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Departamento de F́ısica Teórica IFT–UAM/CSIC
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1

Introduction

Many of us think that the fundamental theories that describe our world are actually

low-energy effects of a yet more fundamental theory.

This philosophy has been historically rewarded in Science. For instance, we may

mention a crucial example in high-energy Physics: Fermi invented a model to de-

scribe, within the framework of Quantum Field Theory, the weak force responsi-

ble of β-decays. Fermi’s model explains the experimental data well, but it is non-

renormalizable. This implies that the theory becomes inconsistent at high energies.

For some people this was a sign that there was something beyond Fermi’s model.

Eventually, the theory of electroweak interactions came in, being renormalizable and

yielding Fermi’s model as its effective theory.

Now String Theory could be the theory beyond the Standard Model of Particles,

providing also a quantum theory for gravitation. It is the most promising candidate

for a theory of everything giving a consistent unification of all the fundamental inter-

actions. Moreover, we could be near to a really big revolution in Science if evidence

for supersymmetry -a key ingredient of String Theory- is found at LHC.

This thesis is devoted to one topic of String Theory: the characterization of su-

persymmetric solutions of some theories of supergravity, which are classical effective

theories for strings. The supersymmetric states of the effective theory are of particular

relevance because supersymmetry protects them to get quantum corrections. Hence

they are essentially states of String Theory.

We wish to situate this thesis in the framework of fundamental theoretical Physics.

To this end it is worth making a rough overview of the present-day fundamental

theories of Nature: the Standard Model of Particles and General Relativity, and,

next, of String Theory followed by its classical effective theory, Supergravity.
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1.1 Our two fundamental theories: The Standard Model

and General Relativity

1.1.1 Basis of the Standard Model

The need of Quantum Field Theory

In the early years of twentieth century two major scientific achievements were made:

the formulation of Quantum Mechanics and Einstein’s Theory of Special Relativity.

Special Relativity is restricted to the kinematics of non-accelerated movement. Later

on, Einstein realized the deep connection between acceleration and gravitation arriving

at the Theory of General Relativity.

These revolutionary ideas constitute the basis of Modern Physics. Quantum Me-

chanics opened the doors of a very rich world. In particular, it brought us to a

probabilistic interpretation of natural phenomena rather than the deterministic phi-

losophy of the Newton’s mechanics. At the same time, Special Relativity enhanced

the symmetry concepts of Galilean relativity by placing time on the same footing as

space.

Quantum Mechanics does not possess the space-time symmetry features dictated

by Special Relativity. The Schrödinger Equation is not relativistically invariant.

Therefore Quantum Mechanics should be modified in some way in order to make

it a relativistic theory. The earliest attempts in this way were called “Relativistic

Quantum Mechanics”.

Klein and Gordon as well as Dirac made the pioneering works in Relativistic

Quantum Mechanics. Klein and Gordon studied an equation for spinless particles

and Dirac constructed an equation for particles with spin 1
2
, as the electron. These

theories came with a intriguing feature: the absence of a lower bound for the particle

energy.

In the case of the electron, the problem of the unbounded energy is solved by the

existence of the so called Dirac sea. This consists of the filling of the negative branch

of the energy by electrons, avoiding the infinite decay due to the Exclusion Principle.

Dirac sea leads to the existence of antiparticles. An electron in the Dirac sea can go

up to the positive sector by absorbing a photon. The lifted particle leaves a hole,

which is nothing but a particle of the same mass and opposite charge. This kind of

particles are called antiparticles and their prediction was one of the most important

successes of Dirac’s theory.

Now we are faced with another issue: particles can be created from the vacuum.

This leads us to conclude that Relativistic Quantum Mechanics is inconsistent because
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it is a mechanical theory of a single particle and cannot handle creation/annihilation

of particles.

Quantum Mechanics, in the Heisenberg picture, is formulated in terms of operators

which depend on time and whose eigenvalues are physical observables. By analogy,

the relativistic extension of Quantum Mechanics must be based on operators whose

expectation values are probabilities of finding particles. Thus, the number of particles

is not a conserved quantity.

Special Relativity adds one more key ingredient. Operators that only depend

on time might violate causality. The appropriate operators must depend both on

space and time and are subject to commutation relations with causal structure. An

operator which depends on space and time is called a quantum field. Thus the union

of Quantum Mechanics and Special Relativity leads to Quantum Field Theory (QFT).

The minimum scale at which QFT effects can be appreciated on the dynamics

of a particle, for instance for the particle/antiparticle pair creation, is given by the

Compton wavelength

λ = m−1h/c (1.1)

where m is the mass of the particle.

Quantum Electrodynamics

Maxwell’s Electromagnetism, formulated in the last half of the nineteenth century,

provided an unified frame for the laws of electricity and magnetism. With it, Maxwell

could show that electric and magnetic fields travel in space as waves.

Electromagnetism is a theory of classical fields. It can be formulated in terms of

the field strengths which are precisely the electric and magnetic fields. These fields

can be arranged into a unique relativistically covariant object Fµν , where µ and ν are

space-time indices. The electromagnetic field interacts with charged particles obeying

classical field equations.

The theory can be alternatively formulated in terms of the vector potential, Aµ,

whose derivatives yield the field strength. However, in classical electromagnetism the

vector potential is just a mathematical tool with no physical significance by itself.

The formulation of Maxwell’s Electromagnetism in terms of the potentials leads

to the concept of gauge invariance. Two different potentials Aµ and A′
µ related by

A′
µ = Aµ + ∂µΛ , (1.2)

where Λ is arbitrary, yield the same physical electromagnetic field. This implies

that, although the theory is formulated with these variables, they are redundant to

characterize the dynamics of the electromagnetic fields. The essence of the gauge
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invariance is that it unifies the ideas of symmetry and locality : the transformation we

perform on Aµ changes from point to point, Λ = Λ(x).

The QFT of Electromagnetism interacting with electrons is called Quantum Elec-

trodynamics (QED). In QED the electromagnetic field couples to matter fields, like

the Dirac field, by means of covariant derivatives. They are constructions of the form

(∂µ + ieAµ)ψ , (1.3)

where ψ is the Dirac field of the electron and −e is the electron charge.

In the coupled theory the gauge transformation (1.2) must be accompanied of a

phase change on ψ

ψ′ = e−ieΛψ . (1.4)

Under a gauge transformation given by Eqs. (1.2) and (1.4) the covariant derivative

transforms as ψ does. This transformation is the symmetry principle upon which

QED is based, besides the Lorentz symmetry needed by relativity.

The simplest version of QED contains one massless, spin-1 particle, the photon,

and one massive, spin-1/2 particle, the electron. The classical Lagrangian density for

this theory is (in natural units)

L = −1
4
FµνF

µν + iψγµ(∂µ + ieAµ)ψ −mψψ , (1.5)

where γµ are constant Dirac matrices satisfying the Clifford algebra

{γµ, γν} = 2ηµν (1.6)

which allows to construct spinorial representations of the Lorentz group. The last

term in Eq. (1.5) is called a Dirac mass term. The parameter m is the bare electron

mass.

In QED the gauge symmetry is intimately related to the fact that the photon is

massless. Indeed a consistent relativistic quantum field theory for massless particles

of spin-1 requires gauge symmetry. We must say that the rigorous quantization of a

gauge theory is far from be a straightforward task.

Yang-Mills theory

Encouraged by the success of QED, Yang and Mills developed a field theory for

non-Abelian gauge groups with the hope that it could explain the nuclear strong

interactions that bound protons and neutrons in the atomic nucleus.

The Yang-Mills field is an extension of the Maxwell gauge potential Aµ. Besides

being a four-vector, the Yang-Mills field takes values on the algebra of the gauge

group. It can be expanded on the basis T a,

Aµ = AaµT
a . (1.7)
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Upon quantization, there is one massless spin-1 particle associated to each direction

of the Lie algebra.

As in electrodynamics, in Yang-Mills theory one can introduce charged fields which

also transform under the gauge symmetry. They couple to the Yang-Mills gauge field

by means of covariant derivatives

(∂µ − igAµ)ψ , (1.8)

where g is the Yang-Mills coupling constant.

The gauge transformations of the theory are

A′
µ = UAµU

−1 − i

g
∂µUU

−1 , ψ′ = Uψ , (1.9)

which are local transformations, U = U(x).

The classical Lagrangian for a Yang-Mills field coupled to a massless field ψ is

L = −1
4
tr (FµνF

µν) + iψγµ(∂µ − igAµ)ψ . (1.10)

In spite of its completeness, Yang and Mills regarded their theory as a pure math-

ematical development. This was because at the time no massless, spin-1 particle had

been observed besides the photon itself. One can add mass terms for the gauge bosons

in the Yang-Mills Lagrangian, breaking explicitly the gauge invariance. However, this

kind of theories are also non-renormalizable.

Nowadays the importance of the Yang-Mills theory lies on the description of the in-

teractions between fundamental particles: Electroweak and Chromodynamics theories

are particular models based on Yang-Mills theory.

Symmetry breaking and the Electroweak Theory

The Fermi model of the weak interactions governing the β-decays consists of a four-

fermion interaction. The scale of Fermi’s model is characterized by the Fermi constant

GF = 1.166 10−5 GeV−2 . (1.11)

The four-fermion nature of the Fermi interaction makes the theory non-renormali-

zable (the coupling constant is dimensionful). However, the model should not be

completely wrong since it fits well with the experimental data (up to much lower

scales than the W mass, which is ∼ 10 GeV).

In QED interactions between fermions are mediated by photons. Similarly, Fermi’s

model can be improved by substituting it by a Yang-Mills theory in which interactions
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between fermions are mediated by gauge bosons, rather than the direct four-fermions

interactions. However, in a pure Yang-Mills theory the gauge bosons are massless and

no massless bosons of this kind had been observed besides the photon. Indeed, by the

time it was already known that the weak interaction, unlike electromagnetism, is a

short-range interaction. Thus, if the weak interaction is going to be mediated by some

particles, these should be massive (or, alternatively, the theory could be confining, like

Quantum Chromodynamics).

As we mention, including mass terms for the gauge bosons breaks the gauge sym-

metry and makes the theory non-renormalizable. A better way to give masses to the

gauge bosons is the mechanism of Spontaneous Symmetry Breaking (SSB), giving

masses dynamically at low energies.

In the SSB mechanism there exists a bosonic scalar field, φ, besides the gauge

bosons and the fermions, which is also charged under the gauge symmetry. The

bosonic scalar feels a potential which is invariant under the gauge symmetry, such

that the whole theory is gauge invariant. However, in the SSB scenario the ground

states of the potential are such that any of them is not gauge invariant.

At low energies the quantum dynamics of the scalar field is described by perturba-

tions around a classical state, which is given by a minimum of the potential. Therefore

the dynamics needs the scalar field to choose a minimum. The simplest case is when

the ground states are represented by constant scalar fields: the vacuum is given by an

specific constant value

< φ >= φ0 . (1.12)

This value is not gauge invariant. Therefore the choice of a vacuum for the scalar field

breaks the gauge symmetry. The theory breaks its symmetries by its own dynamics

at low energies.

In the process of symmetry breaking mass terms for the gauge particles are gen-

erated. The original theory has a “kinetic” term for the scalar field

+[(∂µ − igAµ)φ]†(∂µ − igAµ)φ . (1.13)

When the scalar field is described by perturbations around some vacuum,

φ = φ0 + η , (1.14)

where η is small, the kinetic term generates a mass term for Aµ,

+g2(Aµφ0)
†Aµφ0 . (1.15)

This mechanism of symmetry breaking is the one in which the Electroweak theory

is based. Using it, we can describe the weak and electromagnetic interactions by means

of a Yang-Mills theory completely well-defined. The gauge group of the Electroweak
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Theory is SU(2) × U(1) which has an algebra of dimension four. The potential for

the scalar exhibiting SSB is the fourth order polynomial

V = −µ2φ†φ+ λ(φ†φ)2 , (1.16)

whose minima are characterized by

φ†φ =
µ2

2λ
. (1.17)

The choice of a specific vacuum breaks the gauge group SU(2)×U(1) down to U(1).

After the SSB at low energies, three particles get masses and these are the carriers of

the weak interaction. There is one massless gauge particle, the photon, carrying the

electromagnetic interaction.

SSB also gives masses to chiral fermions. For this kind of fermions one cannot write

a Dirac mass term like the one of Eq. (1.5) because it vanishes automatically. There

is other possibility, a Majorana mass term, but it breaks the symmetry explicitly. In

the Standard model the chiral fermions are coupled to the Higgs scalar by means of

the Yukawa couplings. After the symmetry breaking these couplings give rise to mass

terms for the fermions.

Quantum Chromodynamics

By doing experiments of inelastic scattering of protons it was discovered that nucleons

have internal structure. One of the first ideas to model the structure of nucleons was

the model of partons. This model eventually evolved into the one of quarks and

gluons.

It was not so easy to realize why quarks are not observed as free particles but

instead are strongly bounded forming nucleons. To solve this problem an extra quan-

tum number was added to the model of quarks, the colour, which is the charge under

a fundamental force, the strong interaction. Elementary fermions are divided into two

classes, quarks and leptons. The former feel the strong interaction whereas the latter

do not.

The strong interaction is described by a Yang-Mills field with gauge group SU(3).

Due to the particle content of the Standard Model, this gauge group exhibits the so

called asymptotic freedom: the strength of the interaction decreases at high energies

and increases at low energies. This behaviour is the opposite to that of the Electroweak

interaction.

The asymptotic freedom is the responsible for the gluon and quark confinement.

Since energy scales are the inverses of length scales, in QCD the strength of the

interaction grows with distance. If we tried to separate two quarks we would feel an

increasing force attracting them.
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The particle content of the Standard Model

The Standard Model of fundamental particles is the addition of Electroweak Theory

and QCD together with the observed fermions. Therefore the Standard Model is a

Yang-Mills theory with gauge group SU(3)×SU(2)×U(1) coupled to chiral fermions

and one scalar boson.

The scalar boson is called the Higgs scalar. It exhibits a SSB mechanism at low

energies breaking the SU(2) × U(1) sector down to U(1), the QED gauge group.

The gauge group SU(2)×U(1) has four gauge bosons. After the symmetry break-

ing, there are three massive bosons, W+, W− and Z0, which are the carriers of the

weak interaction, whereas the photon is the massless particle corresponding to the

unbroken sector of the original symmetry.

The massless gauge particles of the SU(3) sector are called gluons. They have not

been observed as asymptotic free states. This is in agreement with the asymptotic

freedom behaviour of QCD.

It has been observed that all fermions belong to one of three families. Each family

is a copy of the others (same quantum numbers), but with different masses.

The fermions are chiral. The left-handed fermions are charged under the SU(2)

sector whereas the right-handed are not. There is not right-handed neutrino in the

Standard Model.

The fermions are divided into two classes: quarks and leptons. The former feel

the strong interaction, they have colour, whereas the latter do not. It is customary

to group the (left-handed) fermions into SU(2) doublets. The quarks of the three

families, with their funny names, are

(

up

down

)

,

(

charm

strange

)

,

(

top

bottom

)

.

The last doublet is the most massive one, hence it was the last to be found. The

leptons of the three families are

(

e

νe

)

,

(

µ

νµ

)

,

(

τ

ντ

)

.

1.1.2 General Relativity

The general relativity principle

Special relativity is restricted to the equivalence of inertial frames. The transfor-

mations that relate observers in Special Relativity are the Poincaré transformations.
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They are a special class of coordinate transformations of the form

xµ′ = Λµ
νx

ν + bµ , (1.18)

where Λµ
ν and bµ are constant. These transformations are the most general ones

relating two frames with no acceleration between them. On geometrical grounds,

they preserve the line element of Minkowskian space-time.

A complete theory of kinematics should not be restricted to any special kind of

observers. The laws of Physics must be formulated in such a way that they have the

same form for all observers. This is the Principle of General Relativity.

The inclusion of acceleration leads to the inclusion of the gravitation dynamics.

Einstein realized this fundamental fact by noting that a body freely falling under

the action of a gravitational field does not feel its own weight. Hence the gravita-

tional force can always be locally canceled by an acceleration. This the Equivalence

Principle.

The extension to accelerated observers is mathematically equivalent to the invari-

ance under General Coordinate Transformations (GCTs),

xµ′ = xµ′(xν) . (1.19)

Thus, the theory of General Relativity should be invariant under GCTs. These trans-

formations have an intrinsic local nature. Consider for instance infinitesimal GCTs.

They can be written as

xµ′ = xµ + ǫµ(x) , (1.20)

where ǫµ(x) are infinitesimal parameters. Any space-time field transforms in a definite

way under infinitesimal GCTs. For instance a scalar field φ transforms as

δφ = −ǫµ(x)∂µφ , (1.21)

which is evidently a local transformation. Thus General Relativity has naturally the

group of GCTs as a gauge group.

The Einstein equations

The Principle of General Relativity leads to the conclusion that the gravitational force

is described by a metric tensor gµν in which the non-relativistic Newtonian potential

φ is embedded: in the weak field limit,

gtt = 1 + 2φ . (1.22)

The premise of General Relativity is that matter/energy curves space-time and at

the same time the curvature of space-time determines the movement of matter/energy.
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Hence the theory should give a dynamics for the metric tensor. What is needed is a

relativistic equation analogous of the equation satisfied by the Newtonian potential,

∇2φ = 4πGNρ , (1.23)

where ρ is a mass density. To this end the matter/energy, which are the sources

of space-time curvature, are represented by a energy-momentum tensor Tµν and the

strength of the gravitational field is the Riemann curvature tensor Rµνα
β which is

constructed from second derivatives of the metric. These two objects are coupled in

the Einstein equations

Gµν = 8πGNTµν , (1.24)

where

Gµν = Rµν − 1
2
gµνR , Rµν = Rµαν

α , R = gαβRαβ . (1.25)

The Einstein equations can be derived from the Einstein-Hilbert action

SEH =
1

16πGN

∫

d4x
√−gR . (1.26)

Weakness of gravitation

The currently accepted value of the Newton constant is (in natural units)

GN = 0.694 10−38 GeV−2 . (1.27)

The value of GN is extremely tiny. Indeed it is difficult to measure it with high

precision for small masses and short distances.

From GN we can form a mass constant, the Planck mass,

MP =

√

~c

GN

, (1.28)

whose value is

MP = 1.22 1019 GeV . (1.29)

The Planck mass is the scale for quantum gravity. It is much bigger than the elec-

troweak scale, which is of order ∼ 103 GeV.

Gravitation and electromagnetism are the only long-range known fundamental

interactions. Moreover, gravitation, unlike electromagnetism, is always attractive.

For this reason only gravitation is relevant for the dynamics at large (from planetary

to cosmological) scales, in despite of its weakness.
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1.1.3 Beyond the Standard Model and General Relativity

If the Standard Model and General Relativity seem to work well1 (after all they are

theoretically well-defined and apparently explain all the experimental data) why do we

insist in the search for more fundamental theories? In the next paragraphs we point

out some ideas for suggestions of new physics beyond the Standard Model and General

Relativity. First of all, there are the ideas of unification as philosophical motivation.

Secondly we discuss briefly three open questions in high energy Physics: the flavour

puzzle, the hierarchy problem and the cosmological constant problem. The latter

is particularly interesting because it is a failure arising when one tries to overlap

the domain of application of both theories: the cosmological constant problem is

essentially a failure of the Standard Model in explaining a cosmological measurement.

The ideas of Unification

We do not feel comfortable with the absence of a quantum description for the gravi-

tational interaction. Gravitation is known to us at large distance scales, but, what is

its behaviour at microscopic scales? The problem is that the weakness of gravitation

makes it very difficult to measure microscopically. The strength of any gravitational

effect on particles is by far below the other interactions. Nevertheless, we believe that

gravitation is a fundamental interaction and hence it is present at all scales.

Microscopic scales are the domain of Quantum Physics. Therefore, we are forced to

give a quantum explanation for gravity. Seeing Electroweak and QCD, the first thing

one would try to do is a QFT version of the General Relativity, with the graviton

as the carrier of the gravitational interaction. However, there is no way to do it

consistently because any QFT of General Relativity is non-renormalizable (at least

perturbatively).

This conceptual conflict leads us to consider that particles could arise in a different

way than pure QFT. This is one of the most important features of String Theory:

particles, including the graviton, arise as quantum excitations of a unique string,

being therefore treated in an unified way.

The ideas of unification have been present in high energy physics not only to study

quantum gravity, but more simply to extend the unification in Electroweak Theory

and Quantum Chromodynamics. In the Standard Model QCD and Electroweak inter-

actions are completely unrelated, they are just added. This suggest that there could

be a way to unify QCD with Electroweak similar to the case of electromagnetic and

weak interactions. The idea is to find a larger semisimple gauge group (hence unifying

1see Ref. [1] for a recent review on experimental tests of General Relativity. The experimental

test of the Standard Model are periodically reviewed in the Review of Particle Physics [2]
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the coupling constants) with SSB such that it leads to SU(3) × SU(2) × U(1) at low

energies. These models are called Grand Unification Theories (GUTs).

The flavour puzzle

The Standard Model requires a large number of inputs that must be measured exper-

imentally. These are for example masses, charges and mixing angles between families.

The large number of free parameters is not the only question in the flavour puzzle.

For example, an intriguing issue in the flavour puzzle is why the quark masses spread

a wide range of values. The masses of the lightest quarks, u and d are by the order

of ∼ 1 MeV whereas b is by ∼ 1 GeV, a range of one thousand. The quark t is

even heavier. In the leptonic sector the situation is similar, even worse. The recently

measured masses for neutrinos are near to 1 eV while the mass of τ is of order 1 GeV.

This spans nine orders of magnitude.

Should we accept that the elementary constituents of nature have chosen so differ-

ent masses? We rather think that actually they are not the fundamental constituents

of nature and their masses are different manifestations of a common structure.

The hierarchy problem

Although there is no precise way to determine the mass of the Higgs boson, its upper

bound is near of the electroweak breaking scale, which is ∼ 103 GeV (see, for example,

Ref. [3]).

In the Standard Model, radiative corrections to the Higgs boson mass, computed

to one loop, are quadratically divergent,

δMH
2 ∼ λ2 , (1.30)

where λ is some regularization cutoff. If the Standard Model is considered as an

effective theory then the cutoff has a physical meaning: it represents the scale of new

Physics. We can let λ be, for example, as large as the Planck mass, MP ∼ 1019 GeV, in

order to reach quantum gravity, then, why the Higgs boson mass remains at 103 GeV?

This issue is commonly known as the hierarchy problem. If we insist in maintaining

the Higgs boson mass below the electroweak breaking scale by a renormalization

procedure, we are then forced to fine-tune up to 32 decimal places the bare mass

parameter in the Lagrangian. It is believed that this is an indication that something

new is arising at those scales.

This problem in particular gets considerably better in supersymmetric extensions

of the Standard Model. There the radiative corrections come in the form of logarithm
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of the cutoff. The logarithmic behaviour allows to maintain the growth of the mass

much more controlled, no extreme fine-tunning is required.

The cosmological constant

The cosmological constant problem is nowadays one of the most important open ques-

tions in fundamental physics. Important references on the subject are Refs. [4, 5].

Astronomical observations indicate that there exists a cosmological vacuum energy

in our universe. This means that the gravitational force exists even in absence of

matter. This energy enters in General Relativity in form of a volume term added to

the Einstein-Hilbert Lagrangian,

1

16πGN

∫

d4x
√−g(R− 2Λ) , (1.31)

where Λ is the cosmological constant.

General Relativity is not able to predict the value of the cosmological constant,

it is as parameter that must be measured. Astronomical observations put an upper

bound on Λ,

Λ < 10−58 eV2 . (1.32)

Although this bound is really tiny, astronomical observations indicate that the cos-

mological constant is not zero.

One should look at the Standard Model in order to get a prediction for the value of

Λ. In the Standard Model there are many effects contributing to the vacuum energy.

However, one can get a feeling of the problem by a simple classical consideration

related to the electroweak SSB.

The SSB mechanism generates a constant term in the Lagrangian which is the

minimum value of the potential (independently of the chosen minimum),

Vmin = −µ
4

4λ
. (1.33)

This term is completely irrelevant in the Standard Model because it is a shift in the

energy that any particle in SM does not feel. On the other hand, gravity feels any

shift in energy because its couples to any kind of energy. Therefore the constant Vmin

is a good candidate for the cosmological constant of General Relativity.

The parameter µ is by the order of the electroweak symmetry breaking and λ is

near to one, thus Vmin yields an estimate of the cosmological constant by the order of

ΛHiggs ∼ 10−12 eV2 , (1.34)

a failure of almost 50 orders of magnitude respect to the experimental value!
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1.2 String Theory

1.2.1 Main ideas

String Theory2 proposes that the elementary components of nature are not point-like

particles but strings. Fundamental strings are characterized by a small length, ℓS,

such that at large enough distance scales we do not see the one-dimensional structure

of the string, we instead feel it as a particle.

A stringy structure is much richer than that of a particle. Strings can vibrate. A

spectrum of particles, with various masses and spin, appears as low-energy quantum

vibrations of a single string. This is a great advance in simplification.

String theory is formulated with a key ingredient that is supersymmetry, which is

a symmetry that mixes bosons and fermions. Of course, we do not see supersymmetry

in Nature (for instance, there is a different number of fermions and bosons) thus String

Theory requires of a supersymmetry-breaking mechanism at low-energies.

The quantum dynamics of supersymmetric strings is only well-defined in ten di-

mensional space-time. We live in four dimension, hence String Theory should be able

to explain what happens with the remaining six dimensions. The standard belief is

that extra dimensions are compactified. The size of the compactified dimensions is so

small that they are only accessible to high energies. Alternatively, it has been pos-

tulated that some constituents (the Standard Model) are confined to live in certain

dimensions (a brane) while others (gravity) can expand along the extra dimensions.

These models are called braneworlds.

The most remarkable feature of String Theory is that it contains a quantum dy-

namics for the gravitational interaction. As we already said, the low-energy spectrum

of strings is made of particles of various spins. In the massless sector there is a spin-2

particle. This is the carrier of the gravitational interaction: the graviton. Similarly,

String Theory provides a framework for a grand unification of the strong and elec-

troweak interactions.

The fundamental parameter of String Theory is the Regge slope α′. It has dimen-

sions of square length (in natural units). The string tension T is the energy per unit

length of the string, it is given in terms of α′ by

T =
1

2πα′ . (1.35)

In addition, the string length and mass are

ℓS =
√
α′ , mS =

1√
α′
. (1.36)

2A recent introductory textbook in String Theory is Ref. [6].
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1.2.2 Basics of String Theory

World-sheet actions

The simplest versions of String Theory are based on world-sheet formulations. These

theories are in a way incomplete since they are quantum relativistic mechanics, i. e.

first quantization. A complete quantum string field theory is still not known.

When the string moves through the space-time it spans a two-dimensional surface,

which is called the world-sheet. The theory is described by fields over this surface,

which can be parameterized by a time-like coordinate τ and a space-like one σ. In

particular the position of the string in the ten-dimensional space is one of such fields.

As we said, from the ten-dimensional point of view this a mechanical picture.

The mechanical action of a particle is proportional to the length of its world-line.

The generalization for strings is an action proportional to the area of its world-sheet

Σ,

SNG = −T
∫

Σ

√

− det (gµν(X)∂iXµ∂jXν)dτdσ , (1.37)

where Xµ(τ, σ), µ = 0, . . . , 9, are the world-sheet fields determining the position of the

string in the ten-dimensional space. This action for strings is known as the Nambu-

Goto action.

gµν(X) is the ten-dimensional metric. In world-sheet formulation objects belong-

ing to the physical space-time like gµν(X) play the role of backgrounds. They must

be given as inputs for each concrete model. Moreover, upon quantization the back-

ground fields are interpreted as coupling “constants” susceptible of renormalization.

In subsection 1.3.2 we shall see that the metric gµν cannot be arbitrary.

The object

gµν∂µX
µ∂νX

ν (1.38)

is the pullback of the ten dimensional metric to the world-sheet, although it gives

a well-defined pseudo-Riemannian metric only when the Xµ are immersions. There-

fore
√

det(gµν∂iXµ∂jXν)dτdσ is an area element on the world-sheet and clearly the

action (1.37) is proportional to the total, induced area.

The Nambu-Goto action is classically equivalent to the action

SP = −1
2
T

∫

Σ

dτdσ
√
−hhij∂iXµ∂jX

νgµν(X) , (1.39)

where hij and Xµ are independent variables, hij being a metric over the world-sheet

with no significance in space-time. This is known as the Polyakov action. The

Polyakov and Nambu-Goto actions are classically equivalent because they yield the
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same equations of motion upon solving the equation for hij in the Polyakov side, which

is algebraic. The Polyakov action is advantageous because there is not square root of

the Xµ fields. Moreover, in flat background it is quadratic on these fields. In more

general backgrounds it is a non-linear σ-model.

The Polyakov action depends on more variables than the Nambu-Goto action.

Moreover, it has one further symmetry that is not present in the Nambu-Goto action.

Both actions are invariant under reparameterizations (GCTs) on the world-sheet and

under global isometries of the metric gµν (if any). The Polyakov action is also invariant

under Weyl transformations,

h′ij = Ω(τ, σ)2hij . (1.40)

This local symmetry plays a crucial role in the quantization of the string. This

symmetry together with (part of) the world-sheet reparameterizations are enough to

put the metric in a flat form, hij → ηij (this is due to the bi-dimensionality of the

world-sheet), allowing to put the Polyakov in a extremely simple form.

A string can couple to other background fields. These fields, like the space-time

metric itself, are associated to string massless modes. They are a space-time scalar φ

(the dilaton) and a space-time two-form Bµν (the Kalb-Ramond field). The coupling

of the string to these fields in the world-sheet formulation is

+1
2
T

∫

Σ

dτdσǫij∂iX
µ∂jX

νBµν(X) − 1
4π

∫

Σ

dτdσ
√
−hR(h)φ(X) . (1.41)

Notice that in the first term there is not coupling to hij, hence it is obviously Weyl

invariant. The second term is also invariant up to a total derivative.

The position operators Xµ are bosonic. In addition, one can introduce fermionic

fields over the world sheet. The addition of fermionic fields is a physical requirement

since otherwise there are not fermionic particles in the space-time string spectrum.

Furthermore the vacuum of a purely bosonic string is unstable. By including fermions

we arrive at the concept of supersymmetry.

Consider the fields ψµ(τ, σ) which have spin-1
2

over the world-sheet and are vectors

on space-time (Xµ are world-sheet scalars and coordinates on space-time). The action,

in a flat background, is

SP = −1
2
T

∫

Σ

dτdσ
(

ηij∂iX
µ∂jX

νηµν − iψ
µ6∂ ψµ

)

, (1.42)

where we have gauged-fixed the auxiliary world-sheet metric by using the Weyl sym-

metry, which is still present with fermions (actually, the supersymmetric extension of

the Polyakov action includes a super-partner for the world-sheet metric and the Weyl

symmetry is enhanced to a super-Weyl symmetry. All these have been gauged-fixed

to arrive to Eq. (1.42)).
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Supersymmetry is the condition that the action is invariant under the transforma-

tions

δǫX
µ = ǫψµ , δǫψ

µ = i 6∂Xµǫ, (1.43)

where ǫ is a infinitesimal, fermionic parameter. As can be seen from these variations,

supersymmetry mixes bosonic and fermionic degrees of freedom. The supersymmetry

of the world sheet is recovered in the low-energy spectrum. Therefore this is a theory

with space-time supersymmetry. However, the space-time supersymmetry is not a

direct result of the quantization of the above action, it holds after truncating the

spectrum in a very specific way. This projection, which is needed for the consistency

of the theory, was one of the most important step towards a consistent string theory.

It was discovered by Gliozzi, Scherk and Olive and is commonly called the GSO

projection.

Supersymmetry can also be introduced explicitly in space-time. One extends the

space time by including fermionic coordinates, thus one ends with a superspace. These

theories are difficult to quantize in a manifestly Lorentz-covariant way. What is usually

done is to quantize them in the light-cone gauge. Both formulations, world-sheet su-

persymmetry and superspace, are physically equivalent (at least in flat backgrounds).

Quantization: vibrations of strings

Let us comment on some results of the canonical quantization of a closed bosonic

string. This could help us to see the way in which particles are generated in String

Theory.

The mode expansion is

X i(τ, σ) = xi +
pi

p+
τ − i

√

α′

2

∑

n6=0

[

αin
n
e

in
ℓ

(σ+cτ) +
α̃in
n
e−

in
ℓ

(σ−cτ)
]

, (1.44)

where i = 2, . . . , d−1. To arrive to this formula the components X0 and X1 has been

gauge-fixed. p+ is a constant of motion and

c =
2πℓT

p+
, (1.45)

the string length being ℓS = 2πℓ. Reality implies αin
†
= αi−n and α̃in

† = α̃i−n.

The quantization is achieved by imposing the commutation relations

[αim, α
i
n] = mδijδm,−n , [α̃im, α̃

i
n] = mδijδm,−n , [αim, α

i
n] = 0 , [xi, pj] = iδij ,

(1.46)

which account for the appropriate commutation relations between X i and their con-

jugate momenta.
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The vacuum is defined to be annihilated by all the oscillators αin and α̃in with n > 0

and states are created by acting with creation operators αi−n and α̃i−n on the momen-

tum eigenstates |0, k〉 (eigenstates of the momentum operator pi with eigenvalue ki).

There is a level matching condition to be imposed on the left- and right-number op-

erators,

NL ≡
∑

n>0

αi−nα
i
n , NR ≡

∑

n>0

α̃i−nα̃
i
n , (1.47)

which is

NL = NR . (1.48)

The mass operator takes the form

M2 = 2mS
2(NL +NR − 2) (1.49)

The lightest states that obey the level matching condition (besides the vacuum

itself, which is a tachyon) are of the form

αi−1α̃
j
−1 |0, k〉 , (1.50)

they are massless and, in d = 26, they fit into Poincaré representations: the part

symmetric and traceless in ij correspond to a graviton, the trace part to a scalar, the

dilaton, and the antisymmetric part to a two-form field, the Kalb-Ramond field.

Anomaly cancellation

The reason for the critical dimension of superstrings (ten dimensions) is anomaly

cancellation. This is a rather technical issue, we can say that it is the breaking

of a classical symmetry at the quantum level. A symmetry can be present in the

classical action, but it does not imply that the path integral is invariant. In the

case of superstrings propagating through Minkowski space-time, it is precisely the

Weyl symmetry that is broken in general at the quantum level. This anomaly is only

canceled in ten dimensions.

String interactions

String amplitudes are computed from a path integral over all embeddings Xµ and

all world-sheet metrics hij. The sum over metrics can be decomposed into a sum

of path integrals over world-sheets with given topologies. In doing so, one adds a

Weyl-invariant term to the Polyakov action,

− 1
4π
φ0

∫

Σt

dτdσ
√
−hR(h) = −φ0χ(t) , (1.51)
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where χ(t) is the Euler number for each topology. This term arises from the last term

of Eq. (1.41) when the dilaton field gets the vacuum expectation value φ0. The path

integral for a bosonic string is (in absence of boundary conditions)

Z =
∑

t

(

eφ0
)−χ(t)

∫

Σt

DXDh eSP . (1.52)

The topologies represent the loops of the string and the loops are basically counted

by χ(t). Hence the string coupling constant is given by the vacuum expectation value

of the dilaton,

gS = eφ0 . (1.53)

1.2.3 The various theories of Strings

There are various theories of Superstrings, according to the field content, the number

of supersymmetries, the chirality and the gauge groups. There can be open and closed

strings and some theories only have closed strings.

The dynamics is completed by specifying boundary conditions. Here there are

many possibilities, in the case of open strings one can impose Dirichlet and Neumann

conditions at the ends of the string whereas for closed strings the fields must satisfy

certain kinds of periodicity conditions. The spectrum of the theory depends strongly

on the chosen boundary conditions.

Here we list the five theories of superstrings:

• Type I:

This isN = 1 space-time supersymmetric. Its world-sheet formulation

is basically given by the action (1.42).

• Type II, A and B:

These areN = 2 space-time supersymmetric. The relative handedness

of the two supersymmetry generators makes the difference between the

type A and B. In the type IIA they are of opposite handedness, the

spectrum is symmetric in left- and right-handed spinors and hence the

theory is non-chiral. In the type IIB the supersymmetry generators

are of the same handedness and the theory manifest differences in

the spectrum between left- and right-handed spinors. This is a chiral

theory.

• Heterotic, SO(32) and E8 × E8:



20 Chapter 1. Introduction

These are N = 1 space-time supersymmetric. Heterotic strings are

a mixture between the bosonic string and the superstring (hence the

name). They only contain closed strings. Since left- and right-moving

modes on closed strings are independent, the right-moving sector is

that of the superstring while the left-movers correspond to the bosonic

string. The quantization of the bosonic strings is only well-defined

(anomaly-free) is twenty six dimensions. In Heterotic Strings the

remaining sixteen Xµ
left fields are not interpreted as coordinates of

space-time but they are compactified into an internal torus. The

massless spectrum contains a super Yang-Mills multiplet which gauges

either the group SO(32) or E8×E8. In contrast to the purely bosonic

string, the vacuum of the heterotic string is stable.

1.2.4 Branes and dualities

One of the most interesting features of String Theory is the physical equivalence

between its different formulations. These equivalences are called dualities.

The earliest duality to be found was T duality, which arise in compactified string

theories (a review on this subject is given in Ref. [7]). A simple way to understand

this duality is by looking at the mass spectrum of a closed bosonic string living in a

space-time with one spatial dimension compactified on a circle:

M2 =
n2

R2
+
R2w2

α′2 + 2m2
S(NL +NR − 2) , NR −NL = nw . (1.54)

The first term comes from Kaluza-Klein modes with quantized momentum n whereas

the second term is due to the ability of the string of winding around the circle (w

times). Notice that also the level matching condition is modified under the compact-

ification. The mass spectrum is clearly invariant under the T-duality transformation

n ↔ w , R ↔ ℓS
2

R
. (1.55)

Therefore two bosonic string theories with one dimension compactified on a circle of

radius R and ℓS
2/R respectively have the same spectra, with the winding modes of

one of them having the same masses as the Kaluza-Klein modes of the other and

vice-versa.

T duality also holds in the interacting theory, but in this case one has to take into

account that the string coupling constants are exchanged by the rule [8]

gS ↔ ℓS
R
gS . (1.56)
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The self-dual radius of compactification is R = ℓS. Any theory compactified with

a radius below this value has a T dual with a compactification radius bigger that

it. Thus the self-dual radius can be interpreted as the minimal radius on which a

bosonic-string theory can be compactified.

When applied to superstrings, T duality relates the two type II and the two het-

erotic theories.

In the same way as T duality relates string theories with inverse radii of compact-

ification, S duality relates string theories with inverse coupling constant,

gS ↔ 1

gS

, (1.57)

hence it is intrinsically a non-perturbative duality because it relates weak/strong

coupling regimes. The existence of this duality in String Theory was conjectured in

Ref. [9].

S duality can be easily understood from the effective theory viewpoint. IIB Super-

gravity possess a global SL(2,R) symmetry which includes inversions on the dilaton,

eφ ↔ e−φ, (1.58)

inverting, thus, the string coupling constant gS. S duality also relates type I and

heterotic SO(32) theories on inverse coupling regimes.

A new paradigm entered in String Theory in the middle nineties. It was discov-

ered that the theory contains higher-dimensional extended objects besides the strings.

These objects are called branes and play an essential role in dualities. Among the

branes, there are the D-branes, which are needed as macroscopical objects in order

to introduce the T duality in open strings [10], defined by the condition of being ex-

tended objects where open strings can have their end points attached. This condition

enables us to have an effective theory for the dynamics of the D-brane obtained from

the quantum excitations of the strings attached to it [11]. In 1995 Polchinski [12] found

that the D-branes are fundamental objects charged under the fields of the Ramond-

Ramond sector of the string. In addition, the mass of a D-brane is proportional to

the inverse of the string coupling constant gS.

As a consequence of dualities, it has been postulated that there must be a quan-

tum theory covering all the theories of superstrings, that is a Mother Theory which

yields all the formulations of superstrings at different limits and configurations. This

hypothetical theory for the moment has a name: M Theory. Most importantly, it is

known that the low-energy effective dynamics of M Theory is d = 11 Supergravity.
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1.3 Effective Theories of Strings

1.3.1 Supergravity

Supergravity3 can be seen as the gauge theory for the Super-Poincaré group. The

Poincaré group is the group of the symmetries of flat space-time, they are spatial

rotations, rotations between space and time and translations in space and time.

The Super-Poincaré group extends these symmetries by including the supersymme-

try transformations, which mix bosons and fermions. At first sight it could seem

very strange that a symmetry of this kind could be related to space-time symmetries.

However, this is indeed the case: two consecutive supersymmetry transformations give

rise to a space-time translation.

On simple grounds we can say that Supergravity is a theory of gravity coupled to

bosonic and fermionic fields in such a way that the theory is locally supersymmetric.

Among these fields there is in particular the supersymmetric partner for the graviton:

the gravitino. It is a spin-3
2

fermion, described by the Rarita-Schwinger field. The

graviton and the gravitino are part of the supergravity multiplet.

As a classical theory, Supergravity can be formulated in several dimensions and

with different numbers of supersymmetries. Depending on the dimension and the

number of supersymmetries there could be extra fields in the Supergravity multiplets.

In the early days Supergravity was also studied as a QFT. For some special cases

the supersymmetry makes the theory finite and this a very interesting property. It

was though that Supergravity could be a theory of everything, but the presence of

anomalies discarded this point of view and nowadays the importance of Supergravity

lies mainly on the fact that it is the low-energy limit of Superstring Theory.

1.3.2 Supergravity as low-energy effective dynamics of strings

As we mentioned, Supergravity is the low-energy limit of String Theory. This means

that Supergravity appears at the tree level and α′ → 0 limit of strings. One can also

consider α′-corrections to Supergravity, which contain higher-order derivatives (R2

terms and higher).

One can see this from three points of view:

• Kinematic arguments:

The massless spectrum of Superstrings are in correspondence with su-

pergravity multiplets. The five models of superstrings exhibits mass-

3A recent review of Supergravity is Ref. [13].
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less spectra of particles which run for spin-0 (scalars) to spin-2 (ten-

sors) particles, including fermions. All these modes can be accom-

modated into supergravity and super Yang-Mills multiplets. This is

the easiest way to see that the low energy limit of superstrings is a

supergravity theory.

• String amplitudes:

This is the rigorous way. To obtain the classical effective dynamics

of a field theory one should compute the amplitudes and then go to

a limit in which the quantum effects can be neglected. The effective

action is the one which reproduces the amplitudes in this limit.

For the case of strings, the classical limit holds at tree level and when

α′ → 0. This is equivalent to go to scales at which the string length

ℓS can be neglected.

• Weyl invariance:

As we have mentioned in subsection 1.2.2, in the world-sheet formu-

lations of strings the geometry of the space-time must be given as an

input. Geometrical fields appear in the string action as coupling con-

stant. Indeed when one computes string amplitudes these fields are

subject to renormalization.

The Weyl symmetry of the theory requires vanishing of the β func-

tions. Since the couplings are just the background fields, the condition

β = 0 yields field equations for the background. It turns out that these

equations are just the equation of motion of a gravity theory. This

program works only for bosonic strings. One extends the conclusion

to Supergravity by taking into account the kinematic arguments (the

supermultiplets are unique).

It is illustrative to see how the third approach is used to obtain the string effective

action. We are going to do it for the bosonic string (d = 26). As we already say in

subsection 1.2.2, the coupling of the string to background field breaks the local Weyl

invariance even at the classical level. This is due to the coupling to the dilaton. Most

importantly, the Weyl invariance is broken by quantum effects.

To restore the Weyl symmetry one demands the vanishing of the corresponding β

functionals. To lowest order in α′, they are

βgµν = α′(Rµν − 2∇µ∂νφ+ 1
4
Hµ

αβHναβ) + O(α′2) , (1.59)
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βBµν = 1
2
α′e2φ∇α(e

−2φHµν
α) + O(α′2) , (1.60)

βφ = −1
2
α′ [∇2φ− (∂φ)2 − 1

4
R(g) − 1

48
H2
]

+ O(α′2) . (1.61)

The vanishing of these β functions, up to first order in α′, yields a set of equations

that are equivalents to the equation of motions of the action

S =
g2

16πGN
(26)

∫

d26x
√−ge−2φ

[

R− 4(∂φ)2 + 1
2·3!H

2
]

. (1.62)

This a action of gravity coupled to a scalar and two-form field. It is defined in

twenty six dimension and in the String frame (observe the scale factor e−2φ in front of

the usual Einstein-Hilbert term). It can be brought to the usual Einstein frame by a

conformal rescaling. As we have mentioned, the approach of the Weyl symmetry for

obtaining effective theories yields the equations of motion only for the bosonic sector.

For Supergravity, one already knows how to handle with the fermions because the

supermultiplets are determined.

1.3.3 Supersymmetric solutions of Supergravity

Unbroken symmetries

This Thesis deals with configurations that preserve supersymmetry. Thus, it is worth

discussing a bit the meaning of this concept.

Symmetries are present at several levels in Physics. We have seen that gauge

symmetry is the guiding principle for the Standard Model and GCTs are for General

Relativity. String Theory possesses a further symmetry: supersymmetry.

In general, a theory has a symmetry if it remains (physically) unaltered under a

change of the variables upon which it is defined, that is, a transformation. Moreover,

a particular configuration can posses (some of) the symmetries of the theory. These

special configurations remains unaltered under some symmetry transformation of the

theory, that is, they are their own images.

Symmetric configurations are particularly important for effective theories. For

example, in subsection 1.1.1 we mentioned that the SSB mechanism of the Standard

Model lies on the fact that the vacuum breaks the symmetries of the theory. We may

modify the potential (1.16) in such a way the minimum is reached at the zero value of

the field (zero is already a critical point of this potential, but it is a local maximum).

If we change the sign of the quadratic term, then the minimum of the potential is

unique, given by

< φ >= 0 . (1.63)
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This configuration is invariant under the symmetry transformation. Roughly speak-

ing, the symmetry rotates the field around the zero point, the zero being obviously its

own image under this transformation. Hence we say that this vacuum preserves the

symmetry. If we made perturbation theory around this vacuum we would have the

whole gauge symmetry in the effective theory. Of course, in the Standard Model we

choose the potential with the negative sign because we are interested in breaking the

symmetries.

In gravity we also have configurations with unbroken symmetries. The gauge sym-

metry of General Relativity is the group of GCTs, which is an infinite-dimensional

group. In general a given configuration (metric) will not be invariant under an ar-

bitrary change of coordinates, but it can be invariant under a reduced, finite global

subgroup of coordinate changes. These are the isometries of the metric generated by

vectors, called Killing vectors, whose integral lines are directions of symmetry of the

geometry.

The most relevant example of such unbroken symmetries in gravity is the Minkows-

ki space-time and the Poincaré group. Minkowski space-time is a vacuum solution

(without cosmological constant) and the Poincaré group describes the set of coordi-

nate transformations that leave it invariant. Minkowski space-time is an example of

maximally symmetric space: it is known that the maximum number of symmetries

of any configuration is d(d + 1)/2. There are other vacuum solutions that preserve

part of the Poincaré group, like the Schwarzschild solution which has the spherical

and time-translations symmetries.

Supersymmetry is part of the gauge symmetries of Supergravity. Following the

preceding ideas, there could be configurations which preserve some or all of the su-

persymmetries of the theory. These are called supersymmetric configurations. If they

are also solutions then they are supersymmetric solutions.

By definition, supersymmetric configurations are invariant under a supersymmetry

transformation. For infinitesimal supersymmetry transformations, supersymmetric

configurations satisfy

δǫb = δǫf = 0 , (1.64)

for some ǫ(x), where b and f represent the bosonic and fermionic fields. One is mainly

interested in purely bosonic configurations because one wants to find macroscopic so-

lutions of the theory and fermions only make sense at microscopic (quantum) scales,

hence one considers all the fermions equal to zero. Thus the condition δǫb = 0 is

automatically satisfied. The conditions δǫf = 0 are called the Killing spinor equa-

tions (KSEs, and their solutions ǫ(x) are called Killing spinors, by analogy to the

Killing vectors) and finding all backgrounds for which they admit solutions is the

main objective of this Thesis.

The gravitino (spin 3
2
) is the fermion characterizing supergravity. Its supersym-
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metry transformation contains the space-time derivatives of the supersymmetry pa-

rameter. There could be other fermions in the theory and their supersymmetry trans-

formations do not contain derivatives of the susy parameter. Therefore the KSEs of

supergravity are in general a system of linear first-order differential equations plus

algebraic equations. Hence the Killing spinors factorize in the form

ǫ(x) = ǫκ(x) , (1.65)

where ǫ is an infinitesimal Grassmann-odd number and κ(x) is a Grassmann-even par-

ticular solution (for a given background) of the KSEs. To analyze the characterization

of the supersymmetric configurations we consider only the Grassmann-even part of

the Killing spinors, κ(x).

The KSEs, as opposed to the equations of motion, are first-order equations. This

is the property that makes them easier to study. Therefore, in order to obtain the

supersymmetric solutions one first tries to extract all the possible information from

the KSEs and then analyzes the consequences of these conditions on the equations of

motion.

BPS states of Supergravity

Supersymmetric solutions in Field Theory are related to BPS states. These quantum

states are supersymmetric and their mass is subject to a lower bound.

In the context of non-Abelian Yang-Mills theory, Bogomol’nyi [14] and indepen-

dently Prasad and Sommerfield [15] studied the stability of solitonic configurations.

In particular they studied certain limit of the ’t Hooft-Polyakov monopole of the

SU(2) gauge theory [16,17]. It turns out that the mass of such objects is subject to a

lower bound (commonly called Bogomol’nyi or BPS bound, and the states saturating

the lower bound are called BPS states). The bound is determined by the electric

charge, whose discreteness guarantees the stability of the BPS state under quantum

fluctuations.

Although those original works were not in the context of supersymmetry, later

on [18] it was realized that any supersymmetric configuration of super Yang-Mills

theory saturates a kind of BPS bound. This can be seen from the very underlying

superalgebra.

The original BPS bound was found for theories with global supersymmetry. It is

also present in theories with local supersymmetry, that is, Supergravity, for asymp-

totically flat configurations. This is a way to connect supersymmetry with important

physical properties. For example, it has been shown that in any supersymmetric

theory the Hamiltonian is positive.
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Certain configurations already known in purely bosonic contexts are actually su-

persymmetric solutions when embedded in supersymmetric theories, hence they are

related to BPS states. For example, the extremal Reissner-Nordström black hole is

a supersymmetric solution of pure N = 2, d = 4 Supergravity, whose purely bosonic

sector is the Einstein-Maxwell theory. The solution saturates the inequality

M ≥ 2|q| , (1.66)

where M and q are the mass and the electric charge of the black hole.

Supersymmetric black holes

Black holes have played an important role in General Relativity. They have been also

used to study certain quantum effects in gravity: by doing QFT in curved space-time,

Hawking [19,20] showed that a black hole radiate as a black body at finite temperature.

Black holes are equally important in Supergravity, supersymmetric black holes being

particularly popular since the supersymmetry condition makes them more easier to

be found and analyzed.

A black hole is a region of space-time from which nothing (neither matter nor

radiation) can scape: the frontier of the black hole cannot be reached from its interior

with velocities slower or equal to the velocity of light. The boundary of a black hole

is called the event horizon. Solutions of the Einstein equations that represent black

holes typically have singularities in the region inside the event horizon. The simplest

of such solutions is the Schwarzschild solution of pure gravity. In higher dimensions

there could be black holes and also higher-dimensional extended objects called black

p-branes.

In contrast to black holes, there could be solutions of gravity with naked singular-

ities, that is singularities which are not surrounded by an event horizon. Singularities

are rather problematic because the Einstein equations are not satisfied there, more-

over naked singularities could be seen by all observers. It has been conjectured that

this kind of configurations can not be generated dynamically from a regular, initial

configuration. This, roughly speaking, is the cosmic censorship conjecture [21].

It is known that black holes exhibit thermodynamical behaviour. It turns out that

the entropy of a black hole is proportional to the horizon area A [19, 20,22–24],

S =
1

4GN

A , (1.67)

which is known as the Bekenstein-Hawking entropy. The thermodynamical behaviour

of black holes suggests the existence of a statistical-mechanics (microscopic) descrip-

tion for them. What one now expects is that a microstate-counting approach yields

the above law.
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In 1996 Strominger and Vafa [25] showed that a counting of degenerated states in

String Theory yields exactly, at zeroth order in α′, the Bekenstein-Hawking entropy of

black holes. These authors considered type IIB string theory compactified on K3×S1,

where K3 is a specific four-dimensional Calabi-Yau manifold (this theory is T dual to

a type IIA theory). Hence they considered a five-dimensional theory. On one hand

they computed the area of the extremal five-dimensional Reissner-Nördstrom black

hole, which is a solution of the effective theory, in terms of the charges of the black

hole. On the other hand they evaluated the degeneracy of D-branes states in the

theory, which are BPS states, that are related to the Reissner-Nördstrom solution

(basically, the relation is established upon the amount of unbroken supersymmetry).

As usual from statistical-mechanics considerations, the degeneracy of the states is the

entropy of the macroscopical configuration. It turns out that this entropy agrees, for

large values of the charges, with the Bekenstein-Hawking entropy computed directly

from the area of the horizon. We must stress that this analysis yields exactly the 1/4

factor of proportionality between the entropy and the area of the horizon.

Beyond any doubt, this is a major result of String Theory. It is the only theory

able to predict statistically (microscopically) the Bekenstein-Hawking entropy. This

can be regarded as a “theoretical laboratory” testing String Theory, being its first

quantitative success.

* * *

Due to all this, supersymmetric solutions of supergravity are important pieces

of String Theory. One would like to determine or at least characterize all these

configurations for every supergravity theory. This objective, to which this Thesis is

devoted for certain theories, has motivated a lot of work. Let us briefly comment (part

of) the history of the characterization of supersymmetric solutions in supergravity.

The pioneering work was made by Tod [26]. He was encouraged by the discovery

of Gibbons and Hull [27] of the presence of a Bogomol’nyi bound on gravitation which

is saturated precisely by the supersymmetric solutions of N = 2, d = 4 Supergravity.

Tod investigated all the possible backgrounds that admit Killing spinors in this theory

(actually, part of the classification was initiated in the paper of Gibbons and Hull). He

firstly found the necessary conditions on the background for the existence of the Killing

spinors and then he found that these conditions are also sufficient. He introduced

bilinears of the Killing spinors and also he extracted information about the equations

of motions from the integrability conditions of the KSEs. In his analysis, he used the

Newman-Penrose formalism.
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The results of Tod fall into two classes (the null and time-like classes) depending

on the vanishing or not of the scalar bilinear of the Killing spinor. In the time-like

class he found that all the supersymmetric metrics have the “conformastationary”

form, which we detail in appendix C.1. This kind of metric is the most general for a

geometry with a time-like Killing vector. Tod found that the spatial base manifold is

flat and the conformal factor is harmonic with respect to the flat three-dimensional

metric (actually, Tod considered the presence of external sources). In the null class he

found the Brinkmann metric, which is the most general metric possessing a covariantly

constant null vector. Among these metrics there are the pp-waves and Tod found that

all null-class metrics have flat transverse metric.

Some years later Tod [28] advanced in the characterization program. He began the

analysis for N = 4, d = 4 Supergravity, which is reconsidered and completed in this

Thesis. Although he completed the characterization in the null case, in the time-like

case he found only partial results by imposing certain condition on the Killing spinors,

called by him the “internal rigidity” hypothesis. He found the same conformastation-

ary metric with flat base metric and that the axidilaton and the field strength are also

given in terms of harmonic functions. The same solutions were found independently

by Bergshoeff, Kallosh and Ort́ın [29], who showed that these solutions are general-

izations of the Israel-Wilson-Perjés [30, 31] solutions of the Einstein-Maxwell theory

and include all the known supersymmetric black holes of the theory [32–45].

The topic of supersymmetric solutions of supergravity enjoyed a revival after the

publishing of Ref. [46] showing a new maximally supersymmetric solution of type IIB

Supergravity. This solution is analogous to the maximally supersymmetric solution

of d = 11 Supergravity described by Kowalski and Glikman [47, 48]. New maximally

supersymmetric solutions were subsequently found in five and six dimensions [49].

Later on it was shown [50] that all maximally supersymmetric solutions in ten and

eleven dimensions are:

1. Minkowski, AdS7×S4, AdS4×S7 and Kowalski-Glikman for d = 11 Supergravity

(the latter being called Hpp-waves in Ref. [46]).

2. Minkowski for the type IIA Supergravity and Minkowski, AdS5 × S5 and Hpp-

waves for the type IIB Supergravity.

We stress that the condition of maximal supersymmetry is quite restrictive hence those

configurations are generally the easiest to characterize. Basically, all the information

needed is contained in the integrability conditions of the KSEs.

The work that gave the final impulse to the characterization program was done

by Gauntlett et al. in 2003 [51]. They achieved the characterization of all supersym-

metric solutions of pure (minimal), ungauged N = 1, d = 5 Supergravity in a very

precise way. This work refined and established the method of the spinor bilinears
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used by Tod in Refs. [26,28], which is the one we use in this Thesis. Unlike Tod, they

developed the formalism using ordinary tensor calculus, which has the advantage of

being adaptable to any dimension. Gauntlett et al. found that the Killing spinors

bilinears can be identified with geometrical structures and hence the geometry of the

background is determined by them (they called this approach “G-structures”). As in

four dimensions, in pure N = 1, d = 5 Supergravity the supersymmetric solutions are

classified according to the time-like and null classes. In the time-like class the met-

ric is conformastationary with the spatial base metric being a hyperKähler manifold

(SU(2) holonomy). In the null class waves have flat transverse metric. In both cases

the solutions are 1/2 BPS. They also showed new, explicit supersymmetric solutions

of the theory.

The success of Ref. [51] motivated several works on the characterization of super-

symmetric solutions of Supergravity. Soon after the publication of Ref. [51], two of

those authors [52] extended the analysis by gauging the pure N = 1, d = 5 theory.

They found that, in the time-like class, the gauging uplifts the holonomy from hy-

perKähler to Kähler (U(2) holonomy). In the null class the holonomy of the transverse

space is uplifted to the full SU(2) group. In addition, the gauging lowers the amount

of unbroken supersymmetry to 1/4 in both cases.

The characterization program with couplings to matter multiplets in N = 1, d = 5

Supergravity was initiated in Ref. [53]. The authors analyzed the (Abelian) gauged

theory coupled to vector multiplets restricting the target manifold of the scalars (the

special manifold) to be a symmetric space and analyzing only the time-like class.

In this framework, they studied the general supersymmetric AdS5 black holes and

also they showed that the maximally supersymmetric solutions of this theory are the

same of the pure Supergravity theory. There were already some works [54, 55] which

analyzed black holes preserving one half of the supersymmetries of this theory coupled

to vector multiplets. Later on, the analysis of Ref. [53] was extended in Ref. [56] by

considering the null class and also relaxing the condition of symmetry on the target.

Finally, the analysis of the N = 1 five dimensional theory has been extended in

two of the works on which this Thesis is based [57, 58] by adding the coupling to

hyperscalars both in ungauged and gauged cases. The coupling to hyperscalar was

previously analyzed by Celi et al. in Refs. [59–61] who considered in particular the

spherically symmetric supersymmetric configurations.

Caldarelli and Klemm [62] made the characterization for pure, U(1)-gaugedN = 2,

d = 4 Supergravity, extending the work initiated by Tod on this theory. They found

that the gauging, in the time-like class, uplifts the holonomy of the base manifold

from flat (trivial holonomy) to U(1) holonomy. In the null class the transverse space

is no longer flat.

The classification program on ungauged N = 2, d = 4 Supergravity coupled to
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vector multiplets was made in Ref. [63]. In that work it was found that all the solutions

belonging to the time-like class are those previously found in Ref. [64], which have,

as in the pure theory analyzed by Tod, flat base metric and the whole solutions are

given in terms of harmonic functions. In the null class they also found the Brinkmann

metric. The analysis was further extended in Ref. [65] by the addition of hyperscalars,

which enhance the holonomy of the base manifold in the time-like class from flat to the

full SU(2) group. The authors found that the spatial spin connection is the pullback

of the SU(2) connection of the quaternionic Kähler manifold which is the target of

the hyperscalars. This result is very closed to what we shall show about the N = 1,

d = 5 theory coupled to hyperscalars.

Recently, it has appeared [66] a further classification in the gauged N = 2, d = 4

theory, based on the method of the spinorial geometry [67], in which the supersym-

metric solutions are rigorously classified according to the amount of supersymmetry

preserved.

The earliest complete classification in six dimensions was achieved in Ref. [68]

(see also Ref. [69]) finding all the supersymmetric solutions of the minimal super-

gravity. Six dimensions are special for supersymmetric solutions since there is only

the null class. Cariglia and Conamhna achieved the characterization of the U(1) and

SU(2)-gauged N = (1, 0) theory. Later on the coupling to vector-, tensor- and hy-

permultiplets was analyzed in Ref. [70]. In particular, this work is closely related

to our analysis in five dimensional theories since any u-independent six-dimensional

configuration can be reduced to a time-like class configuration.

In seven dimensions Cariglia et al. [71] achieved the characterization of the time-

like class in the minimal ungauged and SU(2)-gauged Supergravity.

In ten and eleven dimensions the program is much more involved. In Refs. [72,73]

the method of the spinor bilinears was used to classify some of the supersymmetric

solutions of eleven dimensional supergravity. In particular the authors of Ref. [73]

characterized the supersymmetric solutions of the null class. On the other hand,

Papadopoulos et al. [67] proposed the method of spinorial geometry to deal with

supersymmetric solutions of eleven dimensional supergravity. The method has been

also used in ten dimensional type IIB backgrounds [74–76] and recently the complete

characterization of type I backgrounds has been achieved [77].

We devoted this Thesis to two important theories of supergravity in four and five

dimensions. We also use the characterization formalism to gain some insight in the

cosmic censorship conjecture.

The remainder of this Thesis is organized as follows:

1. In chapter 2 we present the Killing spinor identities derived in Ref. [78] and

show how them can be used to relate the equation of motion evaluated on
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supersymmetric configurations.

2. In chapter 3 we perform the characterization of supersymmetric solutions of

ungauged N = 1 supergravity in five dimensions coupled to matter vector- and

hypermultiplets.

3. Chapter 4 deals with the gauged version of the theory analyzed in chapter 3.

4. Chapter 5 deals with the characterization of supersymmetric solutions of pure

N = 4 supergravity in four dimensions.

5. In chapter 6 we present in simple grounds how the supersymmetry can be used

as criterion to elucidate some physical properties of cosmological solutions. With

this analysis we show the practical importance of knowing the characterization

of supersymmetric solutions of supergravity.

6. Finally we point out some conclusions about our results.
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Killing spinor identities

The content of this chapter has been previously published in Ref. [79].

To find supersymmetric solutions of Supergravity it is customary to introduce

first an Ansatz that incorporates the relevant fields and symmetries into the Killing

spinor equations in order to constrain the form of the solution and make sure that the

required amount of supersymmetry will be preserved. Then one still has to solve all the

equations of motion, but this task is usually not too difficult once the supersymmetry

test is passed. It it, however, possible, to use the Killing spinor equations in more

efficient ways, as we are going to see.

For instance, recently, in Ref. [80] it has been proven that, for supersymmetric con-

figurations of massive type IIA supergravity, if the equations of motion and Bianchi

identities are satisfied for all the p-form potentials and the dilaton, then the Einstein

equations (and also the dilaton equation) are also satisfied, under certain mild con-

ditions. Similar results had been obtained earlier in the context of minimal d = 5

and d = 11 supergravity in Refs. [51, 72, 81]. In this chapter we are going to show

that this result is a simple consequence of the general Killing Spinor Identities de-

rived in Ref. [78]. These identities are relations between equations of motion of the

bosonic fields of supergravity theories and using them we can show that the results

of Refs. [51, 72, 80, 81] hold in any theory of supergravity. These relations are the

reason why supersymmetric solutions depend on a very reduced number of indepen-

dent functions that solve simple equations. The advantage of this method is that it is

conceptually more clear and it does not require the computation of the commutator

of two supercovariant derivatives (the integrability conditions for the Killing spinor

equation), which is often algebraically quite involved.

The Killing Spinor Identities (KSI) of any supergravity theory with bosonic and

fermionic fields φb, φf , and invariant under local supersymmetry transformations δǫφ
b,
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δǫφ
f , can be derived as follows: from the supersymmetry variation of the action of

the theory, which vanishes by hypothesis, we obtain the identity

δǫS =

∫

ddx(S,b δǫφ
b + S,f δǫφ

f ) = 0 . (2.1)

Here S,b(f) are the first variations of the action with respect to the bosonic (fermionic)

fields, i.e. their equations of motion. Summation over the indices b, f is understood.

Strictly speaking, the r.h.s. of this formula is a boundary term odd in fermion fields

which we have assumed vanish on the boundary. This is an acceptable assumption

since we are going to set all the fermionic fields to zero in the end.

Now we vary this equation w.r.t. the fermionic fields and evaluate the expression

for vanishing fermionic fields, getting

{

S,bf2 δǫφ
b + S,b (δǫφ

b),f2 + S,f1f2 δǫφ
f1 + S,f1 (δǫφ

f1),f2
}

φf=0
= 0 . (2.2)

Since the bosonic equations of motion S,b and the supersymmetry variations of the

fermions δǫφ
f are necessarily even in fermions

S,bf2|φf=0 = (δǫφ
f1),f2

∣

∣

φf=0
= 0 , (2.3)

and we are left with only two terms

{

S,b (δǫφ
b),f2 + S,f1f2 δǫφ

f1
}

φf=0
= 0 . (2.4)

This expression is valid for any values of the bosonic fields φb and supersymmetry

parameters ǫ, but it takes a most useful form when we specialize it for supersymmetry

parameters which are Killing spinors which we denote by κ and which satisfy, by

definition, the Killing spinor equation

δκφ
f
∣

∣

φf=0
= 0 . (2.5)

Thus, supersymmetric (i.e. admitting Killing spinors) bosonic configurations sat-

isfy the following Killing Spinor Identities (KSI) found in Ref. [78] that relate their

equations of motion

S,b (δκφ
b),f
∣

∣

φf=0
= 0 . (2.6)

Of course, these equations are a particularly useful subset of the supersymmetric

gauge identities which relate all the equations of motion of a locally supersymmetric

theory, and their content is highly non-trivial even if each term vanishes separately

on-shell. This is the reason behind the well-known fact that supersymmetric solutions
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are given in terms of a very small number of functions that satisfy certain equations:

each equation of motion is a simple combination of the equations satisfied by those

few functions and that is how the equations of motion are related by the KSI, on-

or off-shell. For example, in simple p-brane solutions, all the equations of motion are

proportional to the Laplacian of a single function.

The KSI can be used, for instance, to reduce the number of independent equations

of motion that need to be solved explicitly1 to make sure that a configuration satisfies

them all. Let us consider a few examples.

The action of the bosonic sector of d = 11 supergravity is2

S =

∫

d11x
√

|g|
[

R− 1
2·4!G

2 − 1

(144)2
√

|g|
ǫGGC

]

, (2.7)

and the supersymmetry variations of the bosonic fields are

δǫe
a
µ = − i

2
ǭΓa ψµ ,

δǫCµνρ = 3
2
ǭΓ[µν ψρ] .

(2.8)

Defining

Ea
µ(e) ≡ 1√

|g|
δS

δeaµ

∣

∣

∣

∣

ψ=0

= −2
{

Ga
µ − 1

12

[

GabcdG
µbcd − 1

8
ea
µG2

]}

,

Eµνρ(C) ≡ 1√
|g|

δS

δCµνρ

∣

∣

∣

∣

ψ=0

= 1
3!

[

∇σG
σµνρ − 1

9·27
√

|g|
ǫµνρλ1···λ4γ1···γ4Gλ1···λ4Gγ1···γ4

]

,

(2.9)

we immediately get the KSI of d = 11 supergravity

κ̄
[

Ea
µ(e)γa + 3iEµab(C)γab

]

= 0 . (2.10)

If the equation of motion of the 3-form is satisfied (the Bianchi identity is always as-

sumed to be satisfied in this formalism), then, a bosonic configuration always satisfies

κ̄Ea
µ(e)γa = 0 . (2.11)

1The contracted Bianchi identity ∇µGµν = 0 is used in General Relativity in a similar fashion:

it implies
∑

φb ∇µTµν(φb) = 0 and, given that ∇µTµν(φb) is always proportional to the equation of

motion of the field φb (it only vanishes on-shell), we get a relation between the equations of motion

of all the matter fields φb. For a single minimally-coupled scalar field, for instance, if the Einstein

equation is satisfied, we get (∇2φ)(∇νφ) = 0 and, if ∇νφ 6= 0 we get ∇2φ = 0, and if ∇νφ = 0 we

get the same result.
2Our notation and conventions in this chapter are those of Refs. [82] and [13].
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This is the equation obtained in Ref. [51,72,80,81] by computing the commutator of

two supercovariant derivatives. Now we can follow the reasoning in Refs. [51, 72] to

see under which conditions this equation implies Einstein’s Ea
µ(e) = 0. Multiplying

by iκ on the right, we get

Ea
µV a = 0 , (2.12)

where

V a ≡ iκ̄γaκ , (2.13)

is always a non-spacelike vector. If we multiply by Eb
ν(e)γb and symmetrize in the

free indices we get

Ea
µ(e)Eb

ν(e)ηab = 0 . (2.14)

If V is spacelike, introducing a frame in which e0 = V , Eq. (2.12) implies that all the

components E0
µ(e) vanish3 and Eqs. (2.14) can be seen as positive- or negative-definite

scalar products of vectors and one concludes that Ea
µ(e) = 0.

If V is null, we construct a frame

ds2 = 2e+e− − eiei , i = 1, · · · , 9 . (2.15)

with e+ = V . Now Eq. (2.12) implies that all the components E−
µ(e) vanish and

Eqs. (2.14) imply that E+
i = Ej

i = 0. The only component of the Einstein equation

that one needs to impose independently is E+
+ = 0.

Let us now consider the example directly studied in Ref. [80]: massive type IIA

supergravity. The action of this theory is

S =

∫

d10x
√

|g|
{

e−2φ
[

R− 4 (∂φ)2 + 1
2·3!H

2
]

− 1
2
m2 − 1

4
G(2) 2 − 1

2·4!G
(4) 2

− 1
144

1√
|g|
ǫ
[

∂C(3)∂C(3)B + 1
2
m∂C(3)BBB + 9

80
m2BBBBB

]

}

,

(2.16)

where the field strengths are given by

3In Ref. [80] this condition was imposed by hand. In this case, we see that it follows from

Eq. (2.12). In the null case that we consider next, only part of this condition has to be imposed by

hand.
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H = 3∂B , G(2) = 2∂C(1) +mB , G(4) = 4∂C(3)−4HC(1) +3mBB , (2.17)

and the supersymmetry transformation rules of the bosonic fields are

δǫe
a
µ = −iǭΓaψµ ,

δǫBµν = −2iǭΓ[µΓ11ψν] ,

δǫφ = − i
2
ǭλ ,

δǫC
(1)

µ = −eφǭΓ11

(

ψµ − 1
2
Γµλ

)

,

δǫC
(3)

µνρ = 3eφǭΓ[µν

(

ψρ] − 1
3!
Γρ]λ

)

+ 3C(1)
[µδǫBνρ] .

(2.18)

The equations of motion of the different fields, using the same notation as in the

11-dimensional case, are

Eµν(e) = −2e−2φ
{

Rµν − 2∇µ∇νφ+ 1
4
Hµ

ρσHνρσ − 1
2
e2φ
∑

n=0,2,4
1

(n−1)!
T (n)

µν

}

−1
2
gµνE(φ) ,

E(φ) = −2e−2φ
{

R + 4 (∂φ)2 − 4∇2φ+ 1
2·3!H

2
}

Eµν(B) = −1
2
{∇ρ(e

−2φHρµν) +mG(2)µν + 1
2
G(4)µναβG(2)

αβ

+ 1

2·(4!)2
√

|g|
ǫµνα1···α4β1···β4G(4)

α1···α4G
(4)

β1···β4}

−3Eµνα(C(3))C(1)
α ,

Eµ(C(1)) = ∇νG
(2) νµ + 1

3!
Hα1···α3G

(4)α1···α3µ ,

Eµνρ(C(3)) = 1
3!
{∇σG

(4)σµνρ − 1

3!·4!
√

|g|
ǫµνρα1···α3β1···β4Hα1···α3G

(4)
β1···β4} ,

(2.19)

where T (n)
µν are the energy-momentum tensors of the RR fields:

T (n)
µν = G(n)

µ
ρ1···ρn−1G(n)

νρ1···ρn−1 − 1
2n
gµνG

(n) 2 , (2.20)

and, for n = 0
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T (0)
µν = −1

2
m2gµν . (2.21)

The KSI of (massive) type IIA supergravity associated to the variations with

respect to the gravitino and the dilatino take, then, the form

κ̄
{

Ea
µ(e)Γa + 2Eaµ(B)ΓaΓ11 − ieφEµ(C(1))Γ11

+3iEabµ(C(3))[eφΓab − 2iC(1)
aΓbΓ11]

}

= 0 ,

κ̄{E(φ) + ieφEa(C(1))Γ11Γa − ieφEabc(C(3))Γabc} = 0 .

(2.22)

The second equation tells us that, in presence of some unbroken supersymmetries, if

the equations of motion of the RR potentials are satisfied, then the equation of motion

of the dilaton is automatically solved. If also the equation of motion of the NSNS

2-form is solved, then we get κ̄Ea
µΓa = 0 as in the 11-dimensional case and, following

again the reasoning of Ref. [72] we arrive at the same results.

By now, given that the Vielbein supersymmetry transformation rule always has the

same form, it should be clear that similar results are going to hold in all supergravity

theories.

For the sake of completeness we can also compute the KSI of type IIB supergrav-

ity. The equations of motion can be derived from the non-self-dual (NSD) action of

Ref. [83]

SNSD =

∫

d10x
√

||
{

e−2ϕ
[

R() − 4 (∂ϕ)2 + 1
2·3!H2

]

+1
2
G(1) 2 + 1

2·3!G
(3) 2 + 1

4·5!G
(5) 2 − 1

192
1√
||
ǫ ∂C(4)∂C(2)B

}

,

(2.23)

where the field strengths are given by

H = 3∂B , G(1) = ∂C(0) , G(3) = 3∂C(2) −HC(0) , G(5) = 5∂C(4) − 10HC(2) .

(2.24)

The NSD action has to be supplemented, after variation, with the self-duality of the

5-form field strength

G(5) = ⋆G(5) . (2.25)

The equations of motion that one derives from the NSD action are
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Eµν(e) = −2e−2ϕ
{

Rµν − 2∇µ∇νϕ+ 1
4
Hµ

ρσHνρσ + 1
2
e2ϕ
∑

n=1,3
1

(n−1)!
T (n)

µν

+ 1
4·4!e

2ϕT (5)
µν

}

− 1
2
µνE(ϕ) ,

E(ϕ) = −2e−2ϕ
{

R + 4(∂ϕ)2 − 4∇2ϕ+ 1
2·3!H2

}

,

Eµν(B) = −1
2

{

∇ρ(e
−2ϕHρµν) −G(3)µναG(1)

α − 1
3!
G(5)+µνα1α2α3G(3)

α1α2α3

}

−C(0)Eµν(C(2)) − 3!Eµναβ(C(4))C(2)
αβ ,

E(C(0)) = −
{

∇ρG
(1) ρ + 1

3!
G(3)αβγHαβγ

}

,

Eµν(C(2)) = −1
2
{∇ρG

(3) ρµν + 1
3!
G(5)+µνα1···α3Hα1···α3} ,

Eµ1···µ4(C(4)) = − 1
2·4!{∇ρG

(5) ρµ1···µ4 − 1

(3!)2
√

||
ǫµ1···µ4α1α2α3β1β2β3Hα1α2α3G

(3)
β1β2β3} .

(2.26)

The last equation is automatically satisfied once the self-duality of G(5) is taken into

account, and we will eliminate it from now on. Taking the self-duality of G(5) into

account the equation of B also takes a simpler form:

Eµν(B) = −1
2

{

∇ρ(e
−2ϕHρµν) −G(3)µναG(1)

α − 1
3!
G(5)µνα1α2α3G(3)

α1α2α3

}

−C(0)Eµν(C(2)) .

(2.27)

The supersymmetry variations of the bosonic fields are

δεeµ
a = −iε̄Γaζµ ,

δεϕ = − i
2
ε̄χ ,

δεBµν = −2iε̄σ3Γ[µζν] ,

δεC
(0) = 1

2
e−ϕε̄σ2χ ,

δεC
(2)

µν = 2ie−ϕε̄σ1Γ[µ

(

ζν] − 1
4
Γν]χ

)

+ C(0)δεBµν ,

δεC
(4)

µνρσ = −4e−ϕε̄σ2Γ[µνρ

(

ζσ] − 1
8
Γσ]χ

)

+ 6C(2)
[µνδεBρσ] ,

(2.28)

and the KSI of type IIB supergravity are given by
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κ̄{Eaµ(e)Γa + Eaµ(B)σ3Γa − 2Eaµ(C(2))[e−ϕσ1 − C(0)σ3]Γa} = 0 ,

κ̄{E(ϕ) + iE(C(0))e−ϕσ2 + Eab(C(2))e−ϕσ1Γab} = 0 .

(2.29)

If the equation of C(2) is satisfied, those of the two scalars ϕ,C(0) are automatically

satisfied. Further, if the equation of B is satisfied, we arrive again at κ̄Ea
µ(e)Γa = 0.

Another use (the one originally proposed in Ref. [78]) is to constrain the form of

corrections (due to quantum effects or to the presence of external sources) to super-

symmetric solutions. The main assumption here is that the supersymmetry transfor-

mation rules themselves do not get any corrections. Under these conditions, if the

bosonic fields satisfy now the equations

S,b = Jb , (2.30)

then the sources Jb must satisfy

Jb (δκφ
b),f
∣

∣

φf=0
= 0 . (2.31)

Since the integration of the sources gives the charges of the object that generates the

fields of the solution, the KSI identities give BPS relations between those charges.

Observe that this method does not allow for magnetic sources or charges, since the

Bianchi identities are assumed to hold from the beginning, although perhaps it might

be generalized to overcome this problem.

Let us consider a simple example: N = 2, d = 4 ungauged supergravity. The

action for the bosonic fields gµν , Aµ is

S =

∫

d4x
√

|g| [R− 1
4
F 2] , F = 2∂A , (2.32)

and the supersymmetry variations of the bosonic fields are

δǫe
a
µ = −iǭγaψµ + c.c. ,

δǫAµ = −2iǭψµ + c.c. .

(2.33)

The equations of motion are

Ea
µ(e) = −2{Ga

µ − 1
2

[

FabF
µb − 1

4
ea
µF 2

]

} ,

Eµ(A) = ∇αF
αµ ,

(2.34)
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and the KSI are given by

κ̄{Eaµ(e)γa + 2Eµ(A)} = 0 . (2.35)

These equations lead to relations between sources as those found in Refs. [26] and [84]

in which off-shell configurations of N = 2, d = 4 ungauged and gauged supergravity

were considered.

Observe that, according to the standard argument, in the timelike case, these

equations tell us that one only has to solve the Maxwell equations and Bianchi identi-

ties for the vector field strength in order to have a solution of the full set of equations

of motion, and these equations reduce to just two equations for two real functions

(combined into a complex function thanks to electric-magnetic duality). The same

argument goes through in the gauged case, studied in Refs. [62, 85], where it can be

seen that there are only two equations for two real functions becasue the extra real

function and the equation that it satisfies can be deduced from the other two.

Defining sources for the fields Ea
µ(e) ≡ 2Ta

µ and Eµ(A) = Jµ and multiplying the

KSI by iκ from the right gives

Ta
µ(e)V a + aJµ(A) = 0 , (2.36)

where we have defined the real bilinears

V a = iκ̄γaκ , a = iκ̄κ . (2.37)

Let us now make assume that

1. Our supersymmetric configuration satisfies the condition that all the compo-

nents Ea
0(e), a 6= 0 vanish (which is valid for the kind of static configuration

that we have in mind in this simple example). Then, taking µ = 0 in the above

equation, we get

T0
0(e)V 0 + aJ0(A) = 0 , (2.38)

2. The Killing spinor satisfies a projection condition of the form

(1 ± γ0)κ = 0 . (2.39)

Then, V 0 = ∓a and we get a relation between gravitational and electric sources

T0
0(e) ∓ J0(A) = 0 , (2.40)
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that will give M = |Q| upon integration.

Clearly, similar arguments a and use of projectors lead to the relation between

mass and charge of the M2-brane in 11-dimensional supergravity.
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Supersymmetric solutions of N = 1, d = 5

Supergravity

The content of this chapter has been previously published in Ref. [57].

In this chapter we will extend further the results obtained in ungauged N = 1, d =

5 SUGRA to include, on top of vector multiplets, hypermultiplets. This problem was

considered before by Cacciatori, Celi and Zanon in Refs. [59–61], making progress

towards a full solution of the problem which we present here.

Similar works in 4- and 6-dimensional SUGRAs with 8 supercharges (N = 2, d = 4

and N = (1, 0), d = 6) coupled to vector multiplets and hypermultiplets have been

recently published [65, 70]. As the observant reader will see, there is a staggering

similarity between the results found in those works and the ones presented here. The

reason for this is simply because the hypermultiplets have a very characteristic, and

minimal, way of coupling to the rest of the fields, a coupling that is roughly the same

in the 3 theories with 8 supercharges, wherefore the resulting structures should be

comparable.

3.1 Results

Let us describe the results of this chapter qualitatively: all the supersymmetric solu-

tions can be seen as deformations of supersymmetric solutions with the same electric

and magnetic charges but frozen hyperscalars (which is effectively the same as having

only vector multiplets), which were classified in Ref. [52]. The effect of defrosting the

hyperscalars is an electric and magnetic charge preserving deformation of those solu-

tions; the deformations consist in a deformation of the base space in the timelike case
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and of the wavefront space in the null case. To be more precise, in the timelike case,

the metrics of all the supersymmetric solutions have the general conformastationary

form

ds2 = f 2 (dt+ ω)2 − f−1hmndx
mdxn . (3.1)

hmn is the time-independent base space metric and when dealing with frozen hyper-

multiplets, it has to be hyper-Kähler. The metric, with f = 1 and ω = 0 and vanishing

matter fields is a supersymmetric solution by itself and can be seen as a background

which is excited when electric and magnetic charges are turned on. The functions

f and ω are essentially determined by the electric and magnetic charges and satisfy

covariant differential equations in the base space.

When the hyperscalars are turned on hmn is no longer a hyper-Kähler manifold:

the form of this metric is dictated by two requirements

1. The hyperscalars qX(x) are quaternionic maps1 from the base space to the

quaternionic-Kähler target manifold.

2. The anti-selfdual part of the spin connection of the base manifold has to be

equal (up to gauge transformations) to the pullback of the su(2) connection

characterizing the quaternionic-Kähler target manifold.

These two conditions are interwoven but, as we will show in an explicit example, can

be solved simultaneously.

Now, the metric, with f = 1 and ω = 0, vanishing vector multiplets but unfrozen

hyperscalars is a supersymmetric solution by itself and can be seen as a background

which is excited when electric and magnetic charges are turned on. The functions f

and ω satisfy the same covariant differential equations as before but in the new base

space metric.

These solutions generically preserve only 1/8 of the available 8 supersymmetries.

In the null case, the metric is generically of the form

ds2 = 2fdu(dv +Hdu+ ω) − f−2γrsdx
rdxs , (3.2)

where r, s = 1, 2, 3 and all functions are v-independent. The functions f andH and the

1-form ω depend on the electric and magnetic charges and satisfy differential equations

in the background of the 3-dimensional wavefront metric γrs. When the hyperscalars

are frozen, this metric is flat; when they are turned on, the 3-dimensional metric is

1Please see the discussion after Eq. (3.74) for more information about the notion of quaternionic

maps.
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determined by exactly the same two conditions that the base space of supersymmetric

solutions of N = 2, d = 4 SUGRA coupled to hypermultiplets satisfy, namely

1. The hyperscalars must satisfy

∂rq
X fX

iA σri
j = 0 . (3.3)

2. The spin connection of the 3-dimensional metric must be equal (up to gauge

transformations) to the pull-back of the the su(2) connection that characterizes

the quaternionic-Kähler target manifold.

This suggests a relation with the 4-dimensional solutions. We thus consider the

particular case in which the metric has an additional isometry and is, in particular,

u-independent. It is not difficult to see that in general the solutions of the null case

describe pp-waves propagating along a string. Solutions which are u-independent can

be compactified along the direction in which the wave propagates, i.e. along the string

and give solutions belonging to the 4-dimensional timelike class, i.e. black hole-type

solutions.

This set of 5-dimensional solutions and their reductions are presented here for the

first time and allow an uplifting of 4-dimensional black-hole-type solutions (with or

without hypermultiplets) to d = 5 dimensions different from the one considered in

Refs. [86–92]. There, 4-dimensional black holes were uplifted to 4-dimensional black

holes in a KK monopole background. Here we are dealing with the electric-magnetic

dual uplift since the simplest 5-dimensional pp-wave and the Sorkin-Gross-Perry KK

monopole [93, 94] are related by dimensional reduction to d = 4 dimensions and 4-

dimensional electric-magnetic duality, the 4-dimensional solution being the so-called

“KK black hole”, which in this simple case is singular. This relation is known in

the general case under the name of “r-map”, whence the r-map will relate these new

string-pp-wave upliftings2 to the known black hole-KK monopole upliftings.

This uplift may be more convenient to understand the black hole solutions from

a higher-dimensional point of view since they are direct realizations of the D1-D5-W

model. It may shed light on Mathur’s conjecture [96,97] on the realization of D1-D5-W

microstates as supergravity solutions [98–104]

For the sake of completeness we have also worked out the timelike case with

one additional isometry as, with frozen hyperscalars, all of the interesting solutions

(supersymmetric rotating black holes and black rings [105]) seem to belong to this

class [51, 106, 107]. The base space manifold is now a generalization of the Gibbons-

Hawking instanton metric [108]. The Gibbons-Hawking instanton metric is the most

2A particular case of this kind of uplifting was also observed in Ref. [95], although the 5-

dimensional solutions were interpreted as rotating strings.
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general 4-dimensional hyper-Kähler metric with one isometry and can be used as a

base space metric hmn in absence of hyperscalars. It has the form

ds2
(4) = H−1(dz + χ)2 +Hδrsdx

rdxs , r, s = 1, 2, 3 , (3.4)

where H is a function harmonic on 3-dimensional Euclidean space.

In presence of unfrozen hyperscalars the metric to be considered is

ds2
(4) = H−1(dz + χ)2 +Hγrsdx

rdxs , r, s = 1, 2, 3 , (3.5)

where the spin connection of the 3-dimensional metric γrs has to be equal (up to gauge

transformations) to the pullback of the su(2) connection of the hyperscalar manifold.

3.2 Matter-coupled, ungauged N = 1, d = 5 supergravity

In this section we describe briefly the supergravity theories we will be working with:

N = 1, d = 5 (minimal) ungauged supergravity coupled to nv vector multiplets and

nh hypermultiplets3.

The supergravity multiplet consists of the graviton eaµ, the graviphoton Aµ and

the gravitino ψiµ. The gravitino and the rest of spinors in the theory are pairs of

symplectic-Majorana spinors i = 1, 2 as explained in Appendix B.2.1.

Each of the nv vector multiplets, labeled by x = 1, · · · , nv consists of one real

vector field Axµ, a real scalar φx and a gaugino λxi. The scalars φx, parametrize a

Riemannian manifold which we call ”the scalar manifold”. The full theory is formally

invariant under an SO(nv + 1) symmetry that mixes the matter vectors Axµ with the

supergravity vector Aµ ≡ A0
µ and so it is convenient to treat all the vector fields on

the same footing denoting them by AIµ I = 0, · · · , nv. The symmetry that rotates

the vectors acts on the scalars as well and, to make it manifest one defines nv + 1

functions of the physical scalars hI(φ). These functions satisfy the constraint

CIJKh
IhJhK = 1 , (3.6)

where CIJK is a fully symmetric real constant tensor which characterizes completely

the couplings in the vectorial sector. In particular it determines the metric of the

3We follow essentially the notation and conventions of Ref. [109] with some minor changes to

adapt them to those in Refs. [110, 111]. The original references on matter-coupled N = 1, d = 5

SUGRA are [112] and [113]. The origin of these theories from compactifications of 11-dimensional

supergravity on Calabi-Yau 3-folds was studied in Ref. [114].
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scalar manifold gxy(φ) on the target of φx, the couplings between scalars and vector

fields aIJ(φ) and the coupling constants of the vector field Chern-Simons terms. The

relations between these fields are given in the Appendix D.1.

Each of the nh hypermultiplets consists of four real scalar-fields (hyperscalars)

qX , X = 1, · · · , 4nh and two spinor fields (hyperinos) ζA, A = 1, . . . , 2nh. The in-

dex i associated to the symplectic-Majorana condition is embedded into the index A.

The hyperscalars qX parametrize a quaternionic-Kähler manifold, described in Ap-

pendix D.2, that we will refer to as the hypervariety. In particular we observe that the

connection of quaternionic-Kähler manifolds can be decomposed in an sp(1) ≃ su(2)

and an sp(nh) component whose pullback to spacetime will act on objects with index

i and A, respectively.

The bosonic part of the action is

S =

∫

d5x
√
g
{

R + 1
2
gxy∂µφ

x∂µφy + 1
2
gXY ∂µq

X∂µqY

−1
4
aIJF

I µνF J
µν + 1

12
√

3
CIJK

εµνρσα√
g
F I

µνF
J
ρσA

K
α

}

.

(3.7)

Observe that the hyperscalars do not couple to any of the fields in the vector

multiplets and couple to the supergravity multiplet only through the metric. This is

similar to what happens in N = 2, d = 4 theories and will have similar consequences.

We use the following notation for the equations of motion

Eaµ ≡ − 1

2
√
g

δS

δeaµ
, Ex ≡ − 1√

g

δS

δφx
, EX ≡ − 1√

g

δS

δqX
, EIµ ≡ 1√

g

δS

δAIµ
, (3.8)

which are given by

Eµν = Gµν − 1
2
aIJ
(

F I
µ
ρF J

νρ − 1
4
gµνF

I ρσF J
ρσ

)

+1
2
gxy
(

∂µφ
x∂νφ

y − 1
2
gµν∂ρφ

x∂ρφy
)

+1
2
gXY

(

∂µq
X∂νq

Y − 1
2
gµν∂ρq

X∂ρqY
)

, (3.9)

gxyEy = Dµ∂
µφx + 1

4
gxy∂yaIJF

I ρσF J
ρσ , (3.10)
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gXY EY = Dµ∂
µqX , (3.11)

EIµ = ∇ν(aIJF
J νµ) + 1

4
√

3
CIJK

εµνρσα√
g
F J

νρF
J
σα . (3.12)

To these definitions we add the following notation for the Bianchi identities of the

vector fields:

BIµνρ ≡ 3∇[µF
I
νρ] . (3.13)

In these equations Dµ is the covariant derivative in the spacetime and in the

corresponding scalar manifold. Then, Eq. (3.11) states that q is a harmonic map from

spacetime to the hypervariety.

The supersymmetry transformation rules for the fermionic fields, evaluated on

vanishing fermions, are

δǫψ
i
µ = Dµǫ

i − 1
8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) ǫ
i , (3.14)

δǫλ
ix = 1

2

(

6∂φx − 1
2
hxI 6F I

)

ǫi , (3.15)

δǫζ
A = 1

2
fX

iA 6∂qXǫi , (3.16)

where Dµ is the Lorentz- and SU(2)-covariant derivative

Dµǫ
i ≡ ∇µǫ

i + ǫjAj
i
µ , (3.17)

and the su(2) connection is the pullback of the su(2) connection of the hypervariety:

A
r
µ ≡ ∂µq

X ωX
r , Aj

i = iAr σrj
i . (3.18)

Observe that the hyperscalars only appear in the gravitino’s and gauginos’ super-

symmetry transformation rules precisely through the su(2) connection.

Finally, the supersymmetry transformation rules of the bosonic fields are

δǫe
a
µ = i

2
ǭiγ

aψiµ , (3.19)

δǫA
I
µ = − i

√
3

2
hI ǭiψ

i
µ + i

2
hIxǭiγµλ

x i , (3.20)
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δǫφ
x = i

2
ǭiλ

x i , (3.21)

δǫq
X = −ifiAX ǭiζA . (3.22)

3.3 KSIs and integrability conditions

The bosons’ supersymmetry transformation rules lead to the following KSIs [78, 79]

associated to the gravitino, gauginos and hyperinos resp.:

(

Eµνγν +
√

3
2
hIEI µ

)

ǫi = 0 , (3.23)

(

Ex − hIx 6 EI
)

ǫi = 0 , (3.24)

fiA
XEXǫi = 0 . (3.25)

It is an implicit assumption, used to derive the KSIs, that the Bianchi identities are

satisfied. This affects, in particular, the first two KSIs, where the vector field equations

appears. It is, therefore, useful to derive them from the integrability conditions of the

KSEs, even if the derivation requires much more work, because in this case, contrary

to what happens in N = 2, d = 4 theories [63], there is no electric-magnetic symmetry

indicating in what combination the Bianchi identities should accompany the Maxwell

equations.

The integrability condition of the KSE associated to the gravitino supersymmetry

transformation gives

4γνD[µδǫψ
i
ν] =

{(

Eµσ − 1
3
gµ

σ Eρρ
)

γσ

+ 1
4
√

3
hI
[

γµ
(

6 EI + 1
6
aIJ 6 BJ

)

+ 3
(

6 EI + 1
6
aIJ 6 BJ

)

γµ
]

}

ǫi = 0 .

(3.26)

To obtain this equation we need to use Eqs. (D.30)-(D.32), with ν = −1 as to

ensure the correct normalization of the hyperscalars’ energy-momentum tensor. It is

a well-known result that manifolds with the opposite sign of ν cannot be coupled to

supergravity and here we are just recovering this result.

Acting with γµ from the left, we get
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[

Eρρ +
√

3
2
hI(6 EI − 1

3
aIJ 6 BJ)

]

ǫi = 0 , (3.27)

which can be used to eliminate Eρρ from the integrability equation:

[(

Eµσ +
√

3
2
hI

⋆BIµσ
)

γσ +
√

3
2
hIEI µ

]

ǫi = 0 . (3.28)

On the other hand, from the gauginos’ supersymmetry transformation rule we get

2 6Dδǫλix =
[

Ex − hIx
(

6 EI + 1
6
aIJ 6 BJ

)]

ǫi = 0 . (3.29)

Eqs. (3.28) and (3.29) are the modifications to the two KSIs Eq. (3.23) and

Eq. (3.24) that we were seeking for.

Let us now obtain tensorial equations form the spinorial KSIs: acting with iǭiγρ
from the left on Eq. (3.28) and taking into account the properties of the spinor bilinears

discussed in Appendix B.2.2, we get

f
(

Eµρ +
√

3
2
hI

⋆BIµρ
)

+
√

3
2
hIEI µVρ = 0 , (3.30)

whose symmetric and antisymmetric parts give independent equations.

Doing the same on Eqs. (3.29) and (3.25), we get

ExV ρ − fhIxEIρ = 0 , (3.31)

EXV ρ = 0 . (3.32)

Finally, acting with iǭi on Eqs. (3.28), (3.29) and (3.25) from the left we get respec-

tively

(

Eµρ +
√

3
2
hI

⋆BIµρ
)

V ρ +
√

3
2
fhIEI µ = 0 , (3.33)

fEx − hIxEI ρV ρ = 0 , (3.34)

EXf = 0 . (3.35)

which can be obtained from Eqs. (3.30)-(3.32) only in the timelike f 6= 0 case.

Summarizing, in the timelike case, defining the unimodular timelike vector vµ ≡
V µ/f , we have
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Eµν = −
√

3
2
hIEI (µvν) , (3.36)

hI
⋆BI µν = −hIEI [µvν] , (3.37)

Ex = hIxEIρvρ , (3.38)

EX = 0 , (3.39)

which imply that all the supersymmetric configurations automatically solve the equa-

tion of motion of the hyperscalars and that, if the Maxwell equations are satisfied,

then the Einstein and scalar equations and the projections hIBI of the Bianchi iden-

tities are also satisfied. Therefore, in the timelike case, the necessary and sufficient

condition for a supersymmetric configuration to also be a solution of the theory, is

that it must solve the Maxwell equations and the Bianchi identities. Observe that,

contrary to the 4-dimensional cases in which only one component of the Maxwell

equations and Bianchi identities (the time component) need to be checked because

the rest are automatically satisfied, in this 5-dimensional case we need to check all

the components of the Maxwell equations and of the Bianchi identities.

In the null (f = 0) case, we get, renaming V µ as lµ

Eµρlρ = −
√

3
2
hI

⋆BIµρlρ , (3.40)

hIEI µ = 0 , (3.41)

hIxEI ρlρ = 0 , (3.42)

Ex = 0 , (3.43)

EX = 0 , (3.44)

which imply that the scalar and hyperscalars equations are automatically satisfied

and so are certain projections of the Maxwell and Einstein equations.
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3.4 Supersymmetric configurations and solutions

3.4.1 General setup and first results

In this section we will follow the procedure of Ref. [51] to obtain supersymmetric

configurations of supergravity, which consists in deriving equations for all the bilinears

that can be constructed from the Killing spinors. These equations contain the lion’s

part of the information contained in the KSEs and can be used to constrain the form

of the bosonic fields. These constraints are necessary conditions for the configurations

to be supersymmetric and subsequently one has to prove that they are also sufficient

(or find the missing conditions, as will happen in the null case). Finally one has

to impose the equations of motion on the supersymmetric configurations in order to

have classical supersymmetric solutions. The KSIs, derived in the previous section,

simplify this task since only a small number of equations of motion are independent

for supersymmetric configurations.

As we remarked in section 3.2, the hyperscalars appear only implicitly in the grav-

itino and gauginos supersymmetry transformations through the pullback of the su(2)

connection. The equations we are going to obtain for the fields in the supergravity

and vector multiplets are, therefore, formally identical to the case without hypermul-

tiplets considered in Ref. [53], but containing implicitly the su(2) connection and its

consequences. This is similar to what happens in the coupling of N = 2, d = 4 theories

to hypermultiplets considered only recently in Ref. [65]

Our goal is to find all the field configurations for which the KSEs

{

Dµ − 1
8
√

3
hIF

I αβ (γµαβ − 4gµαγβ)
}

ǫi = 0 , (3.45)

(

6∂φx − 1
2
hxI 6F I

)

ǫi = 0 , (3.46)

fX
iA 6∂qXǫi = 0 , (3.47)

admit at least one solution ǫi. We are going to assume its existence and we are

going to derive necessary conditions for this to happen. These conditions will arise as

consistency conditions of the equations satisfied by the tensors that can be constructed

as bilinears of the Killing spinor whose existence was assumed from the onset.

As explained in Appendix (B.2.2), the tensor-bilinears that can be constructed

from a symplectic-Majorana spinor are a scalar f , a vector V and three 2-forms Φr.

f and V are SU(2)-singlets whereas the Φs form an SU(2)-triplet.
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The fact that the Killing spinor satisfies Eq. (3.45) leads to the following differential

equations for the bilinears:

df = 1√
3
hIiV F

I , (3.48)

∇(µVν) = 0 , (3.49)

dV = − 2√
3
fhIF

I − 1√
3
hI

⋆
(

F I ∧ V
)

, (3.50)

DαΦ
r
βγ = − 1√

3
hIF

I ρσ
(

gρ[β
⋆Φr

γ]ασ − gρα
⋆Φr

βγσ − 1
2
gα[β

⋆Φr
γ]ρσ

)

, (3.51)

where

DαΦ
r
βγ = ∇αΦ

r
βγ + 2εrstAsαΦ

t
βγ . (3.52)

These equations are formally identical to those obtained in Ref. [53] but now the

covariant derivative that acts on the triplet of 2-forms is an SU(2)-covariant derivative.

Eqs. (3.46) and (3.47) lead to algebraic equations for the tensor bilinears: con-

tracting Eq. (3.46) with iǭi and σri
j ǭj we get

£V φ
x = 0 , (3.53)

hxIF
I
αβΦ

r αβ = 0 , (3.54)

and the contraction of Eq. (3.47) with iǭk yields

£V q
X = 0 . (3.55)

Contracting now Eq. (3.46) with iǭiγ
µ and σri

j ǭjγ
µ we get

fdφx = −hxI iV F I , (3.56)

0 = Φr
µν∂

νφx + 1
4
εµναβγh

x
IF

I ναΦr βγ , (3.57)

and, finally, operating on Eq. (3.47) with ǭkγ
µ

f∂µq
X + Φr

µ
ν∂νq

Y JrY
X = 0 , (3.58)
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where we have identified the complex structures of the target quaternionic-Kähler

manifold,

JrY
X = fY

iA
J
r
iA
jBfjB

X . (3.59)

Eq. (3.49) says that V is an isometry of the space-time metric. The differential

equation of Φr (3.51) implies

dΦr + 2εrstAs ∧ Φt = 0 , (3.60)

i.e. the three 2-forms are covariantly closed respect to the induced su(2) connection.

In order to make further progress, it is necessary to separate the timelike (f 6= 0)

and null (f = 0) cases.

3.4.2 The timelike case

The equations for the bilinears

In this case the Killing vector V is a timelike, V 2 = f 2 > 0. We introduce an

adapted time coordinate t: V = ∂t. With this choice of coordinates the metric can be

decomposed in the following way

ds2 = f 2 (dt+ ω)2 − f−1hmndx
mdxn , (3.61)

where ω is a time-independent 1-form and hmn is a time-independent Riemannian

four-dimensional metric.4 Eqs. (3.48),(3.53) and (3.55) imply that with our choice of

coordinates the scalars f , φx and qX are time-independent.

Following Ref. [51] we define the following decomposition

fdω = G+ +G− , (3.62)

where G+ and G− are the selfdual and anti-selfdual parts respect to the metric h.

The Fierz identity Eq. (B.101) indicates that the Φrs have no time components

and the Fierz identity Eq. (B.102) implies that they are anti-selfdual respect to the

spatial metric h. Moreover, the identity Eq. (B.103) becomes

Φr
m
nΦs

n
p = −δrsδmp + εrstΦt

m
p , (3.63)

4Appendix C.3 contains a Vielbein basis and the non-vanishing components of the connection

and Ricci tensor in that basis.
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where all operations on the spatial indices refers to the spatial metric h. This is the

algebra of the imaginary unit quaternions, whence we may conclude that the spatial

manifold is endowed with an almost quaternionic structure.

The next step is to obtain the form of the supersymmetric vector fields from

Eqs. (3.48), (3.50), (3.54) and (3.56): these equations contain no explicit contributions

from the hyperscalars and, therefore lead to the same form of the vector fields found

in Ref. [53], namely

F I = −
√

3{d
[

fhI (dt+ ω)
]

+ ΘI} , (3.64)

where the ΘIs are spatial selfdual 2-forms and

G+ = −3
2
hIΘ

I . (3.65)

From (3.51) information about the derivatives of the two-forms Φr can be extracted

using the above expression for F I : first, by introducing the spin connection of the

metric given in Appendix C.3 we may obtain the spatial components of the five-

dimensional covariant derivative,

∇(5)
m Φr

nq = f 3/2∇mΦnq− 2
3

(

δm[n∂p]f
3/2Φr

pq − δm[q∂p]f
3/2Φr

pn − ∂mf
3/2Φr

nq

)

, (3.66)

where ∇m is the covariant derivative of the four-dimensional spatial metric. On the

right hand side of this expression all of the flat indices refers to the Vielbein vm
i. On

the other hand, the spatial components of the equation (3.51) are

∇(5)
m Φr

nq+2f 3/2εrstAsmΦt
nq = − 1√

3
fhIF

I p0
(

δp[nΦ
r
q]m − δpmΦr

nq − δm[nΦ
r
q]p

)

(3.67)

where we have used the fact that Φr are spatial, anti-selfdual 2-forms. Now from

Eq. (3.64) we read

hIF
I p0 =

√
3f−1/2∂pf (3.68)

and by comparing Eqs. (3.66) and (3.67) we find that the 2-forms Φr are SU(2)- and

Lorentz-covariantly constant over the 4-dimensional spatial manifold:

∇mΦr
np + 2εrstAsmΦt

np = ∂mΦr
np − 2ξm[n|

qΦr
q|p] + 2εrstAsmΦt

np = 0 , (3.69)

Here ξ is the standard spin connection of the 4-dimensional spatial manifold.
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Had the base space not been 4-dimensional, the conclusion would have been that

we are dealing with a quaternionic-Kähler manifold. But in four dimensions the

above equation, taken at face value, is rather void: given a Vierbein we can construct

a kosher quaternionic structure by inducing the one from R
4 and then the unique A

solving Eq. (3.69), is given by

A
r
m = 1

16
εrts Φt

p
n ∇mΦs

n
p . (3.70)

In the case at hand, however, said arbitrariness is nothing but an illusion since the

connection A is the one induced from an sp(1) connection on a quaternionic-Kähler

manifold and is therefore not to be chosen but to be deduced. At this point one can

then already appreciate the interwoven nature of the problem: Since the quaternionic

structure on the 4-dimensional space is basically known, Eq. (3.69) determines, part

of, the spin connection in terms of the pull-back of an sp(1) connection. This pull-

back, however, is defined by means of a harmonic map satisfying Eq. (3.58), which

presupposes knowing the Vierbein, and hence also the spin connection.

A ‘trivial’ solution to the requirement that the hyperscalars form a harmonic map

satisfying Eq. (3.58), is to take them to be constant: Eq. (3.69) then states that

Φ defines a covariantly constant hypercomplex structure, so that the 4-dimensional

manifold has to be hyper-Kähler, and we recover the results of [51, 53]. As is well-

known the holonomy of a 4-dimensional hyper-Kähler space is su(2) ⊂ so(4), and in a

suitable frame the spin connection can be taken to be selfdual. The technical reason

why the spin connection can be taken to be selfdual lies in the fact that the Φs are

anti-selfdual and that the split into anti- and selfdual components corresponds to the

Lie algebraic split so(4) ∼= su(2)+ ⊕ su(2)−; if we then take the Φs to be induced

from the ones on R
4, called J, and denote the projection of the spin connection onto

su(2)± by ξ±, then Eq (3.69) can be expressed as [ξ−m, J
r] = 0, which immediately

implies ξ− = 0.

In the general case there will still be no constraint on ξ+, but we can solve equation

(3.69) to give

ξ−m n
q = −~Am · ~Jnq , (3.71)

where as above, we made use of the quaternionic structure induced from flat space.

In the above we were able to match things up without much ado, since the relevant

su(2)s both acted in the vector representation. When considering the Killing spinor

equation, however, the representations do not add up that nicely, and one finds that

a necessary condition for having unbroken supersymmetry is that the generators of

su(2) and su(2)− should have identical actions on the Killing spinors, i.e.
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ǫj iσrj
i = 1

4
J
r
mnγ

mn ǫi , (3.72)

and these conditions will appear as projectors Πr+
i
j acting on the Killing spinors,

where

Πr±
i
j = 1

2

[

δ ± i
4
6J(r)σ(r)

]

i
j . (3.73)

In principle we only need to impose one such constraint for each non-trivial component

A
r.

The last constraint on the bosonic fields comes from Eq. (3.58). In the timelike

case this equation is purely spatial and in 4-dimensional notation reads

∂mq
X = Φr

m
n ∂nq

Y JrY
X . (3.74)

This condition implies that q is what Ref. [115] calls a quaternionic map. In said

reference it is shown that a quaternionic map between hyper-Kähler manifolds implies

that the map is harmonic, i.e. it solves

Dµ∂
µ qX = 0 . (3.75)

Here, however, we are not dealing with maps between hyper-Kähler manifolds, yet

the KSIs state that q is automatically harmonic. The question then is: Apart from

being quaternionic, what properties must q satisfy in order to be harmonic?

Let us be a bit more general and consider the situation in which the sp(1) connec-

tion A appearing in Eq. (3.69) is not the pull-back of the sp(1) connection, denoted

B, defined on the hypervariety. By then differentiating Eq. (3.74), using Eqs. (3.69)

and the formulas in App. (D.2), we obtain

Dm∂nq
X = −2εstr

[

A
s
n − ∂nq

Z
B
s
Z

]

Φt
m
p∂pq

Y JrY
X

+Φr
n
p Dm∂pq

y ~JrY
X .

(3.76)

Contracting the free indices, we find that

Dm∂
mqX = 2εstr

[

A
s
m − ∂mq

Z
B
s
Z

]

Φt nm∂nq
Y JrY

X . (3.77)

In our case, we have A = dq · B whence the fact that q is a quaternionic map, by

itself, implies that it is harmonic.

Therefore, supersymmetric configurations of the hyperscalars consist of quater-

nionic maps q such that the su(2)− connection of the 4-dimensional space manifold is

canceled by the pullback of the one on the hypervariety.
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In the next section we are going to check whether the conditions that we have

derived on the fields are sufficient to have unbroken supersymmetry, i.e. identically

solve the KSEs.

Solving the Killing spinor equations

We begin with Eq. (3.46), from the gaugino supersymmetry transformation. After

use of the expression of the vectorial fields Eq. (3.64), it can be put in the form

(

2 6∂φx −
√

3
2

6ΘI
)

R−ǫi = 0 , (3.78)

where we have defined the projectors R±

R± ≡ 1
2

(

1 ± γ0
)

. (3.79)

Obviously, this equation can always be solved by imposing the projection

R−ǫi = 0 , (3.80)

which is equivalent to a chirality condition on the spinors over the spatial manifold

due to the relation γ0 = γ1234. R+ and R− have rank 2 and therefore this projection

breaks/preserves 1/2 of the original supersymmetries.

Now we analyze Eq. (3.47), from the hyperinos supersymmetry transformations.

Using Eq. (3.74) we can rewrite it in the form

fX
jA 6∂qX

[

3δj
i + i

4

∑

r

6J(r)σ(r)
j
iγ0

]

ǫi − γmJ
r
mn∂nq

Y JrY
XfX

iAR−ǫi = 0 , (3.81)

which can be solved by imposing the projection Eq. (3.80) and

Πr+
j
iǫj = 0 , (3.82)

where the Πr±
j
is are the objects defined in Eq. (3.73). The Πr+

j
i satisfy the algebra

Πr+Πs+ = 1
2
Πr+ + 1

2
Πs+ − 1

2
εrstΠt+ − 1

4
δrsR− , (3.83)

and are idempotent (and, therefore, projectors) only in the subspace of spinors satis-

fying the projection Eq. (3.80).

Observe that, in principle, we need to impose the three projections r = 1, 2, 3 on

the Killing spinors. The above algebra shows that only two of them are independent
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and it is easy to see that they preserve only 1/4 of the supersymmetries preserved by

the projection Eq. (3.80), i.e. only 1/8 of the supersymmetries is generically preserved

in presence of non-trivial hyperscalars.

We turn now to Eq. (3.45) from the gravitino supersymmetry transformation. We

consider separately the timelike and spacelike components of this equation. By using

the spin connection of the five-dimensional metric Eqs. (C.17) and the expression of

the vector fields Eq. (3.64), the timelike component takes the form

∂0ǫ
i +
[

2 6∂f 1/2 − 1
4
f
(

1 − 1
3
γ0
)

6G+ − 1
4
f 6G−]R−ǫi = 0 , (3.84)

which is automatically solved by time-independent Killing spinors satisfying the pro-

jection Eq. (3.80).

The space-like components of Eq. (3.45) take, after use of Eq. (3.80), the form

∇mη
i + ηjAmj

i = 0 , ηi ≡ f−1/2ǫi . (3.85)

To solve this equation, the quaternionic nature of the 4-dimensional spatial man-

ifold comes to our rescue: in the special Vierbein basis and SU(2) gauge in which

Eq. (3.71) holds, the 2-forms Φr
mn are the constants J

r
mn. Using this splitting, the

above equation takes the form

∇+
mη

i + i A
r
m

(

σrj
i + i

4
6Jrδj i

)

ηj = 0 , ∇+
mη

i = (∂m + 1
4
6ξ+

m)ηi . (3.86)

Using the projections Eq. (3.82) for each non-vanishing component of the pull-back

of the su(2) connection A
r
X∂mq

X we are left with

∇+
mη

i = 0 , (3.87)

which is solved by constant spinors that satisfy the projection Eq. (3.80), i.e. if they

are chiral in the 4-dimensional spaces of constant time.

It should be clear from the discussion of the gravitino variations, that, for some

configurations, not all of the projections Π need be imposed, e.g. when turning on

only an u(1) in su(2)−. The analysis of Eq. (3.81), however, indicates that still all 3 of

the projections ought to be implemented. This is true if we disregard the possibility

of a special coordinate dependency of the quaternionic map. As an extreme example

we have the case with frozen hyperscalars which effectively is like not having them at

all. A less-trivial example to this effect is fostered by the trivial uplift of the c-mapped

cosmic string analyzed in [65, Sec. (4.4)], in which case the map is holomorphic.5

5In fact, part of Chen and Li’s article [115] consists of showing that there are quaternionic maps

between hyper-Kähler manifolds that are not holomorphic w.r.t. some complex structure.
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Supersymmetric solutions

In Section 3.3 we proved that timelike supersymmetric configurations solve all the

equations of motions if they solve the Maxwell equations and Bianchi identities which

we rewrite here in differential form language for convenience:

4⋆EI = −d⋆
(

aIJF
J
)

+ 1√
3
CIJKF

J ∧ FK , (3.88)

BI = dF I . (3.89)

We may evaluate these expressions for supersymmetric configurations using the

formula (3.64). The result is

E0
I = −

√
3

2
f 2
[

∇2
(4) (hI/f) − 1

4
CIJKΘJ · ΘK

]

, (3.90)

EmI = −2
√

3f 3/2CIJKh
J(⋆(4)dΘ

K)m , (3.91)

(

⋆BI
)

0m = −
√

3f 3/2(⋆(4)dΘ
I)m . (3.92)

where, as usual, all the objects in the r.h.s. of the equations are written in terms

of the 4-dimensional spatial metric h. The components
(

⋆(4)BI
)mn

vanish identically,

and it is immediate to see that the KSI Eq. (3.37) is satisfied.

Then, the supersymmetric solutions have to satisfy only these two equations:

∇2
(4) (hI/f) − 1

4
CIJKΘJ · ΘK = 0 , (3.93)

dΘI = 0 , (3.94)

which are identical to those found in Ref. [53] in absence of hypermultiplets, the

difference being the quaternionic nature of the 4-dimensional space.

3.4.3 Some explicit examples

In the recent paper Ref. [70] Jong, Kaya and Sezgin gave an explicit example with non-

trivial and not-obviously-holomorphic hyperscalars taking values in the symmetric
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space H4 = SO(4, 1)/SO(4). In this section we are going to use the same set-up

to find 5-dimensional supersymmetric solutions and discuss the possible gravitational

effects.

The four coordinates of the target are denoted by qX , X = 1, . . . , 4, and take the

metric on the hypervariety to be

gX Y = Λ2δXY , Λ(q2) =
1

1 − q2
, q2 ≡ qXqX ≤ 1 . (3.95)

As one might have suspected this metric is Einstein, and since the space is conformally

flat, it is also trivially selfdual, meaning that we are really dealing with an authentic

4-dimensional quaternionic-Kähler manifold.

A Vierbein for this metric is

EX = ΛδXY dqY , EX = Λ−1δX
Y ∂

∂qY
. (3.96)

In both the coordinate and the Vierbein basis the three complex structures are

given by the ’t Hooft symbols ρrXY (= J
r
XY ), which are real, constant and antisym-

metric matrices in the X,Y indices. Moreover they are anti-selfdual6 and satisfy

ρrXY ρsY Z = −δrs δXZ + ǫrst ρtXZ , (3.97)

ρrXY ρrWZ = δXW δY Z − δXZ δYW − ǫXYWZ . (3.98)

The anti-selfdual part of the spin connection is

ω−XY = 2
(

q[XEY ] − 1
2
ǫXYWZqWEZ

)

, (3.99)

where qX ≡ δXY qY .

In order to construct the hyperscalars, we assume that also the base manifold is

conformally flat, i.e.

hmndx
mdxn = Ω2dxmdxm , Ω = Ω(x2) , x2 ≡ xmxm , (3.100)

and thence take the Vierbein on the base manifold to be

V m = Ωδmmdx
m , Vm = Ω−1δm

m∂m . (3.101)

6They can be seen as the three anti-selfdual combinations of generators of so(4), i.e. the generators

of the su(2)
−

subalgebra.
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In this basis we can identify the complex structures of the base manifold with

those of the hypervariety

J
r
m
n = δm

XJrX
Y δnY = ρrmn . (3.102)

The anti-selfdual part of the spin connection on the base manifold is

ξ−mn = 2
Ω′

Ω2

(

x[mV n] − 1
2
ǫmnpqxpV q

)

(3.103)

where xm = δmm xn.

Now we analyze the conditions for supersymmetry on the hyperscalars qX . The

first condition is that they must constitute a quaternionic map, i.e. Eq. (3.74),

w.r.t. the chosen quaternionic structures. In our setting this equations takes the form

∂mq
X = (δmY δnX − δmXδnY − ǫmnY X) ∂nq

Y (3.104)

whose symmetric and antisymmetric parts give

∂mq
m = 0 , (3.105)

∂[mqn] = −1
2
ǫmnpq∂pqq , (3.106)

where qm = qm.

A solution to these equations is

qm = xm x−4 , (3.107)

where we have chosen a possible multiplicative constant to be unity.

The second condition on the hyperscalars states that the anti-selfdual part of the

spin connection of the base manifold must be related to the su(2) connection induced

from the target,

ξ−mn
p = −~Am ·~Jnp , (3.108)

~Am ≡ ∂mq
X ~ωX , (3.109)

where ~ωX is the su(2) connection of the target. We observe that the reasoning leading

to the relation (3.108) can be applied on the target manifold as well,7, where the

7Indeed it can be applied in any four-dimensional Riemannian manifold.
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involved connections are ωXY and ~ωX and therefore we may establish the following

relation on the target

ω−
XY

Z = −~ωX · ~JY
Z . (3.110)

By contrasting Eqs. (3.108)-(3.110) we conclude that in our settings the anti-selfdual

part of the spin connection of the base manifold is induced from the one of the hy-

pervariety,

ξ−m
np = ∂mq

Xω−
X
Y ZδY Z

np . (3.111)

This condition is satisfied if

Ω′

Ω
=

1

x2 (x6 − 1)
. (3.112)

The solution to this equation is

Ω =
(

1 − x−6
)1/3

, (3.113)

where, as above, we chose a certain multiplicative integration constant. We would like

to point out that in this case the whole spin connection on the base manifold, rather

than only its anti-selfdual part, is induced by the connection on the hypervariety.

A small investigation of the curvature invariants for the metric on the base space,

shows that the point x2 = 1 corresponds to a naked curvature singularity.

We have, thus, found the following 1/8 BPS, static, asymptotically flat, spherically

symmetric, solution with only unfrozen hyperscalars in the SO(1, 4)/SO(4) coset:

ds2 = dt2 −
(

1 − 1

x6

)2/3

dxmdxm ,

qm =
xm

x4
,

(3.114)

which, as was said above, presents a naked singularity at x2 = 1. Since there are

no conserved charges in this system, the no hair conjecture suggests that black-hole

type (i.e. spherically symmetric) solutions of this and similar systems will always be

singular, but a more detailed study is needed to reach a final conclusion since they may

be excluded by a mechanism like the one discussed in Ref. [116–118]. Furthermore, a

higher-dimensional stringy interpretation of this, and similar solutions, is also needed

as to interpret this singularity correctly.
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As a further example let us now consider how solutions of minimal N = 1, d = 5

SUGRA8 are deformed by the coupling to these hyperscalars. For the sake of simplicity

we consider the simplest static (Θ = ω = 0) solution which is determined, according

to Eq. (3.93), by a single function f−1 = K which is harmonic w.r.t. the metric on

the base manifold. The supersymmetric solution can be written as

ds2 = K−2 dt2 − K

(

1 +
λ

x6

)2/3

dxmdxm ,

A = −
√

3 K−1 dt ,

qm =
xm

x4
.

(3.115)

If the harmonic function is chosen as to have an asymptotically flat, spherically

symmetric solution with positive mass, the harmonic function is, with frozen hyper-

scalars,

K = 1 +
|Q|
x2

, (3.116)

and the solution is the 5-dimensional Reissner-Nordström black hole [119] which has

an event horizon at x = 0 that covers all singularities.

When the hyperscalars are unfrozen and we have the above base manifold, K,

determined again by imposing asymptotic flatness and spherical symmetry, is given

by

K = 1 + Q
2F1

(

1
3
, 2

3
; 4

3
; x−6

)

x2
, (3.117)

where 2F1 is a Gauß hypergeometric function. It is easy to see that limx2→∞K = 1

and that 2F1

(

1
3
, 2

3
; 4

3
; x−6

)

/x2 is a real, strictly positive and monotonically decreas-

ing function on the interval x2 ∈ (1,∞). The real question then is: what happens at

x2 = 1? Eq. [120, 15.1.20] gives a straightforward answer

2F1

(

1
3
, 2

3
; 4

3
; 1
)

=
Γ
(

1
3

)

Γ
(

4
3

)

Γ
(

2
3

) ∼ 1.76664 , (3.118)

which implies that there is a naked singularity at x2 = 1.

8In our notation this means that nv = 0, C111 = 1 and h1 = 1.
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Solutions with an additional isometry

To make contact with the families of solutions with one additional isometry found in

Refs. [51,107] we make the following Ansatz for the 4-dimensional spacelike metric

hmndx
mdxn = H−1(dz + χ)2 +Hγrsdx

rdxs , r, s = 1, 2, 3 , (3.119)

where the function H, the 3-dimensional metric γrs, and the 1-form χ = χrdx
r are all

independent of the coordinate z. This Ansatz covers all 4-dimensional metrics with

one isometry. We also require all fields in the solution to be independent of z.

As we have seen, supersymmetry requires the anti-selfdual part of the spin con-

nection of this metric to be identical to the pullback of the su(2) connection of the

hypervariety. With the orientation εz123 = +1 and the Vierbein basis

V z = H−1/2(dz + χ) , V r = H1/2vr , (3.120)

where the vr is the Dreibein for the 3-dimensional metric γrs, the anti-selfdual part

of the spin connection 1-form is given by

ξ− zr = 1
2
H−3/2[∂rH − (⋆̂d̂χ)r]V

z

+1
4
εrstH

−3/2{[∂tH − (⋆̂d̂χ)t]δsu − 2H̟ust}V u ,

(3.121)

where hatted objects refer to the 3-dimensional metric.

Observe that the z-independence of all fields means that the pullback of the su(2)

connection has no z component. Then, the supersymmetry condition Eq. (3.71) leads

to

d̂H = ⋆̂d̂χ , ⇒ ∇̂2H = 0 , (3.122)

which is a condition on the 4-dimensional metric, and

ξ− zs
r = −1

2
εstu ̟r

tu = −2A
s
X ∂rq

X , (3.123)

which is a condition on the hyperscalars and the 3-dimensional metric.

Observe that the above 4-dimensional metric is a generalization of the Gibbons-

Hawking instanton metric [108]. The non-trivial 3-dimensional metric destroys the

selfduality of the connection. However, the generalized metric admits a quaternionic

structure which is the straightforward generalization of that of the Gibbons-Hawking

metric [121] and is, therefore, associated to the three hyper-Kähler 2-forms
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Jr ≡ V z ∧ V r − 1
2
εrstV s ∧ V t . (3.124)

It is trivial to check that they satisfy the quaternionic algebra since the tangent space

components of these 2-forms are identical to those of the Gibbons-Hawking metric

and are proportional to the anti-selfdual generators of SO(4). Unlike the Gibbons-

Hawking case, however, the hyper-Kähler 2-forms are not closed. Instead, a simple

calculation shows that they satisfy

dJr −̟rs ∧ Js = 0 , (3.125)

which, on account of Eq. (3.123), can be written in the form

dJr + 2εrstAs ∧ Js = 0 . (3.126)

Thus, the 4-dimensional metric Eq. (3.119) and hyperscalars subject to Eqs.

(3.122) and (3.123) (plus Eq. (3.74)) are the most general ones associated to su-

persymmetric solutions with one isometry. Using them it can be shown that the

general solutions found in Ref. [107] are formally identical, the only difference being

that the 2n̄+2 harmonic functions KI , LI ,M,H on which these solutions depend, are

harmonic functions w.r.t. the 3-dimensional metric γrs.

To be explicit, in terms of these harmonic functions, the scalars, the closed selfdual

2-forms ΘI , and the 1-form ω take the form

hI/f = CIJKK
JKK/H + LI ,

ΘI = [(dz + χ) ∧ d(KI/H) +H⋆̂d(KI/H)] ,

ω ≡ ω5(dψ + χ) + ω̂ ,

ω5 = M + 3
2
H−1LIK

I +H−2CIJKK
IKJKK ,

⋆(3)dω̂ = HdM −MdH + 3
2
(KIdLI − LIdK

I) .

(3.127)

The function f has to be determined case by case using the constraint CIJKh
IhJhK =

1, but an explicit expression for symmetric spaces is given in Ref. [107]. In the n = 0

case, i.e. only one function K0 ≡ K and one function L0 ≡ L, it is given by

f−1 = K2/H + L . (3.128)

The metric of these solutions can be cast in the form
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ds2 = −k2[dz +B]2

+k−1

[

(

fH−1

(f−1H−1−f2ω2
5)1/2

)

(dt+ ω̂)2 −
(

fH−1

(f−1H−1−f2ω2
5)1/2

)−1

γrsdx
rdxs

]

,

k2 = f−1H−1 − f 2ω2
5 ,

B = χ+ f 2ω5k
−2(dt+ ω̂) .

(3.129)

In this form, comparing with the results of Refs. [63,65] it is easy to see the form of the

N = 2, d = 4 supersymmetric solution that will appear after dimensional reduction.

The metric

ds2 =

(

fH−1

(f−1H−1 − f 2ω2
5)

1/2

)

(dt+ ω̂)2 −
(

fH−1

(f−1H−1 − f 2ω2
5)

1/2

)−1

γrsdx
rdxs ,

(3.130)

is that of a solution in the timelike class, to which all N = 2, d = 4 supersymmetric

black holes belong, and there is an additional scalar (k) and an additional vector field

(B). If the 5-dimensional solution is static ω5 = 0 and the vector field B = χ is

magnetic and corresponds to a KK monopole or a generalization thereof. This fact

has been used in Refs. [86–92] to relate 4- and 5-dimensional black hole solutions.

3.4.4 The null case

Denote the null Killing vector by lµ. Following the same considerations as in Refs. [51,

56], we find that we can choose null coordinates u and v such that

lµdx
µ = fdu , lµ∂µ = ∂v , (3.131)

where f may depend on u but not on v, and the metric can be put in the form

ds2 = 2fdu(dv +Hdu+ ω) − f−2γrsdx
rdxs , (3.132)

where r, s, t = 1, 2, 3 and the 3-dimensional spatial metric γrs may also depend on u

but not on v. Eqs. (3.53) and (3.55) state that the scalars are v-independent.

The above metric is completely equivalent to the one used in Refs. [51, 56], but

we find this form more convenient; a Vielbein, and the corresponding spin connection

and curvature for it are given in Appendix C.4.
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In the null case the Fierz identities (B.101,B.102) and (B.103) imply that the

2-forms bilinears Φr are of the form

Φr = du ∧ vr , (3.133)

where the 1-forms vr are an orthogonal basis for the 3-dimensional spatial metric γrs.

Eq. (3.60) then implies the equation

du ∧Dvr = 0 , (3.134)

i.e. the spatial components of the pullback of the su(2) connection are related to the

spin connection coefficients of the basis vr (computed for constant u) by

̟r
st = 2εstp A

p
X ∂rq

X . (3.135)

This equation is identical to the one found in Ref. [65] in the context of ungauged

N = 2, d = 4 supergravity coupled to hypermultiplets. Actually, substituting the

2-forms we found into Eq. (3.58) we arrive at

∂rq
XfX

iAσri
j = 0 , (3.136)

which is identical to the equation that the hyperscalars have to satisfy in a supersym-

metric configuration of ungauged N = 2, d = 4 supergravity [65]. Observe that the

last two equations together with Eq. (D.30) (for ν = −1) imply that the Ricci scalar

of the 3-dimensional metric γ satisfies

Rrs(γ) = −1
2
gXY ∂rq

X∂sq
Y . (3.137)

Let us now determine the vector field strengths: Eqs. (3.48,3.54) and (3.56) lead

to

lµF I
µν = 0 , (3.138)

and, using the basis given in Appendix C.4, we can write

F I = F I
+re

+ ∧ er + 1
2
F I

rse
r ∧ es = F I

+rdu ∧ vr + 1
2
f−2F I

rsv
r ∧ vs . (3.139)

From Eq. (3.50) we get9

9Unless stated otherwise (as is the case of F I
rs) all quantities with flat spatial indices refer to

the 3-dimensional metric and Dreibein basis.
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hIF
I
rs = −

√
3εrst∂tf , ∂t ≡ vt

s∂s . (3.140)

The same result can be obtained from D ⋆ Φr. From Eq. (3.57) we get

hxIF
I
rs = −εrstf ∂tφx , (3.141)

which, together with the previous equation and the definition of hxI give

f−2 F I
rs =

√
3[⋆̂ d̂(hI/f) ]rs . (3.142)

From the + + r components of Eq. (3.51) we get

hIF
I
+r = − 1√

3
f 2(⋆̂F )r , (3.143)

where

F = d̂ω . (3.144)

The components hxIF
I
+r are not determined by supersymmetry and we parame-

trize them by 1-forms ψI satisfying hIψ
I = 0. In conclusion, the vector field strengths

are given by

F I = [ 1√
3
f 2hI ⋆̂F − ψI ] ∧ du+

√
3⋆̂d̂(hI/f) . (3.145)

Solving the Killing spinor equations

Let us continue our analysis by plugging our configuration into Eq. (3.46): using the

Vielbein, Eq. (3.141) and some Clifford algebra manipulations, we see that

0 = f−1
[

∂uφ
x + hxIψ

I
r γ

r + f2

2
∂tφ

x εtrsγ
rsγ−

]

γ+ǫi , (3.146)

so, if we want the scalars φ and the ψI to be non-trivial, we are forced to impose

γ+ǫi = 0. (3.147)

As is usual in wave-like supersymmetric solutions, the − component of the susy vari-

ation (3.45) is identically satisfied by an v-independent spinor, and the remainder

of the components simplify greatly due to the lightlike constraint: The ones in the

r-directions reduce, after using Eqs. (3.140,3.143), to
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0 = f Drǫ = f
[

∂r − 1
4
̟rstγ

st + i~A · ~σT
]

ǫ

= f
[

∂r + A
p
rγ

p
(

1 − iγp(σ(p))T
) ]

ǫ ,

(3.148)

where in the last step we made use of Eq. (3.135). If we then introduce the projection

operators (no sum over p!)

Πp = 1
2

(

1 − iγp(σ(p))T
)

; Π2
p = Πp ; [ Πp , Πq ] = 0 , (3.149)

the above equation is solved by imposing the condition

Πpǫ = 0 , (3.150)

for every p for which A
p does not vanish, leading to a Killing spinor that can only

depend on u.

Each of the projections given in Eqs. (3.147) and (3.150) breaks/preserve one half

of the supersymmetries. In the general case one must impose the three projections

given in Eq. (3.150). It should be noted that in this case the projection (3.147) is

already implied by the whole system of projections (3.150). Thus we have that the

general supersymmetric configurations preserve 1/8 of the supersymmetries.

The penultimate equation that needs to be checked is the gravitino variation in

the u-direction.

0 = ∂uǫ + 1
4
vr
t∂uvst γ

rsǫ + i~Au ·~σT ǫ = ∂uǫ −
[

A
p
u + 1

4
εprsvr

t∂uvst
]

γpǫ . (3.151)

Generically the factor vr
t∂uvst is spacetime dependent, which, in order to avoid

an inconsistency with the x-independency of the Killing spinor, means that we must

have

A
p
u = −1

4
εprs vr

t ∂uvst . (3.152)

A consequence of this analysis is that the Killing spinor is constant.

Eq. (3.47) is the only one left to be analyzed. In fact it is straightforward to

see that, given the constraints obtained thus far, Eq. (3.47) is tantamount to (3.136)

contracted with ǫj. In order to get this far, however, one has to make use of all the

constraints, meaning that if we do not want even more constraints, Eq. (3.136) must

hold.
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Equations of motion

In the null case, the KSIs contain far less restrictive information than in the timelike

case, and as one can see from Eqs. (3.40)-(3.44), there are more equations of motion

to be checked.

In order to get on with the show, let us analyze the gauge sector: the non-vanishing

components of the Bianchi identities are immediately found to be

⋆BI +− =
√

3f 3∇̂2(hI/f) , (3.153)

f−1⋆BI −r = [⋆̂d̂( 1√
3
f 2hI ⋆̂F − ψI)]r +

√
3
[

⋆̂∂u⋆̂d̂(h
I/f)

]

r
, (3.154)

and the Maxwell equations take the form

4⋆EI = −
√

3du ∧
{

fd̂hI ∧ F + 1√
3

[

d̂(⋆̂ψI/f) − 2CIJKψ
J ∧ ⋆̂d̂(hK/f)

]}

, (3.155)

and satisfy the KSIs Eqs. (3.41) and (3.42).

Eq. (3.153) is solved by n̄ ≡ nv + 1 harmonic10 functions KI :

hI/f = KI , ∇̂2 KI = 0 , (3.156)

KI 6= 0, which, as in the timelike case, determines f to be

f−3 = KIK
I , KI ≡ CIJKK

J KK . (3.157)

Since the KI are harmonic, we may introduce n̄ local, 3-dimensional 1-forms αI =

αIr(u, ~x)dx
r which satisfy

d̂αI = ⋆̂d̂KI , (3.158)

such that each αI is determined, up to a 3-dimensional gradient, in terms of KI and

γ. This gauge freedom will be relevant soon.

Eqs. (3.154) become

d̂ψI = 1√
3
d̂
(

f 2hI ⋆̂F
)

+
√

3d̂α̇I , (3.159)

where α̇ ≡ α̇Ir dx
r. The general, local solution to this equation is

10In this section, harmonic means harmonic on the 3-dimensional Euclidean space with metric γ.
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ψI = 1√
3
f 2hI ⋆̂F + d̂M I +

√
3α̇I , (3.160)

where the M Is are some functions. The constraint h · ψ = 0 implies

1√
3
f 2⋆̂F + hI d̂M

I +
√

3hIα̇
I = 0 . (3.161)

Due to the relation F = d̂ω, the above is the equation that, if we manage to fix the

Ms, will determine ω.

Plugging Eq. (3.160) into the Maxwell equations we see that

∇̂2LI +
√

3CIJK

[

∇̂r

(

KJ α̇K
)

r
+ ∂rK

J
(

α̇K
)

r

]

= 0 , (3.162)

where we have defined the combinations

LI ≡ CIJK KJ MK . (3.163)

At this point we take advantage of the gauge freedom of (3.158) in order to simplify

the Maxwell equations: fix the gauge by imposing

CIJK

[

∇̂r

(

KJ α̇K
)

r
+ ∂rK

J
(

α̇K
)

r

]

= 0 , (3.164)

thus determining αI completely in terms of the KI and γ. In this gauge the functions

LI are harmonic,

∇̂2 LI = 0 , (3.165)

and we determine the functions M I in terms of the harmonic functions KI and LI by

Eq. (3.163).

Another advantage of the above gauge is that the equation for ω, Eq. (3.161),

takes on the rather nice form:

⋆̂d̂ω =
√

3
(

LIdK
I − KIdLI

)

− 3KIα̇
I . (3.166)

In the analysis of the Einstein equations it is useful to perform the following change

of variables

H = −1
2
LIM

I + N . (3.167)

With this redefinition E++ becomes
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E++ = −f∇2N + f
[

∇r(ω̇)r + 3(ω̇)r∂r log f + 1
2
f−3(γ̈)rr + 1

4
f−3(γ̇)2 − 3

2
f−4ḟ(γ̇)rr

−3CIJKK
I
(

K̇JK̇K + (α̇J)r(α̇
K)r + 2√

3
(α̇J)r∂rM

K
)

+ 12f 3
(

KIK̇
I
)2

+1
2
f−3gXY q̇

X q̇Y
]

. (3.168)

In general there is a gauge freedom in setting the one-form ω given in (3.166),

corresponding to shifts in the coordinate v. If we choose to fix this gauge freedom by

demanding

∇r(ω̇)r + 3(ω̇)r∂r log f = −1
2
f−3(γ̈)rr − 1

4
f−3(γ̇)2 + 3

2
f−4ḟ(γ̇)rr − 1

2
f−3gXY q̇

X q̇Y

+3CIJKK
I
(

K̇JK̇K + (α̇J)r(α̇
K)r + 2√

3
(α̇J)r∂rM

K
)

−12f 3
(

KIK̇
I
)2

, (3.169)

then E++ vanishes identically if N is a real, harmonic function. E+r becomes

E+r = −1
2
∇s(γ̇)rs + 1

2
∂r(γ̇)ss + 3

2
f 3K̇I∂rK

I + 1
2
gXY q̇

X∂rq
Y , (3.170)

whereas Ers is identically satisfied by the configuration as we have it.

u-independent solutions

The equations that need to be solved, simplify greatly if we consider the case that

the solutions do not depend on the coordinate u: in that case the gauge-fixings

Eqs. (3.164,3.169) and the remaining equation of motion, Eq. (3.170), vanish identi-

cally, meaning that now the solutions are completely determined by the hyperscalars,

the 3-dimensional metric and the 2n̄ + 1 real, harmonic functions LI , K
I and N .

Given these ingredients, in order to fully specify the solution we need calculate f , H,

ω and ψI through the following, simplified equations.
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f−3 = KI K
I , LI = CIJKK

J MK ,

H = −1
2
LI M

I + N , ⋆̂d̂ω =
√

3
[

LI d̂K
I − KI d̂LI

]

,

hI(φ) = f KI , ψI = f 3KI(LJ d̂K
J −KJ d̂LJ) + d̂M I .

(3.171)

Solutions that belong to this family, but depending on a smaller number of har-

monic functions have been given e.g. in Refs. [55,122–124].

Apart from being one of the nicest subclasses of solutions, the u-independent one

becomes doubleplus interesting when we observe that if we reduce a solution in the

null class over the spacelike direction
√

2y = u − v, which implies u-independence,

we end up with a solution in the timelike class of N = 2 d = 4 SUGRA. In fact,

comparing the constraints in this section with the ones in [65, Sec. (5)], one finds the

same constraints on the hyperscalars and the 3-dimensional metric.

The metric Eq. (3.132) can be put in an y-adapted system, and one finds

ds2 = −k2[dy + A]2 + k−1

[

(

f3

1−H

)1/2

(dt+ 1√
2
ω)2 −

(

f3

1−H

)−1/2

γrsdx
rdxs

]

,

k2 = (1 −H)f ,

A = −(1 −H)−1(Hdt+ 1√
2
ω) .

(3.172)

The 4-dimensional solutions can be easily read from these. Apart from the scalar

k and the vector field A, which is purely electric if the 5-dimensional solution is static

(ω = 0), the metric takes the form

ds2 =

(

f 3

1 −H

)1/2

(dt+ 1√
2
ω)2 −

(

f 3

1 −H

)−1/2

γrsdx
rdxs , (3.173)

and belongs to the N = 2, d = 4 timelike class to which all black-hole-type solutions

belong in d = 4.

This 4-dimensional solution should be compared to the one in Eq. (3.129), which

is the one one obtains when imposing an extra isometry on the four dimensional

spacelike manifold in the timelike case. the main difference between them is the

electric or magnetic nature of the KK vector field. In the simplest case this solutions

would give a 4-dimensional electric KK black hole and the other one a 4-dimensional
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magnetic KK black hole, related by 4-dimensional electric-magnetic duality, as we

discussed in the introduction.





4

Supersymmetric solutions of gauged
N = 1, d = 5 Supergravity

The content of this chapter has been previously published in Ref. [58].

In the simplest cases (ungauged supergravities coupled to vector multiplets) the

equations that have to be solved are uncoupled, typically linear, and can be solved in a

systematic way. We can then construct supersymmetric solutions for those theories in

a systematic way. The coupling to hypermultiplets [57,65,70] introduces new equations

which, not only are non-linear but are coupled and have to be solved simultaneously.

In particular one finds supersymmetry implies that the hyperscalar functions have to

solve a nonlinear equation and, at the same time, they must be such that the pullback

of the quaternionic SU(2) connection is gauge equivalent to the anti-selfdual part of

the spin connection of the base space. Finding base spaces and hyperscalars that

satisfy these two conditions is highly non-trivial and it is not known how to do it

systematically. Still, once those two conditions are solved, the remaining equations

are linear and uncoupled (Laplace equations for independent functions on the base

space).

As we are going to see, the introduction of non-Abelian gaugings leads to yet more

non-linear and coupled equations. This was to be expected since, for instance, the

requirement of having unbroken supersymmetry in Euclidean d = 4 super-Yang-Mills

theories still leaves us with non-linear equations to be solved, namely finding gauge

potentials that give self- or anti-self-dual field strengths. In the case that we are

going to study, timelike supersymmetry implies that the hyperscalar functions have

to solve a nonlinear equation which involves, not only the hyperscalars, but the gauge

potentials and the scalars belonging to the vector multiplets which, at the same time,

must satisfy other equations. Simultaneously, the hyperscalar functions must be such

that the covariant pullback of the quaternionic SU(2) connection is gauge equivalent
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to the anti-selfdual part of the spin connection of the base space. This is another

condition that involves the hyperscalars, the gauge connection and the base space

metric.

Our results are, thus, less satisfactory than in the simplest cases, even if they are

complete characterizations of the necessary and sufficient conditions for any field con-

figuration to be a supersymmetric solution. Constructing supersymmetric solutions of

these theories is a difficult problem even though we know the minimal set of equations

that should be solved1.

4.1 N = 1, d = 5 supergravity with gaugings

In this section we are going to briefly describe the action, equations of motion and

supersymmetry transformation rules of gauged N = 1, d = 5 supergravities [112,113],

which we take from Ref. [109], relying in the description of the ungauged theories

given in Ref. [57], whose conventions we follow. Appendix E contains a description

of the gauging of the isometries of the scalar manifolds of the theory in which the

definitions of the covariant derivatives D, gauge transformations and momentum map
~PI can be found.

The bosonic action of N = 1, d = 5 gauged supergravity is given by

S =

∫

d5x
√
g
{

R + 1
2
gxyDµφ

xDµφy + 1
2
gXYDµq

XDµqY + V(φ, q) − 1
4
aIJF

I µνF J
µν

+ 1
12

√
3
CIJK

εµνρσα√
g

(

F I
µνF

J
ρσA

K
α − 1

2
gfLM

IF J
µνA

K
ρA

L
σA

M
α

+ 1
10
g2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
α

)

}

,

(4.1)

where

V(φ, q) = g2
(

4CIJKh
I ~P J · ~PK − 3

2
hIhJkI

XkJ
Y gXY

)

, (4.2)

is the potential for the scalars. In the limit of pure supergravity, nH = nV = 0, V
becomes a cosmological constant.

The equations of motion, for which we use the same notation as in Ref. [57], are

1A solutions could be immediately constructed, though, by dimensionally reducing the 6-

dimensional dyonic string of Ref. [70].
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Eµν = Gµν − 1
2
aIJ
(

F I
µ
ρF J

νρ − 1
4
gµνF

I ρσF J
ρσ

)

+1
2
gxy
(

Dµφ
xDνφ

y − 1
2
gµνDρφ

xDρφy
)

+1
2
gXY

(

Dµq
XDνq

Y − 1
2
gµνDρq

XDρqY
)

− 1
2
gµνV , (4.3)

gxyEy = DµD
µφx + 1

4
∂xaIJF

I ρσF J
ρσ − ∂xV (4.4)

gXY EY = DµD
µqX − ∂XV , (4.5)

EIµ = DνFI
νµ + 1

4
√

3

εµνρσα√
g
CIJKF

J
νρF

K
σα + g

(

kI xD
µφx + kI XDµqX

)

.

(4.6)

The supersymmetry transformation rules for the fermionic fields, evaluated on

vanishing fermions, are

δǫψ
i
µ = Dµǫ

i − 1
8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) ǫ
i + 1

2
√

3
ghIγµǫ

jPI j
i , (4.7)

δǫλ
ix = 1

2

(

6Dφx − 1
2
hxI 6F I

)

ǫi + ghxI ǫ
jP I

j
i , (4.8)

δǫζ
A = 1

2
fX

iA
(

6DqX +
√

3ghIkI
X
)

ǫi . (4.9)

The supersymmetry transformation rules of the bosonic fields are exactly the same

as in the ungauged case [57]. This implies that the form of the Killing spinor identities

(KSIs) relating the bosonic equations of motion that one can derive from them [78,79]

have the same form as in the ungauged case, given in [57], although the equations of

motion are now those given above, which differ from those of the ungauged case by

g-dependent terms.

Apart from the identities derived in Ref. [57] we have found that, in the null case,

there are additional identities that were overlooked in that reference. We will discuss

them in Section 4.2.2.
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4.2 Supersymmetric configurations and solutions

Following the standard procedure, we assume that the KSEs

Dµǫ
i − 1

8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) ǫ
i + 1

2
√

3
gγµǫ

jhIPI j
i = 0 , (4.10)

(

6Dφx − 1
2
hxI 6F I

)

ǫi + 2gǫjhxIP
I
j
i = 0 , (4.11)

fX
iA
(

6DqX +
√

3ghIkI
X
)

ǫi = 0 , (4.12)

admit at least one solution ǫi and we start deriving from them the equations satisfied

by the tensor bilinears that can be constructed from the Killing spinor: the scalar f ,

the vector V (both SU(2) singlets) and the three 2-forms Φr, which form an SU(2)-

triplet.

The fact that the Killing spinor satisfies Eq. (4.10) leads to the following differential

equations for the bilinears:

df = 1√
3
hIiV F

I , (4.13)

∇(µVν) = 0 , (4.14)

dV = − 2√
3
fhIF

I − 1√
3
hI ⋆

(

F I ∧ V
)

− 2√
3
ghI ~PI · ~Φ , (4.15)

Dα
~Φβγ = − 1√

3
hIF

I ρσ
(

gρ[β ⋆ ~Φγ]ασ − gρα ⋆ ~Φβγσ − 1
2
gα[β ⋆ ~Φγ]ρσ

)

+ 1√
3
ghI

(

~PI × (⋆~Φ)αβγ + 2gα[βVγ] ~PI

)

, (4.16)

where

Dα
~Φβγ = ∇α

~Φβγ + 2 ~Bα × ~Φβγ . (4.17)

The differential equation for Φr (4.16) implies

dΦr + 2εrstBs ∧ Φt =
√

3ghIǫrstP s
I ⋆ Φt . (4.18)

The fact that the Killing spinor satisfies Eqs. (4.11) and (4.12) leads to the follow-

ing algebraic equations for the tensor bilinears:
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V µDµφ
x = 0 , (4.19)

hxIF
I
αβ
~Φαβ = 4gfhxI ~P

I , (4.20)

V µDµq
X = −

√
3gfhIkI

X , (4.21)

fDµφ
x − hxIF

I
µνV

ν = 0 , (4.22)

~ΦµνD
νφx + 1

4
ǫµναβγh

x
IF

I να~Φβγ = −2ghxI ~P
IVµ , (4.23)

fDµq
X + Φr

µ
νDνq

Y JrY
X = −

√
3ghIkI

XVµ . (4.24)

We are now ready to extract consequences of these equations. To start with,

Eq. (4.14) says that V is an isometry of the space-time metric. It is convenient to

partially fix the G gauge using the condition

iVA
I +

√
3fhI = 0 , (4.25)

since then Eqs. (4.21) and (4.19) become just

LV qX = LV φx = 0 , (4.26)

after use of the explicit expression of the Killing vectors kI
x Eq. (E.6). Then, in this

gauge, the scalars qX , φx and f are independent of the coordinate adapted to the

isometry (see Eq. (4.13).

We now consider separately the timelike (f 6= 0) and null (f = 0) cases.

4.2.1 The timelike case

The equations for the bilinears

By definition this is the case in which V µ is timelike, V 2 = f 2 > 0. Introducing an

adapted time coordinate t: V = ∂t the metric can be written in the same form as in

the ungauged case:

ds2 = f 2 (dt+ ω)2 − f−1hmndx
mdxn , (4.27)
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with ω and hmn independent of time. As we mentioned in the previous section, in the

(partially) fixed G-gauge (AI t = −
√

3fhI) f, φx and qX are also time-independent.

The spatial metric hmn is endowed with an almost quaternionic structure, Φr
m
n.

This is an algebraic property that only depends on the Fierz identities.

The next step is to obtain the form of the supersymmetric vector field strength

from Eqs. (4.13), (4.15), (4.20) and (4.22). In order to write the result it is convenient

to split the gauge potential AI into an electric part, which is determined by the partial

gauge fixing AI t = −
√

3fhI and a magnetic part ÂI with only spatial components

AI = −
√

3hIe0 + ÂI , (4.28)

AIm = ÂIm −
√

3fhIωm . (4.29)

Observe that, unlike the spatial components AIm, the components ÂIm are invari-

ant under local shifts of the time coordinate: t→ t+ δt(x), ω → ω− dδt(x) which do

not change the form of the metric and, in particular, leave the 4-dimensional metric

hmn invariant. It is the correct 4-dimensional potential in the Kaluza-Klein sense.

In terms of the new variables ÂI the field strengths are given by

F I = −
√

3 D̂(hIe0) + F̂ I , (4.30)

where D̂ is the 4-dimensional spatial covariant derivative2 with respect to ÂI and F̂ I

is the non-Abelian field strength of ÂI and it is related to ω and the scalars by

hIF̂
I+ = 2√

3
(fdω)+ , (4.31)

F̂ I− = −2gf−1CIJKhJ ~PK · ~Φ . (4.32)

F̃ I+ is related to the 2-forms called ΘI in the ungauged case [51,56,57] by

ΘI = − 1√
3
F̂ I+ . (4.33)

It is also convenient to introduce the spatial SU(2) connection ~̂B

2Strictly speaking the action of a 4-dimensional spatial covariant derivative on e0 which contains

dt is not well-defined. It is understood that D̂(fdt) = D̂f ∧ dt.
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~̂B ≡ ~A+ 1
2
gÂI ~PI , (4.34)

~B = −
√

3
2
hI ~PIe

0 + ~̂B , (4.35)

and extend the definition of D̂m as the spatial G- and SU(2)-covariant derivative made

from the hatted connections ÂI and ~̂B, including also the affine and spin connections

of the base spatial manifold.

The Eq. (4.24) is purely spatial in the timelike case and it becomes, in 4-dimensio-

nal notation3

D̂mq
X = Φr

m
n D̂nq

Y JrY
X . (4.36)

We notice that this equation, even though it is written in terms of covariant deriva-

tives, imposes no integrability condition on the gauge connections. That is, as equa-

tion for qX it has always local solution for any given vector fields ÂI .

Projecting this equation along the Killing vectors kI yields an important relation,

kI XD̂mq
X = −2~Φm

nD̂n
~PI . (4.37)

This projection is the one which appears in the Maxwell equations (4.6).

Let us study the differential equations for the two-forms ~Φ. The projection of

Eq. (4.18) along V says that they are time-independent in the gauge (4.25):

∂t~Φmn = 0 . (4.38)

The components of Eq. (4.16) can be explicitly evaluated using the 5-dimensional

metric Eq. (4.27) and the expression for the field strengths Eq. (4.30). Only the spatial

components of the 5-dimensional covariant derivative give new information:

D̂m
~Φnp = 0 . (4.39)

This is a condition for the anti-self-dual part of the spin connection ξ of the base

spatial manifold. Indeed we can solve for ξ− in an arbitrary frame and SU(2) gauge:

ξ−mnp = − ~̂Bm · ~Φnp − 1
4
∂m~Φnq · ~Φqp , (4.40)

where we have used the (Fierz) identity

3From now on spatial flat indices refer to the 4-dimensional spatial metric hmn.



84 Chapter 4. Supersymmetric solutions of gauged N = 1, d = 5 Supergravity

~Φmn · ~Φpq = δmpδnq − δmqδnp − ǫmnpq . (4.41)

The meaning of relation (4.40) becomes clearer in a frame and SU(2) gauge in which

the ~Φs are constant: the SU(2) connection ~̂B is embedded into the anti-self-dual part

of the spin connection of the base manifold. The same happenend in the ungauged

case [57] and, again, this embedding requires the action of the SU(2) generators in

the fundamental and spinorial representation on spinors to be identical, i.e.

ǫj i~σj
i = 1

4
~Jmnγ

mn ǫi , (4.42)

and these conditions will appear as projectors

Πr±
i
j = 1

2

[

δ ± i
4
6J(r)σ(r)

]

i
j , (4.43)

acting on the Killing spinors.

It is interesting to study the integrability condition of Eq. (4.39), which is

[

1
4
R−

mnkl
~Φkl + ~Rmn( ~̂B)

]

× ~Φpq = 0 , (4.44)

where ~Rmn( ~̂B) is the curvature of ~̂B, which is given by

~Rmn( ~̂B) = D̂mq
XD̂nq

Y ~RXY (~ω)+ 1
2
gF̂ I

mn
~PI = −1

4
D̂mq

XD̂nq
Y ~JXY + 1

2
gF̂ I

mn
~PI , (4.45)

hence the integrability condition yields

R−
mnkl

~Φkl − D̂mq
XD̂nq

Y ~JXY + 2gF̂ I
mn
~PI = 0 . (4.46)

We stress that this condition is equivalent to Eq. (4.40).

Now if we contract this expression with ~Φpn we can compare it with Eq. (E.27)

and doing so we obtain an expression involving the Ricci tensor of the spatial metric

hmn

Rmn(h) = −1
2
D̂mq

XD̂nq
Y gXY + 2g2f−1CIJKhI ~PJ · ~PKδmn + gF̂ I+

mp
~Φpn · ~PI , (4.47)

where we have used again the identity (4.41), and consequently the Ricci scalar

R(h) = −1
2
D̂mq

XD̂mq
Y gXY + 8g2f−1CIJKhI ~PJ · ~PK . (4.48)
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In the ungauged case the Eq. (4.47) says that the Ricci tensor of the spatial metric

hmn is proportional to the induced metric

Rmn(h) = −1
2
∂mq

X∂nq
Y gXY . (4.49)

On the other hand in the gauged case we can solve the Eq. (4.48) for f ,

f = (8g2CIJKhI ~PJ · ~PK)/(R(h) + 1
2
D̂mq

XD̂mq
Y gXY ) . (4.50)

Solving the Killing spinor equations

We are now going to prove that the necessary conditions for having unbroken super-

symmetry that we have derived in the previous section are also sufficient. Thus, we

are going to assume that we have a configuration with a metric of the form Eq. (4.27),

a non-Abelian gauge potential of the form Eq. (4.28) with a field strength of the form

Eq. (4.30) satisfying Eqs. (4.31) and (4.32), and hyperscalars such that Eqs. (4.36)

and (4.40) are satisfied.

Substituting these expressions in the KSE associated to the gaugino SUSY trans-

formation rule Eq. (4.11), and expressing all terms in 4-dimensional language we get

f 1/2
(

2 6D̂φx −
√

3
2
f 1/2hxI 6Θ̃I+

)

R−ǫi + 2ghxI ~P
I ·
(

i~σj
i − 1

4
6~Φδj i

)

ǫj = 0 . (4.51)

where

R± ≡ 1
2

(

1 ± γ0
)

, Πr±
j
i ≡ 1

2

(

δ ± i
4
6Φ(r)σ(r)

)

j
i . (4.52)

The projections

~Π+
j
iǫj = 0 , R−ǫi = 0 , (4.53)

are sufficient to solve it. All of them are necessary in the general case but in particular

cases in which the coefficients of the projectors in the above and following equations

vanish, only some of them may be necessary. The discussion is entirely analogous to

that of the ungauged case [57].

Substituting now in Eq. (4.12) we get

fX
iA{f 1/2 6D̂qXǫi + 2

√
3ghIkI

XfX
iAR−}ǫi = 0 . (4.54)

The last term vanishes with the second projection of Eqs. (4.53). On the other hand,

from Eq. (4.36) we can derive the identity
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fX
iA 6D̂qXR+ = −fXjA 6D̂qX

∑

r

(

Πr+ − Πr−)
j
i . (4.55)

Acting on ǫi and imposing again the projections (4.53) we see that it leads to

fX
iA 6D̂qXǫi = −3fX

iA 6D̂qXǫi ⇒ fX
iA 6D̂qXǫi = 0 . (4.56)

Hence the hyperino KSE (4.54) is also solved.

is automatically satisfied by constant Killing spinors upon the use of the projec-

tions Eqs. (4.53).

Finally, the spatial components of the same equation take, using R−ǫi = 0, the

form

∇mη
i + ηjCmj

i = 0 , ηi ≡ f−1/2ǫi . (4.57)

Using the relation (4.40) and the projections, it becomes

∂mη
i + 1

16
∂m 6Φj

iηj = 0 , (4.58)

where Φi
j = i~σi

j · ~Φ.

The solution of this equation is given in terms of the path-ordered exponential

ηi(x, x0) = P exp



− 1
16

x
∫

x0

dxm1 ∂m 6Φj
i(x1)



 ηj0 , (4.59)

where ηi0 is a constant spinor, or in a frame and SU(2) gauge where ~Φ is constant, it

is just the constant spinor ηi0.

The analysis of the amount of unbroken supersymmetry is identical to that of the

ungauged case [57].

Supersymmetric solutions

As we discussed at the end of Section 4.1, the KSIs of the gauged theories have the

same form as those of the ungauged ones, which are given in Ref. [57]. There it was

proven that timelike supersymmetric configurations solve all the equations of motions

if they solve the Maxwell equations. We are now going to impose those equations on

the supersymmetric configurations. It is possible to show that the Bianchi identities

imply the spatial components of the Maxwell equations for supersymmetric configu-

rations using Eq. (4.37)
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EIm = 2CIJKh
J(⋆DFK) 0m . (4.60)

Thus we only need to impose the time component of the Maxwell equations on the

supersymmetric configurations. This equation takes the form

D̂2 (hI/f)− 1
12
CIJKF̂

J · F̂K + 2√
3
CIJKh

J F̂K ·G− +2g2f−2gXY kI
XkJ

Y hJ = 0 , (4.61)

where

G ≡ fdω . (4.62)

This is the only equation that has to be solved if we have a configuration which

we know is supersymmetric and admits a gauge potential. It differs from that of the

ungauged case in the gauge-covariant derivatives and in the last two terms. The first

of these is implicitly first-order in g, due to Eq. (4.32) and the second one is manifestly

second-order in g.

Constructing a supersymmetric configuration is, now, considerably more complex

than in the ungauged or Abelian-gauged cases and it seems not possible to give an

algorithm which automatically returns supersymmetric configurations. At any rate,

a possible recipe to construct a supersymmetric configuration of a given N = 1, d = 5

gauged supergravity theory is the following.

1. The objects that have to be chosen are

(a) The 4-dimensional spatial metric hmn(x) and an almost complex structure
~Φmn. The former determines the anti-selfdual part of its spin connection:

ξ−mnp.

(b) A spatial 1-form ωm.

(c) The 4nH hyperscalar mappings qX(x) from the 4-dimensional spatial man-

ifold to the quaternionic-Kähler manifold. They determine the (pullbacks

of) the momentum map4 ~PI and the SU(2) connection ~Am = ∂mq
X~ωX

(d) A spatial vector gauge potential ÂIm. It determines the spatial gauge field

strength F̂ I
mn and, together with the pullback of the SU(2) connection

~Am and the momentum map, it determines the spatial SU(2) connection

~̂B whose definition we rewrite here for convenience:

~̂B ≡ ~A+ 1
2
gÂI ~PI .

4If nH = 0 they are constant Fayet-Iliopoulos terms as explained in footnote 3 of appendix E.
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(e) n̄ = nV + 1 scalar functions hI/f . They determine, upon use of the con-

straint CIJKh
IhJhL = 1 the nV scalars φx and the metric function f 5.

Together with ÂIm and ωm they give the full 5-dimensional gauge poten-

tial AIµ

AI = −
√

3hIe0 + ÂI .

2. These objects now have to satisfy the following equations:

(a) Eq. (4.40) that embeds the spatial SU(2) connection ~̂B into the spin con-

nection of the base spatial manifold.

ξ−mnp = − ~̂Bm · ~Φnp − 1
4
∂m~Φnq · ~Φqp ,

(b) Eq. (4.36) that characterizes the hyperscalar mappings

D̂mq
X = Φr

m
n D̂nq

Y JrY
X .

(c) Eqs. (4.31) and (4.32)

hIF̂
I+ = 2√

3
(fdω)+ ,

F̂ I− = −2gf−1CIJKhJ ~PK · ~Φ .

(d) Finally, Eq. (4.61)

D̂2 (hI/f)− 1
12
CIJKF̂

J ·F̂K+ 2√
3
CIJKh

J F̂K ·G−+2g2f−2gXY kI
XkJ

Y hJ = 0 .

As we see, finding supersymmetric solutions remains a difficult problem.

4.2.2 The null case

The equations for the bilinears

As usual, we denote the null Killing vector by lµ and choose null coordinates u and v

such that

lµdx
µ = fdu , lµ∂µ = ∂v , (4.63)

5One can also use Eq. (4.50) to determine f .
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where f may depend on u but not on v. The metric can be put in the form

ds2 = 2fdu(dv +Hdu+ ω) − f−2γrsdx
rdxs , (4.64)

where r, s, t = 1, 2, 3 and the 3-dimensional spatial metric γrs may also depend on

u but not on v. With these coordinates the partial gauge fixing (4.25), for g 6= 0,

becomes just AIv = 0. Eqs. (4.19) and (4.26) state that the scalars are v-independent.

In the null case Fierz identities imply that the 2-forms bilinears Φr are given by

Φr = du ∧ vr , (4.65)

where the vr are 1-forms that can be used as Dreibein for the spatial metric γrs.

We decompose the gauge potential as

AI = AIudu+ ÂI , (4.66)

where Â is a spatial one-form. Under a u-independent G-transformation ÂI trans-

forms as a gauge connection whereas AIu transforms homogeneously. We denote by

D̂ the spatial covariant derivative made with the three-dimensional affine and spin

connections and the gauge connection ÂI .

Eq. (4.18) becomes

du ∧
[

dvr −
(

2εrstB̂t +
√

3gf−1hIP s
I v

r
)

∧ vs
]

= 0 , (4.67)

where, again, B̂t is Bt with AI replaced by ÂI . This equation relates the the tridi-

mensional spin connection (computed for constant u) to the spatial components of

the pullback of the SU(2):

̟rs = 2εrstB̂t − 2
√

3gf−1hIP
[r
I v

s] . (4.68)

Substituting the 2-forms we found into Eq. (4.24) we arrive at

D̂rq
XJrX

Y =
√

3gf−1hIkI
Y , (4.69)

which is the condition that must be satisfied by the mappings qX in order to have

supersymmetry.

Let us now determine the vector field strengths: Eqs. (4.13) and (4.22) lead to

lµF I
µν = 0 , (4.70)

which implies that the field strengths have the general form
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F I = F I
+re

+ ∧ er + 1
2
f 2F I

rse
r ∧ es = F I

+rdu∧ vr + 1
2
F I

rsv
r ∧ vs ≡ F I

+rdu∧ vr + F̂ I .

(4.71)

From Eq. (4.15) we get

hIF̂
I =

√
3⋆̂d̂f−1 + 2gf−2hI ⋆̂P̂I , (4.72)

where P̂I is the spatial 1-form

P̂I = P r
Iv
r . (4.73)

On the other hand Eq. (4.23) yields

hxI F̂
I = −f−1⋆̂D̂φx + 2gf−2hxI ⋆̂P̂

I , (4.74)

which, together with the previous equation and the definition of hxI give

⋆̂F̂ I =
√

3D̂(hI/f) + 2gf−2P̂ I . (4.75)

From the + + r components of Eq. (4.16) we get

hIF
I
+r = − 1√

3
f 2(⋆̂F )r , (4.76)

where

F = d̂ω . (4.77)

The components hxIF
I
+r are not determined by supersymmetry and we parame-

trize them by 1-forms ψI satisfying hIψ
I = 0. In conclusion, the vector field strengths

must take the general form

F I = ( 1√
3
f 2hI ⋆̂F − ψI) ∧ du+

√
3⋆̂
[

D̂(hI/f) + 2√
3
gf−2P̂ I

]

. (4.78)

Solving the Killing spinor equations

It is not difficult to check that, for field configurations with metric of the form

Eq. (4.64), vector field strengths of the form Eq. (4.78) and hyperscalars satisfy-

ing Eq. (4.69), the KSEs admit solutions which are constant spinors satisfying the

constraint

γ+ǫi = 0 , (4.79)
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and a constraint of the form

Πrǫ = 0 , (4.80)

for every r for which B̂r and gfhIP r
I do not vanish, where Πr is the projector

Πr
i
j = 1

2

(

δ − iγ(r)σ(r)
)

i
j ; Πr2 = Πr ; [ Πr , Πs ] = 0 . (4.81)

Each of these projections breaks/preserve one half of the supersymmetries. In the

general case one must impose the three projections given in Eq. (4.80). It should be

noted that in this case the projection (4.79) is already implied by the whole system

of projections (4.80). Thus we have that the general supersymmetric configurations

preserve 1/8 of the supersymmetries.

As it happened in Ref. [57] consistency with the space-independence of the Killing

spinors requires the u-component of B to have the form

v[r
r∂uvs]r = −2εrstB

t
u . (4.82)

Equations of motion

We now want to impose the equations of motion on the supersymmetric configurations

that we have identified. On supersymmetric configurations only a few equations of

motion are independent, since they are related by the Killing Spinor Identities (KSIs)

[78,79] which, as discussed in Section 4.1, for these theories were computed in Ref. [57].

A few KSIs were overlooked, however, in the reference. They reduce considerably the

number of independent equations to be checked and we start by computing them.

Additional KSIs

According to Eq. (4.65) the only non-vanishing components of the 2-forms Φr are

Φr s− = δrs . (4.83)

We can use this result to find additional constraints in the equations of motion

from the KSIs [57]

[(

Ebc +
√

3
2
hI ⋆ BI bc

)

γc +
√

3
2
hIEI b

]

ǫi = 0 , (4.84)

[

Ex − hIx
(

6 EI + 1
6
aIJ 6 BJ

)]

ǫi = 0 . (4.85)

Acting with (σr)j iǭjγ
a on Eq. (4.84), we get
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(

Ebc +
√

3
2
hI ⋆ BI bc

)

Φr ac = 0 . (4.86)

Taking a = −, r we get, respectively

Ebr = −
√

3
2
hI ⋆ BI br , (4.87)

Eb− = −
√

3
2
hI ⋆ BI b− . (4.88)

The second identity was already found in [57]. The symmetry of the l.h.s. and the

antisymmetry of the r.h.s. of both identities and the combination of both implies

Er− = hI ⋆ BIr− = 0 , (4.89)

Ers = hI ⋆ BIrs = 0 . (4.90)

Eqs. (4.87)-(4.90) leave us with only three non-vanishing components of the Ein-

stein equations, namely E++, E+−, E+t, of which the last two are proportional to com-

ponents of the Bianchi identities. Thus, the only independent component of the

Einstein equation is E++.

Acting now with (σr)j iǭj on Eq. (4.85), we get

hIx ⋆ BIabΦr ab = 0 , ⇒ hIx ⋆ BI−r = 0 , (4.91)

which, together with Eq. (4.89) leads to

⋆BI−r = 0 . (4.92)

Acting with (σr)j iǭjγ
a on Eq. (4.85), we get

hIxEI− = 0 , (4.93)

hIxEIr = 1
2
hIxεrst ⋆ BIst , (4.94)

which, together with hIEI µ = 0 (proven in Ref. [57]) imply

EI− = 0 . (4.95)
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The only independent components of the Maxwell equations are hIxEI+.

Summarizing, unbroken supersymmetry implies that the only non-automatically

vanishing components of the Einstein and Maxwell equations and Bianchi identities

are E++, E+−, E+r, BI+−,BI+r,BI rs and EI+, EIr. The scalar equations of motion are

always automatically satisfied. If the Bianchi identities are satisfied, as they must in

this case6, only E++ and EI+ need to be explicitly checked.

Independent equations of motion

Let us start with the Bianchi identities. Using the decomposition of the potential

Eq. (4.66) we obtain from the expression for the gauge field strength Eq. (4.78) two

equations:

F̂ I =
√

3⋆̂
[

D̂(hI/f) + 2√
3
gf−2P̂ I

]

, (4.96)

D̂AIu − ∂uÂ
I = 1√

3
f 2hI ⋆̂F − ψI .‘ (4.97)

The Bianchi identity of the first equation leads to

D̂⋆̂D̂(hI/f) + 2√
3
gD̂(f−2⋆̂P̂ I) = 0 . (4.98)

The constraint hIψ
I = 0 and the second equation imply

1√
3
f 2⋆̂F − hID̂A

I
u + hI∂uÂ

I = 0 , (4.99)

which can be taken as the equation defining ω. Having ω and the potentials Eq. (4.97)

determines ψI :

ψI = 1√
3
f 2hI ⋆̂F − D̂AIu + ∂uÂ

I . (4.100)

Apart from these equations we have to impose the Maxwell equations, which, in

differential form language take the form

4 ⋆ EI = −D ⋆
(

aIJF
J
)

+ 1√
3
CIJKF

J ∧ FK + g ⋆
(

kI xDφ
x + kI XDqX

)

. (4.101)

6In the non-Abelian case that we are considering here the knowledge of the gauge potential is

necessary in order to construct a supersymmetric configuration, which is our starting point, and the

Bianchi identities are always assumed to be satisfied. Nevertheless, since the gauge field strength is

related to other fields, the Bianchi identities lead to constraints on the other fields.
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Substituting the gauge field strength and operating we get

4 ⋆ EI = du ∧
{

g
[√

3fIJ
KF̂ JhKf − 2D̂P̂I − ⋆̂(kI xD̂φ

x + kI XD̂qX)
]

∧ (dv + ω)

−
√

3
[

D̂(hIf) − 2√
3
gP̂I

]

∧ F + 1√
3
D̂(fhI) ∧ F − D̂(f−1⋆̂ψI)

−gf−3⋆̂
(

kI xDuφ
x + kI XDuq

X
)

− 2√
3
CIJK( 1√

3
f 2hJ ⋆̂F − ψJ) ∧ F̂K

}

.

(4.102)

The first line contributes to EI r and it can be checked (thorugh a long and painful

calculation) that it vanishes automatically for supersymmetric configurations, as it

should according to the KSIs, while the other two lines contribute to EI +.

The Maxwell equations, then, simplify and take the form

4 ⋆ EI = du ∧
{[

−
√

3fD̂(hI) + 2gP̂I − 4
3
gCIJKh

J P̂K
]

∧ F − D̂(⋆̂ψI/f)

+ 2√
3
CIJKψ

J ∧ F̂K − gf−3⋆̂
(

kI xDuφ
x + kI XDuq

X
)

}

.

(4.103)

As implied by the KSIs only the EI+ component is not automatically satisfied and has

to be explicitly imposed in order to get classical solutions. It can be also be checked

that hIEI+ = 0 (as it is implied by the KSIs) up to terms that are proportional to

d2ω.

The same fact can be described in a slightly different way: the integrability con-

dition of the ω equation (d2ω = 0) is satisfied if supersymmetry is unbroken and the

KSI hIEI+ = 0 is satisfied. In general, as first pointed out in Refs. [117,118] there will

be singular points at which this will not happen. These points give rise to physical

singularities in the metric and, therefore, they should not be allowed in meaningful

solutions. This requirement translates into constraints on charges and asymptotic

values of the moduli. It can be argued that this requirement is equivalent to the

requirement of having supersymmetry unbroken everywhere (and the KSIs satisfied

everywhere) [116,125].

In order to write the equations of motion in a simple form it is convenient to define

some new variables:

hI/f ≡ KI , f−3 = CIJKK
IKJKK , (4.104)

LI ≡ CIJKK
JAKu , (4.105)
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N ≡ H + 1
2
LIA

I
u . (4.106)

Observe that 1√
3
ÂI and −AIu coincide, respectively, with what was called αI and

M I in the ungauged case, in Ref. [57].

Using these variables and Eq. (4.100), the Maxwell equation can be put into the

form

4 ⋆ EI = −2du ∧
{

D̂⋆̂D̂LI − gP̂I ∧ F + 2√
3
gCIJKD̂⋆̂(f−2AJuP̂

K)

−gCIJK
[

D̂⋆̂(KJ∂uÂ
K) + (D̂KJ + 2√

3
g⋆̂P̂ J) ∧ ⋆̂∂uÂK

]

+1
2
gf−3⋆̂

(

kI xDuφ
x + kI XDuq

X
)}

.

(4.107)

This equation is gauge-invariant, in particular, under u-dependent G-gauge trans-

formations that act on ÂI , AIu, LI and the bosonic scalars. This fact can be used to

partially fix the G gauge, as done in Ref. [57], leaving a much simpler equation which

is still covariant under u-independent G gauge transformations.

The 1-form ω is determined by Eq. (4.99) only up to total derivatives which cor-

respond to shifts in the coordinate v. This transformation must be accompanied with

a shift in H (or N). We can use this freedom to impose a condition on (basically, the

u-dependence of) ω:

∇r(ω̇)r + 3(ω̇)r∂r log f =

−1
2
f−3(γ̈)rr − 1

4
f−3(γ̇)2 + 3

2
f−4ḟ(γ̇)rr + 3f−3[∂2

u log f − 2(∂u log f)2]

−1
2
f−3

[

gxy(φ̇
xφ̇y + 2gq̇xAIukI

y) + gXY (q̇X q̇Y + 2gq̇XAIukI
Y )
]

+CIJKK
I
[

(∂uÂ
J)r(∂uÂ

K)r − 2D̂rA
J
u(∂uÂ

K)r

]

.

(4.108)

After performing these steps, the E++ component of the Einstein equations be-

comes

−f−1E++ = ∇2N + 1√
3
gD̂r(f

−2CIJKP
I
rA

J
uA

K
u)

+1
2
gf−3AIuA

J
u(gxykI

xkJ
y + gXY kI

XkJ
Y ) .

(4.109)
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Let us summarize the results of this section by giving the “recipe” to build super-

symmetric solutions in the null class.

1. The objects that have to be chosen are

(a) A spatial 3-dimensional metric γrs and Dreibein basis vr both of which may

depend on the null coordinate u. This determines the 3-dimensional spin

connection ̟rs.

(b) The 4nH hyperscalar u-dependent mappings qX(x, u) from the 3-dimensio-

nal spatial manifold to the quaternionic-Kähler manifold. They determine

the (pullbacks of) the momentum map ~PI and the SU(2) connection ~Ar =

∂rq
X~ωX and ~Au = ∂uq

X~ωX

(c) A gauge connection 1-form AI with vanishing v component. This deter-

mines its spatial and null parts ÂI and AIu.

(d) 2n̄ + 1 functions KI , LI , N . They determine the functions f,KI and H,

and, together with ω, ÂI and AIu, the 1-forms ψ via Eq. (4.100) and the

spatial 1-form ω via Eq. (4.99) which can be written in the form

⋆̂F =
√

3(KID̂LI − LID̂K
I) −

√
3KI∂uÂ

I . (4.110)

2. These objects must satisfy the following equations:

(a) Eq. (4.69) that characterizes the quaternionic mappings qX and relates

them to the spatial components of the gauge connection ÂI and the func-

tions KI :

D̂rq
XJrX

Y =
√

3gKIkI
Y . (4.111)

(b) Eq. (4.68) which relates the spatial components of the pullback of the SU(2)

connection with the 3-dimensional spin connection, the spatial components

of the gauge connection ÂI and the functions KI :

̟rs = 2εrstB̂t − 2
√

3gKIP
[r
I v

s] . (4.112)

(c) Eq. (4.82) which relates the null component of the pullback of the SU(2)

connection with the Dreibeins and the null components of the gauge con-

nection AIu:

v[r
r∂uvs]r = −2εrstB

t
u . (4.113)
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(d) Eq. (4.98), which follows from the Bianchi identity and can be put in the

form

D̂⋆̂D̂KI + 2√
3
gD̂(⋆̂f−2P̂ I) = 0 . (4.114)

(e) Eq. (4.107), the only independent Maxwell equation

D̂⋆̂D̂LI − gP̂I ∧ F + 2√
3
gCIJKD̂⋆̂(f−2AJuP̂

K)

−gCIJK
[

D̂⋆̂(KJ∂uÂ
K) + (D̂KJ + 2√

3
g⋆̂P̂ J) ∧ ⋆̂∂uÂK

]

+1
2
gf−3⋆̂

(

kI xDuφ
x + kI XDuq

X
)

= 0 .

(4.115)

(f) Eq. (4.109), the only independent component of the Einstein equations:

d̂⋆̂d̂ N − 1√
3
gD̂⋆̂(f−2CIJKP̂

IAJuA
K
u)

+1
2
g⋆̂f−3AIuA

J
u(gxykI

xkJ
y + gXY kI

XkJ
Y ) = 0 .

(4.116)





5

Supersymmetric solutions of N = 4, d = 4

Supergravity

Most of the analysis and results we show in this chapter have been previously published

in Ref. [126].

In this chapter we return to the problem of finding all the supersymmetric config-

urations of N = 4, d = 4 supergravity, partially solved by Tod in Ref. [28]. We use

tensor methods, based on the bilinears of complex chiral spinors with SU(4) indices,

which allows us to keep manifest the S and T dualities of the theory at all stages in

our analysis and in the field configurations, as it happens in the solutions studied in

Ref. [29]. The formalism used here can be used as starting point for the study of more

complicated theories such as gauged and matter-coupled N = 4, d = 4 theories.

The toroidal compactification of the heterotic string effective action (N = 1, d = 10

supergravity coupled to 16 vector multiplets) gives ungauged N = 4, d = 4 supergrav-

ity coupled to 22 (matter) vector multiplets [127] and a consistent truncation of the

matter vector multiplets gives the pure theory that we study here. Thus, all the

solutions we will find are also solutions of the heterotic string effective action. The

truncation preserves some of the SO(6, 22; Z) T duality symmetry and the theory is

invariant under the continuous group SO(6) ∼ SU(4) which naturally occurs as a hid-

den symmetry of the theory1 [130]. The theory also has an S duality which manifest

itself as a continuous SL(2,R) hidden symmetry. It was this symmetry which lead

to the S duality conjectures in the corresponding superstring theory [9,131–136]. We

will also keep this symmetry manifest at all stages in our analysis.

1The first N = 4, d = 4 theory, constructed in Ref. [128] had only SO(4) invariance. We will work

with the SU(4) theory of Ref. [129].
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5.1 Results

There are two types of supersymmetric solutions in N = 4, d = 4 supergravity admit-

ting at least one Killing spinor ǫI , that can be characterized by the causal nature of

the vector bilinear V a = iǭIγaǫI , which is always a non-spacelike Killing vector.

Timelike V a:

Supersymmetric solutions are determined by a choice of a set of time-independent

complex scalars φAI , A = 1, 2, and two complex scalar τ and Z that in general may

depend on the spatial coordinates x, z, z̄. The scalars φAI are subject to the algebraic

condition

φAI φ
I
B = δB

A , (5.1)

where φIA = φAI
∗
, and also are subject to the differential constraint

(

∂iφ
A
I − 1

2
ζiφ

A
I + i

2
Ax
i σ

x
B
AφBI

)

γiη
(0)
A = 0 , (5.2)

where η
(0)
A are two constant spinors subject to

η
(0)
A + γ0ǫABη

(0)
B = 0 , (5.3)

Πx
A
Bη

(0)
B = 0 if Ax 6= 0 , (5.4)

where Πx are the projectors

Πx
A
B = 1

2

(

δA
B − γ0(x)σ

(x)
A

B
)

(5.5)

and ζ and Ax are U(1) and SU(2) connections respectively given by

ζ = φIAdφ
A
I , AA

B = φIAdφ
B
I − 1

2
δA

Bζ . (5.6)

The metric is given by

ds2 = |M |2(dt+ ω)2 − |M |−2γijdx
idxj , i, j = 1, 2, 3 , (5.7)

where

MIJ = ZφAI φ
B
J ǫAB , |M |2 ≡MIJM

IJ = 2|Z|2 . (5.8)

The one form ω = ωidx
i satisfies

fij = 4|M |−2ǫijk

(

ξk −
∂kℜeτ

4ℑmτ

)

, fij ≡ 2∂[iωj] (5.9)

relative to the 3-dimensional metric γij. The spin connection of the three dimensional

metric, evaluated in a specific frame, is determined by

oxy = −ǫxyzAz , (5.10)
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such that the holonomy of the spatial metric γ is given by the holonomy of the

SU(2) connection Ax. We shall show a class of configurations with U(1) holonomy, in

addition to the configurations considered by Tod which have flat holonomy, for which

all these constraints are solved.

The vector field strengths are given by

FIJ =
1

2|M |2
{

V̂ ∧ dEIJ − ⋆

[

V̂ ∧
( ℜe τ

ℑm τ
dEIJ −

1

ℑm τ
dBIJ

)]}

, (5.11)

where

V̂ =
√

2|M |2(dt+ ω) ,

EIJ = 2
√

2(ℑm τ)−1/2(MIJ + M̃IJ) ,

BIJ = 2
√

2(ℑm τ)−1/2(τMIJ + τ̄ M̃IJ) ,

(5.12)

Examples of solutions corresponding to specific choices of MIJ and τ are given in

Section 5.4.3.

The solutions preserve generically 1/16 of the supersymmetries.

Null V a:

This case (called degenerate by Tod) was essentially solved by Tod in Ref. [28], but

we study it here again for the sake of completeness and to refine his results. There are

two subcases which we call A and B and which are associated to U(1) holonomy in a

null direction and in a pair of spacelike directions, respectively, and describe pp-waves

and the stringy cosmic strings of Ref. [137].

• Case A: Each solution in this class is determined by 5 arbitrary functions of u:

φI , τ . Given these functions, the metric and vector field strengths are given by

ds2 = 2du[dv +K(u, z, z̄)du] − 2dzdz̄ ,

FIJ = 1
2
(FIJ + 1

2
εIJKLFKL)du ∧ dz̄ ,

(5.13)

where

FIJ =
8
√

2

(ℑm τ)1/2
φ̇[IφJ ] ,

2∂z∂z∗K =
|τ̇ |2

(ℑm τ)2
+ 1

16
ℑm τ F2 .

(5.14)
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• Case B: These are well-known solutions determined by a choice of (in this case)

antiholomorphic function τ = τ(z̄). The vector field strengths vanish2 and the

metric takes the form

ds2 = 2dudv − 2e2Udzdz̄ , e2U = ℑm(τ) . (5.15)

As for the unbroken supersymmetries of these solutions, they preserve generically

1/4 of the supersymmetries.

5.2 Pure, ungauged, N = 4, d = 4 supergravity

The bosonic fields of N = 4, d = 4 supergravity multiplet are:

1. The Einstein metric gµν .

2. The complex scalar τ that parametrizes an SL(2,R)/U(1) coset space. In terms

of its real and imaginary parts (the axion a and the dilaton φ) it is written

τ = a+ ie−φ.

3. The 6 U(1) vector fields whose complex combinations we label with an antisym-

metric pair of SU(4) indices AIJ µ, I, J = 1, · · · , 4 and are subject to the reality

constraint

AIJ µ = 1
2
εIJKLA

KL
µ , (5.16)

where we rise and lower all SU(4) indices by complex conjugation: AIJµ ≡
(AIJ µ)

∗. Their field strengths are FIJ = dAIJ and are subject to the same

reality constraint.

The fermionic fields of this supermultiplet, which are always 4-component (com-

plex) Weyl spinors, are

1. The 4 dilatini χI , which, with lower SU(4) indices, have positive chirality.

2. The 4 gravitini ψI µ which, with lower SU(4) indices, have negative chirality.

2These solutions are given in Ref. [28] in different coordinates in which the metric functions have

dependence on u, but this dependence can be eliminated.
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Complex conjugation raises the SU(4) indices and reverses the chiralities.

There are two global (hidden) symmetries in the ungauged theory: SU(4) ∼
SO(6), associated to stringy T dualities [132] and SL(2,R), which is associated to a

stringy S duality [9]- [136] and leaves invariant the equations of motion but not the

action. SU(4) acts on all the fields in the obvious way:

χI ′ = U I
Jχ

J , χI
′ = χJ(U

†)J I , (5.17)

etc. The matrix Λ =

(

a b

c d

)

∈ SL(2,R) acts on τ via fractional-linear transforma-

tions

τ ′ =
aτ + b

cτ + d
. (5.18)

An alternative, linear, description of the action of Λ ∈ SL(2,R) on τ can be made

using the symmetric SL(2,R) matrix

M ≡ 1

ℑm τ

( |τ |2 ℜe τ

ℜe τ 1

)

. (5.19)

The fractional-linear transformations of τ are equivalent to the rule

M′ = ΛMΛT . (5.20)

Observe that the matrix S ≡ iσ2 is invariant under SL(2,R) transformations:

ΛSΛT = S . (5.21)

The action of Λ ∈ SL(2,R) on the vector fields is best described by defining the

SL(2,R)-dual F̃IJ of the field strength by

F̃IJ ≡ τFIJ
+ + τ̄FIJ

− = ℜeτFIJ −ℑmτ ⋆FIJ . (5.22)

Then, the pair F̃IJ , FIJ transforms as an SL(2,R) doublet, i.e.

~FIJ ≡
(

F̃IJ
FIJ

)

, ~F ′
IJ = Λ~FIJ . (5.23)

This implies for FIJ
±

F ′
IJ

+ = (cτ + d)FIJ
+ , F ′

IJ
− = (cτ̄ + d)FIJ

− . (5.24)
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Defining the phase of cτ + d by

e2iϕ ≡ cτ + d

cτ̄ + d
, (5.25)

we find that, under SL(2,R) several fields and combinations of fields get a local U(1)

phase

χ′
I = e−3iϕ/2χI , ψ′

I µ = eiϕ/2ψI µ ,

(

∂µτ

ℑm τ

)′
= e−2iϕ

(

∂µτ

ℑm τ

)

,
[√

ℑm τFIJ
±
µν

]′
= e±iϕ

[√
ℑm τFIJ

±
µν

]

,

(5.26)

corresponding to U(1) charges −3, 1,−4 and ±2 respectively. The combination

Qµ ≡ 1
4

∂µℜe τ

ℑm τ
, (5.27)

transforms as a U(1) gauge field, Q′
µ = Qµ + 1

2
∂µϕ and this allows us to define a

U(1)-covariant derivative

Dµ = ∇µ − iqQµ , (5.28)

acting on fields with U(1) charge q. Complex conjugation reverses chirality and these

U(1) charges.

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R + 1
2

∂µτ ∂
µτ̄

(ℑm τ)2
− 1

16
ℑm τF IJ µνFIJ µν − 1

16
ℜe τF IJ µν⋆FIJ µν

]

.

(5.29)

It is useful to introduce the following notation for the equations of motion of the

bosonic fields:

Eaµ ≡ − 1

2
√

|g|
δS

δeaµ
, E ≡ −2ℑmτ

√

|g|
δS

δτ
, EIJ µ ≡ 8

√

|g|
δS

δAIJ µ
. (5.30)

Then, the equations of motion take the form

Eµν = Gµν + 1
2
(ℑm τ)−2[∂(µτ∂ν)τ̄ − 1

2
gµν∂ρτ∂

ρτ̄ ] − 1
4
ℑm τFIJ

+
µ
ρF IJ−

νρ ,(5.31)
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E = Dµ

(

∂µτ̄

ℑm τ

)

− i
8
ℑm τF IJ + ρσFIJ

+
ρσ , (5.32)

EIJ µ = ∇ν⋆F̃
IJ νµ . (5.33)

The Maxwell equation EIJ µ transforms as an SL(2,R) doublet together with the

Bianchi identity which we denote for convenience BIJ µ

BIJ µ ≡ ∇ν⋆F
IJ νµ . (5.34)

It is easy to see that the combinations

EIJµ − τ̄BIJµ√
ℑm τ

,
EIJµ − τBIJµ√

ℑm τ
, (5.35)

have U(1) charges +2 and −2, respectively. The equation of motion of the complex

scalar E has U(1) charge +4 and the Einstein equation is neutral.

For vanishing fermions, the supersymmetry transformation rules of the gravitini

and dilatini, generated by 4 spinors ǫI of negative chirality and U(1) charge +1, are

δǫψI µ = DµǫI − i
2
√

2

√
ℑm τFIJ

+
µνγ

νǫJ , (5.36)

δǫχI = 1
2
√

2

6∂τ
ℑm τ

ǫI − 1
8

√
ℑm τ 6FIJ−ǫJ . (5.37)

We also need the supersymmetry transformation rules of the bosonic bosonic fields,

which take the form

δǫeµ
a = − i

4
(ǭIγaψI µ + ǭIγ

aψIµ) , (5.38)

δǫτ = − i√
2
ℑmτ ǭIχI , (5.39)

δǫAIJ µ =

√
2√

ℑm τ

[

ǭ[IψJ ]µ + i√
2
ǭ[IγµχJ ] +

1
2
ǫIJKL

(

ǭKψLµ + i√
2
ǭKγµχ

L
)]

.(5.40)
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5.3 Killing Spinor Identities

Using the supersymmetry transformation rules of the bosonic fields Eqs. (5.38,5.39)

and (5.40) we can derive relations between the (off-shell) equations of motion of the

bosonic fields that are satisfied by any field configuration {eaµ, AIJ µ, τ} admitting

Killing spinors [78,79]. These KSIs take, for this theory, the form

iǭIγaEaµ +
1√

2ℑmτ
ǭJEµJI = 0 , (5.41)

ǭIE +
1√

2ℑmτ
ǭJ 6 EJI = 0 . (5.42)

Observe that it is implicitly assumed that the Bianchi identities are identically

satisfied, i.e.

BIJµ = 0 , (5.43)

and, therefore, these identities are not SL(2,R)-covariant. We may have to take this

point into account when comparing with the equations that we will actually find,

but we can also find (with considerably more effort) the SL(2,R)-covariant relations

between the equations of motion from the integrability conditions of the Killing spinor

equations (5.54) and (5.55).

Thus, acting with Dµ on the Eq. (5.54) using both Eq. (5.54) and Eq. (5.55) and

antisymmetrizing on the vector indices we get

D[µδǫψI ν] = 1
8

∂[µτ∂ν]τ̄

(ℑm τ)2
ǫI

−1
8

{

Rµν
abδI

K −ℑm τFIJ
+

[µ
aFKJ −

ν]
b
}

γabǫK

+ 1
4
√

2
(ℑm τ)−1/2

{

FIJ
+
ρ[ν∂µ]τ − 2iℑm τ∇[µ|FIJ

+
|ν]
}

γρǫJ

= 0 .

(5.44)

To extract from this integrability condition a relation between the equations of

motion we act with γν from the left. We get

4γνD[µδǫψI ν] = (Eµν − 1
2
gµν Eσσ)γνǫI −

i

2
√

2ℑmτ
(6 EIJ − τ̄ 6BIJ)γµǫJ = 0 . (5.45)
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Acting now with γµ and using the result to eliminate Eσσ we get, finally the

SL(2,R)-covariantization of the KSIs Eq. (5.41)

EµaγaǫI −
i√

2ℑmτ
(EIJµ − τ̄BIJµ)ǫJ = 0 . (5.46)

Similarly, the SL(2,R)-covariantization of the KSIs Eq. (5.41) can be obtained by

calculating 2
√

2 6DδǫχI = 0 and takes the form

E∗ǫI −
1√

2ℑmτ
(6EIJ − τ 6BIJ)ǫJ = 0 . (5.47)

These two identities are now manifestly SL(2,R)-covariant3. The comparison

with our results will be easier if we multiply these equations by gamma matrices

and conjugate spinors ǭK and ǭK from the left, to derive relations involving spinor

bilinears. In the case in which the vector V a is timelike, we get

Eab − 1
2
ℑm EV aV b − 1√

2

√
ℑm τℑm (M IJBIJa)V b = 0 , (5.48)

E∗V a − i√
2ℑmτ

M IJ(EIJa − τBIJa) = 0 , (5.49)

ℑm[MIJ(EIJa − τ̄BIJa)] = 0 . (5.50)

Observe that the first equation implies the off-shell vanishing of all the Einstein equa-

tions with one or two spacelike components. Further, the Einstein and complex scalar

equations are automatically satisfied when the Maxwell and Bianchi equations are

satisfied.

When V a is null (we denote it by la), all the spinors ǫI are proportional and we can

use the parametrization of Eq. (B.62) in Eqs. (5.46) and (5.47). Contracting with φI

using the normalization Eq. (B.63) and with the conjugate spinors ǭ, ǭ∗, η̄, η̄∗, where

η is an auxiliary spinor with normalization Eq. (B.69), we arrive at the identities

(Eµa − 1
2
ea
µEρρ) la = (Eµa − 1

2
ea
µEρρ)ma = 0 , (5.51)

E = 0 , (5.52)

(EIJµ − τ̄BIJµ)φJ = 0 . (5.53)

3See the paragraph after Eq. (5.35).
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where the null complex vectors are defined in Eq. (B.70). Observe that in this case

supersymmetry implies that the scalar equations of motion must be automatically

satisfied and also some of the components of the Einstein equations.

5.4 Supersymmetric configurations and solutions

5.4.1 General setup and first results

Our goal is to find all the purely bosonic field configurations of N = 4, d = 4 super-

gravity {gµν , AIJ µ, τ, ψI µ = 0, χI = 0} which are supersymmetric, i.e. invariant under,

at least, one supersymmetry transformation generated by a supersymmetry parame-

ter ǫI(x). Since the supersymmetry variations of the bosonic fields are odd in fermion

fields, these transformations will always vanish, but the supersymmetry variations of

the fermions, for vanishing fermions, Eqs. (5.36), may only vanish for special super-

symmetry parameters ǫI(x) (Killing spinors) that solve the Killing spinor equations

(KSEs)

δǫψI µ = DµǫI − i
2
√

2

√
ℑm τFIJ

+
µνγ

νǫJ = 0 , (5.54)

2
√

2 δǫχI =
6∂τ

ℑm τ
ǫI − 1

2
√

2

√
ℑm τ 6FIJ−ǫJ = 0 . (5.55)

For a known bosonic field configuration these are, respectively differential and alge-

braic equations for the Killing spinor, which may or may not exist. We want to find

precisely for which bosonic field configurations these equations do have at least one

solution ǫI . Our procedure will consist in assuming the existence of such a solution

and derive consistency conditions for the field configurations.

We start with the equations δǫχI = 0. We just have to multiply the from the right

with gamma matrices and Dirac conjugates of Killing spinors. We have, in particular,

from ǭKδǫχI = 0

V K
I · ∂τ − i

2
√

2
(ℑm τ)3/2FIJ

− · ΦKJ = 0 , (5.56)

and, from ǭKγρδǫχI = 0

FIJ
−
ρσV

J
K
σ + i√

2
(ℑm τ)−3/2 (MIK∂ρτ − ΦIK ρ

µ∂µτ) = 0 . (5.57)
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It is possible to derive more Killing equations for the bilinears from the dilatini

supersymmetry rule, but it will not be necessary.

Let us turn to the gravitini supersymmetry rules. Now we apply SL(2,R)-covariant

derivative on the bilinears and use δǫψI µ = 0 to reexpress DµǫI . We get

DµMIJ = 1√
2

√
ℑm τFK[I|

+
µνV

K
|J ]
ν , (5.58)

DµV
I
J ν = − 1

2
√

2

√
ℑm τ

[

MKJF
KI −

µν +M IKFJK
+
µν

−ΦKJ (µ
ρFKI −

ν)ρ − ΦIK
(µ|

ρFKI
+
|ν)ρ
]

, (5.59)

DµΦIJ µν = − 1
2
√

2

√
ℑm τ

[

2gµ[ν|FKI
+
|ρ]αV

K
J
α + 2FKI

+
νρV

K
J µ

−3FKI
+

[µν|V
K
J |ρ] + (I ↔ J)

]

. (5.60)

Contracting the free indices in Eqs. (5.59) and (5.56) it is immediate to see that

V µ ≡ V I
I
µ is a (non-spacelike, Eq. (B.28)) Killing vector and

V µ∂µτ = 0 . (5.61)

It is also immediate to prove that

∇µV
I
J
µ = 0 . (5.62)

Let us now consider the implications of the reality constraint of the vector field

strengths on the contraction FKI
+
µνV

K
J
ν :

FKI
+
µνV

K
J
ν = 1

2
εKIML(FML

−
µν)

∗V K
J
ν . (5.63)

Taking the SU(4) dual in both sides of this equation and taking into account the

reality properties of the vectors V K
J
ν , we get

1
2
εSRIJFKI

+
µνV

K
J
ν = −1

2

[

FSR
−
µνV

ν + 2FJ [S|
−
µνV

J
|R]

ν
]∗
, (5.64)

from which we get

FSR
−
µνV

ν = −2FJ [S|
−
µνV

J
|R]

ν −
[

εSRIJFKI
+
µνV

K
J
ν
]∗
. (5.65)
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The first and second terms in the r.h.s. of this equation can be rewritten in terms

of scalars using the antisymmetric part of Eq. (5.57) and the complex conjugate of

Eq. (5.58). We get, at last,

FSR
−
µνV

ν = −
√

2i

(ℑm τ)3/2
MSR∂µτ −

√
2√

ℑm τ
εSRIJDµM

IJ . (5.66)

The complex conjugate of this equation gives us F SR+
µνV

ν and, taking the SU(4)-

dual we get FIJ
+
µνV

ν etc.

From this equation, contracting the free index with V µ and using Eq. (5.61) we

get immediately

V µ∂µMIJ = 0 . (5.67)

Now, the use that we make of this result and the subsequent analysis will depend

on the causal nature if the non-spacelike vector V µ. We must distinguish between two

cases: the case in which it is timelike, which we consider in section 5.4.2 and the case

in which it is null (and we rename it lµ), which we consider in section 5.4.4.

5.4.2 The timelike case

The vector field strengths

If V 2 = 2M IJMIJ ≡ 2|M |2 6= 0 we can use Eq. (5.66) to express FIJ
− entirely in

terms of scalars, their derivatives, and Vµ using Eq. (A.20):

FSR
− = − 1√

2|M |2
√
ℑm τ

{[

i
MSR

(ℑm τ)
dτ + εSRIJDM IJ

]

∧ V̂ − i ⋆[· · ·]
}

. (5.68)

Here we have added a hat to V to denote the differential form V̂ ≡ Vµdx
µ and

distinguish its norm.

To solve the equations of motion it is convenient to have directly FIJ and its

SL(2,R)-dual F̃IJ . Their expressions are, actually, somewhat simpler due to the

following property: if dF = 0 (which is the equation satisfied by FIJ and F̃IJ) and

£V F = 0 then ∇[µ(Fν]ρV
ρ) = 0 and, locally, FνρV

ρ = ∇νE for some scalar potential

E. Thus, following Tod [28], we define

∇µEIJ ≡ V νFIJ νµ , ∇µBIJ ≡ V νF̃IJ νµ , (5.69)

and, using the above form of FIJ
− Eq. (5.68) we find
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EIJ = 2
√

2(ℑm τ)−1/2(MIJ + M̃IJ) ,

BIJ = 2
√

2(ℑm τ)−1/2(τMIJ + τ̄ M̃IJ) ,

(5.70)

where

F̃IJ = V −2

{

V̂ ∧ dBIJ + ⋆

[

V̂ ∧
( ℜe τ

ℑm τ
dBIJ −

|τ |2
ℑm τ

dEIJ

)]}

, (5.71)

FIJ = V −2

{

V̂ ∧ dEIJ − ⋆

[

V̂ ∧
( ℜe τ

ℑm τ
dEIJ −

1

ℑm τ
dBIJ

)]}

. (5.72)

It is worth spending a moment in checking the consistency of these results. By

definition, BIJ and EIJ must transform under SL(2,R) as F̃IJ and FIJ , i.e. as a

doublet:

~EIJ ≡
(

BIJ

EIJ

)

, ~E ′
IJ = Λ ~EIJ . (5.73)

We can check that this is consistent with Eqs. (5.71) and (5.72) by rewriting the last

two equations in the manifestly SL(2,R)-covariant form

~FIJ = V −2
{

V̂ ∧ d ~EIJ − ⋆
[

V̂ ∧ (MSd~EIJ)
]}

, (5.74)

on account of Eqs. (5.19,5.20) and (5.21).

On the other hand, it is easy to check that the fact that ~EIJ transforms as a doublet

is consistent with the transformations rules of τ and MIJ alone and Eqs. (5.70).

The five-dimensional metric

We define a time coordinate by

V µ∂µ ≡
√

2∂t , (5.75)

and the metric takes the “conformastationary” form

ds2 = |M |2(dt+ ω)2 − |M |−2γijdx
idxj , i, j = 1, 2, 3 , (5.76)

where ω = ωidx
i is a time-independent 1-form and γij is a time-independent (positive-

definite!) metric on constant t hypersurfaces4.

4The components of the connection and curvature of this metric can be found in Appendix C.1.
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From Eq. (5.59) we find that V satisfies the equation

dV̂ = − 1√
2

√
ℑm τ [M IJFIJ

+ +MIJF
IJ −] . (5.77)

Since

M IJFIJ
+ = −

√
2M IJ

√
ℑm τ |M |2

[DMIJ ∧ V̂ + i⋆(DMIJ ∧ V̂ )] , (5.78)

we get

dV̂ =
1

|M |2
{

d|M |2 ∧ V̂ + i ⋆
[

(M IJDMIJ −MIJDM IJ) ∧ V̂
]}

. (5.79)

It is also convenient to define the 1-form ξ and the 2-form Ω

ξ ≡ i
4
|M |−2(MIJdM

IJ −M IJdMIJ) , (5.80)

Ω ≡ 2|M |−2 ⋆
[

(Q− ξ) ∧ V̂
]

. (5.81)

ξ transforms under SL(2,R) as

ξ′ = ξ + 1
2
dϕ , (5.82)

i.e. as the U(1) connection Q, which makes Ω invariant. The connection ξ is also

orthogonal to V and invariant under local rescalings of the scalar matrix MIJ :

ξ(Λ(x)MIJ) = ξ(MIJ) , (5.83)

a property that we will exploit later on. Further, using Eq. (B.37) we can write the

curvature of this connection in the form

dξ = − i
2
d
M IJ

|M | ∧ d
MKL

|M | [δIJ
KL − J K

[IJ L
J ]] , (5.84)

that relates the triviality of ξ with the constancy of the projection J I
J .

As usual, the equation for ω can be derived by comparing Eq. (5.79) for the 1-form

V̂ , with the exterior derivative of the expression for V̂ in the coordinates chosen

V̂ =
√

2|M |2(dt+ ω) . (5.85)
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The result is the equation

dω = 1√
2
Ω = i

2
√

2
|M |−4 ⋆

[

(M IJDMIJ −MIJDM IJ) ∧ V̂
]

. (5.86)

If we use the conformastatinary form of the metric then we obtain that this equation

for ω is a purely spatial equation

fij = 4|M |−2ǫijk(ξk −Qk) , fij ≡ 2∂[iωj] (5.87)

and it has the integrability condition

∇i

(

Qi − ξi

|M |2
)

= 0 , (5.88)

which is a necessary condition for the existence of ω, whose existence we have as-

sumed throughout all this analysis. Thus, it is not so much a necessary condition for

supersymmetry as it is a necessary condition for the whole problem to be well defined.

Solving the Killing spinor equations

At this stage we put all the information obtained so far back to the KSEs and extract

further consequences.

Setting V 0 =
√

2|M |, V i = 0 we obtain that the KSEs (5.54) and (5.55) become

∇0ǫI −
i√

2|M |
γk
(

DMIJ −
i

2
M̃IJ

dτ̄

ℑmτ

)

k

ǫJ = 0 (5.89)

DiǫI +
i√

2|M |
γk
(

DMIJ −
i

2
M̃IJ

dτ̄

ℑmτ

)

k

γiγ
0ǫJ = 0 (5.90)

γk

[

dτ

ℑmτ
ǫI +

2
√

2

|M |

(

DM̃IJ +
i

2
MIJ

dτ

ℑmτ

)

γ0ǫJ

]

k

= 0 . (5.91)

By using the spin connection shown in appendix C.1 we obtain the covariant deriva-

tives

∇0ǫI = ∂0ǫI +
1

2|M |2M
KLDkMKLγ

0kǫI , (5.92)

DiǫI = |M |∇iǫI −
1

2|M |2M
KL∂kMKLγi

kǫI − iγkγiQkǫI . (5.93)

Tacking into account the identity

dMIJ = |M |−2MKLdMKLMIJ + 2J̃[I
KdMK|J ] , (5.94)
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we may write the above KSEs as

∂0ǫI +
1

2|M |2γ
0kMKLDkMKL

(

ǫI + i
√

2γ0MIJ

|M | ǫ
J

)

−i
√

2

|M |γ
k

(

J̃[I
K∂kMK|J ] −

i

4

∂kτ̄

ℑmτ
M̃IJ

)

ǫJ = 0 , (5.95)

|M |∇iǫI +
i√

2|M |3
MKL∂iMKLγ

0MIJǫ
J

− 1

2|M |2
(

MKL∂kMKLγi
k + 2iQkγ

kγi
)

(

ǫI + i
√

2γ0MIJ

|M | ǫ
J

)

+i
√

2|M |−1

(

J̃[I
K∂kMK|J ] −

i

4

∂kτ̄

ℑmτ
M̃IJ

)

γkγiγ
0ǫJ = 0 , (5.96)

γk
[

dτ

ℑmτ

(

ǫI + i
√

2γ0MIJ

|M | ǫ
J

)

+ 2
√

2|M |−1DM̃IJγ
0ǫJ
]

k

= 0 . (5.97)

We impose the following constraint on the SU(4) spinors

ǫI + i
√

2γ0MIJ

|M | ǫ
J = 0 , (5.98)

which is a kind of reality condition because it relates the SU(4) spinors with their

complex conjugates. This condition can be deduced from the Fierz identity

MIJǫ
J = i

2
V aγaǫI . (5.99)

The projection (5.98), together with (B.21), imply

M[IJǫK] = 0 , JIJǫJ = ǫI . (5.100)

For generic (i.e. not built from already-known Killing spinors) scalars MIJ the above

relation is a constraint breaking 1/2 of the supersymmetries.

After imposing the condition (5.98) the KSEs becomes

∂0ǫI = 0 , (5.101)

∇iǫI −
1

2|M |2M
KL∂iMKL − ∂iJIJǫJ = 0 , (5.102)

∂/JIJǫJ = 0 . (5.103)
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The solution to (5.101) are static spinors. Eq. (5.102) can be written in such a way

that the static Killing spinors satisfy the equations

JIJ (∇i − iξi)
(

|M |−1/2ǫJ
)

= 0 , (5.104)

∂/JIJǫJ = 0 . (5.105)

To make further progress in the analysis of the KSEs, we introduce the U(2)

formalism, which is explained in appendix B.1, to deal with the Killing spinors.

Constraint (5.98) is equivalent to the following two constraints5

ǫA + eiλγ0ǫABǫ
B = 0 , (5.106)

JIJφAJ = φAI , (5.107)

and the last of these is actually an identity when one takes into account the relation

between MIJ , Z and φAI .

Now we study the KSEs (5.104) and (5.105) using the U(2) formalism, starting

with (5.104). It is equivalent to the equation

∇iηA + Ai A
BηB − i

2
(2ξ + iζ)i ηA = 0 , (5.108)

where we have used the constraints on the scalars φAI and ηA ≡ |M |−1/2ǫA. The

equation (5.108) can be decomposed into two parts by using the condition (5.106) on

the spinors: taking the complex conjugate of (5.108) and using (5.106) we obtain the

equation

∇iηA + Ai A
BηB + i

2
(2ξ + iζ − 2dλ)i ηA = 0 . (5.109)

Notice that, if we perform the change of variable

ηA
′ = e−

i
2
ληA , (5.110)

(this is not a symmetry transformation) then the two equations (5.108) and (5.109)

are equivalent to (suppressing primes from now on)

∇iηA + Ai A
BηB = 0 , (5.111)

(2ξ + iζ − dλ) ηA = 0 . (5.112)

5Notice that the presence of λ in the equation (5.106) ensures the SL(2, R) and U(1) ⊂ U(2)

covariance.
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The obvious solution to the equation (5.112) is that the SL(2,R) connection 2ξ

and the U(1) connection −iζ are in the same cohomology class,

2ξ + iζ = dλ (5.113)

which should be an identity upon the relations between the scalars Z, φAI and MIJ .

Summarizing what we have obtained so far, the total system of KSEs, including

the dilatino equation, is

∇iηA + Ai A
BηB = 0 , (5.114)

∂/JIJφAJ ηA = 0 , (5.115)

subject to

ηA + γ0ǫABη
B = 0 , (5.116)

φAI φ
I
B = δAB . (5.117)

We can extract further information from these KSEs if we return to the bilinears,

now in the U(2) formalism. From (5.114) we obtain that the three vectors

V x
a ≡ 1√

2
σxA

B(iη̄Bγaη
A) , (5.118)

which, according to the discussion of appendix B.1, have no time-like component, are

covariantly constant

∇iVj
x + ǫxyzAi yVj z = 0 (5.119)

(notice that in this eq. ∇ does not contain any spin connection!). This equation can

be interpreted as the vielbein postulate with the SU(2) connection Ax playing the

role of the spin connection,

oxy = −ǫxyzAz , (5.120)

where oxy is the spin connection evaluated in the frame V x. From the discussion of

appendix B.1 it can be seen that in the frame V x the γ metric holds a conformally

flat form (with conformal factor |M |2, see Eq. (B.60)). Since the spin connection is

invariant under conformal rescalings, the connection oxy is indeed the spin connection

for the γ metric in the (equivalence class of) frame V x.

Now we move to the KSE (5.114). To solve it, we evaluate it in the frame V x and,

after using the formula (5.120) for the spin connection, this KSE becomes

∂iηA + i
2
Ai x

(

γ0xδA
B − σxA

B
)

ηB = 0 . (5.121)
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We may state the general solution to this condition by means of the projectors

Πx
A
B ≡ 1

2

(

δA
B − γ0(x)σ

(x)
A

B
)

, [Πx,Πy] = 0 , (5.122)

where the notation (x) means that there is not sum over x. Hence the above KSE is

solved by constant spinors η
(0)
A that satisfy

Πx
A
Bη

(0)
B = 0 if Ax 6= 0 . (5.123)

Each of these projections breaks/preserve one half of the supersymmetries.

Coming back to the original Killing spinors, they are given by

ǫI =

√√
2|Z|e i

2
λφAI η

(0)
A . (5.124)

Finally, the dilatino KSE becomes

6∂JIJφAJ η(0)
A = 0 , (5.125)

which can be written as
(

∂iφ
A
I − 1

2
ζiφ

A
I + i

2
Ax
i σ

x
B
AφBI

)

γiη
(0)
A = 0 . (5.126)

and it should be regarded as a further equation for φAI that characterizes the super-

symmetric configurations. We have not found the general solution to this equation,

but we can analyze it for two important cases: For the case of Tod’s configurations

(the flat ones) this equation is obviously solved because these configurations are char-

acterized by the constancy of the projector J . In addition, we shall show below the

vanishing of this equation for a kind of configurations with U(1) holonomy.

Supersymmetric solutions

As we deduced from the KSIs in the time-like case, only the Maxwell equations and

the Bianchi identities must be imposed on the supersymmetric configurations in order

to have solutions (although we shall keep explicitly the scalar field equation since it

helps us to understand the structure of all equations).

It is convenient to rewrite the equations of motion of the vector and scalar fields

in differential-form language6:

~̂E IJ ≡ ~E IJ
µdx

µ = −⋆d~F IJ =

(

ÊIJ
B̂IJ

)

, (5.127)

Ê ≡ E V̂ , (5.128)

6We add hats to denote differential forms.



118 Chapter 5. Supersymmetric solutions of N = 4, d = 4 Supergravity

where ~EIJµ is the SL(2,R) doublet formed by the Maxwell and Bianchi identities:

~EIJ µ ≡
( EIJ µ

BIJ µ
)

=

( ∇ν⋆F̃
IJ νµ

∇ν⋆F
IJ νµ

)

. (5.129)

we find the following two equations for MIJ and τ :

⋆~̂E IJ = 1
2
d ⋆

[

MSd~EIJ
|M |2 ∧ V̂

]

+ d ~EIJ ∧ Ω , (5.130)

⋆Ê∗

|M |2 = −D ⋆

[

dτ

|M |2ℑm τ
∧ V̂

]

+ 2i
dτ

ℑm τ
∧ Ω + 2i

M̃IJ

|M |2d ⋆
(

dM IJ

|M |2 ∧ V̂
)

.

(5.131)

These equations can be now be combined (this is the reason behind the introduc-

tion of V into the equation for τ and the use of differential forms) and simplified.

Using the new variables NIJ defined by

NIJ =
√
ℑmτMIJ , |N |2 = N IJNIJ = ℑmτ |M |2 , (5.132)

we construct a new combination of equations that we call âIJ

âIJ ≡ 1

2
√

2ℑmτ
(τ B̂IJ − ÊIJ) − i

2

(N IJ + Ñ IJ)

|N |2 Ê∗ , (5.133)

and, which, after some massaging, is going to have a much simpler form. To present

in compact form the equations of motion we define these two equations

nIJ ≡ (∇µ + 4iξµ)

(

∂µN IJ

|N |2
)

, (5.134)

e∗ ≡ (∇µ + 4iξµ)

(

∂µτ

|N |2
)

, (5.135)

and, in terms of them, we have, switching again from differential form notation to

tensor notation,

aIJ = nIJ − N IJ + Ñ IJ

|N |2 ÑKLn
KL , (5.136)

BIJ a =
√

2V a

{

N IJ + Ñ IJ

|N |2 ℜe E − i(aIJ − ãIJ)

}

, (5.137)
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EIJ a =
√

2V a

{

N IJ + Ñ IJ

|N |2 ℜe (τE) − i(τ̄ aIJ − τ ãIJ)

}

. (5.138)

E = |M |2e+ 2iÑKLnKL . (5.139)

The combination |N |−2dτ has U(1) charge −4 and, thus, the second equation is

just a U(1)-covariant divergence, the covariant derivative being constructed with the

ξ connection. The first equation has a similar form and, although dNIJ

|N |2 does not

transform covariantly under SL(2,R), the equation is SL(2,R)-covariant up to terms

proportional to the second equation.

Using the conformastationary metric we can reduce all the equations to equations

in the 3 spatial dimensions with the metric γ. To start with, the equations nIJ and e

defined in Eqs. (5.134) and (5.135) can be expressed in terms of

nIJ(3) ≡ (∇i + 4iξi)

(

∂iN IJ

|N |2
)

, (5.140)

e∗(3) ≡ (∇i + 4iξi)

(

∂iτ

|N |2
)

, (5.141)

where all the objects are now 3-dimensional with metric γ, by

nIJ = −|M |2nIJ(3) , e = −|M |2e(3) . (5.142)

Then, we can express all the equations of motion in terms of these two equations as

follows:

BIJ a = −
√

2|M |2V a

{

N IJ + Ñ IJ

ℑmτ
ℜe e(3) − i(nIJ(3) − ñIJ(3))

}

, (5.143)

EIJ a = −
√

2|M |2V a

{

N IJ + Ñ IJ

ℑmτ
ℜe (τe(3)) − i(τ̄nIJ(3) − τ ñIJ(3))

}

. (5.144)

E = −|M |2
[

|M |2e(3) + 2iNKLñ
KL
(3)

]

. (5.145)

From these expressions it can be seen that, as the KSIs indicate, the scalar equa-

tion is satisfied is the Maxwell and Bianchi equation are. Thus we have that any

supersymmetric configuration must solve Eqs. (5.143) and (5.144) in order to be a

supersymmetric solution of the theory. Clearly, these conditions are satisfied if the

equations

e(3) = 0 , nIJ(3) = 0 , (5.146)
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are satisfied.

5.4.3 Some explicit examples

Now we study a particular class of configurations to which we can solve all the con-

straints on the variables that characterize supersymmetric solutions. It is easier to

define them in terms of the scalars MIJ , taking care of the formulas for the projector

JIJ and the one-form ξ are satisfied.

The configurations are given by two scalars MIJ ,

M12(x, z, z̄) = eiλM(x, z, z̄)k1(z) , (5.147)

M13(x, z, z̄) = eiλM(x, z, z̄)k2(z) , (5.148)

where λ and M are real and we are using the system of local spatial coordinates

(x, z, z̄). The other MIJ are zero. Since we have only two of the MIJ non-zero, the

constraint (B.21) on them is automatically solved. Therefore k1 and k2 are arbitrary

holomorphic functions.

The SL(2,R) connection is

ξ = − i
4
(∂zUdz − ∂z̄Udz̄) + 1

2
dλ (5.149)

and its curvature is

dξ = i
2
∂2
zz̄Udz ∧ dz̄ (5.150)

where

U = ln |k|2 , |k|2 ≡ 2
(

|k1|2 + |k2|2
)

(5.151)

The projector J is

[

JIJ
]

=











1 0 0 0

0 2|k|−2|k1|2 2|k|−2k1k
2 0

0 2|k|−2k1k2 2|k|−2|k2|2 0

0 0 0 0











. (5.152)

A configuration of φAI which solves the constraints (B.45) is

[

φAI
]

=

(

i√
2

|k|−1k1 |k|−1k2 0

− i√
2

|k|−1k1 |k|−1k2 0

)

. (5.153)
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For this configuration, all of the U(2) components of the connection φIAdφ
A
I are the

same (it is actually an U(1) connection), then

ζ = 1
2
(∂zUdz − ∂z̄Udz̄) , (5.154)

[

AA
B
]

= 1
2

(

0 ζ

ζ 0

)

. (5.155)

By contrasting Eqs. (5.149) and (5.154) we see that the relation (5.113) is satisfied.

The curvatures are

dζ = −∂2
zz̄Udz ∧ dz̄ , (5.156)

[

RA
B
]

= 1
2

(

0 dζ

dζ 0

)

. (5.157)

The only non-zero component of the SU(2) connection in the adjoint representa-

tion is that of the σ1 matrix,

Ax=1 = iζ , (5.158)

Rx=1 = idζ . (5.159)

According to the formula (5.120) the spin connection becomes a U(1) connection

o23 = −iζ (5.160)

An the spatial metric has U(1) holonomy. The three dimensional euclidean metrics

with U(1) holonomy factorize as the product of one- and two-dimensional metrics

hijdx
idxj = dx2 + 2eUdzdz̄ , (5.161)

where U is given by (5.151).

The Killing spinors are given by

ǫI =
√

M |k|e i
2
λφAI ǫ

(0)
A (5.162)

and the constant spinors are subject to

ǫ
(0)
A + γ0ǫABǫ

(0)B = 0 , (5.163)

(dζ) Π1
A
Bǫ

(0)
B = (dζ) 1

2

(

δA
B − γ01σ1

A
B
)

ǫ
(0)
B = 0 . (5.164)
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These two conditions are solved by

ǫ2 = γ0ǫ1 , (5.165)

ǫ2 = γ01ǫ1 , (if dζ 6= 0) (5.166)

and in turn these conditions are solved by a single spinor which satisfy a sort of reality

condition,

ǫ1 = ǫ , ǫ2 = γ0ǫ∗ , (5.167)

ǫ∗ = γ1ǫ , (if dζ 6= 0) . (5.168)

This class of configurations preserve 1/8 of the supersymmetries. If dζ = 0, the spinor

ǫ does not necessarily satisfy the reality condition and hence in that case 1/4 of the

supersymmetries are preserved (the Tod case).

Finally we check the dilatino equation (5.126). When evaluated on the configura-

tions we have at hands this equation takes the form
[

∂iφ
A
I − 1

2
ζi
(

δB
A + σ1

B
A
)

φBI

]

γiǫA = 0 . (5.169)

Now let us see in detail each one of the SU(4) components of this equation. For I = 4

this is trivially zero. For I = 1, φAI=1 is constant and it is the zero eigenvector (zero

eigenvalue) of 1 + σ1, hence the equation is solved. For I = 2, 3 the φ′s are

[

φAI
]

= |k|−1kI

(

1

1

)

(5.170)

and this U(2) vector is the eigenvector of 1+σ1 with eigenvalue +2. Then the equation

for I = 2, 3 becomes

[

∂i
(

|k|−1kI
)

− ζi|k|−1kI
]

γi (ǫ1 + ǫ2) . (5.171)

In principle, the expression between square brackets has two (curved) components

i = z, z̄. However, it is easy to see that the z̄ component vanishes. Since in this case

the metric has U(1) holonomy the vielbeins matrix is diagonal. Then the z component

of the above equation is proportional to

γz (ǫ1 + ǫ2) (5.172)

which, after the projection (5.166), is

γz
(

1 + γ01
)

ǫ1 (5.173)
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and this expression is automatically zero due to the chirality of the spinors.

So far we have exshauted all the conditions imposed by supersymmetry in our

configurations. Now we turn to the equations of motion. We have found three families

of solutions.

1. If the kIJ are constants, then, normalizing |k|2 = 1 for simplicity, ξ = 1
2
dλ and

U = 0. This is the case considered by Tod in Ref. [28] and studied in detail

in Ref. [29]. Tod took advantage of the fact that dξ = 0 implies that J I
J is

constant and a global SU(4) rotation can be used to set to zero two of the ǫIs.

We will not do so, as this breaks the explicit SU(4) covariance, but our results

are, of course, equivalent.

Eq. (5.140) takes the form

∂i∂iH1 = 0 , H1 ≡ [
√
ℑm τe−iλM ]−1 , (5.174)

and is solved by any arbitrary complex harmonic function H1.

Using the above equation, Eq. (5.141) takes the form

∂i∂i(H1τ) = 0 , (5.175)

which is solved by

τ = H1/H2 , ∂iH2 = 0 , (5.176)

another arbitrary complex harmonic function. The pair of harmonic functions

and the constants determine completely the solutions. In particular

|M |−2 = M−2 = ℑm(H̄2H1) . (5.177)

2. If eiλ = M = 1, the integrability condition Eq. (5.88) can be solved by taking

τ constant. The only non-trivial equation of motion, Eq. (5.140) is solved using

the holomorphicity of the kIJs. The metric takes the form

ds2 = |k|2(dt+ ωxdx) − |k|−2dx2 − 2dzdz̄ , (5.178)

where ωx satisfies

∂zωx − ∂xωz = ∂z̄|k|−2 , ∂z̄ωx − ∂xωz̄ = ∂z|k|−2 , ∂z̄ωz − ∂zωz̄ = 0 . (5.179)
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The metric and the supersymmetry projectors indicate that these solutions de-

scribe stationary strings lying along the coordinate x, in spite of the trivial axion

field, which is the dual of the Kalb-Ramond 2-form B that couples to strings.

Observe, however, that the duality relation is not simply dB = ⋆da: there are

terms quadratic in the field strengths involved in the duality which must render

B non-trivial.

The metric and the vector fields involved depends strongly on the choice of

holomorphic kIJs. It is instructive to have an example completely worked out.

Let us consider the simplest case: only k12 = 1√
2z

non-trivial. This allows us to

set ωz = ωz̄ = 0. Then, |k|2 = |z|−2 and ωx = 2ℜe(z2) and the full solution is

given by

ds2 =
1

|z|2 [dt+ 2ℜe(z2)dx]2 − |z|2dx2 − 2dzdz̄ ,

F12 = −
√

2eφ0/2

z2
{[dt+ 2ℜe(z2)dx] ∧ dz − i⋆[[dt+ 2ℜe(z2)dx] ∧ dz]} = (F34)

∗ ,

τ = τ0 .
(5.180)

3. The only solutions that we have found with λ and the kIJ(z)s simultaneously

nontrivial have just λ = λ(x) and M = M(x) and are a superposition of the

solutions with constant kIJ and the solutions with constant λ in which these

functions depend only on mutually transversal directions.

Thus, these solutions depend on holomorphic functions kIJ(z) chosen with the

same criteria as in the previous case, and a pair of complex functions H1,H2

linear in x such that ℑm τ > 0, and the metric is given by

ds2 = (M |k|)2(dt+ ωxdx) − (M |k|)−2dx2 − 2M−2dzdz̄ , (5.181)

where M is again given by Eq. (5.177).

5.4.4 The null case

As we have mentioned before, the null case was completely solved by Tod in Ref. [28],

but we include it her for the sake of completeness.

As explained in Appendix B.1.2, in the null case all the spinors are proportional

ǫI = φIǫ. In the N = 4, d = 4 case at hands, ǫI has a U(1) charge under SL(2,R)
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transformations that has to be distributed between φI and ǫ. We choose to have the

φI uncharged. Had we chosen to have φI is charged with charge qφ 6= 0, then the real

1-form

ζ ≡ iφIdφ
I , (5.182)

would transform as a U(1) connection under SL(2,R) transformations as well and

would play a role analogous to that of the connection ξ in the timelike case. With

our choice, ζ is just a U(1) connection under the transformations Eq. (B.64) and

covariantizes with respect to them the expressions that involve ǫ.

We are now going to substitute ǫI = φIǫ into the KSEs and we are going to use

the normalization condition to split the KSEs into three algebraic and one differential

equation for ǫ. One of the algebraic equations for ǫ will be a differential equation for

φI .

The substitution yields immediately

DµφIǫ+ φIDµǫ− i
2
√

2

√
ℑm τFIJ

+
µνφ

Jγνǫ∗ = 0 , (5.183)

φI
6∂τ

ℑm τ
ǫ− 1

2
√

2

√
ℑm τ 6FIJ−φJǫ∗ = 0 . (5.184)

Acting on Eq. (5.183) with φI leads to

Dµǫ = −φIDµφIǫ , (5.185)

which takes the form

D̃µǫ ≡ (Dµ + iζµ)ǫ = 0 , (5.186)

and becomes the only differential equation for ǫ. We have defined the derivative D̃
covariant with respect to SL(2,R) and U(1) local rotations under which ǫ and φI have

charges +1 and −1, respectively. Using Eq. (5.186) into Eq. (5.183) to eliminate Dµǫ

we obtain

D̃φIǫ− i
2
√

2

√
ℑm τFIJ

+
µνφ

Jγνǫ∗ = 0 , (5.187)

which is one of the algebraic constraints for ǫ and is a differential equation for φI .

Acting with φI on Eq. (5.184) we see that it splits into two algebraic constraints

for ǫ:
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6∂τǫ = 0 , (5.188)

6FIJ−φJǫ∗ = 0 . (5.189)

Finally, we add to the system an auxiliary spinor η, introduced in Appendix B.1.2,

with charges opposite to those of ǫ. The normalization condition Eq. (B.63) will be

preserved if and only if η satisfies a differential equation of the form

D̃µη + aµǫ = 0 , (5.190)

where aµ is, in principle, an arbitrary vector with the right charges that transforms

under the redefinitions Eqs. (B.72) and (B.73) as a connection

a′µ = aµ + ∂µδ . (5.191)

In practice, however, aµ cannot be completely arbitrary since the integrability

conditions of the differential equation of η have to be compatible with those of the

differential equation for ǫ and this requirement will determine aµ.

We expect two main types of solutions: configurations with U(1) holonomy on a

2-dimensional (spacelike) subspace and configurations with U(1) holonomy in a null

direction, which is the new possibility allowed by the Lorentzian signature. These

expectations are also supported by the Fierz identities

6mǫ = −iǫ , (5.192)

6 lǫ∗ = 0 , (5.193)

which are satisfied automatically here, but will be interpreted as projections.

We will call these two possibilities B and A respectively.

Killing equations for the vector bilinears and first consequences

We are now ready to derive equations involving the bilinears, in particular the vector

bilinears which we construct with ǫ and the auxiliary spinor η introduced in Ap-

pendix B.1.2. First we deal with the equations that do not involve derivative of the

spinors. Acting with ǭ on Eq. (5.187) and with ǭ∗γµ on the complex conjugate of

Eq. (5.189) we get
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φIFIJ
+
µνl

ν = 0 , (5.194)

ǫIJKLφJFKL
+
µνl

ν = 0 . (5.195)

Acting with ǭ∗ and η̄∗ on Eq. (5.188) we get7

l · ∂τ = 0 , (5.196)

m∗ · ∂τ = 0 . (5.197)

Now, from Eqs. (5.186) and (5.190) we find

∇µlν = 0 , (5.198)

D̃µnν = −a∗µmν − aµm
∗
ν , (5.199)

D̃µmν = −aµlν . (5.200)

Let us now find the simplest implications of these equations.

To start with,Eqs. (5.194) and (5.195), together, imply for nonvanishing φI
8

FIJ
+
µνl

ν = 0 . (5.201)

Using Eq. (A.29), we see that the vector field strengths must take the form

FIJ
+ = 1

2
FIJ l ∧m∗ , (5.202)

FIJ
− = 1

2
F̃IJ l ∧m, (5.203)

where FIJ is a skew-symmetric SU(4) matrix of scalars to be determined and F̃IJ is

its SU(4) dual.

This solves completely Eq. (5.189), as can be seen using the Fierz identity

7The first of these equations had already been obtained in the general case Eq. (5.61).
8This equation also follows from the general result Eq. (5.68) for vanishing scalars MIJ .
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lµγ
µνǫ∗ = 3lνǫ∗ , (5.204)

and we can substitute Eq. (5.202) into Eq. (5.187) the only remaining equation in

which vector field strengths occur. Using the Fierz identities

6 lǫ∗ = 0 , (5.205)

6m∗ǫ∗ = −iǫ , (5.206)

it takes the form

D̃µφI − 1
4
√

2

√
ℑm τFIJφ

J lµ = 0 , (5.207)

from which we find

FIJφ
J =

4
√

2√
ℑm τ

nµD̃µφI . (5.208)

On the other hand, from Eqs. (5.196) and (5.197) we find that

dτ = Al̂ +Bm̂∗ . (5.209)

There are two cases to be considered here: case A (B = 0) and case B (B 6= 0).

In case B, we can write

dτ = B

(

m̂∗ +
A

B
l̂

)

= Bm̂∗ ′ , (5.210)

after a redefinition of the type Eqs. (B.72) and (B.73). All the equations that we have

written so far are covariant with respect to this kind of transformations and we just

have to add primes (which we suppress immediately afterwards) everywhere. Thus,

the case B is equivalent to A = 0 and we can always assume that either A or B is

always zero. Since the connection Q depends on τ , the holonomy is different in these

two cases. These are the two cases we mentioned at the end of the previous section

and we will deal with them separately afterwards.

Equations of motion and integrability constraints

Although we have not yet discussed the form of the metric, we already have enough

information to study the equations of motion and check whether they satisfy the

integrability conditions Eqs. (5.51)-(5.53).
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Using the results of the previous section, we can write the equations of motion in

the form9

Eµν − 1
2
gµνEρρ = Rµν +

[ |A|2
2(ℑm τ)2

+ 1
16
ℑm τ F2

]

lµlν +
|B|2

2(ℑm τ)2
m(µm

∗
ν) ,(5.211)

E =
1

ℑm τ

[

lµ∂µA
∗ −B∗lµaµ +mµ∂µB

∗ + i
4

|B|2
ℑm τ

]

, (5.212)

ÊIJ − τ̄ B̂IJ = −i(ℑm τ) d(FIJ l̂ ∧ m̂∗) . (5.213)

Substituting into Eqs. (5.51)-(5.53) and operating, we get

Rµνl
ν = 0 , (5.214)

Rµνm
ν − |B|2

4(ℑm τ)2
mµ = 0 , (5.215)

lµ∂µA
∗ −B∗lµaµ +mµD̃µB

∗ + i
4

|B|2
ℑm τ

= 0 , (5.216)

B∗FIJφ
J = 0 . (5.217)

We do not have a metric yet, but we can find Rµνl
ν and Rµνm

ν from the integrabil-

ity conditions of Eqs. (5.186) and (5.190). Commuting the derivative and projecting

with gamma matrices and spinors in the usual way, it is easy to find from Eq. (5.186)

Rµνl
ν = −2i(dζ)µνl

ν , (5.218)

Rµνm
ν = +2i(dζ)µνm

ν − 2i(dQ)µνm
ν

= +2i(dζ)µνm
ν +

|B|2
4(ℑm τ)2

mµ , (5.219)

and from Eq. (5.190)

Rµνm
ν = 2i(dζ)µνm

ν − 2i(dQ)µνm
ν + 2(da)µνl

ν

9We have ignored all the terms that contain products AB etc.
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= +2i(dζ)µνm
ν +

|B|2
4(ℑm τ)2

mµ + 2(da)µνl
ν , (5.220)

Rµνn
ν = 2i(dζ)µνn

ν − 2i(dQ)µνn
ν + 2(da)µνm

∗ ν

= 2i(dζ)µνn
ν + 2(da)µνm

∗ ν . (5.221)

Comparing now these three sets of equations, we get

(dζ)µνl
ν = (dζ)µνm

ν = 0 , ⇒ dζ = 0 , ⇒ ζ = dα , (5.222)

locally, and, eliminating ζ by a local phase redefinition,

(da)µνl
ν = 0 , (5.223)

(da)µνm
∗ ν = −1

2
Rµνn

ν , (5.224)

which tell us that

da = −1
2
Rz̄um̂ ∧ m̂∗ + 1

2
Ruul̂ ∧ m̂+ Cl̂ ∧ m̂∗ , (5.225)

where C is a function to be chosen so as to make this equation (and, hence, Eq. (5.190))

integrable.

Once ζ has been eliminated, we can solve Eq. (5.208) of FIJ as follows:

FIJ =
8
√

2√
ℑm τ

nµ(∂µφ[I)φJ ] . (5.226)

Metric

At this point we need information about the exact form of the metric. The most

important piece of information comes from the covariant constancy of the null vector

lµ. Metrics admitting a covariantly constant null vector are known as pp-wave metrics

and were first described by Brinkmann in Refs. [138,139]. Since lµ is a Killing vector

and dl̂ = 0 we can introduce the coordinates u and v

lµdx
µ ≡ du , (5.227)
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lµ∂µ ≡ ∂

∂v
. (5.228)

The previous results imply that all the objects we are dealing with (τ, φI ,FIJ) are

independent of v.

Using these coordinates, a 4-dimensional pp-wave metric takes the form10

ds2 = 2du(dv +Kdu+ ω) − 2e2Udzdz̄ , ω = ωzdz + ωz̄dz̄ , (5.229)

where all the functions in the metric are independent of v and where either K or the

1-form ω could, in principle, be removed by a coordinate transformation. In this case,

however, we have to be very careful because we have already used part of the freedom

we had to redefine the spinors, and, therefore, the null tetrad, and we have to check

that the tetrad integrability equations (5.198)-(5.200) are satisfied by our choices of

eU , K and ω.

We are now ready to study and solve each case separately.

Case A

This is the B = 0 case. dτ = Al̂ implies that τ = τ(u) and A = τ̇ . The connection Q

can be integrated

Q = dβ(u) , (5.230)

and can be eliminated from all the equations by absorbing a phase into the spinors:

e−iβǫ = ǫ′ , eiβη = η′ , (5.231)

and similarly on the null tetrad.

To fix the form of the metric, we study the antisymmetric part of Eq. (5.200)

dm̂+ â ∧ l̂ = dU ∧ m̂+ â ∧ l̂ = 0 , (5.232)

which implies that U only depends on u and

â = U̇m̂+ Cl̂ , (5.233)

10The components of the connection and the Ricci tensor of this metric can be found in Ap-

pendix C.2.
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where D is a function to be found. Substituting into the antisymmetric part of

Eq. (5.199) we find

dn̂+ â∗ ∧ m̂+ â ∧ m̂∗ = dn̂+ C∗l̂ ∧ m̂+ Cl̂ ∧ m̂∗ = 0 , (5.234)

which is solved by

n = dv +Kdu , C∗ = −e−U∂zK . (5.235)

Now, comparing Eq. (5.233) with Eq. (5.225) we find that Ruz = 0 which implies

(since ω = 0) that U̇ = 0.

Finally, to ensure supersymmetry, the integrability conditions Eqs. (5.214)-(5.217)

have to be satisfied, and, with constant U all of them are automatically satisfied.

It also follows form the previous equations that the φIs can only depend on u and

FIJ is given by

FIJ =
8
√

2√
ℑm τ

φ̇[IφJ ] . (5.236)

Now, let us consider the equations of motion. The scalar, Maxwell and Bianchi

equations are automatically satisfied and the Einstein equation can be solved by a K

satisfying

2∂z∂z̄K =
|τ̇ |2

(ℑm τ)2
+ 1

16
ℑm τ F2 . (5.237)

These solutions preserve generically 1/4 of the supersymmetries.

Case B

This is the A = 0 case. If we choose m∗ = eUdz̄, then dτ = Bm∗ implies τ = τ(z̄) and

BeU = ∂z̄τ . Substituting the corresponding connection 1-form Q into Eq. (5.200) one

finds

B∗ =
g(z, u)√
ℑm τ

, (5.238)

â = −∂u ln g m̂+Dl̂ , (5.239)

where g is a holomorphic function of z and D is a function to be determined. The

first of these relations tells us that
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∂z τ̄ =
eU√
ℑm τ

g(z, u) , (5.240)

is a holomorphic function of z, independent of u, and taking the derivative of both

sides with respect to z̄ we get

eU√
ℑm τ

= f(u) , g(z, u) =
h(z)

f(u)
, (5.241)

where f(u) is a real function of u.

Substituting now â into the antisymmetric part of Eq. (5.199) we find that n̂ is

given by

n̂ = dv + ω , (5.242)

(so K = 0 in the metric Eq. (5.229)) where the 1-form ω satisfies

fzz̄ = e2U∂u ln (B/B∗) = 0 , (5.243)

and D is given by

D∗ = −ω̇ze−U . (5.244)

Now that we have determined â we have to check that it satisfies the integrability

condition Eq. (5.225). This requires the following equations to be satisfied:

Ruz̄ + i
2

∂u ln fB

ℑm τ
= 0 , (5.245)

Ruu − [∂2
u ln f + ∂u ln f∂u ln f ] − 2e−U∂zD = 0 , (5.246)

C − e−U∂z̄D = 0 . (5.247)

Comparing with the integrability conditions Eqs. (5.214)-(5.217), we conclude that

f must be a constant that we normalize f = 1 and that ω must be exact, and we can

eliminate it. Further, the φIs must be constant and the vector field strengths must

vanish.

All the equations of motion are automatically satisfied in these conditions, and

the solutions are the stringy cosmic strings of Ref. [137].

Our result differs from Tod’s, who used τ and τ̄ as coordinates and found very

similar solutions with nontrivial ω that depend in a very complicated way on a function
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g(τ, u) an its complex conjugate. This function could be eliminated by a coordinate

change in which all the u dependence and the 1-form ω disappear, recovering the

stringy cosmic string solutions.



6

Supersymmetry, attractors and cosmic
censorship

In spite of the impressive progress made during the last few years in the study of su-

persymmetric black-hole solutions, there are important questions that remain unan-

swered or whose answer is unclear. For instance, we know how to construct many

supersymmetric black-hole-type solutions, but many of them are singular. Some of

these become regular when string corrections are taken into account and for all the

regular black hole solutions we seem to have a String Theory model that accounts for

its entropy. How are the other singular solutions to be understood? How can it be

that they are supersymmetric and yet there is no String Theory model for them? Or,

if there is, why are they singular?

The main goal of this chapter is to try to answer this question by giving a set of

conditions that supersymmetric black-hole-type solutions must satisfy in order to be

admissible in the context of N = 2, d = 4 supergravity coupled to vector supermulti-

plets. Admissible solutions will be regular and will describe one or several black holes

in static equilibrium, even though the system may have a finite global angular momen-

tum, as is for example the case in the solution constructed in Ref. [89]. Furthermore,

we expect only admissible solutions to have a miscroscopic String Theory model. We

will argue that the non-admissible solutions are, in general, not truly supersymmetric

in the sense that will be explained later on and the conditions of admissibility can be

seen as conditions for a solution to be everywhere supersymmetric. For instance: the

Kerr-Newman solution with equal charge and mass, which is singular but nevertheless

commonly believed to be supersymmetric, is non-admissible according to our criteria.

We will show that it fails to be supersymmetric at the singularity, where the sources

might be located. Equivalently we can say that the Kerr-Newman field with M = |q|
is caused by non-supersymmetric sources. This explains why it is not described by any

supersymmetric String Theory model. We will also show that, generically, rotating



136 Chapter 6. Supersymmetry, attractors and cosmic censorship

sources are not allowed by supersymmetry and that regular, supersymmetric solutions

with angular momentum are always composite objects made out of several static black

holes in equilibrium. The angular momentum has its origin in the dipole momenta

of the electromagnetic fields corresponding to the distribution of charged black holes.

Something similar happens for scalar fields: supersymmetric configurations satisfying

our conditions can have non-trivial scalar fields but cannot have sources.

In order to prove these results, we will make use of the explicit knowledge of the

most general solutions of N = 2, d = 4 supergravity coupled to vector multiplets,

which have recently been classified in Ref. [63]1 . All the asymptotically flat super-

symmetric black hole solutions seem to belong to the timelike class, and, although

they coincide with the solutions found in Ref. [64], the general formalism will allow us

to make further progress in their understanding. In particular, we will use the Killing

Spinor Identities (KSIs) [78,79], which can be understood as integrability conditions

for the Killing spinor equations, in order to study supersymmetry at the singular

points where the sources of these solutions should be located.

The final ingredient will be the attractor equations of N = 2, d = 4 supergravity

[140–143]: these provide us with information about the sources thought of as being

placed at the attractor points. In fact, we will find interesting relations between KSIs

and attractor equations, the former showing explicitly that

1. supersymmetry always requires the absence of the kind of scalar hair called

primary in Ref. [144], and that

2. when the attractor equations are satisfied there are no sources whatsoever for

scalar hair.2

These results can be viewed as an extension of those of Ref. [36] in which it was

observed that supersymmetry seems to act as a cosmic censor for static black-hole-

type configurations but not for the stationary ones, such as the Kerr-Newman M = |q|
solution.

We shall study how the KSIs constrain the possible sources and singularities of

black-hole-type solutions and the interplay with the attractor equations in a general

way. The main result will be the formulation of three conditions that express the

existence of supersymmetry everywhere in the solutions, including, particularly, the

locations of the sources. These conditions should ensure the regularity of the admis-

sible solutions and we study in very close detail several examples.

1In this paper we will not consider the coupling to hypermultiplets. The classification of the

supersymmetric solutions with both vector multiplets and hypermultiplets is considered in Ref. [65].
2If there is more than one basin of attraction, contrary to what is assumed in this article, this

last conclusion might change due to the area codes [145].
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6.1 Timelike BPS solutions of N = 2, d = 4 SUEGRA

It was recently shown in Ref. [63] that all the supersymmetric solutions in the timelike

class of N = 2, d = 4 supergravity coupled to n vector multiplets3 can be constructed

by setting the 2n̄ = 2(n + 1) components of a real, symplectic vector I = (IΛ, IΛ)

equal to 2n̄ = 2(n+ 1) real functions harmonic on 3-dimensional Euclidean space4

I ≡
( IΛ

IΛ

)

, ∂m∂mIΛ = ∂m∂mIΛ = 0 , Λ = 0, 1, · · · , n . (6.1)

This real section I enters the theory as the imaginary part of the section V/X, where

V is the covariantly-holomorphic canonical section defining special geometry:

V =

( LΛ

MΣ

)

→



























〈V | V∗〉 ≡ L∗ΛMΛ − LΛM∗
Λ = −i ,

Di∗V = (∂i∗ − 1
2
∂i∗K)V = 0 ,

〈DiV | V〉 = 0 .

(6.2)

X on the other hand is proportional to the complex, scalar bilinear constructed

out of the Killing spinors: supersymmetry and consistency of the solutions imply that

it can be expressed in terms of I, see e.g. Ref. [63] or Eq. (6.7).

Eqs. (6.1) are sometimes known as the generalized stabilization equations, the stan-

dard stabilization equations having the same form but with the harmonic functions

(IΛ, IΛ) replaced by magnetic and electric charges, e.g. (pΛ, qΛ).

The real part of V/X, denoted by R ≡ (RΛ,RΛ) can, in principle, be written

in terms of the real harmonic functions, which is usually referred to as “solving the

stabilization equations”. In theories with a prepotential, the homogeneity properties

of the prepotential allow us to write

MΛ/X =
∂F(L·/X)

∂(LΛ/X)
. (6.3)

Taking the imaginary part of this equation, we have

IΛ(R·, I ·) = IΛ , (6.4)

3These solutions were first found in slightly different form in Ref. [64] and the procedure followed

in Ref [63] shows that they are the only solutions in this class.
4If the functions are not harmonic, the field configurations are still supersymmetric, but are not

solutions of the equations of motion.
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which implicitly defines RΛ(I ·, I·), although solving these equations can be extremely

hard and in general the explicit solution is unknown.

The real part of Eqs. (6.3) and the above solutions give straightforwardly the

functions RΛ(R·(I ·, I·), I ·).

Having the complete symplectic section V/X entirely given in terms of the real

harmonic functions, one can construct the fields of the solutions as follows:

1. The n complex scalar fields Zi are given by the quotients

Zi =
Li/X
L0/X

=
Ri + iI i
R0 + iI0

. (6.5)

2. The metric has the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2dx
idxi , i, j = 1, 2, 3 , (6.6)

where

1

2|X|2 = 〈R | I 〉 , (6.7)

and ω is a time-independent 1-form on Euclidean 3-dimensional space satisfying

the equation

(dω)mn = 2ǫmnp〈 I | ∂pI 〉 . (6.8)

3. The symplectic vector of field strengths and their duals F = (FΛ, F̃Λ) is given

by

F = −1
2
{d[RV̂ ] − ⋆[dI ∧ V̂ ]} , V̂ = 2

√
2|X|2(dt+ ω) . (6.9)

The Killing spinors of these solutions have the form

ǫI = X1/2ǫI 0 , ∂µǫI 0 = 0 , ǫI 0 + iγ0ǫIJǫ
J

0 = 0 , (6.10)

which implies

ǫI + iγ0e
iαǫIJǫ

J = 0 , eiα = (X/X∗)1/2 . (6.11)

Observe that we can write
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X =
LΛ(Z,Z∗)

RΛ + iIΛ
, (6.12)

for any Λ.

6.1.1 Killing Spinor Identities

All supersymmetric configurations satisfy the Killing Spinor Identities relating the

Einstein equations Eµν , the Maxwell equations EΛ
µ, the Bianchi identities BΛµ and

the scalar equations of motion E i [63, 78,79]

EaµγaǫI − 4i〈 Eµ | V 〉ǫIJǫJ = 0 , (6.13)

E iǫI + 2i〈 6 E | U∗ i 〉ǫIJǫJ = 0 , (6.14)

where Eµ is the symplectic vector (BΛµ, EΛ
µ).

In the timelike case, they lead to the following identities in an orthonormal frame

Eab = ηa0η
b
0E00 , (6.15)

〈 V/X | Ea 〉 = 1
4
|X|−1E00δa0 , (6.16)

〈 U∗
i∗ | Ea 〉 = 1

2
e−iαEi∗δa0 . (6.17)

These equations imply directly

E0m = 0 , Emn = 0 , 〈 V | Em 〉 = 0 , 〈 U∗
i∗ | Em 〉 = 0 . (6.18)

Further, the r.h.s. of Eq. (6.15) is real, and this leads to two important identities:

〈 I | E0 〉 = 0 , (6.19)

E00 = ±4|〈 V | E0 〉| . (6.20)
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6.1.2 Attractor equations

It is well-known that, in general, the scalar fields of the black-hole solutions of these

theories have certain attractor values that depend solely on the electric and mag-

netic charges and which are attained at the event horizons irrespectively of the chosen

asymptotic values [140, 141].5 The attractor values are those which extremize a spe-

cific function; furthermore, the absolute value squared of the central charge for the

attractor values is essentially the horizon area [142, 143]. Here we are going to red-

erive these results using our notation and to relate them to the KSIs. We also want

to improve the previous derivations by making explicit use of the knowledge of all the

supersymmetric configurations.

Let us consider single, static, asymptotically flat, spherically symmetric, black-

hole-type solutions of N = 2, d = 4 supergravity coupled to vector multiplets: they

are given by real harmonic functions of the form

I = I∞ +
q

r
, (6.21)

which is the general choice compatible with the assumptions. The metric can be

conveniently written in spherical coordinates as

ds2 = 2|X|2dt2 − 1

2|X|2 [dr2 + r2dΩ2
(2)] . (6.22)

This metric describes black holes if

−grr =
1

2|X|2
r→∞−→ 1 +

2M

r
, (6.23)

is always finite for finite r, whence M , which is the mass, must be positive. Further,

we have to require

1

2|X|2
r→0−→ A

4πr2
> 0 , (6.24)

which imposes the existence of an event horizon with area A > 0 at r = 0 instead of

a naked singularity.

The existence of attractors (fixed points) of the scalar fields follows from the

fact that in supersymmetric configurations, the scalars satisfy first-order differential

equations, as follows immediately from the Killing spinor equations associated to the

gaugino supersymmetry transformation rule:

5If there are multiple attractor regions, it might happen that there is some residual dependency

on the asymptotic values. Here we assume there to be only one attractor region.
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δǫλ
Ii = i 6∂ZiǫI + ǫIJ 6Gi+ǫJ = 0 . (6.25)

To derive the needed first-order equations, we first use the time-independence of the

solutions

iγm∂mZ
iǫI − 4ǫIJGi+

0mγ
mγ0ǫJ = 0 , (6.26)

and then the known constraint Eq. (6.11) as to obtain

(∂mZ
i − 4eiαGi+

0m)γmǫI = 0 , ⇒ ∂mZ
i = 4eiαGi+

0m . (6.27)

Going over to curved indices, the equation takes the form

dZi

dr
= 2

√
2Gi+

tr/X
∗ . (6.28)

The self-duality of Gi+ allows us to express the Gi+
tr component in terms of the

Gi+
θφ:

Gi+
tr = i(⋆Gi+)θφ = −i 2|X|2

r2 sin θ
Gi+

θφ , (6.29)

which combined with

Gi+ = T i
ΛF

Λ+ = i
2
Gij∗〈Dj∗V∗ | F 〉 = i

2
Gij∗Dj∗〈 V∗ | F 〉 , (6.30)

leads to

dZi

dr
= 2

√
2

X

r2 sin θ
Gij∗Dj∗〈 V∗ | Fθφ 〉 . (6.31)

Since the form of all the fields in terms of I(r) is in principle known, we can try

to find a more explicit form for this equation: using the general form of the vector

fields Eq. (6.9) and of I(r), Eq. (6.21), we find

Fθφ = 1√
2
r2 sin θ

dI
dr

= − q√
2

sin θ . (6.32)

After substituting this into Eq. (6.31), one ends up with

dZi

dρ
= 2XGij∗Dj∗Z∗ , (6.33)

where ρ ≡ 1/r and where
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Z(Z, q) ≡ 〈V | q 〉 , (6.34)

is the central charge of the theory [146]. Observe that the presence of the factor X in

the r.h.s. is crucial for it to have zero global Kähler weight, just as the l.h.s. Further

observe that the r-dependence is only through the scalars Zi(r)!

The r.h.s. of this system of differential equations depends only on the scalar fields

Zi, and, thus, it is an autonomous system of ordinary differential equations6 that has

fixed points Zi
fix at the values at which the r.h.s. vanishes

DiZ|Zi=Zi
fix

= 0 . (6.35)

If the solution of this system of equations exists, it gives the fixed values of the

scalars Zi
fix as functions of the electric and magnetic charges only

Zi
fix = Zi

fix(q) , (6.36)

since the asymptotic values (moduli) Zi
∞ do not occur in the above differential equa-

tion. The fixed values are reached by the scalars at the value ρ = ∞, i.e. r = 0, which

is where the event horizon would be, as discussed at the beginning of this section and

in what follows.

The fixed values may or may not be admissible, i.e. they may or may not belong to

the definition domain of the complex coordinates Zi. If the asymptotic values Zi
∞ are

admissible and the fixed values Zi
fix(q) are not, there must be a singularity between

r = ∞ and r = 0, which will induce a curvature singularity. We will require both the

asymptotic and the fixed values to be admissible. These aspects will be discussed in

Section 6.2.

Black-hole solutions whose scalars take the asymptotic values Zi
∞ = Zi

fix have

constant scalar fields, and are called doubly extreme black holes. These values are the

ones that extremize, not the central charge, but the zero-Kähler-weight combination

eK/2Z:

DiZ|Zi=Zi
fix

= e−K/2∂i
(

eK/2Z
)∣

∣

Zi=Zi
fix

= 0 . (6.37)

6The use of the variable ρ = 1/r is essential in this argument. it is easy to see that the derivatives

of the scalar fields of typical black-hole solutions w.r.t. to r do not vanish at r = 0, while their

derivatives w.r.t. ρ do..
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Consequences of the existence of attractors

There are no more scalar fields in the theory, but in the timelike supersymmetric

solutions there is another scalar object7 that satisfies a first-order differential equa-

tion: X. From the Killing spinor equation associated to the gravitino supersymmetry

transformation rule it is possible to derive [63]

DµX = −iT+
µνV

ν , (6.38)

where V µ is the timelike Killing vector constructed from the Killing spinor. The

graviphoton field strength can be written in the form

T+ = 〈 V | F 〉 , (6.39)

and, together with

V νFνµ = 2∇µ(|X|2R) , (6.40)

the equation for X becomes

DµX = 2i〈 V | ∇µ(|X|2R) 〉 . (6.41)

Dividing both sides by X and expanding the r.h.s. using V/X = R + iI we get

DµX

X
= 2i|X|2〈R | ∇µR〉 − 2∇µ|X|2〈 I | R 〉 − 2|X|2〈 I | ∇µR〉 . (6.42)

Now, from Eq. (6.7)

−2〈 I | ∇µR〉 = ∇µ|X|−2 − 2〈R | ∇µI 〉 , (6.43)

and we get

DµX

X
= 2i|X|2〈R | ∇µR〉 − 2|X|2〈R | ∇µI 〉 . (6.44)

Finally, using

〈R | ∇µR〉 = 〈 I | ∇µI 〉 , (6.45)

7In previous derivations in the literature the absolute value |X| = eU is considered, but then the

Kähler weights and the reality properties of the two sides of the equations derived are different.
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which is proved in Appendix F, we arrive at8

DµX
−1 = 2〈 V∗ | ∇µI 〉 . (6.47)

This equation is valid for all supersymmetric configurations in the timelike class. For

those considered in this section we arrive at the equation we were looking for:

DρX
−1 = 2Z∗ . (6.48)

The real and imaginary parts of this equation are

d(−grr)
dρ

= 2ℜe(Z∗/X∗) = 2〈R | q 〉 , (6.49)

dα

dρ
+ Qρ = |X|2 − 2ℑm(Z∗/X∗) = 2〈 I | q 〉 = 2〈 I∞ | q 〉 . (6.50)

For the spherically symmetric solutions under consideration ω vanishes and this re-

quires the phase of X to be covariantly constant, i.e.

〈 I | q 〉 = 〈 I∞ | q 〉 = 0 . (6.51)

We will later show that this is equivalent to the requirement that the NUT charge

vanishes. Since there is only dependence on ρ, the phase of X can simply be gauged

away by means of a Kähler transformations. The phase of Z is then also constant,

whence Z/X is real, which can be used to write

d|X|−1

dρ
= ±2|Z| . (6.52)

The ± sign is the sign of 〈R | q 〉 and we can argue that it has to be positive if the

mass is going to be positive: if we take Eq. (6.49) at ρ = 0 (r = ∞), we find that the

mass of the solution is given by the linear combination of charges and moduli

M = 〈R∞ | q 〉 . (6.53)

Observe that there is no a priori guarantee that M > 0: this is a condition that

has to be imposed independently as to avoid singularities. We will do so and will

8Observe that the compatibility between Eq. (6.7) and the following equations requires the identity

〈∇µR | I 〉 = 〈R | ∇µI 〉 , (6.46)

to hold. For theories admitting a prepotential, this is done in Appendix F.
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only consider the positive sign above; Eq. (6.52) is then the expression found in the

literature.

If we take another derivative of Eq. (6.49) and use Eq. (6.52), we find

d2(−grr)
dρ2

= 2
d|X−1|
dρ

|Z| + 2|X|−1d|Z|
dρ

= 4|Z|2 + 2|X|−1

(

dZi

dρ
∂i|Z| + c.c.

)

. (6.54)

Now, at ρ = ρfix = 0 we have Zi = Zfix and dZi/dρ = 0, and the above equation takes

on the form

A

2π
= 4|Zfix|2 . (6.55)

Again, there is no a priori guarantee that |Zfix| 6= 0, which therefore is another

condition that has to be imposed independently as to avoid singularities. Actually,

even though in this expression A is basically an absolute value, the positivity of A is

only guaranteed if the scalar fields take admissible values, the mass is positive etc.

These identities allow us to find two interesting expressions for |Zfix|. Expanding

the two sides of Eq. (6.49) as a power series in ρ we find

A

2π
= 2〈 dR

dρ

∣

∣

∣

∣

ρ=0

| q 〉 . (6.56)

Using the expressions in Appendix F we get [142,147]

|Zfix|2 = 1
2
〈 dR
dρ

∣

∣

∣

∣

ρ=0

| q 〉 = −1
2
qTM(Ffix)q , (6.57)

where

M(F) ≡





ℑmF + ℜeFℑmF−1ℜeF −ℑmF−1ℜeF

−ℜeFℑmF−1 ℑmF−1



 . (6.58)

A direct computation of |Zfix|2 gives

|Zfix|2 = |〈 Vfix | q 〉|2 = −〈 q | Vfix 〉〈 V∗
fix | q 〉 . (6.59)

The matrix of this bilinear is

| Vfix 〉〈 V∗
fix |= −





MΛM∗
Σ −MΛL∗Σ

−LΛM∗
Σ LΛL∗Σ





fix

. (6.60)
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We can use the relation

L∗ΛLΣ = −1
2
ℑm(N )−1|ΛΣ − fΛ

iGii∗f ∗Σ
i∗ , (6.61)

taking into account that at the fixed point the second term in the r.h.s. will not

contribute, and that only its symmetric part will contribute, to get [142,147]

|Zfix|2 = −1
2
qTM(Nfix)q . (6.62)

So far we have checked that the coefficient of the ρ2 term of −grr is given by the

value of the central charge at the fixed point but, if there are terms of higher order

in ρ in −grr there will not be a regular horizon. We can, however, see that taking

another derivative of −grr w.r.t. ρ at ρ = 0 will give zero if the attractor equations

(6.35) are satisfied and the same will happen for higher derivatives.

Summarizing we can say that the attractor equations (plus the positivity of the

mass, which is not guaranteed) seem to be sufficient conditions to have regular, static,

spherically symmetric black holes.

Finally, observe that Eq. (6.53) plus the identification, which will be established

later on, between the NUT charge and the linear expression of the charges

N = 〈 I∞ | q 〉 , (6.63)

lead to a complex BPS relation

M + iN = 〈 (V/X)∞ | q 〉 . (6.64)

We will argue that supersymmetry requires N to vanish, whence the above relation

reads

M = ±
√

2|Z∞| , (6.65)

which is the standard BPS relation between mass and central charge. Of course, only

the positive sign will be admissible.
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6.2 Relations between the N = 2, d = 4 KSIs, attractors and

sources

The equations of motion9 for supersymmetric configurations of supergravity theories

satisfy certain relations known as Killing spinor identities (KSI s), which can also

be derived from the integrability conditions of the Killing spinor equations [78, 79].

We have unbroken supersymmetry wherever the Killing spinors exist, and these exist,

locally, wherever the KSIs are satisfied. Thus, if we are to have unbroken super-

symmetry everywhere we must demand the KSIs to be satisfied everywhere. In this

section we are going to study the consequences of demanding the black-hole solutions

of N = 2, d = 4 supergravity to be everywhere supersymmetric.

The KSIs of N = 2, d = 4 supergravity are given in Eqs. (6.13) and (6.14) and

they lead to Eqs. (6.15)-(6.20) for configurations in the timelike class. Since we are

going to consider configurations that solve the equations of motion, it may seem that

the KSIs are automatically satisfied. However, most solutions have singularities at

which the equations of motion are not satisfied, i.e. one has E(φ) = J (φ). The

r.h.s. of the equations of motion at the singularities can be associated to sources for

the corresponding fields and the KSIs are then understood as relations between the

possible sources of supersymmetric solutions: the KSIs put constraints on possible

sources of supersymmetric solutions.

Let us consider from this point of view the KSIs Eqs. (6.15)-(6.20): the first of

them, Eq. (6.15), tells us that the components E0m and Emn of the Einstein equations

must vanish automatically for supersymmetric configurations and they must do so

everywhere if the solutions are everywhere supersymmetric. This means that the

sources J 0m and Jmn of the Einstein equation must vanish identically everywhere

J 0m = Jmn = 0 . (6.66)

Hence, singular (delta-like) sources are not allowed, and in particular this means that

no localized sources of angular momentum are allowed.

Any singular contributions to J 0m and Jmn must originate in the R0m components

of the Ricci tensor; more precisely, they come from the term ∂m(dω)mn, where ω is

the 1-form that appears off-diagonally in the metric of the timelike supersymmetric

solutions of N = 2, d = 4 supergravity Eq. (6.6). Therefore, using Eq. (6.8) and

defining the complex 3-dimensional vector ~W

~W = (Wm) ≡ (〈 V/X | ∂mI 〉) , ℑm (Wm) = 1
4
ǫmnp(dω)np = 〈 I | ∂mI 〉 , (6.67)

9By equation of motion E(φ) of a given field φ we will mean here the l.h.s. of the equation of

motion δS/δφ = E(φ) = 0. This slight abuse of language should lead to no confusions.
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we can translate the above KSIs, Eqs. (6.66), to the condition

ℑm (~∇× ~W) = 0 , (6.68)

which has to be imposed everywhere. Actually, only the singular parts of this equation

have to be taken into account since, dealing with solutions, the finite parts must be

canceled in the equations of motion by other finite contributions. Therefore, from

now on we will ignore all finite contributions to this equation.

Let us consider the real and imaginary parts of Eq. (6.16), namely Eq. (6.20) and

(6.19). The real part gives us two important pieces of information: first, it tells us that

the component J 00 of the source of the Einstein equation is related to component J 0 of

the source of the combined Maxwell and Bianchi equations Ea. If the electromagnetic

fields have only one static point-like source at r = 0, E t ∼ 1√
2
qδ(3)(~x)/

√

|g|, then using

the fact that Z/X is real (see Eq. (6.51) and the previous discussion)

E0t = ±2
√

2 |Z||r=0 δ
(3)(~x)/

√

|g| , (6.69)

which shows that, if the attractor equations are satisfied, the source for the Einstein

equations is just ±|Zfix(q)|. The sign is related to the positivity of 〈R | q 〉, which is,

as was discussed before, associated to the positivity of the mass etc. This is the only

value admissible by supersymmetry, since we can understand this source as a source

of energy. However, if the scalars take non-admissible values we will find the wrong

sign or a zero at r = 0 and supersymmetry will be broken at the source: we will have

to require that the attractor equations are solved by admissible values of the scalars.

The second piece of information we can obtain from the real part concerns the

spacelike components of the electromagnetic sources. Combined with the spacelike

components of the imaginary part, Eq. (6.19), we get the condition

〈 V/X | Jm 〉 = 0 . (6.70)

Let us now consider the time component of the imaginary part of the KSI Eq.

(6.16), Eq. (6.19):

〈 I | J t 〉 = 0 . (6.71)

To find the physical meaning of this condition we use the explicit form of the

symplectic vector of vector field strengths F for timelike BPS solutions Eq. (6.9):

J µ = Eµ = −(⋆dF )µ = |X|2 (∂m∂mI)V µ =
δµt√

2

∂m∂mI
√

|g|
. (6.72)
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This result tells us that the KSIs Eq. (6.70) are always satisfied and that the KSI

Eq. (6.71) is equivalent to the condition

〈 I | ∂m∂mI 〉 = ℑm (∂mWm) = 0 , (6.73)

which is nothing but the integrability condition for the equation determining ω, which

now has to be satisfied everywhere as a consequence of demanding unbroken super-

symmetry everywhere. For the point-like sources considered above, these equations

take the form

∑

A

〈 I | qA 〉δ(3)(~x− ~xA)/
√

|g| = 0 . (6.74)

The consequences of imposing this condition were first studied by Denef and Bates

in Refs. [117, 118] in the context of general N = 2, d = 4 supergravity, but was

studied earlier by Hartle and Hawking in Ref. [148] in the context of Israel-Wilson-

Perjés (IWP) solutions of the Einstein-Maxwell theory. As shown by Tod in Ref. [26]

these are precisely the timelike solutions of pure N = 2, d = 4 supergravity and a

special case of the general problem that we are going to study. Hartle and Hawking

were motivated, not by supersymmetry, but rather by the prospect of finding regular

solutions describing more than one black hole. They were, in particular, worried

about possible string singularities related to NUT charges. These singularities can

be eliminated by compactifying the time coordinate with certain period [149], but at

the price of losing asymptotic flatness. Let us consider a possible string singularity

parametrized by z and choose polar coordinates ρ, φ around it. If one considers the

integral of the 1-form ω that appears in the metric along a loop of radius R enclosing

the possible string singularity at two different points z1 and z2, denoted by I(R, z1,2),

one can use Stokes’ theorem to derive

I(R, z1) − I(R, z2) =

∫

Σ2

dω = 2

∫

Σ2

⋆3ℑmW , (6.75)

where Σ2 is a surfaces whose boundaries are the loops of radius R at z1,2. In the zero

radius limit Σ2 is a closed surface that crosses the possible string singularity at z1 and

z2 and we have

2π limR→0R[ωφ(R, z1) − ωφ(R, z2)] = 2
∫

Σ2 ⋆3ℑmW =
∫

Σ3 d ⋆3 ℑmW

= 2
∫

Σ3 d
3xℑm (∂mWm) ,

(6.76)

where ∂Σ3 = Σ2. Thus, ℑm (∂mWm) 6= 0 implies that ωφ is singular on the string

somewhere between z1 and z2. These singularities are related to the presence of NUT
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sources, since we can define the NUT charge contained in Σ3 as the integral of dω

over Σ2 = ∂Σ3:

−8πNΣ =

∫

Σ2

dω =

∫

Σ3

d2ω = 2

∫

Σ3

d3xℑm (∂mWm) . (6.77)

Thus, the condition ℑm (∂mWm) = 0, required by supersymmetry, is equivalent

to the absence of sources of NUT charge.

Hartle and Hawking argued that the only solutions in the IWP class with no

NUT charge (and no singularities) were the Majumdar-Papapetrou solutions [150,151]

which are regular and static. We will review their arguments in Section 6.3.1 and

show that there are indeed non-trivial solutions that satisfy the KSIs and have no

NUT charges, apart from the Majumdar-Papapetrou ones; they all have negative

total mass, which causes other naked singularities to appear.

Thus, if we include positivity of all masses among the requirements necessary

to have supersymmetry, the only supersymmetric black-holes-type solutions of pure

N = 2, d = 4 supergravity will indeed be the Majumdar-Papapetrou solutions. We

will have to consider more general N = 2, d = 4 theories in order to be able to have

stationary solutions such as the one found in Ref. [89], that satisfy the KSIs and have

positive mass. This will be done in Section 6.3.2.

Next, let us consider the KSI Eq. (6.17) which relates the sources of the scalar

fields with those of the vector fields. If we consider only point-like sources and call

ΣA the scalar charge at ~xA, this equation implies, at each sources

ΣA = 2e−iα DiZ|~xA
. (6.78)

As mentioned before, the scalar sources are completely determined by the electric

and magnetic charges and the asymptotic values of the scalar fields. This is known

as secondary scalar hair [144]. Primary scalar hair correspond to completely free

parameters as in the Einstein-scalar solutions of Ref. [152] or in the solutions of

Ref. [153] which may be embedded in N = 4, d = 4 supergravity. Neither of these

solutions is supersymmetric (nor regular) and the above KSI explains just why.

But there is more to the above KSI: it shows that the existence of attractors at the

sources implies total absence of scalar sources, either of primary or secondary type.

Since this seems to be necessary in order to have regular event horizons, this KSI

implies that there will not be supersymmetric black holes with scalar hair in these

theories. Unfortunately, it seems possible to have singular supersymmetric solutions

with primary scalar hair.

We can summarize the results obtained in this section as follows: we have identified

a series of requirements necessary to avoid singularities in supersymmetric black-hole-
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type solutions of N = 2, d = 4 supergravity coupled to vector multiplets, which can

be associated to having unbroken supersymmetry everywhere (including the sources).

I The conditions

ℑm (~∇× ~W) = 0 , (6.79)

ℑm (~∇ · ~W) = 0 , (6.80)

have to be satisfied everywhere in order to have supersymmetry everywhere.

They ensure the absence of string singularities associated to source of NUT

charge and other singularities associated to sources of angular momentum We

stress that, when dealing with solutions, all finite contributions to the first

equation should be ignored and the second equation can only have singular

terms in the l.h.s.

II The mass has to be positive. Actually, the masses of each of the sources of the

solutions should be positive. They cannot be rigorously defined in general (for

multi-black-hole solutions), but they can be identified with certain confidence

in the supersymmetric configurations at hands [154].

III The attractor equations (6.35) must be satisfied at each of the sources for ad-

missible values of the scalars and the value of the central charge at each of them

must be finite. As we have seen, the first condition is equivalent to the total

absence of scalar sources.

The last two conditions are associated to the finiteness and positivity of −grr
outside the sources. Since −grr ∼ e−K, it would be finite and positive as long as the

scalar fields take admissible values within their domain of definition. All the zeroes

of −grr can be related to singularities of the scalar fields. Imposing that the scalar

fields take admissible values everywhere is too strong a condition, since it is almost

equivalent to directly impose absence of singularities in the metric.

The conditions that we have imposed are, however, heuristically equivalent: for a

single black-hole solution the conditions of asymptotic flatness and positivity of the

masses ensure positivity of −grr in the limit r → ∞. The third condition ensures

positivity in the r → 0 limit and, furthermore, ensures that there will be a horizon

of finite area. Since there are no reasons to expect singularities at finite values of r,

the positivity and finiteness should hold for all finite values of r. The same should

happen in multi-black-hole solutions.
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6.3 N = 2, d = 4 attractors, KSIs and BPS black-hole sources

Now we want to apply the results of the previous sections to several examples of

black-hole-type solutions of N = 2, d = 4 supergravity theories, demanding the three

conditions formulated in the introduction and checking the regularity of those solu-

tions that satisfy them. We are going to start with the simplest theory.

6.3.1 Pure N = 2, d = 4 supergravity

This theory has n̄ = 1, no scalar fields, and it is given by the prepotential

F = − i
2
(X 0)2 , ⇒ F0 = −iX 0 . (6.81)

This implies that the components of the symplectic section V are constant

L0 = iM0 = eiγ/
√

2 , (6.82)

and X is not related to any Kähler potential, but

X =
eiγ√

2
(L0/X)−1 =

eiγ√
2(R0 + iI0)

. (6.83)

The central charge is constant and given by

Z = −ie
iγ

√
2

(p0 − iq0) ≡ −ie
iγ

√
2
q̃ . (6.84)

The attractor equations do not make sense because Z is already moduli-independent.

The timelike supersymmetric configurations of this theory were first found by Tod

in his pioneering paper Ref. [26], belong to the family of solutions found by Perjés,

Israel and Wilson (IWP) [30,155]; they are completely determined by the choice of a

single complex, harmonic function that we denote by Ĩ. In the framework of general

N = 2, d = 4 theories, the solutions of pure N = 2, d = 4 supergravity are given by

just two real harmonic functions I0 and I0, the components of the real symplectic

vector I. The relation between I and Ĩ is

Ĩ = I0 − iI0 . (6.85)

Observe that

X = − ieiγ√
2Ĩ
, (6.86)
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and therefore
√

2X coincides with the function V of Ref. [26] and is the inverse of the

complex harmonic function.

It is convenient to use the complex formulation of this theory. In it, the sym-

plectic product of two real symplectic vectors x, y can be written in the form 〈x |
y 〉 = ℑm (x̃∗ỹ) where the tilde indicates complexification (x̃ = x0− ix0 etc.). Further,

electric-magnetic duality rotations of the symplectic vectors is equivalent to multipli-

cation by a global phase x̃′ = eiγx̃. We would like to stress that the metric is invariant

under these transformations.

Using Eq. (6.81) one finds that R, the real part of V/X is the symplectic vector

R =

( −I0

I0

)

, ⇒ R̃ = −iĨ , ⇒ −grr =
1

2|X|2 = 〈R | I 〉 = |Ĩ|2 . (6.87)

Finally,

~W = Ĩ∗~∇Ĩ . (6.88)

It was argued by Hartle and Hawking [148] that the only regular black hole solu-

tions in the IWP family are the static Majumdar-Papapetrou solutions that describe

several charged black holes in static equilibrium. We are going to see that these are in

fact the only solutions which are everywhere supersymmetric (condition I) and that

demanding positivity of the masses of the components (condition II) is enough to have

regular black holes (condition III plays no rôle here).

Single, static black hole solutions

The complex harmonic function Ĩ adequate to describe a static, spherically symmetric,

extreme black hole with magnetic and electric charges p0 and q0 is

Ĩ = Ĩ∞ +
q̃

r
, q̃ ≡ p0 − iq0 , (6.89)

and asymptotic flatness requires |Ĩ∞| = 1. Since Ĩ∞ is just a phase that can be taken

to be unity by an electric-magnetic duality rotation. Then,

−grr = |Ĩ|2 = 1 +
2ℜe(Ĩ∗

∞q̃)

r
+

|q̃|2
r2

. (6.90)

The mass is given by

M = ℜe(Ĩ∗
∞q̃) = 〈R∞ | q 〉 , (6.91)
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and the equations of motion and supersymmetry seem to allow for it to be positive or

negative. When M is negative |Ĩ|2 will vanish for some finite value of r, giving rise to

a naked singularity. In the limit r → 0, which makes sense if M is positive, we find

that the area of the 2-spheres of constant t and r is finite and equal to

A = 4π|q̃|2 = 8π|Z|2 . (6.92)

Observe that, in general,

|M | 6=
√

2|Z| , (6.93)

even though these solutions are usually understood to be supersymmetric.

For this solution Eq. (6.79) is automatically satisfied, while Eq. (6.80) takes the

form

ℑm (~∇ · ~W) = −4πℑm (Ĩ∗
∞q̃) δ

(3)(~x) = 0 . (6.94)

We can, either

1. Adopt the point of view proposed in this paper that the integrability condition

has to be satisfied everywhere (condition I), whence impose the condition

ℑm (Ĩ∗
∞q̃) = 〈 I∞ | q 〉 = 0 . (6.95)

Ĩ∞ is just a phase and this condition determines it: Ĩ∞ = ±q̃/|q̃| ≡ eiβ. The

complex harmonic function becomes

Ĩ = eiβ
(

1 ± |q̃|
r

)

, (6.96)

The overall phase eiβ is irrelevant for our problem (it can always be eliminated

by an electric-magnetic duality rotation that does not change the metric), but

the relative sign between the two terms, which is the sign of the mass,

M = ±|q̃| = ±|Z| , (6.97)

is important since the minus sign leads to naked singularities. We take the posi-

tive sign as to comply with condition II. We can the integrate the equation for ω

everywhere. The above condition, however, implies the vanishing of the r.h.s. of

the equation and, therefore, also that of ω. Thus, after imposing conditions I

and II we obtain a solution which is static and spherically symmetric and has a

regular horizon if M > 0; Or
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2. We can accept this singularity, ignoring condition I, arguing that, after all, the

harmonic functions are already singular at that point10 and proceed to integrate

the equation and obtain ω which, in spherical coordinates, takes the form

ω = 2N cos θdφ , (6.98)

where N is NUT charge and it is given by

N = ℑm (Ĩ∗
∞q̃) = 〈 I∞ | q 〉 , ⇒ |M + iN | =

√
2|Z∞| . (6.99)

The metric is no longer static, but stationary, and contains either wire singular-

ities or closed timelike curves plus Taub-NUT asymptotics.

It is clear that by imposing conditions I and II, these pathologies are avoided.

Furthermore, in the microscopic models of black holes constructed in the framework

of String Theory there seem to be no configurations that give rise to macroscopic NUT

charge (nor to negative masses). The agreement between spacetime supersymmetry

and the microscopic String Theory models on this point, together with the elimination

of pathologies is encouraging and we will see that it applies to more cases.

Single black hole solutions with a dipole term

Let us now consider harmonic functions adequate to describe rotating supersymmetric

black holes. We can add angular momentum to the previous solution by adding a

dipole term to its complex harmonic function which becomes:

Ĩ = Ĩ∞ +
q̃

r
+ ( ~̃m · ~∇)

1

r
, (6.100)

where ~m = (~m0, ~m0) is a symplectic vector of dipole magnetic and electric momenta.

When they are parallel we can take them to have only z component and, then, in

spherical coordinates

Ĩ = Ĩ∞ +
q̃

r
− m̃ cos θ

r2
. (6.101)

The corresponding ω (which exists except at the singularities of Ĩ) is

ω =

[

2N cos θ + 2J
sin2 θ

r2
+ ℑm(q̃∗m̃)

sin2 θ

r3

]

dφ . (6.102)

10We have seen that the solution can, nevertheless, be regular at that point, which is the event

horizon.
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N is the NUT charge and is given again by Eq. (6.99). The new features are J , the

z component of the angular momentum, given by

J = ℑm (Ĩ∗
∞m̃) = 〈 I∞ | m, 〉 , (6.103)

and ℑm(q̃∗m̃) which does not have a conventional name but vanishes whenN = J = 0.

Let us now analyze the KSIs Eqs. (6.79) and (6.80) (condition I). In the general

case they take, respectively, the form

2

[

ℑm (q̃∗∇m)~∇1

r

]

× ~∇1

r
− i

(

∇m∗
~∇1

r

)

×
(

∇m
~∇1

r

)

= 0 ,(6.104)

ℑm (Ĩ∗
∞q̃) δ

(3)(~x) + ℑm (Ĩ∗
∞∇m) δ(3)(~x) +

1

r
ℑm (q̃∗∇m) δ(3)(~x)+

+δ(3)(~x)ℑm (q̃∇m∗)
1

r
+ ℑm

{(

∇m∗

1

r

)

(

∇mδ
(3)(~x)

)

}

= 0 ,(6.105)

and are satisfied if

N = ℑm (Ĩ∗
∞q̃) = 〈 I∞ | q 〉 = 0 , (6.106)

~J = ℑm (Ĩ∗
∞ ~̃m) = 〈 I∞ | ~m 〉 = 0 , (6.107)

ℑm (q̃∗ ~̃m) = 〈 q | ~m 〉 = 0 , (6.108)

ℑm (m̃∗
[mm̃n]) = 〈m[m | mn] 〉 = 0 , (6.109)

where we have defined the differential operator ∇m ≡ ~̃m · ~∇ and where we have taken

into account Eq. (6.103) to identify the angular momentum.

The first condition is, again, the absence of sources of NUT charge. The second

condition is the absence of sources of angular momentum. The third and fourth

conditions are automatically satisfied in this theory if the first two are.

In this case, these conditions are not enough to eliminate all the singularities

introduced by the dipole term since the above conditions do not cancel terms like

| ~̃m · ~∇1
r
|2 in the grr component of the metric and we no longer find a regular 2-

sphere in the r → 0 limit. However, we are going to argue that, although technically

possible, dipole terms should not be allowed in I because their only possible origin is

a distribution of point-like charges and it is the fundamental distribution of point-like
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charges that we have to consider in the above equations and not the field they produce

at distances larger than its size. It is in these conditions that imposing supersymmetry

everywhere is equivalent to cosmic censorship.

Indeed, from the point of view of the electromagnetic fields, the magnetic dipole

momenta, for instance, can have two fundamental origins: dipole momenta in a dis-

tribution of magnetic monopoles or fundamental dipole momenta that can be seen

as stationary electric currents. In standard electrodynamics the first possibility is

experimentally excluded (see, e.g. Ref. [156]) but in N = 2, d = 4 supersymmetric

configurations it is the only one allowed (see Eq. (6.72)).

The supersymmetric Kerr-Newman solution

Therefore we must only consider distributions of static point-like charges. We will do

so in a moment, but there is an interesting example of rotating black-hole-type solution

which must be considered before: it is given by the complex harmonic function

Ĩ = Ĩ∞ +
q̃

r̃
, r̃ ≡

√

x2 + y2 + (z − iα)2 , (6.110)

which is known to lead to the (“ultra-extreme”) supersymmetric Kerr-Newman solu-

tion with angular momentum around the z axis; as is known it has naked singularities,

as all 4-dimensional supersymmetric rotating “black-holes” [29]. This is the prototype

of solution for which supersymmetry does not act as a “cosmic censor” as proposed

in [36]. Generalizations of this solution in some other N = 2, d = 4 theories have been

constructed in Ref. [64].

The asymptotic expansion of Ĩ

Ĩ ∼ Ĩ∞ +
q̃

r
− iαq̃z

r3
+ · · · , (6.111)

corresponds to a charge distribution with only two independent parameters: α and

q̃. The magnetic (electric) dipole momentum is equal to the product of α and the

electric (magnetic) charge and the infinite number of non-vanishing higher momenta

depend also on these few parameters.

According to the point of view advocated here this solution should not be consid-

ered because it corresponds to the far field of a very charge distribution. As we are

going to see, condition I is enough to exclude it.

Finding the sources of the solution associated to the above complex harmonic

function is very complicated. To start with, Ĩ is singular on the ring x2 + y2 =

α2 , z = 0 but it is also discontinuous on a disk bounded by the ring (see e.g. [157],

whose results we are going to use here. See also Refs. [158,159].).
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Eqs. (6.79) and (6.80), which express condition I, take, respectively, the form

ℑm (Ĩ∗
∞q̃)ℜe (~∇× ~C) + ℜe (Ĩ∗

∞q̃)ℑm (~∇× ~C) + |q̃|2ℑm

(

1

r̃∗
~∇× ~C

)

= 0 ,

(6.112)

ℑm (Ĩ∗
∞q̃)ℜe (~∇ · ~C) + ℜe (Ĩ∗

∞q̃)ℑm (~∇ · ~C) + |q̃|2ℑm

(

1

r̃∗
~∇ · ~C

)

= 0 ,

(6.113)

where we have defined

~C ≡ (x, y, z − iα)

[x2 + y2 + (z − iα)2]3/2
. (6.114)

The curl and divergence of ~C have been carefully computed in Ref. [157] in a

distributional sense, i.e. as integrals of their products with test functions. For us it is

enough to known that

ℜe (~∇× ~C) = ℑm (~∇ · ~C) = 0 , (6.115)

and that ℑm (~∇× ~C) vanishes for vanishing α. We are left with

[

ℜe (Ĩ∗
∞q̃) + |q̃|2ℜe

1

r̃

]

ℑm (~∇× ~C) = 0 , (6.116)

[

ℑm (Ĩ∗
∞q̃) − |q̃|2ℑm

1

r̃

]

ℜe (~∇ · ~C) = 0 . (6.117)

The only way to satisfy the first condition is to have ℑm (~∇ × ~C) = 0, which

requires α = 0 (no sources of angular momentum). Since ℜe (~∇ · ~C) 6= 0 always, the

only way to satisfy the second condition is to have ℑm (Ĩ∗
∞q̃) = 0 as before (no sources

of NUT charge) and ℑm 1
r̃

= 0 which also requires α = 0.

Thus, imposing supersymmetry everywhere is equivalent, yet again, to requiring

absence of sources of NUT charge and angular momentum. In the supersymmetric

Kerr-Newman solution all the angular momentum originates in that source11 and,

thus, that solution and its naked singularities can be excluded from the class of every-

where supersymmetric solutions of N = 2, d = 4 supergravity. Again, supersymmetry

acts as a cosmic censor and, most importantly, there is agreement between the macro-

scopic description of black holes provided by Supergravity and the microscopic models

11We are going to see that there are solutions with angular momentum and no elementary sources

of angular momentum.
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provided by String Theory in which there seems to be no way of having angular mo-

mentum without breaking supersymmetry.

Therefore, we must only consider distributions of point-like charges, which corre-

spond to complex harmonic functions of the form

Ĩ = Ĩ∞ +
∑

A

q̃A
|~x− ~xA|

, (6.118)

from which dipole (and higher) momenta arise only in asymptotic expansions:

Ĩ ∼ Ĩ∞ +

∑

A q̃A
|~x| +

(
∑

A q̃A~xA) · ~x
|~x|3 + · · · , (6.119)

and may give rise to non-vanishing angular momentum

~J = ℑm (Ĩ∗
∞ ~̃m) = 〈 I∞ | ~m 〉 , ~m = −

∑

A

qA~xA , (6.120)

but not to non-vanishing NUT charge.

N = ℑm (Ĩ∗
∞q̃) = 〈 I∞ | q 〉 = 0 , q =

∑

A

qA . (6.121)

We are going to look for this kind of solutions in pure N = 2, d = 4 supergravity

next, recovering the (negative) Hartle and Hawking result [148]. We will have to look

for them in more general N = 2, d = 4 theories.

Solutions with two black holes

Let us consider, to start with, just two poles

Ĩ = Ĩ∞ +
q̃1

|~x− ~x1|
+

q̃2
|~x− ~x2|

. (6.122)

Asymptotic flatness requires |Ĩ∞| = 1. The condition Eq. (6.79) is automatically

satisfied and (6.80) takes the form

[

〈 I∞ | q1 〉 +
〈 q2 | q1 〉
|~x1 − ~x2|

]

δ(3)(~x− ~x1) +

[

〈 I∞ | q2 〉 +
〈 q1 | q2 〉
|~x2 − ~x1|

]

δ(3)(~x− ~x2) = 0 ,

(6.123)

which leads to the two equations
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〈 I∞ | q1 〉 +
〈 q2 | q1 〉
|~x1 − ~x2|

= 0 ,

〈 I∞ | q2 〉 +
〈 q1 | q2 〉
|~x2 − ~x1|

= 0 ,

(6.124)

each of which expresses the absence of sources of NUT charge at ~x1 and ~x2. The

antisymmetry of the symplectic product implies the consistency condition

〈 I∞ | q1 + q2 〉 = 0 , (6.125)

which means that the total charge of the two objects satisfies the same condition (no

global NUT charge) as the charge of just one.

Expanding asymptotically I and using the above constraints we find that this

two-body system has a total mass and angular momentum given by

M =
∑

A

〈R∞ | qA 〉 ≡
∑

A

MA , (6.126)

~J = 〈 I∞ | ~m 〉 = 〈 q1 | q2 〉
(~x2 − ~x1)

|~x2 − ~x1|
. (6.127)

Observe that there is total angular momentum even though there are no sources

of angular momentum.

There are two types of solutions to these equations required by condition I:

1. Each object’s charge satisfies the condition for single independent objects 〈 I∞ |
qA 〉 = 0 which requires 〈 q2 | q1 〉 = 0. In this theory this means that the phases

of Ĩ∞, q̃1 and q̃2 are such that

Ĩ = eiβ

(

1 +
∑

A

sA|q̃A|
|~x− ~xA|

)

, (6.128)

where sA = ±1. The total mass is given by the formula Eq. (6.91)

M = ℜe(Ĩ∗
∞
∑

A

q̃A) = 〈R∞ |
∑

A

qA 〉 =
∑

A

sA|q̃A| , (6.129)

and the angular momentum vanishes (ω vanishes).

These are the Majumdar-Papapetrou solutions [150, 151]. Only the solutions

with all sA = +1 are regular, but one could argue that only those correspond to
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objects that would have positive masses MA = |q̃A| if they were isolated [154].

This is the meaning of condition II.

These solutions describe two charged, static black holes in equilibrium with their

event horizons placed at ~x1 and ~x2 which are really 2-spheres of finite areas equal

to 4π|q̃1|2 and 4π|q̃2|2. They are, as argued by Hartle and Hawking, and as we

are going to see, the only regular black-hole-type solutions in the whole IWP

family [148]

2. 〈 I∞ | qA 〉 6= 0 and we have two objects that cannot exist independently in the

vacuum I∞ (i.e. we have a bound state). The distance between them is fixed

by the condition of absence of sources of NUT charge to be

|~x2 − ~x1| =
〈 q1 | q2 〉
〈 I∞ | q1 〉

. (6.130)

The sign of the r.h.s. can always be made positive by flipping the sign of I∞,

which is irrelevant for the moduli and for solving Eq. (6.125). Thus, this equa-

tion always has a solution. However, when all the above conditions have been

satisfied, the total mass of the solution is negative. The simplest way to see

this is by first making Ĩ∞ = 1 by a duality rotation that does not change the

metric. After the duality rotation one finds q̃′A = MA + iNA, meaning that they

are complex combinations of the masses and NUT charges of each object. Using

N2 = −N1, the above condition takes the form

N1 +
N1M2 −N2M1

|~x2 − ~x1|
= N1

(

1 +
M1 +M2

|~x2 − ~x1|

)

= 0 , (6.131)

which has solution only for vanishing NUT charges or for negative total mass

M1 + M2 which violates condition II and produces naked singularities. Thus,

we cannot simultaneously satisfy conditions I and II for bound states with 〈 q1 |
q2 〉 6= 0.

This result can be generalized to solutions with more poles: let us consider first

the 3-pole harmonic function

Ĩ = Ĩ∞ +
q̃1

|~x− ~x1|
+

q̃2
|~x− ~x2|

+
q̃3

|~x− ~x3|
. (6.132)

The ω integrability condition leads to three equations (one to cancel the NUT

charge at each pole) which can be written as a linear system for the NAs:
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











(

1 + M2

r12
+ M3

r14

)

−M1

r12
−M1

r13

−M2

r12

(

1 + M1

r12
+ M3

r23

)

−M2

r23

−M3

r13
−M3

r23

(

1 + M1

r13
+ M2

r23

)



























N1

N2

N3















= 0 . (6.133)

It is easy to see that the determinant of the matrix is +1 plus terms linear and

quadratic in the masses, all with positive sign. It will never vanish if all the masses

are positive. This argument can be easily generalized to a higher number of poles and,

therefore we conclude that the only solutions satisfying conditions I and II are the

Majumdar-Papapetrou solutions. This result should be read in a positive sense: no

singular solutions are allowed by the conditions proposed in the introduction, even if

only static solutions are allowed in this simple theory. To find solutions with angular

momentum satisfying conditions I-III we need to consider theories with scalars.

6.3.2 General N = 2, d = 4 supergravity

The setup of our problem in general N = 2, d = 4 theories is similar to pure super-

gravity case. Let us first consider spherically-symmetric, static, single black-hole-type

solutions with magnetic and electric charges pΛ and qΛ. They are determined by a

symplectic vector of 2n̄ real harmonic functions

I =

( IΛ

IΛ

)

= I∞ +
q

r
, q ≡

(

pΛ

qΛ

)

, I∞ ≡
( IΛ

∞
IΛ∞

)

. (6.134)

We assume that the stabilization equations have been solved and R(I) has been

found in order to be able to construct the fields of the solutions.

The n complex scalars are constructed using the general formula Eq. (6.5). The

moduli (the values of the n complex scalars Zi at infinity, Zi
∞) are complicated func-

tions Zi
∞(I∞) of these 2n+2 real constant components of I∞. One of the components

of I∞ can be determined as a function of the remaining 2n+1 by imposing asymptotic

flatness of the metric, that is, 〈R∞ | I∞ 〉 = 1, and another one can be determined

by imposing condition I, since Eq. (6.73) implies

N = 〈 I∞ | q 〉 = 0 . (6.135)

It should always be possible to give the 2n real moduli any admissible value within

their definition domain with the remaining 2n unconstrained real components of I∞.
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This is difficult to prove explicitly due to the complicated and theory-dependent re-

lations between I∞ and the moduli Zi
∞, but it is safe to assume that in general it is

possible.

Let us turn to condition II. The positivity of the masses, which is given by the

general expression Eq. (6.53) has to be imposed by hand and, although this can always

be done, it is a non-trivial constraint on the charges and moduli. The positivity of

the masses can be also understood as part of a stronger requirement that the scalar

fields take values only within their definition domain for all values of r. Actually, this

requirement should suffice to ensure the finiteness of −grr for r 6= 0.

The finiteness of −grr for r 6= 0 is not enough to have a black hole and condition

III has to be imposed to find a finite horizon area at r = 0.

If we want to describe more than one black hole we have to use harmonic functions

with two point-like singularities:

I = I∞ +
q1

|~x− ~x1|
+

q2
|~x− ~x2|

. (6.136)

Again, one of the components of I∞ is determined by imposing asymptotic flatness.

Condition I now leads to the two equations Eqs. (6.124) which should determine

another component of I∞ and the parameter |~x1 − ~x2| if 〈q2 | q1〉 6= 0. The question

now is whether these solutions can be obtained while maintaining the positivity of

the masses (condition II)

Mi ≡ 〈R∞ | qi 〉 > 0 , (6.137)

and solving the attractor equations for each of the singularities of the harmonic func-

tions. We have no general answer to these questions and, what we are going to do is

to study how the three conditions can actually be imposed in a particularly simple

example and suffice to ensure regularity of the solutions.

A toy model with a complex scalar field

We are going to consider the n̄ = 2 theory with prepotential

F = −iX 0X 1 . (6.138)

This theory has only one complex scalar

τ ≡ iX 1/X 0 , (6.139)

in terms of which the period matrix is given by
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(NΛΣ) =

( −τ 0

0 1/τ

)

(6.140)

and, in the X 0 = i/2 gauge, the Kähler potential and metric are

K = − lnℑmτ , Gττ∗ = (2ℑmτ)−2 . (6.141)

The reality of the Kähler potential requires the positivity of ℑmτ . Therefore, τ

parametrizes the coset SL(2,R)/SO(2) and can be identified with the axidilaton and

this theory is a truncation of the SO(4) formulation of N = 4, d = 4 supergravity.

The symplectic section V is

V =
1

2(ℑmτ)1/2











i

τ

−iτ
1











, (6.142)

and the central charge is

Z(τ, τ ∗, q) = 〈V | q〉 =
1

2(ℑmτ)1/2
[(p1 − iq0) − (q1 + ip0)τ ] . (6.143)

The attractor equation is

d

dτ

1

ℑmτ
[(p1 − iq0) − (q1 + ip0)τ ]

∣

∣

∣

∣

τ=τfix

= 0 , (6.144)

and has the general solution

τfix =
p1 + iq0
q1 − ip0

, (6.145)

which is admissible (belongs to the definition domain of τ) if

ℑmτfix = p0p1 + q0q1 > 0 . (6.146)

The central charge at the fixed point of the scalar takes the value

Zfix = −i q1 + ip0

|q1 + ip0|
√

p0p1 + q0q1 , (6.147)

and it is always finite for τfix 6= 0.

Solutions with a single black hole
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Let us now consider solutions with

I = I∞ +
q

r
. (6.148)

In this theory the stabilization equations can be easily solved and they lead to

R =

(

0 −σ1

σ1 0

)

I , ⇒ −grr = 〈R | I 〉 = 2(I0I1 + I0I1) , (6.149)

which shows that the area of the horizon (if any) is related to |Zfix|2 above according

to the general formula Eq. (6.55).

We also have

τ = i
L1/X

L0/X
=

I1 + iI0

I1 − iI0
, (6.150)

which implies that the 4 harmonic functions are not entirely independent but have to

satisfy

ℑmτ = I0I1 + I0I1 > 0 , (6.151)

which ensures that, if there are no pathologies that make a black-hole interpretation

of the solution impossible, the attractor equations will always have solutions and

Zfix 6= 0. Thus, we will not have to worry about condition III but only about the

positive definiteness of ℑmτ .

The only possible pathologies (negative mass and presence of NUT charge) are

clearly avoided by imposing conditions I and II, which is always possible and presents

no difficulties.

Solutions with two black holes

Let us now consider solutions of the form

I = I∞ +
q1
r1

+
q2
r2
, ri ≡ |~x− ~xi| . (6.152)

Our goal is to find a configuration (i.e. a set of asymptotic values I∞ and charges

q1,2) that satisfy conditions I-III. The previous discussions indicate how this has to

be done and which formulas need to be applied. There is no systematic procedure to

find such a configuration but it is not too difficult to find one:
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I0 =
1√
2

+
q

r1
+
q

r2
,

I1 =
1√
2

+
8q

r1
+

8q

r2
,

I0 = −4q

r2
,

I1 = − 1

4
√

2
− q

r1
+
q

r2
,

(6.153)

where q > 0 in order to guarantee Eq. (6.151). The metric component

−grr = 1 +
9
√

2q

r1
+

10
√

2q

r2
+

16q2

r2
1

+
8q2

r2
2

+
40q2

r1r2
, (6.154)

is finite everywhere outside r1,2 = 0, and therefore, so is ℑmτ . In particular the

“mass” of each of the two objects is positive

M1 = 9q/
√

2 , M2 = 5
√

2q , M = M1 +M2 = 19q/
√

2 , (6.155)

and in the r1,2 → 0 limits we find spheres of finite areas

A1

4π
= 16q2 = 2|Zfix,1|2 ,

A2

4π
= 8q2 = 2|Zfix,2|2 . (6.156)

The total horizon area is

A

4π
=
A1

4π
+
A2

4π
= 24q2 < 2|Zfix,tot|2 = 64q2 , (6.157)

which is the area of the horizon of a single black hole having the sum of the charges

of the two black holes.

For this configuration

〈 I∞ | q1 〉 = −〈I∞ | q2 〉 = −q/
√

2 , 〈 q2 | q1 〉 = 12q2 , (6.158)

so, choosing

r12 = |~x2 − ~x1| = 12
√

2q , (6.159)

we satisfy condition I (no NUT charges). The system has nevertheless angular mo-

mentum given by the general formula Eq. (6.127):
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|J | = |〈 q2 | q1 〉| = 12q2 . (6.160)





7

Discussion and conclusions

We have succeed in the characterization of supersymmetric solutions of matter-coupled

N = 1, d = 5 Supergravity and pure N = 4, d = 4 Supergravity. To this end, we

have used the method of spinor bilinears. As usual, this method leads to separate

the solutions between the time-like and null cases. In the time-like case there are

typically massive solitons whereas in the null case there are gravitational waves. The

method is mainly focused in the characterization of the minimally supersymmetric

configurations, thus we have obtained all the possible projections to be imposed on

the Killing spinors.

We have shown the first complete analysis with hyperscalars in N = 1, d = 5

Supergravity (the study of the theory with hyperscalars was initiated in Ref. [59–61]).

In the time-like case, the main novelty due to the presence of hyperscalars is the

enhancement of the holonomy of the spatial base manifold from SU(2) to the full

SO(4) group, being the anti-self dual component of the spin connection determined

by the other fields of the solutions. Indeed, in the ungauged case it is just the pull-back

of the su(2) connection of the quaternionic Kähler manifold (the same relation holds

in the gauged case, but with some corrections). The condition on the hyperscalars to

have unbroken supersymmetry has a very simple and suggestive form, indeed in the

ungauged case it is the equation for quaternionic maps between hyperKähler manifolds

(although the base manifold is not necessarily hyperKähler). Due to its simplicity,

this equation could be the starting point to construct new, concrete supersymmetric

solutions of this theory. Additionally, we have found that in the null case the spin

connection of the three-dimensional subspace transverse to the wave is also determined

by the other fields of the solutions. In the ungauged case it is again the pullback of

the su(2) connection of the quaternionic Kähler manifold. Equally, the condition on

the hyperscalars is quite simple in the null class.
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One would like to solve in a general frame all the equations that characterize

supersymmetric solutions (or to arrive to equations with known solutions). This have

been done for certain supergravity theories. However, the presence of hyperscalars

and also the gauging lead us to non-linear and highly coupled differential equations

in the case of the five dimensional theory, like the ones on the hyperscalars and the

spin connection, for which we are not able to give the general solution.

We found, in a very precise way, the generic projections to be imposed on the

Killing spinors in order to have unbroken supersymmetry in the N = 1, d = 5 theories.

Both in the time-like and null cases all supersymmetric configurations preserve at least

1/8 of the supersymmetries. This result holds both for the ungauged and gauged

theories, since the projections on the Killing spinor are the same.

We have found solutions with one additional isometry in the time-like case of N =

1, d = 5 Supergravity which are the generalization of the Gibbons-Hawking instanton

metric. As we mentioned, the presence of hyperscalars destroys the self-duality of the

spin connection, this fact is reflected on the non-triviality of the three-dimensional

connection of the solutions we found, unlike the Gibbons-Hawking instanton which

has flat three-dimensional metric.

It would be interesting to study the attractor mechanism and the entropy of

the black hole solutions in presence of hyperscalars. Moreover, the pp-wave of the

null class solutions can be dimensionally reduced to supersymmetric N = 2, d = 4

black holes. This raises new questions about how the 4-dimensional attractor mech-

anism is implemented in the 5-dimensional setting, taking into account that these

5-dimensional solutions belong to the null class and the standard attractor mecha-

nism is proved only for solutions in the time-like class. The 5-dimensional origin of

the 4-dimensional entropy can (and must) be investigated.

Moreover, the dimensional reduction of five-dimensional supersymmetric solutions

with one additional isometry to four dimensions can be performed. It would be

interesting to see how this can be achieved in the framework of the characterization of

supersymmetric solutions (such a characterization for theN = 2, d = 4 theory coupled

to matter has been done in Refs. [63, 65]). In addition, the reduction/oxidation of

supersymmetric solutions can be analyzed together with the six-dimensional theory.

Therefore theories with eight supersymmetries in six, five and four dimensions could

be treated in a unified frame, extending the analysis initiated in Ref. [110].

One possible and perhaps easy extension of our analyses in the N = 1, d = 5

theory is the inclusion of tensor multiplets.

In the N = 4, d = 4 theory we have found that (in the time-like case) the holonomy

of the base three-dimensional manifold is greater than that of the solutions considered

by Tod [28], who found only flat solutions, indeed it can be as large as the whole SU(2)

group. We have indicated how the spin connection is related to the other variables of
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the solutions. Here, the global symmetries of the theory (SU(4) and SL(2,R)) play

a crucial role, guiding us in the construction of the supersymmetric configurations

and solutions. We have found configurations with U(1) holonomy and also some

new solutions of this kind are presented. The solutions belonging to the time-like

class preserve at least 1/16 of the supersymmetries whereas the ones of the null class

preserve 1/4.

The formalism we have developed to analyze the N = 4, d = 4 theory can be

adapted to other four dimensional theories with more supersymmetries, that is N = 6

and 8 four-dimensional supergravities.

Another interesting extension of our work would be to perform the characterization

with R2 corrections both in four and five dimensions. This is particularly viable be-

cause the supersymmetry variations are the same when R2 corrections are considered

(although the equation of motion changes). This has been already analyzed for the

case of maximally supersymmetric solution of the N = 1, d = 5 Supergravity [160].

We have seen that the general Killing Spinor Identities (KSIs) found in Ref. [78]

can be used to obtain useful relations between the equations of motion evaluated

on supersymmetric configurations. This is a very powerful tool, it has allowed us for

example to avoid the direct evaluation of (some components of) the Einstein equations.

Moreover, the KSIs can be computed in any theory of supergravity. Other authors

have used analogous relations between equations of motion, but they have found them

by using directly the integrability conditions of the Killing spinor equations, which is

way harder than the KSIs.

We have also shown how supersymmetry acts as cosmic censor. By demanding

that supersymmetry is unbroken everywhere, even at the sources, the configurations

are constrained in such a way that many pathological solutions (naked singularities)

can be discarded. We have formulated the condition of having unbroken supersym-

metry everywhere by means of three conditions that supersymmetric black-hole-type

solutions have to satisfy. We have shown how these conditions constrain the possible

sources by, basically, excluding those with NUT charge, angular momentum, nega-

tive energy and scalar hair, which seemingly cannot be modeled in String Theory. We

arrived at a picture in which if an observer far away from one of the globally supersym-

metric configurations we have considered, detects angular momentum and non-trivial

scalar fields he/she will only find static electromagnetic sources in equilibrium when

approaching the system.

These conditions and this picture should be improved by considering quantum

corrections. Another interesting course of action would be to consider regularity of

black-hole solutions in N > 2 theories, e.g. [161–163], and investigate the role played

by the attractor [143].





A

Conventions and some formulae

A.1 General conventions

A.1.1 Notation

• We use the mostly minus signature (+ − . . .−). ηab is the Minkowski metric.

Lowercase greek letters µ, ν, ρ... are space-time curved indices and lowercase

latin letters a, b, c... are space-time flat (tangent) indices. When dealing with

the spatial sector we use lowercase latin indices like i, j, k... which are underlined

when are curved indices.

• Sometimes we indicate the contraction (without numerical weight) of tensors by

a central dot, A ·B = Aαβγ···Bαβγ···.

• The internal product of a k-form and a vector is

iV ω ≡ ω(V, , . . . , ) , (iV ω)µ1···µk−1
= V αωαµ1···µk−1

(A.1)

• Symmetrization and anti-symmetrization is made with unit weight

(a1 · · · an) ≡ 1

n!

∑

P

P (a1 · · · an) , (A.2)

[a1 · · · an] ≡ 1

n!

∑

P

sgn(P )P (a1 · · · an) , (A.3)

where P is any permutation. For example [ab] = 1
2
(ab− ba).
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• k-forms are normalized according to

F =
1

k!
Fµ1···µk

dxµ1 ∧ . . . ∧ dxµk . (A.4)

The value of the completely antisymmetric symbol is ǫ012··· = ǫ012··· = +1.

The Hodge dual of a k-form is denoted by ⋆F and it is given by

⋆F µ1···µ(d−k) =
1

k!
√

|g|
ǫµ1···µdFµ(d−k+1)···µd

(A.5)

A.1.2 Affine and spin connection

∇ is the covariant derivative under general coordinate transformations and local

Lorentz transformations, hence it is made from the affine connection Γµν
α and the

spin connection ωµa
b. The covariant derivatives on tensors and spinors are

∇µA
ν = ∂νA

ν + Γµα
νAα , (A.6)

∇µA
a = ∂νA

a + ωµb
aAb , (A.7)

∇µψ = ∂µψ − 1
4
ωµ

abγabψ . (A.8)

The curvature of the torsionless affine connection is defined by

[∇µ,∇ν ]A
α = Rµνβ

α(Γ)Aβ , (A.9)

[∇µ,∇ν ]ψ = −1
4
Rµν

ab(ω)γabψ . (A.10)

Explicitly it yields

Rµνα
β(Γ) = 2∂[µΓν]α

β − 2Γ[µ|α
ρΓν]ρ

β , (A.11)

Rµνa
b(ω) = 2∂[µων]a

b − 2ω[µ|a
cων]c

b . (A.12)

The vielbein postulate

∇µeν
a = 0 , (A.13)

relates the affine and spin connections

ωµa
b = Γµα

βea
αeβ

b + ea
α∂µeα

b . (A.14)
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In turn, the curvatures are related homogeneously

Rµνα
β(Γ) = Rµνa

b(ω)eα
aeb

β . (A.15)

Finally, metric compatibility and torsionlessness fully determine the connections

to be of the form

Γµν
ρ = 1

2
gρσ
(

2∂(µgν)σ − ∂σgµν
)

. (A.16)

A.2 Special conventions in four dimensions

A.2.1 Complex (anti)-self-dual forms

For any 4-dimensional 2-form, we define

F± ≡ 1
2
(F ± i ⋆F ) , F± = ±i⋆F± . (A.17)

For any two 2-forms F,G, we have

F± ·G∓ = 0 , F±
[µ
ρ ·G∓

ν]ρ = 0 . (A.18)

A.2.2 Electric and magnetic components

Given any 2-form F = 1
2
Fµνdx

µ ∧ dxν and a non-null 1-form V̂ = Vµdx
µ, we can

express F in the form

F = V −2[E ∧ V̂ − ⋆(B ∧ V̂ )] , Eµ ≡ FµνV
ν , Bµ ≡ ⋆FµνV

ν . (A.19)

For the complex combinations F± we have

F± = V −2[C± ∧ V̂ ± i ⋆(C± ∧ V̂ )] , C±
µ ≡ F±

µνV
ν . (A.20)

This decomposition is particularly useful in the time-like case where V generates the

time translations, hence the above is a electric/magnetic decomposition of the Maxwell

field in a covariant way.

It is interesting to study the compatibility of the above decomposition with the

SL(2,R) symmetry, which acts on F and ⋆F in different ways. Let M be the matrix

M ≡ 1

ℑmτ

( |τ |2 ℜeτ

ℜeτ 1

)

. (A.21)
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SL(2,R) acts on M linearly

M
′ = ΛMΛT (A.22)

where Λ is a SL(2,R) matrix,

Λ =

(

a b

c d

)

. (A.23)

If we solve {F, ⋆F} in terms of {F, F̃} then the decomposition (A.19) becomes ex-

plicitely SL(2,R)-covariant,
(

F̃

F

)

=

[

iV

(

F̃

F

)

∧ V − MS ⋆

(

iV

(

F̃

F

)

∧ V
)]

(A.24)

where S is the canonical antisymmetric matrix,

S ≡
(

0 +1

−1 0

)

(A.25)

which is preserved by SL(2,R) by definition,

ΛTSΛ = S . (A.26)

A.2.3 Null tetrads

If we have a (real) null vector lµ, we can always add three more null vectors nµ,mµ, m̄µ

to construct a complex null tetrad such that the local metric in this basis takes the

form











0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0











(A.27)

with the ordering (l, n,m, m̄). For the local volume element we obtain ǫlnmm̄ = i. The

general expansion in the dual basis of 1-forms
(

l̂, n̂, m̂, ˆ̄m
)

of F+ depends on three

arbitrary complex functions a, b, c

F+ = a
(

l̂ ∧ n̂+ m̂ ∧ ˆ̄m
)

+ bl̂ ∧ ˆ̄m+ cn̂ ∧ m̂ , F− = (F+)∗ . (A.28)

Then, in this case, F is not completely determined by its contraction with the null

vector l, but

F+ = L± ∧ n̂± ⋆(L± ∧ n̂) + bl̂ ∧ m̂ , L±
µ ≡ F±

µνl
ν = alµ − cmµ . (A.29)
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A.2.4 Raising and lowering SU(4) indices

In SU(4) two representations which are complex conjugates transform in inverse ways.

Hence we may define an invariant scalar product in SU(4) by complex conjugation.

Complex conjugation lows and raises the SU(4) indices, XI = XI
∗. Thus, one imme-

diately notice that a product like

AIBI

is invariant under SU(4).

Besides the scalar product, there is a further SU(4) invariant: the totally antisym-

metric symbol ǫIJKL, ǫ1234 = +1. It is real, hence is the same with upper and bottom

indices. For a SU(4) tensor we define the SU(4) dual

M̃IJ =
1

2
ǫIJKLM

KL , M̃ IJ =
1

2
ǫIJKLMKL . (A.30)





B

Gamma matrices, bilinears and Fierz
identities

B.1 Four dimensions

B.1.1 Gamma matrices and spinors

We work with a purely imaginary representation

γa ∗ = −γa , (B.1)

and our convention for their anticommutator is

{γa, γb} = +2ηab . (B.2)

Thus,

γ0γaγ0 = γa † = γa−1 = γa . (B.3)

The chirality matrix is defined by

γ5 ≡ −iγ0γ1γ2γ3 = i
4!
ǫabcdγ

aγbγcγd , (B.4)

and satisfies

γ5
† = −γ5

∗ = γ5 , (γ5)
2 = 1 . (B.5)
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With this chirality matrix, we have the identity

γa1···an =
(−1)[n/2]i

(4 − n)!
ǫa1···anb1···b4−nγb1···b4−nγ5 . (B.6)

Our convention for Dirac conjugation is

ψ̄ = iψ†γ0 . (B.7)

Using the identity Eq. (B.6) the general d = 4 Fierz identity for commuting spinors

takes the form

(λ̄Mχ)(ψ̄Nϕ) = 1
4
(λ̄MNϕ)(ψ̄χ) + 1

4
(λ̄MγaNϕ)(ψ̄γaχ) − 1

8
(λ̄MγabNϕ)(ψ̄γabχ)

−1
4
(λ̄Mγaγ5Nϕ)(ψ̄γaγ5χ) + 1

4
(λ̄Mγ5Nϕ)(ψ̄γ5χ) .

(B.8)

We use 4-component chiral spinors whose chirality is related to the position of the

SU(4) index:

γ5χI = +χI , γ5ψµ I = −ψµ I , γ5ǫI = −ǫI . (B.9)

Both (chirality and position of the SU(4) index) are reversed under complex conju-

gation:

γ5χ
∗
I ≡ γ5χ

I = −χI , γ5ψ
∗
µ I ≡ γ5ψµ

I = +ψµ
I , γ5ǫ

∗
I ≡ γ5ǫ

I = +ǫI . (B.10)

We take this fact into account when Dirac-conjugating chiral spinors:

χ̄I ≡ i(χI)
†γ0 , χ̄Iγ5 = −χ̄I , etc. (B.11)

The sum of the two chiral spinors related by complex conjugation gives a standard

(real) Majorana spinor with an SU(4) index with the complicated transformation rule

of Ref. [129].

Explicit gamma matrices according to our conventions are

γ0 =

(

0 iσ1

−iσ1 0

)

, γ1 =

(

i 0

0 −i

)

, γ2 =

(

0 σ2

−σ2 0

)

,

γ3 =

(

0 i

i 0

)

, γ5 =

(

0 −iσ3

iσ3 0

) (B.12)
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where σi are Pauli matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(B.13)

B.1.2 Fierz identities for bilinears

Here we are going to work with an arbitrary number N of chiral spinors, although we

are ultimately interested in the N = 4 case only. Whenever there are special results

for particular values of N , we will explicitly say so. We should bear in mind that the

maximal number of independent chiral spinors is 2 and, for N > 2 (in particular for

N = 4) N spinors cannot be linearly independent at a given point. This trivial fact

has important consequences.

Given N chiral commuting spinors ǫI and their complex conjugates ǫI we can

constructed the following bilinears that are not obviously related via Eq. (B.6):

1. A complex matrix of scalars

MIJ ≡ ǭIǫJ , M IJ ≡ ǭIǫJ = (MIJ)
∗ , (B.14)

which is antisymmetric MIJ = −MJI .

2. A complex matrix of vectors

V I
J a ≡ iǭIγaǫJ , VI

J
a ≡ iǭIγaǫ

J = (V I
J a)

∗ , (B.15)

which is Hermitean:

(V I
J a)

∗ = VI
J
a = V J

I a = (V I
J a)

T . (B.16)

3. A complex matrix of 2-forms

ΦIJ ab ≡ ǭIγabǫJ , ΦIJ
ab ≡ ǭIγabǫ

J = (MIJ)
∗ , (B.17)

which is symmetric in the SU(N) indices ΦIJ ab = ΦJI ab and, further,

⋆ΦIJ ab = −iΦIJ ab ⇒ ΦIJ ab = ΦIJ
+
ab . (B.18)

As we are going to see, this matrix of 2-forms can be expressed entirely in terms

of the scalar and vector bilinears.
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It is straightforward to get identities for the products of these bilinears using the

Fierz identity Eq. (B.8). First, the products of scalars:

MIJMKL = 1
2
MILMKJ − 1

8
ΦIL · ΦKJ , (B.19)

MIJM
KL = −1

2
V L

I · V K
J . (B.20)

From Eq. (B.19) immediately follows

MI[JMKL] = 0 , (B.21)

which is a particular case of the Fierz identity

ǫ[JMKL] = 0 . (B.22)

For N = 4, 8, . . ., Eq. (B.21) implies, in turn

PfM = 0 ⇒ detM = 0 . (B.23)

For N = 4 we can define the SU(4)-dual of MIJ

M̃IJ ≡ 1
2
εIJKLM

KL , ε1234 = ε1234 = +1 , (B.24)

and the vanishing of the Pfaffian implies

M̃IJM
IJ = 0 . (B.25)

From Eq. (B.20) and the antisymmetry of M immediately follows

V I
L · V K

J = −V I
J · V K

L = −V K
L · V I

J , (B.26)

which implies that all the vector bilinears V I
J a are null:

V I
J · V I

J = 0 . (B.27)

On the other hand, from Eqs. (B.26) and (B.20) follows the real SU(N)-invariant

combination of vectors Va ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJMIJ ≥ 0 . (B.28)
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The products of M with the other bilinears1 give

MIJV
K
La = 1

2
MILV

K
J a + 1

2
ΦIL baV

K
J
b , (B.29)

MIJΦ
KL

ab = V L
I [a|V

K
J |b] − i

2
ǫab

cdV L
I cV

K
J d . (B.30)

Now, let us consider the product of two arbitrary vectors2:

V I
J aV

K
Lb = i

2
ǫab

cdV I
L cV

K
J d + V I

L (a|V
K
J |b) − 1

2
gabV

I
L · V K

J . (B.31)

For V 2 this identity allows us to write the metric in the form

gab = 2V −2[VaVb − V I
J aV

J
I b] . (B.32)

Following Tod [28], for V 2 6= 0 we introduce

J I
J ≡ 2M IKMJK

|M |2 =
2V · V I

J

V 2
, |M |2 ≡MLMMLM = 1

2
V 2 . (B.33)

Using Eq. (B.19) we can show that it is a Hermitean projector whose trace equals 2:

J I
JJ J

K = J I
K , J I

I = +2 . (B.34)

Further, using the general Fierz identity we find

J I
Jǫ
J = ǫI , ǫIJ I

J = ǫJ , (B.35)

which should be understood for N > 2 of the fact that the ǫI are not linearly inde-

pendent3. As a consequence of the above identity, the contraction of J with any of

the bilinears is the identity. Using this result and Eq. (B.30), we find

ΦKL
ab =

2M IKMIJ

|M |2 ΦJL
ab =

2M IK

|M |2 V
L
I [aVb] − i

M IK

|M |2 ǫab
cdV L

I cVd . (B.36)

Other useful identities are

1We omit the product MIJΦKL ab which will not be used.
2The product V I

J aVL
K

b gives a different identity that will not be used
3For N = 2 J I

J = δI
J . See later on.
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MIJM
KL

|M |2 = J K
[IJ L

J ] , (B.37)

and

2M̃ IKM̃JK

|M |2 = δIJ − J I
J ≡ J̃ I

J , (B.38)

which is the complementary projector.

B.1.3 The U(2) formalism

We may always parametrize the SU(4) spinors in terms of “U(2) spinors” and a set

of scalars:

ǫI = φAI ǫA , A = 1, 2 , (B.39)

where φAI is a vector of SU(4) and ǫA is invariant, whereas φAI is invariant under

SL(2,R) and ǫA has weight +1.

The above parametrization has a local GL(2,C) symmetry. Part of this symmetry

can be fixed by imposing the following normalization condition

φAI φ
I
B = δAB , (B.40)

where φIA ≡ φAI
∗
. In general, to take the complex conjugate we raise and lower the

SU(4) and U(2) indices. The above condition is preserved by U(2),

ǫA
′ = UA

BǫB , φAI
′
= φBI U

†
B
A , U ∈ U(2) . (B.41)

In this formalism the scalars MIJ are given by the scalars φAI and one further

complex scalar Z such that

MIJ = ZφAI φ
B
J ǫAB , |M |2 = 2|Z|2 . (B.42)

If one consider these objects as spinor bilinears, then

Z = 1
2
ǫAB ǭAǫB . (B.43)

It is convenient to parameterize the phase of Z as

Z = −i|Z|eiλ . (B.44)

The projector JIJ can be written in terms of φAI as

JIJ = φAI φ
J
A . (B.45)
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There is a U(2) connection given by

φIAdφ
B
I (B.46)

which is an anti-hermitean matrix in the U(2) indices. It is useful to decompose this

connection in its trace and traceless parts,

ζ = φIAdφ
A
I , (B.47)

AA
B = φIAdφ

B
I − 1

2
δA

Bζ (B.48)

such that ζ is a imaginary one-form and A is a traceless anti-hermitean matrix-valued

one-form. ζ is a gauge connection for the U(1) part of U(2) given by the trace

generator (the identity) and A is a gauge connection for the SU(2) part given by the

traceless generators (the Pauli matrices). The curvature of A is given by

RA
B = dAA

B −AA
C ∧ AC

B . (B.49)

In addition, we may express the SU(2) in the vectorial representation

Ax = iσxA
BAB

A , (B.50)

AA
B = − i

2
σxA

BAx . (B.51)

The one-form ξ can be written in terms of φAI and Z as

2ξ + iζ = dλ . (B.52)

Let VA
B be four vectors constructed as bilinears of the U(2) spinors,

V a
A
B ≡ iǭAγ

aǫB . (B.53)

The U(2) vectors are related to the SU(4) vectors by

VI
J = φAI VA

BφJB , VA
B = φIAVI

JφBJ . (B.54)

In particular the trace vector of U(2) is equal to V . The SU(4) vectors satisfy the

following (Fierz) identity

|M |2gµν = VµVν − Vµ I
JVν J

I , (B.55)

such that

|M |2gµν = VµVν − VµA
BVν B

A . (B.56)
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We may decompose the U(2) vectors as follows

VA
B =

1

2
δA

BV +
1√
2
σxA

BVx , x = 1, 2, 3. (B.57)

which is equivalent to pass from the fundamental×antifundamental representation of

U(2) to the adjoint one. Indeed, the inverse transformations for the SU(2) sector are

V x =
1√
2
σxA

BVB
A . (B.58)

Then the (t, t) component of the equation (B.56) yields

Vt
x = 0 (B.59)

and the spatial components are

γij = Vi
xVj

yδxy , (B.60)

where i, j, k... are curved spatial indices. Therefore the three vectors V x, which are

time-independent and have not time component, are vielbeins for the spatial metric

γij. We may introduce objects of the tangent space using the V x basis. For instance

the spin connection is introduced by

∇iVj
x = ∂iVj

x − Γij
kVk

x − oiy
xVj

y (B.61)

In the null case V 2 = |M |2 = 0 it is customary to write la ≡ V I
I a. Since |M |2

is a sum of positive numbers, each of them must vanish independently, i.e. M IJ = 0.

This implies that all spinors ǫI are proportional and one can write

ǫI = φIǫ , (B.62)

for some complex functions φI which transform as an SU(4) vector, and some negative-

chirality spinor ǫ. These are defined up to a rescaling by a complex function and

opposite weights. Part of this freedom can be fixed by normalizing

φIφ
I = 1 , φI ≡ φ∗

I . (B.63)

Then, the only freedom that remains in the definition of φI is a change by a local

phase θ(x)

φI → eiθφI , ǫ→ e−iθǫ . (B.64)

In this case on can construct another Hermitean projector KI
J that plays a role

analogous to that of J I
J in the non-null case:
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KI
J ≡ φIφJ , (B.65)

which satisfies

KI
JKJ

K = KI
K , KI

I = +1 , (B.66)

and

KI
Jǫ
J = ǫI , ǫIKI

J = ǫJ , (B.67)

which expresses the known fact that only one spinor is linearly independent in this

case.

In the null case, all the vector bilinears are also proportional to the null vector l:

V I
J a = KI

J la . (B.68)

Once ǫ is given, we may introduce an auxiliary spinor with the same chirality and

opposite U(1) charge as ǫ and normalized against ǫ by

ǭη =
1

2
, (B.69)

where ǭ = iǫTγ0. With both spinors we can construct a complex null tetrad with

metric Eq. (A.27) as follows:

lµ = iǭ∗γµǫ , nµ = iη̄∗γµη , mµ = iǭ∗γµη = iη̄γµǫ
∗ , m∗

µ = iǭγµη
∗ = iη̄∗γµǫ .

(B.70)

The normalization condition (B.63) does not fix completely the auxiliary spinor η

and the freedom in the choice of η becomes a freedom in the null tetrad. First of all,

there is a U(1) freedom Eq. (B.64) under which η′ = eiθη and

l′ = l , n′ = n , m′ = e2iθm. (B.71)

Further, we can also shift η by terms proportional to ǫ preserving the normalization

η′ = η + δǫ . (B.72)

Under this redefinition of η, the null tetrad transforms as follows:

l′ = l , n′ = n+ δ∗m+ δm∗ + |δ|2l , m′ = m+ δl . (B.73)
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B.1.4 The N = 2 case

Here we describe some of the peculiarities of the N = 2 case in which the number of

spinors is precisely the necessary to construct a basis at each point.

In the N = 2 case there is only one independent (complex) scalar X since

ǭIǫJ = XǫIJ , (B.74)

where ǫIJ is the (constant) 2-dimensional totally antisymmetric tensor. It follows that

|M |2 = 2|X|2 , (B.75)

and, using ǫIJǫ
KL = δIJ

KL we can show that the projector

J I
J = δIJ . (B.76)

In the |M |2 6= 0 case, the four vector bilinears V I
J µ can be used as a null tetrad

lµ = V 1
1µ , nµ = V 2

2µ , mµ = V 1
2µ , m∗

µ = V 2
1µ , . (B.77)

Alternatively. one can use the four combinations

V a
µ ≡ 1√

2
V I

J µ(σ
a)J I , (B.78)

with σ0 = 1 and σi the three (traceless, Hermitean) Pauli matrices as an orthonormal

tetrad in which V 0 is timelike and the V i are spacelike.

B.2 Five dimensions

B.2.1 Gamma matrices and spinors

The first four of our 5-dimensional gamma matrices are taken to be identical to 4-

dimensional purely imaginary gamma matrices γ0, γ1, γ2, γ3 satisfying

{γa, γb} = 2ηab , (B.79)

and the fifth is γ4 = −γ0123, so it is purely real, the above anticommutator is valid

for a = 0, · · · , 4 and, furthermore, γa1···a5 = +εa1···a5 and, in general
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γa1···an =
(−1)[n/2]

(5 − n)!
εa1···anb1···bn−5γb1···bn−5 . (B.80)

On the other hand, γ0 is Hermitean and the other gammas are anti-Hermitean.

To explain our convention for symplectic-Majorana spinors, let us start by defining

the Dirac, complex and charge conjugation matrices D±,B±, C±. By definition, they

satisfy

D± γ
aD−1

± = ±γa † , B± γ
a B−1

± = ±γa ∗ . C± γa C−1
± = ±γa T . (B.81)

The natural choice for Dirac conjugation matrix is

D = iγ0 , (B.82)

which corresponds to D = D+. The other conjugation matrices are related to it by

C± = BT±D , (B.83)

but it can be shown that in this case only C = C+ and B = B+ exist and are both

antisymmetric. We take them to be

C = iγ04 , B = γ4 ⇒ B∗B = −1 . (B.84)

The Dirac conjugate is defined by

ψ†D = iψ†γ0 , (B.85)

and the Majorana conjugate by

ψTC = iψTγ04 . (B.86)

The Majorana condition (Dirac conjugate = Majorana conjugate) cannot be consis-

tently imposed because it requires B∗B = +1. Therefore, we introduce the symplectic-

Majorana conjugate in pairs of spinors by using the corresponding symplectic matrix,

e.g.

ψi c ≡ εijψ
j TC , (B.87)

then the symplectic-Majorana condition is

ψi ∗ = εijγ
4ψj . (B.88)
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To impose the symplectic-Majorana condition on hyperinos ζA the only thing we

have to do is to replace the matrix εij by CAB, which is the invariant metric of Sp(nh).

Our conventions on SU(2) indices are intended to keep manifest the SU(2) covari-

ance. In SU(2), besides the preserved metric, there is the preserved tensor εij. We

also introduce εij, ε12 = ε12 = +1. Therefore we may construct new covariant objects

by using εij and εij, for instance ψi ≡ εijψ
j (whence ψj = ψiε

ij). With this notation

the symplectic-Majorana condition can be simply stated as

ψi ∗ = γ4ψi . (B.89)

We use the bar on spinors to denote the (single) Majorana conjugate:

ψ̄i ≡ ψi
TC , (B.90)

which transforms under SU(2) in the same representation as ψi does. We also lower

its SU(2) index: ψ̄i ≡ εijψ̄
j. In terms of single Majorana conjugates the symplectic

Majorana condition reads

(

ψ̄i
)∗

= ψ̄iγ
4 . (B.91)

Finally, observe that after imposing the symplectic Majorana condition the follow-

ing simple relation between the single Dirac and Majorana conjugates holds:

ψi
†D = ψ̄i , (B.92)

which is very useful if one prefers to use the Dirac conjugate instead of the Majorana

one.

The bilinears that can be constructed from Killing spinors will in general be 2× 2

matrices that can be written as linear combinations of the Pauli matrices σr̂ (r̂ =

0, . . . , 3) where σ0 = I2×2. Therefore, we are bound to need the Fierz identities

(

λ̄Mϕ
) (

ψ̄Nχ
)

= p
8

{(

λ̄Mσr̂Nχ
) (

ψ̄σr̂ϕ
)

+
(

λ̄Mγaσr̂Nχ
) (

ψ̄γaσ
r̂ϕ
)

−1
2

(

λ̄Mγabσr̂Nχ
) (

ψ̄γabσ
r̂ϕ
)}

,

(B.93)

where the SU(2) indices are implicit and p = (−)1 for (anti-)commuting spinors.

B.2.2 Spinor bilinears

With one commuting symplectic-Majorana spinor ǫi we can construct the following

independent, SU(2)-covariant bilinears:
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ǭi ǫ
j : It is easy to see that

ǭiǫ
j = −εjk(ǭkǫl)εli ,

(ǭiǫ
j)∗ = −ǭjǫi ,

(B.94)

The first equation implies that this matrix is proportional to δi
j and the second

equation implies that the constant is purely imaginary. Thus, we define the

SU(2)-invariant scalar

f ≡ iǭiǫ
i = iǭσ0ǫ , ǭiǫ

j = − i
2
f δi

j . (B.95)

All the other scalar bilinears iǭσrǫ (r = 1, 2, 3) vanish identically.

ǭiγ
aǫj : This matrix satisfies the same properties as ǭiǫ

j, and so we define the vector

bilinear

V a ≡ iǭiγ
aǫi = iǭγaσ0ǫ , ǭiγ

aǫj = − i
2
δi
j V a . (B.96)

which is also SU(2)-invariant, the other vector bilinears being automatically

zero.

ǭiγ
abǫj: In this case

ǭiγ
abǫj = +εjk(ǭkγ

abǫl)εli ,

(ǭiγ
abǫj)∗ = ǭjγ

abǫi ,

(B.97)

which means that these 2-form matrices are traceless and Hermitean and we

have three non-vanishing real 2-forms

Φr ab ≡ σri
j ǭjγ

abǫi , ǭiγ
abǫj = 1

2
σri

j Φr ab . (B.98)

r = 1, 2, 3, which transform as a vector in the adjoint representation of SU(2),

and the fourth ǭγabσ0ǫ = 0.

Using the Fierz identities Eq. (B.93) for commuting spinors we get, among other

identities,
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V aVa = f 2 , (B.99)

VaVb = ηabf
2 + 1

3
Φr

a
cΦr

cb , (B.100)

V aΦr
ab = 0 , (B.101)

V a(⋆Φr)abc = −fΦr
bc , (B.102)

Φr
a
cΦs

cb = −δrs(ηabf 2 − VaVb) − εrstfΦt
ab , (B.103)

Φr
[abΦ

s
cd] = −1

4
fδrsεabcdeV

e , (B.104)

Vaγ
aǫi = fǫi , (B.105)

Φr
abγ

abǫi = 4ifǫjσrj
i . (B.106)
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Supersymmetric space-time metrics

C.1 Four dimensional conformastationary metric

A conformastationary metric has the general form

ds2 = |M |2(dt+ ω)2 − |M |−2γijdx
idxj , i, j = 1, 2, 3 , (C.1)

where all components of the metric are independent of the time coordinate t. Choosing

the Vielbein basis

(eµ
a) =





|M | |M |ωi

0 |M |−1vi
j



 , (ea
µ) =





|M |−1 −|M |ωi

0 |M |vij



 , (C.2)

where

γij = vi
kvj

lδkl , vi
kvk

jvj , ωi = vi
jωj , (C.3)

we find that the spin connection components are

ω00i = −∂i|M | , ω0ij = 1
2
fij ,

ωi0j = ω0ij , ωijk = −|M |oijk − 2δi[j∂k]|M | ,
(C.4)

where oi
jk is the 3-dimensional spin connection and
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∂i ≡ vi
j∂j , fij = vi

kvj
lfkl , fij ≡ 2∂[iωj] . (C.5)

The components of the Riemann tensor are

R0i0j = 1
2
∇i∂j|M |2 + ∂i|M |∂j|M | − δij(∂|M |)2 + 1

4
∇i|M |6fikfjk ,

R0ijk = −1
2
∇i(|M |4fjk) + 1

2
fi[j∂k]|M |4 − 1

4
δi[jfk]l∂l|M |4 ,

Rijkl = −|M |2Rijkl +
1
2
|M |6(fijfkl − fk[ifj]l) − 2δij,kl(∂|M |)2 + 4|M |δ[i[k∇j]∂

l]|M | ,
(C.6)

where all the objects in the right-hand sides of the equations are referred to the

3-dimensional spatial metric. The components of the Ricci tensor are

R00 = −|M |2∇2 log |M | − 1
4
|M |6f 2 ,

R0i = 1
2
∇j(|M |4fji) ,

Rij = |M |2{Rij + 2∂i log |M |∂j log |M | − δij∇2 log |M | − 1
2
|M |4fikfjk} ,

(C.7)

and the Ricci scalar is

R = −|M |2{R− 1
4
|M |4f 2 − 2∇2 log |M | + 2(∂ log |M |)2} , (C.8)

C.2 Four dimensional Brinkmann pp-wave metric

These metrics are

ds2 = 2du(dv +Kdu+ ω) − 2e2Udzdz∗ , ω = ωzdz + ωz∗dz
∗ , (C.9)

where all the functions in the metric are independent of v.

Using also light-cone coordinates in tangent space, a natural Vielbein basis is
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eu = du = l̂ , eu = ∂u −K∂v = nµ∂µ ,

ev = dv +Kdu+ ω = n̂ , ev = ∂v = lµ∂µ ,

ez = eUdz = m̂ , ez = e−U(∂z − ωz∂v) = −m∗µ∂µ ,

ez
∗

= eUdz∗ = m̂∗ , ez∗ = e−U(∂z∗ − ωz∗∂v) = −mµ∂µ .
(C.10)

The components of the spin connection are

ωuzu = e−U(∂zK − ω̇z) , ωuzz∗ = 1
2
e−2Ufzz∗ − U̇ ,

ωzz∗u = −1
2
e−2Ufzz∗ − U̇ , ωzzz∗ = −e−U∂zU ,

(C.11)

where fzz∗ = 2∂[zωz∗] and a dot stands for partial derivation with respect to u.

The components of the Ricci tensor are

Rzz∗ = 2e−2U∂z∂z∗U ,

Rzu = 1
2
e−3U∂zfzz∗ + e−U(∂zU̇ + U̇∂zU) ,

Ruu = −2e−2U∂z∂z∗K + 1
2
(fzz∗)

2 + e−2U(∂zω̇z∗ + ∂z∗ω̇z) + 2(Ü + U̇ U̇) ,

(C.12)

and the Ricci scalar is just

R = −4e−2U∂z∂z∗U . (C.13)

C.3 The five-dimensional time-like metric

In the timelike case we find the conformastationary metric

ds2 = f 2 (dt+ ω)2 − f−1hmndx
mdxn , ω = ωmdx

m , m, n = 1, · · · , 4 .
(C.14)

We choose the Vielbein basis
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(eaµ) =





f fωm

0 f−1/2V n
m



 , (eµa) =





f−1 −f 1/2ωm

0 f 1/2V n
m



 , (C.15)

where

hmn = Vm
pVn

qδpq , Vm
p Vn

q hpq = δmn , ωm = Vm
nωn . (C.16)

The non-vanishing components of the spin connection in this basis are

ω00m = −2∂mf
1/2 , ω0mn = ωm0n = 1

2
f 2 (dω)mn , ωmnp = −f 1/2ξmnp−2δm[n∂p]f

1/2 ,

(C.17)

where, from now on, all the objects in the r.h.s. of these equations refer to the 4-

dimensional metric hmn and, in particular

(dω)mn = Vm
pVn

q (dω)pq = 2Vm
pVn

q∂[pωq] . (C.18)

Thee non-vanishing components of the Ricci tensor are

R00 = −∇2f + f−1(∂f)2 − 1
4
f 4(dω)2 ,

R0m = −1
2
f−1/2∇n[f

3(dω)nm] ,

Rmn = fRmn − 1
2
(dω)mp(dω)np + 3

2
f−1∂mf∂nf − 1

2
δmn[∇2f − f−1(∂f)2] ,

(C.19)

and the Ricci scalar is given by

R = −fR + 1
4
(dω)2 + ∇2f − 5

2
f−1(∂f)2 . (C.20)

C.4 The five-dimensional null case metric

ds2 = 2fdu(dv +Hdu+ ω) − f−2γrsdx
rdxs , r, s = 1, 2, 3 . (C.21)

Orthonormal 1-form and vector basis for this metric are given by
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e+ = fdu , e+ = f−1(∂u −H∂v) ,

e− = dv +Hdu+ ω , e− = ∂v ,

er = f−1vr , er = f(vr − ωr∂v) ,

(C.22)

where vr = vrsdx
s and vr = vr

s∂s are orthonormal basis 1-forms and vectors for the

3-dimensional spatial positive-definite metric γrs

δrsv
r
tv
s
q = γtq , vt

rvq
sγrs = δtq . (C.23)

The non-vanishing components of the spin connection are

ω+r+ = ∂rH − ∂uωsvr
s , ωrs+ = −1

2
f 2Frs − f−2∂ufδrs − f−1v(r|

t∂uv|s)t ,

ω+r− = 1
2
∂rf = ω−r+ = −ωr+− , ω+rs = 1

2
f 2Frs − f−1v[r|

t∂uv|s]t ,

ωrst = f̟rst − 2δr[s∂t]f ,
(C.24)

where all the quantities in the r.h.s. of all these equations refer to the 3-dimensional

metric and Dreibein and

Frs = vr
tvs

pFtp , Frs ≡ 2∂[rωs] . (C.25)

The non-vanishing components of the Ricci tensor are

R++ = −f∇2H − 1
4
f 4F 2 + f∇rω̇r + 3ω̇r∂

rf + 1
2
f−2γrsγ̈rs + 1

4
f−2γ̇rsγ̇rs

−3
2
f−3ḟγrsγ̇rs − 3f−2

[

∂2
u log f − 2 (∂u log f)2] ,

R+− = −1
2
f 2∇2 log f ,

R+r = −1
2
∇s (f 3Fsr) − 1

2
vr
rγst∇sγ̇rt +

1
2
vr
r∂u (γst∂rγst) + 3

2
vr
rγ̇rt∂

t log f

−3
2
∂r∂u log f − 3

4
γstγ̇st∂r log f + 3

2
∂u log f∂r log f ,

Rrs = f 2Rrs(γ) − δrsf
2∇2 log f + 3

2
∂rf∂sf ,

(C.26)

and the Ricci scalar is
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R = −f 2R(γ) + 2f 2∇2 log f − 3
2
(∂f)2 . (C.27)



D

Scalar manifolds

D.1 Real Special Geometry

The geometry of the n physical scalars φx (x = 1, . . . , n) of the vector multiplets is fully

determined by a constant real symmetric tensor CIJK (I, J,K = 0, 1, . . . , n̄ ≡ n+ 1).

The scalars appear through n̄ functions hI(φ) constrained to satisfy

CIJKh
IhJhK = 1 . (D.1)

One defines

hI ≡ CIJKh
JhK , ⇒ hIh

I = 1 , (D.2)

and a metric aIJ that can be use to raise and lower the SO(n̄) index

hI ≡ aIJh
J , hI ≡ aIJhJ . (D.3)

The definition of hI allows us to find

aIJ = −2CIJKh
K + 3hIhJ . (D.4)

Next, one defines

hIx ≡ −
√

3hI ,x ≡ −
√

3
∂hI

∂φx
, (D.5)

and
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hIx ≡ aIJh
J
x = +

√
3hI,x , (D.6)

which satisfy

hIh
I
x = 0 , hIhIx = 0 , (D.7)

due to Eq. (D.1). The hI enjoy the following properties of closure and orthogonality

(

hI

hIx

)

(

hI hyI
)

=

(

1 0

0 δyx

)

,
(

hI hxI
)

(

hJ

hJx

)

= δJI . (D.8)

Therefore any object with SO(n̄) index can be decomposed as

AI =
(

hJA
J
)

hI +
(

hxJA
J
)

hIx . (D.9)

The metric of the scalars gxy(φ) is the pullback of aIJ :

gxy = aIJh
I
xh

J
y = −2CIJKh

I
xh

J
yh

K , (D.10)

and can be used to raise and lower x, y indices. Other useful expressions are

aIJ = hIhJ + hxIhJx , (D.11)

CIJKh
K = hIhJ − 1

2
hxIhJx , (D.12)

and

hIhJ = 1
3
aIJ + 2

3
CIJKh

K , (D.13)

hxIhJx = 2
3
aIJ − 2

3
CIJKh

K . (D.14)

We now introduce the Levi-Cività covariant derivative associated to the scalar

metric gxy

hIx;y ≡ hIx,y − Γxy
zhIz . (D.15)

It can be shown that
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hIx;y = 1√
3
(hIgxy + Txyzh

z
I) , (D.16)

hIx;y = − 1√
3
(hIgxy + Txyzh

Iz) , (D.17)

Txyz =
√

3hIx;yh
I
z = −

√
3hIxh

I
y;z , (D.18)

Γxy
z = hIzhIx,y − 1√

3
Txy

w = 8hzIh
I
x,y + 1√

3
Txy

w . (D.19)

D.2 Quaternionic-Kähler manifolds

In this appendix we review the definition and basics of quaternionic-Kähler manifolds.

We refer the reader to Ref. [164] for a more comprehensive introduction to quaternionic

manifolds with original references.

A quaternionic-Kähler manifold is a real 4n-dimensional manifold (n > 1) such

that1

1. There exists on it a triplet of complex structures JrX
Y , r = 1, 2, 3, X,Y =

1, . . . 4n which satisfy the algebra of imaginary unit quaternions,

JrJs = −δrs + εrst J t , (D.20)

which is known as hypercomplex or quaternionic structure. A manifold with this

property is an almost hypercomplex of almost quaternionic manifold.

2. The hypercomplex structure is integrable, i.e. it is covariantly constant with re-

spect to the standard Levi-Cività connection and a non-trivial su(2) connection

(i.e. with non-vanishing curvature):

∂XJ
r
Y
Z − ΓXY

UJrU
Z + ΓXU

ZJrY
U + 2εrstωX

sJ tY
Z = 0 , (D.21)

where ωX
r is the su(2) connection. In this case the manifold is a quaternionic

manifold. (If this equation is satisfied with a trivial su(2) connection the mani-

fold is a hypercomplex manifold.)

1Clearly, the definitions given below are just too weak to be useful when n = 1, and one defines a

4-dimensional manifold to be quaternionic-Kähler, iff it is Einstein and selfdual. For a supergravity

justification of this definition see e.g. [164].
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3. There is a metric which is invariant under the action of the three complex

structures

gXY = J (r)
X
ZJ (r)

Y
UgZU , (no sum over r!) . (D.22)

This property makes it a (quaternionic) Kähler manifold.

The combination of the complex structures with the metric gives us the three

hyper-Kähler 2-forms

JrXY = gXZJ
r
Y
Z . (D.23)

They are covariantly closed respect to the su(2) connection,

dJr + 2εrstωs ∧ J t = 0 . (D.24)

The holonomy of a quaternionic-Kähler manifold is contained in SU(2) ·Sp(2) and

the tangent space indices are split accordingly into pairs of SU(2) and Sp(n) indices

i, j, k = 1, 2 and A,B,C = 1, . . . , 2n respectively. The Vielbein is defined to be fiA
X

and is related to the metric by

gXY = fX
iA fY

jB
CAB εij , (D.25)

where

fX
iA fiA

Y = δX
Y , fiA

X fX
jB = δi

j δA
B , (D.26)

and CAB is the Sp(n)-invariant metric. The Vielbein also satisfies the reality condition

(

fX
iA
)∗

= εij CAB fX
jB , (D.27)

and they are covariantly constant under the combination of the Levi-Cività, su(2)-

and sp(n) connections. The Vielbein also gives us the tangent version of the complex

structures. The constant matrices −iσr satisfy the algebra Eq. (D.20), and we have

JrX
Y = fX

iA
J
r
iA
jB fjB

Y , J
r
iA
jB ≡ −iσrij δAB . (D.28)

The spin connection can be split into its su(2) and sp(n) components as follows:

ωX iA
jB = i

2
ωX

r
J
r
iA
jB + ωX A

B δi
j . (D.29)

Some useful identities are
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RXY
r = 1

4
ν JrXY , (D.30)

2f[X
iAfY ]jA = iJrXY σrj

i , (D.31)

2f(X
iAfY )jA = gXY δj

i . (D.32)

The constant ν is given in terms of the dimensionality of the manifold 4n and its Ricci

scalar R by

ν =
R

4n(n+ 2)
. (D.33)





E

Gauging isometries

In this appendix we are going to review briefly the gauging of the isometries of the

scalar manifolds of N = 1, d = 5 supergravity in order to clarify some definitions and

conventions. This material is covered in a slightly different for in Refs. [164] and [109].

E.1 Killing vectors and gauge transformations

The complete scalar manifold (or target space) of the scalar fields of N = 1, d =

5 supergravity is the product of a real special manifold and a quaternionic Kähler

manifold parametrized, respectively, by the scalars of the vector supermultiplets (φx)

and by the scalars of the hypermultiplets (qX). The metrics of these two manifolds

are denoted by gxy(φ) and gXY (q).

We can describe the most general N = 1, d = 5 gauged supergravity theory by

focusing on the gauging of the isometries of the scalar manifolds. In the end we will

see that there are gaugings (necessarily Abelian) unrelated to isometries that fit in

the general description.

The isometries to be gauged are generated by Killing vectors of the real special

manifold kI
x(φ)∂x and the quaternionic Kähler manifold kI

X(q)∂X , a pair for each

vector AIµ of the theory, although some (or all) can be identically zero.

The isometries generated by the Killing vectors kI
X act on the quaternions ac-

cording to

δΛq
X = −gΛIkI

X . (E.1)
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In the gauged theory the ΛIs are the local parameters of vector gauge transforma-

tions

δΛA
I
µ = ∂µΛ

I + gfJK
IAJµΛ

K , (E.2)

where fJK
I are the structure constants of the gauge group G and are given by the Lie

brackets of the kI
Xs

[kI , kJ ] = −fIJKkK . (E.3)

This implies that the functions hI of the real special manifold transform in the adjoint

representation of G:

δΛh
I = −gfJKIΛJhK . (E.4)

In turn, this implies for the scalars themselves

δΛφ
x = −gΛIkI

x , (E.5)

where

kI
x = −

√
3fIJ

KhJhxK . (E.6)

These objects must be Killing vectors of gxy(φ) if the ΛI transformations are also

symmetries of the corresponding σ model. Writing gxy∂φ
x∂φy = −2CIJKLh

I∂hJ∂hK

it is easy to see that necessary and sufficient condition is

fI(J
KCMN)K = 0 , (E.7)

i.e. that CIJK is an invariant tensor.

Furthermore, the Killing vectors kI
x(φ) satisfy the same Lie algebra as the kI

X(q)s

and, using Eq. (E.7), which implies

fIJ
KhJhK = 0 , (E.8)

they can also be written in the equivalent form

kI
x = −

√
3fIJ

KhJxhK . (E.9)

The G-covariant derivatives on the scalars are
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Dµφ
x = ∂µφ

x + gAIµkI
x , Dµh

I = ∂µh
I + gfJK

IAJµh
K , (E.10)

Dµq
X = ∂µq

X + gAIµkI
X , (E.11)

and they transform covariantly as

δΛDµϕ
x̃ = −gΛI∂ỹkI

x̃Dµϕ
ỹ , δΛDµh

I = −gfJKIΛJDµh
K , (E.12)

where we have unified the notation on the scalars, ϕx̃ = (φx, qX), kI
x̃ = (kI

x, kI
X).

For the sake of completeness we also quote the formulae

DµhI = ∂µhI + gfIJ
KAJµhK , DµCIJK = 0 . (E.13)

The second derivatives are defined by

DµDνϕ
x̃ ≡ ∇µDνϕ

x̃ + Γỹz̃
x̃Dµϕ

ỹDµϕ
z̃ + gAIµ∂ỹkI

x̃Dνϕ
ỹ , (E.14)

where Γỹz̃
x̃ are the target space Christoffel symbols. Their transformations and com-

mutator are given by

δΛDµDνϕ
x̃ = −gΛI∂ỹkI

x̃DµDνϕ
ỹ , (E.15)

[Dµ,Dν ]ϕ
x̃ = gF I

µνkI
x̃ , (E.16)

where F I
µν is the gauge field strength

F I
µν = 2∂[µA

I
ν] + gfJK

IAJµA
K
ν . (E.17)

All these definitions are enough to construct a gauge-invariant action for the

scalars, since this essentially depends on the target space metric. However, they

are not enough to gauge the full supergravity theory, which depends on other struc-

tures as well. In particular, it depends on the complex structures of the hyperscalar

manifold and we have to study under which conditions they are preserved by the

gauging.
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E.2 The covariant Lie derivative and the momentum map

This appendix concerns only to the hyperscalar sector of the target manifold. The

quaternionic Kähler geometry of this manifold is defined not only by the metric gXY
but by the quaternionic structure ~JX

Y , which should also be preserved by the symme-

tries to be gauged. Therefore, one must require the vanishing of the Lie derivative of

the quaternionic structure with respect to the Killing vectors kI
X . One has to use an

SU(2)-covariant Lie derivative for consistency or, as it is usually done in the litera-

ture, impose the vanishing of the standard Lie derivative up to gauge transformations.

Here we will use an SU(2)-covariant Lie derivative whose construction we describe

first.

Let ~ψ by an SU(2) vector and, simultaneously an arbitrary tensor on the hy-

perscalar variety, and ~ω the SU(2) connection. Under infinitesimal SU(2) gauge

transformations

δλ ~ψ = −2~λ(q) × ~ψ , δλ~ω = −2~λ(q) × ~ω + d~λ(q) . (E.18)

The standard Lie derivative of ~ψ along the vector kI
X (denoted by LI ~ψ) transforms

under SU(2) as

δλLI ~ψ = −2~λ× LI ~ψ − 2∂I~λ× ~ψ , (E.19)

where ∂I ≡ kI
X∂X . We now want to find another definition of Lie derivative that

transforms without derivatives of the transformation parameter. Introducing for each

Killing vector1 kI
X a ~ηI transforming as

δλ~ηI = −2~λ× ~ηI + ∂I~λ , (E.20)

we define the SU(2)-covariant Lie derivative on SU(2) vectors

LI
~ψ ≡ LI ~ψ + 2~ηI × ~ψ . (E.21)

For this to be a good definition LI must satisfy the standard properties of a Lie

derivative.

LI is clearly a linear operator and it satisfies the Leibnitz rule for products of

SU(2) vectors such as ~ψ · ~φ and ~ψ × ~φ. The Lie derivative must also satisfy

[LI ,LJ ] = L[kI ,kJ ] , (E.22)

1Only covariant Lie derivatives with respect to Killing vectors can be properly defined.
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which implies the Jacobi identity. This requires the “curvature” of the “connection”

~ηI to be

∂I~ηJ − ∂J~ηI + 2~ηI × ~ηJ = −fIJK~ηK . (E.23)

It should be clear that ~ηI must be related with the SU(2) connection ~ω, but it is

not just kI
X~ωX , which has the right transformation property Eq. (E.20) but does not

satisfy curvature property Eq. (E.23). Thus, we introduce yet another SU(2) vector2

~ηI = kI
X~ωX − 1

2
~PI , (E.24)

which must satisfy

DI
~PJ − DJ

~PI − ~PI × ~PJ + 1
2
kI
X ~JXY kJ

Y = fIJ
K ~PK , (E.25)

in order to meet Eq. (E.23). Here we have used the fact that in quaternionic Kähler

manifolds the curvature of the SU(2) connection is non-vanishing and proportional

to the Kähler two-forms. We are going to show that ~PI satisfies the equation that

defines it as a momentum map.

Now, assuming that a ~PI satisfying Eq. (E.25) has been found, we can write the

conditions that the vector kI
X must satisfy to be the generator of a symmetry of the

hyperscalar manifold in the form

LIgXY = 0 , (E.26)

LI
~JXY = 0 . (E.27)

The first equation is just the Killing equation since LIgXY = LIgXY . Given the

metric and quaternionic structure, the second condition (tri-holomorphicity of the

Killing vectors) can be seen as a condition for ~PI just as the Killing equation can be

seen as a condition for kI once the metric gXY is given: it can be written in the form

− ~JX
Y × ~PI = ∇XkI

Z ~JZ
Y − ~JX

Z∇ZkI
Y , (E.28)

which says that ~PI measures the commutator between the quaternionic structure and

the covariant derivative of the Killing vectors. By contracting this equation with ~JY
X

2We put the −1/2 factor to agree with the conventions of Ref. [109]



210 Chapter E. Gauging isometries

we obtain an expression for ~PI itself, valid for nH 6= 03

2nH ~PI = ~JX
Y∇Y kI

X . (E.32)

For this solution to be consistent, it has to satisfy Eq. (E.25). To see it we first

take the derivative of the above solution Eq. (E.32) using the following identity for

Killing vectors,

∇X∇Y k
Z = RXWY

ZkW , (E.33)

and the canonical decomposition of the curvature between its SU(2) and Sp(nH)

parts,

RXWY
Z = − ~JY

Z · ~RXW + fY
iBfiA

ZRXW B
A . (E.34)

Only the SU(2) part of the curvature contributes to the derivative of ~PI :

DX
~PI = 2 ~RXY kI

Y = −1
2
~JXY kI

Y . (E.35)

This equation can alternatively be taken as the definition of ~PI . It defines a

momentum map and it is crucial for coupling hypermultiplets to supergravity. Observe

that the integrability condition of Eq. (E.35) is precisely Eq. (E.28).

We can now substitute Eq. (E.35) in Eq. (E.25), obtaining

~PI × ~PJ + 1
2
kI
X ~JXY kJ

Y = fIJ
K ~PK . (E.36)

On the other hand, contracting Eq. (E.28) with ∇Y kJ
X we get

nH ~PI × ~PJ = − ~JX
Y∇Y k[I|

Z∇Zk|J ]
X , (E.37)

3In absence of hypermultiplets (nH = 0) the momentum map ~PI can still be defined in two cases

in which they are equivalent to a set of constant Fayet-Iliopoulos terms. In the first case the gauge

group contains an SU(2) factor and
~PI = ~eI ξ , (E.29)

where ξ is an arbitrary constant and the ~eI are constants that are nonzero for I in the range of the

SU(2) factor and satisfy

~eI × ~eJ = fIJ
K~eK . (E.30)

In the second case the gauge group contains a U(1) factor and

~PI = ~e ξI , (E.31)

where ~e is an arbitrary SU(2) vector and the ξIs are arbitrary constants that are nonzero for I

corresponding to the U(1) factor.
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integrating by parts the right hand side of this expression, using the algebra of the

Killing vectors, identity (E.33), the Bianchi identity of the curvature and the curvature

decomposition (E.34) one recovers Eq. (E.36).

From Eq. (E.32) one can see that the momentum map is also covariantly preserved

by the Killing vectors

LI
~PJ = 0 . (E.38)

There is still one more consistency check on the momentum map: the quaternionic

Kähler two-form is SU(2)-covariantly closed. To ensure that this property is consistent

with Eq. (E.27) we must check that the covariant Lie derivative commutes with the

SU(2)-covariant exterior derivative, in analogy to the commutation between standard

Lie derivatives and exterior derivatives. This requirement leads us to the condition

LI~ω − d~ηI − 2~ω × ~ηI = 0 . (E.39)

Notice that this relation between the two SU(2) connections is in principle in-

dependent of Eq. (E.24). After substitution of Eq. (E.24) in Eq. (E.39) the latter

becomes the differential definition of ~PI , Eq. (E.35).

Eq. (E.35) can alternatively be used to solve the Killing vectors in terms of the

derivatives of the momentum map,

kI
X = 2

3
~JXY · DY

~PI . (E.40)

In view of this relation ~PI is sometimes called the prepotential.

The moment map assigns a triplet of real numbers to each Killing vector. The

Killing vectors realize the algebra of G. Eq. (E.36) can also be understood as a

realization of the algebra of G in terms of ~PI , ~JXY being the symplectic structure

used to define the Poisson brackets which are the left hand side of Eq. (E.36).

In summary, given a Killing vector of the metric gXY (q) we can always construct

the momentum map ~PI by Eq. (E.32). Next we define the covariant Lie derivative

along the Killing vector by means of the connection ~ηI . This covariant Lie derivative

enjoys the algebraic and differential properties of a pure Lie derivative and also com-

mutes with covariant exterior derivatives. The Killing vector becomes automatically

covariantly tri-holomorphic according to Eq. (E.27).
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E.3 SU(2) transformations induced by G

Let us now consider the momentum map as a composite spacetime field over which

depends only on the qXs. Under general variations δqX and using the definition of

the momentum map (E.35),

δ ~PI = −δqX
(

1
2
~JXY kI

Y + 2~ωX × ~PI

)

. (E.41)

If this transformation is a G-gauge transformation δΛq
X = −gΛJkJ

X , taking into

account Eq. (E.36), we obtain

δΛ ~PI = −gfIJKΛJ ~PK + 2gΛJ~ηJ × ~PI , (E.42)

which is the adjoint action of G on ~PI plus an induced SU(2) gauge transformation

with parameter −gΛJ~ηJ which is present even if G is Abelian. This is the mechanism

through which G can act on objects such as the spinors of the supergravity theory

which only have SU(2) indices, opening the doors to the gauging of groups larger than

SU(2): if the gravitino transforms under standard SU(2) transformations according

to

δλψ
i
µ = iψjµ~σj

i · ~λ , (E.43)

where ~λ is the infinitesimal SU(2) parameter, then, under G-gauge transformations

it will undergo a similar transformation with ~λ = −gΛI~ηI .

Thus, in G-gauged supergravity the pullback of the SU(2) connection that couples

to the spinors of the theory has to be replaced by

~B ≡ ~A+ 1
2
gAI ~PI , ~A ≡ dqX~ωX , (E.44)

to take into account the SU(2) transformations induced by G-gauge transformations,

which act on it as

δΛ ~B = −2(−gΛI~η) × ~B + d(−gΛI~η) . (E.45)

The covariant derivative on these objects is

Dµψ
i
ν = ∇µψ

i
ν + ψjBµj

i . (E.46)
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Proofs of some identities

Let us consider the generalized stabilization equations derived from Eq. (6.3). Differ-

entiating the imaginary part of that equation (i.e. Eq.(6.4)), we get

dIΛ = dℑmFΛ = 1
2i

(dX ΛFΣΛ − dX ∗ΛF∗
ΣΛ) = dRΣℑmFΣΛ + dIΣℜeFΣΛ , (F.1)

where we have used X Λ = RΛ + iIΛ. Using the invertibility of the imaginary part of

FΣΛ we get

dRΣ = ℑmFΣΛdIΛ −ℑmFΣΩℜeFΩΛdIΛ . (F.2)

On the other hand, differentiating the real part of Eq. (6.3)

dRΛ = dℜeFΛ = 1
2
(dX ΛFΣΛ + dX ∗ΛF∗

ΣΛ) = dRΣℜeFΣΛ − dIΣℑmFΣΛ , (F.3)

and, substituting our previous result for dRΛ

dRΣ = ℜeFΣΩℑmFΩΛdHΛ − (ℑmFΣΛ + ℜeFΣΩℑmFΩ∆ℜeF∆Λ)dIΛ . (F.4)

We can write all these results in the form

dR =





−ℑmF−1ℜeF ℑmF−1

−(ℑmF + ℜeFℑmF−1ℜeF) ℜeFℑmF−1



 dI , (F.5)

dI =





ℑmF−1ℜeF −ℑmF−1

ℑmF + ℜeFℑmF−1ℜeF −ℜeFℑmF−1



 dR , (F.6)



214 Chapter F. Proofs of some identities

from which we can read identities such as

∂RΣ

∂IΛ

=
∂RΛ

∂IΣ

=
∂IΛ

∂RΣ

,
∂RΣ

∂IΛ
=

∂RΛ

∂IΣ
= − ∂IΛ

∂RΣ
,

∂RΣ

∂IΛ
= −∂RΛ

∂IΣ

=
∂IΛ

∂RΣ

,
∂RΣ

∂IΛ

= −∂R
Λ

∂IΣ
=

∂IΛ

∂RΣ
.

(F.7)

We can now prove Eq. (6.46): taking the derivative of R as a function of I we

have

〈∇µR | I 〉 = 〈 ∂R
∂IΛ

∇µIΛ +
∂R
∂IΛ

∇µIΛ | I 〉

= ∇µIΛ

(

IΣ∂RΣ

∂IΛ
− IΣ

∂RΣ

∂IΛ

)

+ ∇µIΛ

(

IΣ∂RΣ

∂IΛ

− IΣ
∂RΣ

∂IΛ

)

,

(F.8)

and using now the above relations between partial derivatives

〈∇µR | I 〉 = ∇µIΛ

(

IΣ∂RΛ

∂IΣ
+ IΣ

∂RΛ

∂IΣ

)

−∇µIΛ

(

IΣ∂RΛ

∂IΣ
+ IΣ

∂RΛ

∂IΣ

)

. (F.9)

Given that the real section R is homogeneous of first order in the I’s

IΣ∂RΛ

∂IΣ
+ IΣ

∂RΛ

∂IΣ

= RΛ , IΣ∂RΛ

∂IΣ
+ IΣ

∂RΛ

∂IΣ

= RΛ , (F.10)

which proves the identity.

Similarly, expanding the r.h.s. of Eq. (6.45) we get

〈R | ∇µR〉 =

(

∂RΛ

∂IΣ
RΛ − ∂RΛ

∂IΣ
RΛ

)

dIΣ +

(

∂RΛ

∂IΣ

RΛ − ∂RΛ

∂IΣ

RΛ

)

dIΣ , (F.11)

and using the identities between partial derivatives and the fact that the real section

I is homogeneous of first order in R, we arrive at the result we wanted.
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Resumen

En este trabajo se presenta la caracterización de todas las configuraciones super-

simétricas de la Supergravedad N = 1, d = 5, sin gaugear y gaugeada, acoplada a

supermultipletes vectoriales e hipermultipletes, aśı como también de la Supergravedad

pura N = 4, d = 4. Se usa principalmente el método de los bilineales de espinores para

extraer toda la información de las ecuaciones de espinores de Killing. Se determina

cómo las identidades de espinores de Killing pueden ser usadas para establecer rela-

ciones entre las ecuaciones de movimiento cuando éstas se evalúan en configuraciones

supersimétricas.

Adicionalmente, usando la caracterización conocida de las soluciones supersimétri-

cas de la Supergravedad N = 2, d = 4 acoplada a supermultipletes vectoriales, se

muestra cómo el requisito de existencia de supersimetŕıa en todos los lugares, incluidas

aquellos en donde se encuentren las fuentes, puede ser usado como censor cósmico.





Conclusiones

Hemos logrado la caracterización de las soluciones supersimétricas de la Supergrave-

dad N = 1, d = 5 acoplada a materia y de la Supergravedad pura N = 4, d = 4. Para

tal fin, hemos usado el método de los bilineales de espinores. Como es usual, usando

este método uno separa las soluciones entre el caso tipo tiempo y el caso nulo. En el

caso tipo tiempo t́ıpicamente hay solitones masivos mientras que en el caso nulo hay

ondas gravitacionales. El método está enfocado principalmente en la caracterización

de las configuraciones mı́nimamente supersimétricas, por lo tanto hemos obtenido

todas las posibles proyecciones que se deben imponer en los espinores de Killing.

Hemos presentado el primer análisis completo en la teoŕıa de SupergravedadN = 1,

d = 5 con hiperescalares (el estudio de la teoŕıa con hiperescalares fue iniciado en

Refs. [59–61]). En el caso tipo tiempo, la principal novedad debida a la presencia de

hiperescalares es el agrandamiento del grupo de holonomı́a de la variedad base espacial

desde SU(2) hasta el grupo SO(4) completo, estando la componente anti-autodual de

la conexión de esṕın relacionada a los otros campos de las soluciones. De hecho, en

el caso sin gaugear es justo el pull-back de la conexión su(2) de la variedad Kähler

cuaterniónica (la misma relación se mantiene en el caso gaugeado, pero con algunas

correciones). La condición sobre los hiperescalares para tener supersimetŕıa no rota

tiene una forma muy simple y sugestiva, de hecho en el caso sin gaugear es la ecuación

para mapas cuaterniónicos entre variedades hiperKähler (aunque la variedad base no

es necesariamente hiperKähler). Debido a su simplicidad, esta ecuación podŕıa ser el

punto de partida para encontrar nuevas soluciones concretas de la teoŕıa. Adicional-

mente, hemos encontrado que en el caso nulo la conexión de esṕın del subespacio

tridimensional transverso a la onda también está relacionada a los otros campos. En

el caso sin gaugear también viene dada por el pullback de la conexión su(2) de la

variedad Kähler cuaterniónica. Igualmente, la condición sobre los hiperescalares es

bastante simple en el caso nulo.

Uno quisiera resolver de forma general todas las ecuaciones que caracterizan a

las soluciones supersimétricas (o llegar a ecuaciones con soluciones conocidas). Esto

ha sido hecho para ciertas teoŕıas de Supergravedad. Sin embargo, la presencia de

hiperescalares aśı como también el gaugeo nos conducen a ecuaciones no lineales y
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muy acopladas en el caso de la teoŕıa en cinco dimensiones, como las ecuaciones en

los hiperescalares y la conexión de esṕın, para las cuales no somos capaces de dar la

solución general.

Encontramos, en una forma muy precisa, las proyecciones genéricas que deben

ser impuestas sobre los espinores de Killing para tener supersimetŕıa no rota en la

teoŕıa N = 1, d = 5. Tanto en el caso tipo tiempo como en el caso nulo todas las

configuraciones supersimétricas preservan al menos 1/8 de las supersimetŕıas.

Hemos encontrado soluciones con una isometŕıa adicional en el caso tipo tiempo

de la Supergravedad N = 1, d = 5 las cuales son la generalización de la métrica

instantónica de Gibbons-Hawking. Como mencionamos, la presencia de hiperescalares

destruye la autodualidad de la conexión, este hecho se refleja en la no-trivialidad de la

conexión tridimensional, a diferencia del instanton de Gibbons-Hawking el cual tiene

la métrica tridimensional plana.

Seŕıa interesante estudiar el mecanismo de atractor y la entroṕıa de las soluciones

del tipo agujero negro en presencia de hiperescalares. Más aún, la pp-wave de las

soluciones de clase nula se puede reducir dimensionalmente a agujeros negros super-

simétricos N = 2, d = 4. Esto abre nuevas preguntas acerca de cómo el mecanismo de

atractor 4-dimensional se implementa en una configuración 5-dimensional, teniendo en

cuenta que estas soluciones 5-dimensionales pertenecen a la clase nula y el mecanismo

de atractor estándar está demostrado sólo para soluciones de la clase tipo tiempo. El

origen 5-dimensional de la entroṕıa 4-dimensional puede (y debe) ser investigada.

Más aún, se puede realizar la reducción dimensional las soluciones supersimétricas

5-dimensionales con una isometŕıa adicional a 4 dimensiones. Seŕıa interesante ver

cómo esto se puede hacer en el contexto de la caracterización de las soluciones su-

persimétricas (tal caracterización para la teoŕıa N = 2, d = 4 acoplada a materia se

ha hecho en las Refs. [63, 65]). Además, la reducción/oxidación de las soluciones su-

persimétricas se puede analizar junto con la teoŕıa seis-dimensional. Por lo tanto, las

teoŕıas con ocho supercargas en seis, cinco y cuatro dimensiones podŕıan ser analizadas

en una forma unificada, extendiendo el análisis iniciado en Ref. [110].

Una posible y tal vez fácil extensión de nuestro análisis en la teoŕıa N = 1, d = 5

es la inclusión de multipletes tensoriales.

En la teoŕıa N = 4, d = 4 hemos encontrado que (en el caso tipo tiempo) la

holonomı́a de la variedad base tridimensional es mas grande que la de las soluciones

consideradas por Tod [28], quien encontró sólo soluciones planas, de hecho puede

llegar a ser el grupo SU(2) completo. Hemos indicado cómo la conexión de esṕın

se relaciona a las otras variables de las soluciones. Aqúı, las simetŕıas globales de

la teoŕıa (SU(4) y SL(2,R)) juegan un papel central, guiándonos en la búsqueda de

las configuraciones y soluciones supersimétricas. Hemos encontrado configuraciones

con holonomı́a U(1) y también algunas nuevas soluciones de este tipo se presentan.



Conclusiones 231

Las soluciones que pertenecen a la clase tipo tiempo preservan al menos 1/16 de las

supersimetŕıas mientras que las de la clase nula preservan 1/4.

La metodoloǵıa que hemos desarrollado para analizar la teoŕıa N = 4, d = 4 se

puede adaptar a otras teoŕıas cuadridimensionales con más supersimetŕıas, esto es,

Supergravedad cuadridimensional N = 6 y 8.

Otra continuación interesante de nuestro trabajo seŕıa desarrollar la caracteri-

zación con correcciones del tipo R2 tanto en cuatro como en cinco dimensiones. Esto

es particularmente viable ya que las variaciones de supersimetŕıa se mantienen iguales

cuando las correcciones del tipo R2 son tomadas en cuenta (aunque las ecuaciones

de movimiento cambian). Esto ya ha sido analizado para el caso de las soluciones

maximálmente supersimétricas de la Supergravedad N = 1, d = 5 [160].

Hemos visto que las Identidades de Espinores de Killing (KSIs, por sus siglas en

Inglés) generales halladas en Ref. [78] pueden ser usadas para obtener relaciones útiles

entre las ecuaciones de movimiento evaluadas en configuraciones supersimétricas. Esta

es una herramienta muy poderosa, nos ha permitido por ejemplo evitar la evaluación

de (algunas de las componentes de) las Ecuaciones de Einstein. Más aún, las KSIs

pueden ser calculadas para cualquier teoŕıa de supergravedad. Otros autores han us-

ado relaciones análogas entre la ecuaciones de movimiento, pero las hab́ıan encontrado

usando directamente las condiciones de integrabilidad de las ecuaciones de espinores

de Killing, la cual es una ruta más dif́ıcil que las KSIs

Hemos demostrado además cómo la supersimetŕıa actúa como censor cósmico.

Exigiendo que la supersimetŕıa se preserve en todos los lugares, incluyendo las fuentes,

las configuraciones se restringen de tal forma que muchas soluciones con patoloǵıas

(singularidades desnudas) se pueden descartar. Hemos formulado la condición de

tener supersimetŕıa preservada en todos los lugares por medio de tres condiciones que

los agujeros negros supersimétricos tienen que satisfacer. Hemos demostrado cómo

estas condiciones restringen las posibles fuentes debido a, básicamente, la exclusión

de aquellas con carga NUT, momento angular, enerǵıa negativa y pelo escalar, lo

cual aparentemente no puede ser descrito en la Teoŕıa de Cuerdas. Llegamos a una

situación en la cual si un observador lejos de una de las configuraciones globalmente

supersimétricas que hemos considerado, detecta momento angular y campos escalares

no triviales, sólo encontrará fuentes electromagnéticas estáticas en equilibrio cuando

se acerque al sistema.

Estas condiciones debeŕıan ser mejoradas al considerar correcciones cuánticas.

Otra ĺınea de acción interesante seŕıa considerar la regularidad de las soluciones del

tipo agujero negro en teorias con N > 2, ver por ejemplo Refs. [161–163], e investigar

el papel que juega el atractor [143].






