin-1 spin-0

1 1 gMN 1 0 h1,1 real + h1,2 complex

1 2 φ 0 0 1

1 0 AM 0 1 0

1 2 AMN 0 0 (h1,1 + 1) real

1 0 AMNP 0 h1,1 (h1,2 + 1) complex

0 1
[

AMNPQ

]

± 0 h1,2 + 1 h1,1 real

Table 2.2.1: Massless Kaluza-Klein modes associated with various fields in ten dimen-
sions, compactified on a Calabi-Yau space. The first two columns specify the number
of these fields contained in IIA or IIB supergravity in ten space-time dimensions [68].

In the case of the type IIA theory the massless bosonic fields in ten dimensions
are

GMN , BMN , φ, CM , CMNP . (2.2.47)

Additionally the supergravity multiplet contains 2 gravitini and two dilatini with
opposite chiralities. Note that just as for type IIB GMN , BMN , and φ arise from the
NS-NS sector, whereas in the case at hand the R-R fields are forms of odd degree.

The NS-NS fields give the same number of massless scalars as in the IIB case,
namely one real scalar from the dilaton, 2h1,2 + h1,1 real scalars from the metric and
h1,1 + 1 real scalars from the NS-NS 2-form. Now the R-R 3-form leads to h2,1 = h1,2

complex scalars Cijk̄ and h3,0 = 1 complex scalar Cijk .

The 1-form leads to one vector field Cµ (which will be contained in the supergrav-
ity multiplet) and the 3-form to h1,1 vectors Cµij̄ , contained in the vector multiplets.
Grouping all these fields again into multiplets, one obtains gravity coupled to h1,1

vector multiplets and h1,2 hypermultiplets in four dimensions. With these results it
is easy to count the number of bosonic massless states that emerge in the compacti-
fication of IIA and IIB supergravity on a Calabi-Yau manifold [69]:
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Type IIA Sugra :

1 spin-1 + 1 spin-2 gravity multiplet

h1,1 spin-1
h1,1 complex spin-0

}

h1,1 vector multiplets

h1,2 + 1 quaternionic spin-0 h1,2 + 1 hypermultiplets

(2.2.48)

Type IIB Sugra :

1 spin-1 + 1 spin-2 gravity multiplet

h1,2 spin-1
h1,2 complex spin-0

}

h1,2 vector multiplets

h1,1 + 1 quaternionic spin-0 h1,1 + 1 hypermultiplets

(2.2.49)

The field content of four-dimensional supergravity associated to the field content of
ten-dimensional type IIA/B supergravity is summarized in Table 2.2.1.

The total target manifold parameterized by the various scalars factorizes as a
product of vector and hypermultiplet manifolds:

Mscalar = SM ⊗ HM,

dimC SM = nV ,

dimRHM = 4nH ,

where SM, HM are respectively special Kähler and quaternionic Kähler and nV ,
nH are respectively the number of vector multiplets and hypermultiplets contained in
the theory. The direct product structure Eq. (2.2.50) imposed by supersymmetry
precisely reflects the fact that the quaternionic and special Kähler scalars belong to
different supermultiplets [70].

An important implication is the following: since the string coupling constant is
given by the vacuum expectation value of the dilaton gs ≡ e−φ/2 and the the four-
dimensional reduction of the dilaton always belongs to a hypermultiplet, the hyper-
multiplet sector receives both perturbative and non-perturbative gs corrections [71].
Non-perturbative corrections arise from instantons and/or branes wrapping cycles in
the Calabi-Yau. The vector multiplet geometry remains unaffected.

Up to now we were only considering the higher dimensional origin of the massless
states in four dimension. However, also the coupling of the vector multiplet scalars to
the vectors is encoded in the Calabi Yau geometry, namely in a holomorphic function
called the prepotential (see also Appendix C.1). To start with we introduce a real
symplectic basis (αΛ, β

Σ) [72] of 3-forms of H3(CY ) = H(3,0)⊕H(2,1)⊕H(1,2)⊕H(0,3),
αΛ ∈ H(3,0) ⊕H(2,1) and βΛ ∈ H(0,3) ⊕H(1,2), chosen such that they satisfy
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∫

AΛ

αΣ =

∫

αΣ ∧ βΛ = δΛΣ , (2.2.50)

∫

BΛ

βΣ =

∫

βΣ ∧ αΛ = −δΣΛ , (2.2.51)

∫

αΛ ∧ αΣ =

∫

βΛ ∧ βΣ = 0, (2.2.52)

where (AΛ, BΣ) denotes the dual homology basis of 3-cycles 16 with intersection num-
bers

AΛ ∩BΣ = −BΣ ∩AΛ = δΛΣ , and AΛ ∩AΣ = BΛ ∩BΣ = 0, (2.2.53)

and Λ,Σ = 0 . . . h2,1. Now we can define coordinates on the moduli space17 by the
periods of the holomorphic 3-form Ω

XΛ =

∫

AΛ

Ω =

∫

Ω ∧ βΛ. (2.2.54)

In this way we define one more coordinate than we have moduli fields, but the addi-
tional degree of freedom is killed by fixing the U(1) gauge freedom, as described in
Appendix C.1. In order not to have more independent variables, the B periods

FΛ =

∫

BΛ

Ω =

∫

Ω ∧ αΛ (2.2.55)

must be functions of X , whence Ω, which is just a 3-form, can be expanded in the
basis of 3-forms

Ω = XΛαΛ −FΛβ
Λ . (2.2.56)

Using Eq. (2.2.46) the Kähler potential takes the form

K = − log
(

i(X ∗ΛFΛ −XΛF∗
Λ)
)

. (2.2.57)

As under a change of the complex structure Eq. (2.2.45) dz becomes a linear
combination of dz and dz̄, the holomorphic (3, 0)-form Ω becomes a linear combination
of (3, 0) and (2, 1)-forms [66]

∂ΛΩ ∈ H(3,0) ⊕H(2,1), (2.2.58)

16Observe that the 3-form αΛ is the Poincaré dual of the 3-cycle BΛ and βΣ of AΣ, respectively.
17Loosely speaking, we mean by moduli space the scalars in the lower-dimensional theory which

encode the geometric properties, such as shape and size, of the internal manifold.
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it follows

Ω ∧ ∂ΛΩ = 0. (2.2.59)

Integrating the last equation over the Calabi-Yau threefold and taking into account
the basic properties of the basis of 3-forms, Eqs. (2.2.50)-(2.2.52), this implies

FΛ = XΣ∂ΛFΣ, (2.2.60)

where

F = 1
2XΛFΛ. (2.2.61)

This function is exactly the prepotential of N = 2 supergravity in four dimensions
(Appendix C.1).

Notice that the results in case IIA/B are the same upon the exchange hp,q ←→
h3−p,q. This phenomenon for Calabi-Yau threefolds is part of what is called mirror
symmetry: type IIA theory compactified on a Calabi-Yau threefold M is equivalent
to type IIB compactified on the mirror Calabi-Yau threefold W . The mirror map
associates to a Calabi-Yau threefold M another one W such that

hp,q(M) = h3−p,q(W ). (2.2.62)

This means that mirror symmetry maps the complex structure moduli space of type
IIB compactified on M to the Kähler structure moduli space of type IIA on W . But
apart from the fact that the low energy spectrum of type IIA on M and IIB on the
mirror manifold W are the same (up to now we were only considering the massless
Kaluza-Klein modes), the mirror symmetry proposal implies much more. Actually
mirror symmetry claims the two theories to be exactly equivalent to all orders of α′,
i.e. including stringy effects . The α′ corrections are controlled by the Kähler moduli,
which for type IIB(IIA) appear in the lower-dimensional theory through the scalars
in a hypermultiplet (vector multiplet). This implies that the result obtained for
type IIB on M , the vector multiplet moduli space, i.e. the complex structure moduli
space, does not suffer from α′ corrections, and the result obtained in the supergravity
approximation is exact to all orders in α′. Mirror symmetry thus allows us to obtain
information about the α′-corrections of the hypermultiplet sector in type IIA on the
mirror manifold W , which are highly non-trivial.

Thence mirror symmetry is a very useful concept, e.g. to compute the holomorphic
prepotential of the effective action, although it has not been proven yet [73].



Chapter 3

Gauging Supergravity and
the four-dimensional tensor
hierarchy

In this chapter we are going to study gaugings of four-dimensional Supergravities.
Considering the most general (electro-magnetic) gaugings will lead to the construction
of the complete d = 4 tensor hierarchy. We use as our starting point Ref. [15]. We
use the same formalism, impose the same constraints on the embedding tensor and
follow the same steps up to the 2-form level reproducing exactly the same results,
but we carry out the program to its completion, determining explicitly all the 3- and
4-forms and their gauge transformations. Here we find already a surprise in the sense
that in D = 4 we find more top-form potentials than follow from the expectations
formulated in Refs. [17, 74]1. Our results and the general results and conjectures
of these references2 cannot be straightforwardly compared, though, since in these
works on the general structure of tensor hierarchies only one possible constraint on
the embedding tensor (the standard quadratic constraint) is considered, while in the
4-dimensional setup of Ref. [15] the embedding tensor is subject to two additional
constraints, one quadratic and one linear. They are ultimately responsible for the
existence of additional 4-forms, which we find to be in one-to-one correspondence
with the constraints3.

1For instance, we find in D = 4 not only top-forms that correspond to quadratic constraints of
the embedding tensor but also top-forms that are related to certain linear constraints, see subsection
3.2.4.

2There are no direct computations of tensor hierarchies up to the 4-form level in the literature.
All we know about them, up to now, is based on general arguments.

3Note added in proof: it has recently been shown in Ref. [60] that the introduction of these
additional 4-forms is consistent with N = 1, D = 4 supergravity. Furthermore, it has been shown
that the gauging of particular classes of theories (e.g. N = 1, D = 4 supergravity with a non-vanishing
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Next, we will make precise how a set of dynamical equations can be defined by
the introduction of first-order duality relations. Besides the p-form potentials these
duality relations also contain the scalars and the metric tensor defining the theory.
The set of dynamical equations not only contains the equations of motion putting
all electric potentials on-shell but it also involves the (projected) scalar equations of
motion. The tensor hierarchy supplemented by this set of duality relations will be
called the duality hierarchy. This set of duality relations cannot be derived from an
action, though the relation to a possible action will be elucidated in a last step.

For the readers’ convenience we briefly outline our program, which can be sum-
marized by the following 3-step procedure.

1. The first step consists of the general construction of the tensor hierarchy, which
is an off-shell system. The structure in generic dimension has been given
in [16, 17]. The explicit form of the complete D = 4 tensor hierarchy, how-
ever, is not available in the literature since it was constructed in [15] only up to
the 2-form level. (For the construction of the tensor hierarchy of maximal and
half-maximal 4-dimensional supergravities, see [75] and references therein.) The
complete D = 3 tensor hierarchy has been discussed in [16, 76]. To construct
the tensor hierarchy one usually starts from the p-form potential fields of all de-
grees p = 1, . . . , D and then constructs the gauge-covariant field strengths of all
degrees p = 2, . . . , D. These field strengths are related to each other via a set of
Bianchi identities of all degrees p = 3, . . . , D. Usually, one starts with the con-
struction of the covariant field strength for 1-form potentials which, for general
gaugings, requires the introduction of 2-form potentials. The corresponding 3-
form Bianchi identity relates the 2-form field strength to a 3-form field strength
for the 2-form potential, whose construction requires the introduction of a 3-
form potential, etc. This bootstrap procedure ends with the introduction of the
top-form potentials. The only input required for this construction is the num-
ber of electric p ≥ 1-form potentials, the global symmetries of the theory and
the representations of this group under which the p-forms transform. Changing
these data leads to different theories that can be seen as different realizations
of the low-rank sector of the same tensor hierarchy.

A trick that simplifies the construction outlined above and which makes the
construction of the complete D = 4 tensor hierarchy feasible is to first construct
the set of all Bianchi identities relating the (p + 1)-form field strengths to the
(p + 2)-field strengths. This systematic construction of the Bianchi identities
can be carried out even if we do not know explicitly the transformation rules of
the potentials. These can be found afterwards by using the covariance of the
different field strengths. The resulting gauge transformations form an algebra
that closes off-shell: at no stage of the construction equations of motions are

superpotential) may require additional constraints on the embedding tensor, which lead to extensions
of the tensor hierarchy and, in particular, to additional 4-forms related to the new constraints.



51

used.

2. The second step is to complement the tensor hierarchy with a set of duality
relations and as such to promote it to what we have called duality hierarchy.
The duality relations contain more ‘external’ information about the particular
theory we are dealing with. The duality hierarchy will introduce the scalars and
the metric tensor field that were not involved in the construction of the tensor
hierarchy4. More precisely, some of the duality relations contain the scalar
fields via functions that define all scalar couplings, i.e. the Noether currents, the
(scalar derivative of the) scalar potential and functions that define the scalar-
vector couplings. In this way the duality hierarchy contains all the information
about the particular realization of the tensor hierarchy as a field theory.

The duality hierarchy leads to a set of dynamical equations that not only con-
tains the equations of motion for the electric potentials but it also involves the
(projected) scalar equations of motion according to the rule:

Tensor hierarchy & duality relations ⇔ dynamical equations . (3.0.1)

The gauge algebra of the tensor hierarchy closes off-shell even in the presence
of the duality relations. However, in the context of the duality hierarchy this is
a basis-dependent statement. We are free to modify the gauge transformations
by adding terms that are proportional to the duality relations. Of course, in
this new basis the gauge algebra will close on-shell, i.e. up to terms that are
proportional to the duality relations. We will call the original basis with off-shell
closed algebra the off-shell basis.

3. The third and last step is the construction of a gauge-invariant action for all
p-form potentials, scalars and metric5. In this last step we encounter a few
subtleties that need and will be clarified. In particular, we will answer the
following questions:

(a) How are the equations of motion that follow from the gauge-invariant ac-
tion related to the set of dynamical equations defined by the duality hier-
archy?

(b) How are the gauge transformations of the p-form potentials occurring in
the action related to the gauge transformations that follow from the tensor
hierarchy?

It turns out that the construction of a gauge-invariant action requires that the
gauge transformations of the duality hierarchy are given in a particular basis
that can be obtained from the off-shell basis by a change of basis that will be

4The dual scalars, i.e. the (D − 2)-form potentials, are included in the tensor hierarchy.
5Strictly speaking, in D = 4 not all 2-forms enter the action, see sec. 3.4.
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described in this paper. To be specific, the two sets of transformation rules
(those corresponding to the off-shell tensor hierarchy and those that leave the
action invariant) differ by terms that are proportional to the duality relations.
It is important to note that once a gauge-invariant action is specified the gauge
transformations that leave this action invariant are not anymore related to the
off-shell basis by a legitimate basis transformation from the action point of

view. This is due to the fact that from the point of view of the action one is not
allowed to remove terms that are not proportional to one of the equations of
motion following from this action 6. However, although some projected duality
relations follow by extremizing the action, this is not the case for all duality
relations of the duality hierarchy. Therefore, from the point of view of the action,
the gauge transformations that leave the action invariant are not equivalent to
the gauge transformations of the duality hierarchy in the off-shell basis. Indeed,
the gauge transformations in the off-shell basis do not leave the action invariant.

3.1 The embedding tensor formalism

We start by giving a brief review of the the embedding tensor formalism [11,14,16,17].
Readers familiar with this technique may skip this part.

The embedding tensor formalism is a convenient tool to study gaugings of super-
gravity theories in a universal and general way, that does not require a case-by-case
analysis. This technique formally maintains covariance with respect to the global in-
variance group G of the ungauged theory, even though in general G will ultimately be
broken by the gauging to the subgroup that is gauged. It turns out that all couplings
that deform an ungauged supergravity into a gauged one, as Yukawa couplings, scalar
potentials, etc., can be given in terms of a special tensor, called the embedding ten-
sor. Thus, gauged supergravities are classified by the embedding tensor, subject to
a number of algebraic or group-theoretical constraints, some of which we will discuss
below.

To be more precise, the embedding tensor ΘM
α pairs the generators tα of the

group G with the vector fields Aµ
M used for the gauging. The indices α, β, . . . label

the adjoint representation of G and the indices M,N, . . . label the representation RV

of G, in which the vector fields that will be used for the gauging transform. Thus,
the choice of ΘM

α, which generally will not have maximal rank, determines which
combinations of vectors

Aµ
MΘM

α , (3.1.1)

can be seen as the gauge fields associated to (a subset of) the generators tα of the group
G, and, simultaneously, or alternatively, which combinations of group generators

6One may only change the gauge transformations by adding so-called “equations of motion sym-
metries”.
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XM = ΘM
α tα (3.1.2)

can be seen as the generators of the gauge group. Consequently, the embedding tensor
can be used to define covariant derivatives

Dµ = ∂µ −Aµ
M ΘM

α tα = ∂µ −Aµ
M XM , (3.1.3)

which shows that the embedding tensor can also be interpreted as a set of gauge
coupling constants7 of the theory. Even though ΘM

α has been introduced as a tensor
of the duality group G, it is not taken to transform according to its index structure,
i.e. in the tensor product RV ⊗ Adj∗, but must be inert under G for consistency.
This requirement leads to the so-called quadratic constraints, which state that the
embedding tensor is invariant under the gauge group. If we denote the generators of
G (with structure constants fαβ

γ) in the representation RV by (tα)M
N , this amounts

to the condition

δP ΘM
α = ΘP

βtβM
NΘN

α + ΘP
βfβγ

αΘM
γ = 0 . (3.1.4)

Therefore, seemingly G-covariant expressions actually break the duality group to the
subgroup which is gauged.

In the next sections we will frequently make use of the objects

XMN
P ≡ ΘM

αtαN
P = X[MN ]

P + ZP
MN , (3.1.5)

with ZP
MN denoting the symmetric part of XMN

P , in terms of which the quadratic
constraints read

ΘP
αZP

MN = 0 . (3.1.6)

Thus, the antisymmetry of the ‘structure constants’ of the gauge group holds only
upon contraction with the embedding tensor. Similar relations, that are familiar from
ordinary gauge theories but hold in the present context only upon contraction with Θ,
will be encountered at several places in the next sections. Note that standard closure
of the gauge group follows from (3.1.4) in that

[XM , XN ] = −XMN
PXP = −X[MN ]

PXP (3.1.7)

by virtue of (3.1.6).

7G may have a product structure and each factor may have a different coupling constant, which is
contained in the embedding tensor. We, therefore, do not write any other explicit coupling constants
apart from ΘM

α.
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So far, the discussion has been quite general. In the remaining part of this paper
we are going to discuss the D = 4 and D = 3 tensor hierarchies in full detail. For these
cases the embedding tensor can be specialized according to the known representation
of the vector fields. Also, our notation for the indices will slightly differ from the
general case to accord with the literature. In the D = 4 case we will work with
electric vectors AΛ

µ, with Λ = 1, . . . , n̄, and magnetic vectors AΛµ. Together, these
vectors will be combined into a symplectic contravariant vector AM

µ with M labeling
the fundamental representation of Sp(2n̄,R). Also the adjoint index of the global
symmetry group will be denoted by A instead of α. This leads to the following
notation for the D = 4 embedding tensor:

D = 4 : ΘM
α → ΘM

A . (3.1.8)

We now discuss the D = 4 tensor hierarchy in sections 3.2, 3.3 and 3.4.

3.2 The D = 4 tensor hierarchy

3.2.1 The setup

The (bosonic) electric fields of any 4-dimensional field theory are the metric, scalars
and (electric) vectors. Only the latter are needed in the construction of the tensor
hierarchy. We denote them by AΛ

µ where Λ,Σ, . . . = 1, · · · , n̄. In 4-dimensional
ungauged theories one can always introduce their magnetic duals which we denote by
a similar index in lower position AΛ µ.

The symmetries of the equations of motion of 4-dimensional theories that act on
the electric and magnetic vectors are always subgroups of Sp(2n̄,R) [31] . Thus, it is
convenient to define the symplectic contravariant vector

AM
µ =

(

AΛ
µ

AΛ µ

)

. (3.2.1)

It is also convenient to define the symplectic metric ΩMN by

ΩMN =

(

0 In̄×n̄

−In̄×n̄ 0

)

, (3.2.2)

and its inverse ΩMN by

ΩMN ΩNP = −δM
P . (3.2.3)

They will be used, respectively, to lower and raise symplectic indices, e.g.8

AM ≡ ΩMNA
N = (AΛ ,−AΛ) , AM = ANΩNM . (3.2.4)

8In what follows we will mostly use differential-form language and suppress the spacetime indices.
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The contraction of contravariant and covariant symplectic indices is, evidently, equiv-
alent to the symplectic product: AMBM = AM ΩMNB

N = −AMBM .
We denote the global symmetry group of the theory by G and its generators by

TA, A,B,C, . . . = 1, · · · , rankG. These satisfy the commutation relations

[TA, TB] = −fAB
CTC . (3.2.5)

G can actually be larger than Sp(2n̄,R) and/or not be contained in it9, but, according
to the above discussion, it will always act on AM as a subgroup of it, i.e. infinitesimally

δαA
M = αATA N

MAN , δαAM = −αATA M
NAN , (3.2.6)

where

TA [MN ] ≡ TA [M
P ΩN ]P = 0 . (3.2.7)

This is an important general property of the 4-dimensional case. It is implicit in this
formalism that some of the matrices TA M

N may act trivially on the vectors, i.e. they
may vanish. Otherwise we could only deal with G ⊂ Sp(2n̄,R).

Apart from its global symmetries, an ungauged theory containing n̄ Abelian vector
fields will always be invariant under the 2n̄ Abelian gauge transformations

δΛA
M

µ = −∂µΛM , (3.2.8)

where ΛM (x) is a symplectic vector of local gauge parameters.
To gauge a subgroup of the global symmetry group G we must promote the global

parameters αA to arbitrary spacetime functions αA(x) and make the theory invariant
under these new transformations. This is achieved by identifying these arbitrary
functions with a subset of the (Abelian) gauge parameters ΛM of the vector fields
and subsequently using the corresponding vectors as gauge fields. This identification
is made through the embedding tensor ΘM

A ≡ (ΘΛ
A ,ΘΛ A):

αA(x) ≡ ΛM (x)ΘM
A . (3.2.9)

The embedding tensor allows us to keep treating all vector fields, used for gaugings
or not, on the same footing. It hence allows us to formally preserve the symplectic
invariance even after gauging.

As discussed in section 3.1 the embedding tensor must satisfy a number of con-
straints which guarantee the consistency of the theory. Some of these constraints have
already been discussed in section 3.1. In total we have three constraints which we
list below. First of all, in the D = 4 case we must impose the following quadratic
constraint

QAB ≡ 1
4ΘM [AΘM

B] = 0 , (3.2.10)

9The symmetries of a set of scalars decoupled from the vectors are clearly unconstrained.
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which guarantees that the electric and magnetic gaugings are mutually local [15].
Observe that the antisymmetry of ΩMN and the above constraint imply ΘM AΘM

B =
0. This constraint is a particular feature of the 4-dimensional case.

As mentioned in section 3.1 there is a second quadratic constraint which encodes
the fact that the embedding tensor has to be itself invariant under gauge transfor-
mations. If the gauge transformations of objects with contravariant and covariant
symplectic indices are

δΛξ
M = ΛNΘN

ATA P
MξP , δΛηM = −ΛNΘN

ATA M
P ξP , (3.2.11)

and the gauge transformations of objects with contravariant and covariant adjoint
indices are written in the form

δΛπ
A = ΛM ΘM

BfBC
AπC . δΛζA = −ΛMΘM

BfBA
CζC , (3.2.12)

then

δΛΘM
A = −ΛNQNM

A , QNM
A ≡ ΘN

ATA M
P ΘP

A −ΘN
AΘM

BfAB
A ,

(3.2.13)
and the second quadratic constraint reads

QNM
A = 0 . (3.2.14)

The third constraint applies to all 4-dimensional supergravity theories that are
free of gauge anomalies [77] and can be expressed using the X generators introduced
in section 3.1, see Eq. (3.1.5):

XM ≡ ΘM
ATA , XMN

P ≡ ΘM
ATA N

P . (3.2.15)

This constraint (the so-called representation constraint) is linear in ΘM
A and reads

as follows [15]:

LMNP ≡ X(MNP ) = X(MN
QΩP )Q = 0 . (3.2.16)

The three constraints that the embedding tensor has to satisfy are not indepen-
dent, but are related by

Q(MN)
A − 3LMNPZ

PA − 2QABTBMN = 0 . (3.2.17)

This relation can be used to show that the constraint QAB = 0 follows from the
constraint Q(MN)

A = 0 when the linear constraint LMNP = 0 is explicitly solved,
whenever the action of the global symmetry group on the vectors is faithful. We will
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neither solve explicitly the linear constraint by choosing to work only with represen-
tations allowed by it, nor we will assume the action of the global group on the vectors
to be faithful, since there are many interesting situations in which this is not the case
and we aim to be as general as possible. In (half-) maximal supergravities, though,
the global symmetry group always acts faithfully on the vector fields.

These two choices, which differ from those made in the explicit examples found
in the literature (see e.g. Ref. [75]) will have important consequences in the field
content of the tensor hierarchy and are the reason why our results also differ from
those obtained in them.
Before we go on we wish to collect a few properties of the X generators XMN

P in a
separate subsection.

The X generators and their properties

We first discuss the symmetry properties of the X generators. By their definition,
and due to the symplectic property of the TA N

P generators, see Eq. (2.1.51), we have

XMNP = XMPN . (3.2.18)

From the definition of the quadratic constraint Eq. (3.2.14) it follows that

X(MN)
P ΘP

C = Q(MN)
C , (3.2.19)

and so it will vanish10, although, in general, we will have

X(MN)
P 6= 0 . (3.2.20)

This implies, in particular

X(MN)P = − 1
2XPMN + 3

2LMNP ⇒ X(MN)
P = ZPATAMN + 3

2LMN
P , (3.2.21)

where we have defined

ZPA ≡ − 1
2ΩNP ΘN

A =







+ 1
2ΘΛA ,

− 1
2ΘΛ

A ,
. (3.2.22)

ZPA will be used to project in directions orthogonal to the embedding tensor since,
due to the first quadratic constraint Eq. (3.2.10), we find that

ZMAΘM
B = − 1

2Q
AB . (3.2.23)

10Here we will keep the terms proportional to constraints for later use, including the linear con-
straints in (3.2.21).
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We next discuss some properties of the products of two X generators. From the
commutator of the TA generators and the definition of the generators XM and the
matrices XMN

P we find the commutator of the XM generators to be

[XM , XN ] = QMN
CTC −XMN

PXP . (3.2.24)

This reduces to (cf. to Eq. (3.1.7))

[XM , XN ] = −X[MN ]
PXP , (3.2.25)

upon use of the above constraint and QMN
C = 0. From the commutator Eq. (3.2.24)

one can derive the analogue of the Jacobi identities

X[MN ]
QX[PQ]

R +X[NP ]
QX[MQ]

R +X[PM ]
QX[NQ]

R =

= − 1
3{X[MN ]

QX(PQ)
R +X[NP ]

QX(MQ)
R +X[PM ]

QX(NQ)
R}

−Q[MN |
CTC |P ]

R .
(3.2.26)

We finally present two more useful identities that can be derived from the com-
mutators:

X(MN)
QXPQ

R −XPN
QX(MQ)

R −XPM
QX(NQ)

R = −QP (M|
CTC |N)

R ,

(3.2.27)

X[MN ]
QXPQ

R −XPN
QX[MQ]

R +XPM
QX[NQ]

R = QP [M|
CTC |N ]

R .

(3.2.28)

3.2.2 The vector field strengths F M

We now return to the construction of the field strengths of the different p-form po-
tentials. In what follows we will set all the constraints explicitly to zero in order to
simplify the expressions. In this section we consider the vector field strengths.

To construct the vector field strength it is convenient to start from the covariant
derivative. This derivative acting on objects transforming according to δφ = ΛMδMφ
is defined by

Dφ = dφ +AMδMφ . (3.2.29)

For instance, the covariant derivative of a contravariant symplectic vector

DξM = dξM +XNP
MANξP , (3.2.30)

transforms covariantly provided that
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δAM = −DΛM + ∆AM , ΘM
A∆AM = 0 . (3.2.31)

The Ricci identity of the covariant derivative on ΛN can be written in the form

DDΛM = XNP
MFNΛP , (3.2.32)

for some 2-form FM . Since this expression is gauge-covariant, FM , contracted with
the embedding tensor, will automatically be gauge-covariant, whatever it is and it
is natural to identify it with the gauge-covariant vector field strength. The above
expression defines it up to a piece ∆FM which is projected out by the embedding
tensor, just like ∆AM in δAM . An explicit calculation gives

FM = dAM + 1
2X[NP ]

MAN ∧AP + ∆FM , ΘM
A∆FM = 0 . (3.2.33)

The possible presence of ∆FM is a novel feature of the embedding tensor formal-
ism. Its gauge transformation rule can be found by using the gauge covariance of
FM . Under Eq. (3.2.31), using ΘM

A∆FM = 0, we find that

δFM = ΛPXPN
MFN +D∆AM−2X(NP )

M (ΛNFP + 1
2A

N∧δAP )+δ∆FM , (3.2.34)

so that FM transforms covariantly provided that we take

δ∆FM = −D∆AM + 2ZMATA NP (ΛNFP + 1
2A

N ∧ δAP ) , (3.2.35)

where we have used Eq. (3.2.21). Since both ∆AM and ∆FM are annihilated by
the embedding tensor, we conclude that in the generic situation we are considering
here11 ∆FM = ZMABA where BA is some 2-form field in the adjoint of G and
∆AM = −ZMAΛA where ΛA is a 1-form gauge parameter in the same representation.
Then

FM = dAM + 1
2X[NP ]

MAN ∧AP + ZMABA , (3.2.36)

δAM = −DΛM − ZMAΛA , (3.2.37)

δBA = DΛA + 2TA NP [ΛNFP + 1
2A

N ∧ δAP ] + ∆BA , (3.2.38)

11The only information we have about the embedding tensor in a generic situation is provided by
the three constraints QNP

E = 0 , QAB = 0 , LMNP = 0. There is only one which we can write in
the form ΘM

A × SomethingM = 0, which is the constraint QAB = 0 and that uniquely identifies
SomethingM = ZMB up to a proportionality constant.
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where ∆BA is a possible additional term which is projected out by ZMA, i.e.

ZMA∆BA = 0 , (3.2.39)

and can be determined by studying the construction of a gauge-covariant field strength
HA for the 2-form BA.

3.2.3 The 3-form field strengths HA

We continue to determine the form of HA using the Bianchi identity for FM just as
we used the Ricci identity to find an expression for FM . An explicit computation
using Eq. (3.2.36) gives

DFM = ZMA{DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ]} . (3.2.40)

It is clear that the expression in brackets must be covariant and it defines a 3-form
field strength HA up to terms ∆HA that are projected out by ZMA, i.e.

DFM = ZMAHA , (3.2.41)

HA = DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ] + ∆HA (3.2.42)

with ZMA∆HA = 0. Both ∆BA and ∆HA are determined by requiring gauge covari-
ance of HA. An explicit calculation gives

δHA = −ΛMΘM
BfBA

CHC

−YAM
C [ΛMHC − δAM ∧BC − FM ∧ ΛC − 1

3TC NPA
M ∧AN ∧ δAP ]

+D∆BA + δ∆HA .
(3.2.43)

We have defined the Y -tensor as

YAM
C ≡ ΘM

BfAB
C − TA M

NΘN
C . (3.2.44)

and it satisfies the condition

ZMAYAN
C = 1

2ΩPMQPN
C = 0 . (3.2.45)

The 3-form field strengths HA transform covariantly provided that the last two
lines in Eq. (3.2.43) vanish. A natural solution is to take
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∆BA ≡ −YAM
CΛC

M , ∆HA ≡ YAM
CCC

M , (3.2.46)

where ΛC
M is a 2-form gauge parameter and CC

M is a 3-form field about which we
will not make any assumptions for the moment. In particular, we will not assume
it to satisfy any constraints in spite of the fact that we expect it to be “dual” to
the embedding tensor, which is a constrained object. We are going to see that,
actually, we are not going to need any such explicit constraints to construct a fully
consistent tensor hierarchy. On the other hand, we are going to find Stückelberg
shift symmetries acting on CC

M whose role is, precisely, to compensate for the lack of
explicit constraints and, potentially, allow us to remove the same components of CC

M

which would be eliminated by imposing those constraints. We anticipate that those
Stückelberg shift symmetries require the existence of 4-forms in order to construct
gauge-covariant 4-form field strengths GC

M . It should come as no surprise after this
discussion, that the 4-forms are in one-to-one correspondence with the constraints of
the embedding tensor. Working with unconstrained fields is simpler and it is one of
the advantages of our approach.

We then, find

HA = DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ] + YAM

CCC
M ,(3.2.47)

δBA = DΛA + 2TA NP [ΛNFP + 1
2A

N ∧ δAP ]− YAM
CΛC

M , (3.2.48)

δCC
M = DΛC

M + ΛMHC − δAM ∧BC − FM ∧ ΛC

− 1
3TC NPA

M ∧AN ∧ δAP + ∆CC
M , (3.2.49)

where we have introduced a possible additional term ∆CC
M analogous to ∆AM and

∆BA which now is projected out by YAM
C

YAM
C∆CC

M = 0 , (3.2.50)

and which will be determined by requiring gauge covariance of the 4-form field
strength GC

M .

3.2.4 The 4-form field strengths GC
M

To determine the 4-form field strengths GC
M we use the Bianchi identity of HA. We

can start by taking the covariant derivative of both sides of the Bianchi identity of
FM Eq. (3.2.41) and then using the Ricci identity. We thus get
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ZMADHA = XNP
MFN ∧ FP = ZMATA NPF

N ∧ FP . (3.2.51)

This implies that
DHA = TA MNF

M ∧ FN + ∆DHA , (3.2.52)

where
ZMA∆DHA = 0 , (3.2.53)

suggesting that
∆DHA ∼ YAM

CGC
M . (3.2.54)

A direct calculation yields the result

GC
M = DCC

M + FM ∧BC − 1
2Z

MABA ∧BC

+ 1
3TC SQA

M ∧AS ∧ (FQ − ZQABA)

− 1
12TC SQXNT

QAM ∧AS ∧AN ∧AT

+∆GC
M ,

(3.2.55)

where

YAM
C∆GC

M = 0 . (3.2.56)

The Bianchi identity then takes the form

DHA = YAM
CGC

M + TA MNF
M ∧ FN . (3.2.57)

∆CC
M and ∆GC

M must now be determined by using the gauge covariance of the
full field strength GC

M . It is tempting to repeat what we did in the previous cases.
However, the calculation is, now, much more complicated and it would be convenient
to have some information about the new tensor(s) orthogonal to YAM

C that we may
expect.

Given that the projectors arise naturally in the computation of the Bianchi identi-
ties, we are going to “compute” the Bianchi identity of GC

M obviating the fact that it
is already a 4-form, and in D = 4 its Bianchi identity is trivial. We have not used the
dimensionality of the problem so far (except in the existence of magnetic vector fields
that gives rise to the symplectic structure and in the assignment of adjoint indices to
the 2-forms) and, in any case, our only goal in performing this computation is to find
the relevant invariant tensor(s).

Thus, we apply D to both sides of Eq. (3.2.57) using the Bianchi identity of FM

Eq. (3.2.41) and the Ricci identity. This leads to the following identity

YAM
C{DGC

M − FM ∧HC} = 0 , (3.2.58)
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from which it follows that

DGC
M = FM ∧HC + ∆DGC

M , YAM
C∆DGC

M = 0 . (3.2.59)

Acting again with D on both sides of this last equation and using the Ricci and
Bianchi identities, we get in an straightforward manner

D∆DGC
M = WC

MABHA ∧HB

+WCNPQ
MFN ∧ FP ∧ FQ

+WCNP
EMFN ∧GE

P ,

(3.2.60)

where

WC
MAB ≡ −ZM [AδC

B] , (3.2.61)

WCNPQ
M ≡ TC (NP δQ)

M , (3.2.62)

WCNP
EM ≡ ΘN

DfCD
EδP

M +XNP
MδC

E − YCP
EδN

M . (3.2.63)

We thus found the desired new tensors. The Y -tensor annihilates the three new W
tensors in virtue of the 3 constraints satisfied by the embedding tensor

YAM
CWC

MAB = YAM
CWCNPQ

M = YAM
CWCNP

EM = 0 , (3.2.64)

as expected. Note that the first and third W -tensors are linear in Θ but that the
second W -tensor is independent of Θ. Other important sets of identities satisfied by
these W -tensors can be found in Appendix E.2.

Coming back to our original problem of determining the form of ∆GC
M and

∆CC
M , we conclude from the previous analysis that

∆CC
M = −WC

MABΛAB −WCNPQ
MΛNPQ −WCNP

EM ΛE
NP , (3.2.65)

∆GC
M = WC

MABDAB +WCNPQ
MDNPQ +WCNP

EMDE
NP , (3.2.66)

where ΛAB,Λ
NPQ,ΛE

NP are 3-form gauge parameters and DAB, D
NPQ, DE

NP are
possible 4-forms whose presence will be justified inGC

M if their gauge transformations
are non-trivial in order to make the 4-form field strengths gauge covariant. Taking
into account the symmetries of the W -tensors, it is easy to see that DAB = D[AB],

DNPQ = D(NPQ) and analogously for the gauge parameters ΛAB,Λ
NPQ. DE

NP and
ΛE

NP have no symmetries.
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We observe that the three 4-form D-potentials seem to be associated to the three
constraints QAB, LNPQ, QNP

E given in Eqs. (3.2.10), (3.2.14) and (3.2.16) in the
sense that they carry the same representations. Only the last one was expected
according to the general formalism developed in Ref. [16] and the specific study of
the top forms performed in Ref. [17,74]. We find that in 4 dimensions there are more
top-form potentials due to the additional structures (e.g. the symplectic one) and
properties of 4-dimensional theories.

Knowing the different W tensors it is now a relatively straightforward task to ob-
tain by a direct calculation the expression for δGC

M , collect the terms proportional to
the three W -structures and determine the gauge transformations of the three different
4-form D-potentials by requiring gauge-covariance of GC

M . An explicit calculation
gives

δDAB = DΛAB + αB[A ∧ YB]P
EΛE

P + DΛ[A ∧BB] − 2Λ[A ∧HB]

+2T[A|NP [ΛNFP − 1
2A

N ∧ δAP ] ∧B|B] , (3.2.67)

δDE
NP = DΛE

NP − [FN − 1
2 (1− α)ZNABA] ∧ ΛE

P + CE
P ∧ δAN

+ 1
12TEQRA

N ∧AP ∧AQ ∧ δAR + ΛNGE
P , (3.2.68)

δDNPQ = DΛNPQ − 2A(N ∧ (FP − ZPABA) ∧ δAQ)

+ 1
4XRS

(NAP | ∧AR ∧AS ∧ δA|Q) − 3Λ(NFP ∧ FQ) , (3.2.69)

where α is an arbitrary real constant. We hence find that there is a 1-parameter family
of solutions to the problem of finding a gauge-covariant field strength for the 3-form.
The origin of this freedom resides in the presence of a Stückelberg-type symmetry
which we discuss in the next subsection.

Stückelberg symmetries

Differentiating (3.2.17) with respect to ΘQ
C using Eqs. (E.2.7)-(E.2.9) gives the fol-

lowing identity among the W tensors:

WC(MN)
AQ − 3WCMNP

QZPA − 2WC
QABTB MN = 3

2LMN
QδC

A . (3.2.70)

The relation (3.2.70) gives rise to symmetries under Stückelberg shifts of the 4-forms
in the 4-form field strength GC

M
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δDE
NP = ΞE

(NP ) ,

δDAB = −2Ξ[A
MNTB]MN ,

δDNPQ = −3Z(N |AΞA
|PQ) .

(3.2.71)

This shift symmetry, which allows us to remove the part symmetric in NP of DE
NP ,

also leaves the 4-form field strengths GC
M invariant.

If we multiply (3.2.17) by ZNE we find another relation between constraints

QABYBP
E − 1

2Z
NAQNP

E = 0 . (3.2.72)

Differentiating it again with respect to the embedding tensor we find the following
relation between W -tensors12:

WC
MABYBP

E − 1
2Z

NAWCNP
EM = 1

4Q
M

P
EδC

A −QAB[δP
MfBC

E − TB P
MδC

E ] ,
(3.2.73)

which implies that the Stückelberg shift

δDE
NP = 1

2Z
NBΞBE

P ,

δDAB = Y[A|P
EΞB]E

P ,
(3.2.74)

leaves invariant the 4-form field strength GC
M up to terms proportional to the

quadratic constraints, which are taken to vanish identically in the tensor hierar-
chy. This shift symmetry is associated to the arbitrary parameter α in the gauge
transformations of DAB and DE

NP . Observe that, even though it is based on the
identity Eq. (3.2.73) which we can get from Eq. (3.2.70), this symmetry is genuinely
independent from that in Eq. (3.2.71).

This finishes the construction of the 4-dimensional tensor hierarchy. The field
strengths, Bianchi identities and gauge transformations of the hierarchy’s p-form fields
are collected in Appendix E.3. By construction the algebra of all bosonic gauge
transformations closes off-shell on all p-form potentials. No equations of motion are
needed at this stage.

3.3 The D = 4 duality hierarchy

In this section we are going to introduce dynamical equations for the tensor hierarchy
via the introduction of first-order duality relations, see Eq. (3.0.1). This promotes
the tensor hierarchy to a duality hierarchy. We will see that the dynamical equations

12This identity can also be obtained multiplying Eq. (3.2.70) by ZNE .
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will not only contain the equations of motions of the p-form potentials but also the
(projected) scalar equations of motion. These scalars, together with the metric, will
be introduced via the duality relations. In particular, the scalar couplings enter into
the duality relations via functions that can be identified with the Noether currents,
the (scalar derivative of the) scalar potential and the kinetic matrix describing the
coupling of the scalars to the vectors. In this way the duality hierarchy puts the
tensor hierarchy on-shell and establishes a link with a Yang-Mills-type gauge field
theory containing a metric, scalars and p-form potentials. This field theory can be
viewed as the bosonic part of a gauged supergravity theory. We stress that at this
point we only compare equations of motion. It is only in the last and third step that
we consider an action for the fields of the hierarchy. We will assume that the Yang-
Mills-type gauge field theory has an action but we will only consider its equations
of motion in order to properly identify in the duality relations the Noether current,
scalar potential and the scalar-vector kinetic function.

In the next subsection we will first consider a Yang-Mills-type gauge field theory
with purely electric gaugings, i.e. only electric 1-forms are involved in the gauging.
In particular we will compare the equations of motion of this field theory with the
dynamical equations of the duality hierarchy. This example shows us how to introduce
the metric and scalars in the duality hierarchy. In the next subsection we will first
consider a formally symplectic-covariant generalization of the equations of motion
with purely electric gaugings. This generalization necessarily involves electric and
magnetic gaugings. We will see that this generalization does not lead to gauge-
invariant answers unless we also include the equations of motion corresponding to the
magnetic 2-form potentials. In this way we recover the observation of [15–17, 78, 79]
that magnetic gaugings require the introduction of magnetic 2-form potentials in the
action of the field theory.

3.3.1 Purely electric gaugings

Having N = 1, D = 4 supergravity in mind, we consider complex scalars Zi (i =
1, · · · , n) with Kähler metric Gij∗ admitting holomorphic Killing vectorsKA = kA

i∂i+
c.c.. The index A of the Killing vectors must be associated to those of the generators
of the global symmetry group G. In general, not all the global symmetries will act on
the scalars. Therefore, we assume that some of the KA may be identically zero just
as some of the matrices TA M

N can be zero for other values of A. The action for the
electrically gauged theory is

Selec[g, Z
i, AΛ] =

∫

{

⋆R− 2Gij∗DZi ∧ ⋆DZ∗ j∗ + 2FΣ ∧GΣ − ⋆V
}

, (3.3.1)

where DZi is given by

DZi = dZi + AΛΘΛ
AkA

i , (3.3.2)
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and where GΛ denotes the combination of scalars and electric vector field strengths
defined by

GΛ
+ = fΛΣ(Z)FΣ + , (3.3.3)

where FΣ+ = 1
2 (FΣ + i ⋆FΣ). It is assumed that the scalar-dependent kinetic matrix

fΛΣ(Z) is invariant under the global symmetry group, i.e.13

£AfΛΣ = 2TA (Λ
ΩfΣ)Ω , (3.3.4)

where £A stands for the Lie derivative with respect to KA, since this is a pre-condition
to gauge the theory. However, the potential needs only be invariant under the gauge
transformations, because the gauging usually adds to the globally-invariant potential
of the ungauged theory another piece. Thus, we must have

£AV = YAΛ
C ∂V

∂ΘΛ
C
, (3.3.5)

where YAΛ
C is the electric component of the tensor defined in Eq. (3.2.44). Indeed,

using this property, one can show that under the gauge transformations

δZi = ΛΛΘΛ
AkA

i ,

δAΛ = −DΛΛ ,
(3.3.6)

the scalar potential V is gauge invariant:

δV = ΛΣΘΣ
A£AV = ΛΣQΣ

ΛC ∂V

∂ΘΛ
A

= 0 , (3.3.7)

on account of the quadratic constraint.

The equations of motion (plus the Bianchi identity for FΛ) corresponding to the
action (3.3.1) are given by

13Here we are only considering a restricted type of perturbative symmetries of the theory, excluding
Peccei-Quinn-type shifts of the kinetic matrix for simplicity. We will consider these shifts together
with the possible non-perturbative symmetries in the general gaugings’ section.
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Eµν ≡ − ⋆ δS

δgµν
= Gµν + 2Gij∗ [DµZ

iDνZ
∗ j∗ − 1

2gµνDρZ
iDρZ∗ j∗ ]

−4ℑmfΛΣF
Λ+

µ
ρFΣ−

νρ + 1
2gµνV , (3.3.8)

Ei ≡ 1
2

δS

δZi
= Gij∗D ⋆DZ∗ j∗ − ∂iGΣ

+ ∧ FΣ+ − ⋆ 1
2∂iV , (3.3.9)

EΛ ≡ − 1
4⋆

δS

δAΛ
= DGΛ − 1

4ΘΛ
A ⋆ jA ,

EΛ ≡ DFΛ , (3.3.10)

where

jA ≡ 2k∗AiDZ
i + c.c. , (3.3.11)

is the covariant Noether current.

According to the second Noether theorem there is an off-shell relation between
equations of motion of a theory associated to each gauge invariance. For instance,
associated to general covariance we find the well-known identity

∇µEµν − (DνZ
iE∗i + c.c.) + 2FΛ

νρ(⋆EΛ)ρ = 0 , (3.3.12)

which implies the on-shell covariant conservation of the energy-momentum tensor.
Similarly, the identity associated to the Yang-Mills-type gauge invariance of the theory
is given by

DEΛ + 1
2ΘΛ

A(kA
iEi + c.c.) = 0 . (3.3.13)

Using the Ricci identity for the covariant derivative and Eqs. (3.3.4) and (3.3.5) we
find that this equation is indeed satisfied because the Noether current satisfies the
identity

D ⋆ jA = −2(kA
iEi + c.c.) + 4TA Σ

ΓFΣ ∧GΓ + ⋆YAΛ
C ∂V

∂ΘΛ
C
. (3.3.14)

We are now going to establish a relation between the tensor hierarchy and the
equations of motion for the vector fields, their Bianchi identities and the following
projected scalar equations of motion:
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DGΛ − 1
4ΘΛ

A ⋆ jA = 0 , (3.3.15)

DFΛ = 0 , (3.3.16)

kA
i

[

Gij∗D ⋆DZ∗ j∗ − ∂iGΣ
+ ∧ FΣ+ − ⋆ 1

2∂iV

]

+ c.c. = 0 . (3.3.17)

Note that, unlike the tensor hierarchy, these equations contain not only p-form po-
tentials but also the metric and scalars.

In order to derive the above equations of motion from the tensor hierarchy we
must complement the tensor hierarchy with a set of duality relations that reproduces
the scalar and metric dependence of these equations. Besides the usual D2Z term in
the last equation the scalar dependence of (3.3.15)-(3.3.17) resides in the magnetic
2-forms GΛ, the Noether currents jA and the derivatives ∂iV of the scalar potential V .
The latter derivative is equivalently represented, via the invariance property (3.3.5),

by the derivative
∂V

∂ΘΛ
A

of the scalar potential with respect to the embedding tensor.

These are precisely the objects that occur in the following set of duality relations that
we introduce:

GΛ = FΛ ,

jA = −2 ⋆ HA ,

∂V

∂ΘΛ
A

= −2 ⋆ GA
Λ ,

(3.3.18)

where the magnetic 2-form field strengths FΛ, the 3-form field strengths HA and the
4-form field strengths GA

Λ are those of the tensor hierarchy. The tensor hierarchy,
together with the above duality relations, forms the duality hierarchy. Upon hitting
the duality relations (3.3.18) with a covariant derivative and next applying one of the
Bianchi identities of the tensor hierarchy we precisely obtain the equations of motion
(3.3.15)-(3.3.17). In the case of the scalar equations of motion we first obtain the
identity

D ⋆ jA − 4TAΣ
ΓFΣ ∧GΓ − ⋆YAΛ

C ∂V

∂ΘΛ
A

= 0 . (3.3.19)

Next, by comparing this equation with the Noether identity (3.3.14) we derive the
projected scalar equations of motion (3.3.17), i.e.

kA
iEi + c.c. = 0. (3.3.20)
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It also works the other way around. By substituting the duality relations into
the equations of motion the scalar and metric dependence of these equations can
be eliminated and one recovers the hierarchy’s Bianchi identities for a purely electric
embedding tensor ΘΣA = 0. To be precise, Eqs. (3.3.15) and (3.3.16) are mapped into
the 3-form Bianchi identities (3.2.41). Furthermore, Eq. (3.3.19), which is equivalent
to (3.3.17) upon use of the Noether identity (3.3.14), is mapped into the 4-form
Bianchi identities (3.2.57).

We conclude that, at least in this case, the duality hierarchy encodes precisely
the vector equations of motion and the projected scalar equations of motion via the
duality rules (3.3.18).

3.3.2 General gaugings

In this subsection we wish to consider the more general case of electric and magnetic
gaugings. Our starting point is the formally symplectic-covariant generalization of
the equations of motion (3.3.15)-(3.3.17)14

Eµν = Gµν + 2Gij∗ [DµZ
iDνZ

∗ j∗ − 1
2gµνDρZ

iDρZ∗ j∗ ]−GM
(µ|

ρ ⋆ GM|ν)ρ + 1
2gµνV ,

Ei = Gij∗D ⋆DZ∗ j∗ − ∂iGM
+ ∧GM+ − ⋆ 1

2∂iV , (3.3.21)

EM ≡ DGM − 1
4ΘM

A ⋆ jA ,

where we have defined

(GM ) ≡
(

FΣ

GΣ

)

, GΣ
+ = fΣΓ(Z)FΓ+ , (3.3.22)

and where the electric and magnetic field strengths FM are defined as in the tensor hi-
erarchy, i.e. including the 2-form BA for which we do not want to have an independent
equation of motion to preserve the original number of degrees of freedom.

The requirement that the kinetic matrix is invariant under the global symmetry
group G and that the potential is gauge-invariant leads to the conditions

£AfΛΣ = −TAΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ , (3.3.23)

£AV = YAM
C ∂V

∂ΘM
C
, (3.3.24)

14The Einstein and scalar equations of motion are just a rewriting of the original ones, which are
already symplectic-invariant.
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from which it follows that

kA
i∂iGM

+ ∧GM+ = kA
i∂ifΛΣF

Λ+ ∧ FΣ+ = −TA MNG
M ∧GN . (3.3.25)

A direct computation using the above properties leads to the following identity for
the covariant Noether current:

D ⋆ jA = −2(kA
iEi + c.c.)− 2TA MNG

M ∧GN + ⋆YA
ΛC ∂V

∂ΘΛ
C
. (3.3.26)

On the other hand, the Ricci identity gives

DDGM = −XNM
PFN ∧GP = XNPMFN ∧GP . (3.3.27)

Taking the covariant derivative of the full EM and using Eqs. (3.3.26) and (3.3.27) we
find

DEM + 1
2ΘM

A(kA
iEi +c.c.) = XNPM (FN −GN )∧GP = ΘΣA(FΣ−GΣ)∧TA PMGP .

(3.3.28)
This is the gauge identity associated to the standard electric and magnetic gauge
transformations of the vectors and scalars

δZi = ΛMΘM
AkA

i ,

δAM = −DΛM ,
(3.3.29)

provided that the right-hand side of the equation vanishes. Since this is not the case
we conclude that the equations of motion are not gauge-invariant. Hence, a naive
symplectic covariantization of the electric gauging case is not enough to obtain a
gauge-invariant answer involving magnetic gaugings.

In order to re-obtain gauge invariance we extend the set of equations of motion,
adding, arbitrarily, as equation of motion of the 2-forms BA

EA ≡ ΘMA(FM −GM ) = −ΘΣA(FΣ −GΣ) , (3.3.30)

so that the above identity becomes again a relation between equations of motion

DEM + 1
2ΘM

A(kA
iEi + c.c.) + TA MP EA ∧GP = 0 , (3.3.31)

that we can interpret as the gauge identity associated to an off-shell gauge invariance
of the extended set of equations of motion.

The price we may have to pay for doing this is the possible modification of the
equations of motion of the vector fields: the above gauge identities are associated to
the gauge transformations of BA
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δBA = 2TA MP ΛMGP + 2RA M ∧ δAM , (3.3.32)

where RA M is a 1-form that is cancelled in the above gauge identity by an extra term
in the equation of motion of the vector fields:

E ′M = EM +RA MEA ∧AM . (3.3.33)

The 1-forms RA M must be such that the infinitesimal gauge transformations form a
closed algebra. The gauge identity takes now the form

DE ′M + 1
2ΘM

A(kA
iEi + c.c.) + TA MP EA ∧GP −D(RA MEA ∧AM ) = 0 . (3.3.34)

In order to make contact with the tensor hierarchy we take

RA M = 1
2X

P
MNA

N ∧ (FP −GP ) . (3.3.35)

We observe that the equations of motion also satisfy the relation

DEA − 1
2TB MNΘPAAN ∧ EB + ΘMAEM = 0 , (3.3.36)

which can be interpreted as the gauge identity associated to the symmetry

δAM = ZMAΛA ,

δBA = DΛA − 1
2TAMNΘNBAM ∧ ΛB .

(3.3.37)

As we did in the electric gauging case, we are now going to establish a relation
between the tensor hierarchy and the following equations of motion:

E ′M = DGM − 1
4ΘM

A ⋆ jA + 1
2TA MNA

N ∧ΘPA(FP −GP ) = 0 ,(3.3.38)

EA = ΘMA(FM −GM ) = 0 , (3.3.39)

kA
iEi = kA

i

[

Gij∗D ⋆DZ∗ j∗ − ∂iGM
+ ∧GM+ − ⋆ 1

2∂iV

]

= 0 . (3.3.40)

These equations are invariant under the gauge transformations

δaZ
i = δhZ

i , (3.3.41)

δaA
M = δhA

M , (3.3.42)

δaBA = δhBA − 2TA NP ΛN(FP −GP ) , (3.3.43)



3.3 The D = 4 duality hierarchy 73

where we have denoted by δa the gauge transformations that leave this system of
equations invariant and by δh those derived in the construction of the 4-dimensional
tensor hierarchy (summarized in Appendix E.3). δaBA is, therefore, just δhBA with
FP replaced by GP .

Following the electric gauging case, in order to derive the above equations of
motion from the tensor hierarchy, we introduce the following set of duality relations:

GM = FM ,

jA = −2 ⋆ HA ,

∂V

∂ΘM
A

= −2 ⋆ GA
M .

(3.3.44)

We note that the gauge-covariance of the first duality relation is more subtle in that
GM transforms not only covariantly, but also into GM − FM , see [77]. Note that
the equation of motion of the magnetic 2-form potentials, EA = 0, is identified as a
projected duality relation. To recover the other equations of motion we have to again
hit the duality relations (3.3.44) with a covariant derivative and next apply one of the
Bianchi identities of the tensor hierarchy. To derive the projected scalar equations of
motion we first obtain the identity

D ⋆ jA + 2TA MNG
M ∧GN − ⋆YA

ΛC ∂V

∂ΘΛ
A

= 0 (3.3.45)

from the duality hierarchy and, next, apply the Noether identity (3.3.26).
The gauge identities guarantee the existence of a gauge-invariant action from which

the equations of motion E ′M and EA can be derived. This action has actually been
constructed in Ref. [15]. In our conventions, it is given by

S[gµν , Z
i, AM , BA] =

∫

{

⋆R− 2Gij∗DZi ∧ ⋆DZ∗ j∗ + 2FΣ ∧GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X[MN ]ΣA

M ∧AN ∧
(

FΣ − ZΣBBB

)

− 2
3X[MN ]

ΣAM ∧AN ∧
(

dAΣ − 1
4X[PQ]ΣA

P ∧AQ
)}

.
(3.3.46)

A general variation of the above action gives

δS =

∫ {

δgµν δS

δgµν
+

(

δZi δS

δZi
+ c.c.

)

− δAM ∧ ⋆ δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

}

,

(3.3.47)
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where

δS

δgµν
= ⋆IEµν , (3.3.48)

− 1
2

δS

δZi
= Ei , (3.3.49)

− 1
4⋆

δS

δAM
= E ′M , (3.3.50)

⋆
δS

δBA
= EA . (3.3.51)

3.3.3 The unconstrained case

In this subsection we briefly comment on the meaning of the top-form and next
to top-form potentials. Experience shows that these higher-rank potentials can be
related to constraints: the constancy of ΘM

A, DΘM
A = 0, can be associated to the

3-form potential, and the quadratic and linear constraints QNP
E = 0, QAB = 0,

LNPQ = 0 can be associated to the 4-form potentials DE
NP , DAB, D

NPQ that we
have providentially found. We would like to stress, however, that prior to relaxing
the constraints one is forced to introduce these potentials if one requires that the field
equations are derivable as compatibility conditions from the duality relations, as we
showed in the previous section.

In view of the discussion of an action principle with Lagrange multipliers in the
next section, we reconsider the gauge identities of the equations E ′M , EA defined in
the previous subsections assuming that those constraints are not satisfied. We then
denote the embedding tensor by ϑM

A = ϑM
A(x) in order to indicate that it is now

space-time dependent. Evidently, we are going to get extra terms proportional to
the constraints which we will reinterpret as equations of motion of the 3- and 4-
form potentials, obtaining new gauge identities that involve the equations of motion
of all fields. Thus, off-shell gauge invariance will have been preserved by the same
mechanism used in the previous case. The price that we will have to pay is the same:
modifying the gauge transformations and the equations of motion.

This procedure is too complicated in this case, though. As an example, let us take
the covariant derivative of EA:

DEA = −DϑM
A ∧ (FM −GM ) + ϑMA(DFM −DGM ) . (3.3.52)

The unconstrained Bianchi identity for FM is
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DFM = ZMB[HB − YBN
CCC

N ] + LM
RS [ 32A

R ∧ dAS + 1
2XNP

SAR ∧AN ∧AP ]

+DϑN
A ∧ [12ΩNMBA + 1

2TA P
MAN ∧AP ] + 1

3QNP
ETE R

MAN ∧AP ∧AR ,
(3.3.53)

and, using the equation of motion E ′M we can write the following gauge identity

DEA − 1
2TB MNϑ

MAAN ∧ EB + ϑMAE ′M +QAB[2(HB + 1
2 ⋆ jB)− 2YBN

CCC
N ]

+DϑM
B ∧ [12ϑ

MABB + 1
2TB P

QϑQ
AAM ∧AP + δB

A(FM −GM )]

+LMRSϑ
MA[− 3

2A
R ∧ dAS − 1

2XNP
SAR ∧AN ∧AP ]

− 1
3QNP

ETE R
MϑM

AAN ∧AP ∧AR = 0 .
(3.3.54)

It is very difficult to infer directly from this and similar identities all the gauge trans-
formations of the fields and the modifications of the equations of motion. Thus, we
are going to adopt a different strategy in the next section: we are going to construct
directly a gauge-invariant action.

3.4 The D = 4 action

In this section we perform the third and last step of our procedure: the construction
of an action for the fields of the tensor hierarchy15. Our starting point is the action
Eq. (3.3.46), which we will denote by S0 in what follows and which includes, besides
the metric, only scalars, 1-forms and 2-forms and which is invariant under the gauge
transformations Eqs. (3.3.41)-(3.3.43). We now want to add to it 3- and 4-forms
as Lagrange multipliers enforcing the covariant constancy of the embedding tensor
(which we promote to an unconstrained scalar field ΘM

A(x)) and the three algebraic
constraints QAB, LNPQ, QNP

E that we have imposed on the embedding tensor.
The new terms must be metric-independent (“topological”) and scalar-independent
in order to leave unmodified the scalar and Einstein equations of motion (3.3.21)
which are derived from the action S0 given in Eq. (3.3.46).

Thus, we add to S0 the following piece ∆S given by16

∆S =

∫

{

DϑM
A ∧ C̃A

M + QNP
ED̃E

NP +QABD̃AB + LNPQD̃
NPQ

}

. (3.4.1)

15Actually, not all the 2-forms BA will appear in the action but only ΘΛABA.
16Observe that DΘM

A = dΘM
A − QNM

AAN and, therefore, the covariant constancy of the
embedding tensor plus the quadratic constraint QNP

E = 0 imply dΘM
A = 0.
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The tildes in C̃C
M , D̃AB, D̃NPQ and D̃E

NP indicate that these 3- and 4-form fields
need not be identical to those found in the hierarchy, although we expect them to be
related by field redefinitions.

The action S0 is no longer gauge invariant under the gauge transformations in-
volving 0- and 1-form gauge parameters ΛM ,ΛA, without imposing any constraints
on the embedding tensor, but the non-vanishing terms in the transformation can only
be proportional to the l.h.s.’s of the constraints DϑM

C = 0, QNP
E = 0, QAB = 0

and LNPQ = 0 and, by choosing appropriately the gauge transformations of C̃C
M ,

D̃AB, D̃NPQ and D̃E
NP we can always make the variation of the action S ≡ S0 +∆S

vanish. Having done that we would like to relate the tilded fields with the untilded
ones in the hierarchy.

Let us start by computing the general variation of the action. Taking into account
the fact that the fields gµν , Zi and BA µν only occur in S0, that the field AM

µ occurs

in S0 and in the term DϑM
AC̃A

M in ∆S and that the new fields C̃C
M , D̃AB, D̃NPQ

and D̃E
NP only occur in ∆S, we find

δS =

∫ {

δgµν δS0

δgµν
+

(

δZi δS0

δZi
+ c.c.

)

− δAM ∧ ⋆ δS0

δAM
+ 2δBA ∧ ⋆

δS0

δBA

+DϑM
A ∧ δC̃A

M +QNP
E(δD̃E

NP − δAN ∧ C̃E
P ) +QABδD̃AB

+LNPQδD̃
NPQ + δϑM

A δS

δϑM
A

}

.

(3.4.2)

The scalar and Einstein equations of motion are as in Eqs. (3.3.21) and (3.3.48),(3.3.49).
The variations of the old action S0 with respect to AM and BA are modified by terms
proportional to the constraints. We can write them in the form

− 1
4⋆

δS0

δAM
= DFM − 1

4ϑM
A ⋆ jA − 1

3dX[PQ]M ∧AP ∧AQ − 1
2Q(NM)

EAN ∧BE

−LMNPA
N ∧

(

dAP + 3
8X[RS]

PAR ∧AS
)

+ 1
8QNP

ATA QMAN ∧AP ∧AQ

−d(FM −GM )−X[MN ]
PAN ∧ (FP −GP ) , (3.4.3)

⋆
δS0

δBA
= ϑPA(FP −GP ) +QABBB . (3.4.4)

In deriving these equations we have used the unconstrained Bianchi identity for FΛ,
given by the upper component of Eq. (3.3.53), to replace HA in the equation of motion
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of AΛ. This has allowed us to write a symplectic-covariant expression for the equation
of motion of AM .

The only non-trivial variation that remains to be computed in Eq. (3.4.2) is the
equation of motion of the embedding tensor. We get

δS

δϑM
A

= −DC̃A
M + ZMBBB ∧BA − 2(FM −GM ) ∧BA − ⋆

∂V

∂ϑM
A

+WANP
EM D̃E

NP +WA
BCM D̃BC +WANPQ

MD̃NPQ

+AM ∧
{

− ⋆ jA + YAN
CC̃C

N − TAN
PAN ∧ (FP −GP )

− 4
3TANRA

N ∧
[

dAR + 3
8X[PQ]

RAP ∧AQ + 3
2Z

RBBB

]}

.

(3.4.5)

We are going to use this equation to find the relation between the tilded fields and
the hierarchy fields. Using Eqs. (3.3.44) and the definitions of the tensor hierarchy’s
field strengths HA and GA

M , we are left with

1
2

δS

δϑM
A

= D(− 1
2 C̃A

M − CA
M −AM ∧BA)

+YAP
CAM ∧ (1

2 C̃C
P + CC

P +AP ∧BC) +WA
BCM (1

2D̃BC −DBC)

+WANP
EM (1

2D̃E
NP −DE

NP + 1
2A

N ∧AP ∧BE)

+WANPQ
M (1

2D̃
NPQ −DNPQ) ,

(3.4.6)
which is satisfied if we identify

C̃A
M = −2(CA

M +AM ∧BA) , D̃E
NP = 2DE

NP −AN ∧AP ∧BE ,

D̃BC = 2DBC , D̃NPQ = 2DNPQ .
(3.4.7)

Using these identifications ∆S reads

∆S =

∫

{

−2DϑM
A ∧ (CA

M +AM ∧BA) + 2QNP
E(DE

NP − 1
2A

N ∧AP ∧BE)

+2QABDAB + 2LNPQD
NPQ

}

,
(3.4.8)
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and a general variation of the total action S = S0 + ∆S is given by

δS =

∫ {

δgµν δS0

δgµν
+

(

δZi δS0

δZi
+ c.c.

)

− δAM ∧ ⋆ δS0

δAM
+ 2δBA ∧ ⋆

δS0

δBA

+DϑM
A ∧ [−2δCA

M − 2δAM ∧BA − 2AM ∧ δBA] +QAB[2δDAB]

+QNP
E [2δDE

NP + 2δAN ∧CE
P + 2δA(N ∧AP ) ∧BE −AN ∧AP ∧ δBE ]

+LNPQ[2δDNPQ] + δϑM
A δS

δϑM
A

}

.

(3.4.9)
The first variation of the total action S with respect to ϑM

A can be written in the
form

1
2

δS

δϑM
A

= (GA
M − 1

2 ⋆ ∂V/∂ϑM
A)−AM ∧ (HA + 1

2 ⋆ jA)

− 1
2TAN

PAM ∧AN ∧ (FP −GP )− (FM −GM ) ∧BA .

(3.4.10)

We can now check the gauge invariance of the total action S. We are going to
use for the gauge transformations of all the fields (except for the scalars and vectors)
the Ansatz δa = δh + ∆ where ∆ is a piece to be determined. If we assume that the
embedding tensor is exactly invariant17, i.e. δϑM

A = 0, we find

∆BA = −2TA NP ΛN (FP −GP ) , (3.4.11)

∆CA
M = ΛA ∧ (FM −GM )− ΛM (HA + 1

2 ⋆ jA) , (3.4.12)

∆DAB = 2Λ[A ∧ (HB] + 1
2 ⋆ jB])− 2T[A|NP ΛN (FP −GP ) ∧B|B] ,(3.4.13)

∆DE
NP = −ΛN(GE

P − 1
2 ⋆ ∂V/∂ϑP

E) + (FN −GN ) ∧ ΛE
P , (3.4.14)

∆DNPQ = −3δA(N ∧AP ∧ (FQ) −GQ)) + 6Λ(NFP ∧ (FQ) −GQ))

−3Λ(N(FP −GP ) ∧ (FQ) −GQ)) , (3.4.15)

17One could also allow ϑA
M to transform according to its indices as δϑA

M = −QNM
AΛN . This is

like adding a term proportional to an equation of motion, that of DA
NM , to the zero variation.
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where we have used in this calculation the non-trivial Ricci identities18

ϑM
CDDΛC

M = DϑM
A ∧ (−YAP

EAM ∧ ΛE
P ) +QNP

E [(FN − ZNABA) ∧ ΛE
P

− 1
2YEQ

CAN ∧AP ∧ ΛC
Q] , (3.4.16)

DDFM = XNPMFN ∧ FP − 2QABTA PMFP ∧BB + dXNPM ∧AN ∧ FP

− 1
2QNP

ETE MQA
N ∧AP ∧ FQ , (3.4.17)

and the variations of the kinetic matrix and the potential Eqs. (3.3.23) and (3.3.24).
We observe that all terms in the extra variations ∆ vanish when we use the duality

relations (3.3.44). Actually, all of them, except for just one term in ∆DNPQ, are such
that the variations δa are obtained from the tensor hierarchy variations δh simply by
replacing the scalar-independent field strengths FM , HA, GA

M by the corresponding

scalar-dependent objects GM , jA,
∂V

∂ϑΛ
A

via the duality relations (3.3.44).

Finally, we note that the variations δa and δh are equivalent from the point of view
of the duality hierarchy. The two sets of transformation rules differ by terms that
are proportional to the duality relations. The only difference is that the commutator
algebra corresponding to δh closes off-shell whereas the algebra corresponding to δa
closes up to terms that are proportional to the duality relations. The two sets of
transformation rules are not equivalent from the action point of view in the sense that
only one of them, the one with transformation rules δa, leaves the action invariant,
whereas the other, with transformations δh, does not.

18If the constraints are satisfied, ϑM
CDDΛC

M = DD(ϑM
CΛC

M ) = dd(ϑM
CΛC

M ) = 0. There-
fore, when they are not satisfied, ϑM

CDDΛC
M must be proportional to them.





Chapter 4

Applications: Gauging
N = 1, 2 Supergravity

In this Chapter we are going to apply the general results of Chapter 3 to specific
Supergravity theories, i.e. N = 1 (section 4.1) and N = 2 (section 4.2) Supergravity.
We start with electric gaugings of the perturbative symmetries of matter coupled N =
1 Sugra in section 4.1.1 Our next step will be to consider the most general gauging of
N = 1, d = 4 supergravity, using perturbative and non-perturbative global symmetries
and using electric and magnetic vectors (4.1.2). To do so, we introduce magnetic
vector fields and magnetic gauginos, in order to have well-defined covariant derivatives
acting on the bosonic fields. As was discussed in Chapter 3, general gaugings of four-
dimensional Supergravities imply the existence of a complete hierarchy of p-form fields
with degrees p ≥ 1. We are going to find the hierarchy fields predicted by the general
4d tensor hierarchy for N = 1 Supergravity and their supersymmetry transformations
in section 4.1.3. However, we will find some more fields not predicted by the hierarchy
and discuss their origin. We will show that the local supersymmetry algebra closes
on all these “extensions” of N = 1 Supergravity. In section 4.2 we are going to study
N = 2 d = 4 Einstein-Yang-Mills (EYM) Supergravity, i.e. the gaugings of N = 2
d = 4 Supergravity coupled to non-Abelian vector supermultiplets.

4.1 Gauged N = 1 Supergravity

4.1.1 Electric gaugings of perturbative symmetries

We are now going to gauge the symmetries described in the section 2.1.1 using as gauge
fields the electric 1-form potentials AΛ. This requires the introduction of the (electric)
embedding tensor ϑΛ

A to indicate which global symmetry TA is gauged by which gauge
field AΛ and, equivalently, to identify the parameters of global symmetries αA that
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are going to be promoted to local parameters with the gauge parameters ΛΣ(x) of
the 1-forms:

αA(x) ≡ ΛΣ(x)ϑΣ
A . (4.1.1)

We will write now the constraint Eq. (2.1.36) in the form1

(ϑΣ
aPa + ϑΣ

♯P♯)L = 0 . (4.1.2)

Taking into account Eq. (2.1.19) and this definition, the gauge transformations of
the complex scalars will be

δZi = ΛΣϑΣ
AkA

i . (4.1.3)

The embedding tensor cannot be completely arbitrary. To start with, it is clear
that it has to be invariant under gauge transformations, which we denote by δ:

δϑΛ
A = −ΛΣQΣΛ

A , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A . (4.1.4)

Then, the embedding tensor has to satisfy the quadratic constraint

QΣΛ
A = 0 . (4.1.5)

The gauge fields AΛ effectively couple to the generators

XΣΩ
Γ ≡ ϑΣ

ATA Ω
Γ , XΣΩΓ ≡ ϑΣ

ATA ΩΓ , XΣ ≡ ϑΣ
ATA . (4.1.6)

From the definition of the quadratic constraint Eq. (4.1.5)

X(ΛΣ)
ΩϑΩ

A = 0 , (4.1.7)

and so it will vanish, although, in general, we will have

X(ΛΣ)
Ω 6= 0 . (4.1.8)

From the commutator of the matrices TA and using the quadratic constraint we find
the commutator of X generators

[XΛ, XΣ] = −XΛΣ
ΩXΩ , (4.1.9)

from which we can derive the analogue of the Jacobi identities.

1Again, this constraint and other constraints of the same kind that will follow, should be under-
stood as a way to consider the cases L = 0 and L 6= 0 simultaneously: when L 6= 0 the embedding
tensor must satisfy (ϑΣ

aPa + ϑΣ
♯P♯) = 0 and it is unrestricted when L = 0.
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We are now ready to gauge the theory. We will not attempt to give the full
supersymmetric Lagrangian and supersymmetry transformation rules, but only those
elements that allow its construction to lowest order.

First, we have to replace the partial derivatives of the scalars in their kinetic term
by the covariant derivatives

DZi ≡ dZi +AΛϑΛ
AkA

i , (4.1.10)

where the gauge potentials transform according to

δAΣ = −DΛΣ ≡ −(dΛΣ +XΛΩ
ΣAΛΛΩ) . (4.1.11)

We also replace in the action the vector field strengths by the gauge-covariant field
strengths

FΣ = dAΣ + 1
2XΛΩ

ΣAΛ ∧AΩ . (4.1.12)

Observe that we have not introduced a coupling constant g as it is standard in
the literature since the embedding tensor already plays the role of coupling constant
and even of different coupling constants if we deal with products of groups. Observe
also that ϑ♯

A does not appear in any of these expressions because K♯ = T♯ = 0.
We have to replace the (Kähler- and Lorentz-) covariant derivatives of the spinors

in their kinetic terms by gauge-covariant derivatives:

Dµψν = {Dµ − i
2A

Λ
µϑΛ

APA}ψν , (4.1.13)

Dχi = Dχi + Γjk
iDZjχk −AΛϑΛ

A∂jkA
iχj + i

2A
ΛϑΛ

APAχ
i , (4.1.14)

DλΣ = {D − i
2A

ΛϑΛ
APA}λΣ −XΛΩ

ΣAΛλΩ . (4.1.15)

The components ϑΛ
♯ occur in all these covariant derivatives. The components ϑΛ

a

only occur in the last term of DλΣ.
The supersymmetry transformations of the bosonic fields do not change with the

gauging, but those of the fermions do by the addition of a new fermion shift term in
the gauginos supersymmetry transformation rule. To first order in fermions, we have

δǫψµ = Dµǫ+ iLγµǫ
∗ , (4.1.16)

δǫλ
Σ = 1

2

[

6FΣ+ + iDΣ
]

ǫ , (4.1.17)

δǫχ
i = i 6DZiǫ∗ + 2Gij∗Dj∗L∗ǫ , (4.1.18)
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where

DΛ ≡ −ℑm fΛΣϑΣ
APA . (4.1.19)

where we use the notation

ℑm fΛΣ ≡ (ℑm f)−1|ΛΣ . (4.1.20)

The new term leads to corrections of the scalar potential of the ungauged theory Vu,
given in Eq. (2.1.4), which now takes the form

Veg = Vu −DΛϑΛ
APA = Vu + 1

2ℑm fΛΣϑΛ
AϑΣ

BPAPB . (4.1.21)

The action for the bosonic fields of the N = 1, d = 4 gauged supergravity of
the kind considered here is obtained by replacing the partial derivatives and field
strengths by gauge-covariant derivatives and field strengths, replacing the potential
Vu by Veg above and by adding a Chern–Simons term [80, 81] which is necessary to
make the action gauge invariant

Seg =

∫

{

⋆R− 2Gij∗DZi ∧ ⋆DZ∗ j∗ − 2ℑmfΛΣF
Λ ∧ ⋆FΣ + 2ℜefΛΣF

Λ ∧ FΣ

− ⋆ Veg − 4
3XΛΣΩA

Λ ∧AΣ ∧ [dAΩ + 3
8XΓ∆

ΩAΓ ∧A∆]
}

.
(4.1.22)

Gauge-invariance can be achieved only if

X(ΛΣΩ) = 0 , (4.1.23)

which is a constraint that also follows from supersymmetry.

4.1.2 General gaugings of N = 1, d = 4 supergravity

In this section we will discuss the most general gaugings of N = 1, d = 4 supergravity
by using as gauge group any subgroup ofG = Giso×GV×U(1)R that can be embedded
into Sp(2nV,R).

From the purely bosonic point of view it would suffice to use the results of Refs. [15,
33] taking into account the particular structure of the global symmetry group of
N = 1, d = 4 supergravity. This involves the introduction of new p-form fields
p = 2, 3, 4 which, together with the electric and magnetic (to be defined) 1-forms of
the theory, combined into AM , constitute the standard 4-dimensional tensor hierarchy,
reviewed in Appendices E.1 and E.3. Its field content is

{AM , BA, CA
M , DAB, DE

NP , DNPQ} .
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At the level of the action, is is not necessary to introduce all these fields, though. It
is enough to introduce the magnetic 1-forms AΛ and 2-forms BA.

This procedure, however, must be compatible with N = 1, d = 4 supersymmetry.
A supersymmetrization of the tensor hierarchy and the action is necessary. The
supersymmetrization of the tensor hierarchy is a first step towards the construction
of a fully supersymmetry action with electric and magnetic gaugings and this is going
to be our goal in this section.

Thus, we are going to repeat the construction of the 4-dimensional tensor hierarchy
checking at each step its consistency with N = 1, d = 4 supersymmetry: for each new
p-form field we will construct a supersymmetry transformation and we will check the
closure of the local N = 1, d = 4 supersymmetry algebra on it. The commutator
of two N = 1, d = 4 local supersymmetry transformations acting on bosonic p-form
fields is expected to have the general form

[δη , δǫ] = δg.c.t. + δgauge + duality relations , (4.1.24)

where δg.c.t. is a general coordinate transformation and δgauge is a gauge transfor-
mation that should coincide with the one predicted by the bosonic tensor hierarchy
purely on gauge-invariance arguments. We also expect in general additional terms
proportional to duality relations between the new fields and the original fields of the
ungauged N = 1, d = 4 supergravity. These duality relations project the tensor
hierarchy onto the physical theory reducing the number of independent fields.

Contrary to that expectation, we are going to see that, at least for some fields, it is
possible to construct supersymmetry transformations such that the local N = 1, d = 4
supersymmetry algebra closes without the use of any duality relation, i.e.

[δη , δǫ] = δg.c.t. + δgauge . (4.1.25)

To make this possible we will have to introduce the additional p-form fields of the
tensor hierarchy in supermultiplets constructing, as a matter of fact, a supersymmet-
ric tensor hierarchy. Now, to project the supersymmetric tensor hierarchy onto the
physical theory we will use duality relations both for the bosons and fermions.

We have succeeded in supersymmetrizing in this way the hierarchy up to 2-forms
(which requires the introduction of linear multiplets) but these results strongly indi-
cate that the same should be possible for all p-forms in the tensor hierarchy.

Studying the closure of the local N = 1, d = 4 supersymmetry algebra we are
going to see that it is necessary to add more bosonic p-form fields to the standard
tensor hierarchy. The main reason for this is the existence of the constraint Eq. (4.1.2)
which will be conveniently generalized to the electric-magnetic case in Eq. (4.1.40).
This constraint restricts simultaneously the terms Pa,P♯ and the symmetries that
can be gauged and reflects the breaking of the U(1)R symmetry by the presence of a
non-vanishing superpotential L.

The breaking of this symmetry will manifest itself in the existence of a new Stück-
elberg shift of the 2-forms Ba, B♯
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δBa ∼ PaΛ , δB♯ ∼ P♯Λ , (4.1.26)

where Λ is a 2-form that appears whenever L 6= 0. We can only find this shift by
studying the closure of the local supersymmetry algebra. Therefore, it is necessary
to simultaneously construct the tensor hierarchy and study its supersymmetrization.

To construct the respective gauge-covariant 3-form field strengths Ha, H♯ the ex-
istence of one new 3-form C is required. We will find consistent supersymmetry
transformations for the needed 3-form C and also for another 3-form C′ and for a set
of 4-forms DM . The extended hierarchy of N = 1, d = 4 supergravity will, thus, have
the total bosonic field content

{AM , BA, CA
M , C, C′, DAB, DE

NP , DNPQ, DM} .
We now want to consider the most general gauging of N = 1, d = 4 supergravity,

using perturbative (see section 2.1.1) and non-perturbative (see section 2.1.2) global
symmetries and using electric and magnetic vectors, to be introduced next. In the
ungauged theory we can introduce nV 1-form potentials AΛ and their field strengths
FΛ = dAΛ. The Maxwell equations can be replaced by the first-order duality relation

GΛ = FΛ , (4.1.27)

since now the Bianchi identity dFΛ = 0 implies the standard Maxwell equation dGΛ =
0. The magnetic vectors AΛ will be introduced in the theory as auxiliary fields and
we will study them from the supersymmetry point of view later on. The electric AΛ

and magnetic AΛ vectors will be combined into a symplectic vector AM

AM ≡
(

AΛ

AΛ

)

, AM ≡ ΩMNA
N = (AΛ ,−AΛ) , AM = AN ΩNM ,

(4.1.28)
and used as the gauge fields of the symmetries described in the previous subsection.

In order to use all the 1-forms AM as gauge fields we need to add a magnetic
component to the embedding tensor, which becomes a covariant symplectic vector

ϑM
A ≡ (ϑΛA , ϑΛ

A ) , (4.1.29)

where the index A ranges over all the generators of G = Gbos × U(1)R, so we have
now

αA(x) ≡ ΛM (x)ϑM
A , (4.1.30)

and the gauge transformations of the complex scalars, for instance, take the form

δZi = ΛMϑM
AkA

i . (4.1.31)
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The embedding tensor, then, provides an embedding of the gauge group into the
group Sp(2nV ,R) which acts on the vectors. If the global symmetry group is bigger
than Sp(2nV ,R) we will not be able to gauge it completely. Further constraints will
decrease the rank of the group that we can actually gauge.

For instance, we must impose the constraint

QAB ≡ 1
4ϑ

[A|MϑB]
M = 0 , ⇒ ϑAMϑM

B = 0 , (4.1.32)

which guarantees that the electric and magnetic gaugings are mutually local [15] and
we can go to a theory with only purely electric gaugings by a symplectic transforma-
tion.

The embedding tensor must satisfy further conditions. We define the matrices

XMN
P ≡ ϑM

ATA N
P , (4.1.33)

which satisfy

XMNP = XMPN , (4.1.34)

on account of Eq. (2.1.51). Observe that the components ϑM
♯ are no present in the

XMNP tensors. Further, we impose the quadratic constraint2

QNM
A ≡ ϑN

ATA M
PϑP

A − ϑN
AϑM

BfAB
A = 0 , (4.1.35)

to ensure invariance of ϑM
A and the representation constraint [15]

LMNP ≡ X(MNP ) = X(MN
QΩP )Q = 0 . (4.1.36)

This constraint is required by gauge invariance and supersymmetry3. It implies
Eq. (4.1.23) and also

X(MN)P = − 1
2XPMN ⇒ X(MN)

P = ZPATAMN , (4.1.37)

where we have defined

ZPA ≡ − 1
2ΩNPϑN

A . (4.1.38)

This definition and that of the other projectors that appear in the 4-dimensional
hierarchy are collected in Appendix E.1. The tensor ZPA will be used to project
in directions orthogonal to the embedding tensor since, due to the first quadratic
constraint Eq. (3.2.10)

ZMAϑM
B = 0 . (4.1.39)

2Observe that ϑM
♯ does not occur in QNM

A either.
3In Ref. [77] it has been shown how this constraint gets modified in the presence of anomalies

and the modifications can cancel exactly the lack of gauge invariance of the classical action.
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Finally, it should be clear that the constraint Eq. (4.1.2) on the triple product of
embedding tensor, momentum maps and superpotential should be generalized to

(ϑM
aPa + ϑM

♯P♯)L = 0 . (4.1.40)

With these properties we can define gauge-covariant derivatives of objects trans-
forming according to δφ = ΛMδMφ by

Dφ = dφ +AMδMφ . (4.1.41)

if the gauge fields transform according to

δAM = −DΛM + ∆AM = −(dΛM +XNP
MANΛP ) + ∆AM , (4.1.42)

where ∆AM is a piece that we can add to this gauge transformation if it satisfies

ϑM
A∆AM = 0 . (4.1.43)

The covariant derivatives of the scalars, gravitino and chiralinos read

DZi = dZi +AMϑM
AkA

i , (4.1.44)

Dµψν = {Dµ − i
2A

M
µϑM

APA}ψν , (4.1.45)

Dχi = Dχi + Γjk
iDZjχk −AMϑM

A∂jka
iχj + i

2A
MϑM

APAχ
i . (4.1.46)

Observe that ∆AM drops automatically from the gauge transformations of these
expressions because AM always comes projected by ϑM

A.

It is clear that we need to introduce auxiliary “magnetic gauginos” λΛ in order to
construct a symplectic vector of gauginos λM whose covariant derivative is

DλM = {D − i
2A

NϑN
APA}λM −XNP

MANλP . (4.1.47)

The magnetic gauginos are the supersymmetric partners of the magnetic 1-forms. We
will discuss their supersymmetry transformation rules later.

So far, to introduce the general 4-dimensional embedding-tensor formalism we have
introduced magnetic 1-forms AΛ and gauginos λΛ. As discussed at the beginning of
this section, we have to find supersymmetry transformations for them and check the
closure of the local N = 1, d = 4 supersymmetry algebra.
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4.1.3 Supersymmetric tensor hierarchy of N = 1, d = 4 super-
gravity

Before we deal with the supersymmetry transformations of the magnetic 1-forms
that we have introduced, we take one step back and study the closure of the local
N = 1, d = 4 supersymmetry algebra on the 0-forms.

The scalars Zi

Their supersymmetry transformations are given by Eq. (2.1.12), which we rewrite
here for convenience:

δǫZ
i = 1

4 χ̄
iǫ . (4.1.48)

At leading order in fermions,

δηδǫZ
i = 1

4 (δηχi)ǫ , (4.1.49)

and all we need is the supersymmetry transformation for χi. This is given in Eq. (4.1.18),
which we also rewrite here

δηχ
i = i 6DZiη∗ + 2Gij∗Dj∗L∗η , (4.1.50)

where we have to take into account that the covariant derivative DZi is now given by
Eq. (4.1.44). We get

[δη , δǫ]Z
i = δg.c.t.Z

i + δhZ
i , (4.1.51)

where δg.c.t.Z
i is a g.c.t. with infinitesimal parameter ξµ

δg.c.t.Z
i = £ξZ

i = +ξµ∂µZ
i , (4.1.52)

ξµ ≡ i
4 (ǭγµη∗ − η̄γµǫ∗) , (4.1.53)

and where δhZ
i is the gauge transformation Eq. (4.1.31) with gauge parameter ΛM

δZi = ΛMϑM
AkA

i , (4.1.54)

ΛM ≡ ξµAM
µ . (4.1.55)

This is just a small generalization of the standard result in which electric and
magnetic gauge parameters appear. As expected, no duality relations are required to
close the local supersymmetry algebra on the Zi.
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The 1-form fields AM

As we have mentioned before, to define supersymmetry transformations for the mag-
netic vectors AΛ it is convenient to introduce simultaneously magnetic gauginos4 λΛ.
This is equivalent to introducing nV auxiliary vector supermultiplets. Symplectic
covariance suggests that we can write the following supersymmetry transformation
rules for the electric and magnetic 1-forms and gauginos:

δǫA
M

µ = − i
8 ǭ

∗γµλ
M + c.c. , (4.1.56)

δǫλ
M = 1

2

[

6FM+ + iDM
]

ǫ , (4.1.57)

where FM is the gauge-covariant 2-form field strength of AM , to be defined shortly.
and where we have defined the symplectic vector

DM ≡
(

DΛ

DΛ

)

≡
(

DΛ

fΛΣDΣ

)

, (4.1.58)

where now, the electric DΛ has been redefined, with respect to the purely electric
gauging case, to include a term with the magnetic component of the embedding
tensor ϑΛA:

DΛ = −ℑmfΛΣ (ϑΣ
A + f∗

ΣΩϑ
ΩA)PA . (4.1.59)

Although at this point we do not need it, it is important to observe that there is
a duality relation between the magnetic gauginos and the electric ones

λΛ = fΛΣλ
Σ . (4.1.60)

The gaugino duality relation is local and takes the same form as the duality relation
between the magnetic and the electric vector field strengths:

FΛ
+ = fΛΣF

Σ+ , (4.1.61)

which is obtained from the duality between electric and magnetic vectors FΛ = GΛ,
combined with Eq. (2.1.43). These duality relations relate the supersymmetry trans-
formation δǫλ

Λ to δǫλΛ.
Now we can check the closure of the local supersymmetry algebra on AM . It is,

however, convenient to know which kind of gauge transformations with should expect
in the right hand side. The gauge transformations of AM are given in Eq. (3.2.31)
up to a term ∆AM which is determined in the construction of its gauge-covariant
field strength FM . This term is also needed to have well-defined supersymmetry
transformations for all the gauginos.

4Magnetic gauginos have also been introduced in Ref. [79].
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As shown in Ref. [15], this requires the introduction of a set of 2-forms BA in FM ,
which takes the form

FM = dAM + 1
2X[NP ]

MAN ∧AP + ZMABA , (4.1.62)

and is gauge-covariant under the transformations5

δhA
M = −DΛM − ZMAΛA , (4.1.63)

δhBA = DΛA + 2TA NP [ΛNFP + 1
2A

N ∧ δhAP ] + ∆BA , (4.1.64)

where
ZMA∆BA = 0 . (4.1.65)

Let us now compute the commutator of two supersymmetry transformations on
AM . To leading order in fermions, Eq. (4.1.56) gives

δηδǫA
M = − i

8 ǭ
∗γµδηλ

M + c.c. (4.1.66)

Using Eq. (4.1.57) with the parameter η, we find

[δη , δǫ]A
M = ξνFM

νµ + ZMAPAξµ , (4.1.67)

where ξµ is given by Eq. (4.1.53) and we have used

ℑmDM = 2ZMAPA , (4.1.68)

which follows from the definitions Eqs. (4.1.58), (4.1.59) and (E.1.1). We always
expect a general coordinate transformation on the right hand side of the form

δg.c.t.A
M

µ = £ξA
M

µ = ξµ∂µA
M

µ + ∂µξ
µAM

µ . (4.1.69)

Using the explicit form of the field strength FM Eq. (3.2.36) we can rewrite it as

δg.c.t.A
M

µ = ξµFM
µν + Dµ(AM

νξ
ν) + ZMA[BAµνξ

ν − TA NPA
N

µA
P

νξ
ν ] . (4.1.70)

Using this expression in the commutator and the definition Eq. (4.1.55) of the
gauge parameter ΛM , we arrive at

[δη , δǫ]A
M = δg.c.t.A

M + δhA
M , (4.1.71)

where, in complete agreement with the tensor hierarchy, δhA
M is the gauge transfor-

mation in Eq. (4.1.63) with the 1-form gauge parameter ΛA given by

5The label h in the gauge transformations will be explained soon.
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ΛA ≡ −TA MNA
NΛM + bA − PAξ , (4.1.72)

bA µ ≡ BA µνξ
ν . (4.1.73)

Observe that no duality relation has been needed to close the local supersymmetry
algebra on the magnetic vector fields. This result is a consequence of using fully
independent magnetic gauginos as supersymmetric partners of the magnetic vector
fields, i.e. transforming as δǫλΣ ∼6FΣ

+ instead of δǫλΣ ∼6GΣ
+. In the later case we

would have gotten additional GΣ − FΣ terms to be cancelled by using the duality
relation.

The 2-form fields BA

In order to have a gauge-covariant field strength FM for the 1-forms we have been
forced to introduce a set of 2-forms BA and now we want to study the consistency
of this addition to the theory from the point of view of supersymmetry and gauge
invariance. We will first study the closure of the supersymmetry algebra on the 2-
forms BA without introducing its supersymmetric partners and, later on, we will
introduce the 2-forms as components of linear supermultiplets. In the first case, the
local N = 1, d = 4 supersymmetry algebra will close up to the use of duality relations
while in the second case it will close exactly.

It is useful to know beforehand what to expect in the right hand side of the
commutator of supersymmetry transformations acting on the 2-forms BA. The gauge
transformations of the 2-forms are given in Eq. (4.1.64) up to a term ∆BA which is
constraint to satisfy ZMA∆BA = 0. In Ref. ( [33]) it was found that, in general,

∆BA = −YAM
CΛC

M , (4.1.74)

for some 2-form parameters ΛC
M . YAM

C is the projector given in Eq. (3.2.44) and is
annihilated by ZNA in virtue of the quadratic constraint Eq. (4.1.5) (see Eq. (E.1.6)),
as required by the gauge-covariance of FM . YAM

C is the only tensor with this property
in generic 4-dimensional theories in which we can only use the constraint QNP

E = 0.
At this point we have to remind ourselves that in N = 1, d = 4 supergravity there is
another constraint that may be used, given in Eq. (4.1.40). To confirm it we need to
compute the commutator of supersymmetry transformations on BA.

In any case, the generic tensor hierarchy prediction is that, with the gauge trans-
formations Eq. (E.3.2), which we rewrite here

δhBA = DΛA + 2TA NP [ΛNFP + 1
2A

N ∧ δhAP ]− YAM
CΛC

M , (4.1.75)

the gauge-covariant field strength of BA is as given in Eq. (E.3.7)
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HA = DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ] + YAM

CCC
M , (4.1.76)

where CC
M is a 3-form whose gauge transformations are determined to be

δhCC
M = DΛC

M−FM∧ΛC−δhAM∧BC− 1
3TC NPA

M∧AN∧δhAP +ΛMHC+∆CC
M ,

(4.1.77)

where

YAM
C∆CC

M = 0 . (4.1.78)

Another constraint would mean that one more 2-form shift can be added to δhBA

and, correspondingly, another 3-form C must appear in HA. We are going to see that
this is indeed what supersymmetry implies.

Inspired by the results of Ref. [28], we found that, for the 2-forms BA, the super-
symmetry transformation is given by

δǫBAµν = 1
4 [∂iPAǭγµνχ

i+c.c.]+ i
2 [PAǭ

∗γ[µψν]−c.c.]+2TAMNA
M

[µδǫA
N

ν] . (4.1.79)

The commutator of two of these supersymmetry transformations closes up to a
duality relation to be described later on a general coordinate transformation plus a
gauge transformation of the form

δ′hBA = δhBA − (δA
aPa + δA

♯P♯)Λ , (4.1.80)

where δhBA is the standard hierarchy’s gauge transformation Eq. (E.3.2) with the
2-form parameters Λ and ΛC

M given by

ΛC
M ≡ −ΛMBC − cCM − 1

3TCQP ΛPAM ∧AQ , (4.1.81)

Λ ≡ −c+ 2ℜe(φL) , (4.1.82)

φµν ≡ ǭ∗γµνη
∗ = −η̄∗γµνǫ

∗ , (4.1.83)

cC
M

µν ≡ CC
M

µνρξ
ρ , (4.1.84)

cµν ≡ Cµνρξ
ρ , (4.1.85)
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and where the parameters ΛM and ΛA are, again, given by Eqs. (4.1.55) and (4.1.72)
respectively. We have introduced the anticipated 3-form C with the gauge transfor-
mation

δ′hC = −dΛ , (4.1.86)

to take care of the Stückelberg shift parameter Λ. Strictly speaking we only need
to introduce C when L 6= 0, so, according to the constraint Eq. (4.1.40) (ϑM

aPa +
ϑM

♯P♯) = 0. We can express this as a “constraint”

(ϑM
aPa + ϑM

♯P♯)C = 0 . (4.1.87)

so

(ϑM
aPa + ϑM

♯P♯)Λ = 0 , (4.1.88)

This constraint and Eq. (4.1.40) ensure that ZMA∆BA = 0 and FM remains gauge-
covariant under δ′hBA.

The hierarchy’s gauge-covariant field strength HA given in Eq. (E.3.7) has to be
modified:

H ′
A ≡ HA − (δA

aPa + δA
♯P♯)C , (4.1.89)

and the duality constraint that has to be imposed in order to close the local super-
symmetry algebra reads

HA = − 1
2 ⋆ jA , (4.1.90)

where

jA ≡ 2k∗A iDZ
i + c.c. , (4.1.91)

is the covariant Noether current 1-form. Observe that it vanishes for A = a, ♯. For
these case we expect to have currents bilinear in fermions which cannot appear at the
order in fermions we are working at.

Technically, the difference between the cases A = a and A = a, ♯ lies in the fact
that the identity

∂i∗PaDi∗L∗ − PaL∗ = 0 , (4.1.92)

which is crucial to cancel terms coming from the supersymmetry variation of the first
and second terms of Eq. (4.1.79) cannot be extended to the cases A = a, ♯ in which
we have introduced fake (vanishing) Killing vectors.
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The supermultiplet of BA

We are now going to show that if we add to the tensor hierarchy full linear multiplets6

{BA µν , ϕA, ζA} where ϕA is a real scalar and ζA is a Weyl spinor, instead of just
the 2-forms BA, as in the preceding section, we can close the local N = 1, d = 4
supersymmetry algebra on the 2-forms exactly without the use of the duality relation
Eq. (4.1.90).

We will construct the supersymmetry rules of the linear supermultiplet first for
the case A = a after which this result will be generalized to include also the cases
A = a, ♯. The above supersymmetry transformation rule Eq. (4.1.79) suggests the
fermionic duality rule

ζa = ∂iPaχ
i = ik∗a iχ

i , (4.1.93)

so we would have

δǫBaµν = 1
4 [ǭγµνζa + c.c.] + i

2 [Paǭ
∗γ[µψν] − c.c.] + 2TaMNA

M
[µδǫA

N
ν] . (4.1.94)

The supersymmetry transformation rule of ζa follows from the above duality rule:

δǫζa = ik∗
a iδǫχ

i = −k∗
a i 6DZiǫ∗ + 2∂iPaGij∗Dj∗L∗ǫ . (4.1.95)

Using next the duality rule Eq. (4.1.90) ja = 4ℜe(k∗
a iDZ

i) = −2 ⋆ Ha we find

δǫζa = −i[ i
12 6Ha + ℑm(k∗

a iDµZ
i)γµ]ǫ∗ + 2PaL∗ǫ . (4.1.96)

To make contact with the standard linear multiplet supersymmetry transforma-
tions we should be able to identify consistently

ℑm(k∗a iDZ
i) ≡ Dϕa , (4.1.97)

for some real scalar ϕa. The integrability condition of this equation can be obtained
by acting with D on both sides. Using on the l.h.s. the property

Dk∗a i = DZ∗j∗∇j∗k
∗
a i , (4.1.98)

and the Killing property, the integrability condition takes the form

−iFMϑM
bk∗[a|ik|b]

i = fab
cFMϑM

bϕc , (4.1.99)

which is solved by

−ik∗[a|ik|b]
i = fab

cϕc . (4.1.100)

6Similar supermultiplets have been introduced in electro-magnetically gauged globally supersym-
metric N = 2, d = 4 field theory [79].
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Given that the Killing vectors can be derived from the Killing prepotential Pa which
is equivariant, it follows that

k∗[a|ik|b]
i = i

2£aPb = − i
2fab

cPc , (4.1.101)

and we can finally identify

ℑm(k∗
a iDZ

i) = − 1
2DPa . (4.1.102)

The supersymmetry transformations of the linear multiplet {Baµν , ϕa, ζa} are given
by

δǫζa = −i[ 1
12 6Ha+ 6Dϕa]ǫ∗ − 4ϕaL∗ǫ , (4.1.103)

δǫBaµν = 1
4 [ǭγµνζa + c.c.]− i[ϕaǭ

∗γ[µψν] − c.c.] + 2TaMNA
M

[µδǫA
N

ν] ,

(4.1.104)

δǫϕa = − 1
8 ζ̄aǫ+ c.c. . (4.1.105)

The duality relations needed to relate these fields to the fundamental fields of the
N = 1, d = 4 gauged supergravity are

ζa = ∂iPaχ
i , (4.1.106)

Ha = − 1
2 ⋆ ja , (4.1.107)

ϕa = − 1
2Pa . (4.1.108)

The supersymmetry algebra closes on all the fields of the linear multiplet without
the use of any duality relation.

Now that we know the supersymmetry transformation rules for A = a we will
generalize them to all values of A. The supersymmetry transformations of the linear
multiplet {BA µν , ϕA, ζA} are given by

δǫζA = −i[ 1
12 6H ′

A+ 6DϕA]ǫ∗ − 4δA
aϕaL∗ǫ , (4.1.109)

δǫBAµν = 1
4 [ǭγµνζA + c.c.]− i[ϕAǭ

∗γ[µψν] − c.c.] + 2TA MNA
M

[µδǫA
N

ν] ,

(4.1.110)

δǫϕA = − 1
8 ζ̄Aǫ+ c.c. . (4.1.111)
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The duality relations that project these fields onto those of the physical one are

ζA = ∂iPaχ
i , , (4.1.112)

H ′
A = − 1

2 ⋆ jA , (4.1.113)

ϕA = − 1
2PA . (4.1.114)

Observe that some terms on the right hand side are zero for A = a, ♯, at least to
leading order in fermions.

Now the gauge parameters that appear on the right hand side of the commutator of
two supersymmetry transformations are different from those we found in the previous
section and, therefore, do not match with those we found in the case of the 1-forms. To
relate the parameters of the supersymmetry algebra in the case with and without the
linear supermultiplets we also need to use the above duality relations. For instance,
ΛA is given by Eq. (4.1.72) with PA replaced by −2ϕA. This means that, in order
to supersymmetrize consistently the tensor hierarchy we also must replace PA by
−2ϕA in the supersymmetry transformation rules of the gauginos Eq. (4.1.57) (i.e. in
the definition of DM Eqs. (4.1.58) and (4.1.59)). There are furthermore also 3-forms
contained in the transformations rule for ζA. Thus, if we continue this program we
need to find a way to close the algebra on all the 3-forms without using any duality
relations.

However, we will not pursue here any further the supersymmetrization of the
tensor hierarchy for the higher-rank p-forms but we think that the above results
strongly suggest that an extension with additional fermionic and bosonic fields of the
tensor hierarchy on which the local supersymmetry algebra closes without the use of
duality relations must exist. The duality relations must project the supersymmetric
tensor hierarchy on to the N = 1 supersymmetric generalization of the action which
will be given later in Eq. (3.3.46).

As we have seen in the vector and 2-form cases, the duality relations among
the additional fields (fermionic λΣ, ζ

A and bosonic ϕA) are local as opposed to those
involving the original bosonic ones, which are non-local and related via Hodge-duality.

The 3-form fields CA
M

We will be brief here because the construction of the field strength and the determi-
nation of the gauge transformations of the 3-forms CA

M are similar to those of the
other fields.

We first remark that, in order to make the standard hierarchy’s field strength
GC

M gauge-invariant under the new gauge transformations, we must modify it as
follows:
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G′
C

M ≡ GC
M + (δA

aPa + δA
♯P♯)D

M , (4.1.115)

where GC
M is given in Eq. (E.3.8) and DM is a 4-form transforming as

δ′hD
M = DΣM + (FM − 1

2Z
MABA) ∧ Λ , (4.1.116)

and where we must also modify the gauge transformation rules of the 3-forms CC
M

to be

δ′hCA
M = δhCA

M − (δA
aPa + δA

♯P♯)DΣM . (4.1.117)

In order to prove this result we have made use of the constraint Eq. (4.1.40) and
also of the fact, mentioned in Section 2.1.1, that the directions A = a for which Pa 6= 0
must necessarily be Abelian, so

YCM
A(δA

aPa + δA
♯P♯)L = 0 , (4.1.118)

etc.
Then, the supersymmetry transformations of the 3-forms CA

M are given by

δǫCA
M

µνρ = − i
8 [PAǭ

∗γµνρλ
M − c.c.]− 3BA [µν|δǫA

M
|ρ] − 2TA PQA

M
[µA

P
ν|δǫA

Q
|ρ] .

(4.1.119)
The local N = 1, d = 4 supersymmetry algebra closes on CA

M upon the use of a
duality relation to be discussed later. The gauge transformations of CA

M that appear
on the right hand side are the ones described above with

ΛBC = dBC +B[B ∧ bC] + 2T[B|NP ΛPAN ∧BC] , (4.1.120)

ΛNPQ = dNPQ + 2Λ(PAN ∧ (FQ) − ZQ)CBC)− 1
4XRS

(QΛPAN) ∧AR ∧AS ,

(4.1.121)

ΛE
NP = dE

NP − ΛNCE
P + 1

2TE QRΛQAN ∧AR ∧AP , (4.1.122)

where dBCµνρ = DBCµνρσξ
σ, and similarly for dNPQ and dE

NP . The gauge transfor-
mation parameters ΛM , Λa and Λa

M are, again, given by Eqs. (4.1.55), (4.1.72) and
(4.1.81), respectively.

In the closure of the local supersymmetry algebra we have made use of the duality
relation

G′
A

M = − 1
2 ⋆ ℜe(PADM) . (4.1.123)

According to the results of Ref. [33], the duality relation has the general form
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G′
A

M = 1
2 ⋆

∂V

∂ϑM
A
. (4.1.124)

Comparing these two expressions and using the relation between the potential of
the supergravity theory and the fermion shifts, we conclude that, after the general
electric-magnetic gauging the potential of N = 1, d = 4 supergravity is given by

Ve−mg = Vu − 1
2ℜeDMϑM

APA = Vu + 1
2MMNϑM

AϑN
APAPB , (4.1.125)

where M is the symplectic matrix defined in Eq. (2.1.53). It satisfies

∂Ve−mg/∂ϑM
A = −ℜe(DMPA) . (4.1.126)

There may exist a supermultiplet containing the 3-forms CA
M such that the su-

persymmetry algebra closes without the need to use a duality relation. We leave it
to future work to study its possible (non-)existence.

The 3-form C and the dual of the superpotential

We have seen that the consistency of the closure of the local supersymmetry algebra
on the 2-forms Ba and B♯ requires the existence of a 3-form field that we have denoted
by C, whose gauge transformation cancels the Stückelberg shift of those 2-forms.

An Ansatz for the supersymmetry transformation of C can be made by writing
down 3-form spinor bilinears that have zero Kähler weight and that are consistent
with the chirality of the fermionic fields. Further, from Eq. (4.1.82) it follows that
there will be no gauge potential terms needed in the Ansatz. We thus make the
following Ansatz

δǫCµνρ = −3iηL ǭ∗γ[µνψ
∗
ρ] − 1

2ηDiLǭ∗γµνρχ
i + c.c. , (4.1.127)

where η is a constant to be found. It turns out that the local supersymmetry algebra
closes for two different reality conditions for η, which leads to the existence of two
different 3-forms that we will call C and C′.

1. For η = −i the algebra closes into the gauge transformations required by the 2-
forms Ba and B♯ provided that the field strength G = dC vanishes. As discussed
earlier there may be non-vanishing contributions if we were to construct the
supersymmetry algebra at the quartic fermion order.

2. For η ∈ R the algebra closes into the following gauge transformation

δgaugeC
′ = −dΛ′ , (4.1.128)

where the 2-form Λ′ is given by
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Λ′ = c′ − 2ηℑm(Lφ) , c′µν ≡ C′
µνρξ

ρ , (4.1.129)

provided the field strength G′ = dC′ satisfies the duality relation

G′ = ⋆η(−24|L|2 + 8Gij∗DiLDj∗L∗) . (4.1.130)

Observe that the right hand side is nothing but the part of the scalar potential
Eq. (4.1.125) that depends on the superpotential. Actually, if we rescale the super-
potential by L → ηL, then we can rewrite the above duality relation in the standard
fashion

G′ = 1
2 ⋆

∂Ve−mg

∂η
, (4.1.131)

and, therefore, we can see the 3-form C′ as the dual of the deformation parameter
associated to the superpotential, just as we can see the 3-forms CA

M as the duals of
the deformation parameters ϑM

A.
Observe that, had we chosen to work with a vanishing superpotential we would

have found the duality rule G′ = 0. This suggests a possible interpretation of the 3-
form C to be explored: that it may be related to another, as yet unknown, deformation
of N = 1, d = 4 supergravity which has not been used. The full supersymmetric action
is needed to confirm this possibility or to find, perhaps, a term bilinear in fermions
which is dual to C.

Finally, observe that neither of the 3-forms C,C′ was predicted by the standard
tensor hierarchy. C, though, is predicted by the extension associated to the constraints
Eqs. (4.1.40) and (4.1.118).

The 4-form fields DE
NP , DAB, D

NPQ, DM

In the previous sections we have introduced four 4-forms DE
NP , DAB, D

NPQ, DM

in order to close the local supersymmetry algebra and have fully gauge-covariant
field strengths. We thus expect that we can also find consistent supersymmetry
transformations for all these 4-forms.

For the three 4-forms DE
NP , DAB, D

NPQ there is a slight complication that has
to do with the existence of extra Stückelberg shift symmetries. There are two such
shift symmetries and in Appendix E.3 they correspond to the parameters Λ̃E

(NP )

and ΛBE
P . The origin of these symmetries lies in the fact that the W tensors that

appear in the field strengths of the 3-forms are not all independent. The symmetries
result from the identities E.1.10 and E.1.11 together with the constraints LNPQ =
QAB = QNM

A = 0. This means that if we want to realize N = 1 supersymmetry on
the 4-forms DE

NP , DAB, D
NPQ the parameters Λ̃E

(NP ) and ΛBE
P will appear on

the right hand side of commutators as part of the local algebra.
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Most of these features are already visible in the simpler case of the ungauged
theory7, i.e. for ϑM

A = 0 and even when the ungauged case has no symmetries that
act on the vectors, i.e. when all the matrices TA = 0. We will restrict ourselves to
realizing the supersymmetry algebra on the 4-forms for the ungauged theory with
TA = 0 for all A for simplicity. The 4-form supersymmetry transformations in this
simple setting are given by

δǫDAB = − i
2 ⋆ P[A∂iPB]ǭχ

i + c.c.−B[A ∧ δǫBB] , (4.1.132)

δǫD
NPQ = 10A(N ∧ FP ∧ δǫAQ) , (4.1.133)

δǫDE
NP = CE

P ∧ δǫAN . (4.1.134)

δǫD
M = − i

2 ⋆ L∗ǭλM + c.c.+ C ∧ δǫAM . (4.1.135)

When ϑM
A = 0 and TA = 0 the only place where there still appears a Stückelberg

shift parameter is in the gauge transformation of DE
NP . From the commutators we

find that

Λ̃E
(NP ) = −2Λ(NFP ) ∧BE . (4.1.136)

4.1.4 The gauge-invariant bosonic action

It turns out that in order to write an action for the bosonic fields of the theory with
electric and magnetic gaugings of perturbative and non-perturbative symmetries it is
enough to add to the fundamental (electric) fields just the magnetic 1-forms AΛ and
the 2-forms BA. The gauge-invariant action takes the form

Se−mg =

∫

{

⋆R− 2Gij∗DZi ∧ ⋆DZ∗ j∗ − 2ℑmfΛΣF
Λ ∧ ⋆FΣ + 2ℜefΛΣF

Λ ∧ FΣ

− ⋆ Ve−mg − 4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X[MN ]ΣA

M ∧AN ∧
(

FΣ − ZΣBBB

)

− 2
3X[MN ]

ΣAM ∧AN ∧
(

dAΣ − 1
4X[PQ]ΣA

P ∧AQ
)}

.
(4.1.137)

7Note that the hierarchy remains non-trivial for ϑM
A = 0.
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The scalar potential Ve−mg is given by Eq. (4.1.125). Furthermore, the gauge transfor-
mations that leave invariant the above action (δa) are those of the extended hierarchy
(δ′h) except for the 2-forms8:

δaBA = δ′hBA − 2TA NP ΛN (FP −GP ) . (4.1.138)

The action contains the 2-forms BA always contracted with ZMA so that we do not
need to worry about the different behavior of Ba and Ba, B♯ under gauge transfor-
mation due to the extra constraint Eq. (4.1.88).

A general variation of the above action gives

δS =

∫ {

δgµν δS

δgµν
+

(

δZi δS

δZi
+ c.c.

)

− δAM ∧ ⋆ δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

}

,

(4.1.139)
where the first variations with respect to the different fields are given by

− ⋆ δS

δgµν
= Gµν + 2Gij∗ [DµZ

iDνZ
∗ j∗ − 1

2gµνDρZ
iDρZ∗ j∗ ]

−GM
(µ|

ρ ⋆ GM|ν)ρ + 1
2gµνVe−mg , (4.1.140)

− 1
2

δS

δZi
= Gij∗D ⋆DZ∗ j∗ − ∂iGM

+ ∧GM+ − ⋆ 1
2∂iVe−mg , (4.1.141)

− 1
4⋆

δS

δAM
= DGM − 1

4ϑM
A ⋆ jA + 1

2TA MNA
N ∧ ϑPA(FP −GP ) ,(4.1.142)

⋆
δS

δBA
= ϑPA(FP −GP ) . (4.1.143)

The above equations are formally symplectic-covariant and, therefore, electric-
magnetic duality symmetric. Both the Maxwell equations and the “Bianchi identities”
have now sources to which they couple with a strength determined by the embedding
tensor’s electric and magnetic components.

It is expected to be possible to find a gauge-invariant action in which all the
hierarchy’s fields appear (as was done in [33]) if one assumes that none of the con-
straints on the embedding tensor is satisfied. Then, the 3-forms CA

M and the 4-forms
DE

NP , DAB, D
NPQ, DM are introduced as Lagrange multipliers enforcing the con-

stancy of the embedding tensor and the algebraic constraints QNP
E = 0, QAB = 0,

LNPQ = 0 and (ϑM
aPa + ϑM

♯P♯)L = 0, respectively, but we will not study this
possibility here.

8The piece ∆BA in the gauge transformation of the BAs does not play any role here because the
Bas always appear projected with ZMA.
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It should be stressed that, even though the action Eq. (3.3.46) contains 2nV vectors
and some number nB of 2-forms Ba it does not carry all those degrees of freedom.
To make manifest the actual number of degrees of freedom we briefly repeat here
the arguments of [15] regarding the gauge fixing of the action (3.3.46). First, we
choose a basis of magnetic vectors and generators such that the non-zero entries of
ϑΛa arrange themselves into a square invertible submatrix ϑIi. We split accordingly
AΛµ = (AIµ, AUµ). It can be shown by looking at the vector equations of motion
that the Lagrangian does not depend on the AUµ, i.e. δL/δAUµ = 0. Further, the
electric vectors AI

µ that are dual to the magnetic vectors AIµ, which are used in
some gauging, have massive gauge transformations, δAI

µ = −DµΛI −ϑIiΛiµ and can
be gauged away. The nB 2-forms Bi can by eliminated from the Lagrangian by using
their equations of motion Eq. (4.1.143). The 2-forms appear without derivatives in
Eq. (4.1.143) so that it is possible to solve for them and to substitute the on-shell
expression back into the action. This is allowed as the 2-forms appear everywhere
(up to partial integrations) without derivatives. One then ends up with an action
depending on nB magnetic vectors AIµ and nV − nB electric vectors AU

µ.

4.1.5 Summary

In sections 4.1.1-4.1.4 we have discussed the possible symmetries of N = 1, d =
4 supergravity and their gauging using as gauge fields both electric and magnetic
vectors.

When using both electric and magnetic 1-forms as gauge fields at the same time one
is compelled to introduce 2-forms BA, associated to all the possible symmetries of the
theory. For each electric vector AΛ whose magnetic dual AΛ is gauged, corresponding
to non-vanishing magnetic components of the embedding tensor ϑΛA, one introduces
a 2-form ϑΛABA in its field strength. AΛ has a massive gauge transformation and
it forms a Stückelberg pair with the 2-form ϑΛABA. By electro-magnetic duality we
end up with Stückelberg pairs AM , ϑM

ABA.

The embedding tensor-projected 2-forms ϑM
aBa are dual to embedding tensor-

projected Noether currents associated to gauged isometry directions ϑM
aja. The

rest are pure gauge at zero order in fermions, but it is to be expected that they are
actually dual to the Noether currents associated to the respective symmetries, which
are bilinear in fermions. To properly test this idea one would have to construct the
supersymmetry algebra at quartic order in fermions, which is left for future work.

We have seen that the presence of a non-vanishing superpotential breaks the global
symmetries of the ungauged theory that involve Kähler transformations with constant
parameters. Thus, if L 6= 0, we must set (ϑM

aPa + ϑM
♯P♯) = 0, which is a new

constraint that the embedding tensor must satisfy. We have written it in the form
Eq. (4.1.40) to handle the cases L = 0 and L 6= 0 simultaneously. When L 6= 0, then,
N = 1, d = 4 supersymmetry implies that the 2-forms Ba, B♯ transform under new
Stückelberg shifts parametrized by a 2-form Λ. Still, since Λ 6= 0 only when L 6= 0
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and in this case we have to impose the new constraint (something we have expressed
through Eq. (4.1.88)), the gauge transformations of the projected 2-forms ZMABA

are the same. The field strengths FM and the action keep their standard form.

In the standard tensor hierarchy it is necessary to introduce 3-forms CA
M to

construct gauge-covariant field strengths HA for the 2-forms BA. These 3-forms are
the dual of the embedding tensor ϑM

A. However, when L 6= 0, the standard tensor
hierarchy field strengths HA need to be modified by the addition of a 3-form C, into
H ′

A Eq. (4.1.89). C must absorb the new Stückelberg shifts of the 2-forms Ba, B♯,
but one has to show that N = 1, d = 4 supergravity allows for such a 3-form.

We have found consistent supersymmetry transformation rules for two 3-forms
C and C′ the first of which has precisely the required gauge transformations. C′

is unexpected from the hierarchy point of view but turns out to be the dual of the
superpotential, seen as a deformation of the ungauged theory. The fact that it is not
predicted by the hierarchy (even in its extended form which includes the constraint
Eq. (4.1.40)) is due to the fact that the superpotential is not associated to any gauge
symmetry, which is the keystone of the tensor hierarchy. On the other hand, the
existence of the 3-form C suggests the possible existence of another deformation of
N = 1, d = 4 supergravity unrelated to gauge symmetry and to the superpotential.

Again, in the L 6= 0 case the field strengths GC
M need to be modified by the

addition of new 4-forms DM not predicted by the standard hierarchy, which must
absorb gauge transformations related to Λ. In the standard hierarchy the 4-forms
DE

NP , DAB, D
NPQ are associated to the constraints QNP

E , QAB, LNPQ. The fourth
4-form that appears when L 6= 0 in N = 1, d = 4 supergravity could well be related to
the constraint (ϑM

aPa+ϑM
♯P♯) = 0 that the embedding tensor must satisfy. This can

only be fully confirmed by the construction of a supersymmetric action containing all
the p-forms as in [33]. Nevertheless, it is clear that, when we vary the action without
any constraints imposed on the embedding tensor, we expect it to be necessary to
introduce a 4-form DM multiplying that constraint. The gauge transformations of
the 4-forms DM should compensate for this lack of gauge invariance.

4.2 N = 2 Einstein-Yang-Mills Supergravity

In this section we will describe the theory of N = 2 d = 4 Supergravity coupled to
non-Abelian vector supermultiplets to which we will refer to as N = 2 Einstein-Yang-
Mills (EYM) Supergravity. These theories can be obtained from the ungauged theory
with vector supermultiplets by gauging the isometries of the special-Kähler manifold
parametrized by the scalars in the vector supermultiplets9. Some definitions and
formulae related to the gauging of holomorphic isometries of special Kähler manifolds
are contained in Appendix C.2.

9For a more detailed description see Refs. [62] or [82], the review Ref. [83], and the original works
Refs. [80, 84]. Our conventions are contained in Refs. [26, 27].
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The action restricted to the bosonic fields of these theories is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
iDµZ∗ j∗ + 2ℑmNΛΣF

Λ µνFΣ
µν

−2ℜeNΛΣF
Λ µν⋆FΣ

µν − V (Z,Z∗)
]

,

(4.2.1)

where the potential V (Z,Z∗), is given by

V (Z,Z∗) = 2Gij∗W
iW ∗j∗ , (4.2.2)

where

W i ≡ 1
2gL∗ΛkΛ

i . (4.2.3)

In these expressions g is the gauge coupling constant, the kΛ
i(Z) are holomorphic

Killing vectors of Gij∗ and D the gauge covariant derivative (also Kähler-covariant
when acting on fields of non-trivial Kähler weight) and is defined in Appendix C.2.

This is not the most general gauged N = 2, d = 4 supergravity: if the sp(2n̄)
matrices SΛ that provide a representation of the Lie algebra of the gauge group GV ,
see Eq. (B.1.37), are written in the form

SΛ =





aΛ
Ω

Σ bΛ
ΩΣ

cΛΩΣ dΛΩ
Σ



 , (4.2.4)

we are then considering only the cases in which b = 0, so that only symmetries of
the action are gauged, and c = 0. This last restriction is only made for the sake of
simplicity as theories in which symmetries with c 6= 0 are gauged have complicated
Chern-Simons terms.

Within this restricted class of theories, then, we can use Eqs. (C.2.16) and (C.2.18)
to rewrite the potential as

V (Z,Z∗) = 1
2g

2f∗Λ ifΣ
iPΛPΣ = − 1

4g
2(ℑmN )−1|ΛΣPΛPΣ . (4.2.5)

Then, since ℑmNΛΣ is negative definite and the momentum map is real, the po-
tential is positive semi-definite V (Z,Z∗) ≥ 0. For constant values of the scalars
V (Z,Z∗) behaves as a non-negative cosmological constant Λ = V (Z,Z∗)/2 which
leads to Minkowski (Λ = 0) or dS (Λ > 0) vacua. The latter cannot be maximally
supersymmetric, however.

For convenience, we denote the bosonic equations of motion by

Eaµ ≡ − 1

2
√

|g|
δS

δea
µ
, E i ≡ − G

ij∗

2
√

|g|
δS

δZ∗j∗
, EΛµ ≡ 1

8
√

|g|
δS

δAΛ
µ
. (4.2.6)
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and the Bianchi identities for the vector field strengths by

BΛ µ ≡ Dν ⋆ F
Λ νµ , ⋆BΛ ≡ −DFΛ . (4.2.7)

Then, using the action Eq. (4.2.1), we find

Eµν = Gµν + 2Gij∗ [DµZ
iDνZ

∗ j∗ − 1
2gµνDρZ

iDρZ∗ j∗ ]

+8ℑmNΛΣF
Λ +

µ
ρFΣ−

νρ + 1
2gµνV (Z,Z∗) , (4.2.8)

EΛµ = Dν ⋆ FΛ
νµ + 1

2gℜe(kΛ i∗DµZ∗i∗) , (4.2.9)

E i = D2Zi + ∂iF̃Λ
µν ⋆ FΛ

µν + 1
2∂

iV (Z,Z∗) . (4.2.10)

In differential-form notation, the Maxwell equation takes the form

− ⋆ ÊΛ = DFΛ − 1
2g ⋆ ℜe (k∗Λ iDZ

i) . (4.2.11)

For vanishing fermions, the supersymmetry transformation rules of the fermions
are

δǫψI µ = DµǫI + ǫIJT
+

µνγ
νǫJ , (4.2.12)

δǫλ
Ii = i 6DZiǫI + ǫIJ [6Gi + +W i]ǫJ . (4.2.13)

DµǫI is given in Eq. (C.2.11).
The supersymmetry transformations of the bosons are the same as in the ungauged

case

δǫe
a

µ = − i
4 (ψ̄I µγ

aǫI + ψ̄I
µγ

aǫI) , (4.2.14)

δǫA
Λ

µ = 1
4 (LΛ ∗ǫIJ ψ̄I µǫJ + LΛǫIJ ψ̄

I
µǫ

J)

+ i
8 (fΛ

iǫIJ λ̄
Iiγµǫ

J + fΛ∗
i∗ǫ

IJ λ̄I
i∗γµǫJ ) , (4.2.15)

δǫZ
i = 1

4 λ̄
IiǫI . (4.2.16)



Chapter 5

Supersymmetric solutions

Chapter we are going to study the supersymmetric solutions of N = 2 Supergravity in
four dimensions1. We confine ourselves to the study of the ungauged theory with the
most general matter couplings, section 5.1, and N = 2 Einstein-Yang-Mills theory,
which is done in section 5.2.

5.1 Ungauged N = 2 Supergravity coupled to vector
and hyper-

multiplets

In what follows we are going to study the supersymmetric solutions of ungaugedN = 2
SUGRA coupled to vector and hypermultiplets. The solutions to N = 2 ungauged
Supergravity coupled to only vector- multiplets were studied in ref. [26]. Among these
solutions we will find supersymmetric 1-brane solutions, which wew refer to as stringy
cosmic strings in analogy with the terminology in ref. [85].

5.1.1 Supersymmetric configurations: generalities

As we mentioned in Section 2.2 the supersymmetry transformation rules of the bosonic
fields indicate that the KSIs associated to the gravitinos and gauginos are going to
have the same form as in absence of hypermultiplets. This is indeed the case, and
the integrability conditions of the KSEs δǫψIµ = 0 and δǫλ

iI = 0 confirm the results.
Of course, now the Einstein equation includes an additional term: the hyperscalars
energy-momentum tensor. In the KSI approach the origin of this term is clear. In

1Using the same formalism as we are going to use in what follows, the solutions of N = 1 d = 4
Supergravity were found in [30] and the supersymmetric configurations for the N = 4 d = 4 case
were classified in [38]
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the integrability conditions it appears through the curvature of the SU(2) connection
and Eq. (D.0.27). The results coincide for λ = −1.

There is one more set of KSIs associated to the hyperinos which take the form

Eu
U

αI
u ǫI = 0 , (5.1.1)

and which can be obtained from the integrability condition 6Dδǫζα = 0 using the
covariant constancy of the Quadbein, Eq. (D.0.21).

The KSIs involving the equations of motion of the bosonic fields of the gravity
and vector multiplets take, of course, the same form as in absence of hypermultiplets.
Acting with ǭJ from the left on the new KSI Eq. (5.1.1) we get

XEu
U

αI
u = 0 , (5.1.2)

which implies, in the timelike X 6= 0 case, that all the supersymmetric configurations
satisfy the hyperscalars equations of motion automatically:

Eu = 0 . (5.1.3)

In the null case, parametrizing the Killing spinors by ǫI = φIǫ, we get just

Eu
U

αI
u φI ǫ = 0 . (5.1.4)

As usual, there are two separate cases to be considered: the one in which the vector
bilinear V µ ≡ iǭIγµǫI , which is always going to be Killing, is timelike (Section 5.1.2)
and the one in which it is null (Section 5.1.3). The procedure we are going to follow
is almost identical to the one we followed in Ref. [26].

5.1.2 The timelike case

As mentioned before, the presence of hypermultiplets only introduces an SU(2) con-
nection in the covariant derivative DµǫI in δǫψIµ = 0 and has no effect on the KSE
δǫλ

iI = 0. Following the same steps as in Ref. [26], by way of the gravitino super-
symmetry transformation rule Eq. (2.2.25), we arrive at

DµX = −iT+
µνV

ν , (5.1.5)

DµVJ
I
ν = iδI

J (XT ∗−
µν −X∗T+

µν)− i(ǫIKT ∗−
µρΦKJ

ρ
ν − ǫJKT

+
µρΦIK

ν
ρ) .(5.1.6)

The SU(2) connection does not occur in the first equation, simply because X =
1
2ǫ

IJMIJ is an SU(2) scalar, but it does occur in the second, although not in its

trace. This means that V µ is, once again, a Killing vector and the 1-form V̂ = Vµdx
µ

satisfies the equation
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dV̂ = 4i(XT ∗− −X∗T+) . (5.1.7)

The remaining 3 independent 1-forms2

V̂ x ≡ 1√
2
(σx)I

J VJ
I
µ dx

µ , (5.1.8)

however, are only SU(2)-covariantly exact

dV̂ x + εxyz
A

y ∧ V̂ z = 0 . (5.1.9)

From δǫλ
iI = 0 we get exactly the same equations as in absence of hypermultiplets.

In particular

V µ∂µZ
i = 0 , (5.1.10)

2iX∗∂µZ
i + 4iGi +

µνV
ν = 0 . (5.1.11)

Combine Eqs. (5.1.5) and (5.1.11), we get

V νFΛ+
νµ = L∗ΛDµX +X∗fΛ

i∂µZ
i = L∗ΛDµX +X∗DµLΛ , (5.1.12)

which, in the timelike case at hand, is enough to completely determine through the
identity

CΛ +
µ ≡ V νFΛ +

νµ ⇒ FΛ+ = V −2[V̂ ∧ ĈΛ + + i ⋆(V̂ ∧ ĈΛ +)] . (5.1.13)

Observe that this equation does not involve the hyperscalars in any explicit way,
as was to be expected due to the absence of couplings between the vector fields and
the hyperscalars.

Let us now consider the new equation δǫζα = 0. Acting on it from the left with
ǭK and ǭKγµ we get, respectively

U
αI

u εIJ V J
K

µ ∂µq
u = 0 , (5.1.14)

X∗
U

αK
u ∂µq

u + U
αI

u εIJ ΦKJ
µ

ρ ∂ρq
u = 0 . (5.1.15)

Using εIJ V J
K = εKJ V J

I + εIK V in the first equation we get

2σx J
I , (x = 1, 2, 3) are the Pauli matrices satisfying Eq. (D.0.12).
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U
αI

u V
J

I
µ∂µq

u − U
αJ

u V
µ∂µq

u = 0 . (5.1.16)

It is not difficult to see that the second equation can be derived from this one
using the Fierz identities that the bilinears satisfy in the timelike case (see Ref. [38]),
whence the only equations to be solved are (5.1.16).

The metric

If we define the time coordinate t by

V µ∂µ ≡
√

2∂t , (5.1.17)

then V 2 = 4|X |2 implies that V̂ must take the form

V̂ = 2
√

2|X |2(dt+ ω) , (5.1.18)

where ω is a 1-form to be determined later.
Since the V̂ xs are not exact, we cannot simply define coordinates by putting

V̂ x ≡ dxx. We can, however, still use them to construct the metric: using

gµν = 2V −2[VµVν − VJ
I
µVI

J
ν ] , (5.1.19)

and the decomposition

VJ
I
µ = 1

2Vµ δJ
I + 1√

2
(σx)J

I V x
µ , (5.1.20)

we find that the metric can be written in the form

ds2 =
1

4|X |2 V̂ ⊗ V̂ −
1

2|X |2 δxyV̂
x ⊗ V̂ y . (5.1.21)

The V̂ x are mutually orthogonal and also orthogonal to V̂ , which means that they
can be used as a Dreibein for a 3-dimensional Euclidean metric

δxyV̂
x ⊗ V̂ y ≡ γmndx

mdxn , (5.1.22)

and the 4-dimensional metric takes the form

ds2 = 2|X |2(dt+ ω)2 − 1

2|X |2 γmndx
mdxn . (5.1.23)

The presence of a non-trivial Dreibein and the corresponding 3D metric γmn is
the main (and only) novelty brought about by the hyperscalars!

In what follows we will use the Vierbein basis

e0 =
1

2|X | V̂ , ex =
1√

2|X |
V̂ x , (5.1.24)
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that is

(ea
µ) =





√
2|X |

√
2|X |ωm

0 1√
2|X|V

x
m



 , (eµ
a) =







1√
2|X| −

√
2|X |ωx

0
√

2|X |Vx
m






.

(5.1.25)
where Vx

m is the inverse Dreibein Vx
mV y

m = δy
x and ωx = Vx

mωm. We shall also
adopt the convention that all objects with flat or curved 3-dimensional indices refer
to the above Dreibein and the corresponding metric.

Our choice of time coordinate Eq. (5.1.10) means that the scalars Zi are time-
independent, whence ıVQ = 0. Contracting Eq. (5.1.5) with V µ we get

V µDµ X = 0 , ⇒ V µ∂µX = 0 , (5.1.26)

so that also X is time-independent.
We know the V̂ xs to have no time components. If we choose the gauge for the

pullback of the SU(2) connection Ax
t = 0, then the SU(2)-covariant constancy of

the V̂ x (Eq. (5.1.9)) states that the pullback of Ax, the V̂ xs and, therefore, the 3-
dimensional metric γmn are also time-independent. Eq. (5.1.9) can then be interpreted
as Cartan’s first structure equation for a torsionless connection ̟ in 3-dimensional
space

dV̂ x −̟xy ∧ V̂ y = 0 , (5.1.27)

which means that the 3-dimensional spin connection 1-form ̟x
y is related to the

pullback of the SU(2) connection Ax by

̟m
xy = εxyz

A
z

u ∂mq
u , (5.1.28)

implying the embedding of the internal group SU(2) into the Lorentz group of the
3-dimensional space as discussed in the introduction.

The su(2) curvature will also be time-independent and Eq. (D.0.27) implies that
the pullback of the Quadbein is also time-independent and its time component van-
ishes:

U
αI

u V
µ∂µq

u = 0 . (5.1.29)

Let us then consider the 1-form ω: following the same steps as in Ref. [26], we
arrive at

(dω)xy = − i

2|X |4 εxyz(X∗DzX −XDzX∗) . (5.1.30)

This equation has the same form as in the case without hypermultiplets, but now the
Dreibein is non-trivial and, in curved indices, it takes the form
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(dω)mn = − i

2|X |4
√

|γ|
εmnp(X∗DpX −XDpX∗) . (5.1.31)

Introducing the real symplectic sections I and R

R ≡ ℜe(V/X) , I ≡ ℑm(V/X) , (5.1.32)

where V is the symplectic section

V =

(

LΛ

MΣ

)

, 〈V | V∗〉 ≡ L∗ΛMΛ − LΛM∗
Λ = −i , (5.1.33)

we can rewrite the equation for ω to the alternative form

(dω)xy = 2ǫxyz〈 I | ∂zI 〉 , (5.1.34)

whose integrability condition is

〈 I | ∇m∂
mI 〉 = 0 , (5.1.35)

and will be satisfied by harmonic functions on the 3-dimensional space, i.e. by those
real symplectic sections satisfying∇m∂

mI = 0. In general the harmonic functions will
have singularities leading to non-trivial constraints like those studied in Refs. [86,87].

Solving the Killing spinor equations

We are now going to see that it is always possible to solve the KSEs for field con-
figurations with metric of the form (5.1.23) where the 1-form ω satisfies Eq. (5.1.30)
and the 3-dimensional metric has spin connection related to the SU(2) connection by
Eq. (5.1.28), vector fields of the form (5.1.12) and (5.1.13), time-independent scalars
Zi and, most importantly, hyperscalars satisfying

U
αJ

x (σx)J
I = 0 , U

αJ
x ≡ Vx

m∂mq
u

U
αJ

u , (5.1.36)

which results from Eqs. (5.1.16), (5.1.29) and (5.1.20).
Let us consider first the δǫζα = 0 equation. Using the Vierbein Eq. (5.1.25) and

multiplying by γ0 it can be rewritten in the form

UαI x γ
0x ǫI = 0 , (5.1.37)

which can be solved using Eq. (5.1.36) if the spinors satisfy a constraint

Πx
I
J ǫJ = 0 , Πx

I
J ≡ 1

2 [ δI
J − γ0(x) (σ(x))I

J ] (no sum over x),
(5.1.38)
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for each non-vanishing UαI x. These three operators are projectors, i.e. they satisfy
(Πx)2 = Πx, and commute with each other. From (σ(x))I

K Π(x)
K

J ǫJ = 0 we find

(σ(x))I
JǫJ = γ0(x)ǫI , (5.1.39)

which solves δǫζα = 0 together with Eq. (5.1.36) and tells us that the embedding of
the SU(2) connection in the Lorentz group requires the action of the generators of
su(2) to be identical to the action of the three Lorentz generators 1

2γ
0x on the spinors.

When we impose these constraints on the spinors, each of the first two reduces by a
factor of 1/2 the number of independent spinors, but the third condition is implied
by the first two and does not reduce any further the number of independent spinors.

Observe that

Πx I
J ≡ (Πx

I
J)∗ = −εIK Πx

K
L εLJ . (5.1.40)

Let us now consider the equation δǫλ
iI = 0. It takes little to no time to realize

that it reduces to the same form as in absence of hypermultiplets

δǫλ
iI = i 6∂Zi (ǫI + iγ0e

−iαεIJǫJ ) = 0 , (5.1.41)

the only difference being in the implicit presence of the non-trivial Dreibein in 6∂Zi.
Therefore, as before, this equation is solved by imposing the constraint

ǫI + iγ0 e
−iαεIJ ǫJ = 0 , (5.1.42)

which can be seen to commute with the projections Πx since, by virtue of Eq. (5.1.40),

Πx K
I (ǫI + iγ0e

−iαεIJǫJ) = (Πx K
Iǫ

I) + iγ0e
−iαεKJ(Πx

J
LǫL) . (5.1.43)

Let us finally consider the equation δǫλ
iI = 0: in the SU(2) gauge Ax

t = 0 the
0th component of the equation is automatically solved by time-independent Killing
spinors using the above constraint. Again, the equation takes the same form as
without hypermultiplets but with a non-trivial Dreibein. In the same gauge, the
spatial (flat) components of the δǫλ

iI = 0 equation can be written, upon use of the
above constraint and the relation Eq. (5.1.28) between the SU(2) and spatial spin
connection, in the form

X1/2∂y(X−1/2ǫI) + i
2A

x
y [(σx)I

J ǫJ − γ0xǫI ] = 0 , A
x

y = A
x

u∂mq
u Vy

m ,
(5.1.44)

which is solved by

ǫI = X1/2ǫI 0 , ∂µǫI 0 = 0 , ǫI 0 + iγ0εIJǫ
J

0 = 0 , Πx
I
J ǫJ 0 = 0 ,

(5.1.45)
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where the constraints Eq. (5.1.38) are imposed for each non-vanishing component of
the SU(2) connection.

Equations of motion

According to the KSIs, all the equations of motion of the supersymmetric solutions
will be satisfied if the Maxwell equations and Bianchi identities of the vector fields
are satisfied. Before studying these equations it is important to notice that super-
symmetry requires Eqs. (5.1.36) to be satisfied. We will assume here that this has
been done and we will study in the next section possible solutions to these equations.

Using Eqs. (5.1.12) and (5.1.13) we can write the symplectic vector of 2-forms in
the form

F =
1

2|X |2 {V̂ ∧ d[|X |2R]− ⋆[V̂ ∧ ℑm(V∗DX +X∗DV)]} , (5.1.46)

which can be rewritten in the form

F = − 1
2{d[RV̂ ] + ⋆[V̂ ∧ dI]} . (5.1.47)

The Maxwell equations and Bianchi identities dF = 0 are, therefore, satisfied if

d⋆[V̂ ∧ dI] = 0 , ⇒ ∇m∂
mI = 0 , (5.1.48)

i.e. if the 2n̄ components of I are as many real harmonic functions in the 3-dimensional
space with metric γmn.

Summarizing, the timelike supersymmetric solutions are determined by a choice
of Dreibein and hyperscalars such that Eq. (5.1.36) is satisfied and a choice of 2n̄
real harmonic functions in the 3-dimensional metric space determined by our choice
of Dreibein I. This choice determines the 1-form ω. The full V/X is determined in
terms of I by solving the stabilization equations and with V/X one constructs the
remaining elements of the solution as explained in Ref. [26].

The cosmic string scrutinized

It is always convenient to have an example that shows that we are not dealing with an
empty set of solutions. As mentioned in the introduction we can find relatively simple
non-trivial examples using the c-map on known supersymmetric solutions with only
fields in the vector multiplets excited. A convenient solution is the cosmic string for
the case n = 1 with scalar manifold Sl(2,R)/U(1) and prepotential F = − i

4X 0X 1.
Parametrizing the scalars as X 0 = 1 and X 1 = −iτ , we find from the formulae
in appendix (D.2.1) that the only non-trivial fields of the c-dual solution are the
spacetime metric

ds2 = 2du dv − 2 Im(τ) dzdz∗ , (5.1.49)
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with τ = τ(z), and the pull-back of the Quadbein is given by

/U
αI

= [2Im(τ)]
−3/2









0 0
0 0
∂zτ γ

z 0

0 ∂z∗τ∗ γz∗









. (5.1.50)

From this form, then, it should be clear that the hyperscalar equation (2.2.27) is
satisfied by

γzǫ2 = γz∗

ǫ1 = 0 −→ γzǫ1 = γz∗

ǫ2 = 0 , (5.1.51)

so that we have to face the fact that this solution can be at most 1/2-BPS.
Since we are dealing with a situation without vector multiplets and with a van-

ishing graviphoton, the gravitino variation (2.2.25) reduces to

0 = ∇ ǫI + AI
JǫJ . (5.1.52)

For the c-mapped cosmic string, we have from Eqs. (D.0.10 ) and (D.2.20), that
AI

J = i
2 Q σ3 I

J . Also, for the metric at hand, the 4-d spin connection is readily

calculated to be 1
2ωabγ

ab = iQ γzz∗

(See e.g. [38]).

Due to the constraint (5.1.51), however, one can see that γzz∗

ǫI = σ3 I
J ǫJ ,

which, when mixed with the rest of the ingredients, leads to, dropping the I-indices,

Eq. (5.1.52) = dǫ − 1
4ωabγ

abǫ + i
2Qσ3ǫ = dǫ , (5.1.53)

so that the c-mapped cosmic string is a 1/2-BPS solution with, as was to be expected,
a constant Killing spinor.

5.1.3 The null case

In the null case3 the two spinors ǫI are proportional: ǫI = φIǫ. The complex functions
φI , normalized such that φIφI = 1 and satisfying φ∗I = φI , carry a -1 U(1) charge
w.r.t. the imaginary connection

ζ ≡ φI D φI → ζ∗ = −ζ , (5.1.54)

opposite to that of the spinor ǫ, whence ǫI is neutral. On the other hand, the φIs are
neutral with respect to the Kähler connection, and the Kähler weight of the spinor ǫ
is the same as that of the spinor ǫI , i.e. 1/2. The SU(2)-action is the one implied by
the I-index structure.

The substitution of the null-case spinor condition into the KSEs (2.2.25–2.2.27)
immediately yields

3The details concerning the normalization of the spinors and the construction of the bilinears in
this case are explained in the Appendix of Ref. [38], which you are strongly urged to consult at this
point.
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DµφIǫ + φIDµǫ+ εIJφ
JT+

µνγ
νǫ∗ = 0 , (5.1.55)

φI 6∂Ziǫ∗ + εIJφJ 6Gi +ǫ = 0 , (5.1.56)

CαβU
βI

uεIJ 6∂quφJ ǫ∗ = 0. (5.1.57)

Contracting Eq. (5.1.55) with φI results in

Dµǫ = −φI DµφI ǫ ←− D̃µǫ ≡ (Dµ + ζµ)ǫ = 0 , (5.1.58)

which is the only differential equation for ǫ. Substituting Eq. (5.1.58) into Eq. (5.1.55)
as to eliminate the Dµǫ term, we obtain

(

D̃µφI

)

ǫ + εIJφ
J T+

µνγ
ν ǫ∗ = 0 , D̃µφI ≡ (Dµ − ζµ)φI , (5.1.59)

which is a differential equation for φI and, at the same time, an algebraic constraint for
ǫ. Two further algebraic constraints can be found by acting with φI on Eq. (5.1.56):

/∂Zi ǫ∗ = /G
i +

ǫ = 0 . (5.1.60)

Finally, we add to the set-up an auxiliary spinor η, with the same chirality as ǫ
but with all U(1) charges reversed, and impose the normalization condition

ǭη = 1
2 . (5.1.61)

This normalization condition will be preserved if and only if η satisfies the differential
equation

D̃µη + aµ ǫ = 0 , (5.1.62)

for some a with U(1) charges −2 times those of ǫ, i.e.

D̃µ aν = (∇µ − 2ζµ − iQµ) aν . (5.1.63)

a is to be determined by the requirement that the integrability conditions of the above
differential equation be compatible with those for ǫ.
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Killing equations for the vector bilinears and first consequences

We are now ready to derive equations involving the bilinears, in particular the vector
bilinears which we construct with ǫ and the auxiliary spinor η introduced above. First
we deal with the equations that do not involve derivative of the spinors. Acting with
ǭ on Eq. (5.1.59) and with ǭγµ on Eq. (5.1.60) we find

T+
µν l

ν = Gi +
µν l

ν = 0 −→ FΛ +
µν l

ν = 0 , (5.1.64)

which implies

FΛ + = 1
2 ϕ

Λ l̂ ∧ m̂∗ , (5.1.65)

for some complex functions ϕΛ. Acting with η̄ on Eq. (5.1.59) we get

D̃µφI + i
√

2εIJφ
JT+

µνm
ν = 0 , (5.1.66)

and substituting Eq. (5.1.65) into it, we arrive at

D̃µ φI − i√
2
εIJφ

J TΛϕΛ lµ = 0 . (5.1.67)

Finally, acting with ǭ and η̄ on Eq. (5.1.60) we get

lµ ∂µZ
i = mµ ∂µZ

i = 0 −→ dZi = Ai l̂ + Bi m̂ , (5.1.68)

for some functions Ai and Bi.
The relevant differential equations specifying the possible spacetime dependencies

for the tetrad follow from Eqs. (5.1.58) and (5.1.62). I.e.

∇µ lν = 0 , (5.1.69)

D̃µ nν ≡ ∇µ nν = −a∗µ mν − aµ m
∗
ν , (5.1.70)

D̃µmν ≡ (∇µ − 2ζµ − iQµ) mν = −aµ lν . (5.1.71)

Equations of motion and integrability constraints

As was discussed in Sec. (3.2.1), the KSIs in the case at hand don’t vary a great deal,
with respect to the ones derived in [26], and so we can be brief: the only equations
of motion that are automatically satisfied are the ones for the graviphoton and the
ones for the scalars from the vector multiplets. As one can see from Eq. (5.1.4), the
same thing cannot be said about the equation of motion for the hyperscalar, but as
we shall see in a few pages, it is anyhow identically satisfied. The, at the moment,
relevant KSI is
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(

Eµν − 1
2gµν Eσσ

)

lν =
(

Eµν − 1
2gµν Eσσ

)

mν = 0 , (5.1.72)

where the relation of the equation of motion with and without hypermultiplets is
given in Eq. (2.2.39).

Substituting the expressions (5.1.68) and (5.1.65) into the above KSIs we find the
two conditions

0 = [ Rµν + 2Huv ∂µq
u ∂νq

v] lν , (5.1.73)

0 = [ Rµν + 2Huv ∂µq
u ∂νq

v] mν − Gij∗
(

Ailµ + Bimµ

)

B∗ j∗ .(5.1.74)

Comparable equations can be found from the integrability conditions of Eq. (5.1.58),
i.e.

0 = [ Rµν + 2(dζ)µν ] lν , (5.1.75)

0 = [ Rµν + 2(dζ)µν ] m∗ ν − Gij∗B
i (A∗ j∗ lµ + B∗ j∗ m∗

µ) , (5.1.76)

and those of Eq. (5.1.62)

0 = [ Rµν − 2(dζ)µν ] mν − Gij∗ (Ailµ +Bimµ) B∗ j∗ + 2(D̃a)µν l
ν ,(5.1.77)

0 = [ Rµν − 2(dζ)µν ] nν + 2(D̃a)µν m
∗ ν . (5.1.78)

In the derivation of these last identities use has been made of the formulae

(dQ)µν m
∗ν = iGij∗ B

i B∗ j∗ m∗
µ , (dQ)µν l

ν = (dQ)µν n
ν = 0 , (5.1.79)

which follow from the definition of the Kähler connection and from Eq. (5.1.68).
Comparing these three sets of equations, we find that they are compatible if

(dζ)µν l
ν = Huv ∂µq

u lν∂νq
v , (5.1.80)

(dζ)µν m
∗ν = Huv ∂µq

u m∗ν∂νq
v , (5.1.81)

and
(D̃ a)µν l

ν = 0 . (5.1.82)

Please observe that, due to the positive definiteness of H, Eq. (5.1.80) implies lν∂νq
v =

0, but that Eq. (5.1.81) need not imply m∗ν∂νq
v = 0.
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A coordinate system, some more consistency and an anti-climax

In order to advance in our quest, it is useful to introduce a coordinate representation
for the tetrad and hence also for the metric. Since l̂ is a covariantly constant vector,
we can introduce coordinates u and v through lµ∂µ = ∂v and lµdx

µ = du. We can
also define a complex coordinates z and z∗ by

m̂ = eU dz , m̂∗ = eU dz∗ , (5.1.83)

where U may depend on z, z∗ and u, but not v. Eq. (5.1.68) then implies that the
scalars Zi are just functions of z and u:

Zi = Zi(z, u) , (5.1.84)

wherefore the functions Ai and Bi defined in Eq. (5.1.68) are

Ai = ∂uZ
i , eUBi = ∂zZ

i , ⇒ ∂z∗(eUBi) = 0 . (5.1.85)

Finally, the most general form that n̂ can take in this case is

n̂ = dv +Hdu+ ω̂ , ω̂ = ωzdz + ωz∗dz∗ , (5.1.86)

where all the functions in the metric are independent of v. The above form of the
null tetrad components leads to a Brinkmann pp-wave metric [88]4

ds2 = 2du (dv + Hdu + ω̂) − 2e2U dzdz∗ . (5.1.87)

As we now have a coordinate representation at our disposal, we can start checking
out the consistency conditions in this representation: Let us expand the connection
ζ as

ζ = iζn n̂ + iζl l̂ + ζmm̂ − ζm∗m̂∗ , (5.1.88)

where ζl and ζn are real functions, whereas ζm is complex. Likewise expand

â = al l̂ + am m̂ + am∗ m̂∗ + an n̂ , (5.1.89)

and
Q = Ql l̂ + Qm m̂ + Qm∗ m̂∗ + Qn n̂, (5.1.90)

where, due to the reality of Q, (Qm)∗ = Qm∗ . Let us now consider the tetrad
integrability equations (5.1.69)-(5.1.71): Eq. (5.1.69) is by construction identically
satisfied. Eq. (5.1.71), with our choice of coordinate z Eq. (5.1.83), implies

0 = e−U∂z∗U + 2ζm∗ − iQm∗ , (5.1.91)

0 = −2iζn − iQn , (5.1.92)

4The components of the connection and the Ricci tensor of this metric can be found in the
Appendix of Ref. [38].
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and

â =
[

U̇ − 2iζl − iQl

]

m̂ + al l̂ , (5.1.93)

where al = al(z, z
∗, u) is a functions to be determined and dots indicate partial

derivation w.r.t. the coordinate u. Eq. (5.1.84) implies that ζn = Qn = 0 and from
Eq. (5.1.91) we obtain

∂z∗(U + 1
2K) = −2ζz∗ . (5.1.94)

This last equation states that ζ∗m, whence also ζm, can be eliminated by a gauge
transformation, after which we are left with

ζ̂ = iζl l̂ . (5.1.95)

At this point it is wise to return to Eq. (5.1.81) and to deduce

Huv ∂µq
u m∗ν∂νq

v = (dζ)µν m
∗ ν = 2e−U(∂zζl m[µ lν] + ∂z∗ζl m

∗
[µlν])m

∗ν

= e−U∂z∗ζl lµ . (5.1.96)

This equation implies that dqu ∼ l̂, and we are therefore obliged to accept the fact
that in the null case, the hyperscalars can only depend on the spacetime coordinate
u!

Had we been hoping for the hyperscalars to exhibit some interesting spacetime
dependency, then this result would have been a bit of an anti-climax. But then, the
fact that the hyperscalars can only depend on u, means that we can eliminate the
connection A from the initial set-up, which means that as far as solutions to the
Killing Spinor equations is concerned, the problem splits into two disjoint parts: one
is the solution to the KSEs in the null case of N = 2 d = 4 supergravity, which are
to be found in [26, 34], and the solutions to Eq. (2.2.27).

In the case at hand Eq. (2.2.27) reduces to

0 = U
αI
v εIJ ∂uq

v γuǫJ , (5.1.97)

so that either we take the hyperscalars to be constant or impose the condition
γuǫI = 0. This last condition is however always satisfied by any non-maximally su-
persymmetric solution of the null case, to wit Minkowski space and the 4D Kowalski-
Glikman wave. It is however obvious that these solutions are incompatible with
u-dependent hyperscalars, and its reason takes us to the last point in this exposition:
the equations of motion.

As far as the equations of motion are concerned, it is clear that, since we are dealing
with a pp-wave metric, the hyperscalar equation of motion is identically satisfied.
As the only coupling between vector multiplets and hypermultiplets is through the
gravitational interaction, see Eq. (2.2.39), the only equation of motion that changes



5.1 Ungauged N = 2 Supergravity coupled to vector and hyper-
multiplets 121

is the one in the uu-direction. More to the point, its sole effect is to change the
differential equation [26, (5.91)] determining the wave profile H in (5.1.87).

A fitting example of a solution demonstrating just this, consider the deformation
of the cosmic string solution found in Ref. [26]5:

ds2 = 2 du
(

dv + H(q̇, q̇) |z|2
)

− 2e−K dz dz∗ , Zi = Zi(z) ,

FΛ = 0 , qw = qw(u) ,
(5.1.99)

which is a 1/2-BPS solution.

5.1.4 Summary

Let us summarize our results:

1. In the timelike case supersymmetric the configurations are completely deter-
mined by

(a) A 3-dimensional space metric

γmndx
mdxn , m, n = 1, 2, 3 , (5.1.100)

and a mapping qu(x) from it to the quaternionic hyperscalar manifold such
that the 3-dimensional spin connection6 ̟x

y is related to the pullback of
the quaternionic SU(2) connection Ax by

̟m
xy = εxyz

A
z
u ∂mq

u , (5.1.101)

and such that

U
αJ

x (σx)J
I = 0 , U

αJ
x ≡ Vx

m∂mq
u

U
αJ

u , (5.1.102)

where UαI
u is the Quadbein defined in Appendix D.

(b) A choice of a symplectic vector I ≡ ℑm(V/X) whose components are real
harmonic functions with respect to the above 3-dimensional metric:

∇m∂
mI = 0 . (5.1.103)

5This solutions reads

ds2 = 2 du dv − 2e−K dz dz∗ , Zi = Zi(z) ,

FΛ = 0 , qu = const. ,
(5.1.98)

6In this paper we use x, y, z = 1, 2, 3 as tangent-space indices or as SU(2) indices.
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Given I, R ≡ ℜe(V/X) can in principle be found by solving the generalized
stabilization equations and then the metric is given by

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn , (5.1.104)

where

|M |−2 = 〈R | I〉 , (5.1.105)

(dω)xy = 2ǫxyz〈 I | ∂zI 〉 . (5.1.106)

The second equation implicitly contains the Dreibein of the 3-dimensional metric
γ and its integrability condition is

〈I | ∇m∂
mI〉 = 0 . (5.1.107)

As is discussed in e.g. Refs. [86, 87], this condition will lead to non-trivial
constraints.

The vector field strengths are given by

F = − 1√
2
{d[|M |2R(dt+ ω)]− ⋆[|M |2dI ∧ (dt+ ω)]} , (5.1.108)

and the scalar fields Zi can be computed by taking the quotients

Zi = (V/X)i/(V/X)0 . (5.1.109)

The hyperscalars qu(x) are just the mapping whose existence we assumed from
the onset.

These solutions can therefore be seen as deformations of those devoid of hypers,
originally found in Ref. [89].

As for the number of unbroken supersymmetries, the presence of non-trivial
hyperscalars breaks 1/2 or 1/4 of the supersymmetries of the related solution
without hypers, which may have all or 1/2 of the original supersymmetries.
Therefore, we will have solutions with 1/2, 1/4 and 1/8 of the original super-
symmetries. The Killing spinors take the form

ǫI = X1/2ǫI 0 , ∂µǫI 0 = 0 , ǫI 0+iγ0εIJǫ
J

0 = 0 , Πx
I
J ǫJ 0 = 0 ,
(5.1.110)
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where the first constraint is imposed only if there are non-trivial vector multi-
plets and each of the other three constraints is imposed for each non-vanishing
component of the SU(2) connection. Each constraint breaks 1/2 of the super-
symmetries independently, but the third constraint Πx

I
J ǫJ 0 = 0 is implied by

the first two. Finally, the meaning of these last three constraints is that they
enforce the embedding of the gauge connection into the gauge connection since
they are in different representations.

2. In the null case the hyperscalars can only depend on the null coordinate u and
the solutions take essentially the same form as in the case without hypermulti-
plets (See Ref. [26]).

5.2 N = 2 Einstein-Yang-Mills Supergravity

In this section we are going to find the supersymmetric configurations and solutions
of N = 2 Einstein-Yang-Mills Supergravity7 in four dimensions. Further we are going
to study how the attractor mechanism works in case of non-Abelian black holes. The
existence of the attractor mechanism for the values of the scalars is one of the most
interesting aspects of the supersymmetric black holes of ungauged N = 2, d = 4
Supergravity [90, 91]: independently of their asymptotic values, the values of the
scalars on the event horizon are fully determined by the conserved charges. As a
result, the Bekenstein-Hawking entropy only depends on conserved charges which is,
by itself, a strong indication that it admits a microscopic interpretation. It is of
utmost interest, then, to study if and how the attractor mechanism works for the
supersymmetric non-Abelian black holes in these theories.

5.2.1 Supersymmetric configurations: general setup

Our first goal is to find all the bosonic field configurations {gµν , F
Λ

µν , Z
i} for which

the Killing spinor equations (KSEs):

δǫψI µ = DµǫI + ǫIJT
+

µνγ
νǫJ = 0 , (5.2.1)

δǫλ
Ii = i 6DZiǫI + ǫIJ [6Gi + +W i]ǫJ = 0 , (5.2.2)

admit at least one solution.
Our second goal will be to identify among all the supersymmetric field configura-

tions those that satisfy all the equations of motion (including the Bianchi identities).
Let us initiate the analysis of the KSEs by studying their integrability conditions.

7Remember that N = 2 d = 4 Supergravity coupled to non-Abelian vector supermultiplets we
refer to as N = 2 Einstein-Yang-Mills (EYM) Supergravity.
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Killing Spinor Identities (KSIs)

The off-shell equations of motion of the bosonic fields of bosonic supersymmetric con-
figurations satisfy certain relations known as (Killing spinor identities, KSIs) [56,57].
If we assume that the Bianchi identities are always identically satisfied everywhere,
the KSIs only depend on the supersymmetry transformation rules of the bosonic fields.
These are identical for the gauged and ungauged theories, implying that their KSIs
are also identical. If we do not assume that the Bianchi identities are identically
satisfied everywhere, then they also occur in the KSIs, which now have to be found
via the integrability conditions of the KSEs. In the ungauged case they occur in
symplectic-invariant combinations, as one would expect, and take the form [26]

EaµγaǫI − 4iǫIJ〈 Eµ | V 〉ǫJ = 0 , (5.2.3)

E iǫI − 2iǫIJ〈 6 E | U∗i 〉ǫJ = 0 , (5.2.4)

where

Ea ≡
(

BΛ a

EΛa

)

. (5.2.5)

We have checked through explicit computation that these relations remain valid
in the non-Abelian gauged case at hand.

Taking products of these expressions with Killing spinors and gamma matrices, one
can derive KSIs involving the bosonic equations and tensors constructed as bilinears
of the commuting Killing spinors.8 In the case in which the bilinear V µ ≡ iǭIγµǫI
is a timelike vector (referred to as the timelike case), one obtains [87] the following
identities (w.r.t. an orthonormal frame with e0

µ ≡ V µ/|V |)

Eab = ηa
0η

b
0E00 , (5.2.6)

〈 V/X | Ea 〉 = 1
4 |X |−1E00δa

0 , (5.2.7)

〈 U∗
i∗ | Ea 〉 = 1

2e
−iαEi∗δa

0 , (5.2.8)

where X ≡ 1
2εIJ ǭ

IǫJ and is non-zero in the timelike case.
As discussed in Ref. [87], these identities contain a great deal of physical informa-

tion. In this paper we shall exploit only one fact, namely the fact that if the Maxwell
equation and the Bianchi identity are satisfied for a supersymmetric configuration,

8See the appendix in Ref. [38] for the definitions and properties of these bilinears.
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then so are the rest of the equations of motion. The strategy to be followed is,
therefore, to first identify the supersymmetric configurations and impose the Maxwell
equations and the Bianchi identities. This will lead to some differential equations
that need be solved in order to construct a supersymmetric solution.

In the case in which V µ is a null vector (the null case), renaming it as lµ for
reasons of clarity, one gets

(Eµν − 1
2gµνEρ

ρ)lν = (Eµν − 1
2gµνEρ

ρ)mν = 0 , (5.2.9)

Eµν l
ν = Eµνm

ν = 0 , (5.2.10)

〈 V | Eµ 〉 = 0 , (5.2.11)

〈 U∗
i∗ | Eµ 〉 lµ = 〈 U∗

i∗ | Eµ 〉m∗
µ = 0 , (5.2.12)

E i = 0 , (5.2.13)

where l, n,m,m∗ is a null tetrad constructed with the Killing spinor ǫI and an auxil-
iary spinor η as explained in Ref. [26].

These identities imply that the only independent equations of motion that one
has to check on supersymmetric configurations are Eµνn

µnν and 〈 U∗
i∗ | Eµ 〉nµ. As

before, these are the equations that need to be imposed in order for a supersymmetric
configuration to be a supersymmetric solution.

Killing equations for the bilinears

In order to find the most general background admitting a solution to the KSEs,
Eqs. (5.2.1) and (5.2.2), we shall assume that the background admits one Killing
spinor. Using this assumption we will derive consistency conditions that the back-
ground must satisfy, after which we will prove that these necessary conditions are also
sufficient.

It is convenient to work with spinor bilinears, and consequently we start by deriv-
ing equations for these bilinears by contracting the KSEs with gamma matrices and
Killing spinors.

From the gravitino supersymmetry transformation rule Eq. (4.2.12) we get the
independent equations
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DµX = −iT+
µνV

ν , (5.2.14)

DµV
I
J ν = iδI

J [XT ∗−
µν −X∗T+

µν ] (5.2.15)

−i[ǫIKT ∗−
µρΦKJ

ρ
ν − ǫJKT

+
µρΦKIρ

ν ] , (5.2.16)

which have the same functional form as their equivalents in the ungauged case. Hence,
as in the ungauged case, V µ is a Killing vector and the 1-form V̂ ≡ Vµdx

µ satisfies
the equation

dV̂ = 4i[XT ∗− −X∗T+] . (5.2.17)

The remaining 3 independent 1-forms V̂ x ≡ 1√
2
V I

J µσ
x J

Idx
µ (x = 1, 2, 3 and the σx

are the Pauli matrices) are exact, i.e.

dV̂ x = 0 . (5.2.18)

From the gauginos’ supersymmetry transformation rules, Eqs. (4.2.13), we obtain

V I
K

µDµZ
i + ǫIJΦKJ

µνGi +
µν +W iǫIJMKJ = 0 ,(5.2.19)

iMKIDµZ
i + iΦKI

µ
νDνZ

i − 4iǫIJV K
J

νGi +
µν − iW iǫIJV K

J µ = 0 .(5.2.20)

The trace of the first equation gives

V µDµZ
i + 2XW i = 0 , (5.2.21)

while the antisymmetric part of the second equation gives

2X∗DµZ
i + 4Gi +

µνV
ν +W iVµ = 0 . (5.2.22)

The well-known special geometry completeness relation implies that

FΛ+ = iL∗ΛT+ + 2fΛ
iG

i + , (5.2.23)

which allows us to combine Eqs. (5.2.14) and (5.2.22), as to obtain

V νFΛ+
νµ = iL∗ΛV νT+

νµ + 2fΛ
iV

νGi +
νµ

= L∗ΛDµX +X∗DµLΛ + 1
2W

iVµ .
(5.2.24)

Multiplying this equation by V µ and using Eq. (5.2.21), we find
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V µDµX = 0 . (5.2.25)

At this point in the investigation, it is convenient to take into account the norm
of the Killing vector V µ: we shall investigate the timelike case in Section 5.2.2 and
the null case in Section 5.2.4.

5.2.2 The timelike case

The vector field strengths

As is well-known, the contraction of the (anti-) self-dual part of a 2-form with a non-
null vector, such as V µ in the current timelike case, completely determines the 2-form,
i.e.

CΛ +
µ ≡ V νFΛ +

νµ ⇒ FΛ + = V −2[V̂ ∧ ĈΛ + + i ⋆(V̂ ∧ ĈΛ +)] . (5.2.26)

As CΛ +
µ is given by Eq. (5.2.24), the vector field strengths are written in terms of the

scalars Zi, X and the vector V . Observe that the component of CΛ +
µ proportional

to V µ is projected out in this formula: this implies that the field strengths have the
same functional form as in the ungauged case. The covariant derivatives that appear
in the r.h.s., however, contain explicitly the vector potentials.

The next item on the list is the determination of the spacetime metric:

The metric

As in the ungauged case we define a time coordinate t by

V µ∂µ ≡
√

2∂t . (5.2.27)

Unlike the ungauged case, however, the scalars in a supersymmetric configuration
need not automatically be time-independent: with respect to the chosen t-coordinate
Eq. (5.2.21) takes the form

∂tZ
i + gAΛ

tkΛ
i +
√

2XW i = ∂tZ
i + g(AΛ

t + 1√
2
XL∗Λ)kΛ

i = 0 . (5.2.28)

It is convenient to choose a GV gauge in which the complex fields Zi are time-
independent, and one accomplishing just that is

AΛ
t = −

√
2ℜe (XL∗Λ) = −

√
2|X |2ℜe (L∗Λ/X∗) . (5.2.29)

This gauge choice reduces Eq. (5.2.28) to

∂tZ
i − 1√

2
gX∗LΛkΛ

i = ∂tZ
i = 0 , (5.2.30)
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on account of Eq. (C.2.17). It should be pointed out that this gauge choice is identical
to the expression for At obtained in ungauged case in Refs. [26, 27]. Further, using
the above t-independence and gauge choice in Eq. (5.2.25), we can derive

∂tX + iQtX + igAΛ
tPΛ = ∂tX + 1

2 (∂tZ
i∂iK − c.c)X + igAΛ

tPΛX

= ∂tX −
√

2ig|X |2ℜe (L∗Λ/X∗)PΛX

= ∂tX = 0 ,

(5.2.31)

where we made use of Eq. (C.2.16) and the reality of PΛ. Thus, with the stan-
dard coordinate choice and the gauge choice (5.2.29) the scalars Zi and X are time-
independent.

Using the exactness of the 1-forms V̂ x to define spacelike coordinates xx by

V̂ x ≡ dxx , (5.2.32)

the metric takes on the form

ds2 = 2|X |2(dt+ ω̂)2 − 1

2|X |2dx
xdxx (x, y = 1, 2, 3) , (5.2.33)

where ω̂ = ωidx
i is a time-independent 1-form. This 1-form is determined by the

following condition

dω̂ = i
2
√

2
⋆

[

V̂ ∧ XDX∗ −X∗DX

|X |4
]

(5.2.34)

Observe that this equation has, apart from a different definition of the covariant
derivative, the same functional form as in the ungauged case; before we start rewriting
the above result in order to get to the desired result, however, we would like to
point out that due to the stationary character of the metric, the resulting covariant
derivatives on the transverse R3 contain a piece proportional to ωx. The end-effect of

this pull-back is that we introduce a new connection on R3, denoted by D̃x, which is
formally the same as Dx but for a redefinition of the gauge field, i.e.

ÃΛ
x = AΛ

x − ωx A
Λ

t . (5.2.35)

In order to compare the results in this article with the ones found in [26], we
introduce the real symplectic sections I and R defined by

R ≡ ℜe(V/X) , I ≡ ℑm(V/X) . (5.2.36)

V is the symplectic section defining special geometry and thence satisfies
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V =

(

LΛ

MΣ

)

, 〈V | V∗〉 ≡ L∗ΛMΛ − LΛM∗
Λ = −i . (5.2.37)

This then implies that our gauge choice can be expressed in the form

AΛ
t = −

√
2|X |2RΛ , (5.2.38)

and that the metric function |X | can be written as

1

2|X |2 = 〈R | I 〉 , (5.2.39)

Similar to the ungauged case, we can then rewrite Eq. (5.2.34) as

(dω̂)xy = 2ǫxyz〈 I | D̃zI 〉 , (5.2.40)

whose integrability condition reads

〈 I | D̃xD̃xI 〉 = 0 , (5.2.41)

and we shall see that, apart from possible singularities [86, 87], the integrability con-
dition is identically satisfied for supersymmetric solutions.

Solving the Killing spinor equations

In the previous sections we have found that timelike supersymmetric configurations
have a metric and vector field strengths given by Eqs. (5.2.33,5.2.24) and (A.1.16) in
terms of the scalars X,Zi. It is easy to see that all configurations of this form admit
spinors ǫI that satisfy the Killing spinor equations (5.2.1,5.2.2). The Killing spinors
have exactly the same form as in the ungauged case [26]

ǫI = X1/2ǫI 0 , ∂µǫI 0 = 0 , ǫI 0 + iγ0ǫIJǫ
J

0 = 0 . (5.2.42)

We conclude that we have identified all the supersymmetric configurations of the
theory.

Equations of motion

The results of Section 5.2.1 imply that in order to have a classical solution, we only
need to impose the Maxwell equations and Bianchi identities on the supersymmetric
configurations. In this section, then, we will discuss the differential equations ar-
rising from the applying the Maxwell and Bianchi equations on the supersymmetric
configurations obtained thus far.

As we mentioned in Section 5.2.2 the field strengths of supersymmetric configu-
rations take the same form as in the ungauged case [26] with the Kähler-covariant
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derivatives replaced by Kähler- and GV -covariant derivatives. Therefore, the sym-
plectic vector of field strengths and dual field strengths takes the form

F =
1

2|X |2
{

V̂ ∧D(|X |2R)− ⋆[V̂ ∧ ℑm(V∗DX +X∗DV)]
}

. (5.2.43)

Operating in the first term we can rewrite it in the form

F = − 1
2

{

D(RV̂ )− 2
√

2|X |2Rdω̂ + ⋆

[

V̂ ∧ ℑm(V∗DX +X∗DV)

|X |2
]}

, (5.2.44)

and using the equation of 1-form ω̂, Eq. (5.2.34), which is also identical to that of the
ungauged case with the same substitution of covariant derivatives, we arrive at

F = − 1
2

{

D(RV̂ ) + ⋆(V̂ ∧DI)
}

. (5.2.45)

In what follows we shall use the following Vierbein (e0, ex) and the corresponding
directional derivatives (θ0, θa), normalized as ea(θb) = δa

b, that are given by

e0 =
√

2|X | (dt + ω) , θ0 = 1√
2
|X |−1 ∂t ,

ex = 1√
2
|X |−1 dxx , θx =

√
2|X | (∂x − ωx∂t) .

(5.2.46)

With respect to this basis we

V µ∂µ = 2|X | θ0 , V̂ = 2|X | e0 , (5.2.47)

and the gauge fixing (5.2.29) and the constraint (5.2.28) read

AΛ
0 = −|X | RΛ , X∗ D0Z

i = −|X | W i . (5.2.48)

The equation that the spacelike components of the field strengths FΛ
xy satisfy can

be rewritten in the form

F̃Λ
xy = − 1√

2
ǫxyzD̃zIΛ , (5.2.49)

where the tilde indicates that the gauge field that appears in this equation is the
combination ÃΛ

x defined in Eq. (5.2.35).
This equation is easily recognized as the well-known Bogomol’nyi equation [92]

for the connection ÃΛ
x and the real “Higgs” field IΛ on R3. Its integrability condi-

tion uses the Bianchi identity for the 3-dimensional gauge connection ÃΛ
x and, as it

turns out, is equivalent to the complete Bianchi identity for the 4-dimensional gauge
connection AΛ

µ. It takes the form
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D̃xD̃x IΛ = 0 . (5.2.50)

Taking the Maxwell equation in form notation Eq. (4.2.11) and using heavily the
formulae in Appendix C.2 we find that all the components are satisfied (as implied
by the KSIs) except for one which leads to the equation

D̃xD̃xIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ . (5.2.51)

Plugging the above equation and the Bianchi identity (5.2.50) into the integrability
condition for ω, Eq. (5.2.41), leads to

〈 I | D̃xD̃xI 〉 = −IΛD̃xD̃xIΛ = − 1
2g

2fΛ(Σ
Γf∆)Γ

Ω IΛIΣI∆ IΩ = 0 , (5.2.52)

which is, ignoring possible singularities, therefore identically satisfied.

Construction of supersymmetric solutions of N = 2, d = 4 SEYM

According to the KSIs, the supersymmetric configurations that satisfy the pair of
Eqs. (5.2.50) and (5.2.51), or, equivalently, the pair of Eqs. (5.2.49) and (5.2.51) solve
all the equations of motion of the theory. This implies that one can give a step-by-
step prescription to construct supersymmetric solutions of any N = 2, d = 4 SEYM
starting from any solution of the YM-Higgs Bogomol’nyi equations on R3:

1. Take a solution ÃΛ
x, IΛ to the equations

F̃Λ
xy = − 1√

2
ǫxyzD̃zIΛ .

As we have stressed repeatedly, these equations are nothing but YM-Higgs Bo-
gomol’nyi equations on R3 and there are plenty of solutions available in the
literature. However, since in most cases the authors’ goal is to obtain regu-
lar monopole solutions on R3, there are many solutions to the same equations
that have been discarded because they present singularities. We know, however,
that in the Abelian case, the singularities might be hidden by an event horizon9.
Therefore, we will not require the solutions to the Bogomol’nyi equations to be
globally regular on R3.

2. Given the solution ÃΛ
x, IΛ, Eq. (5.2.51), which we write here again for the sake

of clarity (as we will do with other relevant equations):

D̃xD̃x IΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ .

9More precisely they turn out to be coordinate singularities in the full spacetime and correspond,
not to a singular point, but to an event horizon.
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becomes a linear equation for the IΛs alone which has to be solved. For compact
gauge groups a possible solution is

IΛ = J IΛ , (5.2.53)

for an arbitrary real constant J (the r.h.s. of Eq. (5.2.51) vanishes for this
Ansatz).

3. The first two steps provide I = (IΛ, IΛ) = ℑm (V/X). The next step, then, is
to obtain R = (RΛ,RΛ) = ℜe (V/X) as functions of I by solving the model-
dependent stabilization equations. The stabilization equations depend only on
the specific model one is considering and does not depend on whether the model
is gauged or not.

4. Given R and I, one can compute the metric function |X | using Eq. (5.2.39)

1

2|X |2 = 〈R | I 〉 ;

the n physical complex scalars Zi by

Zi ≡ L
i

L0
=
Li/X

L0/X
=
Ri + iIi

R0 + iI0
, (5.2.54)

and the metric 1-form ω̂ using Eq. (5.2.40)

(dω̂)xy = 2ǫxyz〈 I | D̃zI 〉 .

This last equation can always be solved locally, as according to Eq. (5.2.52) its
integrability equation is solved automatically, at least locally: Since the solu-
tions to the covariant Laplace equations are usually local (they generically have
singularities), the integrability condition may fail to be satisfied everywhere, as
discussed for example in Refs. [86,87,93], leading to singularities in the metric.
The solution Eq. (5.2.53), however, always leads to exactly vanishing ω̂, whence
to static solutions.

|X | and ω̂ completely determine the metric of the supersymmetric solutions,
given in Eq. (5.2.33)

ds2 = 2|X |2(dt+ ω̂)2 − 1

2|X |2dx
xdxx (x, y = 1, 2, 3) .
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5. Once I,R, |X | and ω̂ have been determined, the 4-dimensional gauge potential
can be found from Eq. (5.2.38)

AΛ
t = −

√
2|X |2RΛ ,

and from the definition of ÃΛ
x Eq. (5.2.35)

AΛ
x = ÃΛ

x + ωx A
Λ

t .

The procedure we have followed ensures that this is the gauge potential whose
field strength is given in Eq. (5.2.45).

In the next section we are going to construct, following this procedure, several
solutions.

5.2.3 Monopoles and hairy black holes

As we have seen, the starting point in the construction of N = 2, d = 4 SEYM
supersymmetric solutions is the Bogomol’nyi equation on R3. Of course, the most
interesting solutions to the Bogomol’nyi equations are the monopoles that can be
characterised by saying that they are finite energy solutions that are everywhere
regular. The fact that the gauge fields are regular does, however, not imply that
the full supergravity solution is regular. Indeed, the metric and the physical scalar
fields are built out of the “Higgs field”, i.e. I, and the precise relations are model
dependent and requires knowing the solutions to the stabilization equation.

As the Higgs field in a monopole asymptotes to a non-trivial constant configura-
tion, it asymptotically breaks the gauge group through the Higgs effect. In fact, as
we are dealing with supergravity and supersymmetry preserving solutions, monopoles
in our setting would have to implement the super-Higgs effect as for example dis-
cussed in Refs. [94]. If we were to insist on an asymptotic supersymmetric effective
action, we would be forced to introduce hypermultiplets in order to fill out massive
supermultiplets, but this point will not be pursued in this article.

The Bogomol’nyi equations admit more than just regular solutions, and we shall
give families of solutions, labelled by a continuous parameter s > 0, having the
same asymptotic behaviour as the monopole solutions. As they are singular on R3,
however, we will use them to construct metrics describing the regions outside regular
black holes: as will be shown, the members of a given family lead to black holes that
are not distinguished by their asymptotic data, such as the moduli or the asymptotic
mass, nor by their entropy and as such illustrate the non-applicability of the no-hair
theorem to supersymmetric EYM theories. Furthermore, in all examples considered,
the attractor mechanisms is at work, meaning that the physical scalars at the horizon
and the entropy depend only on the asymptotic charges and not on the moduli nor
on the parameter s.
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The plan of this section is as follows: in section (5.2.3) we shall repeat briefly the
embedding of the spherically symmetric solutions to the SO(3) Bogomol’nyi equations

in the CP
3

models. In all but one of these solutions, the asymptotic gauge symmetry
breaking is maximal, i.e. the SO(3) gauge symmetry is broken down to U(1). In
section (5.2.3), we will investigate the embedding of solutions that manifest a non-
maximal asymptotic symmetry breaking: for this we take E. Weinberg’s spherically

symmetric SO(5)-monopole [95] embedded into CP
10

. This monopole breaks the
SO(5) down to U(2) and has the added characteristic that, unlike the ’t Hooft-
Polyakov monopole, the Higgs field does not vanish at the origin.

An interesting question is whether one can embed monopoles also into more com-
plicated models. This question will be investigated in Section 5.2.3, where we consider
gauged “Magic” supergravities.

Spherically symmetric solutions in SO(3) gauged CP
3

Before discussing the solutions we need to make some comments on the model: the
model we shall consider in this and the next section is the so-called CP

n
model.10

In this model the metric on the scalar manifold is that of the symmetric space
SU(1, n)/U(n) and the prepotential is given by

F = 1
4i ηΛΣ XΛ XΣ , η = diag ( + , [−]n ) , (5.2.55)

which is manifestly SO(1, n) invariant.
The Kähler potential is straightforwardly derived by fixing X 0 = 1 and introducing

the notation X i = Zi; this results in

e−K = |X 0|2 −
n
∑

i=1

|X i|2 = 1 −
n
∑

i=1

|Zi|2 ≡ 1 − |Z|2 . (5.2.56)

Observe that this expression for the Kähler potential implies that the Z’s are
constrained by 0 ≤ |Z|2 < 1.

As the model is quadratic, the stabilization equations are easily solved and leads
to

RΛ = 1
2ηΛΣ IΣ , RΛ = −2ηΛΣ IΣ . (5.2.57)

With this solution to the stabilization equation, we can express the metrical factor,
Eq. (5.2.39), in terms of the I as

1

2|X |2 = 1
2 ηΛΣ IΛIΣ + 2ηΛΣ IΛIΣ = 1

2 ηΛΣ IΛIΣ , (5.2.58)

10The solutions in this and the next section can also be embedded into the ST -models, with similar
conclusions. Contrary to Ref. [36], however, we have chosen not to deal with this model explicitly,
and refer the reader to Appendix C.4 for more details.
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where in that last step we used the fact that in this article we shall consider only
purely magnetic solutions, so that IΛ = 0. The fact that we choose to consider
magnetic embeddings only, implies be means of Eq. (5.2.40) that we will be dealing
with static solutions.

In order to finish the discussion of the model, we must discuss the possible gauge
groups that can occur in the CP

n
-models: as we saw at the beginning of this section,

these models have a manifest SO(1, n) symmetry, under which the X ’s transform as a
vector. Furthermore, as we are mostly interested in monopole-like solutions, we shall
restrict our attention to compact simple groups, which, as implied by Eq. (C.2.22),
must be subgroups of SO(n). In fact, Eq. (C.2.22) and Eq. (C.2.13) make the stronger
statement that given a gauge algebra g, the action of g on the X ’s must be such that
only singlets and the adjoint representation appear. For the CP

n
-models there is no

problem whatsoever as we can choose n to be large enough as to accomodate any Lie
algebra. Indeed, as is well-known any compact simple Lie algebra g is a subalgebra
of so(dim(g)) and the branching of the latter’s vector representation is exactly the
adjoint representation of g.

The simplest possibility, namely the SO(3)-gauged model on CP
3
, will be used

in the remainder of this section, and the SO(5)-gauged CP
10

model will be used in
section (5.2.3). The SO(4)- and the SU(3)-gauged models will not be treated, but
solutions to these models can be created with great ease using the information in this
section and Appendix F.

As we are restricting ourselves to purely magnetic solutions, which are automat-
ically static, the construction of explicit supergravity solutions goes through the ex-
plicit solutions to the SO(3) Bogomol’nyi equation (5.2.49). Having applications to
the attractor mechanism in mind, and being fully aware of the fact that this class con-
sists of only the tip of the iceberg of solutions, we shall restrict ourselves to spherically
symmetric solutions to the Bogomol’nyi equations.

Working in gauge theories opens up the possibility of compensating the spacetime
rotations with gauge transformations, and in the case of an SO(3) gauge group this
means that the gauge connection and the Higgs field, I, after a suitable gauge fixing,
takes on the form (See e.g. [96])

Ai
m = −εmn

i xn P (r) , Ii = −
√

2 xi H(r) . (5.2.59)

Substituting this Ansatz into the Bogomol’nyi equation we find that H and P must
satisfy

r∂r (H + P ) = gr2 P (H + P ) , (5.2.60)

r∂rP + 2P = H
(

1 + gr2P
)

. (5.2.61)
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Figure 5.2.1: The profiles of the functions P and H.

All the solutions to the above equations were found in Ref. [97] and all but one of
them contain singularities. Furthermore, not all of them have the correct asymptotics
to lead to asymptotic flat spaces and only part of the ones that do can be used
to construct regular supergravity solutions [36, 98]. Here, by regular supergravity
solutions we mean that the solutions is either free of singularities, which is what is
meant by a globally regular solution, or has a singularity but, like the black hole
solutions in the Abelian theories, has the interpretation of describing the physics
outside the event horizon of a regular black hole. The criterion for this last to occur
is that the geometry near the singularity is that of a Robinson-Bertotti/aDS2 × S2

spacetime, implying that the black hole has a non-vanishing horizon area, whence
also entropy.

The suitable solutions, then, break up into 3 classes:

(I) ’t Hooft-Polyakov monopole

This is the most famous solution and reads

H = − µ

gr

[

coth(µr)− 1

µr

]

≡ − µ

gr
H(r) ,

P = − 1

gr2
[

1 − µr sinh−1(µr)
]

≡ − µ

gr
P (r) , (5.2.62)

where µ is a positive constant. The profile of the functions P and H are given Fig. (1).
These functions are regular and bound between 0 and 1 and . Thus, we see that I
(whence also Ia and Ia) are regular at r = 0. The YM fields of this solution are those
of the ’t Hooft-Polyakov monopole [99].

The renowned regularity of the ’t Hooft-Polyakov monopole opens up the possi-
bility of creating a globally regular solution to the supergravity equations which is
in fact trivial to achieve: for the moment we have been ignoring I0, which, since it
is uncharged under the gauge group, is just a real, spherically symmetric harmonic
function we can parametrize as
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I0 =
√

2(h+ p/r) . (5.2.63)

It is clear, however, that if we want to avoid singularities, we must take p = 0, so that
the only free parameter is h.

Let us then discuss the regularity conditions imposed by the metric: as was said
before, the solutions are automatically static, so that if singularities in the metric are
to appear, they arise from the metrical factor |X |2. Plugging the solution for the
Higgs field into the expression (5.2.58), we find

1

2|X |2 = h2 − µ2

g2
H

2
(r) . (5.2.64)

As one can infer from its definition in Eq. (5.2.62), the function H is a monotonic,
positive semi-definite function on R+ and vanishes only at r = 0, where it behaves
as H ∼ µr/3 + O(r2); its behaviour for large r is given by H = 1 − 1/(µr), which
means that we should choose h large enough in order to ensure the positivity of the
metrical factor. A convenient choice for h is given by imposing that asymptotically
we recover the standard Minkowskian metric in spherical coordinates: this condition
gives h2 = 1 + µ2g−2 from which we find the final metrical factor and can then also
calculate the asymptotic mass, i.e.

1

2|X |2 = 1 +
µ2

g2

[

1 − H
2
]

→ M =
µ

g2
. (5.2.65)

Written in this form, it is paramount that the metric is globally regular and
interpolates between two Minkowksi spaces, one at r = 0 and one at r =∞.

In order to show that the solution is a globally regular supergravity solution, we
should show that the physical scalars are regular. In the CP

n
-models the scalars are

given by (introducing the outward-pointing unit vector ~n = ~x/r)

Zi ≡ Ri + iIi

R0 + iI0
=
Ii

I0
=

µ

gh
H ni , (5.2.66)

so that the regularity is obvious. The scalars also respect the bound 0 ≤ |Z|2 < 1 as
can be seen from the fact that the bound corresponds to the positivity of the metrical
factor. This regularity of the scalars and that of the spacetime metric are related [87].

(II) Hairy black holes

A generic class of singular solutions is indexed by a free parameter s > 0, called the
Protogenov hair, and can be seen as a deformation of the ’t Hooft-Polyakov monopole,
i.e.
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H = − µ

gr

[

coth(µr + s) − 1

µr

]

≡ − µ

gr
Hs(r) , (5.2.67)

P = − 1

gr2
[

1 − µr sinh−1(µr + s)
]

. (5.2.68)

The effect of introducing the parameter s is to shift the singularity of the cotangent
from r = 0 to µr = −s, i.e. outside the domain of r, but leaving unchanged its
asymptotic behaviour.11 This not only means that the function Hs vanishes at some
rs > 0, but also that it becomes singular at r = 0, so that in order to build a regular
solution we must have p 6= 0. Using then the general Ansatz for I0, Eq. (5.2.63), in
order to calculate the metrical factor, we find in stead of Eq. (5.2.64)

1

2|X |2 =
(

h+
p

r

)2

− µ2

g2
H

2

s . (5.2.69)

As the asymptotic behaviour of Hs is the same as the one for the ’t Hooft-Polyakov
monopole, the condition imposed by asymptotic flatness still is h2 = 1+µ2g−2. Given
this normalization, the asymptotic mass is

M = hp +
µ

g2
, (5.2.70)

which should be positive for a physical solution. In this respect, we would like to
point out that the product hp should be positive as otherwise the metrical factor
would become negative or zero, should it coincide with the zero of Hs, at a finite
distance, ruining our interpretation of the metric as describing the outside of a regular
black hole. This then implies that the mass is automatically positive. Finally, let us
point out that neither the mass nor the modulus h depend on the Protogenov hair
parameter s.

The metrical factor is clearly singular at r = 0, but given the interpretation of the
metric this is not a problem as long as the geometry near r = 0, which corresponds
to the near horizon geometry, is that of an aDS2 × S2 space. This is the case if

Sbh ≡ lim
r→0

r2

2|X |2 = p2 − 1

g2
, (5.2.71)

is positive and can thence be identified with the entropy of the black hole.
The scalars for this solution are given by

Zi =
µ

g

rHs

p + hr
ni , (5.2.72)

11One can consider the limiting solution for s → ∞, the result of which was called a black hedgehog
in Ref. [36]. This solution has, apart from not containing hyperbolic functions, no special properties
and will not be considered seperately.
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whose asymptotic behaviour is the same as for the ’t Hooft-Polyakov monopole. Its
behaviour near the horizon, i.e. near r = 0, is easily calculated to be

lim
r→0

Zi = − 1

gp
ni , (5.2.73)

and does not depend on the moduli nor on the Protogenov hair, but only on the
asymptotic charges. Observe, however, that since Hs = 0 at some finite rs > 0, there
is a 2-sphere outside the horizon at which the scalars vanish, which is not a singularity
for the scalars of this model.

(III) Coloured black holes

There is another particular solution to the SO(3) Bogomol’nyi equation that has all
the necessary properties, and this solution is given by

H = −P =
1

gr2

[

1

1 + λ2r

]

. (5.2.74)

This solution has the same r → 0 behaviour as the hairy solutions, but is such
that in the asymptotic regime it has no Higgs v.e.v. nor colour charge. Given the
foregoing discussion, it is clear that this solution can be used to build a regular black
hole solution, and we can and will be brief.

The regularity of the metric goes once again through the judicious election of h
and p: the normalization condition implies that |h| = 1 which then also implies that
the asymptotic mass of the solution is M = |p|. It may seem strange that the YM-
configuration does not contribute to the mass, but it does so, at least for a regular
black hole solution, in an indirect fashion: the condition for a regular horizon is
clearly given by Eq. (5.2.71), which implies that |p| > 1/g. With these choices then,
the scalars Z are regular for r > 0 and at the horizon they behave as in Eq. (5.2.73).

Non-maximal symmetry breaking in SO(5) gauged CP
10

In Ref. [95], E. Weinberg presented an explicit solution for a spherically symmetric
monopole solution that breaks the parent SO(5) gauge group down to U(2); in this
section we will discuss the embedding of this solution into supergravity and also
generalize it to a family of hairy black holes by introducing Protogenov hair12.

The starting point of the derivation of Weinberg’s monopole is the explicit em-
bedding of an ’t Hooft-Polyakov monopole into an so(3) subalgebra of so(5). In
order to make this embedding paramount we take the generators of so(5) to be Ji, J i

12In Ref. [100] the general equations for a spherically symmetric solution to the SO(5) Bogomol’nyi
equations were derived. This opens up the possibility of analysing the system along the lines of
Ref. [97], but for the moment this has not lead to anything new.
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(i = 1, 2, 3) and Pa (a = 1, . . . , 4). These generators satisfy the following commutation
relations

[Ji, Jj ] = εijk Jk , [Ji, Pa] = Pc Σi
c
a ,

[

J̄i, J̄j

]

= εijk J̄k ,
[

J̄i, Pa

]

= Pc Σi
c
a ,

[

Ji, J̄j

]

= 0 , [Pa, Pb] = −2 Ji Σi
ab − 2 J̄i Σ

i

ab ,

(5.2.75)

where we have introduced the ’t Hooft symbols Σab
i and Σ

ab

i . The Σ (resp. Σ) are
self-dual (resp. anti-selfdual) 2-forms on R4 and satisfy the following relations

[Σi,Σj ] = εijkΣk ,
[

Σi,Σj

]

= εijkΣk ,
[

Σi,Σj

]

= 0 ,

Σ2
i = − 1

4 14 , Σ
2

i = − 1
4 14 , ΣiabΣ

ab

j = 0 .
(5.2.76)

We would like to stress that Σ is not the complex nor the Hermitean conjugate of Σ.
Following Weinberg we make the following Ansatz for the so(5)-valued connection

and Higgs field, taking TA (A = 1, . . . , 10) to be the generators of so(5),

Am ≡ AA
m TA = −εmj

inj
[

rP Ji + rB J̄i

]

+ Mm
a Pa , (5.2.77)

− 1√
2
I ≡ − 1√

2
IA TA = rH niJi + rK niJ̄i + Ωa Pa , (5.2.78)

where P , B, H andK are functions of r only. M and Ω are determined by the criterion
that we have an ’t Hooft-Polyakov monopole in some so(3)-subalgebra, which we take
to be generated by the Ji. One way of satisfying this criterion is by choosing

Mm
a = F δa

m , Ωa = −F δa0 , (5.2.79)

which implies that the Bogomol’nyi equation in the Ji sector reduce to Eqs. (5.2.60)
and (5.2.61).

The analysis of the Bogomol’nyi equations in the remaining sectors impose the
constraint that K = −B and the differential equations13

2g F 2 = rK ′ + 2K + K(1− gr2K) , (5.2.80)

F ′ = 1
2gr F [2P + H + K] . (5.2.81)

13In order to go from Weinberg’s notation [95] to ours one needs to change A → −rP , G → −rB,
H → rH, K → rK, e → −g and also F → F/

√
2.
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The final ingredient, needed for the calculation of the metrical factor, consists of
finding an expression for the SO(5)-invariant quantity IAIA: this is

1
2 IAIA = r2H2 + r2K2 + 2 F 2 . (5.2.82)

In conclusion, given a solution to Eqs. (5.2.60,5.2.61,5.2.80) and (5.2.81) we can

discuss their embedding into the SO(5)-gauged CP
10

-model by means of Eq. (5.2.82).

Weinberg’s monopole in supergravity

The explicit form of Weinberg’s monopole is given by the solution in Eq. (5.2.62) and

K(r) = −P (r) L(r; a) ≡ µ

gr
K , (5.2.83)

F (r) =
µ

2g cosh (µr/2)
L1/2(r; a) ≡ µ

g
F , (5.2.84)

where the profile function L, given by

L(r; a) =
[

1 + µr
2a coth (µr/2)

]−1
, (5.2.85)

depends on a positive parameter a called the cloud parameter. The cloud parameter
a is a measure for the extention of the region in which the Higgs field in the J i-
and the Pa-directions are active: in fact when a = 0 the profile functions vanishes
identically and we are dealing with an embedding of the ’t Hooft-Polyakov monopole.
The maximal extention is for a→∞ which then means that L = 1.

As one can see from the definitions, K and F are positive semi-definite functions
that asymptote exponentially to zero. This not only means that the gauge symmetry
is asymptotically broken to U(2), but also that K and F will not contribute to the
asymptotic mass, nor to the normalization condition. Unlike the ’t Hooft-Polyakov
monopole or the degenerate Wilkinson-Bais SU(3)-monopole (F.0.11), however, the
regularity of the solution does not imply that the Higgs field vanishes at r = 0! In
fact, near r = 0 one finds that

F ∼ 1
2

√

a

1 + a
+ . . . , K ∼ µa

3!(a+ 1)
r + . . . . (5.2.86)

It is this behaviour that may pose a problem for creating a globally regular solution
and is the reason for including it in this article.

Using Eqs. (5.2.58) and (5.2.82) and choosing as in Sec. (5.2.3) p = 0, we can write
the metrical factor as

1

2|X |2 = 1 +
µ2

g2

[

1 − H
2 − K

2 − 2F
2
]

, (5.2.87)
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Figure 5.2.2: A plot of 1−H2−K2− 2F
2
: the dashed line corresponds to a = 0 and

the solid line corresponds to the maximal cloud extention, i.e. L = 1.

where we already used the normalization condition h2 = 1 + µ2g−2. As mentioned
above, K and F asymptote exponentially to zero and cannot contribute to the mass,
which is the one for the ’t Hooft-Polyakov monopole, i.e. M = µg−2.

Let us then investigate the behaviour of (5.2.87) at r = 0: a simple substitution
shows that

1

2|X |2
∣

∣

∣

∣

r=0

= 1 +
µ2

g2

2a+ 1

2(a+ 1)
, (5.2.88)

which is always positive so that the non-zero value of the Higgs field at the origin is
no obstruction to the construction of a globally regular supergravity solution. The
remaining question as far as the global regularity of the solution is concerned, is
whether there are values of r for which the metrical factor (5.2.87) becomes negative.
This however never happens as one can see from Fig. (1) which shows a plot of

1−H2 −K2 − 2F
2

for the values of a = 0 and a =∞.

Another hairy black hole

The introduction of Protogenov hair, i.e. a real and positive parameter s, in Wein-
berg’s monopole solution is trivial and leads to the following solution

Ls(r; a) =

[

1 +
µr

2a
coth

(

µr + s

2

) ]−1

, (5.2.89)

F =
µ

g
F s =

µ

2g cosh
(

µr+s
2

) L1/2
s , (5.2.90)

K =
µ

gr
Ks =

µ

gr

[

1

µr
− 1

sinh(µr + s)

]

Ls . (5.2.91)
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A G H G ◦ V H ◦ X 0
H ◦ X i

I3(X i) max(G)

R Sp(3; R) U(3) 14′ 1−3 6−1 det(X )

C SU(3, 3) S[U(3) ⊗ U(3)] 20 (1, 1)−3 (3,3)−1 det(X ) SU(3)diag

Q SO∗(12) U(6) 32′ 1−3 15−1 Pf (X ) SU(4)

O E7(−25) E6 ⊗ SO(2) 56 13 271 Tr
(

[ΩX ]3
)

/3!

Table 5.2.1: List of characteristics of Symmetric Special Geometries; all the names of
the representations are the ones used by Slansky [101]. The meaning of the different
columns is explained in the main text.

supplemented by the expression for H and P given in Eq. (5.2.67). As far as the
limiting cases of this family is concerned, it is clear that Weinberg’s monopole is
obtained in the limit s→ 0; in the limit s→∞ we find that F → 0 and the solution
splits up into the direct sum of an SO(3) black hedgehog, i.e. an s → ∞ limit of
(5.2.67), and an SO(3) coloured black hole, Eq. (5.2.74).

As in the case of the hairy SO(3) black holes, the introduction of the hair param-
eter s preserves the asymptotic behaviour of Weinberg’s monopole and the solution
is regular for r > 0. This immediately implies that the normalization condition for
h once again reads h2 = 1 + µ2g−2 and that the asymptotic mass of this solution is
given by Eq. (5.2.70), which is positive with the usual proviso that hp > 0.

As in the case of the hairy black holes in the SO(3)-gauged CP
3
-models, the

regularity of the metric imposes the constraint that the entropy

Sbh = p2 − 2

g2
, (5.2.92)

be positive. This positivity of the entropy also ensures that the physical scalars stay
in their domain of definition at r = 0. Indeed, the physical scalars can be compactly
written as

Z = ZA TA =
µ

g

[

rHs

p+ hr
niJi −

rKs

p+ hr
niJ i +

rF s

p+ hr
P0

]

, (5.2.93)

which are therefore regular for r > 0. Their value at r = 0 is

Z|r=0 = − 1

gp
ni
(

Ji + J i

)

, (5.2.94)

which, as in the case of the SO(3) solution, depend only on the asymptotic charges.

Non-Abelian solutions in Magic models

In this section we would like to discuss the embeddings of monopole solutions into
the gauged Magic supergravity theories. We want to show that it is not always
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possible to construct, given a prepotential for a theory, a globally regular solution
based on a given monopole solution. We would like to stress that this holds for a
given prepotential, as the choice of symplectic section for a given gauged model is
physical due to the breakdown of symplectic invariance.

To start looking for ways to embed monopoles into gauged magic supergravities,
we must discuss first the possible gaugings of the magic models, which boils down to
a group theory problem whose outcome is given in Table 5.2.1, which we are going to
explain now.

The scalar manifolds of the magic models are based on symmetric coset spaces
G/H, which are given in the second and the third column in the table. As the isometry-
group of the scalar manifold, which for the magic models is isomorphic to G, acts on
the symplectic section defining the model (see Appendix C.2), we should specify under
what representation of G it transforms; this representation is given in the column
denoted as G ◦ V . The following 2 columns determine how the isotropy subgroup H

acts on the complex scalars Zi = X i/X 0; the reason why this is important will be
discussed presently.

As we are interested in monopoles, we shall restrict ourselves to compact gauge
groups G, which implies that G ⊆ H. Moreover, as we restricted ourselves to a specific
class of gaugings, i.e. gaugings that satisfy Eq. (C.2.13), we should use a prepotential
that is G-invariant. Manifestly H-invariant prepotentials for the magic models were
given in Ref. [102]. These prepotentials are of the STU -type and have the form

F (X ) =
I3

(

X i
)

X 0
, (5.2.95)

where I3 is a cubic H′-invariant14, whose value for the specific magic model can be
found in the seventh column of Table 5.2.1.

Another implication of our choice of possible gauge groups is that we can only
consider G ⊆ H for which the branching of the H-representation of the X i to G-
representations contains only the adjoint representation and singlets. This is a very
restrictive property and the maximal possibilities we found are listed in the last col-
umn of Table 5.2.1.

Having discussed the possible models, we must then start discussing the actual
embedding of the magnetic monopoles. The first thing is to solve the stabilization
equation to find R in terms of I. This is a complicated question but luckily a general
solution exists and was found by Bates and Denef [93]; this solution uses the fact
that the generic entropy functions for these models are known. For our purposes,
however, the full machinery is not needed. Instead, we shall consider the simpler
setting of embedding a purely magnetic monopole in the matter sector and only turn
on an electric component for the graviphoton. This means that we should solve the
stabilization equations,

14By H′ we mean H minus the U(1)-factors.
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0 = ℑmL0 , I0 = −ℑm
[

I3(Li)/(L0)2
]

,

Ii = ℑmLi , 0 = ℑm
[

∂iI3(Li) /L0
]

,
(5.2.96)

where we absorbed the function X into the L’s. This system admits a solution

Ri = 0 , R0 = −
√

I0 I3(Ii)

I0
provided that I0 I3(Ii) > 0 . (5.2.97)

With this solution to the stabilization equation, it is then straightforward to use
Eq. (5.2.39) to determine

1

2|X |2 = 4
√

I0 I3(Ii) . (5.2.98)

The C-magic model

Let us then consider the C-magic model, which allows an SU(3) gauging. The reason
why this is the case is easy to understand: as one can see from Table 5.2.1 the L’s
transform under SU(3)⊗SU(3) as a (1,1)⊕ (3,3) representation. Choosing to gauge
the diagonal SU(3) means identifying the left and the right SU(3) actions so that
w.r.t. the diagonal action the L’s transform as 1⊕ 3 ⊗ 3 = 1 ⊕ 1 ⊕ 8, which is just
what we wanted.

The spherically symmetric monopole solution to the SU(3) Bogomol’nyi equations
were found by Wilkinson and Bais in Ref. [103], and a discussion of these solutions
is given in Appendix F. In order to discuss the embedding of the WB-monopole, we
gather the components of the symplectic vector I into a 3 × 3 matrix, I1⊕8, and as
this matrix behaves as the sum of a singlet and the adjoint under the diagonal SU(3),
we must take it to be

I1⊕8 = 1√
2

(λ I3 − 2Φ) , (5.2.99)

where Φ is defined in Eq. (F.0.2) and

λ = l+ L/r , (5.2.100)

is a real and spherically symmetric harmonic function. If we then also conveniently
redefine

√
2I0 ≡ H , where

H = h+ q/r , (5.2.101)

is another real harmonic function, we can express Eq. (5.2.98) as

1

2|X |2 =
√

H (λ − φ1) (λ − φ2 + φ1)(λ + φ2) . (5.2.102)
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Given the asymptotic behaviour of the WB solution, let us for clarity discuss the
non-degenerate solution whose asymptotic behaviour is given in Eq. (F.0.10), we can
normalize the solution to be asymptotically Minkowski by demanding that

1 = h

3
∏

a=1

(l + µa) . (5.2.103)

Using this normalization, we can then extract the asymptotic mass which turns out
to be

M = 1
4

[

q

h
+ L

3
∑

i=1

(l + µi)
−1

+ 2
µ3 − µ1

(l + µ1)(l + µ3)

]

, (5.2.104)

and must be ensured to be positive.
Let us then look for a globally regular embedding of the WB-monopole by tuning

the free parameters: as before, we shall take q = L = 0 in order to avoid the Coulomb
singularities in the Abelian field strengths. The first obvious remark is that h is
already fixed in terms of l and the µa due to Eq. (5.2.103), so that we need to discuss
the possible values for l: a first constraint for l comes from the positivity of the mass.
Using the facts that µ1 < 0 and µ3 > 0, which follow from the constraint and the
chosen ordering, in the mass formula (5.2.104) we see that this implies

M =
µ3 − µ1

2(l + µ1)(l + µ3)
> 0 =⇒ l < −µ3 or l > −µ1 . (5.2.105)

As we are interested in finding globally regular embeddings, we should discuss the
regularity of the metric at r = 0: as the φi’s vanish at the origin we see that regularity
implies that

h l3 =
∏

a

(

1 +
µa

l

)−1

> 0 . (5.2.106)

It is not hard to see that the above holds for the 2 bounds on l derived in Eq. (5.2.105).
At this point then, the real question is whether, given the constraints on h and l
derived above, there are values for r other than r = 0 or r =∞ for which the metrical
factor in Eq. (5.2.102) vanishes; from the monotonicity of φ1 and φ2 it is clear that
if this is to happen, then this is because the factor λ − φ2 + φ1 vanishes. Seeing,
then, that the combination φ1 − φ2 takes values between −µ3 and −µ1, we see that
Eq. (5.2.102) never vanishes if

λ > max (|µ1|, |µ3|) or λ < −max (|µ1|, |µ3|) . (5.2.107)

In order to finish the discussion of the regularity, we must have a look at the
physical scalars: for the above embedding they are schematically given by Z1⊕8 =
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i I1⊕8/R0, where R0 is given in Eq. (5.2.97). The regularity then follows straight-
forwardly from the regularity of monopole solution and the metric.

The Q-magic model

All the embeddings of YM monopoles discussed till now, share a common ingredient,
namely the occurrence of additional Abelian fields, whose associated harmonic func-
tions can be used to compensate for the vanishing of the Higgs field at r = 0. In the
above example, this rôle is played by λ and I0 and in the CP

n
and ST [2, n]-models

by the graviphoton. In fact, a model in which no such a compensator exists is the
Q-magic model.

As displayed in Table 5.2.1, the X in the matter sector lie in the 15 of SU(6),
which corresponds to holomorphic 2-forms. As SU(6) admits an SO(6) ∼ SU(4) as a
singular subgroup for which the relevant branching is 15→ 15, we can try to embed
an SU(4) WB monopole [103]. This monopole is given, as in the SU(3) case, by 3
functions φi (i = 1, 2, 3) and their embedding into the Q-model has I3(I) = Pf(X ) =
φ1φ2φ3. The asymptotic behaviour can of course be compensated for by choosing I0
judiciously, but the real problem lies at r = 0. At the origin the φi vanish as φ1 ∼ r3,
φ2 ∼ r4 and φ3 ∼ r3 [103], which means that at the origin we have I3(I) ∼ r7+. . . The
only freedom we then have is to use the harmonic function I0, but it is straightforward
to see that this is of no use whatsoever, meaning that the resulting spacetime, as well
as the physical scalars, are singular at r = 0.

Growing hair on the SU(3) WB-monopole

Let us then end this section, with a small discussion of the hairy black hole version
of the SU(3)-monopole. As is discussed in Appendix (F.1), singular deformations of
the SU(3)-monopole can be found with great ease, and is determined by constants
βa (a = 1, 2, 3) whose sum is zero. The hard part is to determine the values for the
β’s for which the metrical factor (5.2.102) does not vanish for r > 0. In fact, lacking
general statements about the behaviour of the φ’s, or the Q’s, for general β, we shall
restrict ourselves to the minimal choice βa = sµa for s > 0. For this choice of β’s,
seeing as we are only shifting the position of where the Q’s vanish from r = 0 to
r = −s, the Q are monotonic, positive definite functions on R+. If we then rewrite
the φ’s as

φi(r) = −∂r log(Qi) +
2

r
= −∂r log(Qi) +

2

r + s
+

2s

r(s+ r)
≡ ϕi(r; s) +

2s

r(s + r)
,

(5.2.108)
where the ϕi are regular and vanish only at r = −s; in fact, they correspond to
the monopole’s Higgs field, and are therefore negative definite on R+. As pointed
out in the appendix, the asymptotic behaviour of the φi’s remain the same as in the
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monopole case, so that also the normalization condition (5.2.103) and the asymptotic
mass of the object (5.2.104) remain the same.

The negativity of the ϕi brings us to the next point, namely the absence of zeroes
of the metrical factor at non-zero r. This is best illustrated by having a look at the
function H in Eq. (5.2.102): it is clear that if H is to have no zeroes for r > 0, then
h and q must be either both positive or negative, as otherwise H = 0 at |h|r = |q|.
Following this line of reasoning on all the individual building blocks of the metrical
factor in Eq. (5.2.102), and choosing for convenience h and q to be positive, shows
that we must take

λ > max(|µ1|, |µ3|) and L > 2 , (5.2.109)

which automatically implies that the mass, Eq. (5.2.104), is positive.

In order to show that this solution corresponds to the description of a black hole
outside its horizon, we must show that the near origin geometry is that of a Robinson-
Bertotti/AdS2×S2 spacetime. As the ϕi are regular at r = 0, the singularities in the
Higgs field come from the 1/r terms in Eq. (5.2.108); it is then easy to see that the
near-origin geometry is indeed of the required type and that the resulting black hole
horizon has entropy

Sbh =
√

q L (L2 − 4) . (5.2.110)

Of course, also in this solution the attractor mechanism is at work as one can see
by calculating the values of the scalar fields at r = 0, i.e.

lim
r→0

Z1⊕8 =
iq

2Sbh
diag ( L− 2 , L , L+ 2 ) . (5.2.111)

5.2.4 The null case

In the null case the two spinors ǫ1, ǫ2 are proportional and, following the same pro-
cedure as in Refs. [26, 27], we can write15 ǫI = φIǫ where the φIs are normalized
φIφ

I = 1 and can be understood as a unit vector selection a particular direction
in SU(2) or, equivalently, in S3. It is useful to project the equations in the SU(2)
directions parallel and perpendicular to φI . For the fermions supersymmetry trans-
formation rules we obtain the following four equations:

15The scalars φI carry a -1 charge and the spinor ǫ a +1 charge, so ǫI is neutral. On the other
hand, the φI s have zero Kähler weight and ǫ has Kähler weight 1/2.
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φIδǫψI µ = D̃µǫ , (5.2.112)

φIδǫλ
Ii = i 6DZiǫ∗ , (5.2.113)

−ǫIJφ
Iδǫλ

Ji = [6Gi + +W i]ǫ , (5.2.114)

−ǫIJφIδǫψJ µ = T+
µνγ

νǫ∗ + ǫIJφI∂µφJǫ . (5.2.115)

The first three equations are formally identical to the supersymmetry variations
of the gravitino, chiralini and gaugini in a gauged N = 1, d = 4 supergravity theory
with vanishing superpotential that one would get by projecting out the component
N = 2 gravitini perpendicular to φI (last equation). This is no coincidence as we
could use the Ansatz ǫI = φIǫ to perform a truncation of the N = 2, d = 4 theory to
an = 1, d = 4 theory16. Thus, the N = 2 null case reduces to an equivalent N = 1 case
modulo some details (the presence of the fourth equation and the covariant derivative
D̃) that will be discussed later. We shall benefit from this fact by using the results
of Refs. [30, 106] in our analysis. We can also predict the absence of domain-wall
solutions in this case, since they only occur in N = 1, d = 4 supergravity for non-
vanishing superpotential.

Before proceeding, observe that the covariant derivative acting on the supersym-
metry parameter ǫ in φIδǫψI µ is defined by

D̃µǫ ≡ {∇µ + i
2Q̃µ}ǫ , Q̃µ ≡ Q̂µ + ζµ , (5.2.116)

where

ζµ ≡ −2iφI∂µφI , (5.2.117)

is a realU(1) connection associated to the remaining local U(1) freedom that is unfixed
by our normalization of φI . It can be shown, by comparing the integrability equations
of the above KSEs with the KSIs as in Refs. ( [26, 27, 37]), that this connection is
flat17 and can be eliminated by choosing the phase of ǫ appropriately. We will assume
that this has been done and will ignore it from now on.

The KSEs in the null case are therefore Eqs. (5.2.112)-(5.2.115) equalled to zero.
To analyze them we add to the system an auxiliary spinor η, with the same chirality
as ǫ but with opposite U(1) charges and normalized as

16The Ansatz of Refs. [104, 105] is recovered for the particular choice φI = δI
1.

17This can be understood as follows: except for ζµ, all the objects that appear in the KSEs
are related to supergravity fields and, when working out the integrability conditions, they end up
being related to the different terms of the different equations of motion. The terms derived from ζµ

(components of its curvature) are unrelated to any fields and one quickly concludes that they must
vanish.
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ǭη = −η̄ǫ = 1
2 . (5.2.118)

This normalization condition will be preserved iff η satisfies

Dµη + aµǫ = 0 , (5.2.119)

for some aµ with U(1) charges −2 times those of ǫ, i.e.

Dµaν = (∇µ − iQ̂µ)aν , (5.2.120)

to be determined by the requirement that the integrability conditions of this differ-
ential equation be compatible with those of the differential equation for ǫ.

The introduction of η allows for the construction of a null tetrad

lµ = i
√

2ǭ∗γµǫ , nµ = i
√

2η̄∗γµη , mµ = i
√

2ǭ∗γµη , m∗
µ = i

√
2ǭγµη

∗ .
(5.2.121)

l and n have vanishing U(1) charges but m (m∗) has charge −1 (+1), so that the
metric constructed using the tetrad

ds2 = 2l̂⊗ n̂− 2m̂⊗ m̂∗ , (5.2.122)

is invariant.

The orientation of the null tetrad is important: we choose the complex null tetrad
{eu, ev, ez, ez∗} = {l̂, n̂, m̂, m̂∗} such that

ǫuvzz∗

= ǫuvzz∗ = +i , γ5 ≡ −iγ0γ1γ2γ3 = −γuvγzz∗

. (5.2.123)

We can also construct three independent selfdual 2-forms18:

Φ(1)
µν = ǭγµνǫ = 2l[µm

∗
ν] , (5.2.124)

Φ(2)
µν = η̄γµνǫ = [l[µnν] +m[µm

∗
ν]] , (5.2.125)

Φ(3)
µν = η̄γµνη = −2n[µmν] , (5.2.126)

or, in form language

18The expression of these 2-forms in terms of the vectors are found by studying the contractions
between the 2-forms and vectors using the Fierz identities.
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Φ̂(1) = l̂ ∧ m̂∗ , (5.2.127)

Φ̂(2) = 1
2 [l̂ ∧ n̂+ m̂ ∧ m̂∗] , (5.2.128)

Φ̂(3) = −n̂ ∧ m̂ . (5.2.129)

Killing equations for the vector bilinears and first consequences

Let us first consider the algebraic KSEs Eqs. (5.2.113–5.2.115) from them one can
immediately obtain

DZi = = Ai l̂ +Bim̂ , (5.2.130)

T+ = 1
2φ Φ̂(1) , (5.2.131)

Gi + = 1
2φ

i Φ̂(1) − 1
2W

iΦ̂(2) , (5.2.132)

ǫIJφIdφJ = i√
2
φl̂ , (5.2.133)

where φ, φi, Ai and Bi are complex functions to be determined.
The last equation combined with the vanishing of ζµ imply that

dφI ∼ l̂ , dφ ∼ l̂ . (5.2.134)

The resulting vector field strengths FΛ + are of the form

FΛ+ = 1
2φ

ΛΦ̂(1) − i
2DΛΦ̂(2) , (5.2.135)

where the φΛ are complex functions related to φ and φi by

φΛ = iL∗Λφ+ 2fΛ
iφ

i , (5.2.136)

and we have defined

DΛ ≡ −2ifΛ
iW

i . (5.2.137)

Observe that as

DΛ = −igfΣΩ
ΛLΩL∗Σ = 1

2gℑmN−1|ΛΣPΣ , (5.2.138)
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is real, we find that the field strengths are given by

FΛ = − 1
2 (φ∗Λm̂+ φΛm̂∗) ∧ l̂ − i

2DΛm̂ ∧ m̂∗ . (5.2.139)

Let us consider the differential KSE Dµǫ = 0 and the auxiliar KSE Eq. (5.2.119):
a straightforward calculation results in

Dµlν = ∇µlν = 0 , (5.2.140)

Dµnν = ∇µnν = −a∗µmν − aµm
∗
ν , (5.2.141)

Dµmν = (∇µ − iQ̂µ)mν = −aµlν . (5.2.142)

The first of these equations implies that lµ is a covariantly constant null Killing
vector, Eq. (5.2.140), which tells us that the spacetime is a Brinkmann pp-wave [107].

Since lµ is a Killing vector and dl̂ = 0 we can introduce the coordinates u and v such
that

l̂ = lµdx
µ ≡ du , (5.2.143)

lµ∂µ ≡ ∂

∂v
. (5.2.144)

We can also define a complex coordinate z by

m̂ = eUdz , (5.2.145)

where U may depend on z, z∗ and u but not on v. Given the chosen coordinates, the
most general form of n̂ is

n̂ = dv +Hdu+ ω̂ , ω̂ = ωzdz + ωz∗dz∗ , (5.2.146)

where all the functions in the metric are independent of v. Either H or the 1-form ω̂
could, in principle, be removed by a coordinate transformation, but we have to check
that the tetrad integrability equations (5.2.140)-(5.2.142) are satisfied by our choices
of eU , H and ω̂.

With above choice of coordinates, Eq. (5.2.122) leads to the metric

ds2 = 2du(dv +Hdu+ ω̂)− 2e2Udzdz∗ . (5.2.147)

Let us then consider the tetrad integrability equations (5.2.140)-(5.2.142): the first
equation is solved because the metric does not depend on v. The third equation, with
the choice (5.2.145) for the coordinate z implies
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â = nµ[∂µU − iQ̂µ]m̂+Dl̂ , (5.2.148)

0 = mµ[∂µU − iQ̂µ] , (5.2.149)

0 = lµAΛ
µℑmλΛ , (5.2.150)

where D is a function to be determined. The last equation can be solved by the gauge
choice

lµAΛ
µ = 0 . (5.2.151)

In this gauge the complex scalars Zi are v-independent. The remaining components
of the gauge field AΛ

µ are also v-independent as is indicated by the absence of a l̂∧ n̂,
m̂ ∧ n̂ or a m̂∗ ∧ n̂ term in the vector field strength. This in its turn, implies the
v-independence of all the components of the vector field strengths, of the functions
φi and, finally, of Ai and Bi.

The above condition does not completely fix the gauge freedom of the system, since
v-independent gauge transformations preserve it. We can use this residual gauge
freedom to remove the AΛ

u component of the gauge potential by means of a v-
independent gauge transformation. This leaves us with only one complex independent
component AΛ

z(z, z∗, u) = (AΛ
z∗)∗ and

FΛ
uz = ∂uA

Λ
z = 1

2e
UφΛ , (5.2.152)

FΛ
zz∗ = ∂zA

Λ
z∗ + 1

2gfΣΩ
ΛAΣ

zA
Ω

z∗ − c.c. = − i
2e

2UDΛ . (5.2.153)

We can then treat FΛ
zz∗dz ∧ dz∗ as a 2-dimensional YM field strength on the

2-dimensional space with Hermitean metric 2e2Udzdz∗, both of them depending on
the parameter u. This implies that we can always write

FΛ
zz∗ = 2i∂z∂z∗Y Λ , (5.2.154)

for some real Y Λ(z, z∗, u). In the Abelian, i.e. ungauged, case

AΛ
z = −i∂zY

Λ . (5.2.155)

Using Eq (B.1.26) we can express the second of the tetrad conditions, Eq. (5.2.149),
as

∂z∗(U +K/2) = −gAΛ
z∗λΛ . (5.2.156)
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In the ungauged case this equation (and its complex conjugate) can be immediately
integrated to give U = −K/2 + h(u). The function h(u) can be eliminated by a
coordinate redefinition that does not change the form of the Brinkmann metric.

In the Abelian case of the pure N = 1, d = 4 theory, it is possible to have con-
stant momentum maps (D-terms), as considered in Ref. [108], and λΛ = −iPΛ and
Eq. (5.2.155) would lead to

∂z∗(U +K/2 + gY ΛPΛ) = 0 , (5.2.157)

which is solved by U = −K/2 − gY ΛPΛ + h(u); h(u) can still be eliminated by a
coordinate transformation. In the N = 2, d = 4 theory, however, it is not possible
to use constant momentum maps to gauge an Abelian symmetry and the situation
is slightly more complicated. The integrability condition of Eq. (5.2.156) and its
complex conjugate is solved by

AΛ
z∗λΛ = ∂z∗ [R(z, z∗, u) + S∗(z∗, u)] , (5.2.158)

where R is a real function and S(z, u) a holomorphic function of z, which then implies

U = −K/2− g(R+ S + S∗) . (5.2.159)

Finally, the second tetrad integrability equation (5.2.141) implies

D = e−U (∂z∗H − ω̇z∗) , (5.2.160)

(dω)zz∗ = 2ie2UnµQ̂µ , (5.2.161)

whence â is given by

â = [U̇ − 1
2e

−2U (dω)zz∗ ]m̂+ e−U (∂z∗H − ω̇z∗)l̂ . (5.2.162)

Killing spinor equations

In the previous sections we have shown that supersymmetric configurations belonging
to the null case must necessarily have a metric of the form Eq. (5.2.147), vector field
strengths of the form Eq. (5.2.139), and scalar field strengths of the form Eq. (5.2.130);
they must further satisfy Eqs. (5.2.133,5.2.149) and (5.2.161) for some SU(2) vector
φI . We now want to show that these conditions are sufficient for a field configuration
{gµν , A

Λ, FΛ,DZi} to be supersymmetric.
It takes little to no time to see that all the components of the KSEs are satisfied

for constant Killing spinors (in the chosen gauge, frame, etc.) that obey the condition

γuǫI = 0 . (5.2.163)
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This constraint, which is equivalent to γzǫI = 0, together with chirality, imply that the
Killing spinors live in a complex 1-dimensional space, whence we can write ǫI = ξIǫ =
0. Up to normalization, solving the KSEs requires that ξI = φI , where the functions
φI are given as part of the definition of the supersymmetric field configuration. As a
result, the supersymmetric configurations of this theory preserve, generically, 1/2 of
the 8 supercharges.

Observe that in order to prove the existence of Killing spinors it has not been neces-
sary to impose the integrability conditions of the field strengths, i.e. the Bianchi identi-
ties of the vector field strengths etc., nor the integrability constraints of Eqs. (5.2.133),
(5.2.149) and (5.2.161). We are however forced to do so in order to have well-defined
field configurations in terms of the fundamental fields {gµν , A

Λ, Zi}. We will deal
with these integrability conditions and the equations of motion in the next section.

Supersymmetric null solutions

Let us start by computing the Bianchi identities and Maxwell equations taking the
expression for FΛ + in (5.2.135) as our starting point. We find

DFΛ + =
{

1
2m

∗µDµφ
Λ − i

4n
µDµDΛ − i

2DΛnµ[∂µU − iQ̂µ]
}

l̂ ∧ m̂ ∧ m̂∗

+ i
4

{

m∗µDµDΛ l̂ ∧ n̂ ∧ m̂+ c.c.
}

.

(5.2.164)
Observe that the terms in the second line are purely imaginary, so that

⋆BΛ = −2ℜe DFΛ+

= −i
{

ℑm(m∗µDµφ
Λ)− 1

2n
µDµDΛ −DΛnµ∂µU

}

l̂ ∧ m̂ ∧ m̂∗ .
(5.2.165)

A similar calculation for FΛ leads to

−DFΛ (5.2.166)

= −2ℜe D(N ∗
ΛΣF

Σ+) (5.2.167)

= −i
{

ℑm (m∗µDµφΛ)− 1
2n

µDµℜeDΛ −ℜeDΛn
µ∂µU −ℑmDΛn

µQ̂µ

}

l̂ ∧ m̂ ∧ m̂∗

+ℜe
[

m∗µDµℑmDΛ l̂ ∧ n̂ ∧ m̂
]

, (5.2.168)

where
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φΛ ≡ N ∗
ΛΣφ

Σ , DΛ ≡ N ∗
ΛΣDΣ , ⇒ ℑmDΛ = − 1

2gPΛ . (5.2.169)

Of course we can also calculate

1
2g ⋆ℜe (k∗Λ iDZ

i) = i
2gℑm (nµDµZ

i∂iPΛ)l̂∧m̂∧m̂∗ + 1
2gℜe [m∗µDµZ

i∂iPΛ l̂∧ n̂∧m̂] ,
(5.2.170)

which means that the Maxwell equation can be expressed as

⋆EΛ = −DFΛ + 1
2g ⋆ ℜe (k∗Λ iDZ

i)

= −i
{

ℑm(m∗µDµφΛ)− 1
2n

µDµℜeDΛ −ℜeDΛn
µ∂µU

−ℑmDΛn
µQ̂µ − 1

2gℑm (nµDµZ
i∂iPΛ)

}

l̂ ∧ m̂ ∧ m̂∗

(5.2.171)

In concordance with the KSIs, the Maxwell equations and Bianchi identities have
only one non-trivial component, wherefore all the KSIs that involve them are auto-
matically satisfied.

Finally, the only non-automatically satisfied component of the Einstein equations
is

Euu = Ruu + 2Gij∗A
iA∗ j∗ − 2ℑmNΛΣφ

Λφ∗Σ = 0 . (5.2.172)

Using our coordinate and gauge choices lµAΛ
µ = AΛ

v = 0 and nµAΛ
µ = AΛ

u = 0,
we can rewrite the above Bianchi identities, Maxwell equations and Einstein equation
as

ℑm Dz(eUφΛ) = − 1
2∂u(e2UDΛ) , (5.2.173)

ℑm Dz(eUφΛ) = − 1
2∂u(e2UℜeDΛ)− 1

2gℑm [∂uZ
ieK∂i(e

−KPΛ)] , (5.2.174)

∂z∂z∗H = ∂zω̇z∗ + e2U{∂u + [U̇ − 1
2e

−2U (dω)zz∗ ]}[U̇ − 1
2e

−2U (dω)zz∗ ]

+e2UGij∗(AiA∗ j∗ + 2φiφ∗j∗) + 1
2e

2U |φ|2 . (5.2.175)

where we made used of

Dz∗(eUφΛ) ≡ ∂z∗(eUφΛ) + gfΣΩ
ΛAΣ

z∗eUφΩ , (5.2.176)

Dz∗(eUφΛ) ≡ ∂z∗(eUφΛ) + gfΛΣ
ΩAΣ

z∗eUφΩ . (5.2.177)
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To summarize our results, supersymmetric configurations have vector and scalar
field strengths and metric given by Eqs. (5.2.139,5.2.130) and (5.2.147) and must
satisfy the first-order differential Eqs. (5.2.161) and (5.2.156). We must also find φI

and φ such that

ǫIJφI∂uφJ = i√
2
φ . (5.2.178)

If a supersymmetric configuration satisfies the second-order differential Eqs. (5.2.173-
5.2.175) then it satisfies all the classical equations of motion and is supersymmetric
solutions.

u-independent supersymmetric null solutions

In the u-independent case the equations that we have to solve simplify considerably.
First of all, since the complex scalars Zi are u-independent, we have Ai = 0 and
(dω)zz∗ = 0, whence we can take ω̂ = 0. Furthermore, φΛ = 0 (see Eq. (5.2.152)),
which implies φ = φi = 0 (see Eq. (5.2.136)) and the constancy of φI , which is
otherwise arbitrary. We need to solve Eq. (5.2.156), which is only possible if its
integrability condition Eq. (5.2.158), which we repeat here for clarity,

AΛ
z∗λΛ = ∂z∗ [R(z, z∗, u) + S∗(z∗, u)] , (5.2.179)

is satisfied. Then, the solution is

U = −K/2− g(R+ S + S∗) . (5.2.180)

We also need to find covariantly-holomorphic functions Zi(z, z∗) by solving

∂z∗Zi + gAΛ
z∗kΛ

i = 0 , (5.2.181)

which depends strongly on the model.
Finally, the only e.o.m. need to solve is the Einstein equation Eq. (5.2.175): in this

case it reduces to the 2-dimensional Laplace equation and is solved by real harmonic
functions H on R2.

In spite of the apparent simplicity of this system, we have not been able to find
solutions different from those of the ungauged theory.

5.2.5 Summary

In this Chapter we found the general form of all the supersymmetric configurations of
N = 2, d = 4 Einstein-Yang-Mills theories and have analyzed the conditions that fields
have to satisfy in order to give rise to a supersymmetric solution. In the timelike case,
we presented and analyzedd some spherically-symmetric solutions, which describe
monopoles and hairy black holes. As the monopole solutions to the Bogomol’nyi
equations are regular on R3, we investigated the question of whether this regularity
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can be extended to the full supergravity solution, which we called global regularity.
This is a tricky question whose answer, perhaps disappointingly, but understandably,
is that it depends on the model. As should be clear from the results of Section 5.2.3,
the biggest obstruction to generating globally-regular supergravity solutions out of
spherically-symmetric monopoles can also be one of its virtues, namely that at the
origin the Higgs field vanishes; as long as the model we are using has extra Abelian
fields, this ‘problem’ can be obviated, but otherwise, such as happens in the SO∗(12)
model, it is a real showstopper.

The hairy black holes were generated by the introduction of a parameter s > 0
called the Protogenov hair. The introduction of this parameter in the solutions is
straightforward and basically consists of doing a coordinate shift in the exponential
parts of the explicit expressions for the gauge connection and the Higgs field. The
effect of this coordinate shift w.r.t.the monopole solution is to leave unchanged the
asymptotic behaviour of the solution, but to change the behaviour of the solution at
the origin. In fact, due to the positivity of s, the singularity is of Coulomb type and
opens up the possibility of creating black holes similar to the ones occurring in Abelian
theories. We analyzed how the attractor mechanism works for the supersymmetric
non-Abelian black holes. The solutions we studied show that the asymptotic data
needed to specify an N = 2 d = 4 sugra black hole (i.e. the asymptotic mass, the
moduli and the asymptotic charges) are independent of the parameter s which is,
however, needed in order to specify the black hole fully and demonstrates the failure
of the no-hair theorem for gravity coupled to YM fields in an explicit and analytic
manner.19 More surprisingly, the hair parameters don’t show up in other relevant
quantities such as the entropy of the black hole or the attractor values for the scalars
at the horizon: a general understanding of why this happens is lacking but needed.

The attractor mechanism that holds for the scalars of the Abelian black holes still
works, but in a generalized way: the Higgs field is not gauge-invariant and one can
only expect “attraction” up to gauge transformations. Gauge-invariant combinations
of the scalar fields do have fixed points on the horizon. In the null case we did not
find new supersymmetric solutions different from those of the ungauged theory.

19There can of course be more hairy parameters than just the Protogenov hair. In fact, the cloud

parameter a in Eqs. (5.2.85) and (5.2.89) should also be considered as hair.



Chapter 6

Coupling of
higher-dimensional objects to
p-forms

6.1 1-brane solutions in N = 2 Supergravity

To describe the dynamics of p-dimensional extended objects, p-branes, one has to
generalize the action of a massive point-particle. While a point-particle moves along
a worldline in space-time, a p-brane sweeps out a (p + 1)-dimensional surface, the
worldvolume, parametrized by p+ 1 coordinates σi, i = 0 . . . p. If the particle carries
an electric charge, its interaction with the electromagnetic field Aµ is described by
the minimal coupling

q

∫

dXµAµ(X(τ)) , (6.1.1)

where τ = σ0 is the worldline coordinate. In an analogous way, a p-brane which
carries “charge” can couple minimally to an (p + 1)-form antisymmetric tensor field
C and the corresponding term in the action (called a Wess-Zumino term) takes the
form

SWZ = q

∫

dXµ1 . . .Xµp+1Cµ1...µp+1(X(σ)). (6.1.2)

The wordline action for a point-particle is of the form

S = m

∫

dτ

√

∂Xµ

∂τ

∂Xν

∂τ
gµν(X(τ)) + q

∫

dτAµ
∂Xµ

∂τ
, (6.1.3)
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and its generalization to extended objects

S = T

∫

dp+1σ
√

|gij |+ q

∫

dσi1 . . . dσip+1Cµ1...µp+1

∂Xµ1

∂σi1
. . .

∂Xµp+1

∂σip+1
, (6.1.4)

where

gij = gµν
∂Xµ

∂σi

∂Xν

∂σj
(6.1.5)

is the world-volume metric induces by the space-time metric gµν and T the p-brane
tension (which in case of a point-particle is just its mass). If one deals with D-
branes, i.e. p-branes on which open strings can end, one has to take into account an
additional world-volume vector gauge field, which is induced by the endpoints of the
string moving along the brane). The dynamics then is described by the Dirac-Born-
Infeld action

S = T

∫

dp+1σ
√

|gij + Fij |+ q

∫

C , (6.1.6)

where Fij is the generalized field strength of the gauge field Ai

Fij = 2∂[iAj](σ) +Bij (6.1.7)

and
Bij = ∂iX

µ∂jX
νBµν (6.1.8)

the pullback of a space-time 2-form gauge field Bµν . The (electric) charge q of the
p-brane can be calculated in d dimensions using the higher-dimensional version of
Gauss’s law q =

∫

d−p−2
⋆Fp+2. Note that up to now we were only considering the

purely bosonic action for a p-brane. When we are interested in supersymmetry, we
also have to take into account fermions. Thus we have to extend the set of bosonic
coordinates Xµ(σ) by a set of anti-commuting coordinates θα(σ). A key role in
the description of supersymmetric brane actions is played by a fermionic symmetry
called κ-symmetry. This symmetry implies world-volume supersymmetry with equal
number of bosonic and fermionic degrees of freedom, since half of the spinor degrees
of freedom become redundant because they may be eliminated by a gauge choice. It
further relates the brane tension T to its charge q, ensuring that the brane ground
states are stable, i.e. they are BPS states.

In what follows we will study the extension of N = 2 four-dimensional super-
gravity including magnetic vector fields and 2-form potentials. In four dimensions
2-form potentials are dual to those scalars which parameterize the Noether currents.
They couple electrically to 1-dimensional branes, just like the 8-form potentials of
IIB supergravity play an important role when discussing the supersymmetry proper-
ties of 7-branes in ten dimensions [109–112]. It was shown in [113] that one cannot
in general dualize just any scalar into a 2-form potential. The objects to dualize
are those Noether currents associated with the isometries of the scalar sigma models
which extend to be symmetries of the full theory. Dualizing the Noether currents one
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obtains as many 2-forms as there are isometries. In general the field strengths of these
2-forms satisfy constraints such that the number of 2-form degrees of freedom equals
the number of scalar degrees of freedom which occur in the Noether currents. We
explicitly construct the Noether currents for all the duality symmetries of ungauged
N = 2, d = 4 supergravity coupled to both vector multiplets and hypermultiplets.

Via a straightforward dualization prescription we construct the 2-form potentials
and prove that the supersymmetry algebra can be closed on them. Once we have found
the explicit supersymmetry transformations for the 2-forms we proceed to construct
the leading terms of a half-supersymmetric world-sheet effective action. Finally, we
discuss in some detail the properties of the half-supersymmetric stringy cosmic string
solutions. The above program is first performed for the duality symmetries associated
with the scalars coming from the vector multiplets and then repeated for the duality
symmetries associated with the scalars coming from the hypermultiplets.

6.1.1 The 1-forms

The N = 2, d = 4 supergravity theory coupled to nV vector multiplets contains
nV + 1 ‘fundamental’ vector fields AΛ

µ whose supersymmetry transformation rules
are given in Eq. (2.2.33). The potentials AΛ

µ couple electrically to charged particles.
In the next Section we will construct the leading terms of the bosonic part of the
κ-symmetric world-line effective actions for particles electrically charged under AΛ

µ.
As mentioned in Section 2.2, the equations of motion of the potentials AΛ

µ,
Eqs. (2.2.7), can be understood as providing the Bianchi identities for a set of dual
field strengths FΛ, defined in Eq. (2.2.9). These equations imply the local on-shell
existence of nV + 1 dual potentials AΛ µ. The dual potentials AΛ µ couple electrically
to particles which are magnetically charged under the fundamental vector fields AΛ

µ.
In this Section we will derive the supersymmetry transformation rules for the dual
potentials AΛ µ. This result will then be used in the next Section to construct the
leading terms of the bosonic part of the κ-symmetric world-line effective actions for
particles electrically charged under the AΛ µ.

The fundamental potentials and their duals can be seen as, respectively, the upper
and lower components of the symplectic vector Aµ defined in Eq. (2.2.17). Electric-
magnetic duality transformations act linearly on it. This behaviour under duality
transformations suggests the following Ansatz for the supersymmetry transformation
rule of A:

δǫAµ = 1
4V ǫIJ ψ̄

I
µǫ

J + i
8DiV ǫIJ λ̄

Iiγµǫ
J + c.c. . (6.1.9)

This Ansatz agrees with the supersymmetry transformation rule of the fundamental
potentials AΛ

µ as given in Eq. (2.2.33) and with the fact that the symplectic vector
of 1-forms Aµ transform linearly under Sp(2nV + 2,R). The supersymmetry algebra
closes on Aµ with the above supersymmetry transformation rule. Indeed, we find for
the commutator of two supersymmetries acting on Aµ,
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[δη, δǫ]Aµ = δg.c.t.(ξ)Aµ + δgauge(Λ)Aµ . (6.1.10)

The general coordinate transformation of Aµ is given by

δg.c.t.(ξ)Aµ = £ξAµ = ξν∂νAµ + (∂µξ
ν)Aν , (6.1.11)

with £ξ denoting the Lie derivative and where the infinitesimal parameter ξρ is given
by

ξµ ≡ − i
4 η̄

IγµǫI + c.c. ,

and δgauge(Λ) is a U(1) gauge transformation with parameter ΛΛ. The gauge trans-
formation of Aµ is given by

δgauge(Λ)Aµ = ∂µΛ , (6.1.12)

where the gauge transformation parameter Λ is the symplectic-covariant generaliza-
tion of ΛΛ and is given by

Λ ≡ −ξρAρ + 1
4

(

VǫIJ η̄
IǫJ + c.c.

)

. (6.1.13)

6.1.2 World-line actions for 0-branes

In this Section we will construct the leading terms of the bosonic part of a κ-invariant
world-line effective action for 0-branes that couple to the 1-form potentials AΛ

µ and
AΛ µ. In doing so we will take into account the symplectic structure of the theory. The
actions will be invariant under symplectic transformations provided we also transform
an appropriate set of the charges, in the spirit of Ref. [114].

It is clear that the 0-branes of N = 2, d = 4 supergravity coupled to nV vector
multiplets can carry both electric charges qΛ and magnetic charges pΛ with respect
to the fundamental potentials AΛ

µ. The couplings of the magnetic 0-branes are,
however, better described as electric couplings to the dual potentials AΛ µ. A 0-brane
with symplectic charge vector

q ≡
(

pΛ

qΛ

)

. (6.1.14)

will couple electrically to the potential A. The only symplectic-invariant coupling is
〈q | A〉. We thus propose the following Wess–Zumino term

∫

dτ 〈 q | Aµ 〉
dXµ

dτ
, (6.1.15)

where τ is the world-line parameter and Xµ the embedding coordinate of the 0-brane.
This Ansatz is clearly the only one satisfying the requirements of symplectic invariance
and gauge invariance.
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The corresponding kinetic term in the 0-brane action is not much more difficult to
guess. Symplectic invariance requires that the charges qΛ and pΛ appear in a symplec-
tic invariant combination with the scalars in the tension. The simplest combination
is just the central charge

Z = 〈 q | V 〉 , (6.1.16)

whose asymptotic absolute value is known to give the mass of supersymmetric black
holes of these theories. Then, the world-line effective action takes the form

S =

∫

dτ |Z|
√

dXµ

dτ

dXν

dτ
gµν(X) +

∫

dτ〈 q | Aµ 〉
dXµ

dτ
. (6.1.17)

Using the supersymmetry transformations (2.2.32), (2.2.34) and (6.1.9) we find
that the action (6.1.17) preserves half of the supersymmetries with the projector
given by

ǫI + i
Z
|Z|ǫIJ

γτ√
gττ

ǫJ = 0 , (6.1.18)

where the subindex τ means contraction of a space-time index µ with dXµ/dτ . This
is the same constraint that the Killing spinors of supersymmetric N = 2, d = 4 black
holes satisfy [26, 87, 89, 115]. In the static gauge, Ẋµ = dXµ/dτ = δµ

t, assuming a
static metric, so that

√
gtt = e0t and denoting by eiα the phase of the central charge

Z, the above projector takes the form

ǫI + ieiαǫIJγ0ǫ
J = 0 . (6.1.19)

This equation is satisfied for spinors of the form

ǫI = |X |1/2e
i
2 αǫI 0 , ǫI 0 + iǫIJγ0ǫ

J 0 = 0 , (6.1.20)

in which the ǫI 0 are constant spinors and with |X | some real function.

6.1.3 The 2-forms: the vector case

In this Section we will construct the most general 2-forms associated to the isometries
of the special Kähler manifold one can introduce in N = 2, d = 4 supergravity cou-
pled to nV vector multiplets and nH hypermultiplets. The 2-forms associated to the
isometries of the quaternionic Kähler manifold will be discussed in Section 6.1.5. For
the subset of commuting isometries a similar program has been performed in [116]
where also actions for the dualized scalars, which are part of so-called vector-tensor
multiplets, are given.
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The Noether current

As explained in Section 2.2 only the group GV of isometries of the special Kähler
manifold which can be embedded in Sp(2nV + 2,R) are symmetries of the full set of
equations of motion and Bianchi identities. Despite the fact that these duality trans-
formations only leave invariant the equations of motion together with the Bianchi
identities, it is possible to construct a conserved Noether current associated to this
invariance [31]. This is because under variations of the scalars δZL + δZ∗L the La-
grangian is invariant up to the divergence of an anomalous current, denoted here and
in [31] by Ĵµ. Hence, we have

δZL+ δZ∗L = −∂µ(
√

|g|Ĵµ) . (6.1.21)

In the case of p-brane actions coupled to supergravity the Noether current associated
to the super-Poincaré invariance of the coupled system contains a similar anomalous
contribution [117], which is known to give rise to central charges in the supersymmetry
algebra.

Applying the Noether theorem we get

∂µ

(

δZi ∂L
∂(∂µZi)

+ δZ∗i∗ ∂L
∂(∂µZ∗i∗)

)

= −∂µ(
√

|g|Ĵµ) , (6.1.22)

so that the Noether current

Jµ
N = δZi 1

√

|g|
∂L

∂(∂µZi)
+ δZ∗i∗ 1

√

|g|
∂L

∂(∂µZ∗i∗)
+ Ĵµ , (6.1.23)

is covariantly conserved, i.e. ∇µJ
µ
N = 0. In this Subsection we will compute Jµ

N for
the isometries of the Kähler metric Gij∗ which are embedded in Sp(2nV + 2,R).

Infinitesimally, the symmetries under consideration act on the complex scalars as

δZi = αAkA
i(Z) , (6.1.24)

where the kA
i(Z) are dimGV holomorphic Killing vectors1 (A = 1, · · · , dimGV ) and

where αA denotes a set of real infinitesimal parameters. The Lie brackets of the
Killing vectors give the Lie algebra of GV with structure constants fAB

C ,

[kA, kB] = −fAB
CkC , (6.1.25)

where kA = kA
i∂i + kA

∗ i∗∂i∗ .
On the vector field strengths the symmetries act as an infinitesimal Sp(2nV +2,R)

transformation

δF = TF , (6.1.26)

1The holomorphicity of the components kA
i follows from the Killing equation.
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where T ∈ sp(2nV + 2,R), i.e. T T Ω + ΩT = 0. The matrix T can be expressed
as a linear combination of the generators of the isometry group GV of Gij∗ that is
embedded in sp(2nV + 2,R). In other words,

T = αATA , [TA, TB] = fAB
CTC , TA ∈ sp(2nV + 2,R) . (6.1.27)

On the other hand, if

T =

(

a b
c d

)

, (6.1.28)

then, the condition T T Ω + ΩT = 0 implies

cT = c , bT = b , and aT = −d . (6.1.29)

To find the current Ĵµ we start by writing the Lagrangian of (1.2.7) in the following
form

L = 1
2F

Λ
µν

∂L
∂FΛ

µν
+ Linv , (6.1.30)

where

Linv =
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗j∗

]

, (6.1.31)

is the part of the Lagrangian that is invariant under (6.1.24) and where

∂L
∂FΛ

µν
= −4

√

|g| ⋆ FΛ
µν . (6.1.32)

Next we compute the variation of L with respect to the variation of the scalars

δZL+ δZ∗L = δL − δFL , (6.1.33)

where δL is the total variation and δFL denotes the variation of L with respect to
the field strength FΛ

µν . The total variation of L under the transformations (6.1.24)
and (6.1.26) is

δL =δ
(

−2
√

|g|FΛ
µν ⋆ FΛ

µν
)

= −2
√

|g|
[

⋆FΛ
µνbΛΣFΣ µν + ⋆FΛ µνcΛΣF

Σ
µν

]

,

(6.1.34)

where we have used Eqs. (6.1.29). The variation, δFL, is

δFL = δFΛ
µν

∂L
∂FΛ

µν
= −4

√

|g|
[

⋆FΛ
µνaΛ

ΣF
Σ

µν + ⋆FΛ
µνbΛΣFΣ µν

]

. (6.1.35)
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Using once again Eqs. (6.1.29) it then follows that

δL − δFL = 2
√

|g|〈 ⋆Fµν | TFµν 〉 . (6.1.36)

The result Eq. (6.1.36) can be written as the divergence of an anomalous current Ĵ
i.e. one can show, using Eqs. (2.2.4) and (2.2.7), that

−∂µ(
√

|g|Ĵµ) = δL − δFL , (6.1.37)

where Ĵµ is given by

Ĵµ = −4〈 ⋆Fµν | TAν 〉 . (6.1.38)

At the same time we have for the right hand-side of this equation

δL − δFL = δZL+ δZ∗L = ∂µ

(

δZi ∂L
∂(∂µZi)

+ δZ∗i∗ ∂L
∂(∂µZ∗i∗)

)

, (6.1.39)

so that the Noether current, Jµ
N , is given by

Jµ
N = δZi 1

√

|g|
∂L

∂(∂µZi)
+ δZ∗i∗ 1

√

|g|
∂L

∂(∂µZ∗i∗)
+ Ĵµ , (6.1.40)

with Ĵµ given by Eq. (6.1.38), and satisfies

∂µ

(

√

|g|Jµ
N

)

= 0 . (6.1.41)

Under gauge transformations of the 1-form potentials A the anomalous current
Ĵµ and hence Jµ

N are not invariant: they transform as the divergence of an anti-
symmetric tensor. We will have to take this point into account in the next subsection
when dualizing the Noether current into a 2-form.

It will be convenient to write the scalar part of the Noether current, i.e. the part
JN − Ĵ , in terms of the symplectic sections V instead of the physical scalars since V
transforms linearly under Sp(2nV + 2,R). This is achieved using

δV = δZi∂iV + δZ∗i∗∂i∗V , (6.1.42)

and Eqs. (C.0.1) and (C.0.3). We have

δZi ∂L
∂(∂µZi)

= −2i
√

|g|〈 δV | DµV∗ 〉 . (6.1.43)

Hence, the Noether current (6.1.40) can be expressed in terms of V as

Jµ
N = −2i〈 δV | DµV∗ 〉+ c.c.+ Ĵµ . (6.1.44)
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We continue to find an explicit expression for δV . The symplectic sections trans-
form under global Sp(2nV +2,R) and under local Kähler transformations. The Kähler
potential transforms as

δαK ≡ £αAkA
K = αA

(

kA
i∂iK + kA

∗ i∗∂i∗K
)

= λ(Z) + λ∗(Z∗) , (6.1.45)

where
λ(Z) = αAλA(Z) . (6.1.46)

It can be shown that the functions λA(Z) satisfy

ki
A∂iλB − ki

B∂iλA = −fAB
CλC . (6.1.47)

When λ 6= 0 all the objects of the theory with non-zero Kähler weight (in particular
all the spinors and the symplectic section V) will feel the effect of the symplectic
transformation through a Kähler transformation. Infinitesimally one has

δKählerV = − 1
2 (λ − λ∗)V , (6.1.48)

as follows from Eq. (C.0.12). Next we introduce the momentum map, denoted by P0
A

and defined by

P0
A ≡ ikA

i∂iK − iλA . (6.1.49)

One then readily shows that δV , given via equations (6.1.42) and (6.1.24), can be
written as

δV = αA
(

kA
iDiV + iP0

AV − 1
2 (λA − λ∗A)V

)

. (6.1.50)

Since V only transforms under symplectic and Kähler transformations we conclude2

that we must have

δV = TV − 1
2 (λ− λ∗)V , where TV = αA

(

kA
iDiV + iP0

AV
)

, (6.1.51)

where T is a generator of sp(2nV + 2). Taking the product of the r.h.s. of the second
equation with V we get the additional condition that the generators of GV must
satisfy:

〈 V | TAV 〉 = 0 . (6.1.52)

2Actually, this is a consequence of requiring that the reparametrizations generated by the Killing
vectors preserve not just the metric but the whole special Kähler geometry. This is what we are
implicitly doing here and it is a condition necessary to have symmetries of the complete supergravity
theory and not just of the bosonic equations of motion. We thank Patrick Meessen for a useful
discussion on this point.
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The set of generators TA which satisfy the constraint (6.1.52) and which form a
subgroup of sp(2nV + 2,R) is sometimes referred to as the duality symmetry Lie
algebra [118].
Since, on the other hand

δV = £αAkA
V = αA

(

kA
i∂iV + kA

∗ i∗∂i∗V
)

, (6.1.53)

we can write

£αAkA
V − TV + 1

2 (λ − λ∗)V = 0 , (6.1.54)

as the necessary and sufficient condition for the transformation to be a symmetry of
the supergravity theory3.

One verifies that the above way of writing the action of T on V , see Eq. (6.1.51),
satisfies Eq. (6.1.27). By decomposing TV into the complete basis {V ,DiV ,V∗,Di∗V∗}
for the space of symplectic sections (see Appendix C below Eq. (C.0.3)) we find

P0
A = −〈V | TAV∗〉 , and kA

i = −iGij∗∂j∗P0
A . (6.1.55)

Substituting (6.1.51) into expression (6.1.44) we obtain a manifestly symplectic-
invariant expression for the Noether current

JNµ = 2i〈DµV∗ | TV 〉+ c.c.− 4〈 ⋆Fµν | TAν 〉 . (6.1.56)

Dualizing the Noether current

In form notation the conservation of the Noether current 1-form JN is just d⋆JN = 0.
We can define a 3-form4 G = ⋆JN , which satisfies dG = 0, so that locally G = dB.
Note that G is not gauge invariant because JN is not, either, due to the term Ĵ
(δgaugeG = δgaugeĴ). We can write this term in the form

⋆Ĵ = −4〈F | TA〉 , (6.1.57)

where the exterior product between the forms in the symplectic inner product is
always assumed and as a result the 2-form B gauge transformation is given by

δgaugeB = dΛ1 − 4〈F | TΛ 〉 , (6.1.58)

where the symplectic vector Λ is defined through Eq. (6.1.12).
We can define the following gauge-invariant 2-form field strength

3This condition can be read in two different ways: the Lie derivative of the section V has to vanish
up to symplectic and Kähler transformations or the symplectic- and Kähler-covariant Lie derivative
of V has to vanish identically.

4Of course, we have dim GV Noether currents and as many dual 3-forms GA but it is convenient
to work with G = αAGA.
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H = dB + 4〈F | TA〉 . (6.1.59)

It is then clear that H is dual to the scalar part of the Noether current JN ,

H = ⋆(JN − Ĵ) . (6.1.60)

The scalar part of the Noether current is proportional to the Killing vectors. At
any given point there are only 2nV (real) independent vectors. Thus, if we allow for
Zi-dependent coefficients, in general we will find linear combinations of scalar parts
of the Noether currents. As a result, there will be as many constraints on the 2-form
field strengths HA and, at most there will be 2nV independent real 2-forms.

The 2-form supersymmetry transformation

In the previous Subsection we have constructed a set of 2-forms associated to the
isometries of the special Kähler manifold of ungauged N = 2, d = 4 supergravity and
we have found their gauge transformations. Our goal in this Section is to find their
supersymmetry transformations. The main requirement that the proposed supersym-
metry transformation of the 2-form B must satisfy is that the commutator agrees
with the universal local supersymmetry algebra of the theory given by

[δη, δǫ] = δg.c.t.(ξ) + δgauge(Λ) , (6.1.61)

and which may be extended to include 2-forms to

[δη, δǫ] = δg.c.t.(ξ) + δgauge(Λ) + δgauge(Λ1) . (6.1.62)

The expressions for ξ and Λ are given by Eqs. (6.1.12) and (6.1.13), respectively. The
2-form gauge transformation parameter Λ1 is to be found in terms of η and ǫ.

Since B is defined by dB = ⋆JN , the commutator of two supersymmetry variations
on B must close into the algebra (6.1.62). We have

δg.c.t.(ξ)Bµν = £ξBµν = ξρ∂ρBµν+(∂µξ
ρ)Bρν+(∂νξ

ρ)Bµρ = ξρ(dB)ρµν−2∂[µ

(

ξρBν]ρ

)

,
(6.1.63)

with £ξBµν the Lie derivative of Bµν with respect to ξρ. Further, δgauge(Λ1)Bµν is
given in Eq. (6.1.58). Hence, the supersymmetry transformations of Bµν must lead
to the commutator

[δη, δǫ]Bµν = ξρ 1√
|g|
ǫρµνσJN

σ − 4〈Fµν | TΛ 〉+ 2∂[µ

(

Λν] − ξρBν]ρ

)

, (6.1.64)

where we have substituted the duality relation, Eq. (6.1.60), for (dB)µρσ in (6.1.63).
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We make the following Ansatz for the supersymmetry transformation of Bµν (up
to second order in fermions),

δǫBµν = a〈DiV | TV∗ 〉 ǭIγµνλ
iI + c.c.

+b〈 V | TV∗ 〉 ǭIγ[µψIν] + c.c.

+c〈A[µ | TδǫAν] 〉 . (6.1.65)

This Ansatz is based on the requirement that all terms must have Kähler weight zero
and that the 2-forms are real valued. The matrix T satisfies Eq. (6.1.52).

We evaluate the commutator as follows. First we perform standard gamma ma-
trix manipulations, change the order of the spinors, evaluate the complex conjugated
terms and use relations from special geometry. Exhausting all such operations using
formulae from Appendices A and C leads to the following expression for the commu-
tator

[δη, δǫ]Bµν = 4iaξσ 1√
|g|
ǫσµνρ [〈DρV | TV∗ 〉 − 〈DρV∗ | TV 〉]

[

+4ia〈DiV | TV∗ 〉Gij∗ 〈Dj∗V∗ | Fµν 〉ǫIJ η̄IǫJ

−2b〈 V | TV∗ 〉〈 V∗ | Fµν 〉ǫIJ η̄IǫJ + c.c.
]

− 8aξ[ν∂µ]〈 V | TV∗ 〉+ 4ib〈 V | TV∗ 〉∂[µξν] + c〈A[µ | [δη, δǫ]Aν] 〉 ,
(6.1.66)

where it has been assumed that a and ib are real parameters. The parameter ξρ is
given by (6.1.12). The notation [· · · + c.c.] means that one should take the complex
conjugate of whatever is written on the left within the brackets. The parameter a
has been chosen to be real in order to obtain the scalar part of the Noether current
in the first line of (6.1.66). The parameter ib has been chosen to be real so that the
Kähler connection 1-form Qµ appearing in δǫΨI µ cancels when adding the complex
conjugated terms. We then take 2b = 4ia so that the first and the second term of the
third line of Eq. (6.1.66) combine into a 2-form gauge transformation parameter. Ex-
pression (6.1.66) is further manipulated using the completeness relation Eq. (5.2.23).
This is the step where we impose the condition that T must satisfy Eq. (6.1.52).
Using next the result for the 1-form commutator, Eq. (6.1.10), to write out the term
proportional to c in (6.1.66), we obtain
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[δη, δǫ]Bµν = 4iaξσ 1√
|g|
ǫσµνρ [〈DρV | TV∗ 〉 − 〈DρV∗ | TV 〉]− 8a∂[µ

(

〈 V | TV∗ 〉ξν]

)

+ 16a〈Fµν | T (Λ + ξρAρ) 〉 − c
8ξ

σ 1√
|g|
ǫσµνρĴ

ρ − c∂[µ〈Aν] | T (Λ + ξρAρ)〉

+ c
2 〈Fµν | TΛ 〉+ c〈Fµν | TξρAρ 〉 , (6.1.67)

where Λ is the 1-form gauge transformation parameter given in (6.1.13). This can be
seen to be equal to the desired result, Eq. (6.1.64), for c = −16a and a = −1/2. We
thus obtain the following supersymmetry variation rule for Bµν

δǫBµν = − 1
2 〈DiV | TV∗ 〉 ǭIγµνλ

iI + c.c.

−i〈 V | TV∗ 〉 ǭIγ[µψIν] + c.c.

+8〈A[µ | TδǫAν] 〉 . (6.1.68)

The 1-form gauge transformation parameter Λµ is given by

Λµ = 2〈 V | TV∗ 〉ξµ − 4〈Aµ | T (Λ + ξρAρ) 〉+ ξρBµρ . (6.1.69)

6.1.4 World-sheet actions: the vector case

In this Section we will construct the leading terms of the bosonic part of a κ-invariant
world-sheet action for the stringy cosmic strings that couple to the 2-form potentials
B that were constructed in Section 6.1.3. Just as in the 0-brane case of Section 6.1.2,
we will construct actions which are manifestly symplectic invariant.

According to the results of the previous Sections we expect to have strings which
carry charges with respect to each of the dimGV 2-forms BA µν that one can define.
We define a dimGV -dimensional charge vector qA. Symplectic invariance suggests a
world-sheet action with leading terms

S = qA

∫

d2σ 〈V | TAV∗〉
√

|g(2)|+ cqA

∫

BA , (6.1.70)

where g(2) and BA are the pullbacks of the space-time metric and 2-forms onto the
world-sheet, respectively and where c is some normalization constant that will be
fixed later. The tension of the string is given by the momentum map P0

A as given in
Eq. (6.1.55).
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The Wess–Zumino term of this action is, however, not gauge invariant under the
gauge transformation (6.1.58) and it seems impossible to make it gauge invariant by
adding additional terms to the Wess–Zumino term without adding more degrees of
freedom to the 2-dimensional world-sheet theory.

Actually, the same problem arises in the construction of a κ-symmetric world-sheet
action for the heterotic superstring in backgrounds with non-trivial Yang–Mills fields
since the NSNS 2-form transforms under Yang–Mills gauge transformations similar to
Eq. (6.1.58). In the 10-dimensional case of strings propagating in backgrounds with
non-trivial Yang-Mills fields the solution to this puzzle lies in the addition of heterotic
fermions to the world-sheet action whose gauge transformations cancel against the
Yang–Mills part of the NSNS 2-form gauge transformation [119]. We suggest that a
similar effect could be at work here.

If this is the case, then, in checking the invariance under supersymmetry trans-
formations of the above world-sheet action we must ignore the term 〈A[µ | TδǫAν]〉
in the 2-form supersymmetry transformation rule. This term should be cancelled by
anomalous terms in the supersymmetry transformations of the world-sheet spinors.
With this proviso we find that the above action preserves half of the supersymmetries
with the projector

1
2 (1 + 4cγ01)ǫI = 0 with c = 1

4 . (6.1.71)

We will see in the next Section that the stringy cosmic string solutions for which
the above action provides the sources require in order to preserve half of the super-
symmetries exactly the same condition to be satisfied by the Killing spinor.

6.1.5 Supersymmetric vector strings

Stringy cosmic string solutions of N = 2, d = 4 supergravity coupled to vector mul-
tiplets were found in [26]5. They preserve half of the original supersymmetries and
belong to the ‘null class’ of supersymmetric solutions characterized by the fact that
the Killing vector that one can construct from their Killing spinors is null. Generically
solutions in this class have Brinkmann-type metrics

ds2 = 2du(dv +Hdu+ ω̂)− 2e−K(Z,Z∗)dzdz∗ , (6.1.72)

where K is the Kähler potential of the vector scalar manifold and where ω̂ is deter-
mined from the equation

(dω̂)zz∗ = 2ie−KQu , (6.1.73)

with Qµ the pullback of the Kähler 1-form connection given in Eq. (B.0.3). The
complex scalars Zi are functions of u and z.

5Solutions related to these by dimensional reduction have been obtained in a 3-dimensional context
in Ref. [120].
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It is not easy to interpret physically these solutions for a generic dependence on the
null coordinate u. When there is no dependence on u we can take ω̂ = 0 and the metric
is that of a superposition of cosmic strings (described by K) lying in the direction u−v
and gravitational and electromagnetic waves (described by H) propagating along the
same direction.

Setting H = 0 (which generically requires that we switch off all the electromagnetic
fields) we obtain solutions that only describe cosmic strings. In order to study the
behavior of these solutions under the symmetries of the theory, it is convenient to
express them in an arbitrary system of holomorphic coordinates, which amounts to the
introduction of an arbitrary holomorphic function f(z) whose absolute value appears
in the metric and whose phase appears in the Killing spinors of the solution























ds2 = 2dudv − 2e−K(Z,Z∗)|f |2dzdz∗ ,

Zi = Zi(z) , f = f(z) ,

ǫI = (f/f∗)1/4ǫI 0 , γz∗ǫI 0 = 0 .

(6.1.74)

If we take z = x2 + ix3 then the condition γz∗ǫI 0 = 0 is equivalent to Eq. (6.1.71).
The holomorphic functions Zi(z), f(z) are assumed to be defined on the Riemann

sphere Ĉ, but, generically, they will not be single-valued on it due to the presence
of branch cuts. These branch cuts are to be associated with the presence of cosmic
strings just as was done in the particular case of the SL(2,R)/U(1) special Kähler
manifold studied in Refs. [109] and [110].

As a general rule bosonic fields must be single-valued unless they are subject to a
gauge symmetry which forces us to identify as physically equivalent those configura-
tions which are related by admissible gauge transformations. In the theories that we
are considering the complex scalars Zi(z) do not transform under any gauge symme-
try. Only the global group of isometries GV of Gij∗ acts on them and only a discrete
subgroup GV (Z) ⊆ Sp(2nV + 2,Z) will be a global symmetry at the quantum level.

In the resulting theories two values of Zi(z) may be considered equivalent if they
are related by a GV (Z) transformation. This enables one to construct solutions in
which the scalars Zi(z) are multi-valued functions with branch cuts related to the
elements of GV (Z). The source for a branch cut is provided by the Wess–Zumino
term of a cosmic string. This is explained in detail for the 10-dimensional case of the
7-branes in [109].

Next we discuss the emergence of axions related to the presence of Killing vectors.
For every Killing vector αAkA

i one can always find an adapted coordinate system
{Zi} such that the metric Gij∗ does not depend on the real part of the coordinate Z1,
say. In this coordinate system αAkA

i∂i = ∂1 and the isometries generated by it act
as constant shifts of Z1 by a real constant:

δZ1 = c ∈ R . (6.1.75)
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This transformation only acts on the real part of Z1, χ1, which is, then, what it is
sometimes meant by an axion: a real scalar field with no non-derivative couplings to
the other scalars and with a shift symmetry6

It is clear that we can, in principle, define as many different axion fields as there
are independent Killing vectors 7, i.e. dimGV , i.e. as many as 2-forms, which can be
understood as their duals. Their (both those of the axions and 2-forms) equations
of motion are not necessarily independent, though, and they will satisfy a number of
constraints, as discussed before, and, at most, there can be 2nV independent axions.

We now discuss the properties of the cosmic string solutions in a local neighbor-
hood of the location z0 in the transverse space of a cosmic string. Infinitesimally the
transformation of the scalars Zi when going around z0 is given by Eq. (6.1.24). In
some coordinate basis, the transformation will only be an axion shift.

Besides the scalars Zi also the Killing spinors ǫI will undergo transformations when
going around the cosmic string at z0. This is because when the scalars transform as
in Eq. (6.1.24) the Kähler potential transforms as

K(Z ′, Z ′∗) = K(Z,Z∗) + λα(Z) + λ∗α(Z∗) . (6.1.76)

From the fact that the Killing spinor ǫI has Kähler weight 1/2 it then follows that

ǫI(z)→ e
1
4 [λα−λ∗

α]+ i
2 ϕαǫI(z) , (6.1.77)

when going around z0. The phases ϕα relate to the fact that in general the spinors
transform under the double cover of GV

8. The Killing spinor ǫI is defined in terms
of the holomorphic function f(z) via Eqs. (6.1.74). The monodromy of f when going
around z0 must be

f(z)→ eλα[Z(z)]+iϕαf(z) . (6.1.78)

6A more precise definition would require χ1 to be a pseudoscalar too. Actually, the real and
imaginary parts of the complex scalars in N = 2, d = 4 vector supermultiplets have different parities,
but, in a general model with arbitrary coordinates one should look at the couplings to the vector
fields to determine the parity of χ1.

On the other hand, the action of N = 2, d = 4 supergravity indicates that the axions must appear
in ℜeNΛΣ, which couples to the parity-odd term FΛ ∧ FΣ. Under symplectic transformations
(

1 B
0 1

)

ℜeN is shifted to ℜeN +B, as one expects from axions. This suggests another possible

characterization of axions: χ1 is an axion if its shifts are embedded in the Abelian subgroup of

symplectic transformations of the form

(

1 B
0 1

)

.

7However, they cannot be used simultaneously, since we can only use simultaneously adapted
coordinates for commuting isometries.

8One can even include yet another phase factor in the transformation rule for the Killing spinors
which incorporates the fact that ǫI may come back to itself up to a sign, i.e. one can include nontrivial
spin structures.
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The cosmic string solutions contain information about the moduli space of the
theory, i.e. the space of inequivalent values for Zi. The classical moduli space is
defined by the requirement

ImNΛΣ < 0 , (6.1.79)

in order that the kinetic terms of the 1-forms have the right sign in the action (1.2.7).
The zeros of the polynomial δZi = αAkA

i which belong to the space (6.1.79) (or
possibly on the boundary thereof) are fixed points of the monodromy and therefore
comprise the loci of the cosmic strings in the quantum moduli space:

{Zi | ImNΛΣ < 0}/GV(Z) . (6.1.80)

Drawing from the analogy with the SL(2,R)/U(1) case studied in [110] one can
expect all physical properties of globally well-defined stringy cosmic string solutions
to be mapped into geometrical properties of the space (6.1.80). Such properties are
the total mass, possible deficit angles at the sites of the cosmic strings, orders of
monodromy transformations (the number of times the same monodromy has to be
applied in order to equal the identity), etc. Here we will not attempt to work out the
global properties of these solutions, since they are strongly model-dependent.

In the SL(2,R)/U(1) case one could have derived all geometrical properties of
the quantum moduli space SL(2,Z)\SL(2,R)/U(1) by studying the globally well-
defined supersymmetric stringy cosmic string solutions. It is therefore natural to
ask the question whether this is generally true, i.e. whether (some class of) quantum
moduli spaces of Calabi–Yau reduced supergravities can be obtained by studying the
properties of the stringy cosmic string solutions.

We leave this for a future investigation.

The 2-forms: the hyper case

If we consider N = 2, d = 4 supergravity with general matter couplings, we can have
apart from the complex scalars in the vector multiplets 4nH real scalars when coupling
gravity to nH hypermultiplets. In the following we repeat the program of introducing
2-forms in order to dualize the hyperscalars which parameterize the Noether currents
of some isometry group of the quaternionic Kähler manifold. We first construct
the Noether currents, dualize them and subsequently construct the supersymmetry
transformation rule for the dual 2-forms. For the subset of commuting isometries
a similar program has been performed in [121] where also actions for the dualized
scalars are given.

6.1.6 The Noether current

The transformations we are dealing with are just the isometries of the quaternionic
Kähler manifold that we write in the form
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δqu = αAkA
u(q) , (6.1.81)

where kA
u are the components of the Killing vectors kA = kA

u∂u that generate the
isometry group GH of Huv. The parameters αA are real parameters.

Associated to each of the isometries we can define a momentum map9
PAI

J defined
by the equation

DuPAI
J = −JI

J
uvkA

v , (6.1.82)

where JI
J

uv is the triplet complex structures of the quaternionic-Käher manifold.

Following [122] we write the triplet of complex structures JI
J

uv in terms of the
Quadbeins as follows

JI
J

uv = i
2 (σx)I

J
J

x
uv with J

x u
v = −iUαI

v(σx)I
J
UαJ

u , (6.1.83)

where the σx, x = 1, 2, 3, are the three Pauli matrices. We will often write PI
J ≡

αAPAI
J .

The Noether current associated to the these isometries, which do not act on the
vector fields, is just

Jµ
N = δqu 1

√

|g|
∂L

∂(∂µqu)
= 4Huv∂

µqvδqu , (6.1.84)

and satisfies ∇µJ
µ
N = 0.

Dualizing the Noether current

Since the isometries of the quaternionic Kähler manifold do not act on the vectors
of the theory they are symmetries of the action and there will be no anomalous
contribution to the Noether current such as Ĵ which we encountered when discussing
the isometries of the special Kähler manifold. We can thus immediately define the
gauge-invariant 3-form field strength H via

H = dB = ⋆JN , (6.1.85)

where H = αAHA and B = αABA.

9Momentum maps play a crucial role in the gauging of the isometries. It is therefore interesting
to note that the mathematics which governs the 2-forms is similar to that used in gauged matter
coupled N = 2, d = 4 supergravity.
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The 2-form supersymmetry transformation

We know that, since B is defined by dB = ⋆JN , the commutator of two supersym-
metry variations on B must close into the algebra (6.1.62), i.e. it must lead to the
commutator

[δη, δǫ]Bµν = ξρ 1√
|g|
ǫρµνσJN

σ + 2∂[µ

(

Λν] − ξρBν]ρ

)

. (6.1.86)

In order to achieve this, we make the following Ansatz for the supersymmetry variation
of the 2-form (up to second order in fermions)

δǫBµν = aPI
J ǭIγ[µψJ|ν] + c.c.

+bUαJ
uDuPI

J ǭIγµνζ
α + c.c. , (6.1.87)

where a and b are arbitrary complex constants.
Evaluating the commutator and assuming that a and ib are real parameters we

obtain

[δη, δǫ]Bµν = − 3
2 ib(⋆dq

w)µνρξ
ρ
Hvwδq

v

+ 3
2 ibJI

K
vwδq

v∂[νq
wXµ]K

I

+2∂[µ

(

Λν] − ξρBν]ρ

)

− aJI
K

vwδq
v∂[νq

wXµ]K
I , (6.1.88)

where we have defined the matrix of vector fields

XµI
J ≡ −η̄JγµǫI − η̄Iγµǫ

J , (6.1.89)

and where the gauge parameter Λµ is given by

Λµ = −a
2XJ

I
µPI

J + ξρBµρ. (6.1.90)

Next we choose a = 3
2 ib and we are left with

[δη, δǫ]Bµν = − 3
2 ib(⋆dq

w)µνρξ
ρ
Hvwδq

v + 2∂[µ

(

Λν] − ξρBν]ρ

)

.

If we compare this expression with Eq. (6.1.64) using Eq. (6.1.84) we read off that
ib = − 8

3 , so that a = −4.
The supersymmetry transformation of the 2-forms dual to the hyperscalars pa-

rameterizing the Noether current (6.1.84) is thus
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δǫBµν = −4PI
J ǭIγ[µψJ|ν] + c.c.

+ 8i
3 UαJ

uDuPI
J ǭIγµνζ

α + c.c. , (6.1.91)

and the 2-form gauge parameter Λµ is given by

Λµ = 2XJ
I

µPI
J + ξρBµρ. (6.1.92)

6.1.7 World-sheet actions: the hyper case

Stringy cosmic strings in the hyper case are strings electrically charged under the
2-forms B constructed in Section 6.1.5. In this Section we will construct the bosonic
part of the string effective action, which preserves half of the supersymmetries of the
theory. In analogy with the Ansatz that we made for the strings in the vector case
we again express the tension of the string in terms of the momentum maps. We make
the following Ansatz

S =

∫

d2σT1
√

|g(2)|+ c qA

∫

BA, (6.1.93)

where c is some real number which will be fixed later. The tension is given by

T1 =
√

(Px)2 where P
x = αA

P
x

A with PI
J = i

2P
x(σx)I

J (6.1.94)

and in taking the square we sum over x = 1, 2, 3.
Performing a supersymmetry variation of the action (6.1.93) using the transfor-

mation rules (2.2.32), (2.2.35) and (6.1.91) we find that the string action preserves
half of the supersymmetries with a projector given by

ΠI
J = 1

2 (δI
J − 8ci√

(Px)2
PI

Jγ01), ΠI
J ǫI = 0, where c = − 1

4 . (6.1.95)

An important distinction with the analogous string action constructed in Section
6.1.4 is that in the present case the Wess–Zumino term is gauge invariant up to
a total derivative whereas in the case of strings coupled to 2-forms dual to vector
scalars the Wess–Zumino term is not by itself gauge invariant, cf. the discussion
below Eq. (6.1.70). In fact one may consider the action (6.1.93) as the first example
of a 1/2 BPS (d − 3)-brane action which is well-defined (at the bosonic level) for all
possible (d − 2)-form potentials. In the d = 10-dimensional situation only the brane
actions related to the D7-branes are well understood. For the other 8-forms which
couple to the Q7-branes of [109] there are still open problems regarding a proper
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understanding of the world-volume dynamics. The fact that in the particular case
of the hyperstrings we can construct well-defined actions supports the idea that in
general one can treat all isometries of any scalar sigma model in any supergravity
on an equal footing (provided they pertain to be discrete isometries of the quantum
moduli space). This suggests that in order to find the full spectrum of 1/2 BPS
states one best considers the same supergravity theory in various coordinate systems
in which these isometries take on a simple form.

6.1.8 Supersymmetric hyperstrings

In Ref. [27] it was shown that the c-map transforms supersymmetric stringy cosmic
string solutions of the vector scalar manifold into supersymmetric stringy cosmic
string solutions of the hyperscalar manifold. The latter belong to the timelike class
of supersymmetric solutions characterized by the fact that the Killing vector that one
can construct from the Killing spinors of the solution is timelike. The metric for this
class of solutions (for vanishing vector multiplets) takes the following form

ds2 = dt2 − γmndx
mdxn . (6.1.96)

The 3-dimensional spatial metric γmn (or its Dreibeins V x
m) is related to the

hyperscalars qu(x) by two conditions. The first condition is

Vx
m ∂mq

u
U

αJ
u (σx)J

I = 0 , (6.1.97)

and the second condition reads, in a given SU(2) and Lorentz gauge,

̟m
xy = εxyz

A
z

u ∂mq
u , (6.1.98)

where ̟m
xy is the spin connection 1-form of the 3-dimensional metric and Az

u∂mq
u

is the pullback of the SU(2) connection of the quaternionic-Kähler manifold parame-
terized by the scalars qu. In the gauge in which Eq. (6.1.98) holds the Killing spinors
take the form

ǫI = ǫI 0, Πx
I

J ǫJ 0 = 0 with Πx
I
J ≡ 1

2 [ δI
J − γ0(x) (σ(x))I

J ] (6.1.99)

where the notation (x) in (6.1.99) means that x is not summed over so the constraints
are imposed for each non-vanishing component of the SU(2) connection.

We now repeat for the hyperscalars parameterizing a quaternionic Kähler manifold
with isometry group GH the discussion of Section 6.1.5. The fields will only depend on
two spatial coordinates (x1 and x2, say, that can always be combined into a complex
coordinate z) which parameterize the transverse space of the cosmic string. The
metric will take the form

ds2 = dt2 − (dx3)2 − 2eΦ(z,z∗)dzdz∗ , (6.1.100)
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and the hyperscalars will be real functions qu(z, z∗). A convenient Dreibein basis is

V̂ 3 = dx3 , V̂ z = V dz , V̂ z∗

= V ∗dz∗ , |V |2 = eΦ(z,z∗) . (6.1.101)

In this Dreibein basis the supersymmetry conditions Eqs. (6.1.97) and (6.1.98) take
the respective form

U
α2

u∂zq
u = U

α1
u∂z∗qu = 0 , (6.1.102)

̟z
zz∗

= A
3
u ∂zq

u , (6.1.103)

A
1
u ∂mq

u = A
2
u ∂mq

u = 0 . (6.1.104)

The Killing spinors of these solutions, in this basis, are given by

ǫI = ǫI 0 , Π3
I
J ǫJ 0 = 0 . (6.1.105)

It can be shown that in this gauge the pullbacks of the complex structures J1

and J
2 vanish while J

3 remains nonzero and one recovers the projection operator
Eq. (6.1.95). As in the case of the vector scalars, it is convenient to work in a more
general coordinate system in which the metric takes the form

ds2 = dt2 − (dx3)2 − 2eΦ(z,z∗)|f |2dzdz∗ , (6.1.106)

where f(z) is a holomorphic function. The supersymmetry conditions, Eqs. (6.1.102)
and (6.1.104), do not change and Eq. (6.1.103) is still satisfied with the old spin
connection. If the new spin connection is computed with respect to the new frame

V̂ 3 = dx3 , V̂ z = V f∗dz , V̂ z∗

= V ∗fdz∗ , (6.1.107)

then, we find that

̟z
zz∗

= ̟z
zz∗

old + ∂z log f , (6.1.108)

and then the Killing spinors take the form

ǫI = e
1
2 log(f/f∗)γ03

ǫI 0 , (6.1.109)

the constant spinor ǫI 0 obeying the same constraints as above, Eqs. (6.1.105). These
same constraints allow us to rewrite it in the equivalent form

ǫI = exp { 1
2 log(f/f∗)σ3}I

JǫJ 0 . (6.1.110)
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The multi-valuedness of the Killing spinors ǫI of these solutions is related to the
U(1) ⊂ SU(2) gauge transformation where the U(1) subgroup is associated to the non-
vanishing component A3

u∂zq
u of the SU(2) connection pulled back on the space-time.

The transformations of the Killing spinors determine the monodromy properties of
the holomorphic function f similarly to what happens in the case of the vector scalars.

6.2 Possible couplings of the N = 1 hierarchy p-

forms to (p− 1)-branes

Some, but not all, of the p-forms in the hierarchy may be associated to dynamical
supersymmetric branes. In order to construct a κ-symmetric action for a (p − 1)-
brane that couples to a certain p-form, two necessary conditions are that the p-form
transforms under no Stückelberg shift and that under supersymmetry it transforms
into a gravitino multiplied by some scalars may couple to branes. In N = 1, d =
4 supergravity the p-forms that satisfy this condition are the (subset) of 2-forms
Ba whose gauge transformations are massless. These are the 2-forms whose field
strengths are dual to ungauged isometry currents. From the analysis of [28, 30] we
know that these couple to strings (one-branes that have been referred to as stringy
cosmic strings). Another form which satisfies the criteria is the 3-form C′ which is a
natural candidate to describe couplings to domain walls. We note that there are no
1-forms and 4-forms that can couple to a massive brane. There are thus no 1/2 BPS
black holes in the theory and no 1/2 BPS space-time filling branes. The latter fact
may be qualitatively understood from the fact that one cannot truncate the minimal
N = 1, d = 4 supersymmetry algebra to a supersymmetry algebra with half of the
original supercharges.





Chapter 7

Summary

This thesis deals with four-dimensional Supergravity theories and solutions thereto.
In Chapter 1 we gave an overview of the main motivations for studying Supersymme-
try, Supergravity and Superstring Theory. We shortly described how Supersymmetry
might help to address some problems the Standard Model of Particle Physics seems
to suffer from and we summarized the most important properties of Superstring the-
ory and its low-energy limit, Supergravity. In Chapter 2 we introduced the theories
we were going to work with in this thesis, i.e. four-dimensional Supergravities with
four and eight supercharges, respectively. There we described these theories, ignoring
possible gaugings. The problem of gauging was considered in Chapter 3. We saw
how the introduction of the most general gaugings this is using electric and magnetic
vector fields as gauge fields, implies the existence of a tensor hierarchy of higher de-
gree p-forms. In Chapter 4 we applied the obtained results to N = 1 and N = 2
Supergravity. In Chapter 5 we found and classified the supersymmetric solutions to
N = 2 four-dimensional Supergravity, using the tequnique as described in the intro-
duction of this thesis, Chapter 1. In Chapter 6.1 we studied the coupling of extended
solutions to N = 2 d = 4 Supergravity, taking into account the “predictions” of the
four-dimensional tensor hierarchy found in Chapter 3.

This thesis is based on the publications which are listed in Appendix G.





Chapter 8

Resumen

En esta tesis hemos estudiado teoŕıas de Supergravedad en cuatro dimensiones y
soluciones de las mismas. En elcaṕıtulo 1 hemos dado una visión general sobre las
motivaciones principales para estudiar Supersimetŕıa, Supergravedad y finalmente la
Teoŕıa de Supercuerdas. Hemos descrito brevemente como Supersimetŕıa puede fa-
cilitar soluciones a varios “problemas” que parece padecer el Modelo Estándar de
las Part́ıculas Elementales y resumido las propriedades más importantes de la Teoŕıa
de Supercuerdas y de su ĺımite de bajas enerǵıas: la teoŕıa de Supergravedad. En
el caṕıtulo 2 hemos introducido las teoŕıas estudiandas en esta tesis, es decir las
Supergravedades cuatridimensionales con cuatro y ocho supercargas. En él hemos
descrito dichas teoŕıas ignorando posibles gaugeos. El problema de los gaugeos lo
hemos considerado en el caṕıtulo 3. Vimos como la introducción de los gaugeos más
generales, es decir utilizando tanto campos vectoriales eléctricos como magnéticos
como campos gauge, implica la existencia de una jerarqúıa de tensores con grados
más altos. En el caṕıtulo 4 aplicamos los resultados obtenidos anteriormente a las
Supergravedades N = 1 y N = 2. En el caṕıtulo 5 encontramos y clasificamos las
soluciones superśımetricas de Supergravedad N = 2 cuatridimensional, utilizando el
procedimiento descrito en la introducción de esta tesis, caṕıtulo 1. En el caṕıtulo 6.1
estudiamos el acoplo de soluciones extendidas de la teoria de Supergravedad N = 2 a
p-formas, teniendo en cuenta las “predicciones” de la jerarqúıa general cuatridimen-
sional hallada en el caṕıtulo 3.

Esta tesis está basada en las publicaciones que están listadas en el Apéndice G.





Chapter 9

Conclusions

In this thesis we studied N = 1 and N = 2 Supergravity in four dimensions.

In Chapter 3 we studied the most general gaugings of four-dimensional Supergrav-
ity theories. To do so, we introduced the embedding tensor formalism. We showed
how the second-order p-form equations of motion and the projected scalar equations
of motion of general d = 4 gauged supergravity theories can be derived from a duality
hierarchy, i.e. a set of first-order duality relations between p-form curvatures. Our
starting point was the complete tensor hierarchy of the embedding tensor formalism,
which we used to derive the off-shell gauge algebra for a set of p-form potentials, not
including the scalars nor the metric tensor. Next, in a second step we put the ten-
sor hierarchy on-shell by introducing duality relations between the curvatures of the
tensor hierarchy, which leads to the desired equations of motion. In a third and final
step, we constructed a gauge-invariant action for all the fields of the tensor hierarchy.

Whilst up to this point the tensor hierarchy was studied in the most general way,
i.e. without specifying which four-dimensional Supergravity is being dealt with, the
next step was the study of the gaugings of N = 1, 2 Supergravity in Chapter 4.
When studying the most general gaugings of N = 1 four-dimensional Supergravity,
we were led to considering the full hierarchy of p-form fields realized in this theory.
We constructed the supersymmetric tensor hierarchy of N=1, d=4 supergravity and
found some differences with the general bosonic construction of 4-dimensional gauged
supergravities: the extension of N = 1 d = 4 Supergravity involves additional 3-
and 4-forms which are not predicted by the general hierarchy. It turned out that
the additional 3-form is dual to the superpotential, thus not associated to any gauge
symmetry. We studied the closure of the supersymmetry algebra on all the bosonic
p-form fields of the hierarchy up to duality relations. It turned out that in order
to close the supersymmetry algebra without the use of duality relations, one must
construct the hierarchy in terms of supermultiplets.

The solutions to four-dimensional Supergravity were studied in Chapter 5. In
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Chapter 5.1 we found the complete classification of the supersymmetric solutions
of N = 2 d = 4 ungauged supergravity coupled to an arbitrary number of vector-
and hypermultiplets. We found that in the timelike case the hypermultiplets cause
the constant-time hypersurfaces to be curved with an SU(2) holonomy induced by
the quaternionic structure of the hyperscalar manifold. The solutions have the same
structure as without hypermultiplets but now depend on functions which are harmonic
w.r.t. the curved 3-dimensional space. We discussed an example obtained from a
hyper-less solution via the c-map. In the null case we found that the hyperscalars
can only depend on the null coordinate and the solutions are essentially those of the
hyper-less case.

In Chapter 5.2 we found the general form of all the supersymmetric configura-
tions and solutions of N = 2, d = 4 Einstein-Yang-Mills theories. In the timelike case
the solutions to the full supergravity equations could be constructed from known
flat spacetime solutions of the Bogomol’nyi equations. This allowed the regular,
sometimes globally regular, supersymmetric embedding in supergravity of regular
monopole solutions (such as ’t Hooft-Poyakov’s, Weinberg’s, Wilkinson and Bais’s)
but also embeddings of non-regular solutions to the Bogomol’nyi equations, which
turned out to be regular black holes with different forms of non-Abelian hair. We
found that the attractor mechanism is realized in a gauge-covariant way. In the null
case we determined the general equations that supersymmetric configurations and
solutions must satisfy.

In the last chapter, we studied the coupling of the one-dimensional solutions to
N = 2 d = 4 Supergravity, found in Chapter 5.1, to 2-forms as predicted by the general
four-dimensional tensor hierarchy. These 2-forms couple electrically to strings which
we refer to as stringy cosmic strings. The 1/2 BPS bosonic world-sheet actions for
these strings were constructed and its implications discussed.



Chapter 10

Conclusiones

En esta tesis hemos estudiado Supergravedad N = 1 y N = 2 en cuatro dimensiones.

En el caṕıtulo 3 hemos estudiado los gaugeos más generales de teoŕıas de Super-
gravedad cuatridimensionales. Para ello hemos introducido primero el formalismo
del embedding tensor. Hemos mostrado cómo las ecuaciones de movimiento de las p-
formas, las cuales son ecuaciones de segundo orden, y la proyección de las ecuaciones
de movimiento de los escalares de Supergravedad general cuatridimensional pueden
derivarse de una jerarqúıa de dualidades, es decir de un conjunto de relaciones de
dualidad de primer orden entre las curvaturas de las p-formas. Nuestro punto de par-
tida ha sido la jerarqúıa completa de tensores del formalismo del embedding tensor,
el cual hemos utilizado para derivar el álgebra gauge off-shell para un conjunto de
potenciales, p-formas, sin incluir los escalares ni el tensor métrico. En segundo lugar
hemos puesto la jerarqúıa de tensores on-shell introduciendo relaciones de dualidad
entre las curvaturas de la jerarqúıa de tensores, lo que nos llevó a las ecuaciones
de movimiento deseadas. En un tercer paso hemos construido una acción invariante
gauge para todos los campos de la jerarqúıa de tensores.

Mientras hasta este punto la jerarqúıa de tensores fue estudiada de la manera más
general, es decir sin especificar de que teoŕıa de Supergravedad cuatridimensional se
trata, el paso siguente ha sido el estudio de los gaugeos de N = 1, 2 Supergravedad
en cuatro dimensiones en el caṕıtulo 4. Al estudiar los gaugeos más generales de la
Supergravedad N = 1 cuatridimensional, fuimos llevados a considerar la jerarqúıa
de tensores completa, realizada en esta teoŕıa. Hemos construido la jerarqúıa su-
persimétrica de tensores de la Supergravedad N = 1, d = 4 y encontrado algunas
diferencias con la construcción general bosónica de Supergravedades gaugeadas cua-
tridimensionales. Hemos estudiado el cierre del álgebra de supersimetŕıa en todas las
p-formas bosónicas de la jerarqúıa salvo relaciones de dualidad. Resultó que, para ce-
rrar el álgebra de supersimetŕıa sin usar relaciones de dualidad, es necesario construir
la jerarqúıa en términos de supermultipletes.
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Las soluciones de Supergravedad cuatridimensional fueron estudiadas en el caṕıtulo
5. En el caṕıtulo 5.1 hemos hallado la clasificación completa de las soluciones super-
simétricas de N = 2 d = 4 Supergravedad sin gaugear, acoplada a un número arbi-
trario de vector- e hipermultipletes. Hemos encontrado que en el caso tipo tiempo
los hipermultipletes causan la curvatura de las hipersuperficies de tiempo constante
con holonomı́a SU(2) inducida por la estructura quaterniónica de la variedad de los
hiperescalares. Las soluciones tienen la misma estructura que sin hipermultipletes
pero ahora dependen de funciones que son harmónicas con respecto al espacio curvo
tridimensional. En el caso nulo hemos encontrado que los hiperescalares sólo de-
penden en la coordenada nula y las soluciones son esencialmente las del caso sin
hipermultipletes.

En el caṕıtulo 5.2 hemos encontrado la forma general de todas las configuraciones y
soluciones de teoŕıas N = 2 d = 4 de tipo Einstein-Yang-Mills. En el caso tipo tiempo
las soluciones de las ecuaciones enteras de Supergravedad pod́ıan construirse partiendo
de soluciones de espacio plano de las ecuaciones de Bogomol’nyi. Esto nos permitió el
embebimiento supersimétrico regular, en algunos casos regular globalmente, dentro de
Supergravedad de soluciones regulares de tipo monopolo (tales como los de ’t Hooft-
Poyakov, Weinberg, Wilkinson and Bais), pero tambien el embebimiento de soluciones
singulares de las ecuaciones de Bogomol’nyi, que resultan ser agujeros negros regulares
con diferentes formas de pelo no-Abeliano. Hemos encontrado que la realización del
mecanismo del atractor es covariante gauge. En el caso nulo hemos determinado
las ecuaciones generales que tienen que satisfacer las configuraciones y soluciones
supersimetricas.

En el último caṕıtulo hemos estudiado el acoplo de soluciones unidimensionales
de la Supergravedad N = 2 d = 4, encontradas en el caṕıtulo 5.1, a 2-formas como
predice la jerarqúıa tensorial general cuatridimensional. Estas 2-formas se acoplan
eléctricamente a cuerdas, las cuales etiquetamos como stringy cosmic strings. Las
acciones bosónicas 1/2 BPS en la superficie de universo para estas cuerdas fueron
construidas y discutidas sus implicaciones.
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Appendix A

Conventions

In this thesis we use basically the notation of Ref. [82] and the conventions of Ref. [38],
to which we have adapted the formulae of Ref. [82]. The main differences between the
conventions of those two references are the signs of spin connection, the completely
antisymmetric tensor ǫabcd and γ5. Thus, chiralities are reversed and self-dual tensors
are replaced by anti-self-dual tensors and vice-versa. The curvatures are identical.
Finally, the normalization of the 2-form components differs by a factor of 2: for us

F = dA = 1
2Fµνdx

µ ∧ dxν ⇒ Fµν = 2∂[µAν] , (A.0.1)

which amounts to a difference of a factor of 2 in the vectors supersymmetry trans-
formations. Further, all fermions and supersymmetry parameters from Ref. [82] have
been rescaled by a factor of 1

2 , which introduces additional factors of 1
4 in all the

bosonic fields supersymmetry transformations.
The meaning of the different indices used in this paper is explained in Table A.0.1.

We use the shorthand n̄ ≡ n+ 1.

Type Associated structure

µ, ν, . . . Curved space
a, b, . . . Tangent space
m,n, . . . Cartesian R3-indices
i, j, . . .; i∗, j∗, . . . Complex scalar fields and their conjugates. There are n of them.
Λ,Σ, . . . sp(n̄) indices (n̄ = n+ 1)
I, J, . . . N = 2 spinor indices

Table A.0.1: Meaning of the indices used in this paper.

To make this paper as self-contained as possible, we proceed to review our con-
ventions in detail.



194 Conventions

A.1 Tensors

We use Greek letters µ, ν, ρ, . . . as (curved) tensor indices in a coordinate basis and
Latin letters a, b, c . . . as (flat) tensor indices in a tetrad basis. Underlined indices
are always curved indices. We symmetrize () and antisymmetrize [] with weight one
(i.e. dividing by n!). We use mostly minus signature (+ − −−). η is the Minkowski
metric and a general metric is denoted by g. Flat and curved indices are related by
tetrads ea

µ and their inverses ea
µ, satisfying

ea
µeb

νgµν = ηab , ea
µe

b
νηab = gµν . (A.1.1)

∇ is the total (general- and Lorentz-) covariant derivative, whose action on tensors
and spinors (ψ) is given by

∇µξ
ν = ∂µξ

ν + Γµρ
νξρ ,

∇µξ
a = ∂µξ

a + ωµb
aξb ,

∇µψ = ∂µψ − 1
4ωµ

abγabψ ,

(A.1.2)

where γab is the antisymmetric product of two gamma matrices (see next section),
ωµb

a is the spin connection and Γµρ
ν is the affine connection. The respective curva-

tures are defined through the Ricci identities

[∇µ,∇ν ] ξρ = Rµνσ
ρ(Γ) ξσ + Tµν

σ∇σξ
ρ ,

[∇µ,∇ν ] ξa = Rµνb
a(ω)ξb ,

[∇µ,∇ν ] ψ = − 1
4Rµν

ab(ω)γabψ .

(A.1.3)

and given in terms of the connections by

Rµνρ
σ(Γ) = 2∂[µΓν]ρ

σ + 2Γ[µ|λ
σΓν]ρ

λ ,

Rµνa
b(ω) = 2∂[µ ων]a

b − 2ω[µ|a
c ω|ν]c

b .
(A.1.4)

These two connections are related by the tetrad postulate

∇µea
µ = 0 , (A.1.5)

by

ωµa
b = Γµa

b + ea
ν∂µeν

b , (A.1.6)

which implies that the curvatures are, in turn, related by
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Rµνρ
σ(Γ) = eρ

aeσ
bRµνa

b(ω) . (A.1.7)

Finally, metric compatibility and torsionlessness fully determine the connections
to be of the form

Γµν
ρ = 1

2g
ρσ {∂µgνσ + ∂νgµσ − ∂σgµν} ,

ωabc = −Ωabc + Ωbca − Ωcab , Ωab
c = ea

µeb
ν∂[µe

c
ν] .

(A.1.8)

The 4-dimensional fully antisymmetric tensor is defined in flat indices by tangent
space by

ǫ0123 = +1 , ⇒ ǫ013 = −1 , (A.1.9)

and in curved indices by

ǫµ1···µ3 =
√

|g| eµ1
a1 · · · eµ3

a3ǫ
a3···a3 , (A.1.10)

so, with upper indices, is independent of the metric and has the same value as with
flat indices.

We define the (Hodge) dual of a completely antisymmetric tensor of rank k, F(k)

by

⋆F(k)
µ1···µ(d−k) = 1

k!
√

|g|
ǫµ1···µ(d−k)µ(d−k+1)···µdF(k)µ(d−k+1)···µd

. (A.1.11)

Differential forms of rank k are normalized as follows:

F(k) ≡ 1
k!F(k) µ1···µk

dxµ1 ∧ · · · ∧ dxµk . (A.1.12)

For any 4-dimensional 2-form, we define

F± ≡ 1
2 (F ± i ⋆F ) , ±i ⋆F± = F± . (A.1.13)

For any two 2-forms F,G, we have

F±
µνG

∓ µν = 0 , F±
[µ

ρG∓
ν]ρ = 0 . (A.1.14)

Given any 2-form F = 1
2Fµνdx

µ ∧ dxν and a non-null 1-form V̂ = Vµdx
µ, we can

express F in the form

F = −V −2[E ∧ V̂ − ⋆(B ∧ V̂ )] , Eµ ≡ V νFνµ , Bµ ≡ ⋆V νFνµ . (A.1.15)

For the complex combinations F± we have
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F± = −V −2[C± ∧ V̂ ± i ⋆ (C± ∧ V̂ )] , C±
µ ≡ V νF±

νµ . (A.1.16)

If we have a (real) null vector lµ, we can always add three more null vectors
nµ,mµ,m∗µ to construct a complex null tetrad such that the local metric in this
basis takes the form









0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0









(A.1.17)

with the ordering (l, n,m,m∗). For the local volume element we obtain ǫlnmm∗

= i.

With the dual basis of 1-forms
(

l̂, n̂, m̂, m̂∗
)

we can construct three independent

complex self-dual 2-forms that we choose to normalize as follows:

Φ̂(1) = l̂ ∧ m̂∗ ,

Φ̂(2) = 1
2 [l̂ ∧ n̂+ m̂ ∧ m̂∗] ,

Φ̂(3) = −n̂ ∧ m̂ .

(A.1.18)

Any self-dual 2-form F+ can be written as a linear combination of these, with
complex coefficients:

F+ = ciΦ̂
(i) . (A.1.19)

The coefficients ci can be found by contracting F+ with lµ, nµ,mµ,m∗µ:

lνF+
νµ = − 1

2c2lµ − c3mµ ,

nνF+
νµ = c1m

∗
µ + 1

2c2nµ ,

mνF+
νµ = c1lµ + 1

2 c2mµ ,

m∗νF+
νµ = − 1

2c2m
∗
µ − c3nµ .

(A.1.20)

A.2 Gamma matrices and spinors

We work with a purely imaginary representation

γa ∗ = −γa , (A.2.1)
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and our convention for their anticommutator is

{γa, γb} = +2ηab . (A.2.2)

Thus,

γ0γaγ0 = γa † = γa−1 = γa . (A.2.3)

The chirality matrix is defined by

γ5 ≡ −iγ0γ1γ2γ3 = i
4! ǫabcdγ

aγbγcγd , (A.2.4)

and satisfies

γ5
† = −γ5

∗ = γ5 , (γ5)2 = 1 . (A.2.5)

With this chirality matrix, we have the identity

γa1···an =
(−1)[n/2]i

(4 − n)!
ǫa1···anb1···b4−nγb1···b4−n

γ5 . (A.2.6)

Our convention for Dirac conjugation is

ψ̄ = iψ†γ0 . (A.2.7)

Using the identity Eq. (A.2.6) the general d = 4 Fierz identity (p = +1 for
commuting spinors and p = −1 for commuting spinors) takes the form

p(λ̄Mχ)(ψ̄Nϕ) = 1
4 (λ̄MNϕ)(ψ̄χ) + 1

4 (λ̄MγaNϕ)(ψ̄γaχ)− 1
8 (λ̄MγabNϕ)(ψ̄γabχ)

− 1
4 (λ̄Mγaγ5Nϕ)(ψ̄γaγ5χ) + 1

4 (λ̄Mγ5Nϕ)(ψ̄γ5χ) .
(A.2.8)

We use 4-component chiral spinors. In the N = 1 theory the chirality of all spinors
is negative

γ5ψµ = −ψµ , γ5λ
Λ = −λΛ , γ5χ

i = −χi , γ5ǫ = −ǫ , (A.2.9)

and is reversed by complex conjugation:

γ5ψ
∗
µ = ψ∗

µ , γ5λ
∗Λ = λ∗Λ , γ5χ

∗i∗ = χ∗i∗ , γ5ǫ
∗ = ǫ∗ , (A.2.10)

In the N = 2 theory the chirality of the spinors is related to the position of the SU(2)
index or Sp(2m) index as follows::
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γ5ψI µ = −ψI µ , γ5λ
Ii = +λIi , γ5ζα = −ζα , γ5ǫI = −ǫI .

(A.2.11)
Both (chirality and position of the index) are reversed under complex conjugation:

γ5ψ
I
µ = ψI

µ , γ5λI
i∗ = −λI

i∗ , γ5ζ
α = +ζα , γ5ǫ

I = ǫI .
(A.2.12)

We take this fact into account when Dirac-conjugating chiral spinors:

ǭI ≡ i(ǫI)†γ0 , ǭIγ5 = +ǭI , etc. (A.2.13)



Appendix B

Kähler geometry

A Kähler manifoldM is a complex manifold on which there exist complex coordinates
Zi and Z∗ i∗ = (Zi)∗ and a function K(Z,Z∗), called the Kähler potential, such that
the line element is

ds2 = 2Gii∗ dZ
idZ∗ i∗ , (B.0.1)

with

Gii∗ = ∂i∂i∗K . (B.0.2)

The Kähler (connection) 1-form Q is defined by

Q ≡ 1
2i(dZ

i∂iK − dZ∗ i∗∂i∗K) (B.0.3)

= 1
2i(∂ − ∂̄)K , (B.0.4)

and the Kähler 2-form J is its exterior derivative

J ≡ dQ = iGii∗dZ
i ∧ dZ∗ i∗ (B.0.5)

= i∂∂̄K . (B.0.6)

Note that this yields immediately that the Kähler 2-form is closed:1

dJ = 0. (B.0.9)

The Levi-Cività connection on a Kähler manifold is given by

1Actually there is an alternative way to define a Kähler manifold:
Definition: A Kähler manifold is an Hermitean manifold whose Kähler form is closed.
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Γjk
i = Gii∗∂jGi∗k , Γj∗k∗

i∗ = Gi∗i∂j∗Gk∗i . (B.0.10)

The Riemann curvature tensor has as only non-vanishing components Rij∗kl∗ , but we
will not need their explicit expression. The Ricci tensor is given by

Rii∗ = ∂i∂i∗
(

1
2 log detG

)

, (B.0.11)

and the Ricci 2-form by

R = iRii∗dz
i ∧ dz∗i∗ . (B.0.12)

The Kähler potential is not unique: it is defined only up to Kähler transformations
of the form

K′(Z,Z∗) = K(Z,Z∗) + f(Z) + f∗(Z∗) , (B.0.13)

where f(Z) is any holomorphic function of the complex coordinates Zi. Under these
transformations, the Kähler metric and Kähler 2-form are invariant, while the com-
ponents of the Kähler connection 1-form transform according to

Q′
i = Qi − i

2∂if . (B.0.14)

By definition, objects X with Kähler weight (q, q̄) transform under the above
Kähler transformations like:

X ′ = Xe−(qf+q̄f∗)/2 (B.0.15)

and the Kähler-covariant derivative D acting on them is given by

Di ≡ ∇i + iqQi , Di∗ ≡ ∇i∗ − iq̄Qi∗ , (B.0.16)

where ∇ is the standard covariant derivative associated to the Levi-Cività connection
on M.

This then implies

dJ = (∂ + ∂̄)iGii∗dzi ∧ dz∗ i∗

= i∂jGii∗dzj ∧ dzi ∧ dz∗ i∗ + i∂j∗Gii∗dz∗ j∗ ∧ dzi ∧ dz∗ i∗

= i
2
(∂jGii∗ − ∂iGji∗ )dzj ∧ dzi ∧ dz∗ i∗ + i

2
(∂j∗Gii∗ − ∂i∗Gij∗ )dz∗j∗ ∧ dzi ∧ dz∗ i∗ ,

leading to the following relations

∂jGii∗ = ∂iGji∗ , ∂j∗Gii∗ = ∂i∗Gij∗ , (B.0.7)

whose solutions is (locally) given by
Gii∗ = ∂i∂i∗K, (B.0.8)

and the converse is also true locally (see definition above).
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The Ricci identity for this covariant derivative is, on objects without vector indices
and Kähler weight (q, q̄)

[Di,Dj∗ ] = − 1
2 (q − q̄)Gij∗ . (B.0.17)

When (q, q̄) = (1,−1), this defines a complex line bundle L1 → M over the
Kähler manifoldM whose first, and only, Chern class equals the Kähler 2-form J . A
complex line bundle with this property is known as a Kähler-Hodge (KH) manifold
and provides the formal starting point for the definition of a special Kähler manifold2

that is explained in the next Appendix. These are the manifolds parametrized by the
complex scalars of the chiral multiplets of N = 1, d = 4 supergravity. Furthermore,
objects such as the sueprpotential and all the spinors of the theory have a well-defined
Kähler weight. The manifolds parametrized by the complex scalars of the vector
multiplets of N = 2, d = 4 supergravity are also KH manifolds but must satisfy
further constraints that define what is known as special Kähler geometry, described
in Appendix C.

We will often use the spacetime pullback of the Kähler-covariant derivative on
tensor fields with Kähler weight (q,−q) (weight q, for short) for which it takes the
simple form

Dµ = ∇µ + iqQµ , (B.0.18)

where ∇µ is the standard spacetime covariant derivative plus possibly the pullback
of the Levi-Cività connection on M; Qµ is the pullback of the Kähler 1-form, i.e.

Qµ = 1
2i(∂µZ

i∂iK − ∂µZ
∗ i∗∂i∗K) . (B.0.19)

Note that for a Kähler manifold the torsion vanishes, and since it is proportional
to the exterior derivative of the Ricci 2-form R defined in Eq. (B.0.12), R is closed
and hence a representative of H(1,1) and the first Chern class of a Kähler manifold is
given by

c1(M) = 1
2π [R]. (B.0.20)

B.1 Gauging holomorphic isometries of Kähler-Hodge

manifolds

We are now going to review some basics of the gauging of holomorphic isometries
of Kähler-Hodge manifolds that occur in N = 1 and N = 2, d = 4 supergravities.
We will first study the general problem in complex manifolds. This is enough for
purely bosonic theories in which only the complex structure is relevant. The Kähler-
Hodge structure is necessary in presence of fermions and only those transformations

2Some basic references for this material are [123–125] and the review [83]. The definition of special
Kähler manifold was made in Ref. [126], formalizing the original results of Ref. [80].
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that preserve it will be symmetries of the full theory that can be gauged. We will
study this problem next. The special-Kähler structure is necessary in N = 2, d = 4
supergravity and, again, only those transformations that preserve it are symmetries
that can be gauged. This problem will be studied in Appendix C.2, after which we
define special-Kähler manifolds.

B.1.1 Complex manifolds

We start by assuming that the Hermitean metric Gij∗ (we will use the Kähler-Hodge
structure later) admits a set of Killing vectors3 {KΛ = kΛ

i∂i +k∗Λ
i∗∂i∗} satisfying the

Lie algebra

[KΛ,KΣ] = −fΛΣ
ΩKΩ , (B.1.1)

of the group GV that we want to gauge.
Hermiticity implies that the components kΛ

i and k∗Λ
i∗ of the Killing vectors are,

respectively, holomorphic and antiholomorphic and satisfy, separately, the above Lie
algebra. Once (anti-) holomorphicity is taken into account, the only non-trivial com-
ponents of the Killing equation are

1
2£ΛGij∗ = ∇i∗k

∗
Λ j +∇jkΛ i∗ = 0 , (B.1.2)

where £Λ stands for the Lie derivative w.r.t. KΛ.
The standard σ-model kinetic term Gij∗∂µZ

i∂µZ∗j∗ is automatically invariant
under infinitesimal reparametrizations of the form

δαZ
i = αΛkΛ

i(Z) , (B.1.3)

if the αΛs are constants. If they are arbitrary functions of the spacetime coordinates
αΛ(x) we need to introduce a covariant derivative using as connection the vector fields
present in the theory. The covariant derivative is

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (B.1.4)

and transforms as

δαDµZ
i = αΛ(x)∂jkΛ

iDµZ
j = −αΛ(x)(£Λ −KΛ)DµZ

j , (B.1.5)

provided that the gauge potentials transform as

δαA
Λ

µ = −g−1Dµα
Λ ≡ −g−1(∂µα

Λ + gfΣΩ
ΛAΣ

µα
Ω) . (B.1.6)

The gauge field strength is given by

3The index Λ always takes values from 1 to nV (n̄ = nV + 1) in N = 1 (N = 2) supergravity ,
but some (or all) the Killing vectors may be zero.
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FΛ
µν = 2∂[µA

Λ
ν] + gfΣΩ

ΛAΣ
[µA

Ω
ν] , (B.1.7)

and transforms under gauge transformations as

δαF
Λ

µν = −αΣ(x)fΣΩ
ΛFΩ

µν . (B.1.8)

Now, to make the σ-model kinetic term gauge invariant it is enough to replace the
partial derivatives by covariant derivatives

Gij∗∂µZ
i∂µZ∗j∗ −→ Gij∗DµZ

iDµZ∗j∗ . (B.1.9)

For any tensor field Φ (spacetime µ, ν, . . ., gauge Λ,Σ, . . . and target space ten-
sor i, i∗, . . . indices are not explicitly shown) transforming covariantly under gauge
transformations, i.e. tranforming as

δαΦ = −αΛ(x)(LΛ −KΛ)Φ , (B.1.10)

where we have defined the Lie covariant derivative4

LΛ ≡ £Λ − SΛ , (B.1.11)

and SΛ represents a symplectic rotation, the gauge covariant derivative is given by

DµΦ = {∇µ + DµZ
iΓi + DµZ

∗i∗Γi∗ − gAΛ
µ(LΛ −KΛ)}Φ . (B.1.12)

In particular, on DµZ
i

DµDνZ
i = ∇µDνZ

i + Γjk
iDµZ

jDνZ
k + gAΛ

µ∂jkΛ
iDνZ

j , (B.1.13)

[Dµ,Dν ]Zi = gFΛ
µνkΛ

i . (B.1.14)

An important case is that of the fields Φ which only depend on the spacetime
coordinates through the complex scalars Zi and their complex conjugates so that
∇µΦ = ∂µΦ = ∂µZ

i∂iΦ + ∂µZ
∗i∗∂i∗Φ. Φ is an invariant field if5

LΛΦ ≡ (£Λ − SΛ)Φ = 0 . (B.1.15)

Only if all the fields that occur in the theory are invariant fields, the theory
can be gauged. Only in that case ∇µΦ = ∂µΦ = ∂µZ

i∂iΦ + ∂µZ
∗i∗∂i∗Φ can be

4We will extend this definition to fields with non-zero Kähler weight after we study the symmetries
of the Kähler structure. For the moment we only consider tensors of the Hermitean space with metric
Gij∗ , possibly with gauge and spacetime indices.

5Alternatively, we could say that it is a field invariant under reparametrizations up to rotations.
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true irrespectively of gauge transformations. These fields transform under gauge
transformations according to

δαΦ = −αΛ(LΛ −KΛ)Φ = αΛKΛΦ , (B.1.16)

and their covariant derivative is given by

DµΦ = {∂µ + DµZ
iΓi + DµZ

∗i∗Γi∗ + gAΛ
µKΛ}Φ , (B.1.17)

and is always the covariant pullback of the target covariant derivative:

DµΦ = DµZ
i∇iΦ + DµZ

∗i∗∇i∗Φ . (B.1.18)

Let us consider, for instance, the holomorphic kinetic matrix fΛΣ(Z) in N = 1, d =
4 supergravity or the period matrix NΛΣ(Z,Z∗) in N = 2, d = 4 supergravity, both of
which are symmetric matrices that codify the couplings between the complex scalars
and the vector fields. These matrices transform under global rotations of the vector
fields

δαA
Λ

µ = −αΣfΣΩ
ΛAΩ

µ , (B.1.19)

according to

δαfΛΣ ≡ −αΩSΩfΛΣ = 2αΩfΩ(Λ
ΠfΣ)Π , (B.1.20)

(analogously forNΛΣ) and under the reparametrizations of the complex scalars Eq. (B.1.3).

δαfΛΣ = −αΩ£ΩfΛΣ − αΩkΩ
i∂ifΛΣ . (B.1.21)

These transformations will only be a symmetry of the theory if their values coin-
cide, i.e. if

(£Ω − SΩ)fΛΣ = LΩfΛΣ = 0 , (B.1.22)

i.e. only if fΛΣ(Z) is an invariant field according to the above definition. Its covariant
derivative is given by

DµfΛΣ = DµZ
i∂ifΛΣ , (B.1.23)

on account of its holomorphicity.
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B.1.2 Kähler-Hodge manifolds

A Kähler manifold is a Hodge-Kähler manifold if and only if there exists a line bundle
L −→ M such that its first Chern class equals the cohomology class of the Kähler
2-form J :

c1(L) = [J ] (B.1.24)

In local terms this means that there is a holomorphic section Ω(z) such that we
can write [70]

J = iGij⋆ dzi ∧ dz̄j⋆

= i ∂̄ ∂ log ‖ Ω(z) ‖2 . (B.1.25)

Let us now assume that the scalar manifold is not just Hermitean but Kähler-
Hodge. Let us study how the Kähler structure is preserved, first.

The transformations generated by the Killing vectors will preserve the Kähler
structure if they leave the Kähler potential invariant up to Kähler transformations,
i.e., for each Killing vector KΛ

£ΛK ≡ kΛ
i∂iK + k∗Λ

i∗∂i∗K = λΛ(Z) + λ∗Λ(Z∗) . (B.1.26)

From this condition it follows that

£ΛλΣ −£ΣλΛ = −fΛΣ
ΩλΩ . (B.1.27)

On the other hand, the preservation of the Kähler structure implies the conserva-
tion of the Kähler 2-form J

£ΛJ = 0 . (B.1.28)

The closedness of J implies that £ΛJ = d(ikΛJ ) and therefore the preservation
of the Kähler structure implies the existence of a set of real 0-forms PΛ known as
momentum maps such that

ikΛJ = dPΛ . (B.1.29)

A local solution for this equation is provided by

iPΛ = kΛ
i∂iK − λΛ , (B.1.30)

which, on account of Eq. (B.1.26) is equivalent to

iPΛ = −(k∗Λ
i∗∂i∗K − λ∗Λ) , (B.1.31)

or

PΛ = ikΛQ− 1
2i (λΛ − λ∗Λ) . (B.1.32)

The momentum map can be used as a prepotential from which the Killing vectors
can be derived:
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kΛ i∗ = i∂i∗PΛ . (B.1.33)

This is whay they are sometimes called Killing prepotentials.
The momentum maps are defined, in principle, up to an additive real constant. In

N = 1, d = 4 theories (but not in N = 2, d = 4) it is possible to have non-vanishing,
constant, momentum maps with iPΛ = −λΛ for vanishing Killing vectors. In this case
no isometry is gauged. Instead, it is the U(1) symmetry associated to Kähler trans-
formations (in Kähler-Hodge manifolds) that is gauged. These constant momentum
maps are called D- or Fayet-Iliopoulos terms and appear as in the supersymmetry
transformation rules of gaugini, in the potential and in the covariant derivatives of
sections that we are going to discuss.

Using Eqs. (B.1.1),(B.1.26) and (B.1.27) one finds

£ΛPΣ = 2ik[Λ
ik∗Σ]

j∗Gij∗ = −fΛΣ
ΩPΩ . (B.1.34)

This equation fixes the additive constant of the momentum map in directions in which
a non-Abelian group is going to be gauged.

The gauge transformation rule a section Φ of Kähler weight (p, q) is6

δαΦ = −αΛ(x)(LΛ −KΛ)Φ , (B.1.35)

where LΛ stands for the symplectic and Kähler-covariant Lie derivative w.r.t. KΛ and
is given by

LΛΦ ≡ {£Λ − [SΛ − 1
2 (pλΛ + qλ∗Λ)]}Φ , (B.1.36)

where the SΛ are sp(2n̄) matrices that provide a representation of the Lie algebra of
the gauge group GV acting on the section Φ:

[SΛ,SΣ] = +fΛΣ
ΩSΩ . (B.1.37)

The gauge covariant derivative acting on these sections is given by

DµΦ = {∇µ + DµZ
iΓi + DµZ

∗i∗Γi∗ + 1
2 (pkΛ

i∂iK + qk∗Λ
i∗∂i∗K)

+gAΛ
µ[SΛ + i

2 (p− q)PΛ − (£Λ −KΛ)]}Φ .
(B.1.38)

Invariant sections are those for which

LΛΦ = 0 , ⇒ £ΛΦ = [SΛ − 1
2 (pλΛ + qλ∗Λ)]Φ , (B.1.39)

6Again, spacetime and target space tensor indices are not explicitly shown. Symplectic indices
are not shown, either.
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and their gauge covariant derivatives are, again, the covariant pullbacks of the Kähler-
covariant derivatives:

DµΦ = DµZ
iDiΦ + DµZ

∗i∗Di∗Φ . (B.1.40)

The prime example of invariant field is the covariantly holomorphic section L(Z,Z∗)
of the N = 1, d = 4 theories. This is a Kähler weight (1,−1) section related to the
holomorphic superpotential W (Z) by

L(Z,Z∗) ≡W (Z)eK/2 , (B.1.41)

and its covariant holomorphicity follows from the holomprphicity of W :

Di∗L = (∂i∗ + iQi∗)L = eK/2∂i∗(e−K/2L) = eK/2∂i∗W = 0 . (B.1.42)

In order for the global transformation Eq. (B.1.3) to be a symmetry of the full
theory that we can gauge L must be an invariant section, that is

LΛL = {£Λ + 1
2 (λΛ − λ∗Λ)}L = 0 , ⇒ KΛL = − 1

2 (λΛ − λ∗Λ)L . (B.1.43)

Then, under gauge transformations it will transform according to

δαL = − 1
2α

Λ(x)(λΛ − λ∗Λ)L , (B.1.44)

and its covariant derivative will be given by

DµL = (∂µ + iQ̂µ)L = DµZ
iDiL , (B.1.45)

where we have defined

Q̂µ ≡ Qµ + gAΛ
µPΛ . (B.1.46)

Observe that this 1-form is, in general, different from the “covariant pullback” of
the Kähler 1-form:

1
2iDµZ

i∂iK + c.c. . (B.1.47)

The difference between this and the correct one is

1
2iDµZ

i∂iK + c.c.− Q̂µ = gAΛ
µℑmλΛ , (B.1.48)

and only vanishes when the isometries that have been gauged leave the Kähler po-
tential exactly invariant (i.e. λΛ = 0).

It should be evident that DiL is also an invariant field and, therefore the part of
the N = 1, d = 4 supergravity potential that depends on the superpotential
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−24|L|2 + 8Gij∗DiLDj∗L∗ . (B.1.49)

is automatically exactly invariant.
On the other hand Eq. (B.1.34) proves that the momentum map itself is an in-

variant field. Then,

δαPΛ = −αΣ(x)fΣΛ
ΩPΩ ,

DµPΛ = ∂µPΛ + gfΛΣ
ΩAΣ

µPΩ ,

DµPΛ = DµZ
i∂iPΛ + DµZ

∗i∗∂i∗PΛ ,

(B.1.50)

and the part of the N = 1, d = 4 supergravity potential that depends on it

+ 1
2g

2(ℑm f)−1|ΛΣPΛPΣ , (B.1.51)

is also automatically invariant.
Finally, let us consider the spinor of the theory. They are not invariant fields, as

they do not depend only on te Zi. They have a non-vanishing Kähler weight which is
(−1/2, 1/2) times their chirality. For instance, for the gravitino of the N = 1, d = 4
theories we have

δαψµ = − 1
4α

Λ(x)(λΛ − λ∗Λ)ψµ ,

Dµψν = {∇µ + i
2Q̂}ψν .

(B.1.52)

B.2 Kähler weights of certain frequently used ob-
jects appearing in N = 2 d = 4 Supergravity

The Kähler weights (q, q̄) of an object as defined in Eq. (B.0.15):
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ǫI ǫI ǭI ǭI λIi ψIµ ǫ η

q 1/2 −1/2 1/2 −1/2 −1/2 1/2 1/2 −1/2

q̄ −1/2 1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2

Table B.2.1: Kähler weights of certain fermionic fields

Zi FΛ Gi+ T+ V Ui T i
Λ TΛ NΛΣ DiUj Di∗Uj Cijk Ω

q 0 0 −1 1 1 1 −1 1 0 1 1 2 2

q̄ 0 0 1 −1 −1 −1 1 −1 0 −1 −1 −2 0

Table B.2.2: Kähler weights of certain bosonic fields





Appendix C

Special Kähler geometry

In this appendix we shall discuss the geometric structure underlying the couplings of
vector supermultiplets in N = 2 d = 4 supergravity, which has received the name of
special Kähler geometry.

Having discussed the coordinate independent formulation of special geometry, we
shall make contact to the original formulation of Lauwers and De Wit in appendix
(C.1) by means of a function called the prepotential. Appendix (C.2) we shall discuss
the topic of isometries in special geometry and how this is used in order to construct
gauged supergravities. Finally, in appendices C.4) and (C.4) we shall discuss some
specific examples of special geometries.

The formal definition of special geometry starts off as follows: consider a flat 2n̄-
dimensional vector bundle E →M with structure group Sp(n̄; R), and take a section
V of the product bundle E⊗L1 →M and its complex conjugate V , which formally is
a section of the bundle E⊗L−1 →M. Then, a special Kähler manifold1, is a bundle
E ⊗ L1 →M, for which there exists a section V such that

V =

(

LΛ

MΛ

)

→























〈V | V∗〉 ≡ L∗ΛMΛ − LΛM∗
Λ ≡ −i ,

Di∗V = (∂i∗ + 1
2∂i∗K)V = 0 ,

〈DiV | V〉 = 0 .

(C.0.1)

If we then define

Ui ≡ DiV =

(

fΛ
i

hΛ i

)

, U∗
i∗ = (Ui)

∗ , (C.0.2)

1Some basic references for this material are [123–125] and the review [83]. The definition of special
Kähler manifold was made in Ref. [126], formalizing the original results of Ref. [80].



212 Special Kähler geometry

then it follows from the basic definitions that

Di∗ Ui = Gii∗ V 〈Ui | U∗
i∗〉 = iGii∗ ,

〈Ui | V∗〉 = 0 , 〈Ui | V〉 = 0 .
(C.0.3)

Taking the covariant derivative of the last identity 〈Ui | V〉 = 0 we find immediately
that 〈DiUj | V〉 = −〈 Uj | Ui〉. It can be shown that the r.h.s. of this equation is
antisymmetric while the l.h.s. is symmetric, so that

〈DiUj | V〉 = 〈Uj | Ui〉 = 0 . (C.0.4)

The importance of this last equation is that if we group together EΛ = (V ,Ui),
we can see that 〈EΣ | E∗Λ〉 is a non-degenerate matrix. This then allows us to
construct an identity operator for the symplectic indices, such that for a given section
of A ∋ Γ (E,M) we have

A = i〈A | V∗〉V − i〈A | V〉 V∗ + i〈A | Ui〉Gii∗ U∗
i∗ − i〈A | U∗

i∗〉Gii∗Ui . (C.0.5)

Using {EΣ, E∗Λ} as a basis for the space of symplectic sections we obtain the following
completeness relation

i1 = − | V∗〉〈V | + | V〉〈V∗ | −Gii∗ | DiV〉〈Di∗V∗ | +Gii∗ | Di∗V∗〉〈DiV | . (C.0.6)

As we have seen DiUj is symmetric in i and j, but what more can be said about
it: as one can easily see, the inner product with V∗ and U∗

i∗ vanishes due to the basic
properties. Let us then define the Kähler-weight 2 object

Cijk ≡ 〈Di Uj | Uk〉 → Di Uj = iCijkGkl∗U∗
l∗ , (C.0.7)

where the last equation is a consequence of Eq. (C.0.5). Since the U ’s are orthogonal,
however, one can see that C is completely symmetric in its 3 indices. Furthermore
one can show that

Di∗ Cjkl = 0 , D[i Cj]kl = 0 . (C.0.8)

Observe that these equations imply the existence of a function S, such that

Cijk = DiDjDk S . (C.0.9)

The function S is given by [127]

S ∼ LΛℑmNΛΣLΣ , (C.0.10)

where N is the period or monodromy matrix. This matrix is defined by the relations
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MΛ = NΛΣLΣ , hΛ i = N ∗
ΛΣf

Σ
i . (C.0.11)

The relation 〈Ui | V〉 = 0 then implies that N is symmetric, which then also trivializes
〈Ui | Uj〉 = 0.

From the properties, Eqs. (C.0.1), one concludes that V transforms under Kähler
transformations as

V → e−
1
2 (λ−λ∗)V . (C.0.12)

From the other basic properties in (C.0.3) we find

LΛℑmNΛΣL∗Σ = − 1
2 , (C.0.13)

LΛℑmNΛΣf
Σ

i = LΛℑmNΛΣf
∗Σ

i∗ = 0 , (C.0.14)

fΛ
i ℑmNΛΣf

∗Σ
i∗ = − 1

2Gii∗ . (C.0.15)

Further identities that can be derived are

(∂iNΛΣ)LΣ = −2iℑm(N )ΛΣ fΣ
i , (C.0.16)

∂iN ∗
ΛΣ fΣ

j = −2CijkGkk∗ℑmNΛΣf
∗Σ

k∗ , (C.0.17)

Cijk = fΛ
if

Σ
j∂kN ∗

ΛΣ , (C.0.18)

LΣ∂i∗NΛΣ = 0 , (C.0.19)

∂i∗N ∗
ΛΣ fΣ

i = 2iGii∗ℑmNΛΣLΣ . (C.0.20)

An important identity one can derive, and that will be used various times in the
main text, is given by

UΛΣ ≡ fΛ
iGii∗f∗Σ

i∗ = − 1
2ℑm(N )−1|ΛΣ − L∗ΛLΣ , (C.0.21)

whence (UΛΣ)∗ = UΣΛ.

We can define the graviphoton and matter vector projectors
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TΛ ≡ 2iLΛ = 2iLΣℑmNΣΛ , (C.0.22)

T i
Λ ≡ −f∗

Λ
i = −Gij∗f∗Σ

j∗ℑmNΣΛ . (C.0.23)

Using these definitions and the above properties one can show the following iden-
tities for the derivatives of the period matrix:

∂iNΛΣ = 4Ti(ΛTΣ) ,

∂i∗NΛΣ = 4C∗i∗j∗k∗T i∗
(ΛT j∗

Σ) .
(C.0.24)

For further details and identities, the interested reader can consult the basic ref-
erences [82,123–125], the review [83] or Ref. [26,38] whose conventions and results we
follow.

C.1 Prepotential: Existence and more formulae

Let us start by introducing the explicitly holomorphic section Ω = e−K/2V , which
allows us to rewrite the system Eqs. (C.0.1) as

Ω =

(

XΛ

FΣ

)

→























〈Ω | Ω∗〉 ≡ X ∗ΛFΛ −XΛF∗
Λ = −i e−K ,

∂i∗Ω = 0 ,

〈∂iΩ | Ω〉 = 0 .

(C.1.1)

Observe that the first of Eqs. (C.1.1) together with the definition of the period
matrix N imply the following expression for the Kähler potential:

e−K = −2ℑmNΛΣXΛX ∗Σ . (C.1.2)

If we now assume that FΛ depends on Zi through the X ’s, then from the last
equation we can derive that

∂iXΛ
[

2FΛ − ∂Λ

(

XΣFΣ

)]

= 0 . (C.1.3)

If ∂iXΛ is invertible as an n× n̄ matrix, then we must conclude that

FΛ = ∂ΛF(X ) , (C.1.4)

where F is a homogeneous function of degree 2, called the prepotential.
Making use of the prepotential and the definitions (C.0.11), we can calculate
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NΛΣ = F∗
ΛΣ + 2i

ℑmFΛΛ′XΛ′ℑmFΣΣ′XΣ′

XΩℑmFΩΩ′XΩ′ . (C.1.5)

Having the explicit form of N , we can also derive an explicit representation for C
by applying Eq. (C.0.19). One finds

Cijk = eK∂iXΛ∂jXΣ∂kXΩFΛΣΩ , (C.1.6)

so that the prepotential really determines all structures in special geometry.
A last remark has to be made about the existence of a prepotential: clearly, given

a holomorphic section Ω a prepotential need not exist. It was shown in Ref. [125],
however, that one can always apply an Sp(n̄,R) transformation such that a prepoten-
tial exists. Clearly the N = 2 SUGRA action is not invariant under the full Sp(n̄,R),
but the equations of motion and the supersymmetry equations are. This means that
for the purpose of this article we can always, even if this is not done, impose the
existence of a prepotential.

C.2 Gauging holomorphic isometries of special Kähler
manifolds

By hypothesis (preservation of the special Kähler structure), the canonical weight
(1,−1) section V is an invariant section

KΛV = [SΛ − 1
2 (λΛ − λ∗Λ)]V , (C.2.1)

and its gauge covariant derivative is given by

DµV = DµZ
iDiV = DµZ

iUi . (C.2.2)

Using the covariant holomorphicity of V one can write

KΛV = kΛ
iUi − iPΛV − 1

2 (λΛ − λ∗Λ)V . (C.2.3)

Comparing with Eq. (C.2.1) we get

kΛ
iUi(SΛ + iPΛ)V , (C.2.4)

and taking the symplectic product with V∗, we find another expression for the mo-
mentum map

PΛ = 〈 V∗ | SΛV 〉 , (C.2.5)

which leads, via Eq. (B.1.33) to another expression for the Killing vectors
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kΛ
i = i∂iPΛ = i〈 V | SΛU∗i 〉 . (C.2.6)

If we take the symplectic product with V instead, we get the following condition

〈 V | SΛV 〉 = 0 . (C.2.7)

Using the same identity and Gij∗ = −i〈 Ui | U∗
j∗ 〉 one can also show that

kΛ
ik∗Σ

j∗Gij∗ = PΛPΣ − i〈 SΛV | SΣV∗ 〉 . (C.2.8)

It follows that
〈 S[ΛV | SΣ]V∗ 〉 = − 1

2fΛΣ
ΩPΩ. (C.2.9)

The gauge covariant derivative of Ui is

DµUi = DµZ
jDjUi + DµZ

∗j∗Dj∗Ui = iCijkU∗jDµZ
k + Gij∗VDµZ

∗j∗ . (C.2.10)

On the supersymmetry parameters ǫI , which have (1/2,−1/2) weight

DµǫI =
{

∇µ + i
2Q̂µ

}

ǫI , (C.2.11)

where Q̂ is defined in Eq. (B.1.46).
The formalism developed thus far, applies to any groupGV of isometries. However,

we will restrict ourselves to those for which the matrices

SΛ =





aΛ
Ω

Σ bΛ
ΩΣ

cΛΩΣ dΛΩ
Σ



 , (C.2.12)

have b = c = 0. The symplectic transformations with b 6= 0 are not symmetries of the
action and the gauging of symmetries with c 6= 0 leads to the presence of complicated
Chern-Simons terms in the action. The matrices a and d are

aΛ
Ω

Σ = fΛΣ
Ω , dΛΩ

Σ = −fΛΩ
Σ . (C.2.13)

These restrictions lead to additional identities. First, observe that the condition
Eq. (C.2.7) takes the form

fΛΣ
ΩLΣMΩ = 0 , (C.2.14)

and the covariant derivative of Eq. (C.2.7) 〈 V | SΛUi 〉 = 0

fΛΣ
Ω(fΣ

iMΩ + hΩ iLΣ) = 0 . (C.2.15)

Then, using Eqs. (C.2.5) and (C.2.6) and Eqs. (C.2.7),(C.2.14) and (C.2.15) we find
that
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LΛPΛ = 0 , (C.2.16)

LΛkΛ
i = 0 , (C.2.17)

L∗ΛkΛ
i = −if∗Λ iPΛ . (C.2.18)

From the first two equations it follows that

LΛλΛ = 0 . (C.2.19)

Some further equations that can be derived and are extensively used in the calcu-
lation throughout the text are explicit versions of Eqs. (C.2.5) and (C.2.6), i.e.

PΛ = 2fΛΣ
Γℜe

(

LΣM∗
Γ

)

, kΛ i∗ = ifΛΣ
Γ
(

f∗Σ
i∗ MΓ + LΣh∗Γi∗

)

. (C.2.20)

Finally, notice the identity

kΛ i∗DZ
∗i∗ − k∗ΛiDZ

i = iDPΛ = i(dPΛ + fΛΣ
ΩAΣPΩ) . (C.2.21)

The absolutely last comment in this appendix is the following: if we start from
the existence of a prepotential F(X ), then Eq. (C.2.7) implies

0 = fΛΣ
Γ XΣ∂Γ F , (C.2.22)

the meaning of which is that one can gauge only the invariances of the prepotential.
To put it differently: if you want to construct a model having g as the gauge algebra,
you need to pick a prepotential that is g-invariant.

C.3 Some examples of quadratic prepotentials

In this subsection we are going to discuss some special geometries that appear in the
main text.

The minimal special Kähler manifold

The minimal special Kähler manifold is not really a manifold as its main aim is to
reduce the general framework of vector coupled N = 2 d = 4 sugra to the minimal
version comprising only of the gravity supermultiplet; that is to say that there are no
scalars, whence no Kähler space.
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Having said this, consider the simple prepotential2

F = −α
4

(X )
2

(α ∈ C/0) . (C.3.1)

As there are no scalars in this setting, we take the corresponding Kähler potential to
vanish, i.e. K = 0, so that the normalisation condition in Eq. (C.1.1) together with
the usual moduli fixing X = 1 leads to

Im(α) = 1 . (C.3.2)

As we are dealing with a model having a prepotential, we can calculate the 1×1-matrix
N using Eq. (C.1.5), which leads to

N = −α
2 −→ Im (N ) = − 1

2 , (C.3.3)

so that as announced Im (N ) is a negative definite matrix. As one can see from
Eq. (2.2.1), the real part of α corresponds to a θ-term for the maxwell field; since
this is a surface term we can put Re(α) = 0 at the cost of losing manifest EM-duality
in the action. The equations of motion are however invariant under EM-duality
transformations.

Plugging the above ‘geometry’, together with vanishing hyperscalars, into the
action (2.2.1) we obtain the, up normalisation, the standard Einstein-Maxwell action

S =

∫

d4x
√

|g|
[

R − F 2
]

, (C.3.4)

which is invariant under the following supersymmetry transformations

δǫΨµI = ∇µǫI + i
4
/F γµεIJǫ

J , (C.3.5)

δǫeµ
a = 1

2i Re
(

ψ
I

µγ
aǫI

)

. (C.3.6)

The CP
n

models

The CP
n

models are special in that the scalar manifold is a homogeneous space
SU(1, n)/U(n) ∼ CP

n
, which is a non-compact version of CP

n = SU(n+ 1)/U(n). It
is defined by a specific quadratic prepotential, namely

F =
1

4i
X T ηX with η = diag (+ , [−]n) . (C.3.7)

Using the choice X 0 = 1 and X i = Zi (i = 1, . . . , n), we find that the Kähler potential
is given by

e−K = 1 − |Z|2 , (C.3.8)

2As there is only one symplectic coordinate, namely X 0, we shall not write its symplectic index
and just put X 0 = X .
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which not only implies that 0 ≤ |Z|2 ≤ 1, but also that the Kähler metric is the
‘standard’ Fubini-Study metric

Gī =
δī

1− |Z|2 +
ZjZ

ı̄

(1 − |Z|2)2
−→ Gī =

(

1− |Z|2
)

[

δī − Z
ı̄
Zj
]

. (C.3.9)

Also, introducing the notations XΛ ≡ ηΛΣXΣ and X ·X = XΛXΛ, we can express the
monodromy matrix as

NΛΣ =
i

2

(

ηΛΣ − 2
XλXΣ

X · X

)

. (C.3.10)

The imaginary part of the monodromy matrix then satisfies

Im (N )ΛΣ = 1
2

(

ηΛΣ −
XΛXΣ

X · X − XΛXΣ

X · X

)

, (C.3.11)

Im (N )
−1| ΛΣ

= 2

(

ηΛΣ − X
ΛXΣ

+ XΛXΣ

X · X

)

. (C.3.12)

Since we are dealing with a quadratic prepotential, the Yukawa couplings (Cijk) vanish
identically.

The explicit solution to the stabilisation equation reads

RΛ = −2ηΛΣ IΣ

RΛ = 1
2ηΛΣ IΣ







→ 1

2|X |2 = 1
2 ηΛΣ IΛIΣ − 2 ηΛΣ IΛIΣ . (C.3.13)

Cobining Eq. (C.2.22) with Eq. (C.3.7), we see that in the CP
n

models we can gauge
an arbitrary n = n+ 1 dimensional subgroup of SO(1, n).

C.4 The ST [2, n] models

The ST [2, n] models have as their Kähler geometry the homogeneous space SU(1,1)
U(1)

× SO(2,n)
SO(2)⊗SO(n)

,
which is of complex-dimension n+1, and must therefore be embedded into Sp(n+1; R).
As we are mainly interested in the solution to the stabilization equations, which for
this model were solved in Ref. [128], and also in the gaugeability of the model, it
is convenient to start with the parametrization of the symplectic section for which
no prepotential exists. One advantage of this parametrization is that the SO(2, n)
symmetry is obvious as one can see from

VT =
(

LΛ , ηΛΣ SLΣ
)

where η = diag
(

[+]2, [−]n
)

and LT ηL = 0 , (C.4.1)
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where the constraint is necessary to ensure the correct number of degrees of freedom.
Also, and for want of a better place to say so, we take the symplectic indices to run
over Λ = (1, 0, . . . , n).

In order to declutter the solution to the stabilization equation I = ℑm (V/X), we
absorb the X into the L and introduce the abbreviations pΛ = IΛ and qΛ = IΛ. If we
then also use η to raise and lower the indices, we can write the stabilization equation
as

2i pΛ = LΛ−L∗Λ , 2i qΛ = S LΛ− S∗ L∗Λ −→ LΛ =
qΛ − S∗ pΛ

ℑm S
. (C.4.2)

The function S is then easily found by solving the constraint LΛLΛ = 0, and gives

S =
p · q
p2
− i

√

p2q2 − (p · q)2
p2

, (C.4.3)

so that we have the constraint p2q2 > (p·q)2; the sign of ℑm S is fixed by the positivity
of the metrical function, which with the above sign reads

1

2|X |2 = 2
√

p2q2 − (p · q)2 . (C.4.4)

We would like to stress that this solution is manifestly SO(2, n) (co/in)variant
and automatically solves the constraint LT ηL = 0, without any constraints on pΛ nor
on qΛ.

For our applications, namely the regularity of the embeddings of monopoles and
the attractor mechanism, it is important to to know the expression of the moduli
in terms of (n + 1) unconstrained fields, one of which should be S as it corresponds
to the axidilaton. This means that we should have n unconstrained fields Za (a =
0, 1, . . . , n− 1) and express them in terms of p’s and q’s.

One way of doing this is through the introduction of so-called Calabi-Visentini
coordinates which means that (a = 1, . . . , n)

L1 = 1
2 Y

0
(

1 + ~Z2
)

, L0 = i
2 Y

0
(

~Z2 − 1
)

, La = Y 0 Za , (C.4.5)

which after solving for Y 0 means that the scalar fields are given by

Za =
qa − S∗ pa

q1 + iq0 − S∗ (p1 + ip0)
, (C.4.6)

and S is given by expression (C.4.3). Observe that in this parametrization the SO(n)
invariance is manifest.

In order to discuss the possible groups that can be gauged in these models, let
us recall that a given compact simple Lie algebra g of a group G is a subalgebra of
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so(dim(g)) and furthermore the latter’s vector representation branches into g’s adjoint
representation. This then implies that in an ST [2, n]-model one can always gauge a
group G as long as n ≥ dim(g).

In Section 5.2.3 the explicit details are given for the CP
n

models, but at least as
far as the embedding of the monopoles are concerned, the embedding into the ST -
models is similar. In order to show that this is the case, consider the case of a purely
magnetic solution, so that qa = 0, and take furthermore q0 = p1 = 0 and normalize
q1 = 1. Using this Ansatz in Eq. (C.4.4) we obtain

1

2|X |2 = 2
√

p2 = 2
√

(p0)2 − (pa)2 , (C.4.7)

which, apart from the
√

, is just the same expression as obtained in the CP
n
-models

and leads to the same conditions for the global regularity of the metric. Using the
same Ansatz in Eq. (C.4.6) for the scalars, one finds

Za = −i
√

p2

p2 + p0
√

p2
pa . (C.4.8)

This then means that as long as p0 > 0 and p2 is regular and positive definite, as
is the case for the solutions in section (5.2.3), the embeddings of the monopoles is a
globally regular supergravity solution.
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Appendix D

Quaternionic Kähler
geometry

A quaternionic Kähler manifold is, to start with, a real 4m-dimensional Rieman-
nian manifold HM endowed with a triplet of complex structures Jx : T (HM) →
T (HM) , (x = 1, 2, 3) that satisfy the quaternionic algebra

J
x
J

y = −δxy + εxyz
J

z , (D.0.1)

and with respect to which the Riemannian metric, denoted by H, is Hermitean:

H( J
xX, J

xY ) = H(X,Y ) , ∀X,Y ∈ T (HM), x = 1, 2, 3 . (D.0.2)

This implies the existence of a triplet of 2-forms Kx(X,Y ) ≡ H(X, JxY ) globally
known as the su(2)-valued hyperKähler 2-forms, with components Kx

uv = Jx
uv =

HuwJ
x w

v.
The structure of quaternionic Kähler manifold also requires an SU(2) bundle

to be constructed over HM with connection 1-form Ax with respect to which the
hyperKähler 2-form is covariantly constant1, i.e.

DuK
x

vw ≡ ∇uK
x

vw + εxyz
A

y
uK

z
vw = 0 , (D.0.3)

where ∇u is the standard, torsionless, Riemannian covariant derivative in HM.
Then, depending on whether the curvature of this bundle

DDK
x = εxyz

F
y ∧ K

z , F
x ≡ dAx + 1

2ε
xyz

A
y ∧ A

z , (D.0.4)

is zero or proportional to the hyperKähler 2-form

1Not just covariantly closed.
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F
x = κ K

x , κ ∈ R/{0} , (D.0.5)

the manifold is a hyperKähler manifold or a quaternionic Kähler manifold, respec-
tively.

The SU(2) connection acts on objects with vectorial SU(2) indices, such as the
chiral spinors in this article, as follows:2

DξI ≡ dξI + AI
JξJ , FI

J = dAI
J + AI

K ∧ AK
J ,

DχI ≡ dχI + BI
Jχ

J , GI
J = dBI

J + BI
K ∧ BK

J .
(D.0.7)

Consistency with the raising and lowering of vector SU(2) indices by means of the εs,
as specified in footnote (2), then implies that

B
I

J = −A
I
J ≡ −εIK

AK
L εLJ , (D.0.8)

whereas compatibility with the raising of indices due to complex conjugation implies

B
I

J = (AI
J)∗ . (D.0.9)

Taking these two things together, means that AI
J is an anti-Hermitean matrix whence

we expand

AI
J = i

2 A
x (σx)I

J and B
I
J = − i

2 A
x (σx)I

J , (D.0.10)

where for the σ-matrices the indices are raised and lowered with ε. At this point, there
remains a question about the normalisation of the Pauli matrices, which is readily
fixed by imposing that

FI
J = i

2 F
x (σx)I

J , (D.0.11)

which means that
(σxσy)I

J = δxy δI
J − iεxyz (σz)I

J . (D.0.12)

It is convenient to use a Vielbein on HM having as “flat” indices a pair (αI)
consisting of one SU(2)-index I and one Sp(m)-index α = 1, · · · , 2m

U
αI = U

αI
u dq

u , (D.0.13)

where u = 1, . . . , 4m and from now on we shall refer to this object as the Quadbein.
This Quadbein is related to the metric Huv by

2 On objects with adjoint SU(2) indices, such as the hyperKähler structure, it is defined above.
Furthermore, we adopt the following convenion for raising and lowering vector SU(2) indices:

χI = χJεJI , ξI = εIJξJ . (D.0.6)



225

Huv = U
αI

u U
βJ

v εIJCαβ , (D.0.14)

where Cαβ is the 2m × 2m antisymmetric symplectic metric, and Cαβ is the same
matrix3, so

CγαCγβ = δα
β . (D.0.16)

From this definition, it follows that

2 U
αI

(u U
βJ

v) Cαβ = Huvε
IJ . (D.0.17)

Furthermore, it is required that

UαI u ≡ (UαI
u)∗ = εIJCαβ U

βJ
u . (D.0.18)

The inverse Quadbein Uu
αI satisfies

UαI
u

U
αI

v = δu
v , (D.0.19)

and, therefore,

UαI
u = H

uv εIJCαβ U
βJ

v . (D.0.20)

The Quadbein satisfies a Vielbein postulate, i.e. they are covariantly constant with
respect to the standard Levi-Cività connection Γuv

w, the SU(2) connection Bu
I
J and

the Sp(m) connection ∆u
α

β :

Du U
αI

v = ∂uU
αI

v − Γuv
w

U
αI

w + Bu
I
J U

αJ
v + ∆u

α
β U

βI
v = 0 . (D.0.21)

This postulate relates the three connections and the respective curvatures, leading to
the statement that the holonomy of a quaternionic Kähler manifold is contained in
Sp(1) · Sp(m), i.e.

Rts
uv

U
αI

u U
βJ

v = −G
IJ
ts Cαβ − R

αβ

ts εIJ = F
IJ
ts Cαβ − R

αβ

ts εIJ , (D.0.22)

where

Rts
α

β = 2∂[t∆s]
α

β + 2∆[t|
α

γ ∆|s]
γ

β , (D.0.23)

is the curvature of the Sp(m) connection.

3We adopt the following convenion for raising and lowering vector Sp(m) indices:

χα = χβCβα , ξα = Cαβξβ . (D.0.15)
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The covariant constancy of the Pauli matrices and symplectic metric together
with the covariant constancy of the Quadbeins suggests that it should be possible to
express the hyperKähler 2-forms in terms of them. One can check that

K
x

uv = −iσx
IJU

αI
uU

βJ
vCαβ , σx

IJ ≡ σx
I
KεJK , (D.0.24)

satisfies the quaternionic algebra Eq. (D.0.1) and is covariantly constant, as required.
This leads to

U
αI

u U
βJ

v Cαβ = 1
2Huvε

IJ − i
2K

x
uvσ

x IJ , σx IJ ≡ εKIσx
K

J . (D.0.25)

The symmetric part of this equation is just Eq. (D.0.17) and the antisymmetric part
of this equation leads to

KIJ
uv = i

2K
x

uvσ
x IJ = −U

αI
[u U

βJ
v] Cαβ , (D.0.26)

from which we get the useful relation

Fµν
IJ = −κ CαβU

αI
uU

βJ
v∂[µq

u∂ν]q
v . (D.0.27)

D.1 Gauging isometries of quaternionic Kähler man-
ifolds

We start by assuming that the metric Huv admits Killing vectors kΛ
u satisfying the

Lie algebra

[kΛ, kΣ] = −fΛΣ
ΩkΩ , (D.1.1)

where, as in previous cases, for certain values of Λ the vectors and the structure
constants can vanish. The metric and the ungauged sigma model are invariant under
the global transformations

δαq
u = αΛ

kΛ
u(q) . (D.1.2)

In order to make this global invariance local, we just have to replace the standard
derivatives of the scalars by the covariant derivatives

Dµq
u ≡ ∂µq

u + gAΛ
µkΛ

u , (D.1.3)

which will transform according to

δαDµq
u = αΛ(x)∂vkΛ

uDµq
v , (D.1.4)

provided that the gauge potentials transform in the standard form Eq. (B.1.6).
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This is enough to gauge the global symmetry of the scalars’ kinetic term. However,
the isometries of the metric need not be global symmetries of the full supergravity
theory. They have to preserve the quaternionic-Kähler structure as well, and not just
the metric. In order to discuss the preservation of this structure, we need to define
SU(2)-covariant Lie derivatives.

Let ψx(q) be a field on HM transforming under infinitesimal local SU(2) transfor-
mations according to

δλψ
x = −εxyzλyψz . (D.1.5)

Its SU(2) covariant derivative is given by

Dψx = dψx + εxyz
A

yψz , (D.1.6)

where the SU(2) connection 1-form transforms as

δλA
x = Dλx . (D.1.7)

To define an SU(2)-covariant Lie derivative with respect to the Killing vector kΛ

LΛ, we add to the standard one £Λ a local SU(2) transformation whose transforma-
tion parameter is given by the compensator field WΛ

x:

LΛψ
x ≡ £Λψ

x + εxyz
WΛ

yψz , (D.1.8)

which is such that

δλWΛ
x = £Λλ

x − εxyzλy
WΛ

z = LΛλ
x . (D.1.9)

LΛ is clearly a linear operator which satisfies the Leibnitz rule for scalar and vector
products of SU(2) vectors. The Lie derivative must also satisfy

[LΛ, LΣ] = L[kΛ, kΣ] (D.1.10)

which implies the Jacobi identity. This requires

£ΛWΣ
x −£ΣWΛ

x + εxyz
WΛ

y
W

z
Σ = −fΛΣ

Γ
WΓ

x , (D.1.11)

where, due to the assumed linearity of WΛ on kΛ, W[kΛ, kΣ] = −fΛΣ
ΓWΓ.

In order to satisfy equation (D.1.11) we introduce another SU(2) vector

WΛ
x ≡ kΛ

u
A

x
u − PΛ

x , (D.1.12)

which has to satisfy the equivariance condition

DΛPΣ
x − DΣPΛ

x − εxyz
PΛ

y
PΣ

z − κ kΛ
u
kΣ

v
K

x
uv = −fΛΣ

Γ
PΓ

x , (D.1.13)
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where DΛ ≡ kΛ
uDu and we have used Eq. (D.0.5). PΛ

x is going to be the triholomor-
phic momentum map when we impose the preservation of the hyperKähler structure
Kx by the global transformations Eq. (D.1.2) and this compensating SU(2) transfor-
mation with parameter WΛ. This condition is expressed using L:

LΛK
x

uv = £ΛK
x

uv + εxyz(kΛ
w
A

y
w − PΛ

y)Kz
uv (D.1.14)

= −2D[u|(kΛ
w
K

x
w|v])− εxyz

PΛ
y
K

z
uv (D.1.15)

= 0 . (D.1.16)

Using the covariant constancy of the hyperKähler structure, this condition can be
rewritten in the form

2(∇[u|kΛ
w)Kx

w|v] − εxyz
PΛ

y
K

z
uv = 0 , (D.1.17)

and, contracting the whole equation with Ky uv we find

K
x uv∇ukΛ v = −2mPΛ

x . (D.1.18)

Acting on both sides of this equations with Dw and using the Killing vector identity
∇w∇ukΛ v = RwruvkΛ

r we get

kΛ
rRwruvK

x uv = −2mDwPΛ
x . (D.1.19)

Finally, using Eqs. (D.0.24) in Eq. (D.0.22) we get

RwruvK
x uv = −2mF

x
wr = −2mκ K

x
wr , (D.1.20)

and substituting above, we arrive at

DuPΛ
x = κ K

x
uvkΛ

v , (D.1.21)

which can be taken as the equation that defines the triholomorphic momentum map.
From this equation we find

DΣPΛ
x = κ kΣ

u
kΛ

v
K

x
uv , (D.1.22)

and, substituting directly in Eq. (D.1.13) we get

LΛPΣ
x = DΛPΣ

x − εxyz
PΛ

y
PΣ

z + fΛΣ
Ω
PΩ

x = 0 , (D.1.23)

which says that the triholomprhic momentum map is an invariant field and

εxyz
PΛ

y
PΣ

z − κ kΛ
u
kΣ

v
K

x
uv = fΛΣ

Ω
PΩ

x . (D.1.24)
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Now, for a field Φ (possibly with spacetime, quaternionic, SU(2) or gauge indices)
which under Eq. (D.1.2) transforms according to

δαΦ = −α(LΛ − kΛ)Φ , (D.1.25)

we define the gauge covariant derivative

DµΦ ≡ {∇µ + Dµq
uΓu − gAΛ

µ(LΛ − kΛ) + Dµq
u
A

x
u}Φ . (D.1.26)

For the triholomorphic momentum map, we have, on account of Eq. (D.1.23),
which we can rewrite in the form

kΛ
u∂uPΣ

x = −εxyz(kΛ
u
A

y
u − PΛ

y)PΣ
z − fΛΣ

Ω
PΩ

x , (D.1.27)

the following expressions for its gauge covariant derivative

DµPΛ
x = ∂µPΛ

x + εxyz
Â

y
µPΛ

z + fΛΣ
ΩAΣ

µPΩ
x , (D.1.28)

DµPΛ
x = Dµq

u
DuPΛ

x , (D.1.29)

where we have defined

Â
x

µ ≡ ∂µq
u
A

x
u + gAΛ

µPΛ
x . (D.1.30)

Under Eq. (D.1.2), spinors with SU(2) indices undergo the following transforma-
tion

δαψI = −αΛ
WΛ

x i
2σ

x
I
JψJ . (D.1.31)

Then, using the general formula, their covariant derivative is given by

DµψI = ∇µψI + Â
x

µ
i
2σ

x
I
JψJ . (D.1.32)

If we take into account their Kähler weight and possible gaugings of the isometries
of the special-Kähler manifold, we have for the supersymmetry parameters of N =
2, d = 4 supergravity

DµǫI = {∇µ + i
2Q̂µ}ǫI + Â

x
µ

i
2σ

x
I

JǫJ . (D.1.33)



230 Quaternionic Kähler geometry

D.2 All about the C-map

The c-map is a manifestation of the T-duality between the type IIA and IIB theories,
compactified on the same Calabi-Yau 3-fold. Since T-duality in supergravity theories
is implemented by dimensional reduction, to be told that the c-map is derived by
dimensionally reducing an N = 2 d = 4 SUGRA coupled to n vector- and m hyper-
multiplets to d = 3, and dualizing every vector field into a scalar field, should not
come as too big a surprise.

D.2.1 Dual-Quaternionic metric and its symmetries

In order to derive the c-map, consider the, rather standard, KK-Ansatz

êa = e−φ ea ; êy = eφ (dy +A) ,

ÂΛ = BΛ + CΛ (dy +A) → F̂Λ = FΛ + dCΛ ∧ (dy +A) ,

FΛ = dBΛ + CΛ F , F = dA ,

(D.2.1)

and use it on the ungauged action (2.2.1); the resulting action reads

S(3) =

∫

d3√g
[

1
2R + dφ2 − e−2φIm(N )ΛΣ dCΛdCΣ + GīdZ

idZ
̄

+ Huvdq
udqv

]

+

∫

3

(

1
2FT M ∧ ∗F + FT ∧ QdC

)

, (D.2.2)

where we have defined the (n + 1)-vectors FT = (dBΛ, dA) and CT = (CΛ, 0).
Furthermore the (n+ 1)× (n+ 1)-matrices M and Q are given by

M = 2e2φ





Im(N ) Im(N ) · C

CT · Im(N ) CT · Im(N ) · C − e2φ

4



 ; Q = 2





Re(N ) 0

CT · Re(N ) 0



 .

(D.2.3)

The field strengths can then be integrated out by adding to the above action a La-
grange multiplier term FT ∧ dL, imposing the Bianchi identity dF = 0. F can then be
integrated out by using its equation of motion ∗F = M−1(dL + Q dC), resulting in
3d gravity coupled to a sigma model describing two disconnected quaternionic man-
ifolds, one with metric Huvdq

udqv, and the other one coming from the gravity- and
vector multiplets. Taking LT = (TΛ, θ) we can write the metric of this 4n-dimensional
quaternionic manifold as
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ds2
DQ = dφ2 − e−2φIm(N )ΛΣ dCΛdCΣ + e−4φ

(

dθ − CΛdTΛ

)2

+ Gī dZi dZ
̄

− 1
4
e−2φIm(N )−1|ΛΣ

(

dTΛ + 2Re(N )ΛΛdCΛ
)(

dTΣ + 2Re(N )ΣΣdCΣ
)

.(D.2.4)

The fact that this metric is indeed quaternionic was proven in [69]. This kind of
quaternionic manifolds is, for an obvious reason, called dual quaternionic manifolds,
and is generically characterized by the existence of at least 2(n + 1)-translational
isometries [129], about which more in a few lines.

Anyway, seeing as this dual quaternionic manifold comes from a special geometry it
is nice, and even possible, to write it in a manifestly Sp(2n; R) covariant manner: this
is achieved by doing the coordinate transformations TΛ → −2TΛ and θ → θ − CΛTΛ

and introducing the real symplectic vector YT ≡ (YΛ,YΛ) = (CΛ, TΛ), resulting in

ds2DQ = dφ2 + GīdZ
idZ

̄
+ e−4φ (dθ − 〈Y|dY〉)2

+ e−2φ dYT M dY , (D.2.5)

where M is the 2n× 2n-matrix

M = −





Im(N ) + Re(N )Im(N )−1Re(N ) −Re(N )Im(N )−1

−Im(N )−1Re(N ) Im(N )−1



(D.2.6)

= 2Ω Re
(

V V† + Ui Gī U†
j

)

ΩT , (D.2.7)

where Ω is the inner product left invariant by Sp(2n; R). Moreover, M is positive
definite and has the correct and obvious properties [130] to make the metric Sp(2n,R)-
covariant.

As mentioned above, the Dual-quaternionic metric always has 2(n̄+1) translational
isometries and introducing ∂Λ ≡ ∂YΛ and ∂Λ ≡ ∂YΛ the Killing vectors for these,
obvious, isometries are given by

U = ∂φ + YΛ∂
Λ + YΛ∂Λ + 2θ ∂θ ; V = ∂θ ,

XΛ = ∂Λ + YΛ∂θ , XΛ = ∂Λ − YΛ∂θ .
(D.2.8)

These vector fields satisfy the commutation relation of a Heisenberg algebra, i.e.

[

U,XΛ
]

= −XΛ , [U,XΛ] = −XΛ ,

[U, V ] = −2 V ,
[

XΛ, XΣ

]

= −2δΛΣ V .
(D.2.9)
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The automorphism group of this Heisenberg algebra is Sp(n,R), as was to be expected.
As discussed in Appendix (C.2), the special geometry can also have isometries and

we must then ask ourselves how these manifest themselves in the Dual Quaternionic
geometry. The key to finding out how these isometries act, lies in Eq. (D.2.6) and
Eq. (C.2.1), which allows one to derive

£KM = −ST
K

M − M SK . (D.2.10)

This transformation the means that the lift of the special geometry Killing vector K

to the Dual Quaternionic metric is given by

K = Ki∂i + Kı̄∂ı̄ + fΛΣ
Ω
[

YΣ∂Ω − YΩ∂
Σ
]

= Ki∂i + Kı̄∂ı̄ + YT ST ∂♮ , (D.2.11)

where we have defined the symplectic vector ∂♮ = (∂Λ, ∂
Λ)T . The advantage of

writing the Killing vector like this, becomes clear when we want to confirm that the
commutation relation in Eq. (D.1.1) holds for the lifted Killing vectors. In fact, using
the identity ∂♮ YT = I2n this calculation is a trifle. Of course, we can also introduce
the symplectic vector of generators

X♮ =
(

XΛ, X
Λ
)T

= ∂♮ + ΩY V ; X♭ ≡ Ω−1 X♮ , (D.2.12)

then one can see that
[

KΛ, X
♮
]

= −ST
Λ X♮ ,

[

KΛ, X
♭
]

= SΛ X♭ , (D.2.13)

And the rest of the actions of K vanish. And just in case you were wondering, you
can see that this action satisfies the Jacobi identity. A useful relation is

ıK dY = SK Y . (D.2.14)

D.2.2 The universal qK-space

Let us first have a look at the case when we c-map the minimal theory. In that case
a Quadbein is easily found to be

U
αI =

(

E0 F 0

−F 0 E0

)

with







√
2 E0 = dφ + ie−2φ [dθ − 〈Y|dY〉]

F 0 = e−φ 〈dY | V〉
(D.2.15)

where we have chosen to keep V for future convenience. The needed su(2) connection
can easily be found by using Eq. (D.0.21) and leads to

A1 = 2
√

2 Im
(

F 0
)

A2 = −2
√

2 Re
(

F 0
)

A3 =
√

2 Im
(

E0
)























and ∆α
β = − 3i√

2
Im
(

E0
)

σ3 α
β . (D.2.16)
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The field strengths for the above su(2) connection can be compared with the triple-
Kähler structures defined in Eq. (D.0.24), which can be calculated straightforwardly
to give

K
1 = −2Im

(

E0 ∧ F 0
)

, K
2 = −2Re

(

E0 ∧ F 0
)

, K
3 = −Im

(

E0 ∧ E0 − F 0 ∧ F 0
)

.

(D.2.17)
Said comparison then shows that the connection and the triple-Kähler structure sat-
isfy Eq. (D.0.5) with κ = −2, in concordance with the results obtained from the KSIs
and can be seen as a further check on the consistency of the determination of κ.

D.2.3 Quadbein, su(2)-connection and momentum maps

In the foregoing section we derived the su(2) connection for the simplest of dual
quaternionic spaces, and in this section we shall determine it for the general DQ-
spaces in Eq. (D.2.5). The first thing to do is to write down a suitable Quadbein
and find the the As. A convenient way to do this is by looking at the example in
the foregoing section and asking oneself what: can possibly change in the connection?
Most of the objects that enter in the general case have index properties that arrise
from special geometry and, seeing as we kept everything as symplectic invariant as
possible, we should expect the su(2) connection to be as covariant as possible. This
basically means that only the Kähler connection, Q, can appear. In fact, it must
appear as F 0 has a non-vanishing Kähler weight.

In order to advance, spilt the Sp(2m)-index α as (Λ ᾱ), with ᾱ = 1, 2 and Λ =
0, 1, . . . , n, where n is the number of vector multiplets before applying the c-map.
This then enables us to write down a putative Quadbein and use it to calculate the
triple-Kähler forms, i.e.

U
(Λᾱ)I =

(

EΛ FΛ

−FΛ EΛ

)

and



































K1 = −2Im
(

EΛ ∧ FΛ
)

K2 = −2Re
(

EΛ ∧ FΛ
)

K3 = −Im
(

EΛ ∧EΛ − FΛ ∧ FΛ
)

(D.2.18)
where of course the expressions for the Λ = 0 components are the ones given in
Eq. (D.2.15). Introducing the Vielbein Ei

a (i, a = 1, . . . , n) and the tangent object
U ā through the definitions

Ei
aE ̄

ā ≡ Gī , U ā ≡ Ui E
i ā

, (D.2.19)

we see that imposing Eq. (D.0.5) with κ = −2 and the choice
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A
1 = 2

√
2 Im

(

F 0
)

, A
2 = −2

√
2 Re

(

F 0
)

, A
3 =

√
2 Im

(

E0
)

+ Q , (D.2.20)

which is dictated by the Λ = 0 sector, implies that

√
2EΛ =







E0 = dφ + ie−2φ [dθ − 〈Y|dY〉]

E
ā

= E
ā

ı̄ dZ
ı̄

and FΛ =







F 0 = e−φ〈dY|V〉

F ā = −e−φ〈dY|U ā〉
(D.2.21)

So even though it might seem strange, the index λ splits as Λ = 0, ā and the minus-sign
in the definition of F ā in not a typo, but is necessary.

Having found the connection and the triple-Kähler forms, we are all set to start
finding the momentum maps corresponding to the isometries (D.2.8) and (D.2.11).
Let us start with the easiest ones: U and V . Their momentum maps are readily found
to be

V : P1 = 0 U : P1 = 2
√

2 e−φ Im (〈Y|V〉)

P
2 = 0 P

2 = −2
√

2 e−φ Re (〈Y|V〉)

P
3 = e−2φ

P
3 = 2e−2φ θ

XΛ : PΛ 1 = 2
√

2 e−φ Im
(

VΛ
)

XΛ : P1
Λ = −2

√
2 e−φ Im (VΛ)

P
Λ 2 = −2

√
2 e−φ Re

(

VΛ
)

P
2
Λ = 2

√
2 e−φ Re (VΛ)

P
Λ 3 = 2e−2φ YΛ

P
3
Λ = −2e−2φ YΛ

(D.2.22)
This then concludes the discussion of the momentum maps for the ever-present

Heisenberg isometries of the DQ-spaces; what remains to be done however is to find
the momentum maps for the isometries inherited from the Special Geometry, namely
the isometries displayed in Eq. (D.2.11). This can of course be calculated and results
in

P
1
Λ = −2

√
2e−φ Im (〈Y|SΛV〉)

P
2
Λ = 2

√
2e−φ Re (〈Y|SΛV〉)

P
3
Λ = PΛ − e−2φ 〈Y|SΛY〉 , (D.2.23)
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where PΛ is the U(1)-momentum map defined in Eq. (B.1.29).
Let us end this appendix with a small remark: we derived the c-map through

dimensional reduction over a spacelike circle. Similarly one can dimensionally reduce
the action over a timelike circle, resulting in a space of signature (2n, 2n) and whose
holonomy is contained in Sp(1,R) · Sp(n). In the rigid limit, i.e. when λ = 0, one
recovers the (1, 2)/para-hyperKähler structure discussed in e.g. [131, 132] The para-
universal para-quaternionic manifold, i.e. the manifold one obtains by the timelike
c-map from minimal N = 2 d = 4 SUGRA, can be seen to be SU(1, 2)/U(1, 1).





Appendix E

Projectors, field strengths
and gauge transformations of
the 4d tensor hierarchy

E.1 Projectors of the d = 4 tensor hierarchy

The 4-dimensional hierarchy’s field strengths are defined in terms of the invariant
tensors ZMA, YAM

B,WC
MAB,WCNPQ

M ,WCNP
EM which act as projectors. In this

appendix we collect their definitions and the properties that they satisfy.

The projectors are defined by

ZPA ≡ − 1
2ΩNPϑN

A =







+ 1
2ϑ

ΛA ,

− 1
2ϑΛ

A ,
, (E.1.1)

YAM
C ≡ ϑM

BfAB
C − TA M

NϑN
C , (E.1.2)

WC
MAB ≡ −ZM [AδC

B] , (E.1.3)

WCNPQ
M ≡ TC (NP δQ)

M , (E.1.4)

WCNP
EM ≡ ϑN

DfCD
EδP

M +XNP
MδC

E − YCP
EδN

M . (E.1.5)

They satisfy the orthogonality relations
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ZMAYAN
C = 1

2ΩPMQPN
C = 0 , (E.1.6)

YAM
CWC

MAB = YAM
CWCNPQ

M = YAM
CWCNP

EM = 0 . (E.1.7)

Taking the variation of the relations between constraints Eqs. (3.2.10), (3.2.13)
and (3.2.16) we find

QABYBP
E − 1

2Z
NAQNP

E = 0 , (E.1.8)

Q(MN)
A − 3LMNPZ

PA − 2QABTBMN = 0 . (E.1.9)

Differentiating these identities with respect to the embedding tensor, using Eqs. (E.2.7)-
(E.2.9) we also find the following relations among the W tensors:

WC
MABYBP

E − 1
2Z

NAWCNP
EM

−1

4
QM

P
EδA

C +QAB
[

δM
P fBC

E − TBP
MδE

C

]

= 0 , (E.1.10)

WC(MN)
AQ − 3WCMNP

QZPA − 3
2LMN

QδC
A − 2WC

QABTB MN = 0 .(E.1.11)

E.2 Properties of the W tensors

The W tensors defined in Eqs. (3.2.61)-(3.2.63) satisfy the following properties, which
relate them to the embedding tensor constraints:

ΘM
CWC

MAB = 2QAB , (E.2.1)

ΘM
CWCNPQ

M = LNPQ , (E.2.2)

ΘM
CWCNP

EM = 2QNP
E , (E.2.3)
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∂QAB

∂ΘM
C

= WC
MAB , (E.2.4)

∂LNPQ

∂ΘM
C

= WCNPQ
M , (E.2.5)

∂QNP
E

∂ΘM
C

= WCNP
EM . (E.2.6)

Under variations we have

δΘM
CWC

MAB = ΘM
CδWC

MAB = 1
2δ(ΘM

CWC
MAB) = δQAB , (E.2.7)

δΘM
CWCNPQ

M = δLNPQ , (E.2.8)

δΘM
CWCNP

EM = ΘM
CδWCNP

EM = 1
2δ(ΘM

CWCNP
EM ) = δQNP

E ,(E.2.9)

where QAB, QNP
E and LNPQ are the quadratic and linear constraints Eqs. (3.2.10),

(3.2.13) and (3.2.16) imposed on the embedding tensor and where we have not used
the constraints themselves.

E.3 Transformations and field strengths in the D =
4 tensor hierarchy

The gauge transformations of the different fields of the tensor hierarchy are
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δhA
M = −DΛM − ZMAΛA , (E.3.1)

δhBA = DΛA + 2TA NP [ΛNFP + 1
2A

N ∧ δhAP ]− YAM
CΛC

M , (E.3.2)

δhCA
M = DΛA

M − FM ∧ ΛA − δhAM ∧BA − 1
3TA NPA

M ∧AN ∧ δhAP + ΛMHA

−WA
MABΛAB −WANPQ

M ΛNPQ −WANP
EM ΛE

NP ,

δhDAB = DΛAB + αB[A ∧ YB]P
EΛE

P + DΛ[A ∧BB] − 2Λ[A ∧HB]

+2T[A|NP [ΛNFP − 1
2A

N ∧ δhAP ] ∧B|B] , (E.3.3)

δhDE
NP = DΛE

NP − [FN − 1
2 (1 − α)ZNABA] ∧ ΛE

P

+CE
P ∧ δhAN + 1

12TEQRA
N ∧AP ∧AQ ∧ δhAR + ΛNGE

P , (E.3.4)

δhD
NPQ = DΛNPQ − 2A(N ∧ dAP ∧ δhAQ) − 3

4XRS
(NAP | ∧AR ∧AS ∧ δhA|Q)

−3Λ(NFP ∧ FQ) , (E.3.5)

and their gauge-covariant field strengths are

FM = dAM + 1
2X[NP ]

MAN ∧AP + ZMABA , (E.3.6)

HA = DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ] + YAM

CCC
M ,(E.3.7)

GC
M = DCC

M + [FM − 1
2Z

MABA] ∧BC + 1
3TC SQA

M ∧AS ∧ dAQ

+ 1
12TC SQXNT

QAM ∧AS ∧AN ∧AT

+WC
MABDAB +WCNPQ

MDNPQ +WCNP
EMDE

NP , (E.3.8)

These field strengths are related by the following hierarchical Bianchi identities
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DFM = ZMAHA , (E.3.9)

DHA = YAM
CGC

M + TA MNF
M ∧ FN . (E.3.10)

E.4 Gauge transformations in the D = 4 duality hi-
erarchy and action

In hierarchy variables, the total action takes the form

S =

∫

{

⋆R− 2Gij∗DZi ∧ ⋆DZ∗ j∗ + 2FΣ ∧GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X[MN ]ΣA

M ∧AN ∧
(

FΣ − ZΣBBB

)

− 2
3X[MN ]

ΣAM ∧AN ∧
(

dAΣ − 1
4X[PQ]ΣA

P ∧AQ
)

−2DϑM
A ∧ (CA

M +AM ∧BA) + 2QNP
E(DE

NP − 1
2A

N ∧AP ∧BE)

+2QABDAB + 2LNPQD
NPQ

}

,
(E.4.1)

A general variation of this action is given by

δS =

∫ {

δgµν δS

δgµν
+

(

δZi δS

δZi
+ c.c.

)

− δAM ∧ ⋆ δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

−2DϑM
A ∧ δCA

M + 2QNP
EδDE

NP + 2QABδDAB + 2LNPQδD
NPQ

+δϑM
A δS

δϑM
A

}

,

(E.4.2)

where
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δS

δgµν
= ⋆I

{

Gµν + 2Gij∗ [DµZ
iDνZ

∗ j∗ − 1
2gµνDρZ

iDρZ∗ j∗ ]−GM
(µ|

ρ ⋆ GM|ν)ρ

+ 1
2gµνV

}

, (E.4.3)

1
2

δS

δZi
= Gij∗D ⋆DZ∗ j∗ − ∂iGM

+ ∧GM+ − ⋆ 1
2∂iV , (E.4.4)

− 1
4⋆

δS

δAM
= DFM − 1

4ϑM
A ⋆ jA − 1

3dX[PQ]M ∧AP ∧AQ + 1
2QMP

ECE
P − 1

2Q(NM)
EAN ∧BE

−LMNPA
N ∧

(

dAP + 3
8X[RS]

PAR ∧AS
)

+ 1
8QNP

ETE QMAN ∧AP ∧AQ

−d(FM −GM )−X[MN ]
PAN ∧ (FP −GP ) + 1

2DϑM
A ∧BA , (E.4.5)

⋆
δS

δBA
= ϑPA(FP −GP ) +QABBB −DϑM

A ∧AM − 1
2QNP

AAN ∧AP , (E.4.6)

1
2

δS

δϑM
A

= (GA
M − 1

2 ⋆ ∂V/∂ϑM
A)−AM ∧ (HA + 1

2 ⋆ jA)

+ 1
2TANPA

M ∧AN ∧ (FP −GP )− (FM −GM ) ∧BA , (E.4.7)

and vanishes, up to total derivatives, for the gauge transformations

δaϑM
A = 0 , (E.4.8)

δaZ
i = ΛMϑM

AkA
i , (E.4.9)

δaA
M = δhA

M , (E.4.10)

δaBA = δhBA − 2TA NP ΛN (FP −GP ) , (E.4.11)

δaCA
M = δhCA

M + ΛA ∧ (FM −GM )− ΛM (HA + 1
2 ⋆ jA) , (E.4.12)
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δaDAB = δhDAB + 2Λ[A ∧ (HB] + 1
2 ⋆ jB])− 2T[A|NP ΛN(FP −GP ) ∧B|B] ,

(E.4.13)

δaDE
NP = δhDE

NP − ΛN(GE
P − 1

2 ⋆ ∂V/∂ϑP
E) + 2(FN −GN ) ∧ ΛE

P ,

(E.4.14)

δaD
NPQ = δhD

NPQ − 3δA(N ∧AP ∧ (FQ) −GQ)) + 6Λ(NFP ∧ (FQ) −GQ))

−3Λ(N(FP −GP ) ∧ (FQ) −GQ)) , (E.4.15)





Appendix F

The Wilkinson-Bais monopole
in SU(3)

In Ref. [103], Bais and Wilkinson derived the general spherically symmetric monopoles
to the SU(N) Bogomol’nyi equations. In this case we are going to discuss their

monopole for the case of SU(3) as it can be embedded into the CP
8
, ST [2, 8] and the

SU(3, 3)/S[U(3)⊗ U(3)] model.

The derivation is best done using Hermitean generators and in the fundamental,
which means that we use the definitions

DΦ = dΦ− i [A,Φ] , F = dA − i A ∧A , (F.0.1)

where A and Φ are su(3)-valued, and we have taken g = 1.
The maximal form of the fields compatible with spherical symmetry are given by

Φ = 1
2diag [φ1(r) ; φ2(r) − φ1(r) ; −φ2(r)] , (F.0.2)

A = J3 cos(θ)dϕ + i
2

[

C − C†] dθ + 1
2

[

C + C†] sin(θ)dϕ , (F.0.3)

where J3 = diag(1; 0;−1) and C is the real and upper-triangular matrix

C =





0 a1(r) 0
0 0 a2(r)
0 0 0



 . (F.0.4)

Plugging the above Ansätze into the Bogomol’nyi equation DΦ = ⋆F , leads to the
following equations (i = 1, 2)
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r2∂rφi = a2
i − 2 , 2∂ra1 = a1 (2φ1 − φ2) , 2∂ra2 = a2 (2φ2 − φ1) . (F.0.5)

Following Wilkinson and Bais [103], we solve the equations for the ai by defining new
functions Qi(r) through

φi = −∂r logQi + 2
r , a1 ≡

r
√
Q2

Q1
, a2 ≡

r
√
Q1

Q2
, (F.0.6)

after which the remaining equations are

Q2 = ∂rQ1∂rQ1 − Q1∂
2
rQ1 , Q1 = ∂rQ2∂rQ2 − Q2∂

2
rQ2 (F.0.7)

The solution found by Wilkinson & Bais for SU(3) then given by

Q1 =
∑3

a=1 Aa e
µar

Q2 =
∑3

a=1 Aa e
−µar







←−























0 =
∑3

a=1 µa

A1 = −A2A3 (µ2 − µ3)2

A2 = −A3A1 (µ3 − µ1)2

A3 = −A1A2 (µ1 − µ2)2

. (F.0.8)

The solution to the above equations is

Aa =
∏

b6=a

(µa − µb)
−1

. (F.0.9)

Defining the useful quantity Vn ≡
∑3

a=1 Aaµ
n
a , we can see by direct inspection

that V0 = V1 = V3 = 0 and that V1 = 1. Using these quantities one can see that
around r = 0 we see that Qi ∼ r2/2 +O(r3), which means that the φi ∼ −V4/3! r +
O(r2), implying that the solution is completely regular on R3. Furthermore, one can
show that the Q are monotonic, positive semi-definite functions on R+ that vanish
only at r = 0, at which point also its derivative vanishes. This furthermore implies
that the φi are negative semi-definite functions on R+.

The asymptotic behaviour of the Higgs field is easily calculated and, choosing
µ1 < µ2 < µ3, is readily seen to be

lim
r→∞

Φ = − 1
2 diag ( µ3 ; µ2 ; µ1 ) +

1

r
J3 + . . . (F.0.10)

from which the breaking of SU(3)→ U(1)2 is paramount.
The above solution does not admit the possibility of having degenerate µ’s, but

as emphasised by Wilkinson & Bais, such a solution can be obtained as a limiting
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solution. For this, define µ1 = −2, µ2 = 1− δ and µ3 = 1 + δ, for δ > 0, and calculate
the solution. This solution admits a non-singular δ → 0 limit, which is

Q1 = 1
9

[

e−2r + (3r − 1)er
]

, Q2 = 1
9

[

e2r − (3r + 1)e−r
]

. (F.0.11)

The symmetry breaking pattern in this degenerate case is SU(3) → U(2) as be-
comes clear from the asymptotic behaviour of the Higgs field, i.e.

lim
r→∞

Φ = −Y +
1

r
Y where Y = 1

2 diag (1 , 1 , −2) . (F.0.12)

F.1 A hairy deformation of the W&B monopole

The foregoing derivation of Wilkinson & Bais’s monopole was cooked up to give a
regular solution, and we would like to have a hairy version of this monopole. This
is easily achieved by applying the Protogenov trick, which calls for adding constants
in the exponential parts of the monopole fields; in this case, we simply extend the
Ansatz for the Qi’s to

Q1 =

3
∑

a=1

Aa e
µar+βa , Q2 =

3
∑

a=1

Aa e
−µar−βa , (F.1.1)

and plug it into Eq. (F.0.7). Obviously this leads to a solution if
∑

µa =
∑

βa = 0
and Aa is once again given by Eq. (F.0.9). Furthermore, it is clear that the asymptotic
behaviour does not change and it is the one in Eq. (F.0.10); what does change is the
behaviour of the solution at r = 0, which is singular except when βa = 0.

Using the above expression we can also create a hairy version of the degenerate
monopole: we have to make the same Ansatz as the one used in the derivation of
Eq. (F.0.11), and also define β2 = s + δγ/3, β3 = s − δγ/3 and β1 = −2s, which is
the maximal possibility compatible with a regular limit. Taking then the limit δ → 0
we find

Q1 = 1
9

[

e−2(r+s) + (3r + γ − 1)er+s
]

, Q2 = 1
9

[

e2(r+s) − (3r + γ + 1)e−(r+s)
]

.

(F.1.2)
which leads to φi’s that are singular at r = 0 but with the asymptotic behaviour
displayed in Eq. (F.0.12).
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“Supersymmetric non-Abelian black holes and monopoles in Einstein-
Yang-Mills sugras”,

Proceedings of 4th EU RTN Workshop: Constituents, Fundamental Forces and
Symmetries of the Universe: FU-4, Varna, Bulgaria, 11-17 Sep 2008.

Fortschr. Phys. 57, No. 5 7, 600 605 (2009) [arXiv:0902.4848].

• J. Hartong, M. Huebscher and T. Ortin,

“The supersymmetric tensor hierarchy of N=1,d=4 supergravity”,

submitted to JHEP, [arXiv:0903.0509].



Bibliography

[1] D. J. H. Chung et al., The soft supersymmetry-breaking Lagrangian: Theory
and applications, Phys. Rept. 407 (2005) 1–203, hep-ph/0312378

[2] N. Seiberg, The superworld, hep-th/9802144

[3] D. I. Kazakov, Beyond the standard model (in search of supersymmetry),
hep-ph/0012288

[4] J. H. Schwarz and N. Seiberg, String theory, supersymmetry, unification, and
all that, Rev. Mod. Phys. 71 (1999) S112–S120, hep-th/9803179

[5] D. Bailin and A. Love, Supersymmetric gauge field theory and string theory,
Bristol, UK: IOP (1994) 322 p. (Graduate student series in physics)

[6] D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a
Theory of Supergravity, Phys. Rev. D13 (1976) 3214–3218

[7] S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B62 (1976) 335

[8] R. Haag, J. T. Lopuszanski and M. Sohnius, All Possible Generators of
Supersymmetries of the s Matrix, Nucl. Phys. B88 (1975) 257

[9] A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking
Entropy, Phys. Lett. B379 (1996) 99–104, hep-th/9601029

[10] L. J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett.
B169 (1986) 374

[11] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three
dimensions, Phys. Rev. Lett. 86 (2001) 1686–1689, hep-th/0010076

[12] J. Hartong and T. Ort́ın, Tensor Hierarchies of 5- and 6-Dimensional Field
Theories, work in progress (2009)

[13] H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications,
Class. Quant. Grav. 25 (2008) 214002, 0808.4076



252 Bibliography

[14] H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal
supergravities in three dimensions, JHEP 04 (2001) 022, hep-th/0103032

[15] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field
theory, JHEP 09 (2005) 016, hep-th/0507289

[16] B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor
Hierarchies, and M-Theory, JHEP 02 (2008) 044, 0801.1294

[17] B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08
(2008) 015, 0805.4767

[18] E. Cremmer, B. Julia, H. Lu and C. N. Pope, Dualisation of dualities. II:
Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B535
(1998) 242–292, hep-th/9806106

[19] E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, New
Formulations of D=10 Supersymmetry and D8-O8 Domain Walls, Class.
Quant. Grav. 18 (2001) 3359–3382, hep-th/0103233

[20] I. V. Lavrinenko, H. Lu, C. N. Pope and K. S. Stelle, Superdualities, brane
tensions and massive IIA/IIB duality, Nucl. Phys. B555 (1999) 201–227,
hep-th/9903057

[21] P. C. West, E(11) and M theory, Class. Quant. Grav. 18 (2001) 4443–4460,
hep-th/0104081

[22] I. Schnakenburg and P. C. West, Kac-Moody symmetries of IIB supergravity,
Phys. Lett. B517 (2001) 421–428, hep-th/0107181

[23] A. Kleinschmidt, I. Schnakenburg and P. C. West, Very-extended Kac-Moody
algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004)
2493–2525, hep-th/0309198

[24] F. Riccioni and P. C. West, E(11)-extended spacetime and gauged
supergravities, JHEP 02 (2008) 039, 0712.1795

[25] H. Nicolai, The integrability of N=16 Supergravity, Phys. Lett. B194 (1987)
402

[26] P. Meessen and T. Ort́ın, The supersymmetric configurations of N = 2, d = 4
supergravity coupled to vector supermultiplets, Nucl. Phys. B749 (2006)
291–324, hep-th/0603099
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