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Introduccion

Encontrar la formulacién de una unica teoria que describa y prediga todo lo
que observamos en la Naturaleza es probablemente el objetivo méas ambicioso
de la Fisica Teérica. Una forma en la que creemos que dicho fin puede llevarse
a cabo es mediante una formulacion matematica tanto para los constituyentes
ultimos de la materia como para la forma en la que éstos interaccionan en-
tre si. Actualmente, tenemos una teoria que encaja perfectamente con esta
ultima idea: el Modelo Estandar de las particulas elementales. Esta teoria
tiene la virtud de ser conceptualmente sencilla, en el sentido de que sélo con-
tiene un ntmero relativamente pequefio de particulas elementales diferentes
y, por otro lado, porque describe la dindmica de las mismas en términos de
tan solo tres interacciones fundamentales distintas. Por otro lado, las predic-
ciones del Modelo Estandar muestran un acuerdo sorprendentemente bueno
con todos los experimentos de Altas Energias que hasta la fecha han sido
llevados a cabo. Sin embargo, sabemos la descripcion de la Naturaleza que
nos proporciona el Modelo Estandar no es completa, dado que éste no incluye
a la interaccion gravitatoria.

Por otro lado, es cierto que tenemos una teoria clasica de la gravitacion:
la Relatividad General. La misma se trata de una teoria muy diferente de
cualquier otra que conocemos: de acuerdo con la misma, la propia geometria
del espaciotiempo es algo dindmico, esto es, podemos imaginar al espacio
y al tiempo como una superficie que se deforma ante la presencia de mate-
ria o energia. Esto puede parecer algo extrano, pero todas las predicciones
realizadas por la Relavidad General que han podido ser puestas a prueba ex-
perimentalmente han sido confirmadas con gran éxito. El problema con esta
teoria proviene de su naturaleza clasica, pues nadie, hasta el momento, ha
conseguido formularla de una forma que la haga compatible con la Mecanica
Cudntica. Creemos que conseguir esto se trata de algo muy importante por
dos razones: por un lado, existen numerosas pistas que apuntan que, a distan-



cias suficientemente pequenas (distancias a las que, por otra parte, no hemos
sido aun capaces de comprobar experimentalmente la Relatividad General),
el comportamiento de cualquier sistema fisico tiene que quedar descrito por
una teoria cudntica. Por otro lado, una teoria cudntica de la gravedad parece
ser el linico camino posible para unificar la gravitavién con el resto de las
interacciones fundamentales.

Actualmente, nuestra mejor propuesta para una teoria que cumpla am-
bos requisitos (una teoria unificada de todas las interacciones y una teoria
cudntica de la gravedad) es la Teoria de Cuerdas. Aunque, histéricamente,
el descubrimiento de la misma no tuvo nada que ver con éste propésito [1],
tal y como la entendemos hoy en dia esta teoria puede entenderse como algo
que surge a partir de una idea muy sencilla: considerar a los constituyentes
ultimos de la Naturaleza no como particulas puntuales, sino como objetos que
tienen una dimensién (“cuerdas”) [2]. El hecho de que las particulas elemen-
tales que conocemos se comporten como puntos se puede explicar facilmente
si estas cuerdas son lo son suficientemente pequetias. Por otro lado, particulas
que vemos como distintas no se corresponderian con distintos tipos de cuer-
das, sino con la “misma” cuerda oscilando de formas diferentes [3, 4].

Las teorias de cuerdas tienen algunas propiedades que las hacen muy
interesantes desde un punto de vista tedrico. En primer lugar, las cuerdas
pueden ser cuantizadas de una forma matematicamente consistente. Por otro
lado, si uno intenta formular una teoria cuantica de cuerdas que interaccio-
nan entre si, la propia consistencia matemdtica de la teoria implica que la
misma ha de incluir a la gravedad, constituyendo, de esta forma, una teoria
cuantica de la gravitacion. Finalmente, la fisica de la teoria de cuerdas resulta
ser lo suficientemente rica como para poder incluir, en principio, al Modelo
Estdndar [5-9]. Estas propiedades son exactamente las que esperariamos
encontrar en una teoria unificada.

El problema de la Teoria de Cuerdas es que todas sus predicciones estan
fuera del alcance de los experimentos actuales. Aun asi, si en los dltimos
treinta anos se han dedicado grandes esfuerzos al estudio de la Teoria de
Cuerdas, esto no se debe sino a su gran consistencia matematica. Es esto
lo que ha permitido un enorme progreso en este campo a pesar de la total
ausencia de confirmaciones (o refutaciones) experimentales de la teorfa.



Teorias de Supercuerdas

La cuestion es, pues, cuales son las posibles teorias de cuerdas que podemos
considerar. Si sélo consideramos las llamadas teorias de cuerdas “criticas”?,
exigir la ausencia de taquiones y la presencia de fermiones en el espectro de
la cuerda nos deja con sélo cinco teorias de cuerdas posibles [7,10]. Estas
son las Teorias de Supercuerdas Tipo IIA, Tipo IIB, Tipo I, Heterética-
SO(32) y Heterética-Eg x Eg. Todas ellas son supersimétricas y todas ellas
necesitan de un espaciotiempo de diez dimensiones. De esta manera, vemos
que imponer estas dos condiciones (por otro lado, bastante naturales) sobre el
espectro de la cuerda exigen la presencia de supersimetria y la idea original
de Kaluza-Klein de un espaciotiempo de més de cuatro dimensiones [11].
Estas propiedades son muy buenas, dado que permiten muchas posibilidades
para poder explicar, de una forma unificada, toda la fisica observada a bajas
energias [12]. Pero entonces la pregunta natural es: jde qué manera surge el
Universo tal y como lo vemos (no supersimétrico y con cuatro dimensiones)
de uno supersimétrico y con diez dimensiones? Este problema es el de la
eleccién de vacio de la Teoria de Cuerdas y, hasta el momento, no tiene una
solucién definitiva.

Una forma de conseguir pistas sobre cudl debe ser la solucién de este
problema puodria venir de una aproximaxién “fenomenoldgica”. Con esto
nos referimos a tratar de encontrar, “a mano”, un estado fundamental en
Teoria de Cuerdas, de modo que encontremos uno (al menos) que reproduzca
lo mejor posible la Fisica que observamos [13-15]. Tal objetivo ha de resultar
posible si la Teoria de Cuerdas es correcta, y creemos que obtener resultados
satisfactorios en esta direccién es algo extremadamente importante. Por un
lado, esto podria proporcionarnos predicciones propias de Teoria de Cuerdas
que sea posible comprobar en futuros experimentos. Por otro lado, algo asi
podria, quizd, darnos pistas acerca de cudl es sobre el verdadero vacio de
la Teoria de Cuerdas, sobre el mecanismo que selecciona dicho vacio y, en
general, acerca de la estructura completa de la teoria.

Otra posibilidad para encarar este problema es intentar avanzar, a partir
de primeros principios, en nuestro conocimiento de la estructura completa,
no perturbativa, de la teoria. La Teoria de Cuerdas resulta ser una teoria
extremadamente complicada, y se puede decir que aiun no conocemos su

!Las cuerdas no criticas resultan ser de una extraoirdinaria compejidad y no tienen una
interpretacién clara.



formulacion definitiva. Un conocimiento completo de la misma deberia de
darnos una respuesta a problemas aun abiertos, como el de la constante
cosmoldgica, la ruptura de supersimetria, o como el Modelo Estandar y la
Relatividad General surgen a partir de la Teoria de Cuerdas. Los resultados
que presentamos en esta tesis deben considerarse, en lineas generales, como
esfuerzos en esta direccion, esto es, como esfuerzos dedicados a revelar la
estructura matematica formal de Teoria de Cuerdas.

Dualidad, Branas y Teoria M

En la dltima década se ha descubierto y desarrollado una pieza fundamental
que concierne a la estructura formal de la Teoria de Cuerdas. Esta pieza es lo
que hoy llamamos “dualidades” [16-20]. Este avance ha venido acompafiado
del descubrimiento de que las teorias de cuerdas no sélo contien cuerdas,
sino que, ademas, su espectro no perturbativo incluye objetos extensos de
cardcter soliténico [21]. Estas configuraciones se denominan genéricamente
“branas”, y han jugado un papel crucial en todos los avances recientes en
Teoria de Cuerdas [22].

Las dualidades son fundamentales en nuestra concepcién actual de lo
que debe ser la estructura completa de la Teoria de Cuerdas. Las mismas
constituyen simetrias muy especiales: en general, no son simetrias fisicas de
un sistema dado, sino que relacionan bien diferentes teorias o bien diferentes
“backgrounds” o regimenes dentro de una misma teoria. Muchas veces las
utilizamos para trasladar un problema dificil en una teoria dada a otro mas
sencillo en otra teoria distinta, o bien para formular el mismo en términos
de una situacion fisica diferente en la cual es mas facil de resolver. Pero
las dualidades no son solamente “herramientas tutiles”: también contienen
implicaciones profundas en nuestra forma de concebir la Teoria de Cuerdas
tal y como la conocemos. Gracias a esto, hoy sabemos que las cinco Teorias
de Supercuerdas estan relacionadas entre si, de una forma u otra, median-
te transformaciones de dualidad. Esto cambia drasticamente la visién que
tenfamos de las cinco diferentes Supercuerdas, dado que motiva fuertemente
la posibilidad de que estas teorias, en apariencia distintas, sean en realidad
diferentes expansiones perturbativas de una tnica teoria que las subyace.
Esta hipotética teorfa se conoce bajo el nombre de “Teoria M” [19, 20].



Las dualidades implican, por otro lado, que la Teoria de Cuerdas contiene
un espectro completo de estados que no aparecen en el espectro perturbativo
de la cuerda. Los mismos son D-branas [22] y otros muchos estados relaciona-
dos de tipo soliténico [21]. Las principales propiedades de este tipo de objetos
son, por un lado, su caracter extenso, y por otro, el hecho de que los mismos
contienen teorias gauge en su “worldvolume”. Esta propiedad es el origen
de muchos nuevos intentos de introducir el Modelo Estandar en Teoria de
Cuerdas [14], y también es el origen de las profundas relaciones entre teorias
gauge y teorias de cuerdas que han sido encontradas y desarrolladas en los
tultimos anos [23].

Supergravedad

Esta tesis esta dedicada al estudio de la Teoria de cuerdas mediante el uso,
para ello, de Supergravedad. Como explicaremos en el Capitulo 1, Super-
gravedad aparece como la descripcion efectiva a bajas energias de la Teoria de
Cuerdas [24,25]. Ademds, la primera supone el limite cldsico de la segunda.
Tratdndose de un limite particular, Supergravedad no puede describir toda
la fisica que la Teoria de Cuerdas contiene, pero veremos que muchos aspec-
tos no perturbativos de la Teoria de Cuerdas se pueden observar también
en la aproximacion de Supergravedad. Si esto es posible es principalmente
debido a la existencia de supersimetria y a la existencia de dualidades. Su-
persimetria hace que, muchas veces, los resultados obtenidos en el limite
de Supergravedad resulten fiables. Por otro lado, las dualidades son una
propiedad de la Teoria de cuerdas que también se ve y puede explotarse en
Supergravedad, dado que aqui aparecen como simetrias de las acciones y/o de
las ecuaciones de movimiento [26]. En particular, todos los objetos soliténicos
extensos, cuya existencia las dualidades predicen y que consideramos como
elementales? aparecen también en Supergravedad. Todos estos son aspectos
no perturbativos de la Teoria de Cuerdas que, como hemos destacado, son
una parte muy importante de la teoria que todavia no entendemos bien.
Supergravedad también nos proporciona una buena descripcion de lo que
se cree que es otra “esquina”’ de la teoria M y que no es ninguna de las
cinco Teorias de Supercuerdas conocidas. Esta “esquina”’ extra es la teoria
de Supergravedad en once dimensiones. La misma se conoce desde hace mu-

2Con esto queremos decir que no se consideran objetos compuestos de otros solitones
més fundamentales.



chos afos [27], y es especial es tinica. Once resulta ser el nimero maximo de
dimensiones en las que es posible formular consistentemente una teoria super-
simétrica y, por otro lado, no hay varias posibilidades para distintas teorias
en once dimensiones: s6lo hay una. La misma estd, por otro lado, muy conec-
tada con Teoria de Cuerdas: la reduccién de Kaluza-Klein de esta teoria en
un circulo no es méas que la accién efectiva de la cuerda Tipo ITA [28], y la
reduccion en un segmento proporciona el limite a bajas energias de la teoria
Heterdtica-Eg x Eg [29]. Teniendo en cuenta que las teorfas de Supergravedad
en diez dimensiones describen la fisica a bajas energias de las supercuerdas,
es bastante logico suponer que Supergravedad en once dimensiones también
proporciona el limite a bajas energias de alguna teoria cuantica ain por de-
scubrir. Dicha teoria podria muy bien ser la propia Teoria M.

En esta tesis afrontamos varios aspectos de las teorias de Supergravedad.
Las teorias de Supergravedad son interesantes por si mismas, pero nuestro
enfoque aqui es considerarlas como una descripcion efectiva de las Teorias
de Cuerdas. En este sentido, consideramos Supergravedad como una he-
rramienta para extraer informacion sobre la Teoria de Cuerdas. Por lo tanto,
todos los resultados contenidos en las siguientes paginas intentan suponer
alguna utilidad si se los interpreta en el contexto de Teoria de Cuerdas. Este
es el motivo por el cual hemos intentado, a lo largo de los capitulos intro-
ductorios, hacer manifiestas las relaciones entre ciertos aspectos concretos de
Supergravedad y de Teoria de Cuerdas.



Resumen de Contenidos

El contenido de los siguientes capitulos se ha dividido en tres Partes di-
ferentes, teniendo en cuenta su naturaleza comin.

La Parte I estd relacionada con soluciones de Supergravedad de las que
puede argumentarse que estan relacionadas con estados no perturbativos de
cuerdas. En el Capitulo 3 consideraremos las posibles soluciones tipo agujero
negro de la Teoria de Supergravedad con N = 4, d = 4. En particular, estu-
diaremos qué posibles soluciones fisicas de una teoria dada estan incluidas en
las érbitas de su grupo de dualidades, tanto en los casos supersimétricos como
en los que no lo son. En el Capitulo 4 consideraremos esta idea aplicada a
diez y once dimensiones. Encontraremos una familia completa de soluciones
soliténicas de Supergravedad 1/2 BPS que argumentaremos que deben cor-
responder a estados elementales de cuerdas que no aparecen en el espectro
no perturbativo de cuerdas conocido. También mostraremos como sus cargas
centrales asociadas pueden incluirse en el superdlgebra correspondiente.

La Parte II estd relacionada con soluciones de Supergravedad que se
pueden entender como vacios de cuerdas supersimétricos. En el Capitulo 6
mostraremos como todos los vacios maximamente supersimétricos conocidos
con ocho supercargas en cuatro, cinco y seis dimensiones se relacionan me-
diante reduccion dimensional. En particular, mostraremos que la existencia,
en cinco dimensiones, de una familia continua de vacios maximamente su-
persimétricos (que interpolan entre AdS, x S® y AdS; x S?) admite una
explicacién sencilla en funcién de dualidad electromagnética en cuatro di-
mensiones. En el Capitulo 7 presentaremos una nueva construccién para en-
contrar los espinores de Killing en espaciotiempos homogéneos maximamente
supersimétricos. Mostraremos como la supersimetria de estos espacios esta
codificada en su descripciéon en términos de teoria de grupos. Ademas,
también mostraremos como las superalgebras correspondientes de estos espa-
cios coset se pueden calcular usando esta sencilla construcciéon geométrica. En
el Capitulo 8 presentaremos la descripcién como coset del limite la solucién
en d = 5 que describe el limite cercano al horizonte del agujero negro extremo
con rotatacién. El mismo era el nico espaciotiempo méaximamente super-
simétrico que no tenia previamente una descripciéon conocida en términos de
un espacio homogéneo.



La Parte III estd relacionada con los duales en Supergravedad de cier-
tas teorias gauge. En el Capitulo 10 encontraremos dos geometrias distintas
que son duales a la misma teoria gauge: N = 4 (ocho supercargas), d = 3
SYM. Una configuracién describe branas fraccionarias en un cierto orbifold,
y la otra nos da el dlgebra producida por una configuracién de D-branas en-
rolladas en ciclos supersimétricos. Se supone que ambos sistemas de branas
estan relacionados en cierto limite, y estudiaremos este aspecto desde el punto
de vista de sus soluciones de supergravedad. También comprobaremos sus
respectivas predicciones para la funcién beta a un loop de la teoria gauge.

Los Capitulos 1, 2, 5 y 9 son capitulos introductorios. En el Capitulo 1
resumimos la conexién entre Supergravedad y Teoria de Cuerdas y la forma
en la que la primera durge de la segunda. El resto de capitulos son una in-
troduccién al tema general que se estudia en la parte a la que pertenecen. en
ellos hemos tratado de explicar lo mejor posible los conceptos que consider-
amos necesarios para entender el tema general correspondiente a cada Parte.
Nuestra intencion ha sido, asimismo, motivar de la mejor manera posible las
partes mas técnicas de este trabajo.

Los Capitulos 3, 4, 6, 7, 8 y 10 se corresponden, respectivamente, con
los resultados publicados en [30-35].



Introduction

An ambitious aim of Theoretical Physics is to find a single theory able to
describe and predict everything we see in Nature. A way in which we think
that this can be done is to find a mathematical formulation for the funda-
mental building blocks of matter and the way in which they interact with
each other. At present, we have a very precise theory that exactly fits into
this idea: the Standard Model of elementary particles. It has the virtue of
being conceptually simple, at least in the sense that it just contains a rela-
tively small number of different elementary particles, and also in the sense
that their dynamics is described in terms of only three different fundamen-
tal interactions. In addition, its predictions agree extremely well with all
experiments. However, the description of Nature provided by the Standard
Model is not complete, because it does not include gravity.

We also have a classical theory of gravitation, which is General Relativity.
This theory is rather different from any other. According to it, the geometry
of spacetime is dynamical: spacetime can be seen as a surface whose shape
gets modified by the presence of any matter or energy density. This may look
strange, but all the predictions made by General Relativity that we have
been able to test with some experiment have been successfully confirmed.
The problem with it arises because it is a classical theory, and no one has
succeeded in making it compatible with Quantum Mechanics. On the one
hand, there is strong evidence that at short enough distances (distances at
which we have not been able to test General Relativity with experiments),
the behaviour of any physical system must be described by a quantum theory.
On the other hand, the only way in which it seems possible to unify gravity
with the remaining interactions is via a quantum theory of gravity.
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At present, the most promising candidate we have for a theory that ful-
fills both requirements (i.e. a unified theory of all interactions, and also a
theory of quantum gravity) is String Theory. Although historically it was not
discovered with this purpose in mind [1], the way in which we nowadays un-
derstand String Theory makes it arise from a very simple idea: namely, that
the fundamental constituents in Nature are not pointlike particles, but one-
dimensional objects (“strings”) [2]. The fact that all elementary particles we
know behave as points can be explained if the strings are sufficiently small,
and different particles would not correspond to different kinds of strings, but
to the “same” string oscillating in different ways [3,4].

String theories have some properties which make them very appealing
from a theoretical point of view. To start with, strings can be consistently
quantized. Moreover, if one tries to formulate a quantum theory of inter-
acting strings, mathematical consistency requires that such a theory must
necessarily include gravity, hence providing a quantum theory of it. In addi-
tion, their physics is rich enough to contain, in principle, the full Standard
Model [5-9]. These are exactly the features that we would expect to find in
a unified theory.

The problem of String Theory is that all its predictions are beyond the
reach of present experiments. If in the last thirty years many efforts have been
devoted to the study of String Theory it is because of its strong mathematical
consistency. This has allowed to make a huge progress in this field in spite
of the absolute lack of experimental tests of it.

Superstring Theories

The question is then what are the possible string theories that we can con-
sider. If we restrict ourselves to the so-called “critical” string theories®, then
requiring the absence of tachyons and the presence of fermions in the string
spectrum leaves us with just five possible consistent theories of interacting
strings [7,10]. These are the Type ITA, Type IIB, Type I, Heterotic-SO(32)
and Heterotic- Fg x Fg Superstring Theories. All of them are supersymmetric,
and all of them require spacetime to be ten dimensional. We see therefore
that imposing these two (quite natural) conditions on the string spectrum im-
plies both Supersymmetry and the original idea of Kaluza-Klein of a higher

3Noncritical strings are extremely difficult to deal with and admit no clear interpreta-
tion.
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dimensional spacetime [11]. These are very good properties because they
allow for many possibilities to explain in a unified way all the low energy
observed Physics [12]. But then the natural question is: how does the Uni-
verse as we see it (non-supersymmetric and four-dimensional) arise from a
supersymmetric, ten-dimensional one? This is the question of the choice of
vacuum in String Theory and, at present, it has no definite answer.

A way to get a hint about the answer to this question could be a “phe-
nomenological” approach. By this we mean to choose by hand a String
Theory ground state, in such a way that we find one (at least) that repro-
duces the observed Physics [13-15]. This may look insatisfactory from a
theoretical point of view, but such a thing has to be possible if String The-
ory is correct, and we think that obtaining positive results in these directions
is extremely important. On the one hand, this could eventually provide us
with genuine String Theory predictions concerning future experiments. On
the other hand, it could provide us some essential hints about what the true
String Theory vacuum is, the mechanism that selects it and, in general, the
full structure of the theory.

Another possibility to face this problem is to try to gain insight, from
first principles, into the full nonperturbative structure of the theory. String
Theory turns out to be an extremely complicated theory, and it can be said
that the whole theory is not known yet. A full knowledge of the theory
should provide us with the answer to questions concerning key open prob-
lems, such as the cosmological constant, supersymmetry braking, or how the
Standard Model and General Relativity emerge from String Theory. The
results reported in this thesis must be considered, in general lines, as efforts
in this direction, i.e. as efforts devoted to uncover the formal mathematical
structure of String Theory.

Duality, Branes and M-Theory

In the last decade, a fundamental piece concerning the formal structure of
String Theory was discovered and developed: what today we call “duali-
ties” [16-20]. This progress came together with the discovery that String
Theory contains not only strings, but also many other solitonic extended
objects in its nonperturbative spectrum [21]. These are generally referred to
as “branes” and they have played an essential role in all recent developments
in String Theory [22].
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Duality symmetries are fundamental in the present understanding that
we have about the full structure of String Theory. They are very special
symmetries: in general, they are not physical symmetries of a given system,
but rather they relate different theories or different backgrounds or physical
regimes of the same theory. Many times they are used to map a difficult
problem of a given theory into an easier problem of another theory, or else to
map it into a different physical situation in which it becomes easy to solve.
But they are not only “useful tools”: they also have deep implications about
the way in which we should think about String Theory. It turns out that
all of the five Superstring Theories that we know are related, in one way
or another, by means of a duality transformation. This changes drastically
the picture that we had concerning the different Superstrings, because it
strongly suggests the possibility that all these different-looking theories could
be just different perturbative expansions of a unique underlying theory. This
hypothetical theory is referred to as “M-theory” [19,20].

Duality also implies that String Theory contains a whole spectrum of
states which do not arise in the perturbative string spectrum. These are
D-branes [22] and many other related solitonic states [21]. The main proper-
ties of these objects is that they are extended and that they have gauge
theories living in their worldvolume. This is at the origin of many novel
attempts to embed the Standard Model into String Theory [14], and also at
the origin of the deep relations between gauge theories and string theories
found and developed in the last years [23].

Supergravity

This thesis is devoted to the study of String Theory by means of Supergravity.
As explained in Chapter 1, Supergravity arises as the low energy effective des-
cription of string physics [24,25]. Moreover, Supergravity is a classical limit
of String Theory. Being a particular limit, it does certainly not describe
all the physics contained within the full String Theory, but we will see that
many nonperturbative aspects of String Theory can be seen from the Su-
pergravity approach. If this is possible it is mainly because of the existence
of supersymmetry and duality. Supersymmetry ensures many times reliabil-
ity of the Supergravity approximation. Duality is a String Theory property
that can still be seen and exploited in the Supergravity limit, since it trans-
lates into global symmetries of the Supergravity actions and/or equations of
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motion [26]. In particular, all supersymmetric solitonic extended objects pre-
dicted by duality which are thought to be elementary* have a Supergravity
counterpart. All these are nonperturbative aspects of String Theory which,
as emphasized, are a most important part of the theory which still remains
to be fully understood.

Supergravity also provides us with a well description of what is thought
to be another “corner” of M-theory, one which is not any of the five known
Superstring Theories. This extra “corner” is eleven-dimensional Supergra-
vity. This theory was discovered many years ago [27], and it is very special
because it is unique. Eleven is the maximal number of dimensions in which
it is possible formulate a consistent supersymmetric theory. Furthermore,
there are not several possibilities for different eleven-dimensional theories:
there is just one. Eleven-dimensional supergravity is also closely linked to
String Theory: its Kaluza-Klein reduction on a circle yields the Type ITA
effective action [28], and reduction on a segment gives the low energy limit
of the Heterotic-Eg x Eg theory [29]. Taking into account the fact that ten-
dimensional supergravities describe the low energy physics of superstrings,
it is very natural to suppose that eleven-dimensional supergravity also re-
presents the low energy limit of some, so far undiscovered, quantum theory.
Such a quantum theory could very well be M-theory itself.

In this thesis we address several aspects of Supergravity theories. Super-
gravity theories are interesting by themselves, but the point of view adopted
here will be to look at them as an effective description of String Theory. In
this sense, Supergravity is to be understood here as a tool to extract String
Theory information. Therefore all the results reported in the pages that
will follow attempt to be of some use when interpreted in a String Theory
context. This is why in the introductory Chapters we have tried to explain
the relation between some specific aspects of Supergravity and their String
Theory counterpart.

4By this we mean that they are not understood as composites of other, more elementary
solitons.
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Summary of Contents

The contents of the forthcoming Chapters have been separated into three
different Parts according to their common nature.

Part I deals with Supergravity solutions which can be argued to corres-
pond to nonperturbative string sates. In Chapter 3 we focus on the possible
black hole solutions of the N = 4, d = 4 supergravity theory. Here we address
the question of what possible physical solutions of a given theory are con-
tained in the orbits of its full duality group, both in the supersymmetric cases
and in the non-supersymmetric ones. In Chapter 4 we pursue this idea but
now applied to ten and eleven dimensions. There we find a whole family of
1/2 BPS solitonic supergravity solutions which we argue that should corres-
pond to elementary (in the sense explained above) string states that would
be missing from the known nonperturbative superstring spectrum. We also
show how their associated central charges can appear in the corresponding
superalgebra.

Part IT deals with supergravity solutions which can be understood as
supersymmetric string vacua. In Chapter 6 we show how all known maxi-
mally supersymmetric vacua with eight supercharges in four, five and six
dimensions are related by uplifting and dimensional reduction. In particu-
lar, it is shown that the existence, in five dimensions, of a continuous family
of maximally supersymmetric vacua (which interpolates between AdS, x S®
and AdSs; x S?) admits a simple explanation in terms of four-dimensional
electric-magnetic duality. In Chapter 7 a novel construction for finding the
Killing spinors in maximally supersymmetric homogeneous spacetimes is pre-
sented. We show how the supersymmetry of these spaces is encoded in their
group-theoretical description, and we also show how the corresponding su-
peralgebras of these coset spaces can be computed using this very simple
geometrical construction. In Chapter 8 we present the coset description of
the near-horizon limit of the extreme rotating black hole in d = 5. This
was the only maximally supersymmetric spacetime for which a description
in terms of a homogeneous space was not previously known.

Part IIT deals with the Supergravity duals of certain gauge theories. In
Chapter 10 we find two different geometries which are dual to the same gauge
theory, namely N = 4 (eight supercharges), d = 3 SYM. One supergravity
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configuration describes fractional branes in a certain orbifold, and the other
one gives the geometry produced by a configuration of D-branes wrapping
supersymmetric cycles. Both brane systems are supposed to be related in a
certain limit, and we explore this fact from the point of view of their super-
gravity solutions. We also check the independent predictions that they are
supposed to give for the one-loop gauge theory beta function.

Chapters 1, 2, 5 and 9 are introductory chapters. In Chapter 1 we
review the connection between Supergravity and String Theory and the way
in which the former emerges from the latter. The remaining Chapters are an
introduction to the general topic to which the corresponding Part is devoted.
In them, we have tried to explain as best as possible the different concepts
that we believe are needed for the general understanding of the correspond-
ing subject. Our aim has also been to motivate at best the technical parts
of this work.

Chapters 3, 4, 6, 7, 8 and 10 correspond, respectively, to the results
reported in [30-35].
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Chapter 1

Supergravity and String Theory

1.1 Supergravity and Effective String Theo-
ries

There are five ten dimensional supergravities which are considered as the co-
rresponding low energy effective theories of the five known consistent super-
string theories. What is the precise meaning of this? Moreover, supergravity
theories are field theories. How does this limit emerge from String Theory?

Any superstring theory contains, in its perturbative spectrum, a finite
number of massless excitations and an infinite number of massive states. The
masses squared of the massive states are proportional to the string tension

1

M? ~ — (1.1.1)
where the coefficient is given by the oscillator number of the corresponding
string state. Since this oscillator number can take arbitrarily high integer val-
ues, an infinite set of massive modes is contained within the string spectrum.
Strings have not been seen yet, and so, if they really exist, the fundamental
constant o' has to be a very small quantity, since it also sets the string length,
which is of order I, = v/o/ 1. Then even the first excited string state will
be a very massive one, and, as a consequence, it makes sense to consider the

LOf course, o' being dimensionful, when we say “small” we mean “small when measured
b ) y

in appropriate units”. Very small when, for example, measured in units of the inverse top

mass squared.
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(presumably very wide) energy regime in which the string physics is governed
just by the light modes of the spectrum —energies much lower than the mass
of the first excited string state.

String Theory provides us with an algorithm for computing scattering
amplitudes?. This algorithm is perturbative in the string coupling constant
g, and, therefore, computations can only be carried out if we assume that
gs is small. In particular, we will be interested in string S-matrix elements
that only involve massless states in the external legs, which at small enough
energies will be the only allowed processes. Also, in the computation of these
S-matrix elements, we must decide at which order in perturbation theory we
will stop. We will decide to stop at tree level.

String amplitudes are defined as a sum over all possible worldsheet topolo-
gies, each topology being a single string diagram. A consequence of this is
that every single diagram takes automatically into account the exchanges of
all possible string states, both the light and the heavy modes. What we mean
by a tree level effective action is an action that:

e just includes the light modes of the string spectrum, but

e it reproduces the above mentioned tree level string amplitudes in their
low energy limat.

The exchange of light modes in the corresponding string amplitudes will still
be present in the Feynman diagrams of the effective theory. However, what
in the string amplitudes was described by an exchange of heavy modes will
translate into the effective action as modified interaction vertices for the light
modes. This has to be so since no heavy modes are included in the effective
action. Schematically:

2We recall that, at present, there is no Lagrangian formulation from which the compu-
tation rules for evaluating string amplitudes can be derived.
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S8 > >

Scattering between light modes Exchange of light modes Exchange of heavy modes

U/Low energy limit

(>

Exchange of light modes Effective interaction vertex

We emphasize the following: although an effective action built in this way
only contains the low energy dynamics of the massless string spectrum, it
is not an “amputated String Theory”, obtained by simply removing all the
massive states and all the physics arising from them. It is, instead, a physical
low energy limit of String Theory that does take account of the physics of
heavy modes. Only, since these have been integrated out, all the physics
coming from their propagation is “summarized” in effective interaction ver-
tices. Of course, such a “summary” is only valid at low energies.

We have not argued yet why such an effective theory should be a field
theory, while String Theory is not. This has to do with the way in which
the above low energy limit must be defined. The key point is that String
Theory has only one dimensionful constant: «', the inverse string tension.
This enforces both the mass scale set by (1.1.1) and, as we also mentioned,
the string length to be related. In fact:

1
Vo' (1.1.2)

string length ~ I, =+Va'.

mass scale ~ my =

The low energy limit we have been talking about is, obviously, the limit of
small external momenta when measured in units of the string mass:

Dext
mg

<1.
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But this just means that the distance scale Ax below which our effective
theory will no longer describe accurately the physics is

Ax >y,

(i.e., much more than the string length), since resolving smaller distances
would require energies at which our effective theory is no longer valid. Our
effective theory arises then as the properly taken o/ — 0 limit of String The-
ory (the so-called “zero-slope limit”), and this is a field theory limit because,
if we are at energies such that strings can be considered to have negligible size
(or, equivalently, infinite tension), then they can be considered as particles.
It is in this sense in which it can be said that String Theory is an extension
of Field Theory, and that Field Theory is contained within String Theory
just as a certain limit. In a similar sense as, for example, it can be said that
Classical Mechanics arises as the i — 0 limit of Quantum Mechanics.

The perturbative expansion we mentioned before deserves a further com-
ment. As we said, we stopped our perturbative series in the string coupling
constant at tree level, and what this means is that supergravity theories are
the classical limit of String Theory. A particular feature of String Theory is
that the string coupling, defined as the quantity which appears once for each
interaction vertex occurring in a string amplitude (the quantity that “counts”
string loops) is not an independent parameter, but it is instead given by the
expectation value of one of the massless modes present in the spectrum of
all string theories: the dilaton field ¢. The relation between both is

gs = e, (1.1.3)

and hence the string coupling is a local quantity that should be, in principle,
determined by the theory itself®. We said that we needed to assume that
the string coupling is small to justify our perturbative expansion. Now we
see that this assumption will be justified whenever we are able to argue that
the expectation value of the dilaton field is small. The fact that supergravity
actions are tree level actions is reflected in the dilaton factor e 2% that appears
in supergravity actions when written in the string frame.

3Unfortunately, no mechanism within String Theory fixing the value of the string cou-
pling is known yet.



21

Supergravity actions are string effective actions in the sense explained
above: they reproduce the tree level, low energy S-matrix elements of the
massless string spectrum in the field theory limit of String Theory (classical
references are [2,36]). The resulting actions are (supersymmetric) genera-
lizations of General Relativity. The procedure used to construct such an
effective action defines the regime of validity of Supergravity:

o Weak coupling, since string amplitudes can only be computed perturba-
tively. We will always be implicitly assuming that the string coupling
is small and, therefore, for a supergravity background to be reliable,
the value of the dilaton field must always be under control. We will
see, however, that both supersymmetry and duality (in particular S-
duality, which relates weak and strong coupling) will make many times
possible to trust strong coupling results.

e Low energies, since, by construction, we have integrated out all massive
string modes. If we were to use supergravity as an effective action to
compute scattering amplitudes?, we should always take into account
that our results would fail if we considered processes that involve ener-
gies of the order of the string mass or higher. Also, a supergravity
background should never describe a region of spacetime in which the
energy density is of the order of the one given by the string tension.
This seems quite reasonable on physical grounds, but it must be said
that finding a precise, quantitative test for this statement will be very
hard (if not impossible) in most cases, since in a curved spacetime
energy is not well defined locally.

e Long distances, since we took the field theory limit and we must stay at
distances at which strings still “behave as particles”. Quantitatively,
this translates into the constraint that, for a given supergravity back-
ground to be reliable, the curvature of the spacetime must be small

4Tt is well known that supergravity theories are nonrenormalizable, a fact that tell us
that they cannot constitute, by themselves, a candidate for any ultimate quantum theory.
But just as any effective field theory (as, e.g., the Pauli theory of weak interactions),
they could be used to get quantitative information of scattering processes. The difference
between a renormalizable and a nonrenormalizable theory is just that the latter have, from
the very beginning, both the energy regime of applicability and the precision of the results
bounded by the natural cutoff of the theory (in this case, the string mass). But below this
cutoff they are perfectly valid, at least as a tool to get quantitative information.
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when measured in string units, i.e., Ra’ < 1. This could also be seen,
at least sometimes, as a possible criterion of stability in terms of en-
ergy density in the sense commented in the last paragraph, since the
curvature of spacetime will be determined by its energy content.

All this can be summarized by saying that supergravity actions are a double
expansion, both in g, (first condition) and in ' (second and third condi-
tions). They are, in fact, given by the lowest contributions in both param-
eters, although higher order corrections can be considered (see e.g. [37] for
a discussion about ' corrections and [38] and references therein for a dis-
cussion about string loop corrections to the string effective action). These
corrections are thus String Theory predictions that modify (in particular)
General Relativity.

By a supergravity background we mean a field configuration which solves
the supergravity equations of motion, i.e., nothing but classical solutions of
a classical field theory. Whenever such a background does not fulfill one
of the requirements above, it cannot be said anymore that it may contain
any reliable information about the underlying string physics, since we would
be taking the supergravity approximation out of its own regime of validity
(it must also be said that all conditions above are necessary, although, in
general, not sufficient). But, as will be explained later on, there will be
many situations under which it can be argued that a lot of String Theory
information is encoded in classical solutions of supergravity theories.

1.2 Supergravity Backgrounds and Confor-
mal String Backgrounds

So far we have introduced Supergravity as arising from a certain physical
limit of String Theory. There is, however, a formal consistency requirement
in String Theory which also leads, in a completely different way, to the same
equations of motion that the ones we would get from the supergravity ac-
tions obtained as explained in the previous Section. This is the requirement
of conformal symmetry. To illustrate some specific formulas we will focus
here, for simplicity, in the case of the closed bosonic string, but the general
results also apply to the superstring case.
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The Polyakov action for a free, closed, bosonic string is given by

S =

o / 2o\ /7Y™ 00 X" 05 X" My (1.2.1)
where 7,5 is the worldsheet metric (with worldsheet coordinates o®) and
the X* are the embedding coordinates of the string in spacetime. (o, 3) are
worldsheet indices, and (u,v) are d-dimensional spacetime indices. 1), is
the d-dimensional Minkowski metric, and so the above action describes the
propagation of a string that moves freely in flat spacetime. The action (1.2.1)
can also be seen as a two dimensional field theory for the massless scalar fields
XH# coupled to the worldsheet metric. The physics of this worldsheet metric
is something that we now discuss.

Together with other symmetries (like spacetime and worldsheet repara-
metrization invariance), the above action has a very important classical sym-
metry: Weyl invariance. Precisely because it is two dimensional it is invariant
under local rescalings of the metric (“conformal” or “Weyl” rescalings). This
is really a key symmetry because of a number of reasons, but here we will
explain its importance in the following way. Among other properties, Weyl in-
variance allows to gauge away all the degrees of freedom contained within the
worldsheet metric v,4. This is very important, because if we are interested in
formulating an action describing the physics of a relativistic string, such an
action should only contain the degrees of freedom associated to the motion
of the string, and these (vibrational, translational and rotational modes) are
all already contained within the X#. We must thank then conformal invari-
ance for making “vanish” all extra physics that could, in principle, arise from
the degrees of freedom described by the worldsheet metric. This is why it is
called an “auxiliary” field and this is why it was introduced: because it allows
for a quadratic action (and hence easy to quantize, since the Nambu-Goto
action is not), but it introduces no new degrees of freedom in the theory. If
we were interested in possible two dimensional field theories this would not
be, of course, a problem at all. But if we are interested in a theory of strings
(by this meaning just strings) we should care about having at our disposal a
formulation which describes the strings physics and nothing else.

What happens upon quantization of the Polyakov action? In general, a
quantized theory may spoil some of the symmetries present in the classical
theory. This is a well-known phenomenon, and when it happens we say that
the theory has an anomaly. Often anomalies are harmless: they simply tell
us, for example, that a classical conservation law is violated in the quantum
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theory, and, a priori, there is no reason due to which such a thing should
render the quantum theory inconsistent. This is the case of global anomalies:
a quantum theory is not inconsistent if a classical, global symmetry is violated
quantum mechanically. The case is completely different, however, when gauge
anomalies occur. Gauge anomalies are inadmissible if the quantum theory
is to make sense, and this is so precisely because it is the gauge symmetry
what is usually needed to get rid of the unphysical degrees of freedom of
a theory. A simple example is that of gauge symmetry in electrodynamics:
it is this symmetry what allows to gauge away the unphysical, longitudinal
polarization mode of the photon (in four dimensions, for example, a photon
is described in its Lagrangian formulation by a vector field A, with four real
components, although we know that a massless non-scalar particle only has
two physical degrees of freedom). Another example is conformal invariance
in String Theory: this is what allows to gauge away the unphysical degrees
of freedom of the worldsheet metric.

In view of this, we must care about what happens to the conformal sym-
metry when quantizing the Polyakov action, since it should not be anomalous.
One then finds that the cancellation of the conformal anomaly is precisely
one of the reasons due to which the spacetime dimension must be fixed, in
the case of the bosonic string, to d = 26°. So by taking d = 26 we are
sure of having a consistent theory of quantum bosonic strings which is still
conformal invariant. What else can be done?

We can now analyze its spectrum, and we see that the massless spectrum
of the theory consists of three states: a spin 2 field g,,, which we identify
with the graviton; a 2-index antisymmetric tensor field B, ; and a scalar field
¢, the dilaton. Now one could wonder how the physics of a test string should
be when propagating not in flat space as in (1.2.1), but in a “condensate”
or “coherent state” made by the massless excitations of the strings around.
We can think in such a massless condensate as a nontrivial, stable field con-
figuration arising from nontrivial vacuum expectation values of the massless

modes. To consider such a situation the action (1.2.1) is clearly no longer

5This can be seen to happen in this way in the covariant quantization scheme, and so,
in this case, d = 26 appears as a consistency requirement. However, in other quantization
procedures d = 26 emerges differently. For example, in the light-cone quantization this
condition must be chosen only if we do not want to lose Lorentz invariance and, also, if
we want the states in the spectrum to fit in well-defined irreducible representations of the
Lorentz group.
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valid, and the correct action to consider now can be shown to be [39,40]:

1

° = Tha / 0 (/77" 0 X 05X" g (X) + €700 X 05 X" By (X)) +
1

oo / o YRD$(X), (1.22)

where €*? is the antisymmetric symbol in two dimensions and R® is the
worldsheet curvature scalar, the one built from 7,5. In two dimensions its
integral over the manifold is a topological quantity: the Euler characteristic
of the worldsheet manifold. This can be seen, when considering string in-
teractions (and assuming constant dilaton within the worldsheet), to be the
reason for the relation (1.1.3) between the string coupling and the expecta-
tion value of the dilaton field.

Now the question of conformal invariance arises again, since it can be seen
that for a string propagating in background fields, the condition d = 26 is no
longer enough to ensure the cancellation of the conformal anomaly. This is
evident even at the classical level, since the last term in (1.2.2) is not, by itself,
conformal invariant®. Viewed as a two dimensional field theory action, we
see that the fields g,,, By, and ¢ play in (1.2.2) the role of local, functional
couplings. A conformal theory is scale invariant, and this means that the
theory is insensitive to long or short distances, or to low or high energies. A
consequence of this is that all beta functions vanish. They vanish because,
in a scale invariant theory, there should be no need to choose an energy scale
at which any coupling must be defined. Therefore, if Weyl invariance is to
be a symmetry of the quantized theory the beta functions should vanish’.
However, if we compute the beta functions for the theory defined by the
nonlinear sigma model above (which is a very hard field theory exercise) in

6This will not worry us because of two reasons. First, note that this term carries a
different power in ', and so it can be considered as an o/ correction to the remaining part
of the action. In this sense it is not so strange that it breaks conformal invariance. But
also, and most importantly, we will see that conformal symmetry will be fully restored at
the quantum level under certain conditions.

"This seems compelling. However, the actual issue is not whether the beta function
of a two dimensional field theory vanishes or not, but if the theory given by (1.2.2) is
invariant, once it is quantized, under local rescalings of the worldsheet metric or not. It
can be shown, however, that at least at one loop the vanishing of the beta functions implies
Weyl invariance.
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d = 26, what we get is [40]:

By = Ru —2V,0,6+1H,  H/,

Bp = V,HPW —2HMPY, ¢ (1.2.3)

By = V2 —(09)* — ;R — 7 H*,

4.3!

where H = 30B, and R,,, R and V, are the usual expressions for the
curvatures and (functional) covariant derivative with respect to the metric
G-

It is worth commenting a little bit on the computation of these beta func-
tions. As always in field theory, they can only be computed perturbatively.
The details are rather cumbersome, but by looking at (1.2.2) it is not hard
to convince oneself that a number that will measure the size of such cou-
plings is v/a'. This is, in fact, the parameter around which we will be doing
perturbation theory®. This is an important thing: sigma model perturbation
theory gives us the o expansion. The beta functions obtained above are the
lowest contributions in o/, which are the one loop contributions from the g,
and By, terms and the tree level contribution from the dilaton term (this is
due to the different o/ dependence of the latter)?. Considering higher sigma
model loops would yield o corrections!’. The beta functions obtained above
are therefore computed in the o/ — 0 limit —what we called “field theory
limit” in the preceding section.

According to (1.2.3) the field theory under consideration will not be, in
general, conformally invariant. But if we place the string in a (g, By, ¢)-
background such that all the above beta functions vanish:

By =0Bp =Py =0, (1.2.4)

80f course, it makes no sense to talk about a perturbative expansion around a dimen-
sionful parameter, since a dimensionful quantity cannot be said to be neither small nor
large —this is simply a matter of the units we choose to measure it. It can be seen, how-
ever, that the true perturbative parameter is vo' /r, r being a typical length of order the
“curvature radius” (r> ~ 1/R when R is nonvanishing) of the 26 dimensional spacetime
manifold.

90ut of the critical dimension d = 26 there is, however, a leading order term in the
o' expansion (~ 1/a') arising from a (tree level) contribution due precisely to the dilaton
coupling term of (1.2.2). This term appears as a constant in the beta functions and
becomes a cosmological constant term in the spacetime action (see below).

1ONotice that this has nothing to do with a string loop expansion, which would mean g,
corrections. We will comment on this below.
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then conformal invariance will be achieved. Hence, from now on, we will
require any string background to satisfy (1.2.4) in order to have a conformally
invariant String Theory.

We must not forget that equations (1.2.4) are functional equations: from
the two dimensional field theory viewpoint, they are functionals of the bosonic
fields X*. However, we can also give them a spacetime interpretation, since
the X* are also spacetime coordinates, the spacetime coordinates telling us
where and how the string is placed. If we adopt this spacetime interpreta-
tion, the above equations are nothing but second order differential equations
which turn out to coincide with the Euler-Lagrange equations of the following
spacetime action:

1

S=——F=
167TGS\276)

/d%x lgle 2 (R — 4(0¢)* + %H2> : (1.2.5)

Gf,m is the Newton constant in 26 dimensions, which has dimensions of
(mass)™?* and must be put in front of the action to give it the right units.
Surprisingly, this is precisely the low energy effective action that we would
have obtained, by following the procedure explained in Section 1.1, for the
case of the closed bosonic string. Eq. (1.2.5) describes gravity coupled to
the bosonic fields B, and ¢. In the case of the superstring one obtains is a
corresponding supergravity action.

This approach to obtain the effective string action was carried out in [40]
for the case of both the bosonic string and the superstring, where some con-
siderations concerning background fermions where also made. Older related
references are e.g. [5,41]. A different approach in the case of the superstring,
based on the requirement of fermionic k-symmetry (instead of conformal in-
variance), was carried out in [42]. The agreement between the beta functions
and the equations of motion derived from the S-matrix generating functional
beyond the leading order in o/ was considered in [43].

Note that the approximations made in the computation of the beta func-
tions are the same as the ones we made when computing the string effective
action. First, this is a low energy approximation, since a stable condensate
of massless string modes is not conceivable if we are at energies at which
massive states can be excited. This is made explicit in the fact that we are
working in the field theory limit (pointlike strings): we took o' to be small
when computing perturbatively the beta functions (1.2.3), since there o/ was
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the expansion parameter. Finally, it remains to justify that (1.2.5) is also a
tree level expansion in the string coupling. This fact is much less obvious
to see here, because it is not implicit in the computation of the beta func-
tions: such a computation provides us with the UV behaviour of the two
dimensional theory, which is a local property, while the issue of how many
string loops are we considering is completely different, since it is related to
the topology of the worldsheet manifold. An indication of the fact that we
are at tree level is provided by the dilaton power in front of (1.2.5), which is
the right power for a string tree level action. The fact that the above com-
putation was tree level can be seen to be implicit in the sigma model action
that we used: when considering one loop string amplitudes one generically
finds divergencies, and counterterms in the original sigma model Lagrangian
must be added in order to cancel them [44,45]. We will comment further on
string loop corrections to string effective actions in Section 5.2.3.

We would like to stress that all the considerations made so far are fully
perturbative, both in the two dimensional field theory on the worldsheet (i.e.
perturbative in o/) and in the string coupling constant g;. However, we will
see in the following Chapters that one is sometimes able to get nonperturba-
tive results from these perturbative effective actions. This can happen when
duality arguments or appropriate nonrenormalization theorems (concerning
sigma model or string perturbation theory) can be invoked. The latter are
many times due to supersymmetry. This is why both supersymmetry and
duality play a central role in string physics.

We have seen that Supergravity arises from String Theory as the low
energy effective action for the massless modes, but also that Supergravity
equations of motion must be obeyed by any string background in order to
get a conformal String Theory defined on it. This is why supergravity solu-
tions are important for String Theory: if some String Theory effects are to be
seen in its low energy limit, those should be encoded in a certain supergravity
solution. For example, we will be many times looking at supergravity solu-
tions as describing the long range fields produced by nonperturbative string
states or providing us with solutions which we will identify with string vacua.
The basic support for this identification are the reasons enumerated above.
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Supergravity Solitons
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Chapter 2

Supergravity Backgrounds and
String States

One of the main uses of Supergravity concerning its application to String
Theory is the identification between supergravity solutions and the long
range fields produced by nonperturbative string states. By “nonperturba-
tive” we mean string configurations that are neither the single excitations
of a single string nor can be obtained when treating these perturbatively.
The best known example of such an identification is that of supergravity p-
brane solutions and string D-branes [22,46,47]. The study of supergravity
configurations related to string states has proven to be extremely useful.

Here we attempt to explain why certain nonperturbative string states
should have a supergravity solution counterpart, how the identification be-
tween both works, and why such an identification can be made.

2.1 A Simple Example

Let us consider the Maxwell theory of classical electromagnetism with no
sources. In its Lagrangian formulation it is given by the action:

S = —i/d‘lx F?, (2.1.1)

with equation of motion an Bianchi identity given by

d*F=0, dF=0. (2.1.2)
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A possible solution of these is provided by

q

F,=——
tr
r2’

(2.1.3)
where ¢ is any constant and r is the radial coordinate in spherical coordinates.

The theory defined by (2.1.1) just describes the electromagnetic field.
However, we always say that (2.1.3) is the solution “corresponding to a point
particle of charge ¢”. Why are we allowed to make such an identification if
our starting theory was not a theory including charged matter?

First of all, the solution given above describes a nontrivial field. So it is
natural to suppose that there could be something in space (something that we
will call source) distorting the trivial vacuum field configuration (= F = 0).
The question is: are we able to describe the properties of such a source just
by means of the solution given by (2.1.3)?

First we observe that our solution is perfectly regular everywhere except
at r = 0, where it is singular and hence no longer valid. Since our theory just
describes an electromagnetic field, this field must be the only thing existing
in the region of space where our solution is well behaved. Therefore, if a
source is to be present, it can only be placed where (2.1.3) fails. This place
is a point, and hence our source can only be pointlike. Secondly, we have at
our disposal the Gauss law, and so we are able to compute the net electric
charge contained within a region of space just from the knowledge of the
electromagnetic field on the boundary of that region. If we apply the Gauss
law here, we will discover that there is a net charge given by ¢ precisely at
r = 0 (and nowhere else). This is what enables us to say that our solution
describes the electric field emitted by a pointlike charge of value gq.

These will be the same kind of questions that we will made ourselves
whenever we find a supergravity solution describing nontrivial field configu-
rations. The way in which we will extract information of string states from
certain supergravity solutions is technically more involved, but the principles
that rule the matching between one thing and another are the same as those
explained here.

Branes in supergravity should be regarded as nothing much more com-
plicated than generalized electrons (elementary sources) or monopoles of ge-
neralized electromagnetic fields!. The fact that they must be extended (as
opposed to pointlike) is simply due to the fact that in higher dimensions

Monopole configurations are nonsingular and therefore they are not “sources”. How-
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gauge fields can be p-forms of higher rank. The presence of gravity, the
spacetime dimension and many other things make things much more compli-
cated technically (with the beautiful consequence that Physics is also much
richer), but with this example we want to make clear that, from a supergrav-
ity perspective, they are conceptually very simple.

2.1.1 Addition of Sources

We have seen that a source-free theory can be enough to point towards the
existence of sources and to elucidate some of their properties. However, the
fact that a given field configuration like (2.1.3) is indeed the one created
by a pointlike charge could be established in a much more solid way if we
had at our disposal a precise theory of pointlike charges. If we were able to
consistently couple the above action to that of a pointlike charge, solve the
full equations of motion and getting at the end the same result, that would
really be a strong support to our assumptions (we must not forget that,
regardless the quite compelling arguments given above, we were inferring
the existence of an object in a place where our solution completely breaks
down). In electromagnetism this can be done, and one can consistently couple
a charged current to the Maxwell theory.

This is also important for another reason. When we only care about
solving the source-free equations of motion, one finds that the charge ¢ is an
arbitrary number (i.e. a modulus in the space of solutions). It is just an inte-
gration constant, and no criterion in order to fix its value is provided by the
source-free theory. To solve this problem what one needs is a precise model
for, say, electrons, in which their charge is a precise, fixed number. Then
one can couple the source-free action to the current of an electron (in whose
definition its actual charge will be included), and this will force ¢ to equal
the physical charge of our particle. However, once we know that a particular
source action exists, and that it can be consistently coupled to the source-free
theory, there is no real need to solve the whole system of equations of motion
more than once. If we know which sources can be consistently coupled to the
“bulk” action, and somehow we know the physical charges of the objects our
solution is to describe, we are always entitled to solve the source-free equa-
tions of motion and set by hand ¢ to the requested physical value.

ever, throughout this Chapter we will use the word “source” in a generalized sense to refer
to all those configurations carrying some “elementary charge” with respect to some gauge
potential or its dual.
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In supergravity, the analogue of the source action describing a pointlike
charge will be the worldvolume actions of the fundamental and solitonic ex-
tended objects present in String Theory. We emphasize this issue because
having a well defined theory of elementary sources is of capital conceptual
importance if we want to argue, on solid grounds, that a supergravity field
configuration can be identified with a known String Theory state. For ex-
ample, the nowadays well-established connection between the supergravity
p-branes first found by Horowitz and Strominger [46] and string D-branes
first considered by Dai, Leigh and Polchinski [47], would have never been
possible without a String Theory computation showing that the latter share
all the properties seen in the supergravity solutions: RR-charged extended
objects breaking half of the supersymmetries [22].

Sometimes, however, there will be supergravity solutions for which a
string description is not known. For example, it is known that the stringy
description of a Dirichlet brane is an hyperplane where open strings are at-
tached, but an analogous microscopic description of the NS5-brane (a very
well known supergravity solution [48,49]) in terms of string excitations does
not exist, and thus the most natural way to infer its existence and properties
is from the knowledge of the supergravity solution. This will also be the case
for the results reported in Chapter 4. We see in this way that situations
in which a supergravity solution lacks a microscopic string description can
be interesting by themselves, since these solutions might be pointing towards
the existence of other, so far unexplored, nonperturbative string states whose
presence in String Theory may be difficult to guess by other means.

2.2 The Supergravity Description of String
Sources

Macroscopic nonperturbative string states charged with respect to any of the
massless fields present in supergravity theories should be seen in Supergra-
vity, i.e. there should be a supergravity solution reproducing the nontrivial
behaviour of the fields emitted by that kind of sources. That this should be
so seems quite obvious once one takes into account both facts explained in
Chapter 1 concerning the relation between Supergravity and String Theory.

By a “macroscopic state” we mean here a “heavy enough” or “charged
enough” one, so that the long range (massless) fields produced by it are
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also strong enough to distort spacetime at distances bigger than the string
scale —the distance scales described by supergravity. On the other hand,
we will be mainly interested in time-independent (i.e., static or stationary)
supergravity solutions?. As a consequence, we will demand from such a state
to be dynamically stable. This is a reason due to which it is very likely to be,
in addition, “nonperturbative” (in the sense explained at the beginning of this
Chapter): one could think of an extremely massive single string excitation
as being also “macroscopic” (in the sense explained here), but such states
are expected to be quantum mechanically unstable against decay into light
modes. On the contrary, a nonperturbative state has a chance for being
stable if there is a topological reason or a conservation law protecting it
against decay.

It so happens that String Theory does contain such stable, nonperturba-
tive macroscopic states. We can look at this in two complementary ways:

e From String Theory to Supergravity: String Theory predicts the exis-
tence of states whose mass density goes like an inverse power of the
string coupling. If we consider the case of D-branes, for example, their
tensions go like g; . So it is conceivable that, precisely in the weak
coupling regime, they will be heavy enough to have an associated su-
pergravity solution. It could be argued, however, that even for a small
but finite value of the coupling constant they could still be too light to
produce a strong gravitational field. But it is a fact that these are BPS
states (we will develop this shortly), and so as many of them as we wish
could be placed together to constitute a stable and heavy enough state
(in fact, this argument can be applied to all BPS states, regardless of
how their masses scale with the string coupling). Also, since D-branes
carry the quantum unit of RR charge [22] and have the minimal mass
allowed for such a carrier®, their stability against decay is ensured by
a simple charge conservation argument.

e From Supergravity to String Theory: whenever a nontrivial field configu-
ration with the characteristics of being produced by a source is found as
a supergravity solution it makes sense to wonder about its microscopic
description, i.e. about the source itself. Such a microscopic description
is very likely to be found within String Theory.

2Time dependent backgrounds are usually interpreted as cosmological solutions.
3This is related to the fact that they saturate all BPS bounds. See Section 2.4.1.
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Which properties of the source can be read from a supergravity solu-
tion? Well, exactly as in the example of Section 2.1, these are its spatial
extension and its charges with respect to the supergravity fields. Bosonic
fields of supergravity include gauge fields and the metric tensor, so we will
be able to compute, in principle, the gauge charge(s) and the “spacetime” or
“geometrical” charges (mass, angular momentum, etc.) of the source.

The spatial extension is usually read from the region where our solution
becomes singular. This is in principle so for the case of “electric” configu-
rations associated to some gauge potential. “Magnetic” ones (charged with
respect to a dual potential, i.e. the analogues of a Dirac monopole), like the
NS5-brane for example, can be regular field configurations everywhere, but
they always have an associated “core” or “energy locus” which is also read
from the behaviour of the supergravity solution. There are refinements to
this procedure, however, arising from the fact that singularities in a solution
can be physical singularities or just coordinate singularities, from the fact
that due to the presence of gravity we can find special regions like event
horizons, and one can also find even more exotic situations, as that of the
Kaluza-Klein monopole*. But away from possible subtleties, the general rule
to determine the “size” of the source is the one given here, and the reason
for this is exactly the same as the one given in Section 2.1 when there we
inferred that the source had to be pointlike.

The supergravity solution will always tell us under which gauge fields the
source is charged, and these charges can always be properly computed by the
corresponding generalization of the Gauss law.

Finally, the “spacetime” charges like the mass are more problematic, since
in theories with gravity one must go to infinity to compute, say, the total
mass-energy of the whole spacetime, which in general is only defined globally.
A first indication that this has to be so comes from the fact that, in a curved
space, the on-shell equation

vV, I" =0, (2.2.1)

does not imply any local conservation law for the matter energy-momentum
tensor. A conservation law could only be inferred from a continuity equation

“In that case, what could look like a worldvolume direction will be interpreted at the
end as a transverse, isometric one, since it is argued that it has to be compact. This last
property is not seen in the metric, and hence a naive interpretation based on the coordinate
dependence of the solution leads to a wrong conclusion about its spatial extension.
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of the kind

9, (\/@T‘“’) ~0, (2.2.2)

which will never be satisfied in the case of a curved spacetime, because
Eq. (2.2.1) makes the term —I' 7" appear in the r.h.s. of (2.2.2). This
can also be understood form the fact that, in a curved spacetime, the needed
symmetries under which a conservation law and a well defined notion of mass
can be established are only realized asymptotically. For example, in asymp-
totically flat spacetimes this gives rise to the notion of ADM mass [50]°,
which is what we usually will be identifying with the mass of the source.
Other spacetime charges such as angular momenta can also be associated to
the source in stationary spacetimes. And also, as in the case of the mass,
these can be defined and computed only asymptotically. The reason is, again,
that these conserved charges are always associated to isometries that only
the asymptotics of our solution has. This is a particular feature of all space-
time charges. On the contrary, note that reaching infinity is not necessary
to compute the gauge charge, since gauge symmetry is perfectly preserved
everywhere.

In supergravity theories, however, there is another property associated to
the source that we will be able to compute and that we have not mentioned
so far: the number of residual supersymmetries and the corresponding su-
percharges. This kind of charges also fall into the class of what we called
spacetime charges (this is not so strange, since supersymmetry enlarges the
Poincaré group, not the gauge symmetry group), and the same considerations
concerning the asymptotics apply to them. The preserved supersymmetries
and its implications will turn out to be of capital importance. We will develop
this issue more carefully in Section 2.3.

5The definition and computation of conserved charges in spacetimes with arbitrary
asymptotic behaviour was developed in [51].
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2.2.1 Asymptotic Behaviour: Sources as Vacuum Per-
turbations

The preceding discussion about spacetime charges has a sort of “nontrivial
implication” or “hidden assumption”: the concept of vacuum. At least, a
concept of “vacuum” arising as opposed to the concept of source itself.

As explained, to compute the mass associated to a source one can only
do it with respect to the asymptotic spacetime and use, to define a conserved
mass associated to a conservation law, the asymptotic isometries (which,
in turn, become global symmetries). It could be said that, to compute the
mass, one must first go very far away from the source and, only then, apply
the corresponding “gravitational generalization” of the Gauss law. From a
certain viewpoint this is not so strange, since gravity itself contributes to
the total energy. In electromagnetism, the only charge given by the Gauss
law is the one contained within the integration surface, so the latter must
enclose the whole source (in the case of a charged sphere, for example) if
we want to compute its total charge. With the mass one must do something
similar, and one must go to the asymptotic region to have first an “isolated
system”, because the fields emitted by a source also contribute to the total
energy. Of course, this is nothing but an analogy and should not be taken
further: the crucial difference is that, while in the case of a gauge charge the
computation can be carried anyway (one could compute the charge of “half
a sphere”) because a conservation law for the charge holds locally, in General
Relativity energy and its conservation can only be defined globally.

Hence we see that some properties of the source can only be defined with
respect to those of the asymptotic region, and it is this asymptotic region
what we are defining here as “vacuum”. It is in this sense in which a given
source solution can be interpreted as a localized (i.e., a configuration with
a core) “perturbation of the vacuum”. We call the source a “perturbation”
simply because it will not be seen from a big enough distance from the core.
For example, a solution with the properties of being describing a source
and which is asymptotically Minkowski spacetime will be considered as a
perturbation of the Minkowski vacuum. Note that the only reason for calling
it vacuum is nothing else that it can be considered as an “empty spacetime”
(“empty” in the sense that it has no core) enjoying, in addition, a lot of
(super) symmetries, much more than the full solution.

All possible supergravity field configurations could be classified into equiv-
alence classes according to their asymptotic behaviour. Therefore, all space-
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times falling into the same equivalence class (i.e., all spacetimes sharing a
given asymptotics, e.g. Minkowski) could be considered, in principle, as being
describing all possible macroscopic sources that can exist in a given vacuum
—the one defined as the common asymptotic spacetime shared by all those
solutions.

Spacetimes which “asymptote to themselves” are homogeneous space-
times, and have no core where one could think that there is something like
a source. If one uses the Abbott and Deser formalism [51] to compute the
total energy of such spacetimes one gets, by construction, zero. This may
be taken as another reason for calling them vacua®. The fact that one can
wonder, e.g., about the mass of a given spacetime and getting a finite result
seems very much intrinsically related to the concept of source itself and to
the idea of a source embedded in a given vacuum. We will investigate further
this idea of vacuum in Chapter 5, and we will deal with spacetimes that can
be considered as vacua in the sense explained here in Part II.

2.3 Nonrenormalization and BPS Condition

So far we have explained the relation between string states and supergravity
backgrounds, and we have sketched how the identification between both goes.
But we did not say why such an identification should work. To answer this
question one must understand first the problem of why it could fail.

As emphasized in Chapter 1, Supergravity is a classical limit of String
Theory. Therefore, all the information we will be able to extract is tree
level. If we attempt to properly obtain some properties of the states of a
quantum theory, we must then be sure that the information we will get from
supergravity is not spoiled by quantum corrections. As mentioned, one is in
principle able to assign, from the knowledge of the fields of a supergravity
solution, a mass and a charge to something that we identify with a quantum
stringy state. The question is if these values, as computed from supergravity,
are stable or not against quantum corrections, i.e., if they get renormalized
or not in the quantum theory. We see therefore that nonrenormalization
of the quantum numbers of the source is needed for the reliability of the
supergravity background, simply because the latter just provides us with
tree level information.

6We will consider this more carefully in Chapter 5.
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We will be mostly concerned with the issue of whether the ratio between
mass and charge obtained from supergravity still remains valid beyond tree
level or not. As we will see, this (the charge-mass ratio) is a very important
piece of information. One must also realize that it is exactly this one the true
question to be raised in a supergravity context, and that a fixed charge-mass
ratio beyond tree level is the only requirement which makes sense to demand
in order to trust a supergravity solution. As explained, in supergravity these
numbers arise from integration constants, and the actual values of integration
constants do not constitute an issue: as long as their ratio is fixed, different
values will just differ by an immaterial overall normalization. Of course, the
actual values of physical charges or masses do matter, but to compute them
one must go to the full String Theory and perform the proper calculation. It
is only then when the question about the renormalization of their individual
values, and not only their ratio, applies and matters.

The problem was essentially solved by Witten and Olive [52] in the con-
text of supersymmetric gauge theories. Although one can certainly not make
an exact parallel of their argument in the case of a theory with local super-
symmetry, the very last reason leading to nonrenormalization also holds in
a supergravity theory. As we will see, an absolute condition for applying
the reasoning leading to nonrenormalization of the mass-charge ratio of the
source is that the supergravity solution must be describing a quantum BPS
state. We now explain what the meaning of this is, and next we sketch the
argument itself in the case of a supergravity theory.

2.3.1 Global Supersymmetry Algebras and Central
Charges

Let us consider all possible spacetimes falling into a given equivalence class as
defined in Section 2.2.1 (all spacetimes with the same asymptotics or, equiva-
lently, all the macroscopic excitations of a given vacuum). To this equivalence
class one can associate something which is called its “global supersymmetry
algebra” or its “superalgebra”.

For given asymptotics, the corresponding superalgebra is, by definition,
the finite-dimensional algebra of spacetime (super) symmetries enjoyed by the
asymptotic spacetime, i.e. the vacuum superisometry algebra. The reason
for making this definition is the following. We will be interested in using
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this superalgebra to get some information (things like a BPS bound, for
example) from the conserved charges assigned to a certain source-solution
with a given asymptotic behaviour. For this to be possible, what one needs
to consider are precisely the isometries of the vacuum, since only with respect
to them conserved geometrical (super) charges can be defined. Also, these
charges will be identified, later on, with the tree level quantum numbers
of the quantum stringy state describing the source, and then we will need
to have at our disposal something that we could call, for example, a “mass
operator”. To match this with the classical supergravity picture, such a mass
operator should be well defined also in the classical theory.

Consequently, whenever we write down a certain superalgebra we should
always keep in mind that it is the superalgebra associated to a given back-
ground —a background such that spacetime charges can be defined with re-
spect to it”. For example, if such background is Minkowski spacetime, the
corresponding superalgebra will be an extension of the Poincaré algebra in-
cluding fermionic generators. For simplicity, in what follows we will always
work in the case of a super-Poincaré algebra, although other superalgebras
(like AdS ones) referring to different asymptotic behaviours exist and could
of course be considered.

The generic expression for the anticommutator of two fermionic genera-
tors (Q, and Q) is (we will always suppress numerical factors which depend
on the conventions chosen):

{@,Q%} = (') Py, (2.3.1)

where C is the charge conjugation matrix and the P, are the translation
generators. The indices a and [ are spinorial indices, since the different Q-
generators will always be arranged in sets that transform as spinors under
the Lorentz group. It is known that the above algebras can be consistently®

7A different thing is the local algebra obeyed by the infinitesimal generators of the
symmetry transformations of our theory. This is obtained by computing the commutators
of every infinitesimal symmetry transformations (under which our classical Lagrangian is
on-shell invariant) when acting on the fields of our theory. Of course, a needed consistency
requirement is that such a local algebra closes (at least on-shell), and that it is equally
realized on all the fields of the theory. But this is of no use to our purposes because, in
general, no conserved charges can be associated to the local symmetry generators.

8By this we mean that the corresponding super-Jacobi identities are still obeyed in the
central-extended case.
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enlarged by including central charges, henceforth denoted generically by Z,
which always occur in the anticommutator of two supercharges’. We can
talk about two kinds of central charges: those having R-symmetry indices
and those having spacetime indices!?. The former may appear in theories of
extended supersymmetry in which the ()-generators arrange themselves in
N > 1 sets of spinors. In that case one labels the generators as Q™, where
1,7 = 1,..., N, and the central-extended algebra takes the generic form

(@%@} =" (¢ )PP+ (€))7 2Y. (23.2)

In the case of a Poincaré superalgebra the different Z% commute with every
other generator, hence the name. In the four dimensional case, such kind
of superalgebras were shown in [53] to be the maximal central extensions
allowed compatible with Poincaré invariance. However, if one does not re-
quire Poincaré invariance, more terms, now with Lorentz indices, can be
consistently added to the anticommutator of two supercharges. These terms
generically appear in the anticommutators as

{Q*,Q°} = (v"CH PP + (v C ) 2, - (2.3.3)

Although the Z,,..,, are usually also called “central charges” (and we will
keep that name for them), actually they are not central elements of the
algebra, since the super-Jacobi identities imply that they must have non-
vanishing commutators with the Lorentz group generators. Central charges
with Lorentz indices where shown in [54] to appear in theories containing
extended objects.

We have added elements to a symmetry algebra. Therefore, these new ele-
ments should be also symmetry generators. What are, then, the symmetries
generated by the central charge operators? In the case of the central charges
Z% with R-symmetry indices, it can be seen that the corresponding symme-
try is that of global rotations mixing the /N gravitini that will be present in
our theory as a consequence of the N-extended supersymmetry. In the case
of the central charges Z,,..,, with Lorentz indices, the associated symmetry

90f course, the elements entering in the algebra are all operators: the generators of
the corresponding symmetry transformations. However, it is customary to call the @-
generators “supercharges” and the Z-generators “central charges” since, in the case of a
global superalgebra, each one has an associated conserved charge.

10They can also have both. For simplicity, we consider here each case separately.
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is that of gauge transformations of the (p + 1)-form gauge fields contained
in the theory. In fact, it so happens that the allowed central charges always
correspond, in one way or another, with the gauge fields (and their Hodge
duals) of the theory under consideration, and thus they should also be in
correspondence with the elementary charged configurations with respect to
the different gauge fields [54]. This also explains the breakdown of Lorentz
invariance: in theories containing (p + 1)-form gauge fields we know that
the states charged under these are p-extended objects, and it is their pre-
sence what will break the Lorentz symmetry of the vacuum. Moreover, the
fact that the symmetry generated by the central charge operators is gauge
symmetry implies that the corresponding conserved charge will be the gauge
charge. The identification between central charges and gauge charges will be
essential in what follows. The fact that central charges have Lorentz indices
takes into account the fact that, for extended objects, the electric or mag-
netic charge is oriented in space and is to be proportional to some volume
form —the one describing the worldvolume of the extended object.

2.3.2 Supersymmetric Backgrounds and BPS Bounds

In the classical limit represented by Supergravity, local supersymmetry is
realized on the fields of the theory by means of algebraic or first order dif-
ferential transformations that mix the fermionic and the bosonic fields. The
infinitesimal action of the supersymmetry generators () on the supergravity
fields can be written schematically as

RQ: ¢ = (1+eQ)p = ¢+, 0cp = 1e.
Q: v = (1+eQ)y = v+64, 04 = 0Oe+ ge.

(2.3.4)

Here ¢ denotes a bosonic field, ¢ a fermionic one and € = ¢(z) is the local pa-
rameter of the infinitesimal transformation. This parameter is a Grassmann
number, i.e. a classical spinor. In general, a given solution S = {¢(x), ¥(x)}
will transform into another one S’ = {¢'(x),¢'(z)} if we apply on it the
transformations given by (2.3.4). But, for certain nontrivial solutions, there
may be some orbits in the space of the supersymmetry transformations that
leave it invariant (S’ = S). When this happens we say that the solution S is
supersymmetric, or that it has “residual supersymmetries”. We will always
be interested in bosonic backgrounds, for which ¢(x) = 0, and therefore
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the requirement for preserved supersymmetry is the existence of a nontrivial
spinor field €(x) satisfying the first order differential equation:

Be+ e =0. (2.3.5)

These equations are customarily called “Killing spinor equations”, and their
solutions are called “Killing spinors”. Since there will be a Grassmann pa-
rameter per supersymmetry generator, the number of independent solutions
of the above equation coincides with the number of independent supersym-
metry transformations which can act on S leaving the field configuration in-
variant. This number is the amount of supercharges preserved by the bosonic
field configuration.

It turns out that, for any background (supersymmetric or not), represen-
tation theory of its corresponding global superalgebra always implies that
one or several inequalities of the form

M? > |Z)? (2.3.6)

hold. Here M is the eigenvalue of the suitably defined mass operator built
from the translation generators of the global superalgebra (P, for a massive
particle in the rest frame, for example). This value will coincide with the
ADM mass of the supergravity background. With Z we denote any of the
eigenvalues of the central charge operators, and each of them will be given in
general by a combination of the gauge charges of the supergravity solution.
This kind of inequalities are called “BPS bounds”, and the solutions for which
the equality is obeyed are called “BPS-saturated”. The above inequalities
follow from the positive-definite nature of operators of the kind'!

(Q“+Q°)* >0, (2.3.7)

and are a generalization, to the case of supersymmetry algebras that include
central charges, of the usual theorems on positive-energy representations im-
plied by Supersymmetry . For a classical background, however, this should

1 One must be careful, though, since this positive-definiteness is not a consistency re-
quirement for a classical symmetry algebra (classical states need not be in unitary rep-
resentations). One can however prove this kind of inequalities going, if necessary, to the
appropriate representation. On the contrary, in the quantum theory, the fact that these
operators are positive-definite arises from unitarity.
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be supplemented by a careful analysis concerning the conserved charges of
the supergravity solution, to prove that the eigenvalues of the operators in-
volved indeed coincide with the classical charges'? [56].

For which kind of backgrounds is the BPS bound saturated? It can be
shown that the equality holds if and only if the solution is supersymmetric,
i.e. if there are some (linear combinations of) supersymmetry transforma-
tions that leave it invariant. This follows from the kind of expressions symbo-
lized by (2.3.3) and (2.3.7). We see therefore that supersymmetric solutions
obey a certain minimal-mass condition. BPS-saturated solutions turn out to
be of capital importance, and have deep implications that we explore next.

2.3.3 Nonrenormalization of BPS States

Suppose that we have a solution of the field equations of supergravity and
that we interpret it as describing the fields produced by a stringy source.
This source will be described quantum mechanically by a quantum state
that we denote by |S). Suppose also that we were able to compute, from
the supergravity solution, the mass and the charge attributed to that source.
These values will be proportional to the mass and the charge of |S) when
computed at tree level.

Let us consider the case in which our classical solution is BPS. As usual,
we will of course impose the classical global superalgebra to be the spacetime
symmetry algebra also of the quantum theory. This will imply that the
quantum state is annihilated by some of the fermionic charges

QlS) =0, (2.3.8)

at least at tree level, since the analogous of (2.3.8) holds for the classical
background. If this is so, a saturated-BPS bound of the kind of (2.3.6)
will be satisfied by the quantum numbers of the source |S). The reason
why all this should remain valid beyond tree level is the original argument

12A very interesting phenomenon is that, when we are dealing with solutions describing
black holes or black p-branes (solutions with horizons), the above inequalities coincide
with those imposed by the “cosmic censorship” that forbids the existence of naked singu-
larities. In those cases, the inequality is saturated only by certain extremal configurations
and so, for those supergravity solutions, assuming the cosmic censorship would imply a
proof for (2.3.6) or, vice versa, Supersymmetry in Nature could be a proof of the cosmic
censorship conjecture [55].
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pointed out by Witten and Olive [52], which is the following. Representation
theory of the (massive) states saturating a BPS bound, i.e. those for which
M = |Z|, tell us that these lie in representations with strictly less states
than those of the states for which M > |Z|'3. The assumption is, then, that
perturbative quantum corrections arising from higher loops renormalization
of the mass or charge will not spoil the relation M = |Z|, because this
would imply that the state |S) suddenly “jumps” into a higher dimensional
representation containing more states. Although not a proof, it is difficult to
think how a perturbative renormalization (carried out by a continuous beta
function) could originate such a discrete jump in the number of states, even
in String Theory.

The above argument does not say anything about the renormalization of
the individual values of masses and charges. One may somehow have a tree
level computation (which of course could never be a Supergravity computa-
tion alone) yielding classical values M and Z for the mass and some charges.
These values could of course be shifted to Mgz and Zg when taking into ac-
count quantum radiative corrections!?. But the above argument applies also
to the renormalized values, and therefore we expect the relation My = |Zx|
to hold in any case. We refer to the beginning of the present Section for a
discussion about the reliability of a supergravity solution anyway as far as
the charge-mass ratios are fixed.

We see therefore that supergravity solutions preserving some fraction of
supersymmetry can be trusted regardless the fact that they are classical
solutions. We emphasize that the existence of an argument, like the one given
here, ensuring their reliability is an absolute requirement if one’s purpose is
to use Supergravity to get information from String Theory. The essential
keys in the reasoning exposed above are the identification between central
charges and gauge charges and representation theory of BPS states.

We want to stress, however, the following. The arguments given here
only ensure (when applicable) that a given supergravity solution is reliable
regardless the fact that it is a classical solution, and that some necessary

13Tn a superalgebra with no central charges (or even in the simple Poincaré algebra),
massive representations are also bigger than the massless ones. The BPS case explained
here is an analogous phenomenon, and it can be seen as an “intermediate” possibility that
can arise in superalgebras with central charges.

MHowever, in theories with enough supersymmetry, like for example N > 4 in four
dimensions, even these individual renormalizations do not occur.
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requirements are satisfied in order to give it the interpretation of a descrip-
tion for the long wavelength limit of the fields emitted by some quantum
stringy state. But let us consider the case in which we have a very well
behaved supersymmetric supergravity solution that satisfies all the criteria
enumerated above, and let us also consider that, furthermore, we have at
our disposal some known, well defined BPS string state |S) that shares all
the properties (charges, mass, supersymmetries, etc.) of the supergravity
solution. This state will really be, for sure, a strong candidate for a quantum
description of the supergravity source. But even in such a case all this con-
stitutes, in a strict sense, no proof at all that the quantum state |S) is the
stringy source that indeed produces, in the low energy limit, the field configu-
ration described by the supergravity solution. All arguments given along this
Section are just necessary conditions that allow for a possible match between
both, but they only concern the classical charges and the quantum numbers
of the source. The fact that the classical solution saturates a BPS bound
is strong evidence that it is reliable, because there should be no dangerous
quantum corrections and hence it will describe a possible, meaningful physi-
cal configuration. If one whishes, this evidence could even be promoted to a
proof of reliability, but never to a proof of correspondence with any known
quantum state. Such a proof would need of a sort of uniqueness theorem that
enforces a one-to-one match, or else a full analysis at the quantum level of
the behaviour of the massless fields emitted by the quantum source. In the
case of D-branes this could be, in principle, possible, since one has a precise
prescription for constructing |S). Such an attempt, with successful results,
was carried out in [57], where the asymptotic behaviour of the classical super-
gravity p-brane solutions was reproduced from boundary state computations.

The matching between the String Theory description of nonperturbative
string states and their Supergravity description has been the main character
of many important achievements of String Theory in the last years. Two
of them are of particular relevance: one is the microscopic explanation of
the black hole entropy in a String Theory context [58], which has its roots
in the two different, complementary descriptions of D-branes provided by
Supergravity and String Theory. The other one is the the gauge/gravity CA-
rrespondence. Although a posteriori one could certainly say that the resulting
equivalence between Type IIB String Theory on AdSs x S® and N = 4 SYM
has nothing to do with D-branes, it was originally motivated [23] from the
interplay between the String Theory and Supergravity pictures of D-branes.
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2.4 Properties of BPS States

We have seen that BPS-saturated states play a very special role in Super-
gravity and String Theory: it is in the BPS limit where both pictures seem
to be allowed to match. Given their importance, we now comment on some
special properties enjoyed by supersymmetric solutions of Supergravity/BPS
states of String Theory.

2.4.1 Stability

To start with, let us consider their dynamical stability. As mentioned at the
beginning of Section 2.2, we expect the stringy state corresponding to a given
supergravity solution to be stable against decay if the latter describes a static
or stationary spacetime. We also said in Section 2.3.2 that a supersymmetric
background saturates one or several BPS bounds of the kind of (2.3.6). The
number of different existing bounds will be given by the number of different
nonzero eigenvalues of the central charge matrix (roughly, the number of
different charges that will be “switched on” in our solution). Furthermore,
it turns out that the number of saturated bounds is related to the number
of supersymmetries preserved by the supergravity solution. To focus on a
concrete example, let as consider an hypothetical case in which we have two
nonzero eigenvalues Z; and Zj of the central charge operator. The whole set
of BPS bounds implies that

M > max (|zl|, |ZQ|) . (2.4.1)

A solution for which |Z;| > |Z,| will only have one BPS bound saturated,
and will only preserve, for example, 1/4 of the available supersymmetries'®.
But it so happens that for a supersymmetric solution having |Z;| = |Z3|,
and that hence saturates all BPS bounds, the preserved supersymmetry is
always one half of the total amount. This is a general property regardless the
number of BPS bounds. Therefore, these states obey a true minimal-mass
condition, and so their stability against decay is ensured both classically and
quantum-mechanically. This is the case of D-branes, for example.

One-half BPS-saturated states are very important in String Theory, since

one can always argue that they are very likely to be “elementary” states

15 A precise counting of the preserved supersymmetries will depend on the explicit theory
we are working on and on the explicit solution we are dealing with, though.
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(as opposed to bound states of simpler configurations, for example) on the
grounds of the above argument. All known supergravity and string extended
objects which are considered to be elementary sources —because they have
no known description in which they could be seen as composed objects®—
preserve, in fact, one half of the supersymmetries.

A different (although less rigorous) semiclassical argument concerning
the stability of certain supersymmetric states can be applied to the case
of p-branes which are the extremal limit of a certain black p-brane solu-
tion. As already mentioned (see footnote 12), for this kind of solutions the
BPS bound coincides with the one imposed by the cosmic censorship, and
saturated configurations correspond to extremal ones. If one calculates the
Hawking temperature of those extremal configurations one gets 7" = 0, which
supports the idea of their stability. Of course, the reliability of the semiclas-
sical computation (precisely in the extremal limit) underlies the validity of
the present argument.

2.4.2 No-Force Condition

Another, very interesting property of supersymmetric solutions is that they
always obey a no-force condition. By this we mean that if one has a super-
symmetric solution describing, for example, a brane localized at some point
in the transverse space, multi-pole static solutions describing several identical
parallel branes located at different points in transverse space also exist. The
fact that such configurations solve the equations of motion and, moreover,
are static, means that they are classically stable. They will feel attracted
to each other by gravitational forces, and they will feel repelled from each
other due to Coulomb-like forces, but a explicit calculation shows that these
contributions exactly cancel no matter what the distance between the branes

16 A quite exotic counterexample is provided by fractional branes, since a regular D-brane
can actually be considered as a superposition of fractional ones. However, the situation
under which such a thing can happen is also quite exotic, because fractional branes only
exist at the fixed points of orbifold theories, and this is something that drastically modifies
all the discussion concerning asymptotics, vacua, conserved charges, etc. that we have
developed along the present Chapter (the asymptotic spacetime is no longer a manifold,
to start with). In any case, and also in an orbifold theory, a “bulk” D-brane is really
elementary, at least in the sense that no description of it exists in terms of other string
states. A review on fractional branes will be presented in Chapter 9. We will deal with
them in Chapter 10.
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is. In the case of D-branes, where a description in terms of string states
is available, and hence a quantum computation can explicitly be done, the
no-force condition can be seen from a computation of the cylinder diagram.
In the closed string channel (tree level), one can explicitly check that the
NS-NS and RR sector contributions exactly cancel.

This no-force condition is important because it allows for “bound” states
where many parallel branes can be piled up at the same point in transverse
space. The fact that such configurations exist and are indeed as stable as
a single brane (the only difference is that the mass and the charge of the
configuration are those of a single brane multiplied by the number of branes)
is important for many applications.

2.4.3 Classical BPS Solutions as Solitons

We end by commenting on a very interesting analogy between some classical
BPS supergravity solutions and quantum field theory solitons. In a quantum
field theory with central charges, the classical solutions that saturate the BPS
bound are usually solitonic configurations [52]: classical, nonsingular, finite-
energy field configurations that spatially interpolate between two different
vacua of the field theory under consideration. In fact, the addition of central
charges in the supersymmetry algebra was shown by Witten and Olive to
be needed in a field theory that has multiple vacua that label topological
sectors. In [52] they referred to these central charges as “topological charges”,
precisely because their value, when acting on a soliton state, coincides with
the topological charge carried by the soliton.

In Supergravity a parallel cannot be made, simply because there is no
space of vacua: there is no potential, and no fixed criterion to find some-
thing like the “minimal energy configurations” exists (not even to talk about
a vacuum selection mechanism). This is one of the major problems of String
Theory. It is true that some spacetimes can be considered as vacua, and
in fact we call them like that. We gave some heuristic arguments for mak-
ing such a definition in Section 2.2.1. We stress that this is nothing but an
analogy with the true vacua of quantum field theory!”, and, as such, it must
be recognized that this definition lacks the needed rigor. However, it is a
quite appealing analogy. A further argument in support of it comes from
the behaviour of many supergravity solutions that saturate a BPS bound:

17 A related discussion can be found at the beginning of Chapter 5.
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it is a fact that, at least some of them, possess all the properties that one
would usually attribute to a field theory soliton, provided that one takes the
definition of a vacuum spacetime pointed out here as correct. In particu-
lar, the M2- and M5-brane solution of eleven-dimensional Supergravity, the
D3-brane solution of Type IIB supergravity and the NS5-brane solution of
all ten-dimensional supergravities interpolate in space between the following
spacetimes [59]:

M2 M11 — AdS4 X 57
M5 M11 — AdS7 X 54
D3 M10 — AdS5 X S°
NS5 Mw — M7 x S3

Table 2.1: Eleven and ten-dimensional solutions that interpolate between
different vacua. M, stands for d-dimensional Minkowski spacetime.

They are all perfectly regular everywhere, and all the spacetimes between
which they interpolate fall into the class of spacetimes that can be consid-
ered as vacua. There are other very well-known supergravity solutions (like
the other Dp-brane solutions) that do not fit so well in the above classifica-
tion, in the sense that they do not interpolate between any two vacua: at
least from a supergravity viewpoint, they are singular at their core. However,
they are customarily called “solitons” too, because, if one pursues the field
theory analogy, it is true that all of them saturate a BPS bound and have a
well defined and finite “topological” charge.

From a quite optimistic point of view, all this might shed some light on
(or provide some hints to) the problem of what is a String Theory vacuum.
But the question of why should be ten dimensional Minkowski spacetime
My, disfavoured with respect to e.g. AdSs x S® or My x T° still remains
completely obscure.
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2.5 Nonperturbative String States and String
Duality

Concerning the investigation of nonperturbative states in String Theory and
Supergravity, there is a very important issue that we have not developed so
far: string dualities. Here we do not attempt to give an exhaustive review
on this topic (reviews with references are e.g. [60-63]), but we would like to
explain their importance for nonperturbative string physics.

Duality in String Theory can be understood as a “generalized symme-
try” that maps a given situation into a different one. It can relate weak and
strong coupling (S-duality), different backgrounds (T-duality) or even dif-
ferent superstring theories. As explained in Chapter 1, String Theory (and
Supergravity, as a limit of it) is only defined perturbatively. The impor-
tance of duality symmetries is that, many times, they can be used to relate
perturbative and nonperturbative regimes, so the tools we have at our dis-
posal (perturbation theory) may suffice to gain insight into nonperturbative
string physics. In particular, duality has been one strong argument pointing
towards the existence of nonperturbative states such as D-branes [47].

2.5.1 Duality in String Theory

Let us recall first what T- and S-duality are from the String Theory point of
view.

T-Duality

T-duality arises as a symmetry relating different compactifications of String
Theory. In the simplest case of compactification on a circle, T-duality tells us
that a closed String Theory compactified on a circle of radius R is equivalent
to (a maybe different) String Theory compactified on a circle of “dual”radius
R given by the inverse of R in string units
T o~ o
R— R = 7
upon further exchange of winding and Kaluza-Klein modes [16]. This equi-
valence is seen perturbatively both in the spectrum and in string amplitudes,
and hence it is the statement of equivalence of string physics on different radii
of compactification. If we consider compactifications on higher dimensional
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torii, the T-duality group will be enlarged to take into account the internal
symmetries of the compact space. Note that T-duality is exclusively a String
Theory phenomenon, since only strings (or, at least, extended objects) can
have winding modes associated to a compactification. It can also be seen as
a manifestation of the existence of a minimal length in String Theory: at
least when talking about compactification, physics below the fundamental
string unit of length I, = v/o' has a dual picture (a different description that
describes the same physics) above that scale'®. At the level of superstring
theories, Type ITA and Type IIB are T-dual to each other, the same as
Heterotic-SO(32) and Heterotic-Eg x Eg. What this means is that both
pairs of theories describe the same physics when compactified on circles of
dual radii.

S-Duality

S-duality is completely different since, to start with, it is intrinsically non-
perturbative. On general grounds, it is the statement of equivalence under
the inversion of the string coupling g, [17]

s . 1
9s —> 0s = —,

at least under certain circumstances. How this is to be implemented in prac-
tice and which are its consequences depends on the particular theory we are
considering. For example, it is believed that the Type IIB theory is self-S-
dual, and that Type I and Heterotic-SO(32) are S-dual to each other. Many
times S-duality can be understood as a generalized electric-magnetic duality
in the spirit of [64].

In general compactified theories, both dualities can be embedded into a
larger one which is customarily called U-duality [18]. This is, in general,
bigger than the “direct product” of S- and T-dualities, because additional
symmetries (which do not come neither from reparametrization invariance of
the internal manifold nor have a higher dimensional origin) may appear in
the compactified case.

18The so-called self-dual radius Rs = v/a' is in fact special: compactification on a circle
of this size exhibits enhanced gauge symmetry, because new light degrees of freedom appear
at this point.
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2.5.2 Duality in Supergravity

One of the things that makes Supergravity extremely useful for the study of
nonperturbative string physics is that string dualities are also seen in the limit
represented by Supergravity. In general, dualities are seen in Supergravity
as global symmetries of supergravity actions or supergravity equations of mo-
tion. Many of these global symmetries in Supergravity were already known
before the discovery of string dualities, but they simply “were there”. An ex-
planation for them is thus found within String Theory (see e.g. [65]). These
can be symmetries of a single supergravity theory (e.g. S-duality in the Type
IIB effective action) or they can relate two different theories (e.g. T-duality
between the Type ITA and Type IIB theories). In the forthcoming Chapters
we will be mainly concerned with S- and T-dualities of Type II theories.
At the level of Supergravity, the rules implementing these string dualities
were found in [26]. They are given in terms of a map between the different
supergravity fields, and hence they can be used to relate dual supergravity
backgrounds!®.

The fact that, in Supergravity, duality transformations of the fields are
either symmetries of the equations of motion or they map solutions of a
theory into solutions of a different one has very useful consequences. This
allows to use them as solution-generating techniques to get new solutions
from a known one, simply by acting on it with the considered duality group.

2.5.3 Duality and the Nonperturbative Spectrum of
String Theory
A consequence of string duality that has been a key element for many impor-

tant developments in the last years is that the states of the nonperturbative
String Theory spectrum are related by different dualities. For example, all

9Many times we will be talking about T-duality as relating two different noncompact
ten dimensional backgrounds (as e.g. the D-brane solutions of the Type IIA and IIB
theories, which can be —correctly— interpreted as describing no compact directions at all).
But if we talk about T-duality this has to be interpreted carefully, since a compactification
on a circle must always be implicitly assumed. In fact, to establish T-duality between two
different backgrounds one always needs to have, in each of them, an isometric direction
(the direction “along which we T-dualize”) to allow for a compactification and subsequent
T-dualization. T-duality-related backgrounds of noncompact, ten-dimensional spacetime
must be interpreted as a “decompactification limit” of the actual (compactified) T-dual
backgrounds.
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Dp-branes of different p are related by T-duality. This fact becomes manifest
also in Supergravity, since one can see that the corresponding supergravity
backgrounds describing the different extended objects of String Theory are
also related by the corresponding duality transformations as they appear in
the supergravity actions. This makes duality a powerful tool to explore the
nonperturbative String Theory spectrum, and the fact that this tool can be
used at the Supergravity level makes it particularly easy to use. It is a tool
because, as explained, the duality-transformation rules are known in Super-
gravity, and hence we can act with them on a given background to get, at
the end, a different one?.

Given the fact that string dualities can make us “jump” from some solu-
tion describing a certain nonperturbative state into a different one, a natural
question arises: which are all possible nonperturbative string states that are
contained within the orbits of the transformations of the duality groups ?

This is the main question that we will address in Chapters 3 and 4. In
Chapter 3 we will face this issue in a simple context: N = 4 Supergravity
in four dimensions. This is a theory that arises from a compactification of
the ten dimensional Heterotic string on a six-torus, but with the interesting
property that it exhibits both S- and T-dualities (which, as we will see,
become global symmetries of the supergravity action of this theory). Hence
one can wonder about which is the biggest family of solutions of this theory
with well-defined physical charges that one can get by acting with these
symmetries. Such a set of solutions will be, by definition, invariant (as a
family) under the whole duality group of the theory. We will see that we are
able to find such an invariant family even for the non-supersymmetric cases.
A big subclass of the solutions that we will find describe black holes. This
is important because, for black holes, the “no-hair theorem” tells us which
should be all possible physical configurations, and we will also see that all
possible black hole solutions (BPS or not) are indeed included in the family of
solutions that one can get from the duality symmetries of the theory. We thus
find an example, namely black holes of four dimensional N = 4 Supergravity,
in which all possible physical configurations are predicted by duality.

20A11 this is of course limited by the reliability of the Supergravity approximation. At
the level of Supergravity, the procedure sketched here can certainly be applied as long as
Supergravity is supposed to provide us with reliable information about the corresponding
string state, but there are some cases (like those of stable non-BPS states [66]) for which
a supergravity description is not even known.
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In Chapter 4 we will apply this idea to the much more interesting case
of ten and eleven-dimensional supergravities. There we will argue that the
“standard” ten dimensional spectrum of elementary, nonperturbative string
states is not enough to provide a “full representation” of the S- and T-duality
groups. By exploring the T-duals of the S-dual of the D7-brane (and new
solutions originating from them) we will find a whole family of new ten
dimensional solutions, all of them describing 1/2 BPS states charged under
a single gauge field. We will argue that these solutions should then describe
new, elementary, nonperturbative string states that would be missing from
the known ten dimensional string spectrum.



Chapter 3

The (General, Duality Invariant
Family of Non-BPS Black-Hole
Solutions of N =4.d =4
Supergravity

Introduction

The low-energy effective action of the heterotic string compactified on 7
is that of pure N = 4,d = 4 Supergravity coupled to N = 4 super Yang-
Mills. It is possible to truncate consistently this theory to the simpler pure
supergravity theory. From the string theory point of view the truncation
consists in introducing always equal numbers of Kaluza-Klein and winding
modes for each cycle. The truncated theory still exhibits S and T dualities
and, thus, pure N = 4,d = 4 Supergravity provides a simple framework in
which to study classical solutions which still can be considered as solutions
of the full effective String Theory. The bosonic sector of this theory is also
known in the literature as “Dilaton-Axion Gravity” or as “Einstein-Maxwell
Dilaton-Axion Theory” when only a single vector field is considered.
Perhaps the most interesting solutions of the 4-dimensional string effective
action are the black-hole type ones! since they constitute the best testing
ground for the Quantum Gravity theory contained in String Theory. It is
believed that a good Quantum Gravity theory should be able to explain

1 For a review of black holes in toroidally compactified string theory see e.g. [67] and [68].
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in terms of microscopic degrees of freedom the values of the macroscopic
thermodynamical quantities found classically and semiclassically. There has
been some success in this respect for supersymmetric (“BPS-saturated”) and
near-supersymmetric black holes although the results are to be interpreted
carefully since the supersymmetric limit is singular in many respects.

A great deal of effort has been put in finding the most general families of
black-hole solutions whose thermodynamical properties should exhibit also
invariance (or, rather, covariance) under the duality symmetries of the theory
and covering the supersymmetric and non-supersymmetric cases and, further,
covering stationary (not static) cases.

The first two examples of this kind of families of solutions were found in
Ref. [69]?. The first family of solutions corresponds to non-supersymmetric,
static black-hole solutions and the second to supersymmetric, static, multi-
black-hole solutions of N = 4,d = 4 supergravity. Under the dualities of the
theory, solutions of each family transform into other solutions of the same
family, with the same functional form. Thus, only the values of the charges
and moduli transform. The supersymmetric solutions are given in terms of
two constrained complex harmonic functions.

Different extensions and properties of these solutions in the context of
Dilaton-Axion Gravity were later obtained in Refs. [74-84].

A main step forward was given in Ref. [85] where it was realized that the
form of the above supersymmetric solutions was dictated the special geometry
of the associated N = 2,d = 4 Supergravity theory. The two complex
harmonic functions are associated to coordinates and certain components of
the metric are associated to the Kahler potential and the holomorphic vector.
It was found that similar Ansatzs could be used in other N = 2,d = 4
Supergravity theories with different matter multiplets and Kahler potentials.

Finally, in Refs. [86,87] the most general supersymmetric black-hole-type
solutions of pure N = 4,d = 4 Supergravity (SWIP solutions) where found.
The only difference with those of Ref. [69] is that the complex harmonic
functions are now completely arbitrary and unconstrained. This automati-
cally allows for the introduction of angular momentum and NUT charge in
the solutions. In fact the constraint simply meant that these charges were
not allowed. The generating solution for regular, supersymemtric, N = 8
supergravity black hole solutions has been found in Ref. [88].

2In the much simpler context of pure N = 2,d = 4 Supergravity the IWP solutions of
Refs. [70-72] also have this property.
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Similar supersymmetric solutions were later found for other N = 2,d = 4
Supergravity theories [89] with vector multiplets®.

For the non-supersymmetric solutions of Ref. [69] the story has been
different since no clear relation with the underlying special geometry was
established. In Ref. [91] a general recipe for obtaining non-supersymmetric
solutions from supersymmetric solutions in N = 2,d = 4 Supergravity the-
ories, previously used in other contexts, was shown to work for static black
holes: one simply has to deform the metric with the introduction of a non-
supersymmetry (non-extremality) function.

What has to be done in more general cases (stationary, for instance)
is far from clear and general duality-invariant families of stationary non-
supersymmetric solutions are not available in the literature and no recipe to
build them is known.

In this Chapter we present such a general duality-invariant family of sta-
tionary non-supersymmetric solutions of pure N = 4,d = 4 Supergravity
characterized by completely independent electric and magnetic charges, mass,
angular momentum and NUT charge plus the asymptotic values of the scalar
fields?.

The rest of the Chapter is organized as follows: in Section 3.1 we de-
scribe the bosonic sector of N = 4, d = 4 Supergravity theory. In Section 3.2
we give and study the general family of solutions we relate it to others al-
ready known. In Section 3.3, we focus our attention in the black hole type
subfamily of metrics and calculate the explicit values for their entropy and
the temperature, showing that also these quantities can be put in a man-
ifestly duality- invariant form. Section 3.4 contains our conclusions. The
Appendices contain the definitions of the different charges we use and their
duality-invariant combinations.

3For a review on supersymmetric black hole solutions of supergravity theories see
e.g. Ref. [90].

“When we talk about general solutions we are implicitly excluding the possibility of
having primary scalar hair. Solutions with primary scalar hair are in all known cases (see,
e.g. [92]), singular (providing evidence for the never proven “no-hair theorem”) and, being
interested in true black holes with event horizons covering all the physical singularities,
these cases are not important for us and in the solutions which we are going to present
the scalar charges are always completely determined by the U(1) charges. Nevertheless, it
should be pointed out that more general solutions (some of them supersymmetric) which
include primary scalar hair must exist and should be related to the ones given here by
formal T duality in the time direction [93].
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3.1 N =4, d=4 Supergravity

3.1.1 Description of the System and Equations of Mo-
tion

The bosonic sector of pure N = 4,d = 4 Supergravity contains two real
scalar fields (axion a and dilaton ¢), six Abelian vector fields A,(l") (which we
generalize to an arbitrary number N) and the metric g,,. The action reads®

N
S = = [ d'z/|g] {R-I— 2(0¢)* + 1e'%(0a)® — e_2¢ZF(n)F(”)
n=1

N
+ay F™ *F<">} . (3.1.1)

n=1

The axion and dilaton are combined into a single complex scalar field,
the axidilaton \:
A=a+ie . (3.1.2)

For each vector field we can also define its SL(2, R)-dual, which with our
conventions will be given by:

F(n)wj = 20 *F(n)w + aF(")W ) (3.1.3)

The equations of motion derived from the action (3.1.1) plus the Bianchi
identities for the vector fields can be written as follows:

VEMw =,
Vi Fmw =,
V2¢ — Le¥(9a)? — Le 2 YN  FME®) =,
V2a + 40,0 0%a — e N F0) g =

Ry, +20,00,6 + 1e99,a0,a — 27 3N (FM , F®™ 0 —lg FOIFEM) =0

50ur conventions coincide with those of Ref. [94]. In particular, we use mostly minus
signature and Hodge duals are defined such that *F() #v = ;e“"””Fg;‘) with 0123 =

24/lgl
+1.
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Observe that we have written the Maxwell equations as the Bianchi equa-
tions for the SL(2,R) duals. Therefore N dual vector potentials A defined
by

Fm = 09,40 — 9,A( (3.1.5)
exist locally.

The axidilaton parametrizes an SL(2,R)/SO(2) coset [95], the equations
of motion being invariant under global SL(2,R) (“S duality”) transforma-

tions. If A is an SL(2,R) matrix

a b
A_(c d)’ ad —bc=1, (3.1.6)
then the vector fields and their duals transform as doublets
ﬁ‘(n)w F(n)wj
— A , (3.1.7)
F(n)W F(”),w

and the axidilaton transforms according to

a\+b
eh+d’

This is an electromagnetic duality rotation that acts on the dilaton. From
the point of view of String Theory, this is the 4-dimensional string coupling
constant. Hence the name S duality.

Furthermore the N (6 in the SUGRA theory) vector fields can be SO(N)-
rotated. These are “T duality” transformations (perturbative from the String
Theory point of view). The full duality group is, then SL(2,R) ® SO(N).

3.2 The General Solution

We now present the family of solutions. All the fields in our solutions may
be expressed in terms of two fized complex harmonic functions of the three
dimensional Euclidean space, 1 and H,, a set of N complex constants k(™| a
“non-extremality” function W and a background 3-dimensional metric (®)v;;.
In all of them appear the physical constants defined in Appendix A.2. Only
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T, the axidilaton charge, is not independent. The harmonic functions are

; Ao+ Ao Y
H = Led’ﬂeZ/B (A + f) ,
1 NG 0 P
(3.2.1)
. M+ T
H = Led’OeZ/B (1 + — ) ,
2 NG F;

where p? = 2%+ y* + (2 +ic)? is the usual complex radial coordinate, and 3
is an arbitrary, unphysical real number related to the duality transformation
of these functions under SL(2,R) (see the explanation in Section 3.2.1). The
complex constants are

g 4+ YT

(n) — _
B = e

(3.2.2)

In supersymmetric cases (e.g. Ref. [87]) it is useful to introduce oblate
spheroidal coordinates which are related to the ordinary Cartesian ones by:

x = Vr2+a? sinflcosy,
y = \/msiHHSingp, (3.2.3)

z = rcosf.

The three dimensional Euclidean metric is written in these coordinates in
the following way:

r?2 + a?cos? 6

di? = 5 >
2+«

dr*+(r* 4+ a® cos® ) d6*+(r* + o®) sin® § dp” . (3.2.4)

In terms of (3.2.3) the radial coordinate p that appears in (3.2.1) may be
expressed as p = r + iacosf. Furthermore, in these new coordinates, the
“non-extremality” function has a simple form:

"2
W=1- m : (3.2.5)
where 7y, given by
N
rg =M+ Y= [T, (3.2.6)

n=1
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is usually called “extremality parameter” in the static cases. In stationary
cases, though, ro = 0 means that the solution is supersymmetric but in
general it is not an extreme black hole (nor a black hole). Thus, a more
appropriate name is supersymmetry parameter. The extremality parameter
will be R? = r} — o

Finally, the last ingredient is the background metric (3)%-j

r? 4+ a?cos? 0 — 13
r2 + o2 — 1}

dz? = Orydaida? = dr* + (r* + o’ cos® 0 — ry?) d¢”

+ (r* 4+ a® = ry?) sin® Ody? (3.2.7)

which differs from (3.2.4) in non-supersymmetric (ro # 0) cases and is not
flat®. This is an important qualitative difference between the usual super-
symmetric IWP-type [70,71] metrics (e.g. those of Refs. [72,86,87]) and our
solution.

We can now describe the solutions. They take the form

[ ds® = W (dt +w,dp)’ — e VW P ryidaidad

Ay = 2e2U Re (K™MH,)

< - 3.2.8
A0, = 96 Re (KOH,) (3:28)
#,
A= 0
\ #,

2 v2
e 2V =92 3m (7‘[17:[2) =14 2Re ( m ) |7 7|

7+t cosf r2 4+ a2cos?2f’

and where

w, = 2ncosf+asin®f (e2VW' —1)

2
T 21 02c0s? 5 X
%+ a?cos?f — g
x {ncosf (r* + o® — ) + asin® 0 [mr + L (r? + |M|® — [T]?)]} .
6In (3.2.8) as well as in (3.2.7) the z! label the coordinates r, # and ¢ for i = 1,2,3
respectively.
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w, can be interpreted as the unique non-vanishing covariant component of a
1-form w = w;dz’ which for a # 0 is a solution of the following equation in
3-dimensional space:

*dw — e ?U*dp — W Re (’Hldﬁg — ’thd’}-[l) =0, (3.2.9)
where p is also a 1-form whose only non-vanishing component p, is given by

re r’4+a’—r}
Ho = —

3.2.10
a r?+a?cos?f —rd’ ( )
and where the 3-dimensional background metric (3)%]- has to be used in the
Hodge duals.

For o = 0 the u term in Eq. (3.2.9) has to be eliminated and the equation
tales the form

*dw — W 'Re (H1dHy — HadH1) = 0. (3.2.11)

We can also write our solution in the standard form used to describe
general rotating black holes, which will be useful to describe the structure of
the singularities:

A — a?sin? 9 by 2sin? 0 — A
d? = 2790 po L onin? g2 TSN dtdg —
b)) b
. 2 .92
Y o, ,  (Z+a%sin®)” — Aa?sin®6 )
_ZdT — X do* — 5 sin” 0 dy”
(3.2.12)
where
A = r?—Ry?=r>+a%—r?,
(3.2.13)

Y = (r+m)*+ (n+acosf)? —|YT|*.

This completes the description of the general solution. Now we are going
to describe its properties.

3.2.1 Duality Properties

We can study the effect of duality transformations in two ways which are
fully equivalent in this family of solutions: we can study the effect of the
transformations of the fields or simply the effect of the transformations on
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the physical constants. One of the main features of our family of solutions
is precisely this equivalence: we can simply transform the physical constants
(adding “primes”) because the functional form of the solutions always will
remain invariant.

Let us, then, study the effect of SL(2,R) transformations of the charges
9, T(™ Y and moduli )\ in Appendix A.2.

Both the complex harmonic functions ;2 and the complex constants
k™ are defined up to a phase: if we multiply ‘Hi2 by a constant phase and
the k(™’s by the opposite one, the solution remains unchanged. We have
made this fact explicit by including the arbitrary angle 8 in their definition.

As it can take any value, in particular we can require it to change in the
following way when performing an SL(2,R) rotation:

e — etarslotd)if (3.2.14)

With this choice the k(™)’s are left invariant, while the pair H; o transforms

as a doublet: 2 2
1 _ 1
() -a(2). 219

‘H1 2 appear only through two invariant combinations: e 2U and Re (7‘[1d7’22
—H5dH,). The remaining building blocks of the solution are 4 and W which
are invariant if the supersymmetry parameter ry is invariant. This (first
proven in Ref. [96]) is shown in Appendix A.3.

Under SO(N) the £(™’s transform as vectors, as they should, and every-
thing else is invariant.

The relation of the form of these solutions to N = 2 special geometry is
the same as in the supersymmetric case [85,87] and we will not repeat here
that discussion. The only difference is the introduction of the background
metric ®~, and the functions ;, W which “deform” the supersymmetric so-
lution but have no special meaning from the special geometry point of view.

3.2.2 Reduction to Other Known Solutions

We can now relate our solution to those less general found in the litera-
ture. We can consider two types of solutions: supersymmetric and non-
supersymmetric. The most general family of supersymmetric black-hole
type solutions of N = 4,d = 4 Supergravity (SWIP solutions) was found
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in Refs. [86,87]. Due to the existence of supersymmetry, the family con-
tains two arbitrary harmonic functions. To describe point-like solutions one
chooses harmonic functions with a single pole. Our solutions reduce precisely
to these when the supersymmetry parameter vanishes: 7o = 0. As shown in
Appendix A.3 in the ry = 0 limit at least one of the two possible Bogomol’'nyi
bounds of N = 4 Supergravity are saturated. In this case W = 1, u, = 0,
(3 becomes flat (in spheroidal coordinates) and we recover the structure of
the SWIP solutions. The SWIP solutions always saturate one bound due to
the constraints that the constants k(™ satisfy

N
Y ™) = o,
n=1

3.2.16
N ( )
SR =
n=1

while, in our case there is no constraint on the charges (apart from the one
on the scalar charge, associated to the non-hair theorem)

N J—
S =,
(o7~ 1P

n=1

(3.2.17)

S ;< PP )
SR = 11 5 7o)
o (R
In Ref. [87] it is shown how this solution reduces to supersymmetric solu-
tions with angular momentum, NUT charge etc. Only some of the static
ones (those with 1/4 of the supersymmetries unbroken) are black holes with
a regular horizon. These include extreme Reissner-Nordstrom black holes
and their axion-dilaton generalizations [55,96-99]. The rest have naked sin-
gularities.

As for the non-supersymmetric solutions, the non-extreme Taub-NUT
axion-dilaton solutions of Ref. [73] are clearly covered by our general solution.
Further, in Ref. [75] were found general point-like solutions for a theory with
only one vector field (“axion-dilaton gravity”). We can see that our solutions
reduce to these ones by setting N = 1. The principal difference is that, in
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this particular case, we can fit the analogous of expression (A.2.10) in the
definition (3.2.6) for the extremality parameter, giving

TO,QN:I = (|9m] — |TD2 ) (3.2.18)

and inserting this into the metric (3.2.8) we get exactly Eqgs. (31-35) of
Ref. [75] up to a shift in the radial coordinate. Although one can imme-
diately see that the functional form of the metric (3.2.8) does not change
very much from that found in [75], somewhat different results appear when
considering multiple vector fields, due to the constraints that the physical
parameters obey when only one vector field is present. This analysis was al-
ready done in detail in [87], and we refer to this paper for further discussion.

A generalization of the non-extreme solutions of [75] for the same theory,
but with an arbitrary number of vector fields (i.e., the same theory we are
treating), was found in [82]. However, the solutions reported there concern
only the static case, and therefore the total number of independent physical
parameters is 2N +4. As it was shown in that paper, the metric for the static
case is of the “Reissner-Nordstrom-type”, but with a variable mass factor.
It can be seen that, taking the static (o = 0) limit of our metric (3.2.8), and
shifting the radial coordinate by a quantity m + /| Y|?> — n?, we recover the
same solution of [82] (Eq. (7.6) of that reference) up to redefinitions in the
different constants parametrizing the solution.

Finally, we observe that setting the axidilaton charge equal to zero (which
can be done with appropriate combinations of electric and magnetic charges)
in Egs. (3.2.13-3.2.12), we recover the Kerr-Newman solution in Boyer-Lind-
quist coordinates (but with a constant shift equal to the mass in the radial
coordinate. See, e.g., Refs. [100,101]).

3.3 Black-Hole-Type Solutions

3.3.1 Singularities

We now carry out the analysis of the structure of our solutions. First, we
proceed to study the different types of singularities of the metric. Due to
the standard form of g,, in terms of A and 3, the singularities in terms of
these functions are those of all Kerr-type metrics, i.e., we have coordinate
singularities at

A=0, 0=0, (3.3.1)



68

and a curvature singularity at
»=0. (3.3.2)

The first of Egs. (3.3.1) gives the possible horizons. To study the different
cases, let us shift the radial coordinate to recover the Boyer-Lindquist coor-
dinates in which this kind of solutions are usually given. If we perform the
following rescaling:

r—r—m

then A and ¥ of (3.2.13) become
A = (r—m)?— R,

(3.3.4)
Y = r?+4+a?cos?d—|Y)?,

where we also have made the NUT charge n equal to zero in order to obtain
black-hole-type solutions. In studying the singularities given by A = 0 we
have three cases to consider:

a) R2<0, (r?<a?).

Here A = 0 has no real solutions, we have a naked singularity at ¥ = 0
and no true black hole interpretation is possible. This is the case of super-
symmetric (ro = 0) rotating (a # 0) “black holes”.

b) R2>0, (re®>>a?).
In this case we have two horizons placed at
r+ =m + RO . (335)

To see if in this case we have a true black hole we must verify that the

singularity is always hidden by the event horizon. The region where the
singularity is placed is given by the following equation:

=0 & i, =T —a’cos’h. (3.3.6)

This is not the usual “ring singularity”, but a more complicated 2-dimen-

sional surface in general. Depending on the values of the charges, this can

have the topology of the surface of a torus (maybe degenerate in certain
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cases to the surfaces of two concentric ellipsoids). Whatever its shape is, it
is always confined in the region

2. < Y7, (3.3.7)

sing —
while, on the other hand, the would-be event horizon
rr =m+ Ry >m, (3.3.8)

and it will cover the singularity if m > |Y|. Using the value of |Y| in terms
of the other charges it is easy to prove

(9| — |T))? > a?. (3.3.9)
We can now distinguish two cases:
i) [ =T > |af.
In this case (setting n = 0) the horizon covers the singularity and the

object is a true black hole. Using the expressions in Appendix A.3 it is
possible to prove that this happens when both

9| > 212/, (3.3.10)
which is the case allowed by supersymmetry (but not supersymmetric).
i) 9] — 7] < [of.
In this case there are naked singularities. This is the case forbidden by

supersymmetry since one can show that in it both Bogomol'nyi bounds are
simultaneously violated

M| < [Z12]- (3.3.11)
c) R2=0, (r®=a?.
This is the extremal case, and here we have a single would-be horizon

placed at
TL=m. 3.3.12
( )

Again, we can distinguish two cases
i) (9 = [T[>|af, [9M]>]Z,

In this case the singularity is inside the horizon and we have a true ex-
treme rotating black hole. This is the case allowed by supersymmetry (not
supersymmetric unless a = 0).

i) [ =T <, [ <|Z,

The singularity is outside the “horizon” and this is not a black hole.
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3.3.2 Entropy and temperature

We can now calculate the physical quantities associated to the true black-
hole-type solutions. The entropy of the BH can be worked out by a straight-
forward computation of the area of the event horizon. This gives the following
result:

Aporizon = 4T (rf +a? - |T|2) , (3.3.13)

so that for the Bekenstein-Hawking entropy of the black hole we get, in units
such that G =h=c=1
S=x(2m* +2mRy — L) , (3.3.14)

where I, is the quadratic duality invariant defined in Eq. (A.1.7). It is useful
to have the expression of the entropy in terms of the mass and supersymmetry
central charges

s=a{(m’ ~|2.1)+ (m* ~ |2) +2v/(m? ~[ZP)m* —[2F) 72}

For vanishing angular momentum J = 0, this expression can be further
simplified to

S=r|m — 122"+ (m*~ 121" . (3319)

which means that, if we believe the extrapolation of this formula to all ex-
treme cases, the entropy vanishes if and only if both Bogomol’nyi bounds are
saturated and 1/2 of the supersymmetries are unbroken [55].

When any one of the two possible Bogomol‘nyi bounds is saturated (for
J = 0) the entropy is proportional to the difference between the modulus of
the two central charges, which is proportional to the quartic duality invariant
I, defined in Eq. (A.1.8), which is moduli-independent.

The temperature can be calculated imposing the regularity of the metric
near the event horizon in imaginary time. Following the standard prescrip-
tion [102], we must shift the time ¢ and the rotation parameter o to the
values t — i7 and o — & respectively. This yields the Euclidean section
of the metric, and the absence of conical singularities at the event horizon
in imaginary time requires the identification (7, @) ~ (7 + Bu, ¢ — QuBu),
where Qy is the Euclidean angular velocity of the event horizon and [y is the
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inverse Hawking temperature. For the (real) angular velocity of the horizon
we have the following result:

_ Q
N r?4+a?— T2’

Qy (3.3.16)

and so we obtain, in a perfectly straightforward way, the value for the Hawk-
ing temperature of the black hole:

Ry

Ty = -2 |
H™ 95

(3.3.17)

For J = 0 the temperature always vanishes in the supersymmetric limit,
except in the case in which 1/2 of the supersymmetries are going to be left
unbroken. In that case the limit is simply not well defined.

3.4 Conclusions

We have given a new set of solutions of pure N = 4, d = 4 supergravity which
are beyond the BPS limit (in both directions) and which constitute the most
general stationary point-like solution of this theory, since all the conserved
charges are present in our solution, and all of them can take completely
arbitrary values’. These solutions include black holes as well as Taub-NUT
spacetimes, BHs being non-extremal in the general case. We have also shown
that our family of solutions, and also the thermodynamic quantities associ-
ated to the BHs, are duality-invariant.

From a more technical point of view, we hope that the Ansatz provid-
ing the solution (basically characterized by the introduction of the ‘non-
extremality’ function W and the non-flat three-dimensional metric (3.2.7)
as “background” space) will prove helpful for the task of finding more non-
extreme black holes s in other models, in particular, in those arising from
more realistic compactifications of string theory, like compactifications on
Calabi-Yau spaces, orbifolds, etc.

"The only possible addition would be primary scalar hair, but we are not interested in
that kind of solutions.
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Chapter 4

7-Branes and Higher
Kaluza-Klein Branes

Introduction

In the last few years there has been a lot of interest in discovering classical
solutions of effective superstring theories (supergravity theories) with such
properties that one could argue that they represent the fields produced by
solitonic objects present in the superstring spectrum. The interplay between
the knowledge of the superstring spectrum and the knowledge of classical
solutions has been very fruitful since each of them has contributed to the
increase of the other. The two most important tools used in this field have
been supersymmetry and duality. Unbroken supersymmetry ensures in many
cases the absence of corrections of the classical solutions and the lack of
quantum corrections to the mass of the corresponding objects in the string
theory spectrum. Hence, more effort has been put in finding supersymmetric
(i.e. admitting Killing spinors) solutions, associated to BPS string states.
Duality transformations preserve in general supersymmetry, relating different
states in dual theories. In general [18], but not always [26] duality relations
between different higher-dimensional theories manifest themselves as non-
compact global symmetries of the compactified supergravity theory that leave
invariant its equations of motion so one can use them to transform known
solutions into new solutions, preserving their supersymmetry properties.
Thus, it so happens that most classical solutions of superstring effective
field theories belong to chains or families of solutions related by duality trans-

73
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formations. The best known chain of solutions is that of the Dp-branes, with
p =0,...,8 in 10 dimensions. They belong to two different theories: 10-
dimensional type IIA for p even and 10-dimensional type IIB for p odd. All
of them preserve 1/2 of the supersymmetries available, represent objects with
p spatial worldvolume dimensions and 9 — p transverse dimensions (Dirich-
let branes), carrying charge associated to the RR (p + 1)-form C®+1) whose
existence was discovered by Polchinski [22], and are related by generalized
Buscher type II T duality transformations [26, 94].

Sometimes it is possible to find families of solutions that are, by them-
selves, representations of the duality group in the sense that they are in-
variant, as families, under the full duality group. This is the case, for in-
stance, of the SWIP solutions of N = 4,d = 4 supergravity constructed
in Ref. [30,87]. In that case one can argue that all the solitonic objects
of a given type (charged, stationary, black holes) and preserving a certain
amount of supersymmetry are described by particular solutions, with partic-
ular values of the parameters of that general family. More interesting cases
are N = 8 N = 4 with 22 vector multiplets and general N = 2 theories,
all in d = 4, but fully general solutions in their duality-invariant form are
not available. A great deal is, however, known of the solitonic spectrum
of the 4-dimensional theories due to our knowledge of their duality groups
(the so-called U duality group in the N = 8 case). All these theories can
be obtained from 10-dimensional theories by compactification (toroidal or
more general) and the compactification of the solitonic 10-dimensional ob-
jects gives rise to 4-dimensional solitonic objects of different kinds, depending
on how the 10-dimensional objects are wrapped in the internal dimensions
and one can study if these objects fill 4-dimensional duality multiplets. It
has been realized that this is not the case if one considers only the standard
10-dimensional solitons: the Dp-branes, KK monopole, gravitational wave
(W), fundamental string (F1) and solitonic 5-brane (S5) [104-107]. More
10-dimensional solitons are needed to give rise to all the 4-dimensional soli-
tons predicted by duality and some of the properties they should exhibit, in
particular the dependence of the mass in the radii of the internal dimensions
and the coupling constant, have been deduced.

In this Chapter we present candidates for some of the missing 10 dimen-
sional solitons and study them. The key to their construction is the real-
ization that there are 4-dimensional duality symmetries which are neither
present in 10 dimensions nor are a simple consequence of reparametriza-
tion invariance in the internal coordinates. These are, in general, S duality
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(i.e. electric-magnetic) transformations which only exist in certain dimensions
and that enable us to use the mechanism reduction-S dualization-oxidation
to generate new solutions in higher dimensions.

Let us consider a familiar example: 5 dimensional gravity compactified
in a circle. The 4-dimensional theory has electric-magnetic duality and one
expects an S duality symmetric spectrum. However, if we only considered
the 5-dimensional plane wave solution we would only find electrically charged
4-dimensional solitons. To find the magnetically charged ones we S dualize
these and, oxidizing the solutions to 5 dimensions we find the Kaluza-Klein
(KK) monopole [108,109]. In principle, this is a solution one would not
expect in 5 dimensions since it has one dimension necessarily compactified
in a circle.

The solutions we present can be generated in a similar fashion, exploiting
S dualities present in dimensions lower than 10 and 11 and have similar
properties: there are dimensions that cannot be decompactified. Somehow
this is consistent with the fact that they are generated using dualities that
only exist if some of the dimensions are compact.

One of the problems raised by the need to consider new 10- and 11-
dimensional solutions was that fact that the 10- and 11-dimensional super-
symmetry algebras did not contain central charges associated to those possi-
ble new objects. In our opinion the predictive power of the supersymmetry
algebras has been overestimated and we will propose a way to include in
them these new objects.

The rest of this Chapter is organized as follows: in Section 4.1 we present
our family of T duality-related solutions whose construction via the reduction-
S dualization-ozridation mechanism is explained in Section 4.2. In Section 4.3
we find other duality-related solutions in 10 and 11 dimensions. In Section 4.4
we calculate the dependence of the masses of these objects on compactifica-
tion radii and coupling constants and in Section 4.5 we calculate the Killing
spinors of all the solutions we have presented. Our conclusions are in Sec-
tion 4.6. In Appendix B.2 we derive the SL(2,R)/SO(2) sigma model from
toroidal compactification and explain how SL(2,R) is broken to SL(2,Z)
and in Appendix B.1 we briefly review holomorphic (d — 3)-brane solutions
of the SL(2,R)/SO(2) sigma model to clarify certain points.
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4.1 The Basic Family of Solutions

The basic family of solutions are solutions of the type II supergravity theories
in d = 10 and are a sort of deformation of the family of Dp-brane solutions
for 0 < p < 7. As such, they have p + 1 worldvolume coordinates t, 4, =

(y},...,yP) and 9 — p transverse coordinates. We combine two of them into
the complex coordinate w and the remaining 7 — p we denote by #7_, =
(x',...,27°P). The solutions can collectively be written in the string-frame

metric in the form?!

e

) 7\ 2 ) o "\
ds? = <ﬁ) (dt* - dg,?) — (HHH) dwdw—(ﬁ) dz?

A g\
o R— -
| © (H%) ’
(4.1.1)

where we function H = H(w) is a complex, holomorphic, function of w,
i.e. Oz H = 0 with the behavior H ~ %m.logw around w = 0, where we
assume the object is placed. Its real and imaginary parts are

H=A+iH. (4.1.2)

These solutions have the same form as the standard Dp-brane solutions if
we delete everywhere the combination H#H, but they are clearly different. In
particular we can understand them as having 7 — p extra isometric directions
that should be considered compact?. Our goal will be to understand how

'For convenience, we give the form of the potential to which the p-brane naturally
couples C®+1) and the dual one C("=P)_ In the p = 3 case, these are the two non-vanishing
sets of components of the 4-form potential with self-dual field strength. (Our conventions
are those of Ref. [94] whose type II T duality rules, generalizing those of Ref. [26], we use.)
Since the solutions we will be dealing with are not asymptotically flat, we do not write
explicitly the asymptotic values of the scalars (for example, ¢ for the dilaton).

2Tt seems difficult (it is perhaps impossible) to extend the dependence of the function
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they arise, their M theoretic origin and their supersymmetry properties and
explore the implications of it all. We will also find other solutions related by
dualities with them or belonging to the same class. Since we will find that all
these solutions preserve a half of the symmetries, we are going to argue that
they describe the long range fields of elementary, non-perturbative objects of
string theory and we will calculate their masses.

4.2 Construction of the Solutions

The solutions (4.1.1) can be obtained by successive T duality transformations
in worldvolume directions of the p = 7 solution. The p = 7 solution is nothing
but the type IIB solitonic 7-brane (S7) that was obtained by S duality from
the D7-brane and called Q7-brane in Ref. [94]. The worldvolume directions
are transformed into transverse isometric directions that should be considered
compact?. Thus, we obtain a chain of T dual solutions of both type II
theories.

There is an alternative way of constructing these solutions that also helps
to understand them. Let us consider a piece of the 10-dimensional type II
supergravity theories in which we only keep the metric, the dilaton and the
field strength G®~?) of the RR (7 — p)-form C"P). The action is

. T . W Tep [ oare )\ 2
$ = / 43 /]3] {e—2¢ [R—4(8¢)2] + 5 (G<8 P>) } . (4.2.1)

Now, let us compactify it over a (7 — p)-torus using a simplified Kaluza-Klein
Ansatz that only takes into account the volume modulus of the internal torus,
the dilaton (both rewritten in terms of two convenient scalars ¢ and 7), the
internal volume mode of the RR (7 — p)-form, a and the (3 + p)-dimensional

H to those coordinates. Furthermore, the construction procedure reduction-S dualization-
oxidation and the dependence of the masses on the radii of those dimensions that we are
going to calculate later on suggest that those coordinates should be compactified on a
torus.

3This is somewhat analogous to what happens in the well-known duality between the
solitonic fivebrane S5 and the KK monopole in which a transverse direction of the S5 is
T dualized into an isometric, compact, direction of the KK monopole.
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Einstein metric g,

( 1 1 [7-p 1 1 +

22— 3%tay/pqin v_ st/ i,
ds® = e?” " 2Vrtlig, drtdr” —e 2772 »dz? S
§ COPp i = a, (4.2.2)
- -3 7— F1
e¢ — epT + 4 ]’;p"
\

After some straightforward calculations one obtains, in all cases, the reduced

action . /dm% ‘g{ 1(87’67') %(877)} (4.2.3)

where
T=a+1ie %, (4.2.4)

i.e. gravity coupled to an SL(2,R)/SO(2) sigma model parametrized in the
standard form by the complex scalar (sometimes known as azidilaton al-
though here this name could be misleading since in some cases (p = 3) the
string dilaton simply does not contribute to it) 7 and another scalar, 7, de-
coupled from 7. In the p = 7 case (d = 10) this is the well-known piece of the
type IIB supergravity action. In lower dimensions, it is integrated in much
bigger sigma models associated to much bigger U-duality groups* but it is a
most interesting part of it.
There is a very general solution of this model

ds* = dt* — dj? — Hdwdw,
T = H, (4.2.5)
n =0,

with 9;H = 0. In d = 10 (p = 7) this is just the general D7-brane solu-
tion. Choosing H ~ logw we get the single D7-brane solution. In lower
dimensions, these solutions are just compactifications of the standard gen-
eral Dp-brane solution in which we have assumed that the harmonic function
only depends on two transverse directions (w) and we have dualized the RR

“In d = 6 dimensions, this model was studied in Ref. [110] and in d = 8 it was studied
in Ref. [111].
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(p+ 1)-potential, giving rise to the real part of H. Thus, this is a well-known
solution.

We can now perform an SL(2,R) duality rotation of this solution® 7 —
—1/7, since this is a symmetry of the dimensionally reduced action® that
leaves the FEinstein metric invariant. This is not a symmetry of the 10-
dimensional action and one really needs extra compact dimensions to estab-
lish it. The resulting solutions’

ds® = dt* — dj? — Hdwd®,
T = —1/H, (4.2.6)
n =0,

are nothing but the solutions Eqgs. (4.1.1) reduced according to the above
KK Ansatz.

What we are doing here is similar to what one does in standard KK
theory: reducing to 4 dimensions the 5-dimensional pp wave one obtains the
electric, extreme KK black hole. Since the d = 4 theory has electric-magnetic
duality as a symmetry, one can find the magnetic, extreme KK black hole
and then uplift it to d = 5 to find the KK monopole [108,109] that has a
special isometric direction that cannot be decompactified. The symmetry
between the pp wave and the KK monopole cannot be established without
assuming one compact direction. It is only natural, by analogy, to consider
here that the dimensions that we have compactified cannot be decompactified
after the duality transformations. We will support this assumption not by
geometrical arguments but calculating the masses of these objects and finding
its dependence on the radii of those dimensions.

5Continuous duality symmetries are usually broken to their discrete subgroups, for
instance SL(2,R) is usually broken to SL(2,Z). This can be clearly seen in the case in
which the SL(2,R)/S0O(2) sigma model originates in a toroidal compactification and is
explained in Appendix B.2. In other cases one has to study the quantization of charges
to arrive to the same conclusion. We will loosely use the continuous of the discrete form
of the duality group in the understanding that in some contexts only the discrete one is
really a symmetry of the theory.

6In general, it is only a symmetry of the equations of motion of the complete, untrun-
cated, type II theory.

“In Appendix B.1 we discuss these general solutions and in which sense they are new.
We stress that we are considering only the choice holomorphic function H ~ 2Lm logw.
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4.3 Duality-related Solutions and M-theoretic
Origin

Since we are dealing with many new solutions, we first propose to denote
them by “Dp,;” where “p + 1” is the worldvolume and “i” is the number of
isometric directions. According to this notation, the solutions described by
Eq. (4.1.1) are in the p = 7 case D7, (the type IIB S dual of the D7-brane,
called Q7 in Ref. [94]), D6, for p = 6, and Dby, D43, D3,, D25, D1g, DO,
for the remaining cases.

For all the type IIB solutions in the class (4.1.1) we can find an S dual
using the 10-dimensional type IIB S duality symmetry. While in the p =7
case the S dual solution is just the well-known D7-brane, and in the p = 3
case the solution is self-dual, in the p = 5,1 cases we find genuinely new
solutions. For D5, we get a solution which is a deformation of the solitonic
fivebrane, and we call S5,

)
~ — _ H —
ds? = di? — dys® — Hdwdw — ﬁd:vf :

S5; ¢ (4.3.1)

2 H O\ ®
Bu-l—oo...Tv = (ﬁ) ,

A [
¢ — -
| © (H%) ’

and for D1g, we get a sort of deformation of the fundamental string solution
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that we call F'lq

)

H\™
2 _ 2 _ g2 N g2
ds; = ( _) (dt* — dy* — Hdwdw) — dig ,

Flg < (4.3.2)

&::(iﬁy?
( HH

These two solutions only have non-trivial common sector NSNS fields
and therefore they are also solutions of the heterotic string effective field
theory. We can also understand these solutions by appealing to the existence
in both cases of a reduced action of the form Eq. (4.2.3) that arises from the
10-dimensional actions

Ssz%\mf%@—q%f+ﬁﬁﬂ, (4.3.3)
and X
S:/ijWwﬂmmwﬂ+ﬁﬁm} (4.3.4)

where H is the NSNS 3-form field strength and IfI = ¢2® *H is the dual 7-form
field strength. Reducing the first action to 8 dimensions with the Ansatz

1
([ dg? = ev3'g,datdr” — e PdT,?
< Bmle = a, (435)
L e‘is = eén_%w’
and the second action down to 4 dimensions with the Ansatz
1
( ds* = egudrztdr” — eV3'dT?,
S By, = —a, (4.3.6)

e — eset%n

7



82

we get in both cases Eq. (4.2.3) in 8 and 4 dimensions.

As for the M-theoretic origin of the type IIA solutions, they can be derived
from the following 11-dimensional solutions through compactification of the

11th dimension (z): a pp wave with 7 extra isometries

~ H _
WM, ds? = —2dtdz — —=dz? — HHdwdw — dT.2,
HH !

a deformation of the M2-brane

M2¢

(. H —2/3 _ 23
ds? = <—_) (dt* — di*) — H'3 (HH)™" dwdw — (

HH
2 H -1
Crye = (ﬁ) ’
: A
Cpligs = 7=,
y HH

a deformation of the M5-brane

M54

HH
I H -1
Ctyl-'-y5 = — <ﬁ) ;
2 A
L Cz1z2$3 = _ﬁa

(. H O\ /3 ~
ds? = ( ) (dt? — dyjs?) — H?/® (HH)

and the KK monopole (with no dependence on the 11th dimension)

(4.3.

(4.3.7)

9)

KK7M d3® = df? — dfj;> — H(dwd@ + d2°) — H™' (dy” — Adz)” . (4.3.10)

In these four cases we can also trace the origin of the solution to the
existence of a sector like that in Eq. (4.2.3) in the reduced action of 11-
dimensional supergravity. In the purely gravitational cases, the action (4.2.3)
can be derived from the dimensional reduction of the Einstein term alone as
shown in detail in Appendix B.2. In the second and third cases, one needs

the 6-form or the 3-form dual potential respectively.
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In some cases the dimensional reduction of these 11-dimensional solutions
in isometric directions different from z produce new 10-dimensional solutions.
In particular, we get two purely gravitational solutions

H _
Wg dé® = —2dtdz — ——=dz* — HHdwdw — di, (4.3.11)
HH
and the Kaluza-Klein monopole with no dependence in z
KK6 d3® = di’ — dj,> — H(dwdw + dz?) — H ' (dy” — Adz)” . (4.3.12)

In all cases (see Figure 4.1) we see that whenever we reduce the same
11-dimensional solution over 2 directions to 9 dimensions and we do it in
different order, we get a pair of 9-dimensional solutions that form an SL(2, R)
(SL(2,Z)) doublet and also originate from a type IIB SL(2,R) (SL(2,Z))
doublet as it must [26].
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Figure 4.1: Duality relations between KK branes. The numbers in parenthesis represent the world-
volume dimension, isometric and transverse directions. The arrows indicate dimensional reduction in the
corresponding kind of direction. In the upper row we represent M-theory KK branes, below 10-dimensional
type IIA branes and below them 9-dimensional branes. Type IIB KK branes are in the bottom row. Pairs
of branes in boxes are S duality doublets. They are always related to reductions from 11 to 9 dimensions
of the same object in two different orders. Sometimes there is an third object with the same numbers as

those in a doublet, but transforming as a singlet and we denote it with (s).
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4.4 Masses

The mass of the Dp; solutions can be calculated using S and T duality rules
from the standard D7-brane and can be written in a general formula:

Rs...Rpio(Rpss. .. Ry)?
93£§+2i+1 :

Mp,, = (4.4.1)

The masses of the NSNS solutions found by S duality from the D5, and

the D1g are )
Rs ... R;(RsR
MS52 = ? g276(10 5 9) )

(4.4.2)
R3(Ry ... Ry)?
g
The masses of the 11-dimensional objects from which the type IIA ob-
jects can be derived can be calculated using the relations between the 11-
dimensional Planck length Egli)nck and the radius of the 11th dimension®
Ry and the type ITA string coupling constant g4 and the string length /;

Mg,

EPlanck(ll) = 27539,14/3 and Ry = 459a:
My, = R3R4(R5 ... Rlo)2
6 11 ’
(‘%F’la)nck)15
(4.4.3)
My, = Rs.. .RG(R7R8R9)2R10
3 11 :
(éé’la)nck)12
where zﬁé’mk is the reduced 11-dimensional Planck length Z(F}l?nck = Egli)nck /2.

These expressions should be compared with the well-known expression
of the mass of the 11-dimensional KK monopole K K7M when the special
isometric direction is z'°

Ry...RoR2,
11
(e’
or the 10-dimensional KK monopole KK6 (A or B) when the special iso-
metric direction is z°

MKK7M = R (444)

Ry...RgR:
943
8 Ry, is the conventional name in the literature. Here we use R,, for the radius of the
coordinate x™.

Micxs = (4.4.5)
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In both cases the mass is not simply proportional to the volume of the brane
which is assumed wrapped on a torus but depends quadratically on the radius
of the special isometric direction. The same happens to the masses of all the
Dp; branes: they depend quadratically on the radii of the directions that we
have argued are isometric, which supports our assumption.

Apart from the dependence on the radii we see that in general these
objects are highly non-perturbative since their masses are proportional to
g3 and g~* except for S5y, whose mass goes like g2, as for any standard
solitonic object.

The momentum of the W M; solution is

(Rs...Ry)?R3,
()8

My v, = (4.4.6)

4.5 Killing Spinors and Unbroken Supersym-
metries

It is important to find the amount of supersymmetry preserved by our so-
lutions since, if they preserve less than one half of the total supersymmetry
available, one could argue that they correspond to composite objects. Since
all these solutions are related by S and T duality transformations to the
D7-brane, which preserves exactly 1/2 of the supersymmetries, it is to be ex-
pected that they will do so as well. Nevertheless, a direct calculation of the
Killing spinors should always be performed since it will confirm our expecta-
tions and it will also provide us with projectors that will help us to associate
the solutions to central charges in the supersymmetry algebra and therefore
to identify them with supersymmetric states in the string spectrum.

We first calculate the Killing spinors of the Dp; family of solutions with
the obvious choice for the Vielbein basis®

_ — . —1/4 7\ 1/4

i — (@>1/4 o (ﬂ) 1/ e = e = (@) / /2

1 H ) m H ) 8 9 .
(4.5.1)

For the Type IIA solutions we use the supersymmetry transformation
rules for the gravitino and dilatino which, in the purely bosonic background

9Underlined indices are world indices and non-underlined indices are tangent space
indices. They take values in the rangesi=0,1,...,p , m=p+1,...,7.
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we are considering, take the form?°

r~ r~ 8=p |
5@1ﬁﬁ: |:ﬂ 4§Z)N 8(8p6¢¢;8pr(r11)2j|6a
(4.5.2)
0T = [@ﬁﬁ‘i‘ : 5;’).64’ e )(—fn)s%p} €,

Imposing the vanishing of dilatino transformation rule we obtain the following
constraint in the Killing spinor:

[1 _gpet. -f8f9(—fn)8%p] e=0, (4.5.3)

or, equivalently

~ 10—p

[1 (=) P (—Py) Y ] e=0. (4.5.4)
This constraint automatically sets to zero the worldvolume (¢, %) and trans-
verse, isometric (™) components of the supersymmetry variation of the
gravitino. The remaining transverse components (z%, z°) give in all cases,
the following coupled partial differential equations

0,

Oethg = [68 — lFSFg 99 log(HH) + 5 Oslog (%};)] €
(4.5.5)

R H X
dethg = [89 — F9F8 93 log(HH) + 5 Dolog (HH)] €=0.

Now, using the Cauchy-Riemann equations for the holomorphic function
H, ie.

6§A = +82H, agA = —8§H, (456)
we can express Jg log(HH) and 9y log(H#H) in the following way:
O log(HH) = —20g(argH), Oglog(HH) = +204(argH),  (4.5.7)

and the Killing spinor equations are easily seen to be solved by

A 10—p

1= (=1)P/2i00 .. Po(— [y ) % ] =0,

— . 1/8
gze—éargm)f8f9<ﬁ) &

(4.5.8)

H

0Qur type ITA spinors are full 32-component Majorana spinors.
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€o being any constant spinor satisfying the above constraint.
In the type 1IB cases we use the relevant supersymmetry transformation
laws!!

0:Cp = [aﬂ — 1 %t s @(sfp)fﬂPQ—Tp} £,

(4.5.9)
o = [gpa 13 o gis) :
5&X - [@QO + 4(8_]])!690 G P PQ’TP} €,
where P, is
o', mneven,
P
ic?, modd.
Proceeding as in the type IIA case, we find the Killing spinors
14+ (_1)[p/2]f0 .. .fpfp%} £ =0,
Y (4.5.10)
A —% arg(H) 819 A
E=ce ( I ) €0,

where, now, &, is any pair of constant positive-chirality Majorana-Weyl
spinors satisfying the above constraint.

The Killing spinors of the S5, and the F'lg can be found in a similar
fashion and are, respectively

[1 —~ f6f7f8f903} =0,

A _1 819 ~
E=¢ 5 arg(H) I'°T £o,

and o
[1 + r0r103] 2 =0,

o\ 1/4
&= 67% arg(H) T81° HH &,
H
HQur type IIB spinors are pairs (whose indices 1,2 are not explicitly shown of 32-

component, positive chirality, Majorana-Weyl spinors. Pauli matrices act on the indices
not shown.
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Before discussing these results it is worth finding the Killing spinors of the
11-dimensional solutions. The only relevant supersymmetry transformation
rule is that of the gravitino, which with our conventions is:

~
~

J

e p

A= [26;—% ;2);4— lztﬂ (f‘aﬁ'y&;_ 8f’3§57ﬁ7; &> éxxxx ¢
ju ©

In the obvious Vielbein basis we find, for the W M, solution

1 for] ¢, =,

) TN (4.5.12)
§ = e dargrr (?) .
for the M2g solution
14 i) & =0,
5 16 (4.5.13)
= oo (BH) T4,
for the M55 solution
1-T° f4f1°] € =0,
(4.5.14)

and for the K'K7M solution, as it is well known, the Killing spinor is any
constant spinor €, satisfying the constraint

14400 -fﬁ] =0, (4.5.15)

In all cases one can see that these solutions preserve one half of the
supersymmetries.
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4.6 Conclusions

In this Chapter we have presented new 10-dimensional solutions of the type II
theories that can be thought of as having a certain number of isometric,
compact, dimensions, that cannot be decompactified (one could say that
these are really solutions of lower-dimensional theories) and which we have
referred generically to as “KK-branes”. We have described how they can be
obtained via the reduction-S dualization-ozridation which could explain why
some of the directions have to be compactified in circles since S duality only
exists in the compactified theory. Furthermore, we have computed the masses
of these solutions and we have found that they depend on the square of the
radii of the directions that we have identified as compact, just as it happens in
the KK monopole case, which is consistent with our identification. The mass
formula are also coincident with what is needed to complete the U duality
invariant spectrum of N = 8,d = 4 supergravity [105-107]. It has also been
recently argued that the presence of certain KK-branes is necessary to explain
from the M theory point of view the existence of some massive/gauged type 11
supergravities in lower dimensions [112].

Perhaps the only element that does not seem to fit in the picture we are
putting forward is the supersymmetry algebra since there seems to be no
place in it for the new objects. For the sake of concreteness we will focus in
the 11-dimensional supersymmetry algebra (“M algebra”) but the problems
and the solutions we propose can be applied in the obvious way to other
cases.

The M algebra is usually written, up to convention-dependent numerical
factors ¢, ¢, in the form'?

(@°.Q%) = e () ot (Toe ) 2, 4 (050 ) 20,

A lightlike component of the momentum is then associated to the gravi-
tational waves moving in that direction, the spatial components of Z() and
Z0®) are associated respectively to M2- and M5-branes wraped in those di-
rections. The timelike components have more complicated interpretations:
in the Z(® case, they are associated to the KK monopole in a complicated
way and in the Z®) case they are associated to an object that we would call
the K K9-brane of which we only know that it should give the D8-brane upon

128ee e.g. [113].
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dimensional reduction. All these objects break (preserve) a half of the avail-
able supersymmetries and strict relations between their masses and charges
can be derived from the algebra.

Clearly the M algebra contains a good deal of information about the soli-
tons of the theory that realizes it (11-dimensional supergravity or M theory).
However, it is clear that it does not contain all the information about them.
To start with, it does not tell us why some branes are fundamental and some
are solitonic, it does not tell us why some objects exist in the uncompact-
ified theory (the wave, M2 and M5) while other objects only exist when
one dimension is compactified in a circle (the KK monopole and the K K9-
brane). Furthermore, all solitonic objects should be associated to spacelike
components of central charges: that is the result we would always get if we
performed the calculation. All this is not so surprising: the M algebra is not
derived from the theory and their solutions but just by imposing consistency
of the possible central charges. If we were able to derive the algebra from
M theory and its solitonic solutions, the central charges would be associated
to specific objects and we would know whether they have compact dimen-
sions or not. Since we do know many things about the solitonic solutions, we
can try to reflect what we know in a form of the M algebra mathematically
consistent and then we can check if the results are consistent with dualities.

To start with, we consider the M algebra with the most general central
extensions allowed:

(Q0,Q° =c(Tc )’ P+ Y a@ewe )zl . (461)

n!
n=2,5,6,9,10

We know the wave is associated to P, the M2-brane to 23 and the M5-
brane to Z(). We also know [114] that the KK monopole is a sort of 6-brane
with one of the 4 possible transverse dimensions wrapped in a circle. We are
going to reflect this fact by writing, instead of just the Z©) term as above,
the term

g (paase=1) (0 per (4.6.2)

01--agar
where k% is a vector pointing in the compact direction.

We also know that the K K9-brane (or M9-brane) [115] has 9 spacelike
worldvolume dimensions one of which is always wrapped on a circle. We
reflect this fact by writing, instead of just the Z term as above, the term

a (paaec1)¥ z® . (4.6.3)

ai---ag
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where [, is a vector pointing in the direction around which the K K9-brane
is wrapped.

We do not know of any brane associated to Z(19 and so we will not
consider it in the M algebra, which takes the form

{Q4,Q°) = (e P+ g (Te)™ 230, + § [0 200,

+8 (Lo 1) Z{0) gark® + G (D200 1) ™ 2l -

We could certainly write more general central charges by allowing more
vectors to be present in the algebra, meaning allowing objects with more
isometric directions such as the M2g or the M5; branes presented in this
Chapter. However, considering objects with just one special isometry will be
enough to present our ideas.

Let us now reduce this algebra in one dimension. From each of the stan-
dard central charges we get two central charges in one dimension less, namely
P, 20 from P, 21 2 from Z? and 24, Z2®) from Z®), corresponding
to the known reductions of M theory solitons: wave and D0-brane from the
wave, F'1 and D2-brane from the M2-brane and D4- and S5-brane from the
Mb5-brane. From each of the new charges we have introduced we get instead
three lower dimensional central charges: from the contraction Zk associ-
ated to the KK monopole we get a Z(® associated to the D6-brane when &
points in the direction we are reducing, we get a contraction Z©® associated
to the type ITA KK monopole (KK6A) if we reduce on the KK monopole
worldvolume and we get a Z(Mk associated to the D6; (called KKT7A in
Ref. [94], also studied in Ref. [116] ) if we reduce in a transverse direction.
From the product Z®)] we get a Z(®), associated to the D8-brane when we
reduce the KK9-brane in the isometric direction [ points to, we get a product
Z(M] associated to an object with the same features of the M theory K K9-
brane but in one dimension less and a product Z®)] associated to a type ITA
spacetime filling K K9-brane referred to as NS —9A-brane in Ref. [117]. The
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result is the following form of the type ITA supersymmetry algebra:
{Q%,Q°} = c(C NP Pot Y, g2 (DT 200,
e S T ) 0,
+2 (PorosTy, 0N 200k + B (D100 1) 20D 410

—f—% (Fal'"asc_l)aﬂ Zg?..mmas + % (Falmagc_l)aﬂ Z(Sf?--asnag .

Every known solitonic solution of the type ITA supergravity theory has an
associated charge in this algebra. If we now reduce again to nine dimensions
we will get the algebra of the massive 9-dimensional theories presented in
Ref. [94] with SL(2,Z) covariance. This is possible only because we have
allowed for charges corresponding to KK-branes in 11 dimensions. To get
the same algebra from the type IIB side a charge has to be introduced for
the S7 brane which, even though it does not carry any SO(2) R-symmetry
indices, is not invariant but is interchanged with the D7-brane charge under
S duality.
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Part 11

Supergravity Vacua
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Chapter 5

Supergravity Vacua and
Homogeneous Spacetimes

In Part I we dealt with a special kind of supergravity solutions: solutions
such that we could argue that they were describing the long range fields
emitted by stringy sources. The general features of this kind of supergravity
backgrounds were studied in detail in Chapter 2. Now we will develop some
results concerning a rather different class of spacetimes, namely those that
we defined as vacua in Section 2.2.1. They were introduced at that moment
because we needed to clarify the notion of conserved charges in theories with
general covariance. We refer to Section 2.2 for a discussion about the topic of
spacetime or geometrical charges, and to Sections 2.2.1 and 2.4.3 for related
discussions about the concept of vacuum as will be considered here. Here we
simply recall the idea used there to motivate a possible definition of vacuum.
For a given background M to which one can attribute conserved charges, the
notion of “its” vacuum seems intuitive: its asymptotic spacetime V. Such
a correspondence between the spacetime V and the vacuum state should be
natural, since to compute the geometrical charges of M we always do it with
respect to those of V. If we understand M as a local perturbation of V, the
procedure to compute the energy of M just mimics what one always does in
Field Theory to compute the energy of any state, which only has a meaning
in terms of a relative shift with respect to the vacuum energy.

97
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Supergravity Vacua and Field Theory Vacua

There is, however, a crucial difference between supergravity vacua and vacua
as they appear in Field Theory, on which we would like to comment. In
Field Theory a vacuum state is a ground state of the theory. This means
that it is a solution of the equations of motion of the effective field theory
action that minimizes the energy. There may be a unique solution to this
problem or there may be infinitely many, and a vacuum state may enjoy
all the symmetries of the theory or it may not, hence giving rise to the
phenomenon of spontaneous symmetry breaking. But uniqueness or degree
of symmetry do not play any role in its definition —what it must be is a
ground state'. The main point is the following: while in Field Theory this is
a well defined problem, in Supergravity it is not. As in Field Theory, every
asymptotic spacetime V that we will call vacuum in Supergravity will be a
solution of the equations of motion of some supergravity theory. But the
essential difference arises from the fact that the energies of two vacua V; and
Vs, cannot be compared, because each of them carries its own prescription
to compute the energy. One can use these prescriptions to calculate the
total energy of a spacetime M) which is asymptotically Vi), but if one
uses them to compute their own total energies one gets, by construction,
zero. In this way, the difference between the total energies of e.g. two
different Anti de Sitter spacetimes with two different cosmological constants
cannot be evaluated. Therefore, the most one can argue is, for example,
that Minkowski spacetime can be considered as the ground state within the
set of all spacetimes which are asymptotically Minkowski%. But there is no
criterion at all to say that Minkowski spacetime should be a ground state
within the set of all possible spacetimes. And of course, this also means
there is no criterion to determine if Minkowski is a better “vacuum” state
than AdS with cosmological constant Ay, or if the latter is better than AdS
with cosmological constant As.

So the question of which are the possible true String Theory or Supergra-
vity vacua (the classical ground states of the String Theory effective action)
is not even well defined in general: simply, there is no moduli space of vacua.

Tt is true that ground states always turn out to exhibit, in addition, a very high degree
of symmetry. But this is a common property of all solutions to the mathematical problem
(in any context) of finding extrema, and has nothing to do with its actual definition.

2Provided that, in addition, some positive-energy theorem for excitations in Minkowski
applies. We will comment on this in Section 5.2.



99

This is a major problem of String Theory. We will however keep the name
of “supergravity vacua” for a certain class of asymptotic spacetimes.

We would like to address two issues next. First, in view that the rea-
soning leading us to a definition of vacuum was the idea of “vacuum of (or
associated to) a source”, we will try to investigate a more intrinsic definition
of this kind of spacetimes: a definition which does not require starting with
some given spacetime and extract afterwards its asymptotics to find some-
thing that we can call vacuum. This will make us consider homogeneous
spacetimes. Secondly, we will address some aspects concerning the stability
of these vacuum spacetimes.

5.1 Homogeneous spacetimes

Let us consider the case in which we have a spacetime )} which is a solution of
the supergravity field equations. Such a spacetime will be given by a metric
g and, in general, by other bosonic fields which may be nontrivial®>. We
will denote the whole set of these bosonic fields by ¢, and we will write our
spacetime as V = {g,,, #}. We want to find a criterion to determine whether
VY can be considered as a vacuum spacetime or not.

We already have some intuition about this: this spacetime should be
“purely asymptotic”, so that any other (physically inequivalent) spacetime
M which is asymptotically V could be regarded as a perturbation of V, in the
sense that a computation of the geometrical charges of M will always yield
a finite result. “Purely asymptotic” just means that all points in ¥ must be
physically equivalent, i.e. that V must have no special points in any physical
sense. This implies that a necessary condition to be satisfied by V is that
it cannot have any physical “core” or energy locus, which seems to fit quite
well with the idea of V as a spacetime with no excitations. Can we map these
intuitive conditions into a precise, covariant, mathematical formulation?

The answer is affirmative. A spacetime with no preferred points is called
homogeneous, and the mathematical requirement is as follows:

3We will always demand from V to solve the equations of motion of our theory and, in
general, this will not be achieved if the only nontrivial field is g,,. On the other hand, we
will only consider, as usual, the case of purely bosonic backgrounds.
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V is homogeneous iff for any two points p and ¢ in V there exists an
isometry that takes p into g*.

The fact that the transformation relating p and ¢ is an isometry® means
that the only difference between being at p or being at ¢ can be, at most,
an unphysical coordinate reparametrization. If this happens for all p and
g in V, then all points will be physically equivalent. Given the importance
of this kind of spacetimes in the Chapters that will follow, we proceed next
to develop a bit on their definition as well as on some other technical aspects.

However, we want to make clear the following: we are not claiming a one-
to-one correspondence between all possible candidates to a Supergravity or
String Theory vacuum and all homogeneous spacetimes. We simply pursued
an appropriate mathematical definition that fits the best with the physical
consequences that we were able to extract from the notion of vacuum as
introduced here. There are in fact lots of string constructions (for example
Calabi-Yau or K3 compactifications, orbifold compactifications, etc) which
assume a string theory ground state which does not admit any homogeneous
spacetime description.

5.1.1 The Reparametrization Symmetry Algebra

Let us consider V = {g,., ¢}, and let us consider the effect on it of infinite-
simal general coordinate transformations

at — ' ~ ot + o8 (2), (5.1.1)

where ¢ is a constant, infinitesimal parameter and £ is the vector field that
generates the transformation. Under this infinitesimal local translation, the
functional change of the bosonic fields describing the solution V is given by
(minus) their Lie derivatives along £, denoted here as L.

Let us define the symmetry group K of reparametrizations of V. This
is the finite dimensional group generated by all the transformations of the

4This is a definition which is suitable for Riemannian manifolds (see the comments in
Section 5.1.3), and is the one which is usually introduced in Cosmology (see e.g. [101],
p. 92).

5If V consists of more fields apart from the metric we will require the corresponding
transformation to be, in addition, a symmetry of the full solution. See below.
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kind of (5.1.1) that leave all the fields in V invariant. That is, the g.c.t.’s
generated by all those k; (I =1, ...,dim K) satisfying®:

[,kIgW = »Ck1¢ =0. (5.1.2)

These are the Killing vectors that leave invariant not only the metric but
also all other bosonic fields ¢ entering in the solution given by V (hence K
will be, in general, a subgroup of the full isometry group of g,,). Since the
infinitesimal action of the k; on the metric and on the other bosonic fields of
the theory is given by their Lie derivatives Ly,, the Lie algebra of K is the
one satisfied by the differential operators L;,. These obey the property:

[['kn ‘CkJ] = ‘C’[kl,kJ] ) (5'1'3)
where [kr, k| is the Lie bracket of the vector fields k; and k;, defined as’:
[kr, ks = kY0, kY — kY0, kY . (5.1.4)

The fact that the commutator of two Lie derivatives obeys (5.1.3), together
with the fact that (in the absence of torsion) the Lie bracket of two vector
fields is also a vector, immediately implies that [kr, ks| is a symmetry ge-
nerator if k; and k; are, and so the symmetry algebra closes. Associating
an operator P; to every Killing vector k; in the symmetry algebra (which on
bosonic fields will be represented as P = —Lj,), the Lie algebra of K can
be written as:

[Pr, Ps] = f;, Pk, (5.1.5)

where the f;,;% are the corresponding structure constants. The above alge-
bra is the Lie algebra of K, the reparametrization symmetry algebra of the
solution given by V.

6There will be many more symmetry generators, of course. In particular, all those
generating internal symmetries of the fields and all those generating supersymmetries.
The whole set of symmetry generators will give the full global superalgebra associated to
V. But here we are only concerned with the reparametrizations that leave invariant the
full solution.

"This gives the functional change of the vector field k7 under an infinitesimal coordinate
transformation generated by kr, i.e. [kr,kj] = —Lr k.
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5.1.2 Homogeneous Spacetimes

We will denote by k£ a generic element in the symmetry group K. Infinitesi-
mally, they will be given by:

k~1+o'Py, (5.1.6)

where the o! are infinitesimal parameters. K acts on the fields of our theory
by means of the above expression with the P; in the appropriate representa-
tion (the corresponding Lie derivative). But, moreover, K also has an action
on points of the spacetime manifold (henceforth denoted by My): the one
given by (5.1.1),

ot — g~ gh + o R (5.1.7)
Observe that such an action can be interpreted both a group of (“active”)
motions on My and as a group of (“passive”) diffeomorphisms. We are now
ready to define what an homogeneous spacetime is.

Definition: the spacetime V is said to be homogeneous if K acts transi-
tively on the spacetime manifold.

“Transitively” means what we already advanced at the beginning of this
Section: that any two points will always be related by a symmetry transfor-
mation generated by K, whose infinitesimal action on the spacetime manifold
is given by (5.1.7). This means that one can “recover” the whole spacetime
by acting with K on a single point. Notice that for a spacetime to be homo-
geneous, it is enough to admit a subgroup G C K that acts transitively on it.
We refer to the beginning of the present Section for a discussion concerning
the relation between homogeneous spacetimes and vacuum spacetimes.

Simple examples of homogeneous spaces are given by Minkowski space-
times, AdS spacetimes or spheres in any dimension. In each of these mani-
folds any point can be reached from any other by means of an isometry. In
fact, these spaces have no special points or no “center” in any sense. All
spacetimes listed in the r.h.s. of Table 2.1, as well as those of the L.h.s of
Table 6.1 are also homogeneous.

A simple example of a spacetime which is not homogeneous is Schwarzs-
child. If, in usual spherical coordinates, we choose two infinitesimally near
points along the radial direction:

b=To, q:T0+5T,
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one can see that there is no transformation of the kind of (5.1.7) taking p
into g, since k¥ = 0* is not a Killing vector of the Schwarzschild solution.
On physical grounds, it is very clear why the Schwarzschild spacetime is not
homogeneous: it has a very well defined physical core. The same happens, for
example, to all p-brane solutions in Supergravity, which are not homogeneous
spaces.

5.1.3 Homogeneous Spacetimes and Coset Spaces

A very strong mathematical property concerning homogeneous spacetimes is
their close relation with group theory (general references are [120]). It can
be shown that any homogeneous manifold M, is always diffeomorphic to the

coset space
My, = G/H, (5.1.8)

where GG is any subgroup of K acting transitively on My and H C G is its
isotropy subgroup (the subgroup of G that leaves fixed a given point of My,).
Here G/H stands for the set of equivalence classes in G defined under right
multiplication by elements of H, which is usually written as

G/H ={g9H}, forge@.

Notice that
dim My =dimG/H = dimG — dim H . (5.1.9)

Statement (5.1.8) has the implicit assumption that G/H can be given the
structure of a differentiable manifold. In fact, this is the case if G is any
Lie group and H C G is any subgroup of G®. Then G/H is a manifold on
which G has a natural transitive action, and H turns out to be the isotropy
subgroup of G. If further technical requirements are achieved, it is possible
to put a Riemannian metric on this manifold, and this metric will always
contain G in its isometry group®. However, the full isometry group of the
resulting metric can be larger, and this the reason why we made from the
beginning the distinction between the isometry group, the symmetry group
of the full solution (what we denoted by K) and a subgroup G of K that

8The only requirement is that H has to be topologically closed.
9The conditions needed to put a metric on G/H, as well as the standard procedure to
obtain it, are explained in Chapter 7.
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acts transitively on M0,

Note that the procedure that we have just sketched in the preceding para-
graph (from a Lie group G to a Riemannian manifold endowed with a metric
which contains G in its isometry group) is the opposite to the one we have
been developing along this Section: we started with a bosonic solution of
Supergravity, i.e. a spacetime manifold equipped with a Riemannian met-
ric from the beginning. We did it in this way because we were pursuing a
definition of homogeneous spacetimes motivated by physical considerations.
In fact, the definition of homogeneous spacetime as introduced here (recall
that the group needed to fulfill the transitivity condition was required to be
contained within the isometry group of the metric) is only suitable for Rie-
mannian manifolds. In general, a topological space M (not even a manifold)
is called homogeneous simply if there is a group G that has a transitive action
on it. In Supergravity, however, we will only be interested in those cases in
which, at the end, the space M can be given the structure of a differentiable
manifold (in that case it will always be diffecomorphic to G/H, H being the
isotropy subgroup of G) and, further, a G-invariant Riemannian metric can
be put on M. In that case, the definition of homogeneous spacetime as given
here applies.

We will deal with the construction of homogeneous spacetimes as origi-
nating from a coset description in Chapters 7 and 8, where we explain how
the metric is obtained. The metrics of the coset spaces that we will consider
there will always coincide with the metric of some supergravity solution, and
we will see how the underlying coset structure of these homogeneous (va-
cuum) spacetimes plays a very important role in all their (super) symmetry
structure. Of particular physical importance are the global superalgebras of
vacuum spacetimes (see the discussion in Section 2.3), and we will show how
the superalgebras of these vacua are, in principle, also encoded in their group
theory coset description.

10Here we will be interested in coset spaces. A very interesting but different case is that
of group manifolds. These can be seen as trivial cosets, arising when the only element in
the isotropy subgroup is the identity. In this case, the construction mentioned above (with
slight differences) can serve to put a metric on the group G itself. For example, S® can
be seen as the SU(2) group manifold. This has important applications in String Theory,
because now the manifold is endowed with a richer structure, namely that of a group (we
recall that a generic coset G/H does not admit a group structure unless H is a normal
subgroup of G).
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We have introduced the notion of homogeneous spacetimes motivated by
the Physics of vacua. We have recalled their close relation with coset spaces
and group theory because this is the mathemathical tool needed to obtain
and understand the results reported in the following Chapters.

5.2 Stability

In Chapter 2 we commented on some generic aspects concerning the quantum
and dynamical stability of Supergravity backgrounds describing massive and
charged configurations of String Theory. These questions arose from the fact
that Supergravity is an approximation to String Theory, and hence we were
wondering about the goodness and reliability of our approximation in those
cases. Of course, the same kind of questions apply to the case of vacuum
solutions. Although the general principles concerning the reliability of a
Supergravity solution were already introduced in Chapter 2, there are some
significant differences when one is interested in investigating these aspects
in the case of a vacuum solution. Here we will content ourselves with some
brief comments concerning these differences.

5.2.1 Dynamical Stability

Given a certain vacuum solution V. a natural question to pose is about its
possible decay into another state. This is very likely to be so if we do not have
at hand a sort of “positive-energy” theorem for excitationsin V (see e.g. [121])
because, in such a case, the argument saying that V can be considered as the
ground state within the class of spacetimes which approach it asymptotically
would have no support (see the introduction to this Chapter).

Dynamical stability has been analyzed classically for different vacua other
than Minkowski. Such analyses are based on the behaviour of small fluctu-
ations around the classical solution. For example, Abbot and Deser [51]
considered the stability of both dS and AdS spacetimes. They found that
they are stable in the framework of Einstein gravity. A semiclassical analysis
concerning vacuum stability was made in [121] for the case of the original
Kaluza-Klein vacuum M, x St. This was made by considering the amplitude
of the decay process into another state (with a sort of “instanton computa-
tion”), and the KK-vacuum was found to be an unstable “false vacuum”. As
usual, the presence of supersymmetry simplifies many times stability conside-
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rations. As another example, the classical stability of Freund-Rubin com-
pactifications of eleven-dimensional supergravity (4-dim. Minkowski times a
7-dim. homogeneous space) was studied in [122]. There they found that all
supersymmetric vacua are automatically stable, but also that some others
with no supersymmetries at all are stable against small fluctuations.

The true question is, of course, if dynamical stability holds quantum
mechanically. One way to prove this would be the derivation of a BPS bound
of the kind of (2.3.6) for vacua other than Minkowski. This would imply the
absence of tachyons if the vacuum superisometry algebra is promoted to a
quantum symmetry. However, to derive such a bound one needs to know
how the global superalgebra of a given vacuum is with full knowledge of its
central extensions, which is not a straightforward task. A partial approach
to this problem will be presented in Chapter 7.

5.2.2 Accuracy in the o Expansion

As said in Chapter 1, the Supergravity effective action is a double expansion
in both the string tension and the string coupling, and it is given by the low-
est nontrivial contributions in both parameters. Another natural question
to be raised is, then, about the accuracy of a given solution in the o ex-
pansion since, in principle, every supergravity solution is to be o/-corrected.
At this respect there is a particular kind of vacuum spacetimes, namely pp-
waves, which play a very special role, since it has been shown that certain
classes of pp-waves are exact solutions to all orders in o (i.e., to all orders
in sigma-model perturbation theory). The usual argument is that higher
o' corrections to the effective action involve higher order curvature terms,
all of which vanish for certain pp-wave spacetimes [123]. In some cases this
has also been explicitly checked to all orders in sigma-model perturbation
theory, and even at the full nonperturbative level for some cases in which
a certain pp-wave spacetime geometry makes the two-dimensional theory an
integrable model [124]. For further references concerning the exactness of
wave backgrounds and their importance for string quantization see [125].

5.2.3 Stability Against Quantum Corrections

It remains the question about if string loops could correct the spacetime
geometry, which as a supergravity solution is just string tree level. This is a
really important question, because string radiative corrections could render



107

a supergravity vacuum solution completely meaningless'' (see the discus-
sion in Section 2.3). For supergravity backgrounds describing massive and
charged objects we had a non-renormalization argument for states saturating
a BPS-bound, which roughly speaking is mass=charge (this was explained
in Section 2.3.3). What happens in the case of a vacuum spacetime, with no
mass and no charge?

One could invoke a similar argument, but this time concerning represen-
tation theory of massless (instead of BPS) states. But we would be cheating
in that case, because we would be using the superisometry algebra associated
to a classical spacetime whose reliability is precisely what we are questioning.
Of course, the present objection underlies the nonrenormalization argument
of Section 2.3.3. At that moment, we completely skipped the problem of the
stability of the asymptotic spacetime and took it for granted: there we only
faced the problem of the string quantum corrections to the stringy source
quantum numbers.

Quantum stability of the vacuum is one of the most important problems
one can face in Physics and, of course, also in String Theory. One can
find in fact highly nontrivial effects. For example, Fischler and Susskind
showed in [45] that, taking into account one-loop effects in the bosonic
string, a cosmological constant term is generated in the spacetime equations
of motion (the one-loop corrected sigma-model beta functions), and hence
26-dimensional Minkowski space turns out to be unstable against string quan-
tum corrections'?. The only way to deal with string loops effects to analyze
vacuum stability seems to be to compute the string loop corrected spacetime
effective action. For the case of the bosonic string, a full analysis was done
in [129] by requiring sigma-model conformal invariance and, again, a cos-

1We emphasize that this is not the case for a'-corrections, at least if one assumes
convergence of the series in a'. o'-corrections can distort the classical spacetime picture
at short distances but, a priori, do not render the classical solution “impossible”, at least
up to a certain resolution scale.

12This was achieved by adding counterterms to the two dimensional sigma-model action
in order to cancel divergencies in one-loop string amplitudes (see the comments at the
end of Section 1.2). Quite surprisingly, the appearance of a cosmological constant in the
bosonic string was shown in [45] to be due to the presence of dilaton tadpoles, not to the
presence of a tachyon in the spectrum. The cosmological constant in the bosonic string
is thus a one-loop effect because conformal invariance ensures vanishing tadpoles on the
sphere (a nice argument for this is given e.g. in [126]). Previous investigations concerning
the cosmological constant in String Theory were presented in [127] and [128].
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mological constant term in the resulting spacetime equations of motion was
found. There, one-loop corrected version of the effective action (1.2.5) was
found to be

1

S=—F71=
167rG§36)

/d26x 9| [e—2¢ (R — 4(8¢)* + 11—2H2> + A] . (5.2.1)

i.e., the correction is precisely the addition of a cosmological constant term.
The fact that it is a one-loop correction can be guessed from the different
dilaton power in front of it.

The situation drastically changes when considering the superstring case.
The conclusion in this case can be roughly summarized by saying that if
(enough) supersymmetry is preserved by a classical vacuum solution, no cor-
rections to it arise from string loops. For example, Martinec proved in [130]
the stability, among other supersymmetric backgrounds, of ten-dimensional
Minkowski spacetime. Later on, Dine and Seiberg showed in [131], with
very general arguments, that any superstring compactification down to four
dimensions (and also its corresponding ten dimensional decompactification
limit) preserving at least four supercharges (i.e. N = 1 supersymmetry in
four dimensions), suffers no quantum corrections to all orders in the string
loop expansion. String loop corrections to supergravity actions were consid-
ered in [132,133].



Chapter 6

On d =4,5,6 Vacua with 8
Supercharges

Introduction

There is currently a renewed interest on maximally supersymmetric vacua
stemming from the discovery, and re-discovery of previously overlooked, max-
imally supersymmetric Hpp-wave solutions [134-136]. These solutions have
very interesting properties: they are not only supergravity solutions (i.e. so-
lutions of the lowest-order superstring effective action) but it can be argued
that they are exact solutions of superstring theory to all orders and there-
fore good vacua on which superstrings can be quantized [124,125,137] and
the D-branes can be discussed [138,139]. Further, these solutions can be
obtained by a limiting procedure that preserves (or increases) the number of
unbroken (super)symmetries [140-142] (for a review see, e.g. Ref. [143]), a
feature which has given rise to the Hpp/CFT correspondence (See e.g. [144]).

It is the standard lore that maximally supersymmetric vacua (other than
products of Minkowski spacetime by circles) of higher-dimensional supergrav-
ity theories cannot be dimensionally reduced preserving all their unbroken
supersymmetries (See e.g. [145,146] and references therein): in general, the
Killing spinors of these vacua depend on all coordinates. This dependence
complicates its compactification and dimensional reduction. First, only for
certain radii of the compact direction the Killing spinors will have the right
periodicity and, thus, only for those radii the compactified solutions preserve
the same amount of supersymmetry as the uncompactified one. Second, un-

109
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less the Killing spinors are independent of the compact coordinates (or have
a very special dependence on them, as in some generalized dimensional re-
ductions [147]), the components of the Killing spinor that do depend on the
compact coordinate have to be projected out of the dimensionally reduced
theory [148], leading to less supersymmetry. Since T duality of classical
solutions involves their dimensional reduction it should not come as a sur-
prise that the supersymmetry of the maximally supersymmetric vacua is not
preserved by T duality either [149,150].

In this Chapter we are going to show that the known maximally su-
persymmetric d = 4,5,6 vacua of theories with 8 supercharges (N = 2 or
N = (2,0) theories) can be dimensionally reduced/oxidized preserving all
their unbroken supersymmetries because in all the d = 5,6 cases it is possi-
ble to choose coordinates in which the Killing spinor is independent of the
coordinate we use for dimensional reduction.

That the coordinate choice that preserves all supersymmetry in dimen-
sional reduction is always possible looks highly non-trivial. However, thinking
in terms of oxidation of the d = 4,5 theories it is evident that all unbroken
supersymmetry should be preserved: these theories can be obtained by stan-
dard dimensional reduction of the d = 6, 5 ones supplemented by a truncation
of the matter multiplets that appear in the reduction. It is, therefore, guar-
anteed that, if we have a solution of the d = 4,5 theories that preserves
all 8 supersymmetries, it comes from some d = 5,6 solution that also pre-
serves those 8 supersymmetries and therefore has to be one of the essentially
unique maximally supersymmetric vacua of the theory '. Thus, the maxi-
mally supersymmetric vacua of these theories must be related by dimensional
reduction/oxidation and we are going to show exactly how this happens. The
independence of the Killing spinors of the compact coordinates is an implicit
automatic consequence of the above arguments.

Let us now briefly review the known maximally supersymmetric vacua of
these theories:

ITo the best of our knowledge, though, no theorem proving the uniqueness of the
maximally supersymmetric vacua we are dealing with exists for the d = 6, N = (2,0)
theory. A classification of the spacetimes admitting Killing spinors in four dimensions was
given in [72], and a complete classification of supersymmetric solutions in d = 5, N = 2
supergravity has recently appeared [151].
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N =(2,0),d=6:

1. The 1-parameter family of Kowalski-Glikman (KG) Hpp-wave so-
lutions found in Ref. [152] that we will denote by KG6(2,0).

2. The l-parameter family of solutions with AdSs; x S3 geometry
found in Ref. [153] as the near-horizon limit of the self-dual string
solution.

N=2,d=5:

1. The 1-parameter family of KG solutions solutions found in Ref. [152]
that we will denote by KG5.

2. The 1-parameter family of solutions with AdSs; x S? geometry
found in Ref. [153] as near-horizon limit of the extreme string
solution.

3. The l-parameter family of solutions with AdS, x S geometry
found in Ref. [154] as near-horizon limit of the extreme black
hole solution.

4. The 2-parameter family of N = 2, d = 5 solutions found in Ref. [155]
as the near-horizon limit of the supersymmetric rotating black hole
solution.

The third family is contained in the fourth and corresponds to a van-
ishing rotation parameter. We will show that the second family is also
contained in the fourth and corresponds to the value 1 of the rotation
parameter.

N =2d=14:

1. The 1-parameter? family of KG solutions solutions found in Ref. [156]
that we will denote by KG4.

2. The 2-parameter family of electric/magnetic N = 2, d = 4 Robinson-
Bertotti solutions [157] that have the geometry AdSy x S2.

2Electric-magnetic duality rotations only change the polarization plane of an electro-
magnetic wave and their effect on this family of solutions can be undone by a rotation
that leaves the form of the metric invariant.
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AdSx s® K G6(2,0)
/27L \
AdSxS® —— AdS x s? KG5
3
AdSx s? K G4

Penrose limit

Figure 6.1: Relations between the d = 4,5, 6 vacua with 8 supercharges.

The connections between these vacua that we have found are summarized
in Figure 6.13. The relations between the KG solutions are straightforward.
The AdSs x S can be dimensionally reduced in the direction of the S* Hopf
fiber of the 3-sphere and then we get AdS; x S?. It can also be reduced in the
St fiber of the AdSs, giving AdS, x S3. Finally, we can rotate these fibers an
angle ¢ and reduce, getting the maximally supersymmetric solution that is
the near-horizon limit of the rotating 5-dimensional extreme black hole. The
angular momentum parameter j is essentially sin (. Thus, this 2-parameter
family of 5-dimensional vacua interpolates (in parameter space) between the
AdSy x S% and the AdS; x S? vacua. The reduction of any member of this
family in the remaining fiber gives an electric/magnetic Robinson-Bertotti
solution where sin ¢ is the ratio between the electric and the magnetic fields.

This Chapter is organized as follows: in Section 6.1 we study how the
KG6(2,0) and KG5 solutions can be dimensionally reduced preserving all the
supersymmetry after describing briefly the general form of pp-wave solutions
and their sources in Section 6.1.1. In Section 6.2 we study how the AdS,, x
S"-type vacua of these theories are related by oxidizing them. Section 6.3
contains our conclusions and some discussion.

3The left hand side of the relations of the relations were discussed in [158]. We thank
K. Skenderis for pointing this out to us.
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6.1 Dimensional Reduction of Maximally Su-
persymmetric Hpp-Waves

Before we study the reduction of KG solutions it is worth studying briefly
general supergravity pp-wave solutions.

6.1.1 General pp-Wave Solutions

pp-waves spacetimes are those whose metric admits a covariantly constant
null vector. A metric with this property can always be put in the form

ds® = 2du(dv + Kdu + A,dz®) + Japdzda’, (6.1.1)

where the functions K, A,, . depend only on the wave-front coordinates x*
and on the null coordinate u. A, is known as the Sagnac connection [159]
and can always be set to zero by means of a coordinate transformation.

In supergravity theories it is natural to look for pp-wave solutions of the
system

a —

1)+l o,
/dd:c lg| [R-I— 1(09)* + (2(12_2)!6 29 o (6.1.2)

1
167rG§{,i)
where F{, 9) = dA(p41), of the form

ds* = 2du(dv+ Kdu) + gaupdz®dz®,
(6.1.3)
Fpioy = dunC,

where C'is a (p + 1)-form on the wave-front space and, as all the other fields
in this Ansatz, it is independent of v.

A general solution is provided by a Ricci-flat wave-front metric g,, which
must also satisfy

6(JL (gbcaugbc) - @b (gbcaugac) =0,
a harmonic (p + 1)-form C in wave-front space

dC =d*C =0,
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with arbitrary u-dependence, an arbitrary function ¢(u); and a function
K (u, %) satisfying the equation

= ~ ~ ~ ~ _1)p+1
VK + i@ug“baugab + %g“bBZgab + 2(Bup)® + (2(;11)! e 2wC? =90,
The simplest choice of Ricci-flat wave-front space leads to the solutions

Jab = —Oab, C=C(u), v =p(u), K=H+A,

A

Aw(wata® = =1 [(0,0)? + G e200C2] (1) My ata,

(6.1.4)
where H = H (z%) is an arbitrary harmonic function in wave-front space, My
is a constant symmetric matrix and C and ¢ are just arbitrary functions of
u.

The function K that contains all the information has, therefore, two
pieces: the harmonic function H(x), independent of the gauge field and dila-
ton (i.e. purely gravitational), and the matrix Ag(u) that depends on the
gauge field and dilaton. One can argue that H represents excitations over a
vacuum that consists of a self-supported (source-less) gauge field and dilaton
and a metric described by Ag(u). For instance, one can try to match the
above solution with a charged, mass-less, p-brane source with effective action

Spl X, vl = =T, / dPTIEN/ || e 2% 410, X O XY g+

+Lﬁﬁi{/ﬂ+%A@Hnmwﬁxuxw.nawHX%ﬂé“%ﬂ-

(p+1)!
(6.1.5)
The following Ansatz*

uE)=0, VE=af,  XY=0, VI[P =1, (6.1.6)

a being some constant and £° being the worldvolume time coordinate (plus
the above values Eq. (6.1.4) for the spacetime fields) representing the brane
moving in a direction transverse to its worldvolume reduces all the equations

4Such an Ansatz was also discussed in Ref. [139] for probing the type IIB’s KG wave, but
was found to be inconsistent. Here such trouble is avoided because, contrary to Ref. [139],
a massless p-brane is used.
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of motion to only one which is not automatically satisfied,® i.e.
8,0, H = 167G\IT, e 2% 025 (u)5(Ts) . (6.1.7)

Thus, only H feels the source and the gauge field seems to be self-
supported. The solutions with H = 0 can be interpreted as vacua and
can be described as homogeneous spaces [135,160] (Hpp-waves). Actually,
the presence of a covariantly constant null vector ensures that at least half
of the supersymmetries will always be unbroken if we embed the above so-
lutions in a supergravity theory (even for H # 0) but in some cases (the
Kowalski-Glikman solutions [134,136,152,156]) there are Hpp-wave solutions
that preserve all the supersymmetries. See [161] for a discussion on waves
that preserve fractions of the supersymmetry.

It was recently shown [146] that the maximal amount of supersymmetry
that can be preserved in a circle compactification of the KG10 solution [136]
is 3/4 and the same thing holds for the 11-dimensional KG wave [134]. Al-
though one would expect the same to happen in the N = 2 d = 6,5,4
KG-solutions, we are going to show that they are related by dimensional
reduction. First of all, the susy preserving dimensional reduction is possi-
ble after a change of coordinates in which the dependence on the compact
coordinate is removed at the expense of introducing a non-vanishing Sagnac
connection. It turns out that in the new coordinates the Killing spinors are
independent of the compact coordinates so that dimensional reduction will
preserve all of them. Furthermore, the Sagnac connection becomes a KK
vector that combines in the right way with the other vector fields present
to cancel the matter multiples that arise in the two dimensional reductions
involved.

6.1.2 Reduction of KG6(2,0) to KG5

N = (2,0),d = 6 supergravity® consists of the metric é%;, 2-form field BI;,
with anti-self-dual field strength H~ =30B~ and positive-chirality symplec-

5For p = 0 the charge g has to be set to zero in order to satisfy the equation of motion
for that gauge field, but in the other cases the value of u, does not play any role.
60ur conventions are essentially those of Ref. [162] with some changes in the nor-

malizations of the fields. In particular 77 = o --75, 72 = +1, 12345 = 41,

-1 /2] .l . . ..
yeren = ((Gln)! ga1anb bs—"'ybl...bﬁ_nw. Positive and negative chiralities are defined

by yip* = .
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tic Majorana-Weyl gravitino zﬁ: The bosonic equations of motion can be
derived from the action

§= /d6 ViR + LA, (6.1.8)

imposing afterwards the anti-self-duality constraint *H~ = —H~. The grav-
itino supersymmetry transformation rule is (for zero fermions)

Sertt = (% — L H—%) & (6.1.9)

This can be reduced to N = 2, d = 5 supergravity (metric e*,,, graviphoton
vector field V, and symplectic-Majorana gravitino 1,) coupled to a vector
multiplet consisting of a gaugino (the 6th component of the 6-dimensional
gravitino, a real scalar (the KK one) and a vector field W,. The vector
fields V,, and W, are combinations of scalars, the KK vector field that comes
from the 6-dimensional metric A, and the vector field that comes from the
6-dimensional 2-form B,. The identification of the right combinations will
be made by imposing consistency of the truncation.

Using the same techniques as in the reduction of N = 2B, d = 10 super-
gravity on a circle Ref. [94] one gets the 5-dimensional action

/d5x\/|g k[R— 1k*F?*(A) — 1k *F*(B) + Séﬁk*IF(A)F(B)B].
9
(6.1.10)
The truncation to pure supergravity involves setting £ = 1 consistently,
i.e. in such a way that its equation of motion is always satisfied. The &
equation of motion with & = 1 (upon use of Einstein’s equation) implies the

constraint
F%(B) = 2F?(A). (6.1.11)

Let us introduce two linear combinations F(V), G(W) of the vector field
strengths
F(V) = aF(A)+pF(B),
(6.1.12)
GgW) = —BF(A)+aF(B),

with a? + 32 = 1. Substituting them into the above constraint we see that
it is automatically satisfied with G(W) = 0 and 82 = 202, so a = s(a)/V/3
and 3 = s(8)v/2/+v/3. These conditions reduce the equations of motion of A
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and B to a single equation for V. This equation and the resulting Einstein
equation can be derived from the action

S = /dsx 9l (R = 37 + slo) o FFV. (6.1.13)

which is that of the bosonic sector of N = 2,d = 5 supergravity [163].
The relative sign of o and S will be fixed by supersymmetry: using the
decomposition

/3/“ = r}/“@gl, a:0’1’2’3’4’

;)\/5 — ]I®’i0'2, (6114)
o= Fo- A =10 0%,
where the 7?s are 5-dimensional gamma matrices satisfying vo«--v4 = I,
using chirality, we can split the gravitino supersymmetry transformation rule
into

bba = {Va= g5k F(Blva - 1k FulA)} e,
(6.1.15)

bcbu = {0 +3 Plogh+ Lk F(4) = 5k~ F(B) }e.

z/A)w is the 5-dimensional gaugino and its supersymmetry transformation has
to be identically zero. This can be achieved by taking ¢ independent of w
and identifying s(a) = s(8) so

G = s(a) (%F(B) - \/§F(A)> =0. (6.1.16)

It only remains the supersymmetry transformation law of ﬁa that becomes
the 5-dimensional gravitino. Expressed in terms of the surviving vector field,
it takes the right form” [163]

5677ba = Va - S(Q)L(’ch’}/a + Q’ngca)]:bc €. (6117)
8v/3

7 Actually, either the sign of the Chern-Simons term or the F term in the supersymmetry
transformation rule in Ref. [163] is wrong. Choosing the sign of o we can make either of
them coincide with those in Egs. (6.1.10) and (6.1.17), but not both at the same time.
A further check of these signs is provided by the reduction to d = 4: the consistency
conditions for the truncation to pure N = 2,d = 4 supergravity coming from the action
and the gaugino supersymmetry transformation rule are incompatible with the signs of
Ref. [163] but fully compatible with ours.




118

The relation between 6- and 5-dimensional pure supergravity fields is

dow = —1, B,, = vy,
(6.1.18)
g,ug = L\%)Vu: g,uu = g,u,u_%vpvl/a

while the B;U components can be found imposing anti-self-duality.
Now, let us consider the KG6(2, 0) solution [152] in canonical coordinates
with B~ in a convenient gauge

( d§2 = Qd’u,[d’l) -+ z—gfa)d’U/] - d:fa) ; 5(4) = (.’E, ya Z,U)) )

~

KG6(2,0): ¢ B~ = XduA (zdw — zdy).

>
I

\ 1 25485 - 7] exp (9257257) €0,

(6.1.19)
Performing the coordinate transformations
z = cos(%u)z +sin (Fu)w',
w = —sin(28u)2 + cos (Ju)w’, (6.1.20)
v o= o+ 28,
the solution takes the w'-independent form
(2 = 2du[dv’ + % (2 + ) du + N2/ dw] — dE,
KG6(2,0):{ B~ = MeduA (2'dw' — zdy).
[ & = [+ {oh +ydst] exp (2 {3 +5797}) &)
(6.1.21)

with f’(4) = (z,y,2,w').
It is easy to see that it satisfies the truncation conditions

A

gww =—1, Bp, =g, O =0, (6.1.22)
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and, thus, it can be reduced to a solution of pure N = 2,d = 5 supergravity
that turns out to be the maximally supersymmetric K G5 solution [152]:

ds* = 2duldv’ + (42" + 0 + y?)du] — T3,

KG5 (6.1.23)
F = XduAd, As = —s(a)V3).

with Zj3) = (x,y, 7).

6.1.3 Reduction of KG5 to KG4

The action Eq. (6.1.10) can be straightforwardly reduced to d = 4 dimensions
giving the action of N = 2, d = 4 supergravity (consisting of the metric, the
graviphoton vector field V, and a gravitino) coupled to a vector multiplet
(consisting of a vector W), and two real scalars £, plus a gaugino) [164]. The
two vectors will be combinations of the KK vector A, that comes from the
metric and the vector B, that comes from the 5-dimensional vector V,. To
determine the right combinations, we study the consistency of the truncation
of the fields that belong for sure to the matter multiplet £k = 1,1 = 0 and the
gaugino.
The action for the 4-dimensional bosonic fields is

S = /d‘lx\/Hk {R+L1k72(01)? — 1k2F%(A) - L[F(B) + IF(A))?

+5() e[F(B) + IF(A) — 2Aaz]2} .

k=1
4v/3/|g/ ( )
6.1.24

Setting £k = 1,/ = 0 in the equations of motion of £ and | we get two
constraints:
3F?(A)+ F*(B) = 0,
(6.1.25)
V3F(A) — s(a)*F(B) = 0.

The second constraint implies the first and is actually sufficient to iden-
tify the graviphoton and the matter vector field strengths® up to global,

8For k = 1,1 = 0 only.
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irrelevant, signs, that we fix arbitrarily

F(V) = §F(A) - s(a)$F(B),
(6.1.26)
FW) = —¥*F(4) - s(a)iF(B).

2

Setting F'(W) = 0 (which is consistent with the W, equation of motion)
we get the action of (the bosonic sector of) pure N = 2,d = 4 supergravity
(the Einstein-Maxwell action)

S = /d‘lx\/@[R _1p (). (6.1.27)

We can see that this truncation is consistent with the supersymmetry
transformation rules. The 5-dimensional matrices 4% decompose into 4-
dimensional matrices as follows:

=9 a=0,1,2,3,4" = —ivs = Ym17273 - (6.1.28)

The 5-dimensional symplectic-Majorana spinors are a pair of ordinary
4-component Dirac spinors related by the symplectic-Majorana constraint.
Thus, in d = 4 we simply keep one of them, which will be unconstrained and
decomposable, if necessary, into a pair of 4-dimensional Majorana spinors.

Now if the supersymmetry parameter is independent of the compactifica-
tion direction y and we set £ = 1,/ = 0 in the y component of the gravitino
transformation rule (which should become the gaugino transformation rule),
we find that

Setby = 25 F(W)e. (6.1.29)

and, so, the truncation F(WW) = 0 is consistent with setting the gaugino to
zero. The supersymmetry transformation rule of the surviving gravitino is

Sethe = [Vat+ 35 F(V)7a] €. (6.1.30)

The relation between 5-dimensional and 4-dimensional fields that satisfy
the truncation condition is

gﬂ = _17 y = 07
Wiy = o emer (V) Vi = —s(@)%LV,,  (6.1.31)
gull = Guw — gugél@ )
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Now, to apply these results to the K G5 solution Eq. (6.1.23) we first
perform the change of coordinates

( !

x = cos(2f )x'+sin(2)‘75§u)y,

!y = Sln(2\/— u)x' +cos(2>\‘5f u)y', (6.1.32)

!

v = U”+2\/—xya

\

that puts the K G5 solution in the y'-independent form

ds? = 2du[dv" + )‘5 2% du + )‘5 z'dy'] — da_c' G e =@y, ),
KG5:

F = MduAndz.
(6.1.33)
In this form, the K G5 solution just happens to satisfy the truncation condi-
tion that allows us to reduce it to a pure N = 2, d = 4 supergravity solutions
that turns out to be the K G4 maximally supersymmetric spacetime [156],
as promised

ds? = 2du[dv” + 27 Ty)? du] — dT (3, Ty = (2',2),
KG4 .
F = Mdund?, Ay = s(a)%/\5.
(6.1.34)

At first sight it is surprising that in all cases the truncation condition
can be satisfied, at least in a certain gauge. Actually, it is easy to see that
it must happen by thinking in terms of oxidation of the lower-dimensional
solutions: Since the N = 2,d = 5 theory can be reduced to N = 2,d = 4
supergravity coupled to a vector multiplet that can be consistently truncated,
any solution of pure N = 2, d = 4 supergravity can be uplifted to a solution of
the N = 2,d = 5 theory with the same, or bigger, amount of supersymmetry.
Therefore, the K(G4 solution can be uplifted to a maximally supersymmetric
solution of the N = 2, d = 5 theory which turns out to be the KG5 solution
in non-canonical coordinates. Essentially the same mechanism works in the
oxidation of the K'G5 solution to a maximally supersymmetric solution of
N = (2,0),d = 6 that turns out to be the KG6(2,0).

Now it is clear that the same should happen in all cases: all solutions
of pure N = 2,d = 4 supergravity must be related via dimensional reduc-
tion/oxidation to pure N = 2,d = 5 and N = (2,0),d = 6 supergravity
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solutions that preserve the same amount of supersymmetry. In particular,
maximally supersymmetric solutions of these three theories should be re-
lated. We have seen that this is true for the K G spacetimes and now we are
going to study the AdS, x S™ spacetimes.

6.2 Oxidation of Maximally Supersymmetric
d=4,506 AdS, x S™ Spacetimes

6.2.1 Oxidation of the Robinson-Bertotti Solution

The Robinson-Bertotti solution [157] can be obtained either as a particular
member of the Majumdar-Papapetrou family of solutions of the Einstein-
Maxwell equations [165] or as the near-horizon limit of the extreme Reissner-
Nordstrém black hole solution [166] and is given in its electric and magnetic

versions by

ds? = R3dlIZ, — R3dQ%,

F.y = —2Rychy, (6.2.1)

Fgw = 2R2 sin 6 ,

with

iy, = ch?y d¢?® — dx?,

(6.2.2)

dQ%,) = db* +sin® 0dy?,
The metric is that of the direct product of that of AdS, with radius Ry in
global coordinates ¢ € [0,27), x € [0,00) and that of S? with radius R,
in standard spherical coordinates 6 € [0, 7], ¢ € [0,27). It is known to be
maximally supersymmetric in N = 2,d = 4 supergravity [166,167] in both
the electric and magnetic cases, since the whole N = 2, d = 4 supergravity is
invariant under chiral/dual transformations.

Electric Case

Following the rules found in the previous section (with s(a) = +1) and,
further, assuming that the compact coordinatey € [0, 4w Ry) and using instead
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¥ = y/ Ry, we find the d=5 solution

ds? = RZdIl%, — (2R,)? dO%y

(6.2.3)
Fro = \/§R2 chy,
with
Q) = 7 [d2y) + (do + cos dy)?] (6.2.4)

which is the direct product of AdS; with radius R, in global coordinates ¢ €
[0,27), x € [0,00) and that of S® with radius 2R, in Euler-angle coordinates
6 €[0,7], ¢ €[0,27), 1 € [0,47). This solution is the near-horizon limit of a
5-dimensional extreme black hole and it is maximally supersymmetric [168].

Magnetic Case

Straightforward application of the oxidation rules, now with the compact
coordinate in the range y € [0, 27 Ry) with 7 = y/R;y and rescaling x — x/2
leads us to
ds? = (2R,)?dIl%, — R3d02, ,
(3) (2)
(6.2.5)
Fop = —V3R, sinf

with
dTgy) = 3 [dIT%) — (di + sh(x/2)d¢)’] | (6.2.6)

the metric of AdS3 in a form that suggests that this spacetime can be un-
derstood as an S! fibration over AdSs.

The above 5-dimensional solution has the metric of AdSs; x S? which is
the near-horizon limit of the extreme d = 5 string [153].

It has been observed many times that N = 2,d = 5 supergravity (its
action and field content) is a theory that resembles very much N =1,d =11
supergravity [163]. One additional similarity is the presence of two maximally
supersymmetric vacua (AdS,; x S” and AdS; x S*) which are respectively
the near-horizon limits of the solutions that describe the extended objects
of the theory: black hole and string in d = 5 and M2 and M5 branes in
d = 11. However, it should be clear that we can obtain new d = 5 vacua
from new d = 4 vacua, if they exist. As a matter of fact they do exist: the
dyonic RB solutions which have both electric and magnetic components of
the electromagnetic field and share the same AdS, x S? metric.
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Dyonic Case

The dyonic RB solution is given by

ds? = R3dIl%, — R3dQ%,

9 (6.2.7)
F = ~h cos&dr Adt + 2Ry sinEsinfdf A dp
2
where now, for convenience, we use the following AdS, metric:
2 2
T R2
RS dIIgy = (E) dt* — <7> dr?. (6.2.8)

This family of solutions, that includes the purely electric and magnetic
cases that we have just seen, has another parameter apart from the radius
Ry: the duality rotation angle &.

Following the oxidation rules we find a 5-dimensional family of maximally
supersymmetric solutions

/ 2 2
22 r 2 _ & 2_
dsc = <R2> dt ( . ) dr

2
ro.
) — <dy & sin £dt + Ry cos € cos 0d<p) - Rgdﬂé) , (6.2.9)

F = Loosgdrndi—VRysingsing o ndy,
2

\

The explicit form of the Killing spinors in this case reads
e = exp(—X log(r))exp (¢t Y)exp (0 Z)exp (—£ v*) €0y,  (6.2.10)
where

X = ;[sin(§) +* + cos(§) 7], (6.2.11)
Y = Z[sin(§) v + cos(§) vF — "], (6.2.12)

Z = Llcos(&) v + sin(€) 7Y, (6.2.13)
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After the coordinate redefinitions

Y

t st . J 6.2.14
cos (&)t —t, Ty cos (€) — 1, ( )
takes the form
r ’ Ry\*
dg? = Edt + Ry sin€ (dy + cos HdQO)] - <7) dr’ — (2Ry)"dYs)

F = ? dr A dt — /3Ry sin&sin 6 df A dy.
2
(6.2.15)

If we set Ry = 1/2,siné = j, 2t — t and r — r? we recover a solution that
describes the near-horizon limit of the supersymmetric [154] rotating d = 5
black hole, given in [155,169]. While it was known that in the zero-rotation
limit j = 0 this solution has the metric of AdS, x S3, the result in the limiting
case j — 1 was unknown since it is a singular limit. However, by means of
the inverse of the above coordinate transformations, the limit can be taken
in such a way that the limiting metric, at £ = 7/2, is regular: AdS; x S2.
Thus, the near-horizon limit of the 7 = 1 supersymmetric rotating black hole
and the near-horizon limit of the string are identical.

Finally, let us mention the superalgebras associated to these vacua. As
was pointed out in Ref. [155], the superalgebra associated to the solution
(6.2.15), is su(1,1]|2) ®u (1) when 0 < j < 1 and gets enhanced to su(1,1|2)®
su(2) when j = 0. Combining this with the smooth & = 7/2 limit for the
family (6.2.9), one sees that the superalgebra associated to the AdSs; x S?
has to be su(1,1]2) & sl(2,R) and not si(2,R) x su(1,1|2) as was hinted at
in Ref. [170].

6.2.2 Oxidation tod =6

The oxidation of Eq. (6.2.9) gives, after rotation of the two isometric coor-
dinates y,w by the angle associated to the 4-dimensional electric-magnetic
duality &
w = cosén+ Rysinép,
(6.2.16)
y = —sinén+ Rycoséy,
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one recovers the solution
ds? = (2R2)2 dHé) — (2R2)2 dQ%E;) ,

. (6.2.17)
B~ = Edn/\dt— R2cosOdyp A dip,
2

whose metric is that of AdS; x S3, the maximally supersymmetric solution
which is the near-horizon limit of a self-dual string [153]. It is known that
the uplifting of the near-horizon limit of the rotating d = 5 black hole gives,
for any value of the rotation parameter, AdSs; x S3 [171].

6.3 Conclusions

In this Chapter we have shown that the known supersymmetric vacua of the
d=6 N =(2,0),d=5N =2and d =4 N = 2 supergravity are linked
by dimensional reduction. Although this may come as a bit of a surprise
when thinking in terms of dimensional reduction, it is quite obvious from
the oxidation point of view: since all three theories have 8 supercharges and
oxidation cannot reduce the number of preserved supersymmetries, a lower
dimensional maximally supersymmetric solution must lift to a maximally
supersymmetric solution.

From the supergravity point of view, the relations can hold because the
dimensionally reduced theories can be truncated consistently to the minimal
N = 2 supergravity, i.e. without any matter couplings. A subtle point in
the dimensional reduction is that for the Killing spinors to survive the di-
mensional reduction, the Killing spinors must be independent of the compact
coordinates. In a coordinate independent way, this means that there must
be a Killing vector whose action on the Killing spinor vanishes, or put dif-
ferently, there is a bosonic generator in the superalgebra associated to the
solution [172], that is represented trivially on the supercharges. Actually, it
is not difficult to see that from the superalgebra point of view, the relation
between the N = 2 vacua was going to hold.

For definiteness let us consider the superalgebras associated to the AdS, x
S4 spacetimes (See table (6.1)), the analogous results for the KG-waves be-
ing obtainable by a Inonii-Wigner contraction on their AdS x S counter-
parts [173].% Tt is clear that the way to preserve supersymmetry is by em-

9The exception is of course the family of metrics in Eq. (6.2.9), when £ # 0, /2, since
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Space Theory Solution Superalgebra
AdSy x S [N = (2,00 d=6| (6.2.17) | su(l,1]2) ® sl(2,R) @ su(2)
AdS3; x S?| N=2d=5 (6.2.5) su(1,1]2) @ sl(2,R)
AdSy; x S* | N=2d=5 (6.2.3) su(1,1|2) & su(2)
Dyonic N=2d=5 (6.2.9) su(1,1]2) ® u(l)
AdSy x S*| N=2d=4 (6.2.1) su(1,1]2)

Table 6.1: Solutions and their associated superalgebras.

bedding the generator of translations in the compactification direction, in
the non-su(1,1|2) part of the superalgebra. For the dimensional reduction
from d = 6 to d = 5, there are basically 3 choices, corresponding to the 3
5-dimensional solutions given in Egs. (6.2.3,6.2.5,6.2.9). For a further reduc-
tion to d = 4 there is basically one way to embed such a translation generator.
Note that the chain of relations exposed in this letter is quite unique among
the vacua: Had we considered for example the AdS; x S? solution in the
d =6 N = (4,0) supergravity, we would have had to conclude that, since the
associated superalgebra is su(1,1|2) & su(1,1|2), there is no way to preserve
the 16 supercharges in a circle compactification.

its Penrose contraction has 2 more isometries.
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Chapter 7

Geometric Construction of
Killing Spinors and
Supersymmetry Algebras in
Homogeneous Spacetimes

Introduction

In theories with local supersymmetry (supergravity and superstring theories),
the maximally supersymmetric solutions are usually identified as vacua, al-
though vacua with less unbroken supersymmetry can also be interesting. The
vacuum supersymmetry algebra, together with Wigner’s theorem, determine
which fields can be defined on it, their conserved (quantum) numbers, the
particle spectrum etc. Thus, the supersymmetry algebra is a very important
piece of information.

The calculation of the supersymmetry algebra of a solution (see, for ex-
ample, Ref. [174]), involves the calculation of its Killing vectors and Killing
spinors, and the computation of bilinears and Lie derivatives of the Killing
spinors which can sometimes be difficult or tedious, since their functional
form has no manifest geometrical meaning.

However, most known maximally supersymmetric solutions have the space
time metric of some symmetric space that can be identified with a coset G/H
main result is that, quite generally, the Killing spinor equation in maximally
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supersymmetric solutions can be put in the form
(d+u'du)k =0, (7.0.1)

which, written in the form u='d(ux) = 0 tells us that the Killing spinors are
given by
k=u"kKg, (7.0.2)

where kg is a constant Killing spinor. wu is a coset representative in the
spinorial representation. Then, the bilinears ky*k can be easily decomposed
into Killing vectors and the Lie-Lorentz derivative of the Killing spinors with
respect to the Killing vectors are also easily computed. This simplifies dra-
matically the calculation of the supersymmetry algebras of these maximally
supersymmetric solutions.

In Section 7.1 we give a extremely sketchy review of the theory of sym-
metric spaces needed to prove the above general result in the examples that
will follow. In Section 7.2 we use the machinery just introduced to give a
construction of the metric of several well-known maximally supersymmet-
ric supergravity solutions (all of them corresponding to symmetric, but, in
general, not maximally symmetric spacetimes) and to show how the general
rule for the construction of the Killing spinors works in practice. We start
with the simplest non-trivial example: AdS,; in N = 1,d = 4 (AdS) super-
gravity (Section 7.2.1). Then we consider the next non-trivial example: the
Robinson-Bertotti solution with geometry AdS, x S? (Section 7.2.2) which
we then generalize to other known maximally supersymmetric solutions with
geometries of the type AdS x S (Section 7.2.3). Finally, we consider in Sec-
tion 7.2 the last kind of known maximally supersymmetric solutions: the
Kowalski-Glikman solutions with Hpp-wave geometries. Section 7.3 contains
our conclusions perspectives for future work.

7.1 Symmetric Spaces

Let us consider® the (p + ¢)-dimensional Lie group G, its p-dimensional sub-
group H and the g-dimensional space of right cosets G/H = {gH}. The Lie
algebra g of G is spanned by the generators 77 (I = 1,---,p + ¢) with Lie
algebra

[T7,T5) = fr,%Tx . (7.1.1)

!Two Physics-oriented general references are [175] and [176].
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The Lie algebra of H is generated by the subalgebra h C g spanned by the
generators M; (i = 1,--- ,p) with Lie brackets

[M;, Mj] = fi* My . (7.1.2)

The vector subspace spanned by the remaining generators, denoted by
P,, (a,b=1,---,q) is denoted by ¢ and, as vector spaces we have g = ¢® b.
Exponentiating the generators of € we can construct a coset representative
u(z) = u(z',---,2%). We will always construct the coset representative as
a product of generic elements of the 1-dimensional subgroups generated by
the Pgs:

u(z) =e* .. e? P (7.1.3)

Under a left transformation g € G u transforms into another element of G
which only becomes a coset representative u(z') after a right transformation
with an element h € H, which is a function of g and x:

gu(z) = u(x')h. (7.1.4)

The adjoint representation of g has as representation space g and can be
defined by its action on its generators: for any 7' € g

Cag) (T)(Ty) = [T, T7), = Taq; (T1)% 5 = fr,. (7.1.5)

Exponentiating the generators of the Lie algebra g in the adjoint repre-
sentation, we get the adjoint representation of the group G

Tagj (9(7)) = exp {z'Tag; (T1)} - (7.1.6)
that acts on the Lie algebra generators
T, =TT ag; (9)" . (7.1.7)
Actually, in any representation r, the adjoint action of G on g is given by
Lr(9)Tr(T)Tr(971) = Tr(T)Tagi (9)7r- (7.1.8)
The Killing metric Kry is defined by

K1y = Tr[Cag; (Ty)Tag; (T))], (7.1.9)
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and by construction it is invariant under the adjoint action of G, due to the
cyclic property of the trace.

The homogeneous space G/H can be used to construct a symmetric space
if the pair (£, b) is a symmetric pair satisfying

[h,b] C b,
[e,h] C €, (7.1.10)
[, ¢ C b.

The first condition is always satisfied for homogeneous spaces since § is a
subalgebra. The second condition says that ¢ is a representation of H. The
two components of a symmetric pair are mutually orthogonal with respect
to the Killing metric which is block-diagonal.

The first step is the construction of the left-invariant Lie-algebra valued
Maurer-Cartan 1-form V

= —u'du = e"P, +9'M;, (7.1.11)

that we have decomposed in horizontal e* and vertical components ¥¢. By
construction, V satisfies the Maurer-Cartan equations

de® — 9 A e fi® = 0,
dV—-VAV =0, = (7.1.12)
dy — %ﬁj A ﬂkfjki — %e“ Nebfat = 0.

The horizontal components e® provide us with a co-frame for G/H. Under
left multiplication by a constant element g € G u(z') = gu(x)h !, which
implies for the Maurer-Cartan 1-form components

e*(z') = (he(z)h™')® = [rq5(h)%eb(z) ,
(7.1.13)
P(x') = (MI(z)h™") + (h~'dh)".

The second step to construct a symmetric space is the construction of
the metric. With a symmetric bilinear form B,, in £ we can construct a

Riemannian metric
ds? ~ Bype® @€’ (7.1.14)



133

that will be invariant under the left action of G if B is:
fita°Bpye = 0. (7.1.15)

This is guaranteed if B,,, = K,,,, the projection on £ of the Killing metric,
but sometimes this is singular and another one has to be used . The resulting
Riemannian metric contains G in its isometry group (which could be bigger)
and must admit p + ¢ Killing vector fields k;). The Killing vectors k(r)
and the so-called H-compensator W;' are defined through the infinitesimal
version of the transformation rule gu(x) = u(z')h with

g = 14Ty,
h = 1-— O'IWIiMi s (7116)
o' =zt + okt

Using the above equations into
u(z + 6z) = u(z) + o'kyu, (7.1.17)

we get .
Tru = kru — uWi'M; . (7.1.18)
Acting with u™! on the left and using the definitions of the adjoint action

and the Maurer-Cartan 1-forms , we get
TiTaq;(u ™)1 = —k*Pa — (k"Y' + Wi') M;, (7.1.19)

which, projected on the horizontal and vertical subspaces gives the following
expressions for the tangent space components of the Killing vector fields and
the H-compensator

ko® = —Tagu™ (@)1, (7.1.20)

Wi = =k, — Tagi(u'(z))'s . (7.1.21)
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H-Covariant Derivatives

According to the second of Egs. (7.1.13) the vertical components #* transform
as an fh-valued connection. In fact, comparing the Maurer-Cartan equation
for the horizontal components e® with the Cartan structure equation for the
co-frame and (torsionless) spin connection

de® —w'y N e’ =0, (7.1.22)
we find that the spin connection is given by
w“b = 19ifiba == ’l9iFAdj (Mi)ab . (7123)

We use these results to define the H-covariant derivative that acts on
any object that transforms contravariantly ¢’ = I'.(h)¢ or covariantly ¢’ =
¥y (h™!) (for instance, u(x) itself) in the representation r of H:

Do = 0,6 — 9,'T, (M), Db = 0,0 + 9,' T (M;) (7.1.24)
In particular, the Maurer-Cartan equations tell us that
Dje’ = 0. (7.1.25)
By definition, the Levi-Civita connection is given by
% =D, . (7.1.26)

Finally, let us introduce the H-covariant Lie derivative with respect to
the Killing vectors k()®> on objects that transform contravariantly (¢) or
covariantly y () in the representation r of H:

]Lk(])¢ = Ek(1)¢ + WIZFT(M’L)¢a ]L‘k(])w = Ek([)w - wWIZFT(M’L) . (7127)

2 H-covariant Lie derivatives can be defined with respect to any vector, although the
Lie bracket property Eq. (7.1.28) is only satisfied for Killing vectors. The spinorial Lie
derivative [177-179] or the Lie-Lorentz derivative that naturally appear in calculations of
supersymmetry algebras [174,180] can actually be seen as particular examples of this more
general operator (see e.g. Ref. [181]), and, actually, are identical objects when acting on
Killing spinors of maximally supersymmetric spacetimes, as we are going to show.
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This Lie derivative has, among other properties

[]Lk(l) ’ IL’“(J)] = I[‘[k(z) kenlo (7.1.28)
Ligye® = 0 (7.1.29)
]Lk(f)u = Ek(z)u —uWr'M; = Tru, (7.1.30)

where the last property follows from Egs. (7.1.21) and (7.1.18).

7.2 Killing Spinors in Symmetric Spacetimes

Most maximally supersymmetric solutions of supergravity theories have the
metric of some symmetric spacetime. In some cases (Minkowski and AdS)
the spacetime is also maximally symmetric but in other cases (AdS x S and
KG spacetimes) it is not, but we can always use the procedure explained
in the previous section to construct the metric, spin connection and Killing
vectors. We are going to see, example by example, that, when we construct
in that way the metric, the Killing spinor equation always takes the form
Eq. (7.0.1). It is, nevertheless, convenient to give a brief overview of how
we arrive to the general result. Then, we are going to show how the general
result can be exploited to calculate the commutators of the supersymmetry
algebra.

In all supergravity theories, the Killing spinor equation is of the the form

(Vu+Q,)k=0, (7.2.1)

where the form of {2 depends on specific details of the theory. Multiplying
by dz*, it takes the form

(d— twuy™® +Q)k=0. (7.2.2)

If we construct the symmetric space as in the previous section, then the
spin connection 1-form wgy, is given by Eq. (7.1.23) and takes values in the
vertical Lie subalgebra . Further,

Ly(Mi) = §fi" %", (7.2.3)
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provides a (spinorial) representation of f and the Killing spinor equation
becomes .
(d—9Ts(M;) + Q) =0. (7.2.4)

In all the cases that we are going to examine
O = —e'T(P,), (7.2.5)

where the matrices I's(P,) are products of a number of Dirac gamma ma-
trices (and, possibly, of other matrices in extended supergravities). Thus,
on account of the definition of the Maurer-Cartan 1-forms Eq. (7.1.11), the
Killing spinor equation can be written in the form Eq. (7.0.1)

(d—e"Ts(Py) — 9T5(M;)) k= (d+Ty(u H)dl(u)) k=0, (7.2.6)

with
Fs(u) =% Ts(P1) , ., equS(Pq) , (727)

and the solution can be written in the form
K = y(u™) k0" , (7.2.8)

for an arbitrary constant spinor x¢? (we have written explicitly the spinor
indices here). Since there will be as many independent Killing spinors as
components has a real spinor?, we can use a spinorial index o to label a basis
of Killing spinors:

K,(a)ﬂ = Fs(u_l)ﬂa . (7.2.9)

Killing spinors and Killing vectors are used to find the supersymmetry
algebra of supergravity backgrounds (see, e.g. [155,174,180]). Killing spinors
are related to supercharges and Killing vectors to bosonic charges. The anti-
commutator of two supercharges gives bosonic charges and, correspondingly
the bilinears —iky*k of Killing spinors are Killing vectors. To calculate
the anticommutator of any two supercharges {Qa), @)} associated to the
Killing spinors k(,) we have to decompose the bilinears into linear combina-
tions of the Killing vectors k)

—il??(a)’)/“li(g)a“ = Caﬂlk(]') , (7.2.10)

3We are considering only Majorana spinors.
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finding the coefficients c,5’. Now, using the above general form of the Killing
spinors, the bilinears take the form

—iR(@) 7" k(5 Op = =il (u™)a"Crs(7%) L5 (u™") g, (7.2.11)

where C is the charge conjugation matrix C " 'y*7C = —~®. Now, in most
cases*,the matrices 7 happen to be proportional to the the dual® P® of a
Lie algebra generator P, I';(P%)

7% = ST, (PY), (7.2.12)

for some matrix S that depends on the case we are considering. The combi-
nation C = CS acts as a charge conjugation matrix in the subspace spanned
by the horizontal generators in the spinorial representation®

C ', (PY)TC = —T,(PY), (7.2.13)
SO R B
Ty(u H)TCy* =T,(u )TCr,(P*) = CT,(u)T(PY). (7.2.14)
and, thus,
—i/%(a)7“/€(5)au = —z’émFs(u)”’(;Ps(P“)Jer(u‘l)fgea. (7.2.15)

In this expression we can recognize uP%; ! in the spinorial representation,
which is the coadjoint action of the coset element v on P*

_m(a)vu’ﬁ(ﬂ)au = _iéa’rFS(TI)’yﬂFAdj (U_l)alea = _iéa7FS(TI)7ﬂk(I) )

where we have used Eq. (7.1.20). The superalgebra structure constants c,s’
can be readily identified with —iC,,T's(T")s.

To complete all the commutation relations of the supersymmetry algebra,
we need the commutators of the bosonic charges and the supercharges, which
are determined by the spinorial or Lie-Lorentz derivative of the Killing vectors
on the Killing spinors Ly, £(a) [174,180], since this operation preserves the

4The exception seems to be the Kowalski-Glikman Hpp-wave spacetimes.

5Tt is always possible to find the dual of a representation that uses (unitary) gamma
matrices.

6We thank P. Meessen for pointing this out to us.
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supercovariant derivative (at least in the ungauged supergravities that we
are going to consider) and transforms Killing spinors into Killing spinors

Lir ita) = car’ki(p) s = [Qa), )] = car”Qup) - (7.2.16)

The Lie-Lorentz derivative acting on a (contravariant) spinor 1 is given
by [178,179]
Liy ¥ = k" Vu) + §Vakin s - (7.2.17)

On a symmetric space G/H,
k" Vuh =k 0unp — k"9, T (M),

| (7.2.18)
Furthermore
Ok’ = —0uLagi(u")s
= Tagy(u™)?;0,Tag;(v)’ kT ag;(u™) "7
= V7. Tag(u1)"; (7.2.19)
= —e*ufai’Tagj(u )’ — 9 ficTagi(u 1)
= e fia’Tagj(u™)' + 9 ficlkn©,
SO
ivakfI)P“b = ifiabFAdj (u—l)il,yab = _PAdj (u_l)iIFS(MZ') , (7.2.20)
and
Le,, 0 = k@y"0u — ka0 uTs(Mi)p — Tagy(u™") 1Ts(M;)
(7.2.21)

Lyt + Wil (M)

Then, the Lie-lorentz derivative coincides withe the H-covariant Lie deriva-
tive. On the inverse coset representative

Loy Ds(u™) = =T (u™") Ly, Ts (w)]Ts(u™") = —Ty(uHT(T7),  (7.2.22)
on account of Eq. (7.1.30), which implies the commutators

[Q(a)’ TI] = _Q(,B)Fs (TI)'Ba . (7223)
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7.2.1 AdSsin N =1,d =4 AdS Supergravity

AdS, is the maximally supersymmetric vacuum of N =1,d =4 AdS super-
gravity: the integrability conditions of the Killing spinor equations vanish
identically, which implies that 4 independent solutions exist. They are not
hard to find (see e.g. Ref [182]), but the expressions one gets in most coor-
dinate systems are difficult to make sense of and they are difficult to work
with to find supersymmetry algebras.

AdS, can be identified with the coset SO(2,3)/SO(1,3). We introduce
SO(2,3) indices a, b,---=—1,0,1,2,3. The metric is ﬁai’ = diag(++——-)
and g = so(2,3) the Lie algebra of SO(2,3) can be written in the general
form

[Maiﬂ Mea‘] = —ﬁaéMi,g - ﬁg,jMae + ﬁa,;M,;é + Ny M5 - (7.2.24)

We can now perform a 1 + 4 splitting of the indices ¢ = (—1,a), a =
0,1,2,3 and define a new basis

A

Mab = Mab; M, 1= _g_IPa, (7225)

where we have introduced the dimensionful parameter g related to the AdS,
radius R and to the cosmological constant A by

R=1/g=+/—3/A. (7.2.26)
In terms of the new basis, the so(2, 3) algebra reads

[Maba Mcd] - _nachd - nbdMac + nadec + nbcMad 3
(7.2.27)
[Pw Mab] = _ZP[anb]c ) [Paa Pb] = _QZMab .

The Mps generate the subalgebra h = so(1, 3) of the Lorentz subgroup.
The complement is ¢ = {P,} and the above commutation relations tell us
that we have a symmetric pair. Following the general recipe, we construct
the coset representative

u(z) = e P P2e? P1gnPo (7.2.28)
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and the Maurer-Cartan 1-forms e?, that we are going to use as Vierbeins are’
e = —dz®, e?=—cosz’chaldz?,

e! = —cosz’dx', e* = —cosz’chx’ cha?dz®. (7.2.30)

and using the Killing metric (+ — ——) we get the AdS; metric in somewhat

unusual coordinates
ds® = (dz®)? — cos® 2°{(dz"')? + ch®z'[(d2?)? + ch’z'(dz?®)?}.  (7.2.31)

We do not need the explicit form of the vertical 1-forms 9%°, but we
need to know how they enter the spin connection. According to the general
formula Eq. (7.1.23)

w = iec‘ifcd_lb_la = %eﬁ“ncb. (7.2.32)
The Killing spinor equation is
(d — twepy™ — Lre )k =0, (7.2.33)
and takes immediately the form of Eq. (7.0.1) with
Ls(P) = %7, Ls(Map) = 57ab (7.2.34)

and the Killing spinors are of the general form k(q)? = (u1)% 4.
We define the dual generators I';(P®) by

Tr[Cs(PY)T(P)] = 6%, = [4(P%) = ;—;fy“,

(7.2.35)
Tr [Ty (M®)T,(Pug)] = 6%.q, = T(MP®) = —%7“”.
The bilinears are, then (S =1)
—ik()Y k(g €a = 29Ts(u1)TCT(P*)s(u e,
= gCT(MP)T pg5(u 1) 64 (7.2.36)
"In this and similar calculations one has to use the formula
e®XYe X = coszY +sinzZ, (7.2.29)

where [X,Y] =2, [V,Z]=X, [Z,X]=Y .
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and the anticommutator of the supercharges takes the well-known form

{Qua), Quay} = 9[CT (M) o5 My = =i(CY)as Pa — L(CY™) s Map »

that reduces to the Poincaré supersymmetry algebra in the g — 0 limit.

A

The commutators [Q(a), M,;] are given by the general formula (7.2.23):

[Q(a)’ Mai)] = _Q(ﬂ)Fs(M@E)ﬂa . (7237)

The generalization to higher dimensions® and to spheres, described as
cosets SO(n+1)/SO(n) is evident. As a matter of fact, the coset structure
underlies the calculation of Killing spinors in S™ of Ref. [182] but only after
this is realized the calculation of bilinears etc. becomes really simple.

7.2.2 The Robinson-Bertotti Solution in N = 2,d = 4
Supergravity

The Robinson-Bertotti solution of N = 2,d = 4 supergravity [157] can be
obtained as the near-horizon limit of the extreme Reissner-Nordstrom black
hole and is known to be maximally supersymmetric [166,167], although, to
the best of our knowledge, no explicit expression of its 8 real Killing spinors
is available in the literature. The metric is that of the direct product of that
of AdS, with radius R, and that of S? with radius R,

ds? = R}dI, — R3dQ%,
(7.2.38)
F = —fwads,

where dﬂé) stands for the metric of the AdS, spacetime of unit radius, dQé)

for the metric of the unit 2-sphere S? and wags, for the volume 2-form of
radius Ry. Both AdS, and S? are symmetric spacetimes SO(2,1)/S0(2) and
SO(3)/SO(2) and we can construct them using the procedure explained in
Section 7.1.

The Lie algebra of SO(2,1) can be written in the form

17, Ty = —er;eQ**FTy, I,J,---=1,2,3,, Q=diag(++—), (7.2.39)

8Maximally supersymmetric AdS vacua arise in gauged supergravities in d < 7.
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and the Lie algebra of SO(3) can be written in the form
[TI,TJ] = _CIJKTK, I, J, = 1,2,3, . (7240)

We choose the subalgebra § to be generated by 77 and Ty so € is generated
by 15,75 and ,T1,T5. We perform the following redefinitions

Tl = Ml . Tl = R2P3 ’
T, = R,P, Ty = RyP;, (7.2.41)
T3 = R2P0 , Tg = M2 ,

and the coset representative is the product of two mutually commuting coset
representatives u, i with

u = ef2oPoefoxtr i = eftzebagRa(0-3)P2 (7.2.42)
We get
e = —Rychydg, e2 = —Rydf,
el = —Rydy, e = —Rysinfdyp, (7.2.43)
9P = —shydg, 9?2 = —cosfdp,
that lead, using B = diag (+ — ——) to the above AdSy x S? metric with
dﬂé) = ch?yd¢?® — dx?,
(7.2.44)
dQ,, = di* + sin? fdy? .
Contracting with dx* the N = 2,d = 4 Killing spinor equation
(Viu+ 1t Fyuo’)s =0, (7.2.45)

we immediately see that it takes the form

[d+ (vi)'d(ui)] =0, (7.2.46)
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where the Lie algebra generators are represented by

I(P) = s7'0%, Ty(P) = s7"v'%0%,
I,(P) = —ﬁyog? , [y(P) = ﬁfyofylf)ﬁa? , (7.2.47)
Fs(Ml) = %7071 y PS(MQ) = %7273 .

The Killing spinors are, then

~\ — _ 1,12 1 2 _1 O0N1a2 2 _1¢p mw\A0,143,.2
k= (ull) kg = €297 T eXYV 7 em 30 o= (=500 e e (7.2.48)

Let us now consider the bilinears —iky*x and define the duals I';(P*) by
Tr[[s(PY)Ts(Py)] = 0% (7.2.49)

Then
~* = —R%SFS(P“) , S =+%0?, (7.2.50)

and we can see that the modified charge conjugation matrix C = CS has the
required property

C'T,(P)TC = -T,(R,), = (uit)™7C = Cua, (7.2.51)

that allows us to express the bilinears in the form

_Z'E;’(az)’yaﬁ(ﬂj) = é—z {é[FS(TI)k(I) + FS(TI)]}(I)]}(azﬁ]) , (7252)

where the k(s are the Killing vectors of AdSs and the /}(I)s are those of S2.
This translates into the anticommutator

{Qai), Qs } = —10i5(CY*)apPu + R%Ca/i%]\/h + 1%(6'75)(1,861']']\42- (7.2.53)

The commutators of the supercharges and the bosonic generators are
given by the general formula (7.2.23).
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7.2.3 Other AdS x S Solutions

There are some other maximally supersymmetric vacua of supergravity the-
ories with metrics which are the direct product of AdS,, and S™ spacetimes.
They typically arise in the near-horizon limit of p-brane solutions that pre-
serve only a half of the supersymmetries [59] and can be used in Freund-Rubin
compactifications [183], with S™ as internal space, to get gauged supergrav-
ities in n dimensions with gauge group SO(n + 1). The known cases are
AdS, x 8™ and AdS; x S*in N = 1,d = 11 supergravity, AdSs x S° in
N = 2B,d = 10 supergravity, AdS; x S® in N = 2,d = 6 supergravity,
AdSy x S® [168] and AdSs x S? [153] in N = 2,d = 5 supergravity and the
Robinson-Bertotti solution AdS; x S? in N = 2,d = 4 that we have just
studied and that can be taken as prototype.

The Killing spinors of all these solutions can be obtained in similar forms.
The only complications that arise are due to the symplectic-Majorana nature
of supergravity spinors in 4 < d < 8. We are going to see next how the Killing
spinors and vectors the supersymmetry algebras of AdS;xS” and AdS7 x S*in
N = 1,d = 11 supergravity and AdSs x S° in N = 2B, d = 10 supergravity
can be quickly obtained.

AdSy; x S” in N = 1,d = 11 Supergravity

This solution is given by

ds? = R3dIZ, — (2R,)? dZ,
(7.2.54)

_ 3 _ 3
G = gWadsi, = Goizs = g,

where dﬂa) stands for the metric of the AdS, spacetime of unit radius, dQ?ﬂ
for the metric of the unit 7-sphere S7 and waqgs, for the volume 4-form of
radius Ry.

We construct AdS, as in Section 7.2.1 with ¢ = 1/R, and this gives us
the first four Elfbeins e associated to the generators P, a = 0,1,2,3 and
the first 6 1-forms 9% = —1%® associated to the first 4 generators of the
11-dimensional Lorentz group My a,b = 0,1,2,3. The detailed expressions
of these 1-forms is really not necessary.

To construct the sphere of radius 2R, we split the SO(8) Lie algebra
generators

[

ab’

M&;} = dacMyg + G3qMac — 03qMs; — 635 My. (7.2.55)
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into

Mgi - 2R4I‘)Z ) Mij - Mi+3j+3 ; Z,j == 1, cc 7, (7256)
and provide the last 7 P,’s and Lorentz generators My, a,b =4,...,8. The
standard procedure also gives us the associated 7 Elfbeins e* and 1-forms
9% a,b = 4,...,8. Again, the detailed expressions are not necessary. The
metric in Eq. (7.2.54) is obtained using the Killing metric of both factors
(_+_ .. _)_

The general arguments given at the beginning of this section ensure that

A"V, =d =Y 9" ,(Ma), Ty(Ma) = 1T, (7.2.57)
a<b

and a straightforward calculation gives for the second piece of the Killing
spinor equation

% (Fabcdfef — 8Fabced) Gabcd = —eaFS(Pa) , (7258)
where [ 0123
EF Pa ) a S 3,
Ps(Pa) = , (7.2.59)
—dm L L, a>3.
4

The Killing spinor equation takes the general form Eq. (7.0.1) and is solved
as usual. The specific form of the solution depends on the specific choice of
coset representative, but it is unimportant in what follows.

Now, let us consider the bilinears —ik(o)[“%(g). Let us define generators
[s(P?) dual to the I';(P,) that are exponentiated to construct the coset
representative

Tr [C5(PY)T5(By)] = 6%. (7.2.60)
They are given by
—%FM%F“, a<3,
[,(P*) = ' ,
— B 0123pa a>3. (7.2.61)
L, (M®) = —%I‘“b.
The gamma matrices that appear in the bilinears are related to these by
re = —}%fiSFS(P“), a<3,

' S =T (7.2.62)
re = 280, (P, a>3,
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and, since the modified charge conjugation matrix ¢ = CS has the required
property ~ ~
C'I(P)TC = —I',(PY), (7.2.63)

the bilinears can be written in the form (suppressing the indices «, )
—ikD% = FEC[T(M®)k 3 + 5Ts(M™)k 5], (7.2.64)

where hatted generators and Killing vectors belong to the AdS, factor and
the tilded ones to the S” factor. The anticommutator of two supercharges can
be immediately read in this expression and the commutator of supercharges
and bosonic charges is given by the general formula Eq. (7.2.23).

AdS; x S* in N = 1,d = 11 Supergravity

This solution is given by

ds* = RPdIZ, — (Rr/2)?d, .
(7.2.65)

- 6 S
G = gpwss, = Grmo0= 3,

where we use the same notation as in the preceding cases and wgs stands
for the volume of the sphere of radius R;/2. The definitions of the P, and
M, generators and the construction of the Elfbeins etc. is almost identical
to that of the preceding case and we immediately arrive at

A"V, =d =Y 9T ,(My), Ts(Mab) = 3T0s . (7.2.66)

a<b

The 1-forms 9% have a different form now, but we do not need to know
it. The second piece of the Killing spinor equation takes the form

ﬁ (Fadefef o 8Fabced) Gabed = —6aF3(Pa) , (7267)
where now -
sl La a<6,
Ls(Fa) = (7.2.68)

o KL a>6.
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The Elfbeins are also different, but, yet again, we do not need to know
their detailed expressions. The dual generators are defined as usual and are
given by

iR a
_1_(37F78910F ’ GSG,
FS(P“) = )
iRz 78910 a>6. (7.2.69)
Lo(M™) = —{I.
and
Fa = %MSFS(PG), G,SG,
7 __ 178910
| S=rT i (7.2.70)
re — *ISQZSFS(PG), a>6,
7

The modified charge conjugation matrix has the property Eq. (7.2.63)
and we get, suppressing again af indices

—iRD = Z2CI0, (M) k g — 205 (M) 3], (7.2.71)

where hatted generators and Killing vectors belong to the AdS; factor and
the tilded ones to the S* factor. Again, the anticommutator of two super-
charges can be immediately read in this expression and the commutator of
supercharges and bosonic charges is given by the general formula Eq. (7.2.23).

AdSs x S? in N = 2B, d = 10 Supergravity
The solution is given in the string frame by

ds* = R2dIIZ) — R3S,

GO = €8 (wags, +wss), = Glvhse = Gighgs = o, (12.72)
Y = %o-

This case is exactly analogous to the previous ones. The normalization in
the splitting of the generators of SO(2,4) and SO(6) is now, respectively:

~

Ma,1 = _R5Pa s ((1, = 0, ,4)
) (7.2.73)
Mga = R5Pa, (a:5,...,9).
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Once again we do not need to know the explicit form of the Zehnbeins.
From the covariant derivative term in the gravitino supersymmetry trans-
formation (the variation of the dilatino vanishes automatically) we get the
generators of SO(1,4) and SO(5) in the spinor representation. From the
remaining piece:

- 161-5!ewoGgiBiefrdeefFaiUZ = —e'T'\(P,), (7.2.74)

we read the spinor representation for the generators P,°

ﬁ02F012341‘\a , (CL — 0’ ... ,4)

Fs(Pa) - (7275)

—ﬁJZFOI%“Fa. (a=5,---,9)

The dual generators are
[y(P?) = H5g?T%Ire = T¢ = 380 (PY), §=oT"%, (7.2.76)

and the modified charge conjugation matrix has the required property Eq.
(7.2.63) that leads to

—ikD% = ZC[0(M®)k g + D (M®)k 5] (7.2.77)

7.2.4 Hpp-wave Spacetimes and the KG4,5,6,10,11 So-
lutions

Although maximally supersymmetric pp-wave solutions were discovered long
time ago by Kowalski-Glikman in N = 2)d = 4 and N = 1,d = 11 su-
pergravity [134,156], only recently they have received wide attention. This
renewed interest has been accompanied with the discovery of new maxi-
mally supersymmetric solutions of the same kind (henceforth KG solutions)
in N = 2B,d = 10 supergravity [136] and in N = 2,d = 5,6 supergrav-
ities [152], and by the realization that they can be obtained by taking a
Penrose limit [140,141] of the known AdS x S maximally supersymmetric
solutions [142,143].

The K G solutions are particular examples of homogeneous pp-wave space-
times (Hpp-waves), symmetric spacetimes to which we can apply our formal-
ism. Let us review briefly the coset construction that leads to them [135,160].

9Here there is another (completely equivalent, since we are dealing with chiral spinors)
possibility, consisting in replacing 01234 by 156789,
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The generators of g in Hpp-wave spacetimes are {T ,T,,T;, Ty} i =
1,---,d — 2 and their non-vanishing Lie brackets are

[T_, T;] == T*i s [T_, Tﬂ] == A”’_TJ , [T'z: T*j] == Az'jT_|_ , Aij == Aji . (7278)

T, is central in this Lie algebra. The subalgebra § is generated by the
T,; = M; and ¢ is generated by T_ = P_, T, = P,, T; = P;, and the coset
representative is chosen to be

u=e" P Prer' i (7.2.79)
which lead to the Maurer-Cartan 1-form
V =u'du = —da” P_—(dzt+32"27 Ajjda™ ) Py —da’ P—a' dz™ M; . (7.2.80)

Since g is not semisimple, its Killing metric is singular and cannot be
used to construct a G-invariant metric. Instead, we choose!®

B_|__ = 1, Bij = +5ija (7281)
and we get the general Hpp-wave metric
ds* = 2dz™ (dzt + 12’2 Ajjda™) + da'da’ . (7.2.82)

Different Hpp-wave metrics are characterized by the matrix A;; up to
SO(d — 2) rotations. On the other hand (and this is an important difference
with the previous cases), the Hpp-wave metric can have more isometries: all
possible rotations of the z* that preserve the matrix A;;. These rotations do
not belong to g and the corresponding Killing vectors cannot be found by
applying Eq. (7.1.20).

Let us now consider the KG11 solution. Its metric is of the above general
Hpp-wave form, with A;; and the 4-form field strength given by

_é)‘Q(SU 7’:.7 = 152131
G_123 = )\, Az’j = (7283)
1 . .
—ﬁ)\Qdij Z,j:4,"',9.

This solution is additionally invariant under rotations in the subspaces

parametrized by z!,2% 23 and 2*,---,2°. Let us now consider the Killing

10The metric By_ =1, B;j = —§;; is not invariant under the action of h on ¢. Thus,
we are forced to work with mostly plus signature in this section.
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spinor equation. According to the general construction, we only need to
compute the €2 part that involves the 4-form field strength. This can be
written in the form —e®T's(P,) with

L(Po) = %(F_F++1)F123,

T, (Py) = 0,
(7.2.84)
=T8T, =1,2,3,

A 1T —123 s
—ATTIBL, =49,

and the Killing spinor has the same form as usual, the only difference being
that one of the P, generators (P, )is represented by zero and does not con-
tribute to the coset representative u. The general formula Eq. (7.2.23) can be
used to calculate the commutators of supercharges and bosonic generators.
We see that P, is a central charge also in the superalgebra [135]. The calcu-
lation of the anticommutators of supercharges is more complicated, though,
basically because we can construct duals

[ (P*) ~ IH231a (7.2.85)

but the matrix ['!?3 is singular and the relation cannot be inverted. This is
related to the existence of the extra rotational Killing vectors k(;;) that do
appear in the bilinear —ik ) I'*kxe, [135]. The above equation can in fact be
used to relate the Killing vectors k() to some of all the possible bilinears.
The additional Killing vectors k;;) appear in the other bilinears (associated
to the anticommutators {@_, @_} in the notation of Ref. [135]).
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7.3 Conclusions

In this Chapter we have checked in almost all known maximally supersym-
metric backgrounds that the Killing spinor equation can be set in the form
Eq. (7.0.1) and we have shown how this can be exploited to calculate their
supersymmetry algebras using results from the theory of symmetric spaces.
There is one exceptional case: the KG spaces, for which it is not easy to
compute all the possible anticommutators {Qa), Qs)}-

The obvious extension of this work is to backgrounds with less supersym-
metry, like those that can be obtained by replacing the sphere in AdS x S
solutions by another homogeneous space with the right curvature [184-186].
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Chapter 8

The Near-Horizon Limit of the
Extreme Rotating d =5 Black
Hole as a Homogeneous
Spacetime

Introduction

The vast majority of the known maximally supersymmetric solutions of su-
pergravity theories seem to be symmetric spaces: Minkowski or AdS space-
times, products of AdS spacetimes and spheres AdS,, x S™ or Hpp-wave
spacetimes. Their Killing vectors and spinors and their relations that de-
termine their supersymmetry algebras can be found by simple geometrical
methods [33].

The only exception seems to be the near-horizon limit of the extreme
rotating d = 5 black holes [155,159,171,187]. This solution can be written
in the form [32]

ds? = RQdH%Z) - R%ZQ?Q) — R%(d) + cos a.cos Odyp — sin asinhxdg)? ,

F = +/3Rcosacoshydy A dp —/3Rsinasinfdd A dy,
(8.0.1)

153
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where
I cosh?y d¢? — dx?,
(8.0.2)

02, = do® +sin?0dy?,

are respectively the metrics of the unit radius AdS, spacetime and the unit
radius 2-sphere S%. The rotation parameter j is here cos a.

The metric of this solution looks like a sort of twisted product AdSs x
53 in which the sphere and the AdS spacetime share a common direction
parametrized by 1. Actually, when cosa = 1 (the purely electric solution),
the dimension 9 belongs only to the sphere and the metric is exactly that
of AdS, x S and, when cosa = 0, the dimension v belongs entirely to the
AdS spacetime and the metric is exactly that AdSs; x S2. These are singular
limits, though, because the isometry group is the 7-dimensional SO(2,1) x
SO(3) x SO(2) for generic values of cosa but becomes the 9-dimensional
SO(2,1) x SO4) or SO(2,2) x SO(3) in the two limits

Not surprisingly, the solution can be obtained by dimensional reduction of
the AdS3xS? solution of N = 2, d = 6 supergravity along a direction which is

a linear combination of the two S fibers of the Hopf fibrations AdSs il) AdSs

and $3 %5 52 [32]. It can also be obtained by dimensional oxidation of the
dyonic Robinson-Bertotti solution [157] of N = 2,d = 4 supergravity [32],
(whose metric is that of AdSs x S? and is also maximally supersymmetric
[166,167]) and these dimensional relations give us very important clues about
the geometry of the solution and how to find a coset construction of its
metric [176].

In fact, these relations immediately suggest that the metric could be con-
structed as an invariant metric over the coset %2)‘30(3), in which the
subgroup SO(2); is a combination of he two SO(2) subgroups of SO(2,1)
and SO(3), that is: the group manifold SO(2,1) equipped with the bi-
invariant metric can be identified with the AdS3 spacetime and the coset
S0O(2,1)/S0O(2) with the left-invariant metric can be identified (locally) with
the AdS, spacetime. Analogously, the group manifold SO(3) equipped with
the bi-invariant metric can be identified (locally) with the S® spacetime and
the coset SO(3)/SO(2) with the left-invariant metric can be identified with
the S? spacetime. In the product AdS; x S? there are two SO(2) subgroups
available for taking the quotient (which is equivalent to dimensional reduc-
tion) and one choice gives, in d = 5 AdS, x S? and the other AdS3 x S?. One
could also take the quotient over the SO(2), subgroup generated by a linear
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combination of the generators of the two above-mentioned SO(2) subgroups
and the left-invariant metric should be the one in Eq. (8.0.1).

There is another SO(2) subgroup present, generated by the orthogonal
linear combination. This SO(2) commutes with the other one and belongs to
its normalizer, which is SO(2) x SO(2). It is a well-known fact [176] that the
isometry group of the left-invariant metric over a coset G/H is, generically
G x N(H)/H, where N(H) is the normalizer of H and N(H)/H is the right
isometry group. Here N(H)/H = SO(2); and then the full isometry group
should be the 7-dimensional SO(2,1) x SO(3) x SO(2), as we want. In the
two singular limits, there is enhancement of the isometry group as explained
above.

In this Chapter we are going to prove that our proposal is indeed correct
by explicitly constructing first the metric in Eq. (8.0.1) as a left-invariant
t! %{;50(3). The spacetime, is, thus, homogeneous,
but it is not symmetric. Secondjly, we are then going to use this construction
to find the Killing vectors and spinors, although we will find difficulties to
relate them, due to the fact that in our construction we will not use the
Killing metric, but instead we will use the Minkowski metric, which is also
SO(2)-invariant: the Killing metric of the real form so(2,1) x so(3) has the
signature (— — + — ——), i.e. the so(2,1) part has the wrong signature in our
conventions (mostly minus signature), but this can not be corrected by means
of analytic continuation (one gets complex metrics or metrics with wrong
signature). Fortunately, the Minkowski metric has the necessary properties.

metric over the cose

8.1 Construction of the Metric and Killing
Vectors

The Lie algebra of SO(2,1) can be written in the form
[,‘TZ’Y’J] = _Eiijklﬂa Za]a = 1:253’ ’ Q:dlag(++_)’ (811)

and its Killing metric is K = 2diag (+ + —). To construct AdS,, one has
to take the coset SO(2,1)/SO(2) where the subgroup SO(2) is generated
indistinctly by 77 or 7. We will choose for the sake of definiteness T7.
The projection of the Killing metric on the orthogonal subspace generated

LOur identification of the near-horizon limit of the rotating extreme black hole and the
coset space is only local. We will not be concerned with global issues here.
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by T,,T3 diag (+—) has the right signature to give AdS,. Actually, the
signature is the opposite to our mostly minus conventions, but a global factor
is immaterial and the time coordinate, compact, is associated to T3 (the —
sign in the Killing metric).

It is important to observe that there is no real form of this algebra with
Killing metric K = diag (— — +). Also, we are forced to associate the time
coordinate with T3.

The Lie algebra of SO(3) can be written in the form

(T3, Tj] = —€ijeTk, 4,7, =1,2,3,, (8.1.2)

and its Killing metric is K = 2diag(— — —). To construct S?, one has to
take the coset SO(3)/SO(2) where the subgroup SO(2) is generated by any
of the generators T, We will choose T3 for definiteness. Observe that there
is no real form with Killing metric K = 2diag (+ + +).

The subgroup SO(2) that we will use will be the one generated by the
combination

M = cos oTy + sin T (8.1.3)

We now make the following redefinitions

Py=1Ty, Po=1Ty, P=+T1, Py=1Ts,

1

R
| ] (8.1.4)
Py = —S8eT; 4+ o,

The subalgebra h is generated by M and the orthogonal subspace € by
the P,s. The non-vanishing commutators

M, P)) =cosaPy, [P, P)]= —Siﬂapl, [Po, Pr] = “B*M — SiﬁzaP%

[M’Pl]:(:osapo’ I:P4,P1]:—%PO, [PQ’P3]:_SIII£I2QM_COPS£QP4,

[M, P,) = —sinaPy, [Py, Py =—2p;,
[M, P3| =sinaP,, [Py, Ps] = _%Pz,

indicate that [¢,h] C ¢ (reductivity) but [¢,¢] Z b, so we do not have a
symmetric pair and we will not have a symmetric space.
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The Killing metric of the product group manifold SO(2,1) x SO(3) in
the new basis {P,, M} a=0,--- ,4is
(1 )
+1
—1
(K1j) = — -1
sin? @ — cos® & —2Rsinacos a

\ —2Rsinacosa  R2(cos? o —sin® @) |

but we are not going to use it to construct the left-invariant metric. Instead,
we will use the 5-dimensional Minkowski metric 7,,, which gives a metric
invariant under the left action of GG since

Ira ey = 0. (8.1.5)
The coset representative is chosen to be
u(z) = PP (8.1.6)
and the left-invariant Maurer-Cartan 1-form V = —u~'du is

V= TIFAdj (ef:c4P4)IJFAdj (efz1P1 )IPdeO + TIFAdj (ef:c4P4)IP1 dr!

+T[FAdj (67w4p4)IJFAdj (€7$3P3)Ip2d$2 + T[FAdj (67w4p4)1p3d1‘3 + P4dl‘4 ,
and, with the definitions

V = P, + 9M, (8.1.7)
leads to the Fiinfbeins e® and to the H-connection v
—¢® = cosh (%) cosh (327*) dz® + sinh (82224) dz'
—e! = cosh (%) sinh (222*) da® + cosh (222t) dz'
—e? = cosZ cos (“%%r?) dz? — sin (<%22t) dz®
(8.1.8)

—e* = cos 2 sin (“%%z*) dz? + cos (B2xt) da?
—et = —sinasinh(%)daz — cos asin —dx +dz*,

—) = @i

cosa ) dz® — sin asin 2 da? .

z!
R
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Redefining the coordinates
°/R=¢, v'/R=x, 2°/R=¢, 2*/R=0+7/2, '/R=1, (8.1.9)
it is easy to see that the metric
ds® = e’ ® €’ (8.1.10)

is precisely that of Eq. (8.0.1).

According to the general results on homogeneous spaces the Killing vec-
tors k() associated to the left isometry group G = SO(2,1) x SO(3) are
given by

k(ry = Taqj(u")re, - (8.1.11)

Their explicit expressions are

k(Po) = _85507
_ 1 (00 _ 0 1 — si M *
ke = tgh(a'/R)sin (¢°/R)dy0 — cos («7/R)0, S s (@ R)
k(P2) = —6582,
),
k) = —tan(z®/R)sin(2°/R)0,2 — cos (2°/R)0,s — cos a— @ /R) Ozt

kipyy = sina[tgh(z'/R)cos (2°/R)0,0 + sin (z°/R)0,1]
— cos « [tan (3 /R) cos (22 / R) 0,2 — sin (22/R)0,3]

il e [l - ] o

kary = —Rcosa(tgh(z'/R)cos (2°/R)y0 + sin (2°/R) 0,1
—Rsina[tan (23 /R) cos (22 / R) 0,2 — sin (22/ R)0,3]

Rsinacosa | % (#?/R)  cos (2°/R) )
R [cos (z3/R) COSh(.’L‘l/R):| Oa
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The right isometry group is given by the vectors dual to the Maurer-
Cartan 1-forms e, associated to the generators of N(H)/H, and commute
with the left Killing vectors. In this case, the generator of N(H)/H is P,
and the associated Killing vector denoted k(y) turns out to be

k(N) = €4 = —Opa. (8.1.12)

8.2 Construction of the Killing Spinors and
the Superalgebra

The Killing spinor equation of N = 2,d = 5 Supergravity is (choosing s(a) =
+1) [32,163]

{Va — ﬁ(’y”c% + 27bgca).7:bc} k=0. (8.2.1)
Kk is an unconstrained Dirac spinor (one component of a pair of symplectic-

Majorana spinors). We contract this equation with the Maurer-Cartan 1-
forms e* to write is in the form:

{d o ﬁ(’y”c.ﬁ,c% + 27b}"ba)e“} k=0. (8.2.2)
In homogeneous spaces, the spin connection is given by
wh =9 f* + e fur®, (8.2.3)
and we obtain a spinorial representation of the vertical generators M;
Ts(M;) = 1"’ - (8.2.4)

In symmetric spaces the structure constants f.;,* = 0 and the contribution
of the spin connection to the Killing spinor equation is just —9I';(M;) [33],
but in this case we have extra terms
_iwab’)/ab = _ﬁPS(M) - %ecfcba’)/aba
(8.2.5)
Ty(M) = 3(cos ay®! — sinay?).

The extra terms do not give by itself —e®I';(P,), but it can be checked that,
combined with the terms that depend on the vector field strength, they do,
and the Killing spinor equation takes the form

{d—9Ts(M) —e°T's(P,)}k =0,
(8.2.6)

['y(P,) = —55(cos ay® — sin ay??),,
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which leads to
k=T, ko, (8.2.7)

where kg is a constant spinor. The matrix I';(u~!)#, can be used as a basis
of Killing spinors m(a)ﬂ to which we associate supercharges Q(q).

The commutators of the bosonic generators P,, M, N of the superalgebra
(associated to the Killing vectors) with the supercharges is given immediately
by the spinorial Lie-Lorentz derivative of the Killing spinor with respect to
the associated Killing spinors [174,180]. For the generators associated to the
left isometry group {17} = {P,, M} we can use Eq. (2.23) of Ref. [33]

Lk Ty(u™) = _Fs(uil)[l‘k(z) To(u)Ts(u™) = =Ty(u HT(T1), (8:2.8)
which implies the commutators
[Qa), T1] = —Qp)Ts(T1) s - (8.2.9)

The other commutators with N are trivial.

Finally, let us consider the anticommutators of two supercharges. These
are associated to the decomposition in Killing vectors the bilinears —ik,v"k(g)€q-
To find this decomposition is crucial to relate the contravariant gamma ma-
trices v* with the bosonic generators in the spinorial representation I';(P,).
In this case, it is convenient to proceed as follows. First, we find the relation

v* = %y, = —2RST,(P,), S = (cosay® +sinay®®),  (8.2.10)
and substitute into the bilinear
—iR(a) V" K(8)€a = —ZTS(u_l)TDSFS(Pb)Fs(u_l)nb“ea, (8.2.11)
where D = 7% is th Dirac conjugation matrix. It can be checked that
Iy(u™)"DS = DST(u), (8.2.12)
and, recognizing the adjoint action of u on the I';(P,) we have
—iRa Y k(g €a = —1DST(T1)T ag; (u) yn®e, . (8.2.13)

Now we use the following general property: for any g € G, (if the Killing
metric is nonsingular, as here)

Tagj(9)'7 = KyxTag(g7 ) LK™, (8.2.14)



and the definition of the dual generators T' = K!/T);

—iRaY k(g €a = —IDST (T )T aqj(u ") 1 Knn™e, -
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(8.2.15)

Since the Killing metric and the Minkowski metric are different, the
r.h.s. of this expression does not give the Killing vectors of the left isom-
etry group. We have to use a non-trivial property of I';(u~!). Let us define

the matrix n!/

and, with it and the Killing metric, the matrix
R, = nIKKKJ-
It can be checked that
RTjTpg;(uv™ ")k :UFAdj (' Rk,

Dagj(u™ )7 1K = Tagy(u 1)L RE

and
—Z‘R)a’)’ali(/g)ea = —3 [DSFS(TI)}Q/B RL[k(L) s

that gives the anticommutators

{Q(a)a Q(ﬂ)} =— [DSPS (TI)]aﬁ (RaI-Pa + RMIM) .

(8.2.16)

(8.2.17)

(8.2.18)

(8.2.19)

(8.2.20)
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Chapter 9

The Gauge/Gravity
Correspondence

In Parts I and II we have studied different aspects of classical solutions of Su-
pergravity from a Supergravity perspective alone. The interest in doing this
is theoretical: we expect that a full knowledge of the nonperturbative String
Theory states and vacua will help us in understanding the nonperturbative
structure of the theory. From this point of view, Supergravity must be seen
as a tool to get this kind of information from String Theory. The reason why
Supergravity can be used with such purposes is because it is a physical limit
of String Theory, i.e. there is a certain limit in which string physics is (or we
expect it to be) described by the Supergravity approximation.

We turn now to an application of Supergravity which is very different in
spirit. First, the purpose will no longer be to extract information from String
Theory but from gauge theories. Secondly, the relation between both things
can be purely understood in terms of a map between them —what usually
is called a duality. There is no direct physical limit in which Supergravity
becomes a gauge theory nor viceversa. Instead, what we have is a well defined
proposal for a mathematical correspondence between the physics of certain
gauge theories and string (and hence also Supergravity) physics. Such a
correspondence can be interpreted as an holographic map, and is referred to
with the generic name of gauge/gravity or AdS/CFT correspondence [23,188,
189].
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9.1 Type IIB Strings and A’'=4 SYM

We will start by recalling the correspondence as originally proposed by Mal-
dacena [23]. The statement is as follows: Type IIB String Theory on the
maximally supersymmetric background AdSs x S® with N units of RR five-
form flux is dual to the four dimensional N' = 4 Super Yang-Mills gauge
theory with gauge group U(N). By Type IIB on AdSs x S°® one must under-
stand the Type IIB Superstring quantized on that background. This means
that, locally, one may have any possible process involving perturbative or
nonperturbative, low or high energy string physics. These might distort lo-
cally the spacetime geometry, but spacetime will always approach AdSs x S3
asymptotically. The word “dual” asserts the existence of an exact map be-
tween any possible string phenomenon taking place in that background and
any possible phenomenon occurring in the gauge theory.

9.1.1 The Correspondence from Black Hole and
D-Brane Physics

The relation between gauge theories and theories of strings can be traced
back to the work of 't Hooft many years ago [190] and to the origins of
String Theory itself, when it was proposed as a dual model for hadrons.
We will certainly not review all these ideas leading to the connection be-
tween strings and gauge theories, but we will try to explain the nowadays
widely used argument to motivate the precise relation between N'= 4 SYM
and Type IIB strings. This is based on the complementary descriptions of
D-branes provided both by String Theory and Supergravity. We will review
this argument in order to fix some ideas, since a related procedure will be
used in Chapter 10 to set the relation between a specific gauge theory and a
certain supergravity background.

At least qualitatively, this correspondence can be motivated from the
holographic principle [191,192] when applied to black hole physics and em-
bedded in String Theory. To obtain the precise formulation of the correspon-
dence one must consider the specific system of N parallel D3-branes. The
argument requires the identification between string states and supergravity
backgrounds that we developed in Chapter 2.

Let us motivate it first qualitatively. A line of thought which could be
used is the following.
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e Black hole thermodynamics and holography: as realized many years
ago by Bekenstein [193], there are strong similarities between black hole
physics and the laws of thermodynamics. In particular, an entropy can
be assigned to a black hole, given by Sy = 4‘2—’;, where Ay is the
area of the event horizon. This idea received a strong support once
Hawking discovered that, in fact, black holes radiate with a blackbody
spectrum [194]. Then, if the black hole entropy is to be interpreted as
an entropy as it appears anywhere else in Physics, a natural question
arises: what are the microscopic degrees of freedom of a black hole?
On the other hand, very general arguments led 't Hooft to the so-
called holographic principle [191]: namely, that in a quantum theory
of gravity the degrees of freedom of a given system should be stored at
the boundary of the region containing it. In particular, the formula for
the black hole entropy may be pointing out to us that the information
in a black hole could be stored at the event horizon.

e Embedding of the problem of black hole entropy in String Theory: in
this respect, a major success was achieved by Strominger and Vafa [58].
They were able to reproduce the semiclassical result of Bekenstein and
Hawking for specific configurations of D-branes which are black holes
in their supergravity description. The crucial point is that, in their
computation of the entropy, the degrees of freedom they were looking
at were those of the worldvolume of the branes which act as the source
of the gravitational configuration. The counting of these d.o.f. is what
yields the Bekenstein-Hawking entropy.

e The particular case of D3-branes: the supergravity description of N
parallel D3 branes is a ten dimensional, extended analogue of an ex-
tremal black hole with a regular (nonzero area) horizon. The result of
Maldacena [23] can be motivated from the facts mentioned above when
applied to this particular system. First, the d.o.f. should be seen when
“looking at the horizon”!. Secondly, these d.o.f. should also be en-
coded in the worldvolume description of the source. The worldvolume
theory of N parallel D3-branes is, in a certain limit, four dimensional
N =4 SYM with gauge group U(N). In the gravitational description,
the near-horizon region is AdSs x S°, and the theory “living” there is
Type IIB. Hence both theories should be somehow related.

!The precise meaning of this is crucial. See below.
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We stress that what one must consider is the near-horizon region. This
is the key observation in [23]: the relevant region of spacetime we have to
look at is the “infinite throat” AdSs x S5. There, an heuristic reason for
the correspondence is given by considering the flux of energy from the near-
extremal black p-brane configuration into the bulk?, and further observing
that these (low-energy) excitations will be retained within the throat region
by the gravitational potential. If we assume unitarity along the emission
process, the information of the black p-brane should be carried by these
excitations. At the end of the emission process, when the extremal state is
reached and the non-BPS branes become BPS, we end up with two systems
which therefore could be identified: excitations in the troat (that will be
described by closed Type IIB strings) and four dimensional N'=4 SYM on
the D-branes.

All this has to do with the limit in which the theory on the branes de-
couples from the bulk, leaving just A/ = 4 SYM on the branes. This is a
properly taken low energy o/ — 0 limit.

Let us see this in a more precise way. The Type IIB supergravity solution
describing NV parallel D3-branes at the same point in transverse space is given
by:

ds* = HY2(dt* — dig) — H'/?(dr? + r2dQ3)
GO = FO 4 +p®)  FO = dH ' Adt Ady, Ndys Adys  (9.1.1)

e? = Gs
where H is the harmonic function given by

R4
H=1+=—", Ry = 4mg,a” N, (9.1.2)
r

and /3 are the spacelike worldvolume coordinates, r is the radial coordinate in
transverse space and d)? is the line element in the unit five-sphere. The value
of the dilaton (the closed string coupling) is constant for this background,

and remains as a free parameter. Ry is an arbitrary integration constant of

2The non-extremal configuration, unlike the extremal one, has nonzero Hawking tem-
perature and is thus radiating.
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the supergravity solution but, as explained in Section 2.1.1, we have set it
by hand so that the RR-charge of this solution is that of N D3-branes.

This solution looks singular at » = 0. However, this is not the case, since
it can be seen that at » = 0 the surface in transverse space is not a point,
but a five-sphere of finite radius R5. In fact, the region described by the
surface r = 0 is an horizon®. How does the solution (9.1.1) look like in the
near-horizon region? If we take the limit

Ris <1 (9.1.3)
the metric becomes
2 r’ 2 9 R52 2 2 12
5

which is AdSs; x S5. The whole solution in this limit still has RR flux, and
it is a maximally supersymmetric background of Type IIB Supergravity. Its
expression is given in (7.2.72)%.

One can look differently at the near-horizon limit. If we write the metric

in terms of the variable ,

n = VR
@

(which has units of energy) and then we take the formal limit o/ — 0, we
recover (9.1.4) written in terms of u. An important thing is that this is
assuming that all remaining parameters entering in the harmonic function
H (gs, N and, in particular, also u) are fixed when taking the limit. The
observation in [23] is that taking p fixed as o/ — 0 corresponds, from the
point of view of the worldvolume theory, to decouple the open strings from
the bulk and suppressing all higher derivative corrections, leaving just N' = 4
SYM on the D3-branes.

3This is exactly analogous to what happens to the four dimensional extreme Reissner-
Nordstrom black hole when written in the so-called “isotropic” coordinates (the whole
solution is in fact an exact ten-dimensional analogue of the RN black hole). Here, the
horizon looks like a point simply because of the coordinates we are using, but near r = 0
the 72 dependence of H'/? cancels with 72 in the area factor and gives a finite result for
the area of the horizon.

“Note that the solution given by (9.1.1) is asymptotically (r — co) Minkowski. This
is an explicit example of a supergravity solution that smoothly interpolates between two
vacua (see Section 2.4.3).
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This needs an explanation. g has units of mass but, as an energy scale,
it has no special meaning at all from the point of view of the supergravity
solution. However, form the worldvolume point of view, this rescaled version
of the radial coordinate does have a very clear interpretation: it is the expec-
tation value of the worldvolume Higgs fields that correspond to transverse
displacements of the branes. Hence, it is perfectly meaningful as an energy
scale in the theory. This radial/energy relation is one of the most important
pieces in the gauge/gravity “dictionary”, and we see that it is at the heart
of the correspondence.

9.1.2 The Large N Limit and the Supergravity
Approximation

One must check the reliability of the near-horizon approximation. As said in
Chapter 1, a supergravity solution can be trusted as long as curvatures are
small when measured in units of the string length. It is true that the Ricci
scalar of the spacetime (9.1.4) vanishes everywhere. But since this spacetime
describes a product space, what we should require is that the curvatures of
both the AdSs factor and the S5 factor are small in string units. This means
that the radius Rs must satisfy:

RS

Since we also need g; < 1 to trust the supergravity approximation, this
means that the latter is valid in the large N limat. It is in this limit in which
we expect Supergravity to provide a dual description of the gauge theory.
Also, since the 't Hooft coupling of the gauge theory in terms of string pa-
rameters turns out to be given by ¢2,,N = 27g,N, we see that Supergravity
is valid both in the large N and large ’t Hooft coupling limit.

We stress, however, that the correspondence is supposed to work for any
N or any gy, since the full Type IIB String Theory on the AdSs x S°
background is supposed to be dual to N/ = 4 SYM. Only the region in
parameter space where Supergravity is valid (and where we will be able to
do calculations) corresponds to the strongly coupled, large N limit of the
gauge theory.
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9.1.3 The Map Between the Gauge Theory and the
Supergravity Side

Once the correspondence is established, what one needs is to know how to
proceed in practice to relate both theories. Finding the “AdS/CFT dictio-
nary” is one of the most important issues of the correspondence.

We already have two pieces of it: one is the relation between the units of
RR five-form flux and the gauge group of the gauge theory, and the other one
is the radial-coordinate/energy-scale relation. We have also mentioned how
the string coupling and gy are related. A further match between both that
we have not mentioned so far comes from the spacetime symmetries of both
theories. The AdSs x S° vacuum has 32 supercharges. N’ = 4 SYM turns out
to be superconformal, and both superalgebras can be shown to be isomorphic.
Moreover, the isometry group of the five-sphere (SO(6) ~ SU(4)) coincides
with the global R-symmetry group of the gauge theory.

A big step concerning the relation between both theories was made in [188]
and [189], where a precise recipe to compute gauge theory correlators from
the supergravity side was put forward. This implies a match between su-
pergravity fields and gauge theory operators. In [189] such a match is ex-
plained from the following holographic interpretation of the correspondence:
the gauge theory can be thought as living at the conformal boundary of the
AdS5x S? spacetime, which is effectively four dimensional. In the coordinates
of Eq. (9.1.4) this boundary is at 7 — 0o. One can see that, in this limit,
the radial part of the metric vanishes and that the four “worldvolume” di-
rections become infinitely dilated, while the five-sphere remains at finite size.

Finally, let us observe that the final “output” of the correspondence has
nothing to do with D-branes: it relates Type IIB String Theory on a certain
vacuum (with no branes) with A/ =4 SYM. The use of D3-branes to relate
their near-horizon geometry with their worldvolume theory can be seen as
a trick to derivate the correspondence. However, as a recipe it is extremely
useful, because it allows to establish a precise correspondence. The observa-
tion that there should be a connection between gauge and string theories is
based on very general principles [5] and has received much attention for many
years. However, a big problem has always been to find the appropriate string
dual. Identifying the worldvolume theories of branes with their geometry is
a huge step in this direction, and it has been shown to work in many other
cases. This kind of identification is the one we will be using in Chapter 10.
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9.2 Nonconformal Extensions

One of the main attempts in later works concerning the gauge/gravity cor-
respondence has been to extend it to other gauge theories. In the case of
N = 4 SYM the correspondence has been proven to work extremely well, and
all checks show a perfect agreement between the supergravity and the gauge
theory predictions. However, one is eventually interested in finding the string
dual to more realistic theories, nonconformal and with less supersymmetries.
The problem turns out to be much more involved technically, and the dual
geometries are often very complicated.

Here we will just review two approaches to this problem, which are the
ones on which the results reported in Chapter 10 are based.

9.2.1 Gauge Theories from Wrapped Branes

The general framework was first put forward in [195], and it is based on the
results found in [196]. The idea is as follows.

Wrapped D-Branes and Twisted Worldvolume Theories

The authors of [196] considered, from a String Theory point of view, how
the worldvolume theories of D-branes wrapping nontrivial cycles should be®.
On the one hand, D-branes are BPS states. On the other hand, they may
be wrapping a nontrivial cycle which supports no covariant Killing spinors
at all. In order to reconcile both things, they were led to the conclusion
that the worldvolume theory of the branes has to be partially “topologically
twisted”. We now briefly explain what this means.

Let us consider a supersymmetric gauge theory in flat space. In general,
it will have as global symmetries the Lorentz group L plus some R-symmetry
group. A topological twist [197] can be seen as an exotic realization of this
global symmetry group, arising from what could be called a “misidentifica-
tion” of L and R: that is, by embedding a subgroup of R into L. Different
embeddings will give rise to different possible twists. This has the conse-
quence of effectively changing the spins of the fields carrying R-charge. In

5In general, the wrappings we will be considering do not involve all worldvolume direc-
tions of the D-brane. Only certain worldvolume directions may be wrapping a cycle, the
remaining ones being flat.
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particular, it will have the consequence of a rearrangement of the super-
charges, with the corresponding modification of the supersymmetry of the
theory.

An alternative way of looking at this (see e.g. [198] and references therein)
is to consider a field theory on a generic curved manifold, hence coupled
(minimally) to gravity. The twisting is then achieved by gauging a certain
subgroup of the global R-symmetry group. Why such a thing could serve to
implement a twist (i.e., an effective change of the spins of the fields carrying
R-charge) can be seen with the following example. As always, the gauging
of the R-symmetry group will make appear an extra gauge field Aﬁz, the
connection in R. Let us take the case of a spinor ¢ charged under Af. Its
total (Lorentz plus gauge) covariant derivative can be schematically written
as:

Vb = (0u+ 5 dbu + AR) ¥ (9.2.1)
(the prefactors will depend on the specific theory we are considering). Let
us suppose now that we give a background value to Aﬁ"' so that it cancels the

spin connection term above®. In such a case, the total covariant derivative
of the spinor will become

Vb = 0,0, (9.2.2)
i.e., that of a scalar. One could say that the original “Lorentz” +gauge charge
is reinterpreted as a different “Lorentz” charge.

What was shown in [196] is that, in the case of D-branes wrapping cycles,
the twist of the worldvolume gauge theory is “automatically done”: the
needed extra gauge field Aff has to appear in the worldvolume theory, and
it is the connection associated to the nontrivial normal bundle of the curved
manifold. This can be thought as an effective way of finding the massless open
string spectrum (and also the corresponding gauge theory at low energies)
in the case of non flat D-branes.

In these cases, the reason why the twist is what makes supersymmetry
to be preserved can be now easily understood. Let us suppose, for example,

6Note that Aff can be nonabelian, but the group R will not coincide, in general, with
the spin group. When we say that a background value of Aff could cancel the spin
connection term, we mean a cancellation between certain components of both connections
—those associated to a certain common subgroup of the respective groups (this is the
subgroup of R that we will be gauging). This is how the embedding of a subgroup of R
into L referred above is implemented in this picture. The identification between different
common subgroups translates then into different twists of the theory.
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that the curved part of the worldvolume manifold is a surface that admits
no covariantly constant spinors. This means that the equation

(O +1bu)e=0, (9.2.3)

(where now ¢ is the spinorial parameter of a supersymmetry transformation)
has no nontrivial solutions. But if we can (or, as pointed out in [196], we are
forced to) apply the procedure sketched above to (9.2.3), we see that, after
the twist, finding covariantly constant spinors simply means finding constant
spinors.

These main idea of all this can thus be represented as follows:

Flat D-brane <—> Ordinary SYM

wrapping twisting

J I

Wrapped D-brane <—> Twisted SYM

In general, this will lead to reduced supersymmetry in the D-brane world-
volume (although some supersymmetry will always be preserved because of
the above argument), and the resulting theory may be conformal or not.
The particular case we will consider in Chapter 10 provides a nonconformal
example.

The Corresponding Supergravity Solutions

In [195] Maldacena and Nifez took this phenomenon into account in order
to study the gravity duals of gauge theories with less supersymmetry. As a
direct consequence of the facts explained above, they noticed that considering
the geometries produced by D-branes wrapping nontrivial cycles should pro-
vide us with gravity duals of theories with reduced supersymmetry and, in
some cases, also nonconformal. Let us consider wrappings on some compact
cycle that only involve certain worldvolume directions, the remaining ones
being flat. In the limit in which the massive KK-modes decouple from the
theory (low enough energies in the worldvolume theory) we will be left with
an effective gauge theory that lives in a flat space of lower dimensions than
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that of the whole D-brane worldvolume. Since the (partial) breaking of su-
persymmetry and the possible loss of conformal invariance are global world-
volume aspects, this flat, lower-dimensional SYM gauge theory will have, in
principle, less than sixteen supercharges and may be nonconformal, too.

Of course, the problem is how one should proceed in order to find su-
pergravity solution associated to a wrapped D-brane. In this respect, they
observed that, since this is equivalent to twisting the “original” gauge theory
of the flat D-brane, the gravity dual should be described by some gauged
supergravity. Let us motivate why this should be so.

Gauged supergravity theories can be obtained in two ways. One possibi-
lity is to consider these theories as the gauge theories of an AdS-supergroup
(in the same spirit as ordinary supergravities can be considered as gauge
theories of a super-Poincaré group, or that General Relativity can be con-
sidered as the gauge theory of the Poincaré group). Another possibility is
to start with an extended Poincaré supergravity. Then, gauging the (global)
R-symmetry group (in the same way as one always does to gauge a global
symmetry of a given action) yields a gauged supergravity theory. These the-
ories always have a cosmological constant term, and their vacua are AdS
spacetimes. This is obvious if one thinks in terms of the first construction.

The parallel between the latter construction of gauged supergravities (by
gauging the R-symmetry group) and the procedure to twist gauge theories
explained above is manifest. One should not be confused, though: when
considering the twist of the D-brane gauge theory, all the fields involved
there are worldvolume fields, i.e. open strings. But when considering a
gauged supergravity theory, all the fields of that theory (and, in particular,
also the corresponding R-symmetry gauge field”) are bulk fields, i.e. closed
strings. The use of gauged supergravity must be understood in the sense of
the gauge/gravity correspondence [195]: from a match of symmetries in the
gauge and gravity sides and in terms of an identification between supergravity
fields and gauge theory operators.

"This field is in fact interpreted as a KK mode of a sphere compactification of some
ten-dimensional, ungauged supergravity. See below.
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The final recipe to find the near-horizon limit of a supergravity solution
describing a Dp-brane wrapped on some g-cycle (¢ < p) can be summarized
in the following way. First, we must go to a d = (p + 2)-dimensional gauged
supergravity theory, since these are the gravity theories thet have all the
fields that correspond to the twisted gauge theory operators. Then one finds
a domain-wall solution in the gauged supergravity theory. That domain wall,
with a (p+1)-dimensional worldvolume, will be identified at the end with the
Dp-brane. Then we implement both the wrapping and the associated twist
by choosing the appropriate configuration for the metric, the R-symmetry
gauge field and the remaining fields of the gauged supergravity theory. By
taking appropriate boundary conditions on the metric we define the geome-
try of the ¢g-cycle on which we wish to wrap the branes. By choosing which
components of the gauge field are nonvanishing® and its boundary conditions
(to enforce it to equal the spin connection on the cycle, as in the gauge
theory side) we implement a particular twist. Finally, it so happens that
these d = (p + 2) gauged supergravity theories turn out to be sphere com-
pactifications of ten and eleven dimensional supergravities [199]. Therefore,
after uplifting the gauged supergravity solution just found, one ends up with
the desired ten or eleven dimensional supergravity solution describing the
wrapped branes. This solution directly gives the near-horizon limit of the
wrapped brane configuration, and it is supposed to be the geometry which
is dual to the flat (p — ¢ + 1)-dimensional gauge theory, i.e. dual to the
D/M-brane gauge theory, but precisely in the low energy limit in which the
(p + 1)-dimensional theory becomes effectively (p — ¢ + 1)-dimensional.

Notice that the sphere on which one compactifies ten dimensional super-
gravity to get the corresponding d = (p+2) gauged supergravity theory is not
the cycle on which the D-branes are wrapped. The latter must be thought
as a cycle of the resulting ten dimensional “ambient” space (a cycle inside
a Calabi-Yau manifold, for example). The fact that the above procedure is
supposed to yield directly the near-horizon geometry makes it insensitive to
the global details of such ambient geometry (in the chosen example, the full
CY-geometry), only the description of the particular cycle is needed.

8 Again, we have to “turn on” only the appropriate subgroup of the R-symmetry group
of gauged supergravity. This will be dictated by the normal bundle of the g-cycle and by
the required twist.
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A trivial application (but an illustrative exercise) of the procedure sketched
above is to consider the vacuum solution of five dimensional gauged super-
gravity. This theory comes from a five-sphere compactification of Type IIB
and, according to the explanation above, should be the right theory to con-
sider if one whishes to describe wrapped D3-branes. Its trivial vacuum con-
figuration is AdSs. Further uplift to ten dimensions yields AdSs x S5, which
is the near-horizon limit of flat D3-branes.

9.2.2 Gauge Theories from Fractional Branes

Another way to obtain supergravity backgrounds that are dual to less super-
symmetric and nonconformal gauge theories is to find solutions corresponding
to fractional D-branes. Both the supergravity description and their gauge du-
als are studied in [200,201]. Let us first briefly recall first what fractional
branes are.

Fractional Branes

Fractional branes are String Theory objects that one can consider when the
spacetime is taken to be an orbifold. For concreteness, we will focus on the
orbifold C? /Z of Type II theories, which is the one we will be considering in
Chapter 10. Fractional branes can only exist at the orbifold fixed point, and
they can be understood as a generalization of the familiar Dirichlet branes
when the very particular consequences of being at the orbifold fixed point
are taken into account.

As it is well known, in an orbifold theory of closed strings the spectrum
contains an untwisted sector (the closed string states that survive the orbifold
projection) and a twisted one (arising from “open” strings whose ends are at
points that are identified only up to the action of the orbifold group). The
twisted states can only exist and propagate along the orbifold fixed point,
while the untwisted ones can propagate also into the bulk.

Fractional branes admit a very simple interpretation. As D-branes, they
can be considered as hyperplanes contained within the orbifold fixed point
where open strings are attached, but with the particular property that they
are charged under the twisted sector of closed strings (i.e., they are the
“twisted” version of regular D-branes). They turn out to carry untwisted
RR~charge as well, and the unit of RR-charge carried by a fractional
D-brane turns out to be one half of that of a regular D-brane.
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The worldvolume theories of fractional branes will always have less super-
symmetry than those of regular D-branes. This is easy to understand, since
the orbifold action already breaks some bulk supersymmetries. In addition,
their worldvolume theories are nonconformal. This may seem less intuitive,
but we can think of it as a consequence of the loss of translational invariance
implied by the orbifold action along the orbifolded directions. If we take
into account the radial/energy relation that we explained in Section 9.1, we
can easily guess that the worldvolume theory should not be energy scale in-
variant if the geometry is not translational invariant. However, to use this
argument one should find, for each particular system, which is the proper
radial coordinate. This is something quite easy in flat space®, but in some
complicated geometries it may become a nontrivial task. However, for the
cases we will consider, the above reasoning holds. We see then that finding
their associated supergravity solutions is of interest for the study of more
realistic gauge theories.

The Corresponding Supergravity Solutions

Finally, we want to summarize how one can manage to find fractional brane
geometries'®. The way in which this can be done (at least for simple or-
bifolds like the one we are considering here, C?/Z,) is very simple both in
spirit and in practice. The idea is to first find an effective action for the
massless closed strings states of both the twisted and the untwisted sector
of the orbifold theory. This will be a sum of two actions: one defined on the
bulk, including the massless untwisted sector, and another one restricted to
the orbifold fixed points which will just include the massless states of the
twisted sector. Once we have this effective action at hand, we are able to
find any classical solution of its equations of motion. In particular, we can
find those that we will associate with fractional branes, in the same way as
we find regular D-brane solutions in non-orbifold theories.

The key point to construct the spacetime effective action of an orbifold
theory is to consider the orbifold space as the singular limit of its corres-
ponding blow-up. The latter is a smooth spacetime which always contains
some nontrivial cycles, and in the limit in which these cycles shrink to zero

9Up to the determination of the proportionality constant, something which is not unim-
portant for certain purposes [202].
10Classical solutions corresponding to fractional branes were constructed in [203].
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size the spacetime becomes singular and the orbifold geometry is recovered.
In a sense, what one does to find the effective action on the orbifold is very
similar to ordinary Kaluza-Klein reduction'!: one decomposes all fields of
the ordinary Type II theory in directions along the cycles and transverse to
them. For example, in the case of C?/Zy, in which the blown-up geometry
just contains a two-cycle, a two-form field B would be decomposed as

B=B+bAw,

where B is again a two form (the “unwrapped part”), b will become a scalar
degree of freedom and w denotes the two-form dual to the two-cycle.

So we take the ordinary Type II effective action in ten dimensional space,
decompose all the bosonic fields according to the above prescription, and
finally integrate over the cycle. The form w dual to the cycle has the property
that its integral over the cycle remains fixed even in the singular limit. So
we can think in doing the above decomposition and subsequent integration
also in the limit in which the cycle has collapsed, and the final result will be
valid in the singular limit that describes the orbifold geometry.

The new fields that we interpret as the “wrapped” parts of the ordinary
ten dimensional ones (the field b in the above example) are found to exactly
coincide with those of the twisted sector of the massless string spectrum.
Once we integrate along the directions of the cycle, the terms of the full
action that contain the twisted fields are found to be fixed point valued ac-
tions. An explicit example of this procedure can be found in Appendix C.1.2.

Looking at the orbifold space as the singular limit of its blown-up geo-
metry has the following consequence: fractional Dp-branes can be seen as
regular D(p + 2)-branes wrapped on the corresponding cycle of the blow-up
space [204-206], again in its singular limit. A natural question arises, then,
concerning the possible relations between the construction we sketched in
the preceding Section 9.2.1 and the one outlined here. This is what we will
try to explore in the next Chapter, both from the point of view of the dual
gauge theory and from the point of view of the supergravity backgrounds.

"This is just an analogy concerning only the procedure: the compact cycle is not a
compact direction in spacetime, and hence a vanishing cycle is not a dimensional reduction.
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Chapter 10

Gauge Theories from Wrapped
and Fractional Branes

Introduction

The gauge/gravity correspondence has its origin on the fact that, on the
one hand, D-branes are classical solutions of the low-energy string effective
action and, on the other hand, they have a gauge theory living in their world-
volume. This means that the low-energy dynamics of D-branes can be used
to determine the properties of the gauge theory and vice-versa.

The most successful realization of this correspondence is the Maldacena
conjecture [23], confirmed by all subsequent studies, according to which ten-
dimensional type IIB string theory compactified on AdSs x S° is dual to
N = 4 super Yang—Mills theory in four-dimensional Minkowski spacetime.

However, N' = 4 super Yang-Mills in four dimensions is a rather special
theory due to its conformal properties and its high amount of supersymmetry.
Therefore, a lot of effort has been recently devoted to find possible exten-
sions of the Maldacena duality to non conformal and less supersymmetric
gauge theories, or at least to use the low-energy brane dynamics to extract
information on the properties of such more realistic theories.

Two approaches to this problem have been largely pursued, based respec-
tively on the study of:
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e D-branes wrapped on supersymmetric cycles [195];

e Fractional D-branes on orbifolds [204-207] .

After N = 4 super Yang—Mills, the next natural system to consider is N = 2
super Yang-Mills theory in four dimensions, also with matter. This system
has been studied, on the one hand, by considering fractional D3-branes on
orbifolds [200,212,213] and systems made of fractional D3/D7-branes [214,
215], and, on the other hand, by considering D5-branes wrapped on a two-
cycle inside a Calabi—Yau two-fold [216,217]. The low-energy dynamics of
wrapped branes has also been recently used to study other gauge theories
[218-224].

The use of fractional and wrapped branes presents some interesting simi-
larities that are not surprising since fractional branes on orbifolds can be seen
as D-branes wrapped on cycles that are vanishing in the orbifold limit of the
ALE space which corresponds to the blow-up of the orbifold space [204-206].
In fact, by probing the supergravity solutions describing the two types of
systems, one is able to recover all the relevant perturbative information on
the Coulomb branch of the gauge theory living on the branes, namely the
running coupling constant and the metric on the moduli space of the theory.

These two approaches, however, have not been able to provide informa-
tion on the nonperturbative features of the gauge theories, as for instance
on the instanton contribution to the moduli space of N' = 2 super Yang-
Mills in four dimensions. This is related to the existence at short distance
of an enhancgon [225] where the supergravity solution becomes inconsistent,
because at this distance the probe brane becomes tensionless, signalling the
appearance of new massless degrees of freedom. This means that the super-
gravity approximation is not valid anymore and that the region inside the
enhancon is excised. This fact prevents to get information on the strong cou-
pling regime of the gauge theory living in the world-volume of the branes,
that is in fact determined by what happens inside the enhancon. To overcome
this problem one must presumably also include the new massless degrees of
freedom, as attempted for instance in Ref. [226]2.

L Apart from the two approaches that we consider in this Chapter, other interesting
ones are based on the study of fractional D-branes on conifolds (see Ref. [208] and Ref.s
therein) and of M-branes wrapped on Riemann surfaces [209-211].

2For recent developments concerning the physics of the enhancon see for instance
Ref.s [227-229)].
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In this Chapter we will apply both approaches discussed above to the
study of N =4, D = 2+ 1 super Yang—Mills theory, which is a theory with
8 Poincaré supercharges. The interest in this theory resides mainly in the
fact that its properties, perturbative and nonperturbative, are well known
[230,231]. This is also the theory where the enhangon was first found [225]
using a different approach based on the study of D6-branes wrapped on K3
surfaces.

We will first consider a system made up of N D4-branes wrapped on a
two-cycle inside a Calabi-Yau two-fold. The crucial property of this system,
as of any other system of branes wrapped on supersymmetric cycles, is that
the geometrical structure of the background forces the gauge theory living on
the world-volume of the branes to be partially topologically twisted [196] and
this allows to preserve the desired amount of supersymmetry. To find the
supergravity solution describing the D4-branes, we will use the techniques
introduced in Ref. [195], which amount to find a solution of a lower dimen-
sional gauged supergravity and then uplift it to ten or eleven dimensions.
We will then use the uplifted solution in a probe computation in order to
extract information on the Coulomb branch of the gauge theory which lives
on the flat three-dimensional part of the world-volume of the brane, which is
pure N =4, D =2+ 1 super Yang—Mills with gauge group SU(N).

Then, we will consider a system made of N fractional D2-branes and
M D6-branes on the orbifold R*/Z, and, solving explicitly the equations
of motion of type ITA supergravity, we will find the corresponding classi-
cal solution. The probe computation will give us information on the same
three-dimensional theory, now also coupled to M hypermultiplets in the fun-
damental representation of the gauge group.

In both approaches we find that, as in other cases, the probe analysis cor-
rectly reproduces the perturbative part of the moduli space, giving the exact
running coupling constant of A = 4 super Yang-Mills in three dimensions,
but is unable to give the instanton contribution. This analysis allows us to
make some comments on the relation between the two solutions and to see
that in both cases the gauge coupling constant can be obtained from a com-
mon expression representing the “stringy volume” of the two-cycle on which
the branes are wrapped. Moreover, in both cases the locus where the “stringy
volume” vanishes corresponds to the point where the Calabi—Yau two-fold in
which the cycle is embedded manifests an enhanced gauge symmetry, which
is the origin of the enhancon mechanism.
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The structure of this Chapter is as follows. Section 10.1 and 10.2 are or-
ganized in an entirely parallel way, and can be read independently from each
other. They describe the two different brane systems that we study in order
to get information on N' =4, D = 2 + 1 super Yang Mills theory from su-
pergravity, namely a system of N D4-branes wrapped on S? (in section 10.1)
and a system of N fractional D2-branes and M D6-branes on the orbifold
R* /Z (in section 10.2). In section 10.3, we discuss and comment the results
of the previous two sections. Many details of the various computations are
given in the appendices. In appendix C.1 we fix the conventions and discuss
in detail how the two supergravity solutions were found. In appendix C.2 we
discuss the world-volume actions for fractional branes. Finally, in appendix
C.3 we give some details about the perturbative computation of the running
coupling constant of the gauge theory that we consider.

10.1 D4-branes wrapped on S?

10.1.1 Setup

In this section we are going to consider a system made of N D4-branes with
two longitudinal directions wrapped on a two-sphere.

As discussed in Ref. [196], the gauge theory living on the world-volume of
wrapped branes has to be topologically twisted. In this subsection we want
to determine the topological twist that is needed in order to obtain at low-
energy on the flat part of the world-volume of the D4-branes N/ = 4 super
Yang-Mills theory in three space-time dimensions, that is a theory with 8
supercharges. The twist which preserves 8 supercharges is exactly the one
imposed by the geometrical structure of the background when the two-sphere
is seen as a nontrivial two-cycle inside a Calabi—Yau two-fold.

The configuration that we are going to study is schematically shown in
the following table, where the symbols —, ~ and - represent respectively
unwrapped world-volume directions, wrapped world-volume directions and
transverse directions:

cYy
—

Rl,Q SQ N2 R3
D4 f‘f‘f /\‘,\ ‘ “

In flat space, the presence of the D4-brane breaks spacetime Lorentz
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invariance in the following way: SO(1,9) — SO(1,4) x SO(5)r. The fact
that the D4-brane is wrapped on S? introduces an additional breaking of
SO(1,4) into SO(1,2) x SO(2)g2. The twist is then introduced by breaking
the R-symmetry group SO(5)gr into SO(2)¢ x SO(3) and by identifying
SO(2)¢ with SO(2)g2. In conclusion our configuration breaks the original
SO(1,4) x SO(5)g into SO(1,2) x SO(2)g2 x SO(2)g x SO(3) with the two
SO(2) groups identified. The fields of the gauge theory living on the wrapped
D4-branes transform according to the following representations of the above
groups:

SO(1,4) — SO(1,2) x SO(2)s2 | SO(B)r — SO(2)g x SO(3)
Vector 5 — (3,1)®(1,2) 1 — (1,1)
Scalars 1 — (1,1) 5 -  (1,3)®(2,1)
Fermions 4 — 2,+)®(2,-) 4 - (+2)®(—2)

Since we are interested in the three-dimensional theory living on the flat
part of the world-volume at very low energies, we must keep only the mass-
less states, which are the ones transforming as singlets under SO(2)p =
(SO(2)s2 x SO(2)¢) diag :

S0O(1,2) x SO(2)p x SO(3)
Vector (3,1,1)
Scalars (1,1,3)
Fermions 2x(2,1,2)

These states form exactly the vector multiplet of N' =4, D = 2 + 1 super
Yang-Mills theory.

10.1.2 The supergravity solution

In this subsection we will construct a supergravity solution describing the
system just introduced, made of N D4-branes with two world-volume direc-
tions wrapped on S%. One could in principle work in ten-dimensional type
ITA supergravity, write a suitable Ansatz for such a system, then solve the
equations of motion and find the solution. This is, however, not a simple task
because it is not easy to implement directly in ten dimensions the topological
twist that we have discussed in the previous subsection from the point of view
of the gauge theory living on the brane. One has to proceed in a longer, but
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more straightforward way that has been introduced in Ref. [195]. Instead
of working directly in the ten dimensional theory one starts by considering,
for the case of a p-brane, a (p + 2)-dimensional gauged supergravity theory
that is obtained by compactifying the original D-dimensional theory (where
of course D = 10 for the case of a D-brane or NS5-brane and D = 11 for
the case of an M-brane) on SP~?~2. The isometry group SO(D —p — 1) of
SP=P=2 corresponds to the R-symmetry group that we discussed in the pre-
vious subsection. In gauged supergravity the R-symmetry group is gauged so
that the theory contains SO(D —p— 1) gauge fields. In this theory one looks
for a domain wall solution that preserves the desired amount of supersymme-
try and breaks the original R-symmetry group in a way that implements the
correct twist. In fact, in gauged supergravity the supersymmetry preserving
condition contains also the gauge fields and can schematically be written as
(0y +wy + A,) € = 0. The discussed twist corresponds to the identification
of some of the gauge fields with the spin connection of the manifold around
which the brane is wrapped, A, = —w,,, so that the request of finding covari-
antly constant spinors is equivalent to that of just finding constant spinors.
Once the solution with the correct properties has been found, the last step
is to uplift it to D dimensions by using the formulas given in Ref.s [199,232].
In the following, in order to avoid many new calculations, we do not use
directly a 6-dimensional gauged supergravity as it would be natural for a D4-
brane. We will instead proceed in slightly different way by exploiting the fact
that the solution of seven-dimensional gauged supergravity corresponding in
eleven dimensions to an M5-brane wrapped on S? and preserving 8 super-
charges has already been constructed [195]. Therefore we proceed as follows.
We start from the solution of 7-dimensional gauged supergravity given in
Ref. [195], and uplifting it to eleven dimensions using the formulas found in
Ref. [232] we obtain a solution of 11-dimensional supergravity describing N
M5-branes wrapped on S?. Finally, upon compactification to ten dimensions
we get the desired solution describing N D4-branes wrapped on S2?. The de-
tails of this procedure are given explicitly in Appendix C.1.1. Here we write
directly the ten-dimensional solution in the string frame, which reads®:

3This solution was partially given in appendix 7.4 of Ref. [195].
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3 3 ~ ~
ds, = (%) A% 1,5 d€*dE” + %Al/ze”(eQ” — 1)(d6? + sin? 0dg?)
0 0

+ R—iA_l/ze’“’ %de + Adx? + cos® x(d#? + sin® 0dyp?)
4R0 edA

N2
+e% sin? y (dw + cos Hd(ﬁ) ) , (10.1.1a)

R 3
20 — (FA) AV2e% (10.1.1b)
0

_ R € cos® ycosfsin

B A

R3 € (A + 2) cos? x sin x cos §
8 A?

R3 0,(e%) cos® x sin? x cos 0
8 A?

Cs dO A d@ A dy

dx Ndp A (d1/1 + cos édg?)

+

dp A dp A (cw + cos 5d¢) . (10.1.1¢)

where the functions e and A entering the solution are given by:

e + ke % — 1

20 _ 1
€ 1

A = e cos® x +sin? . (10.1.2b)

5A _

e : (10.1.2a)

Before proceeding let us give a short explanation of the various coordinates
and constants appearing in eq.s (10.1.1)-(10.1.2):

e £ (a, 8 = 0,1,2) are the coordinates along the unwrapped brane
world-volume;

0, ¢ are the coordinates along the wrapped world-volume;

p is a radial coordinate transverse to the brane;

X, 0, ¢, ¥ parameterize the “twisted” four-sphere transverse to the brane;

R4 is the radius of the AdS; space appearing in the near horizon geome-
try of the usual “flat” M5-brane solution (see appendix C.1.1), which is
given in terms of ten dimensional quantities by R4 = 2v/a/(7g,N)'/3;
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e Ry is an arbitrary integration constant with dimension of a length that
we will show to set the scale of the radius of the S? on which the
D4-branes are wrapped;

e [ is a dimensionless integration constant.

All coordinates are dimensionless except £* which have dimension of a length.

A D4-brane is coupled naturally to a 5-form potential while the solution
given above contains a RR 3-form potential. However, the latter is related
to Cs by the duality relation dC5 = *dCj5 (in the string frame). By using it
we get:

6 _ -
= %/6; Ae® (20 — 1) sinGde® A dE* A dE? A dfl A dp
6
1 .
_ % 564p sin2x dfo A d§1 A dg? A dp/\ (d’(/) —+ cos Qdﬁ)
0
RAGA 1 4p 5\ .+ 0 1 2 045
~ Rrgt e sin(2x) d€” AN dE AN dE° N dx A (d1/1+(3059d80) .
0

(10.1.3)

A change of coordinates

The supergravity solution for the D4-branes wrapped on S? as given in
eq. (10.1.1) is written in a way in which the role of the different coordi-
nates and factors is not immediately clear. The first thing that we can do
in order to clarify the role of the various terms appearing in the solution is
to extract the warp factors for the longitudinal and transverse part of the
metric in the string frame. They are given in terms of a function H that for
a D4-brane is related to the dilaton through the following relation:

6
H=¢"= <%) A~le 0 (10.1.4)
A

Using the previous definition of H, one can immediately see that the depen-
dence on H of the four longitudinal unwrapped directions of the metric is the
one corresponding to four “flat” world-volume directions: H~!/ 2NapdEOdEP |
as expected. We also expect three transverse directions (6, ¢ and a suitable
combination of p and ) to be flat, apart from the usual warp factor H'/?
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This can be seen to be correct* by using instead of the coordinates p and x
the following new coordinates:

3

r= 2%4262” oS X
0
(10.1.5)
o= % [62” (62” — i) 65)‘} 12 sin ¥
0

which have dimensions of a length. In terms of the new coordinates in
eq. (10.1.5), the solution for the metric, dilaton and R-R 5-form becomes:

ds?, = H1/2 [naﬁdgadgﬂ + ZR2(df? + sin? éd(ﬁQ)] (10.1.62)

1 - 2
L g2 [er + 1% (d6? + sin® 0dp®) + = <d02 + 0? (dw + cos 9d95) )] )

e? = H ', (10.1.6b)

1 - 1 _
Cs = deO A deY A dE2 N [EZRS sinf df A dp — Eada A (d¢ + cos Odﬁ)} ,

(10.1.6¢)
where the functions H and Z are (implicitly) defined as:
6
Hio) = () Ao 0,
R4
(10.1.7)

Z(r,0) = e %m0 (eQ”(’""’) — 1) :
’ 4

In the form given in eq. (10.1.6) the structure of the solution is much clearer.
First of all one can clearly distinguish the trivial “flat” part of the solution
from the nontrivial part coming from the internal directions of the four-
dimensional Calabi—Yau space. In this sense, the coordinates r and o that
we have introduced represent two radial directions, respectively in the “flat”
transverse space and in the space N, transverse to the brane but nontrivially
fibered on the two-cycle on which the brane is wrapped. Moreover, the func-
tion Z represents the “running volume” of the two-cycle, with the constant

4See also Ref.s [233,234] for related discussions.
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R, being the radius of the S? when Z = 1, while in the part of the metric
containing ¢ and 1 we can easily see the twist which, as we have seen in
section 10.1.1, is required for having a supersymmetric gauge theory living
on the brane. Finally, also the R-R potential has a quite standard part (H !
times the volume form of the longitudinal space), plus an additional part due
to the twist.

Another change of coordinates can be implemented to extract some addi-
tional piece of information about the solution. If we define a new coordinate
z and a function Z as follows:

(10.1.8)
~ 1/2
z-z(1+2)"
the metric in eq. (10.1.6a) becomes:
s = H™/? { wsd€dEP + Z 22(df? + sin® Od )}
H1/2{dr + 7% (df” + sin® 0dyp?) (10.1.9)

_|_
Z

1 (1_54) 42 + 22 (1—R—§> <d¢+coséd¢)2] }
Z V4

The metric we have obtained on the four-dimensional space spanned by the
coordinates {5,([7, z,1} is that of a “warped” Eguchi—-Hanson space [235].
This fact provides additional evidence of the geometrical structure of the
background: the D4-branes are wrapped on the two-sphere, of radius Ry,
inside the simplest ALE space (which corresponds to the blow-up of an R* /Z,
orbifold)>®.

5As an aside, notice that, using eq.s (10.1.4)-(10.1.5) and eq. (10.1.8), also the M5-
brane solution (C.1.5) (from which we derived the D4-brane solution) can be brought
into a form analogous to the one given in eq. (10.1.6) or in eq. (10.1.9). These forms for
the classical solutions describing wrapped branes seem indeed to be quite general. For
instance, changes of coordinates similar to the ones implemented here can be used to put
in these forms also the solution found in Ref. [216] for D5-branes wrapped on S?.
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10.1.3 Probing the wrapped brane solution

In order to extract information on the gauge theory living on the D4-branes,
we will study the dynamics of a probe D4-brane wrapped on S? in the geome-
try generated by the solution found in the previous subsection (see Ref. [236]
for a review on the probe technique). This will allow us to study the Coulomb
branch of pure ' = 4 SYM theory in 2 + 1 dimensions with gauge group
SU(N 4+ 1) — SU(N) x U(1). The world-volume action for a single D4-
brane in the string frame in the static gauge is given by:

T -
Sprobe = —;4 /d3§d0d<ﬁ6_¢\/— det [Gap + 21! F |

T.
_|__4 (05 + 271'(1’03 AN F) , (10110)

K Sy
where a,b = {0, 1,2, 0, ¢} and all the bulk fields are understood to be pull-
backs onto the brane world-volume.

Let us first compute the static potential between the probe and the stack

of N D4-branes, simply by substituting the solution (10.1.6) into eq. (10.1.10).
The contribution of the Dirac-Born-Infeld part is given by:

. A o?H \'/*
e ?y/—det Gy = sinf HO (1 + ZQ—R?)) : (10.1.11)
Adding to it the Wess-Zumino part, whose contribution is computed using
the expression (10.1.6¢) of the R-R 5-form, we get the following expression
for the static potential:

Ty [ o .+ . ~ZR2 o2H \ '/
=—— — —1]. 10.1.12
Spot - /d £dOdp sin O 7 1+ 2R (10 )

We see that in general there is a force between the branes, and this means that
the configuration is not supersymmetric. This had to be expected in some
way because we are allowing the probe brane to move in all its transverse
directions, including also the ones which are inside the Calabi-Yau space.
If instead we allow the probe brane to move only in the “flat” part of the
transverse space spanned by {r,0, ¢}, keeping it fixed at the locus ¢ = 0 in
the “internal” transverse space, we see that the potential (10.1.12) vanishes,
yielding a supersymmetric configuration. Therefore in the following we will
always work at the “supersymmetric locus” o = 0.
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In order to study the dynamics of the probe brane, we will allow the
transverse coordinates X' = {r,0, ¢} to depend on the “flat” world-volume
coordinates £* but not on the “wrapped” ones x and y. Moreover, the gauge
field Fip is defined to be nonvanishing only on the “flat” part of the world-
volume. Let us start from the DBI part of the action in eq. (10.1.10). By
expanding the determinant, we find:

T .
Sppr =~ —;4 / d*¢dfdpe=*\/— det Gy

1 ) ) 2 12
x {1+ §G°‘ﬂG,~j8aXZ(9gXJ + %GMGwFaﬂFw} . (10.1.13)

Inserting the expressions (10.1.6a) and (10.1.6b) for the metric and dilaton
we get:

2

Ty [ o4 2R
Sppr = —%/dfdﬁdgosmﬁ 7 (10.1.14)

X {1 + %H[(ar)2 + 72 ((89)2 + sin? 0(6(,0)2)} + (QWEI)ZHFQ} )

where we have included an additional factor of 1/2 due to the normalization
of the generators of the gauge group.

Notice that when Z = 0, the effective tension of the brane vanishes,
meaning that an enhangon mechanism is taking place [225]. Since, in order
to preserve supersymmetry, we have fixed o = 0, the enhancon radius is given
by:

_ RY mg(d)2N
- 8R2 R? '
In fact, this seems to be a general feature (albeit somewhat unnoticed in the
literature) of the supergravity solutions corresponding to D-branes wrapped
on cycles®. The fact that the solution is no longer valid inside the enhancon
radius seems to prevent us from getting nonperturbative information on the
gauge theory under study.

The transverse scalars have to be interpreted as Higgs fields for the gauge
theory living on the brane: X¢ = 27a/®'. Then, defining y such that r =

(10.1.15)

Te

6Notice however that the nature and location of the singularities of the metric depend
on the value of the constant k appearing in eq. (10.1.2), as discussed in very similar cases
in Ref.s [195,216,224]. Nonetheless, gauge theory physics as seen by the brane probe at the
supersymmetric locus is independent of &, and only feels the existence of the enhancon.
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2ma/ i and integrating over the volume of the two-sphere on which the brane
is wrapped, we obtain the final expression for the DBI part:

An'T, ZR?
Som = =3¢ [ 650

2k H
X {1 + (27r2a,)2H[(8u)2 + u* ((90)* + sin® 0(9p)?) | + (QWEI)ZHFQ} '
(10.1.16)

Turning now to the WZ part, the pullback of Cj is given by:
1 ~ -
Cs = gRi cos 0 sin 00, pd&* A df A do . (10.1.17)

Then from eq. (10.1.10) we get:

T _ _(ZR?  27a/R?
S—— / d3gd0d¢sin0{ fy | Zma'hy
K H 16

47T, ZR2 2md'R3 N
=— 4/d3§{ HO + G A cos e maa(me}

cos 08“ﬂ78ag0F57}
(10.1.18)

Putting eq.s (10.1.16) and (10.1.18) together and substituting the expressions
for T, , k, R4 and for the function Z, the probe action finally becomes:

2 'N
Sprobe = _i d3f 1-— gs@ X
271-.98\/a 2R5p
1 1
{5 [(Op)? + p? ((80)* + sin® 0(0p)?) | + ZF2}
N 3 afy
+§ d’€ cos 070, Fp, . (10.1.19)

From the coefficient of F? in eq. (10.1.19) we can read the running gauge
coupling constant of the three-dimensional gauge theory as a function of the
scale y. Defining the bare coupling as:

2 27rgs\/o7

=< - 10.1.20
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the running coupling constant is given by:

1 1 2 N
= <1—9YM ) (10.1.21)
gym(B)  gyu Amp

in perfect agreement with gauge theory expectations, as shown in appendix
C.3.

Eq. (10.1.19) does not give explicitly the full metric on the moduli space
of N =4, D =2+1 SYM theory. In fact such a metric must be hyperKéahler
[230] and in eq. (10.1.19) we have only three moduli and not four as it should
be in a hyperKahler metric. We need an extra modulus that can be obtained
by dualising the vector field. In order to do that, we regard the original
action in eq. (10.1.19) as a function of F,s and we add to it a term:

—/ S dF, (10.1.22)

so that the equation of motion for the auxiliary field > enforces the Bianchi
identity for F' on shell. By partially integrating the additional term in
eq. (10.1.22), we are left with the following action:

1 1 1
Smez—/d?’ —[(0p)? + 12 ((06)* + sin® H(0p)?) | + = F?
prob gg%M(u){2[( )2 + u? ((90) 09)°) | + 5
N 3 af 1 3 ¢ .af
t3. d’€ cos fe 78ag0Fg7+§ 6“0, X Fp, . (10.1.23)
Y[

We can then eliminate F' by means of its equation of motion that follows
from eq. (10.1.23):

N
Fyy = gy ()™ [E cos 00, + BaE] : (10.1.24)

and we arrive at an action that contains four moduli, given by:

1 3 1 2 2 2 .2 2
Sprobe = _E/d g{g%M(u) [(a:u) +/J' ((60) + sin 0(890) )}

N cos 6

+g%M(u)< a<p+az)2 } (10.1.25)
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The complete metric on the moduli space M of the gauge theory, in terms
of the 4 scalars u, 0, ¢ and X is finally given by:

1
Q%M (N)

where dQ? = d#? + sin?@dy?. The metric in eq. (10.1.26) is indeed hy-
perKéhler since it has precisely the form of the Taub-NUT metric [237].
However, because of the form given in eq. (10.1.21) of the function gy ()
our metric has a “negative mass” and thus is singular. This is due to the fact
that in our probe analysis we are only able to reproduce the perturbative
behaviour of the gauge theory. As discussed in Ref.s [225,236], the complete
metric should also include the instanton contribution, becoming a completely
nonsingular generalization of the Atiyah-Hitchin metric.

N cosf

2 _
dsi =

2
(dp® + p*dQ?) + g3 (1) (dz + dgo) ., (10.1.26)

10.2 Fractional D2/D6-brane system

10.2.1 Setup

In this section we consider a system of fractional branes on the orbifold:
R x R*/Z,, (10.2.1)
where Zs acts by changing sign to the last four coordinates:
{xﬁ,a:7,ac8,ac9} — {—xﬁ,—x7,—x8,—x9} :

To be precise, we are going to study a configuration of type IIA string
theory’, made of N fractional D2-branes extended along z°,z', 2% and M
D6-branes extended along 2°, 2!, 22, 2°, ..., 2%, as shown schematically in the
following table, where the symbols — and - denote respectively coordinates

which are longitudinal and transverse to the branes:

R*/Z>
——
0/112|3[4|5|6]7|8]9
D2 | = =1 - -|-|-]-1-71-:
De| - -1T-1-1-1-1T-1-1-1-

"Classical solutions describing fractional D-branes in type IIA orbifolds were con-
structed in Ref. [203].
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A peculiar feature of the fractional branes transverse to the orbifold space (as
the D2-branes that we are considering) is that they are stuck at the orbifold
fixed point 26 = 2" =28 =2° = 0.

The orbifold projection breaks half of the supersymmetry of type ITA
theory, and so does the considered D2/D6-brane system. We are then left
with 8 supercharges. Thus, at low energy the theory living on N fractional
D2-branes is N = 4, D = 2+ 1 SYM theory with gauge group SU(N).
Moreover, from the point of view of this gauge theory the strings stretching
from the D2 to the D6-branes and vice-versa make up M hypermultiplets
which transform in the fundamental representation of the gauge group.

In order to describe the above system by means of a supergravity solution,
we have to study how the low-energy fields which appear in the effective
action behave in the background (10.2.1). Our background is characterized
by the presence of a 2-form w,, Poincaré dual to the exceptional 2-cycle X,
of the ALE space which is obtained by the resolution of the orbifold. In
the orbifold limit, the volume of ¥, vanishes, but the background value of
the integral of By on it has to remain finite in order to define a sensible

CFT [238,239]:
2
2 !
/ B, = (% /o) (10.2.2)
P

The 2-form wy satisfies the following properties:

*4 1
W9 = — W2, Wy = 1, Wo N\ Wy = —5 . (1023)
Yo ALE

The supergravity fields can have components along the vanishing cycle, so the
following decomposition holds for the NS-NS two-form and the R-R three-
form:

B2 = BQ + wa y 03 = 03 + A1 N ws . (1024)

Since we will be looking for supergravity solutions which represent branes
without a Bs field in their world-volume, in the following we will put By = 0,
so we simply have:

B2 = b(,UQ s 03 = 03 + Al N Wo s (1025)

where, because of eq. (10.2.2):

b= @ +h, (10.2.6)
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and b represents the fluctuation around the background value of b. We will
sometimes refer to the fields b and A; in eq. (10.2.5) as “twisted” fields
because they correspond to the massless states of the twisted sector of type
ITA string theory on the orbifold.

Having given the main features of the system that we are going to study,
we now turn to the supergravity solution.

10.2.2 The supergravity solution

In this subsection we will discuss the supergravity solution describing the
fractional D2/D6 system that we have introduced in the previous subsec-
tion. The solution is derived in detail in appendix C.1.2. Here we will only
summarize the procedure followed to find it.

The first step is to substitute the decompositions for By and C3 given in
eq. (10.2.5) into the type ITA supergravity action, and to derive the equations
of motion for the “untwisted” fields G, , ¢, C5 and C; and for the “twisted”
ones b and A; .

Then, we impose the standard Ansatz for the “untwisted” fields corre-
sponding to a D2/D6 system®:

ds® = Hy " Hy ®n,pdacda® + HY®HY/®5,;dz'da? + HY®Hy /6, dxPdz?

(10.2.7a)
e = Hy/*H %" (10.2.7b)
Cy = (Hy' — 1) dz® A dz' A dz?, (10.2.7¢)

where the function H, depends on the radial coordinate

p= \/(x3)2+...+(x9)2

of the space transverse to the D2-brane, while the function Hg depends only
on the radial coordinate of the common transverse space r = /d;;x27 .

In order to write down a sensible Ansatz for the fields A; and C;, we
need to take into account the contribution coming from the boundary action
describing the world-volume theory of the branes. After some calculation it
is easy to get convinced that the following® is a sensible Ansatz for the fields

8The coordinates are labeled as: o, 8 = {0,1,2}, i, = {3,4,5} and p,q = {6,7,8,9}.
9When M = 0, the Ansétze for A; and C; coincide with the ones given in Ref. [240].
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A; and C; :
1 )
dAy = Oy A db + 54k Heibdz? A dx® | (10.2.8a)
1 )
dCl = §€ijkaiH6d.TJ A d.Tk, (1028b)

where e345 = £3%° = +1.

Substituting our Ansitze in the equations of motion and computing all
the relevant contributions coming from the boundary action S,, the final
solution for the fractional D2/D6 system can be expressed in the following

form10:
ds® = Hy**Hy ¥, pda®da® + HYPHY®6;;do'de? + HY*Hy /%6, da? da?
(10.2.9a)
e = Hy/*HZ3/* (10.2.9b)
Cy = (Hy' — 1) d2° A da* A dz?, (10.2.9¢)
M
Cy = % cos 0dp (10.2.9d)
WA (AN — M
A = —n2'? ve( ) cosfdy, (10.2.9¢)
Hg
VA
b= — 10.2.9f
H6 7 ( )
where:
Vo' M
He(r) = 1+ gT ;
, (10.2.10)
PR ') (1 _gsVal(2N — M))
2 r ’

and where H, is the solution of the following equation (see eq. (C.1.23a) in
appendix C.1.2):

(6”818] + H6(5pq6p8q) Hg—i—%H(;(S”azbﬁjbé(:UG) cee 5(1‘9)+I€T2N(5($3) cee 5(339) =0.
(10.2.11)

ONotice that, in order to easily express the fields A; and C; in eq.s (10.2.9),
we have changed coordinates in the common transverse space into polar coordinates:
(1'371'473"5) — (T76a(p) .
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From the solution given in eq. (10.2.9) we can also compute the expres-
sions for the fields C7; and A3 which appear naturally in the string theory.
The duality relations are'!:

dC7 = —e3*/2*dCy (10.2.12a)
dAs = e?? *Gy — db A Cs, (10.2.12b)

and the explicit computation gives:

C

= (Hg' = 1) da® A+ Ada®, (10.2.13a)
Ag = B

dz’ A dz' A da® . (10.2.13b)

Notice that the field C; has a quite standard expression, due to the specific
form of the Ansatz in eq. (10.2.8).

10.2.3 Probing the fractional brane solution

In this section we will study the world-volume theory of a probe fractional D2-
brane, which is placed in the background given in eq.s (10.2.9) at some finite
distance r in the transverse space {z3, z* 2°}. This will give us information
about the Coulomb branch of N' = 4 three-dimensional super Yang—Mills
theory with gauge group SU(N + 1) broken into SU(N) x U(1), coupled to
M hypermultiplets in the fundamental representation of the gauge group.

Let us start from the world-volume action for a single fractional D2-brane,
which is given by eq. (C.2.9) in the case of p = 2:

T. b
Sprobe = _ﬁ /d3§6¢/4 \/_ det [Gab’ + €_¢/227TalF04/3] (1 + 271.2(1,/)

T.
+ 22 [ (Cs+2md/C AF), (10.2.14)
2K M;

where all bulk fields are understood to be pullbacks onto the brane world-

UThe duality relations can be derived from the equations of motion (C.1.13a) and
(C.1.13c), for which the terms coming from the boundary action vanish (see appendix
C.1.2).
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volume and the fields C3 and C; are given by:

_ b A 1 Z
= 1+ — = —1 10.2.15
Cs = Cs ( * 27T20z'> Y orte T ontol HyH, ( 2)
b A,
Ci=Ci |1+ —— | +-——=—gsVa'(2N — M)cosfdyp. (10.2.15b)
2w 22/

The computation is analogous to the one performed in section 10.1.3.
We fix the static gauge, and regard the coordinates {z®, z, z°} transverse to
the probe brane as Higgs fields of the dual gauge theory: 2 = 27a/®¢. We
also define polar coordinates (u, 0, ¢) in the moduli space of the ®, so that
r=2md' 1.

Expanding the DBI action for slowly varying world-volume fields and
keeping only up to quadratic terms in their derivatives we get:

\/& Z 1 « 7 j 1 [ )

Sper

o[, 1 Z
2 | ¢ Vor?al HyHg

(10.2.16)
Turning to the WZ part and substituting the expressions (10.2.15) into
eq. (10.2.14) we get:

L[, (1 Z / ,
= — — =1 2 Fl. (10.2.1
Swz P [/d x (27r20/ H,H, ) + » o Cpdp A (10.2.17)

We easily see that the position-dependent terms cancel as expected because
fractional D2-branes are BPS states and do not interact with the D2/D6
system. Ignoring the constant potential, the final result is:

Vol VA 1 9 ) 1,
Sprobe = — 1g. /d3x27r2a’ {5 [(Op)” + p? ((80)” + sin” 0(0p)?) | + ZF }

1
-~ Tor d*v(2N — M) cos 0?70, Fp, . (10.2.18)
When Z = 0 the effective tension of the probe vanishes and this means that
also in this case, as expected, an enhangon mechanism is taking place at the
radius:

re = Valgs(2N — M) . (10.2.19)
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Substituting in (10.2.18) the expression of Z in terms of y, we obtain:

V! s(2N — M
Sprobe — _—CM /d?’.fC [1 _ M
4gs 2V
1 1
{5 [(Op)* + p? ((80)* + sin® 0(0p)?) | + ZF2}
1
e dz(2N — M) cos 010, Fp,, . (10.2.20)
T
From the coefficient of the gauge field kinetic term in the previous action we
can read the running coupling constant:

1 1 2N — M
. = — (1 — g%M7> : (10.2.21)
QYM(N) Ivym 8T

where we have defined the bare coupling as:

2 495

gYM:\/J'

Eq. (10.2.21) is exactly what expected for the gauge theory under consider-
ation, as shown in appendix C.3.

Exactly as in the case of the wrapped branes described in section 10.1,
eq. (10.2.20) does not give explicitly the full hyperKéhler metric on the mod-
uli space of the gauge theory. We can obtain the needed extra modulus by
dualising the vector field into a scalar, using exactly the same procedure
which brought us from eq. (10.1.19) to eq. (10.1.26) in section 10.1. The
final result is'%:

(10.2.22)

2
(QN_M)COSQdcp |
8T

(10.2.23)
where dQ? = df? +sin® dy? . If we put M = 0 this metric coincides with the
one found in eq. (10.1.26) by probing the geometry of N D4-branes wrapped
on S?. Again, we have found the hyperKihler Taub-NUT metric, but with
a “negative mass” which makes it singular. Also in this case we have only
recovered the perturbative behaviour of the gauge theory.

dsiy = ——— (dp® + p*dP*) + g (1) (dE +

9 (1)

12Tn this case, the dualisation procedure can also be done directly in the original three-
dimensional world-volume action, as in Ref.s [225,241]. The result that one obtains coin-
cides with that in eq. (10.2.23).
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Complete action for a D6-brane extended along the orbifold

As in the case of the D7-brane analyzed in Ref. [215], the supergravity solu-
tion corresponding to our D2/D6 system can also be used to get the form of
the complete world-volume action for a D6-brane extended along the whole
orbifold space. In fact, in deriving the classical solution corresponding to the
D2/D6 system it was enough to consider only the linear terms in the bulk
fields. However, since the D2/D6 system is BPS, we expect that when we
insert the corresponding classical solution into the world-volume action of
either the D2-brane or the D6-brane, we obtain a constant result. In the pre-
vious subsection we have seen that this is the case for a fractional D2-brane.
If we instead insert the classical solution into the action of a D6-brane given
by (as it follows from eq. (C.1.18b) for p = 2):

S = 5{—/&@%4’ —detGpU+/ 07}
K My

E; 3 — F }
+2’f2(27r\/(?)2 {/dﬁ\/mb //\A3A3 +..., (10.2.24)

we get terms that are dependent on the distance r between the D6-brane
and the system D2/D6 described by the classical solution. The situation
here is exactly the same as the one found in Ref. [215], and as in that case we
must add to the previous action higher order terms that restore the no-force
condition. Including them we arrive at the following boundary action for a
D6-brane extended along the whole orbifold space:

T
56:—6 — [ dzeit? —det G,y + Cy
g M
7

K

N T, 1 {/d3£e¢/4\/m6 (1 + L) (10.2.25)

ﬂ?(?ﬂ'\/ﬂ?)Q 4m2a/

b - b
— As |14+ —— ] — 1+ — .
/-/\/13 3< +47T2a,> /M303b< +4W2a,) }
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10.3 Discussion and conclusions

In this final section we want to compare the two approaches that we have
described in the previous section. Let us compare the two cases dual to the
pure gauge theory, that is, in absence of D6-branes (M = 0) in the fractional
brane case.

Let us start by summarizing some of the properties and differences of the
two systems:

e Both systems are able to capture only the perturbative dynamics of
N =4,D=2+1SYM theory.

e The role of the running coupling constant is played in the two super-
gravity solutions by two parameters: the “running volume” Z of the
2-cycle for the wrapped D4-branes and the “twisted B-field” b for the
fractional D2-branes.

e The enhancon, where the gauge coupling gyy diverges, is located at
the locus where respectively Z2 =0 and b =0.

Does it exist a closer relationship between the two setups? Both systems
consist of wrapped branes. In fact, on the one hand, as we have seen in
section 10.2, a fractional Dp-brane can be seen as a D(p + 2)-brane wrapped
on the vanishing two-cycle of the ALE space which corresponds to the blow-
up of the orbifold. On the other hand we have also seen that the D4-branes
considered in section 10.1 are wrapped on a two-sphere inside the same ALE
space, as explicitly shown in eq. (10.1.9). In fact, the two systems provide
exactly the same information about the gauge theory living on their world-
volume. In order to see the connection between the two systems it is useful to
write down a general formula that provides the perturbative running coupling
constant of a general (p+ 1)-dimensional gauge theory living on the flat part
of the world-volume of a D(p + 2)-brane wrapped on a (vanishing or not)
two-cycle X,. It is given by the following expression:

1 Vst (22)
5 = 5 , (10.3.1)
Gem (1) 9Dp
1(p—3)/2

where g3, = 2(27)" *g,a is the usual (bare) coupling constant of the
gauge theory living on a Dp-brane in flat space and the dimensionless “stringy
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volume” Vgr is given by:

Vst (22) = W /dQC\/— det (QAB + BAB) , (10.3.2)

where (!? parameterizes the cycle ¥y, while Gap and Bap (A, B =1,2) are
the bulk metric without any warp factors and the B-field on the cycle.

We can easily see that the formula in eq. (10.3.1) holds for the systems
considered in sections 10.1 and 10.2. For the three-dimensional gauge theory

at hand, we have g3, = \2/% :

For the case of the D4-branes wrapped on S?, we have:

1 0
GY = ZR} (0 Gin? g) : BY =0, (10.3.3)

so that the “stringy volume” is given by:

ZR:

m2a!

Var (22) = (10.3.4)

Substituting eq. (10.3.4) in eq. (10.3.1) we get the correct running for N' =4,
D =241 SYM theory with SU(N) gauge group:

L 1 () ()N
(9%)? (1) (g%w)? (1 dmp ) , (10.3.5)

where the bare coupling is defined as in eq. (10.1.20) as follows:

2 27Tg8\/a

(9¥M) = T(Q) .

If instead we consider the fractional D2-branes as D4-branes wrapped on the
vanishing cycle ¥, , we find:

G'=0, B'=_Zw,. (10.3.6)

Now the “stringy volume” is:

f Z

Vor (%2) = - (10.3.7)
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and substituting eq. (10.3.7) in eq. (10.3.1) we get again the correct running
coupling constant:

1 1 Fv)’N
= <1 _ lovu) ) . (10.3.8)
(gya)?(1)  (gym) Amp
where now the bare coupling constant is defined as (gi,\,)? = f/% as in

eq. (10.2.22).

Notice also that if we choose the “background value” V} of the geometrical
volume on which the D4-branes are wrapped (that is, the volume of the
two-sphere inside the Eguchi-Hanson space in eq. (10.1.9), once we remove
the branes setting H = Z = 1) in such a way that it coincides with the

background value of the B-field of the fractional brane case, Vy = 47R3 =
M , the bare coupling constants (and enhangon radii) computed in the
two cases become exactly the same in terms of string parameters.

One can see that the formula (10.3.1) works perfectly also, for instance,
for the case of ' =2 SYM in four dimensions, applying it to the fractional
D3-brane solution of Ref.s [200,212] and to the wrapped D5-brane solution
of Ref. [216].

Although the two systems give the same perturbative gauge coupling
constant, there seems not to be a “physical” limit in which one can obtain
the fractional brane solution from the wrapped one or vice-versa, playing
with the volume of the cycle. This is due to the fact that the two Anséatze
are radically different in the warp factors, which are respectively the ones of
a D4 and of a D2-brane, and is also due to the absence of a B-field on the
world-volume of the D4-branes wrapped on S%. On the other hand, if we
look at the whole moduli space of the four-dimensional ALE space, we see
that it is characterized by the volume of the exceptional cycle and by the flux
of the B-field on it. These are the two moduli that are combined into the
“stringy volume” in eq. (10.3.2) which, as we have seen, provides the running
coupling constant. The situation in the two cases can then be summarized
by the following diagram:

B=0, V=0
B=0, V#0 — Enhanced — B0, V=0

Wrapped branes Fractional branes
gauge symmelry

where, in the case of the wrapped D4-branes, we are keeping the size of
the cycle finite and the B-flux vanishing, while in the case of the fractional
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D2-branes the geometrical volume shrinks to zero size and in order to have
a conformal orbifold we must give a definite fixed background value to the
B-flux, which in the case of the Z, orbifold is M .

The limiting case in which both the geometrical volume of the cycle and
the B-flux are taken to vanish is the point where the theory on the Calabi-
Yau space manifests an enhanced gauge symmetry, which is at the origin
of the enchangon mechanism. This is the point where the “stringy volume”
vanishes and the supergravity solutions break down.



Summary and Conclusions

Let us summarize the main results that we have obtained and extract some
conclusions and ideas for future work.

Part 1

In Chapter 3 we presented the most general family of pointlike solutions of
N = 4 Supergravity in four dimensions. This theory is a consistent trun-
cation of the heterotic string compactified on a six-torus, therefore all these
solutions could be uplifted to ten dimensions. They are, in general, non-
supersymmetric: they include all possible pointlike configurations and all
previously known solutions of this theory. Their embedding in ten dimen-
sions could be useful if one is interested in studying the black hole physics
of these four dimensional solutions from a String Theory perspective. Since
in general they describe non-extremal configurations of finite Hawking tem-
perature, they are suitable to the study of thermal emission of black holes,
at least in the near-extremal cases.

The whole set of configurations is invariant, as a family, with respect
to the duality symmetries of the theory. N = 4,d = 4 Supergravity is a
rather simple theory which has the interesting property that it exhibits both
S- and T-dualities. In this sense, it provides us with a simple framework
to check which are the physical configurations of a given theory that are
contained within the “representations” of its duality group. We found the
most general duality-invariant family of solutions, and our results prove that,
for this theory, all possible physical solutions (supersymmetric or not) with
well defined physical charges are included in the orbits of the duality group
of the theory. At least in the case of black hole spacetimes, we know that
all possible physical configurations are included within the general solution
because all charges allowed by the “no-hair theorem” are included and can
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take completely independent values. The duality-invariant properties of the
thermodynamic quantities in all cases have also been checked.

In Chapter 4 we tried to see the implications of this idea in a context di-
rectly related to String Theory. The goal there was to investigate if all known
solitons of Type II Supergravities provided a “complete representation” of
both S- and T-duality or not. We found that in fact this is not the case if
one just considers the standard solitons. By finding the successive T-duals of
the S-dual of the Supergravity solution describing the D7-brane, we found a
whole chain of previously unknown solutions of both Type II theories. Fur-
thermore, acting on the Type IIB solutions that we found with S-duality,
and uplifting the Type ITA ones to eleven dimensions, we ended up with a
whole family of (again, previously unknown) Type II and eleven dimensional
solitons. The most interesting property shared by all of them is that they
have the characteristics of being describing nonperturbative, elementary (as
opposed to composite) string states: all of them preserve 1/2 of the super-
symmetries and are charged under a single gauge field. In addition, they
turn out to be highly nonperturbative, as their masses scale with higher in-
verse powers of the string coupling. In fact, our computation of these masses
shows that they exactly match with the predictions made some years ago by
Hull, Obers, Rabinovici and others: based on U-duality arguments, they con-
jectured the existence of some ten dimensional nonperturbative states which
would be missing from the known ten-dimensional spectrum. They were able
to compute their masses, and their results match with ours.

A common property of all these solutions is that they behave as the
Kaluza-Klein monopole in the sense that, in their presence, a number of
transverse dimensions have always to be considered as compact. We ex-
plained this property by showing that all of them can be obtained from a
lower dimensional theory that originates from a dimensional reduction of the
corresponding ten dimensional action. They can be generated in lower dimen-
sions by means of symmetries that exclusively exist in the lower-dimensional
theory.

The main objection found in the literature to consider the S-dual of the
D7-brane is that the Type IIB super-Poincaré algebra has no central charge
accounting for this state. We have also shown that this is not the case: we
provided a generic method to find all the central charges associated to all
these solitonic states. As explained in Section 2.3, the structure of a given
superalgebra is given by the superisometries of the vacuum. If we take into
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account the isometric directions of these backgrounds (which are not asymp-
totically flat), one can formulate consistent superalgebras that include the
central charges associated to these states.

It would be very interesting to find the String Theory description of all
these states. Also their near-horizon geometries, their worldvolume theories
and possible applications of these solutions in the context of AdS/CFT could
be of interest. We would like to address these issues in the future.

Part 11

In Part II we have presented some results concerning spacetimes that no
longer describe massive or charged states of String Theory, but which in-
stead can be considered as vacua. In Chapter 6 we showed how all maxi-
mally supersymmetric vacua (other than Minkowski, i.e. basically AdS x S
and Hpp-wave spacetimes) of theories with eight supercharges in 4,5 and 6
dimensions are related by uplifting and compactification. This shows that a
standard belief, namely that compactifications of maximally supersymmetric
solutions break supersymmetry, is indeed not correct: at least for these cases,
it is always possible to find a compactification that preserves all supersym-
metries (we saw that such a compactification always involve the consistent
truncation of some lower dimensional supermultiplet). In fact, it so happens
that it is always possible to find a frame with a specific direction with respect
to which not only the solutions describing these spacetimes, but also their
Killing spinors, become isometric. This also allows to study T-duality of these
solutions (although, in general, supersymmetry will not be preserved after
T-dualization). This provides us with a unified picture of all these vacuum
spacetimes. A consequence that we found is that the maximally supersym-
metric solution given by the near-horizon limit of the 5-dimensional extreme
rotating black hole actually interpolates between AdS, x S* and AdS; x S2.
This interpolation turns out to be smooth in parameter space, and has a sim-
ple explanation in terms of its four dimensional compactified partner: this
partner is just the near-horizon limit of the dyonic Reissner-Nordstrom black
hole. The purely electric or magnetic cases correspond to the AdS; x S3
or AdSs; x S? “corners”, while a generic four dimensional dyonic solution
represents a point in between in the moduli space of five dimensional vacua.
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It is a well known fact that five and eleven dimensional supergravities
exhibit remarkable similarities. It would be interesting to investigate the
possibility of generalizing this unified picture of five dimensional vacua to
eleven dimensions. The AdS; x S® and AdS; x S? five dimensional vacua are
very reminiscent of the AdS; x S” or AdS; x S* maximally supersymmetric
solutions of eleven dimensional supergravity (which correspond, respectively,
to the near-horizon limits of the M2- and M5-brane). In fact, one can see
that the interpolating five dimensional solution corresponds to a continuous
rotation of an S! fiber to get, in the limiting cases, a Hopf-fibration of S* or
AdS3 with respective base spaces given by S? or AdS,. The next possible
Hopf-fibration is that of S” with S® and S* as fiber and base space, and it
should be certainly possible to find an analogue for AdS7;. The main pro-
blem to parallel in eleven dimensions the whole five dimensional construction
just presented is that, now, it would involve an S® compactification of eleven-
dimensional Supergravity down to eight dimensions. This is something which
is technically quite complicated.

In Chapter 7 a formal mathematical analysis concerning the supersym-
metric properties of maximally supersymmetric vacua was put forward. As
explained in Chapter 5, these spacetimes admit a coset space description.
For a given coset spacetime G/H, there is a well-known procedure to find a
G-invariant metric for it, as well as to construct the corresponding Killing
vectors. What we showed here is that not only the metric properties, but
also the supersymmetric ones, are given by the group-theoretical structure
of these coset manifolds. At least in the case of maximally supersymme-
tric spacetimes, the essential point is to notice that the spin connection part
of the supercovariant derivative provides a spinorial representation of the
isotropy subgroup H. In addition, the field-strength part always turns out
to provide a spinorial representation for the complement of H, and hence
the full supercovariant connection becomes the well-known Maurer-Cartan
1-form of the considered coset space, conveniently evaluated in some spino-
rial representation “chosen” by the specific background. This means that the
integrability condition of the Killing spinor equations will be automatically
satisfied, and in this way (prior to the computation of any Killing spinor)
the solution is shown to be maximally supersymmetric. Also, the Killing
spinors are immediately found: they are simply given by (the inverse of) any
coset representative evaluated in the spinorial representation that one can
read from the gravitino supersymmetry transformation rule.
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This simple geometric interpretation of the Killing spinors has an impor-
tant consequence. As explained in Section 2.3, one of the most important
things associated to a given vacuum is its superisometry algebra. From it
one can read off what are their possible elementary excitations, even the
nonperturbative ones: the allowed solitons always have associated a corres-
ponding central charge. Computing the superalgebra associated to a given
background can be a complicated task. In our framework, obtaining the
translation part in the anticommutator of two supercharges becomes a rather
simple calculation. It is true, however, that we do not know a systema-
tic method to find all possible central charges. Such a procedure it is not
known in general, but the observation that the supercharges actually encode
the group theory properties of homogeneous spacetime backgrounds looks
promising. We expect that the direction put forward here will help us to
solve this interesting problem in the future. The extension of these results to
homogeneous spacetimes which less supersymmetries is also work in progress.

On the other hand, in Chapter 8 we found the coset formulation of the
only maximally supersymmetric background whose description as a homo-
geneous spacetime was not previously known. This spacetime is the near
horizon limit of the five dimensional extreme rotating black hole. We saw
in chapter 6 that this spacetime plays an important role among five di-
mensional Supergravity vacua. Its coset description has been found to be
(SO(1,2) x SO(3))/U(1), where the U(1) acts on both factors with an arbi-
trary relative weight. The result is not so strange if one takes into account
the above mentioned result that we also found in Chapter 6: namely, that
this space smoothly interpolates between AdS, x S and AdS; x S2. This,
together with the fact that AdS; is the group manifold SO(1,2) and that
S3 is the group manifold SO(3), and also that in one dimension less each
of them is the coset of these groups modded out by U(1) makes our result
a very natural one. We applied the techniques discovered in Chapter 7 to
this case, too, although there is a slightly difference here: contrary to all the
cases previously studied, this spacetime is homogeneous but not symmetric.
We found that the general techniques apply and work equally well here.

An interesting observation is that, with the found coset description at
hand, we see that this spacetime is the analytic continuation (Lorentzian
version) of the compact space which is known under the name of 73!, This
is the base of the conifold, a space which has been extensively studied in the
context of AdS/CFT because it provides a geometry dual to four dimensional
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N = 1 gauge theory. In T the U(1) acts with equal weights on both SU(2)
factors. It would be interesting to investigate what happens if one allows,
as in the case studied here, for an arbitrary weight, and which could be its
potential implications in an gauge/gravity context. We find that this a very
interesting question that we also hope to address shortly.

Part III

Finally, in the last Part we studied some properties of supergravity back-
grounds dual to a certain three dimensional gauge theory: SYM with eight
supercharges. The main motivation to focus on this theory and their gravity
duals is twofold: on the one hand, the gauge theory is non conformal. On the
other hand, we wanted to see form the Supergravity side the similarities and
differences between two very different geometries which are supposed to be
dual to the same gauge theory. This fact is already pointing out to us that
both backgrounds should be somehow related. One geometry reproduces the
behaviour of D4-branes wrapped on a supersymmetric cycle, and the other
one corresponds to fractional D2-branes at the fixed point of the C? /Z, orb-
ifold. It has been noted in the literature that a fractional Dp-brane can be
seen as a regular D(p + 2)-brane in a certain limit. This is the limit in which
two worldvolume directions of the D(p+ 2)-brane are wrapped on a two cycle
and the cycle shrinks to zero size. In this singular limit the space becomes
an orbifold, and the regular brane becomes a fractional one with two less
worldvolume dimensions. Both geometries considered here exactly match
with this pattern, since moreover we showed that the geometry in which
our D4-branes are wrapped is a warped version of the Eguchi-Hanson space,
which is precisely the blown-up version of the orbifold we were considering
in the fractional brane supergravity solution. We saw that, form the point of
view of the respective geometries, there is no smooth limit connecting them.
This is because both solutions exhibit an enhancon locus at a certain point in
transverse space, and at this point new massless degrees of freedom appear
and the supergravity solutions cannot be trusted anymore.

From the point of view of the dual gauge theory we computed, from both
supergravity duals, the one-loop perturbative beta function of the Coulomb
branch of the gauge theory. We find exact agreement between both results
and, further, also with the perturbative gauge theory computation (we ex-
plicitely performed this calculation by using the background field method
technique). The main question is, of course, about the non perturbative
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contributions. This is somewhat puzzling since, in the case of N = 4 four
dimensional SYM, the gravity side reproduces precisely the nonperturbative
behaviour of the gauge theory, not the perturbative one. The reason for the
opposite to happen in the cases considered here can be traced, again, to the
existence of an enhangon locus. This locus has the dual gauge theory inter-
pretation of being the analogous of Agcp, i.e. the scale at which the coupling
becomes large and nonperturbative effects become relevant. The fact that
both dual geometries fail beyond this point is what seems to be the reason
due to which we cannot recover the gauge theory nonperturbative phenomena
from Supergravity. It would be extremely interesting to fully understand the
Supergravity physics inside the enhancon. This is an open question, although
some attempts can be found in recent literature. Understanding this should
provide us (at least in cases analogous to the ones studied here) with answers
to the questions concerning the nonperturbative behaviour of the dual gauge
theory. Also, the smooth limit connecting fractional and wrapped branes
would be presumably found if we were able to fully resolve the geometry. All
these are interesting questions which deserve further study.
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Resumen y Conclusiones

Resumamos los resultados mas importantes que hemos obtenido y extrai-
gamos algunas conclusiones e ideas para futuros trabajos.

Parte 1

En el Capitulo 3 presentamos la familia més general de soluciones puntuales
de Supergravedad N = 4 en cuatro dimensiones. Esta teoria es una trun-
cacién consistente de la cuerda heterética compactificada en un seis-toro, por
lo tanto, todas estas soluciones podrian ser subidas a diez dimensiones. Estas
son, en general, no-supersimétricas: incluyen todas las posibles configura-
ciones puntuales y todas las soluciones de esta teoria conocidas previamente.
Su interpretacion en diez dimensiones podria ser 1til si uno esta interesado en
estudiar la fisica de agujeros negros de estas soluciones cuatro-dimensionales
desde una perspectiva de Teoria de Cuerdas. Debido a que, en general, de-
scriben configuraciones no-extremas con la temperatura de Hawking finita,
las mismas son apropiadas para el estudio de emision térmica de agujeros
negros, como minimo en los casos cercanos al limite extremo.

El conjunto completo de configuraciones es invariante, como familia, con
respecto a las dualeidades de la teoria. Supergravedad N = 4,d = 4 es una
teoria simple que tiene la interesante propiedad de mostrar tanto dualidad S
como dualidades T. En este sentido, nos proporciona un marco sencillo donde
comprobar cuales son las configuraciones fisicas que estdn contenidas dentro
de las “representaciones” de grupos de dualidad. Nosotros hemos encontrado
la familia més general posible invariante bajo dualidad, y nuestros resulta-
dos demuestran que, para esta teoria, todas las posibles soluciones fisicas
(supersimétricas o no) con cargas bien definidas se encuentran incluidas en
las orbitas del grupo de dualidad de la teoria. Al menos en los casos que
se corresponden con agujeros negros, sabemos que todas las configuraciones
fisicas posibles estdn incluidas en la solucién general porque todas las cargas
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fisicas permitidas por el “teorema de no-pelos” estan incluidas y éstas pueden
tomar valores completamente independientes. Tambien hemos comprobado,
en todos los casos, las propiedades de invariancia bajo dualidad de las canti-
dades termodinamicas.

En el Capitulo 4 intentamos ver las implicaciones de esta idea en un con-
texto directamente relacionado con la Teoria de Cuerdas. El objetivo aquf ha
sido investigar si todos los solitones conocidos en las Supergravedades Tipo
IT constituian o no una “representacién completa” de las dualidades S 'y T.
De hecho, hemos encontrado que este no es el caso si uno considera sola-
mente los solitones estdndar. Estudiando los sucesivas soluciones T-duales
de la solucién S-dual a la D7-brana de la teoria Tipo IIB, encontramos una
cadena de soluciones, previamente desconocidas, de ambas teorias Tipo-II.
Ademids, S-dualizando las soluciones Tipo IIB y subiendo las de Tipo ITA a
once dimensiones, obtenemos una familia completa (de nuevo, previamente
desconocida) de solitones en once dimensiones y ambos en teorfas Tipo II. La
propiedad mas interesante que comparten todos ellos es que poseen las car-
acteristicas asociadas a los estados del espectro no pereturbativo de la teoria
de cuerdas que normalmente se consideran como elementales (en oposicién
a estados compuestos): todos preservan 1/2 de las supersimetrias y esdn
cargados bajo un unico campo gauge. Ademads, resultan ser altamente no-
perturbativos, ya que sus masas don proporcionales a un potencia inversa de
la constante de acoplo mayor a la usual. De hecho, nuestro cédlculo de estas
masas muestra que las mismas coinciden con las predicciones hechas hace
algunos anos por Hull, Obers, Rabinovici y otros. Estos autores, basandose
en argumentos de dualidad-U, propusieron la existencia de algunos estados
no-perturbativos en diez dimensiones que estarian ausentes del espectro cono-
cido. Fueron capaces de calcular sus masas, y sus resultados coinciden con
los nuestros.

Una propiedad comun de todas estas soluciones es que se comportan
como el monopolo de Kaluza-Klein, en el sentido de que, en su presencia, un
nimero de dimensiones transversas tienen siempre que ser consideradas com-
pactas. Nosotros hemos explicado esta propiedad mostrando que todas ellas
pueden obtenerse a partir de una teoria en dimensiones bajas que proviene de
una reduccion dimensional de la correpondiente accién en diez dimensiones.
Estas nuevas soluciones pueden generarse en dimensiones bajas por medio de
simetrias que exclusivamente existen en la teoria compactificada.



217

El principal obstaculo esgrimido en la literatura para considerar la soluciéon
S-dual de la D7-brana es que el superdlgebra de la teori Tipo IIB no tiene
carga una central que se corresponda con este estado. Hemos demostrado que
este no es el caso: damos un método genérico para encontrar todas las cargas
centrales asociadas a todos estos estados solitonicos nuevos. Como expli-
camos en la Seccién 2.3, la estructura de un determinado superalgebra viene
dada por las superisometrias del vacio. Si tenemos en cuenta las direcciones
isométricas de estos “backgrounds” (que no son asitéticamente planos), uno
puede formular superalgebras consistentes que incluyan las cargas centrales
necesarias asociadas a estos estados.

Seria muy interesante encontrar la descripciéon en Teoria de Cuerdas de
todos estas soluciones. Ademas, sus geometrias de la region cercana al hor-
izonte, sus teorias de “worldvolume” y las posibles aplicaciones de todo ello
en el contexto de AdS/CFT, podrian ser de interés. Querriamos estudiar
todos estos aspectos en el futuro.

Parte 11

En la Parte II hemos presentado algunos resultados relativos a espaciotiempos
que no describen estados masivos o cargados de Teoria de Cuerdas sino que,
en su lugar, pueden considerarse como vacios. En el Capitulo 6 demostramos
c6mo todos los vacios méximamente supersimétricos (a parte de Minkowski,
i.e. basicamente AdS x S y espaciotiempos tipo onda) de teorias con ocho
supercargas en 4,5y 6 dimensiones estan relacionados mediante compactifica-
ciones. Esto demuestra que la creencia habitual de que las compactificaciones
de soluciones maximamente supersimétricas siempre rompen al menos algo
de supersimetria no es correcta. Al menos en estos casos, siempre es posible
encontrar una compactificacién que preserve todas las supersimetrias (hemos
visto que una compactificacion de este tipo siempre involucra una truncacion
consistente de algin supermultiplete de la teoria en una dimensién menos).
De hecho, es siempre posible encontrar un sistema de referencia en el que hay
una direccion a lo largo de la cual no sélo las soluciones que describen estos
espaciotiempos, sino también sus espinores de Killing, presentan isometrias.
Esto también permite estudiar T-dualidad en estas soluciones (aunque, en
general, supersimetria no ha de preservarse ante una T-dualizacién). Esto
nos proporciona un espectro unificado de todos estos espaciotiempos de vacio.
Una consecuencia que hemos encontrado es que la solucion maximalmente
supersimétrica dada por el limite de cerca del horizonte del agujero negro ex-
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tremo con rotacién en 5 dimensiones, realmente interpola entre AdS, x S® y
AdSs x S?. Esta interpolacién resulta ser suave en el espacio de pardmetros,
y tiene una explicacién sencilla en términos de su version compactificada en
cuatro dimensiones: dicha versién compactificada es simplemente el limite de
cerca del horizonte del agujero negro diénico Reissner-Nordstrom. Los casos
estrictamente eléctrico o magnético corresponden a las “esquinas” AdS, x S3
o AdS; x 5%, mientras que una solucién diénica general en cuatro dimensiones
representa un punto intermedio en el espacio de “moduli” de vacios en cinco
dimensiones.

Es conocido el hecho de que las teorias de Supergraved en cinco y once
dimensiones muestran un considerable parecido. Seria interesante investigar
la posibilidad de generalizar a once dimensiones este esquema unificado de
vacios en cinco dimensiones. Los vacios en cinco-dimensionales AdSs x S3 y
AdS3x5? recuerdan a las soluciones maximamente supersimetricas AdSy x S7
or AdS7; x S* de Supergravedad en once dimensiones (las cuales se corre-
sponden, respectivamente, con los limites cercanos al horizonte de la M2 y
la M5-brana). De hecho, se puede ver que la solucién interpolante en cinco
dimensiones corresponde a una rotacién continua de una fibra S' para dar,
en los casos limite, un fibrado de Hopf de S® 0 AdSs, con respectivos espacios
base dados por S% 0 AdS,. El siguiente fibrado de Hopf posible es el de S7 con
S3 y S* como fibra y espacio base, y deberia poderse encontrar un analogo
para AdS7. El problema principal para llevar a cabo en once dimensiones
una construccion paralela a la realizada en cinco es que esto involucraria una
compactificacién en S? de Supergravedad de once a ocho dimensiones. Esto
es algo técnicamente bastante complicado.

En el Capitulo 7 propusimos un andlisis matematico en relaciéon con
las propiedades supersimétricas de los vacios maximamente supersimétricos.
Como se explicé en el Capitulo 5, estos espaciotiempos admiten una de-
scripcién como coset. Para un variedad de coset G/H dada, existe un pro-
cedimiento bien conocido para poner en él una métrica G-invariante, asi
como para construir los vectores de Killing correspondientes. Lo que de-
mostramos aqui es que no sélo las propiedades métricas, sino también las
supersimétricas, vienen dadas por la estructura de teoria de grupos de estas
variedades tipo coset. Como minimo en el caso de espaciotiempos maxima-
mente supersimétricos, el punto esencial es notar que la parte de conexién
de espin de la derivada supercovariante proporciona una representacion es-
pinorial del subgrupo de isotropia H. Ademas , la parte del tensor de campo
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siempre proporciona una representacién espinorial para el complemento de
H, y como resultado, toda la conexién supercovariante no pasa a ser sino la
uno-forma de Maurer-Cartan del coset bajo consideracién, convenientemente
evaluada en una representaciéon espinorial “elegida” por el “background” es-
pecifico en el que estamos trabajando. Esto significa que las condiciones
de integrabilidad de las ecuaciones del espinor de Killing se satisfacen au-
tométicamente y, de esta forma, (y antes de haber caalculado ningin espinor
de Killing) se demuestra que la solucién es maximamente supersimétrica.
Ademas, los espinores de Killing se encuentran inmediatamente: vienen da-
dos simplemenete por (el inverso de) cualquier un representante del coset,
evaluado en la representacién espinorial que se puede leer a partir de la regla
de transformacién bajo supersimetria del gravitino.

Esta sencilla interpretacién geométrica de los espinores de Killing tiene
una importante consecuencia. Como se explicé en la Secciéon 2.3, una de las
cosas mas importantes asociadas a un determinado vacio es su algebra de
supersimetria. A partir de ella se puede saber cuiles son las excitaciones
elementales posibles, incluso aquellas no-perturbativas: los solitones permi-
tidos siempre tienen una carga central asociada correspondiente. Calcular el
superalgebra asociada a un “background” dado puede ser algo complicado.
Con el procedimiento indicado aqi, obtener la parte de translaciones en el
anticonmutador de dos supercargas se convierte en un calculo muy sencillo.
No obstante, no conocemos un método sistematico para encontrar todas las
posibles cargas centrales. Dicho procedimiento tampoco es conocido en gen-
eral. Pero el hecho de que las supercargas realmente contienen informacién
acerca de las propiedades geométricas de “backgrounds” homogéneos puede
prooporcionar un camino prometedor en este sentido. Esperamos que la di-
reccién iniciada aqui nos ayude a resolver este interesante problema en el
futuro. La extensién de estos resultados a espacio-tiempos homogéneos con
menos supersimetrias es un asunto que actualmente también estamos con-
siderando.

Por otro lado, en el Capitulo 8 encontramos la formulacién de como coset
del inico “background” maximamente supersimétrico cuya descripcién como
espaciotiempo homogéneo no se conocia previamente. Este espacio-tiempo
es el limite cercano al horizonte del agujero negro extremo con rotacién en
5 dimensiones. En el Capitulo 6 hemos visto que este espaciotiempo juega
un papel importante dentro de los vacios de Supergravedad en cinco dimen-
siones. Su descripcién como coset resulta ser (SO(1,2)xSO(3))/U(1), donde
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el grupo U(1) actia sobre ambos factores con un peso relativo arbitrario. El
resultado no es demasiado extrano si tenemos en cuenta el resultado men-
cionado arriba y que también encontramos en el Capitulo 6: el hecho de
que este espacio interpola de forma suave entre AdS,; x S® y AdS; x S2%. El
hecho de que AdS; sea la variedad de grupo SO(1,2) y que S® sea la var-
iedad de grupo SO(3), unido al que, en una dimensién menos, cada uno de
ellos sea el coset respectivo de estos grupos cocientado por U(1), hace que
nuestro resultado aparezca como algo natural. Hemos aplicado las técnicas
propuestas en el Capitulo 7 también a este caso, aunque hay una pequena
diferencia aqui: al contrario que en todos los casos estudiados previamente,
este espaciotiempo es homogéneo pero no es simétrico. Hemos encontrado
que, no obstante, las técnicas generales se pueden aplicar igualmente bien.
Una observacién interesante es que, con la descripcién tipo coset encon-
trada, vemos que este espaciotiempo es la continuacién analitica (versién
Lorentziana) del espacio compacto conocido como TWOY . Este es la base
del “conifold”, un espacio que ha sido ampliamente estudiado en el contexto
de AdS/CFT dado que proporciona una geometria dual a una teoria gauge
N =1 en cuatro dimensiones. En T(tY el grupo U(1) actiia con igual peso
en ambos factores SU(2). Seria interesante investigar que ocurre si tenemos
en cuenta, tal y como hacemos en el caso estudiado aqui, un peso arbitrario,
y cudles podrian ser sus implicaciones en el contexto AdS/CFT. Pensamos
que esta es una interesante pregunta, la cual nos gustaria estudiar pronto.

Parte 111

Finalmente, en la ultima Parte hemos estudiado algunas propiedades de
“backgrounds” de Supergravedad duales a una teoria gauge en tres dimen-
siones: SYM con ocho supercargas. La motivacién principal para centrarnos
en esta teoria y sus duales gravitatorios es doble: por un lado, la teoria
gauge es no conforme. Por otro lado, pretendiamos estudiar, desde el punto
de vista de las soluciones de supergravedad, los parecidos y diferencias entre
dos geometrias muy diferentes que se supone que son duales a la misma teoria
gauge. Este hecho ya indica que ambos “backgrounds” deberian estar rela-
cionados de alguna manera. Una geometria reproduce el comportamiento de
D4-branas enrolladas en un ciclo supersimétrico. La otra corresponde a D2-
branas fraccionarias en el punto fijo del orbifold C?/Z,. En la literatura ha
sido sefialado que una Dp-brana fraccionaria puede verse como una D(p+ 2)-
brana regular en un determinado limite, el limite en el cual dos direcciones
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del “ worldvolume” de la D(p+ 2)-brana estén enrolladas en un dos ciclo y el
ciclo se “encoge” hasta alcanzar tamano cero. En este limite singular el espa-
cio pasa a ser un orbifold y la brana regular pasa a ser una brana fraccionaria
con dos dimensiones menos en el “worldvolume”. Hemos cisto que ambas ge-
ometrias consideradas aqui coinciden exactamente con este esquema, dado
que hemos demostrado que la geometria en la cual las D4-branas estan en-
rolladas es un una version “warped” del espacio de Eguchi-Hanson, y est
espacio es justamente blow-up del orbifold que estamos considerando. Vimos
que, desde el punto de vista de las geometrias respectivas, no hay un limite
suave que las conecte. Esto es debido a que ambas soluciones muestran un
“enhancon locus” en un determinado punto en el espacio transverso: en este
punto aparecen nuevos grados de libertad no masivos la teoria y la solucién
de supergravedad no es por tanto fiable a partir de este punto.

Desde el punto de vista de la teoria gauge, hemos calculado, usando los
dos soluciones de supergravedad, la funcién beta a 1-loop en la “rama de
Coulomb” de la teoria gauge. Hemos encontrado un perfecto acuerdo en-
tre ambos resultados, y también entre éstos y el calculo perturbativo en la
teoria gauge (damos este calculo usando el método de campo “background”).
La principal pregunta es, desde luego, acerca contribuciones no perturbati-
vas. Esto es algo extrano ya que, en el caso de N = 4 SYM en cuatro
dimensiones, el dual gravitatorio reproduce precisamente el comportamiento
no perturbativo de la teoria gauge. La razén para que ocurra esto en los
casos considerados aqui es, de nuevo, es la existencia de un “enhancon lo-
cus”. Este punto en el espacio transverso es el dual al andlogo de Agcp de
la teoria gauge. Esta es la escala a la cual el acoplo se hace grande y los
efectos no perturbativos pasan a ser relevantes. El hecho de que cualquiera
de las geometrias falle en este punto, parece ser la razén por la cual no so-
mos capaces de recuperar efectos no perturbativos de teoria gauge a partir
de Supergravedad. Seria de gran interés poder entender completamente la
fisica de Supergravedad dentro del “enhancon”. Esta es una pregunta ain
por resolver, a pesar de que algunos intentos de responderla se pueden encon-
trar en la literatura reciente. Entender bien este asunto daria lugar (como
minimo en casos andlogos a los estudiados aqui) a respuestas a las preguntas
que tienen que ver con al comportamiento no perturbativo de la teoria gauge
dual. Por otro lado, el limite en el que ambas soluciones de supergravedad
deberian de coincidir parece tener que ver con la resoluciéon de la geometria.
Todas estas son preguntas interesantes que merecen un estudio posterior.
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Appendix A

Chapter 3

A.1 Conserved Charges and Duality Invari-
ants

The non-geometrical conserved charges of this theory are associated to the
U(1) vector fields. There are electric charges ¢ whose conservation law is
associated to the Maxwell equation and are defined, for point-like objects by
the asymptotic behavior of the ¢ — r components of the SL(2, R)-dual field

strengths
5(n)
- q
*FM, ~ 2

and magnetic charges p(™ whose conservation law is associated to the Bianchi
identity and are defined, for point-like objects by the asymptotic behavior of
the t — r components of the field strengths

(A.1.1)

5(n)

These charges can be arranged in SO(N) vectors ¢,p and these can be
arranged in SL(2,R) doublets

i

(A.1.3)
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Under S and T duality transformations A, R, this charge vector transforms
according to

¢ q
=A®R . (A.1.4)
P’ b
It is also useful to introduce the SL(2,R) matrix of scalar fields
A2 a 1 —a
M= e : Mt =e* : (A.1.5)
a 1 —a AP

which transforms under SL(2,R) according to
M = AMAT, (A.1.6)

and it is an SO(NV) singlet.

We can now construct two expressions which are manifestly SL(2,R) ®
SO(N)-invariant and that will be useful later to express physical results in
a manifestly duality-invariant way. The first one is quadratic in the charges:

Ky

L=(q p)My"| _ (A.1.7)
p
where M, is the constant asymptotic value of M.
The second invariant we will use is :

F)|=(dd) (55 -(75) . 8

—

q
I, = det (

p

Ry

which is quartic in the charges. Observe that 5 is moduli-dependent and I,
is moduli-independent.

A.2 Physical Parameters

Here we explain our notation for charges and moduli used in the solutions. m
stands for the ADM mass, and n for the NUT charge. They appear combined
into the complex constant 90t defined by

M=m+in. (A.2.1)
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The rotation parameter a is &« = J/m, where J is the angular momentum.

These charges are singlets under all duality transformations.

The asymptotic behavior of the axidilaton is characterized by the constant
asymptotic value \g = ag + e 2%, where ag is the constant asymptotic value
of the axion and ¢, that of the dilaton. The axidilaton “charge” is denoted

by T and, thus

A~ A — ie_2¢°% : (A.2.2)

(where p is a radial coordinate).
Ao transforms as A under duality transformations and Y is as SO(N)
singlet and, under SL(2,R)

Y = ¢ Harg(Aotd)y (A.2.3)

We find it convenient to use, instead of the conserved charges ¢™ and
7™ defined in Appendix A.1, the constants Q™ and P™ defined by
2

do ()(n)
Ft,,-(n) ~ € Q *Ftr(n) ~ — (A24)
02

Y )

and combined into the complex constants I'™ which can be arranged into
an SO(N) vector

r™ =M 4 ;pm I'=Q+iP. (A.2.5)

In our solutions these charges are simple combinations of the conserved
charges and moduli:

Q q
=V , (A.2.6)
P P
where
-1 ag
Vo - €¢0 s V(?Vo = Mal . (A27)
0 —e 2

T is an SO(N) vector and transforms under SL(2,R) according to

[ = elae@ord (A.2.8)
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so the duality invariants can be written

L = |[T-TP=)X, ™2,

r . (A.2.9)
14 = —idet _ (ﬁ ﬁ)

r

Our solutions do not have any primary scalar hair and the axidilaton
charge is always completely determined by the electric and magnetic charges,
and mass and NUT charge through

i (f;;))? . (A.2.10)

n=1

T=—

N[

The absolute value of this expression is duality invariant and can be
rewritten in terms of the basic invariants (A.1.7,A.1.8) as follows:

1
T2 = 4|2m|2(122 —4IL). (A.2.11)

A.3 Central Charge Matrix Eigenvalues
The supersymmetry parameter rq can be expressed in terms of the two dif-
ferent skew eigenvalues of the central charge matrix of N = 4,d = 4 Super-

gravity [52,103] Z; 5. Their absolute values can be expressed in terms of the
electric and magnetic charges in the following way:

N N 2
12107 = %Zmn)p +1 (Z|r<n>|2> _
n=1 n=1

and in terms of the invariants I, I, defined in Egs. (A.1.7,A.1.8) as follows

97 1/2

. (A3.0)

N

> ()

n=1

210> = 1L+ 1}% (A.3.2)
With the help of these expressions and those of the previous Appendices
we can write the supersymmetry parameter ry as follows:
1
2
Th =
° 7 omp

(ImP = 12) (| = [2%) (A.3.3)
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This last equation makes explicit the fact that, if and only if r3=0, one
of the two possible supersymmetry Bogomol’nyi bounds

9M|” > (21, (A.3.4)

is saturated.
The following expression is also useful

12,22 = |2 T (A.3.5)
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Appendix B

Chapter 4

B.1 Holomorphic (d — 3)-Branes

In this Appendix we briefly discuss holomorphic (d — 3)-brane solutions of
the d-dimensional SL(2,R)/SO(2) sigma model

orotT

where 7 lives in the complex upper half plane and is defined up to modular
PSL(2,Z) transformations, so multivalued solutions are allowed if the value
of 7 changes by a modular transformation.

(d—3)-brane-type solutions of this model were first considered in Ref. [118]
in d = 4. In these dimensions (d — 3)-branes are strings. In that reference,
the following general solution of the above model was found*

ds* = dt* — dg(§_3) — Hdwdw,
(B.1.2)
T = H,

where H is, in principle, any complex holomorphic or antiholomorphic func-
tion of the complex variable w (i.e. either 9;H = 0 or 9, = 0) and
H =SQm(H). H is, therefore, a real harmonic function of the 2-dimensional
Euclidean spacetime transverse to the (d — 2)-dimensional worldvolume di-
rections. Only functions with H > 0 are admissible.

!Here we write the obvious generalization to any dimension d (see also Refs. [94,119]).
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A few remarks are in order here: although ¢,; = H is in this solution
equal to the imaginary part of 7, it does not transform under PSL(2,7Z).
Modular invariance of the metric is, therefore, not an issue. We could have
wrongly concluded that in this solution, the metric is not modular invariant
because g,; = Sm(7) but, by definition, it is, since the metric does not trans-
form under PSL(2,Z). Then, the Lh.s. if that equation does not transform,
and the r.h.s. does, and we get a new solution (denoted by primes) with

at(w)+b  aH+b _

, o — !
T(w) = CT(w)+d_CH+d_H,
(B.1.3)
, Sm(7') Sm(H')
Gy = Yoo =SSm(7T) = | —cr' + al? B | — cH' + al? -

We could remove if we wished the extra factor by a conformal reparametriza-
tion:

_ dw

- —cH'(w) +a’
and we then could write again the new solution in a form similar to that of
the original one Eq. (B.1.2) but with a new holomorphic function H'[w(w’)].
Thus, as in Ref. [118] we could have written from the beginning the general
solution in the form

ds® = dt* —djj 5 — H|f(w)[*dwdw,

dw' (B.1.4)

(B.1.5)
T = H,

where f(w) is any holomorphic function of w, but this function can always be
reabsorbed into a holomorphic coordinate change ' = F(w), dF/dw = f
and 7(w') = 7[F ()]

All this said, it must be acknowledged that, even though modular invari-
ance of the metric is not an issue, its single-valuedness is. Since H will in
general be a multivalued function with monodromies in G, its imaginary part
will also be multivalued and it might be necessary to multiply it by |f(w)|?,
with f(w) multivalued to make g, single valued.

A second remark we can make here is that there exists another form of
the general solution which is manifestly SL(2,R) invariant without having
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to invoke coordinate changes to show it:
ds* = dt* —dy,’ — e *Vdwdw,
T = Hi/H,, (B.1.6)
e?V = Sm(MiH.) ,

where H, 5 are two arbitrary complex functions of the complex variable w
transforming as a doublet under SL(2,R), i.e.

%,1 a b Hl

= , (B.1.7)
rHIQ C d Hg
both in 7 and in the metric (but e~V is invariant, as it must). The structure
of this family is similar to that of the duality-invariant families of black-hole
solutions of pure N = 4,d = 4 supergravity presented in Refs. [30, 69, 87|,
closely related to special geometry objects as discovered in [85]. We can
relate this general solution either to the solution Eq. (B.1.2) as the particular
case H1 = H, Hs = 1 or to the solution Eq. (B.1.5) as the particular case
H1/H2 = ’H, f = HQ since %m(}hﬁz) = |IH2|2%H1(IH1/’H2)

All this means that we cannot generate new solutions not in this classes
via SL(2,R) transformations.

Since all these solutions are equivalent, up to coordinate transformations,
we take now Eq. (B.1.2) and now consider the choice of function . First, we
have to choose between holomorphic and anti-holomorphic H. This choice
is related to the choice between (d — 3)-branes and anti-(d — 3)-branes with
opposite charge with respect to the (d — 2)-form potential dual to a. The
impossibility of having H depending on both w and @ is due to the impos-
sibility of having objects with opposite charges in equilibrium. We opt for
holomorphy.

Which holomorphic function should one choose? As usual, the choice has
to be based on local and global conditions. Local conditions are essentially
related to the existence of extended sources (with (d — 3) spatial dimensions)
at given points in transverse (w) space manifold. Global conditions are essen-
tially related to the choice of global transverse space. Not all local conditions
are possible for a given choice of transverse space. For instance, there is no
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holomorphic function for a single (d — 3)-brane in the Riemann sphere?.

To clarify these issues, let us consider the simplest solution in this class:
let us couple the action Eq. (B.1.1) to a charged (d — 3)-brane source. We
first have to dualize the pseudoscalar a into a (d — 2)-form potential A4 )
with field strength Fiy_1) = (d—1)0A(q_2): da = e~ *F(4_1y. The bulk plus
brane action is

S = sty [ o vIa] {R+ 5008 + s
1 [ @i, — (d— 4 B.1.8
L[ A2/ 1] {e@ Py gy — (d — 4) (B.18)

—oy [ d4? o reiga
a(d—z)!/d §A(d72) 11"'Z(d_2)6 (d-2)

where g;; and A(g_g) i1y AT€ the pullbacks through the embedding coor-
dinates X*(&) of the metric and (d — 2)-form potential. 7" is the tension (in
principle, a positive number) and o = 1 gives the sign of the charge (which
is evidently proportional to the tension). The coupling to ¢ is the only one
that allows for solutions of the form we want.

A solution is provided by

e¥ = H,
< (B.1.9)
A(d—2) tyly(@=3) = aH ',
\ YZ = é-z ) X? =0 )

where H satisfies the equation

’H = —167G\ 0T (z,) (B.1.10)

2of course, one meets the same situation for other branes. However, for smaller branes
one can always find harmonic functions with a single pole (describing a single brane) that
lead to spaces asymptotically flat in transverse directions. This is not true for higher
((d — 3)- and (d — 2)-) branes).
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i.e. it is a harmonic function with a pole at #5 = 0, where the brane is placed.
The above equation is solved by a function H that behaves near ¥ = 0

H ~ —8G YT log |z,|. (B.1.11)

It is clear that this solution cannot be globally correct as H becomes negative
for |Z3| > 1, but the local behavior of the global solution has to be the same.
Any solution behaving in this way at any given point will describe a (d — 3)-
brane placed there.

Let us now compute the charge. This is defined by

p= fe_&p *F(dfl) = fda, (B.1.12)
Y v

where v is a closed loop around the origin. « is given by

On@ = 0€pmOnmH | (B.1.13)
i.e. combining ! + iz’ = w
65,7' = 0, o = +1 y
(B.1.14)
amf = 0, a=-1 y

that is: a is the real part of a holomorphic or antiholomorphic function of w,
whose imaginary part is the above function H. We find a = a8G§$)T Arg(w)
1

and p = a—T. The choice @ = +1 then, corresponds to a single (d — 3)-
TGN

brane with charge p = + T placed at the origin and corresponds to a

N S
167TG§5)
holomorphic function 7 = H(w) that close to the origin is given by

H ~ —8GYTilogw. (B.1.15)

Observe that the charge is given by the multivaluedness of 7 around
the source, which goes from 7 to 7 + 167TGS(?T which should be identified
with 7. The charge is usually quantized due to quantum-mechanical reasons
in multiples of the unit of charge (e, say) which implies the identification
7 = 7 + ne and the breaking of SL(2,R). If e =1 (i.e. 167TGS€)T = 1 which
we can always get by rescaling 7) then SL(2,Z) is the unbroken symmetry of
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the theory and the above (d — 3)-branes are associated to the modular group
element T3.

We see that in this context solutions (and charges) can be characterized
by the non-trivial monodromies around singular points which, by hypothesis,
are elements of the modular group.

We can clearly generate via modular (duality) transformations of this
solution with 7" monodromy other solutions with different monodromies. it is
easy to see that if we perform a transformation 7 — M (7) M € PSL(2Z) on
the above solution, the monodromy of the new solution around the origin will
be MTM™!. The most interesting modular transformation is S(7) = —1/7
which in other contexts relates electric and magnetic (“S dual”) objects.
Then, the S dual of the above solution will have monodromy ST'S around
the origin and will be given either by H = —% using the general solution
in the form of Eq. (B.1.2) or with # = ;--logw and the form (4.2.6) of
the solution. This is the form we have used in the main text to stress that
we are dealing with a solution different from the one with monodromy 7T,
the difference being in the choice of holomorphic function since, as we have
stressed at the beginning of this Appendix all homomorphic solutions can
always be written in the form (B.1.2), no matter if the monodromy is 7 or
STS.

B.2 The KK Origin of the SL(2,R)/SO(2) Model

We are going to see how the modular group PSL(2,Z) = SL(2,Z)/{xlsx2}
and the SL(2,Z)/S0O(2) sigma model arise in standard Kaluza-Klein com-
pactification on a 2-torus 72.

B.2.1 The Modular Group

As usual in KK compactifications, we use two periodic coordinates ™ m =
1,2 whose periodicity is fixed to 27/ where ¢ is some fundamental length.
This means that we make the identifications

1
7~ 7+ 200, f:<;2>, el (B.2.1)

3For 10-dimensional type IIB D7-branes 167G\ = (2r)7¢8¢% and T = (2)~7(3 %y,
and, thus, H ~ —g% logw. On the other hand, CS%“ =g 1H™! (a = +1) and we get

7
p =1 in a most natural way.
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The information on relative sizes and angles of the periods and the size
of the torus is codified in the internal metric G,,,,

ds? . = dzTGdz, (B.2.2)

which is, by hypothesis, independent on the torus coordinates Z, (but may
depend on the remaining coordinates).

The KK Ansatz is invariant under global diffeomorphisms in the internal
manifold. These are, generically, of the form

P=R'Z+a, ReGL(2,R)@ € R?. (B.2.3)

@ simply shifts the coordinate origin and does not affect the metric. R acts
on the internal metric according to

G'=R'GR,  (Gpn = RPmGpR%,). (B.2.4)

We want to separate the volume part of the metric from the rest*. Thus,

we define®
K = |detGy|, Gon = —K'"? My, . (B.2.5)

M has determinant +1 and, therefore, it is a symmetric SL(2,R) matrix
and, in fact, it can be understood as an element of the coset SL(2,R)/SO(2)
with only two independent entries. If we factor out the determinant of the
GL(2,R) transformations too,

R = |detR™,|, s = sign(detR™,,) , R™, = sRY?8™,, (B.2.6)
then the volume element K and the matrix M transform according to

M = STMS,
(B.2.7)
K' = RK.

|K| is an element of the multiplicative group Rt and S is an element
of SL(2,R). This decomposition reflects the decomposition GL(2,R) =
SL(2,R) x Rt X Zsy. s does not act neither on K nor on M.

4This is necessary, for instance, when we are interested in conformal classes of equiva-
lence of metrics, as in string path integrals, but convenient in general.
SRemember that G has signature (——).
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We have not yet taken into account the periodic boundary conditions of
the coordinates, that have to be preserved by the diffeomorphisms in the KK
setting. Clearly the rescalings R do not respect the torus boundary condi-
tions, but they rescale £. The rotations S respect the boundary conditions
only if S7'77 € Z? the matrix entries are integer, i.e. S € SL(2,Z). Up to a
reflection S = —1I5.9, these diffeomorphisms are known as Dehn twists and
are not connected with the identity (in fact, they constitute the mapping
class group of torus diffeomorphisms) and they constitute the modular group
PSL(2,Z) = SL(2,Z)/{£l2x2}. This is the group that acts on M.

We are going to write the modular group matrices in the slightly uncon-

ventional form
a
S = , (B.2.8)

g 4
to get the conventional form of the transformation of the modular parameter
Eq. (B.2.15).

B.2.2 The Modular Parameter 7

We can define a complex modular-invariant coordinate w on 72 by
w= 550" -, G=C*, (B.2.9)

where, under modular transformations, we assume that the complex vector

@ transforms according to
& =873, (B.2.10)

The periodicity of w is
w~w+aT i, i€ 72, (B.2.11)

What we have done is to transfer the information contained in the metric
(more precisely, in M) into the complex periods . The relation between
these two is

1 |w1|2 %e(u)l(ﬂz)
M=— -~ . (B.2.12)

= -
\Sm(wl"‘J?) §Re(w1u72) |w2‘2

We can check that the transformation rules for the complex periods
Eq. (B.2.10) and for the matrix M Eq. (B.2.7) are perfectly compatible.



237

In terms of the modular-invariant complex coordinate, the torus metric
element takes the form

1

ds?, = Klﬂmdwdw. (B.2.13)
Observe that Sm(wqwy) is modular-invariant (and a quite important one).
It should be clear that not all pairs of complex periods characterize dif-
ferent tori. Recall that M only has 2 independent entries while & contains
4 real independent quantities. In particular, we can see that multiplying &
by any complex number leaves the matrix M invariant. It is customary to

multiply by w; ' both the coordinate w and define

{=uw/ws, T =w /W, (B.2.14)

that can always be chosen to belong to the upper half complex plane H
Sm(7) > 0 (—w; defines the same torus as wy).
Under a modular transformation with S given by Eq. (B.2.8), the modular
parameter undergoes a fractional-linear transformation
, ar+p

M=y (B.2.15)

and the torus coordinate £ transforms

3

Finally, in terms of 7, the matrix M reads
L R Re()
M = (B.2.17)

S\ Re(r) 1

B.2.3 The SL(2,R)/SO(2) Sigma-Model

In pure KK theory (with no higher-dimensional fields apart from the met-
ric), the toroidal compactification of the Einstein-Hilbert action from dtod
dimensions with the KK Ansatz
eua emi Am“
(éﬂd) = , (B.2.18)
0 em”
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where the internal metric
Goun = emienj = —emienjéij. (B.2.19)

gives, upon the rescaling

9w = Kﬁgw/, (B220)

dii\/[9] R

o
Il
—~—

- /ddfm/|gE| [RE + 200 (9 og K)? + LTr QMM 1)’

(d-2)
— 1K @2 My, FMWF™ |
(B.2.21)
The kinetic term for the scalar matrix M is manifestly invariant under

SL(2,R) transformations (the action we started from is diffeomorphism-

invariant). Using the parametrization Eq. (B.2.17), it takes the standard
form

oT0T

%W. (B.2.22)



Appendix C

Chapter 10

C.1 Finding the supergravity solutions

In the two sections of this Appendix we will describe the way in which we
have obtained the supergravity solutions describing, respectively, D4-branes
wrapped on S? and fractional D2/D6-branes on the orbifold R*/Z,.

We will be using the following conventions:

e A metric in D dimensions has signature (—, +”71) L.

e c-symbols in D dimensions are defined in such a way that

6012-..(D—1) — _8012---(D—1) — +1 .

o A p form is defined as w, = ﬁwm...updx“l A Adxte

e The Hodge dual *» in D dimensions is defined as

*p,, — ¥Y—detGp Bt el A L vp-
Wp = “piD )t Evi-vD—phir-tpW rdz’t A .-+ A dx¥P-r

Moreover, * denotes *1° and * denotes *'! .

C.1.1 D4-branes wrapped on S?

In this appendix we explain how we have obtained the type IIA supergravity
solution describing N D4-branes wrapped on S?, using the techniques and
the solutions given in Ref. [195].

Our procedure will be the following. We want to obtain the solution
for the D4-branes by compactifying the solution for the M5-branes wrapped

INote that this convention is opposed to the one taken in the remaining Chapters.
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on S?. The latter is found by uplifting to eleven dimensions a solution of
7-dimensional gauged supergravity with the correct identification between
spin connection and gauge connection, by means of the formulas given in
Ref. [232].

The seven dimensional solution

The starting point is the seven dimensional gauged supergravity considered
in Ref. [195]. Following that paper, we consider a U(1) x U(1) consistent
truncation of the SO(5) gauged supergravity arising when one compactifies
eleven dimensional supergravity on S* The bosonic field content of the
truncated theory consists of two U(1) gauge fields (A(1?)), two scalar fields
(A1,2) and a metric.

The full solution of seven dimensional gauged supergravity is:

2
ot = (%> e ydg'dgd + R (e — 1)(d8 + sin? 03?) + e dp?) |
0

(C.1.1a)

AW = %cos 0dp, A® =0, (C.1.1b)

)\E)\Q, 2)\1+3/\2:0, (CllC)
€% 4+ ke 2 — 1

e = o) 2 (C.1.1d)

4

This solution is exactly the one given in Ref. [195], although we have kept
track of units and we have used standard spherical coordinates 6 and ¢ for
the two-sphere on which the branes are wrapped. R4 = 2(7N)Y/3l, is the
radius of the AdS; space appearing in the near horizon limit of the usual
flat M5-brane solution, and R, is an arbitrary integration constant with
dimension of a length (which is (C3)7'/2 of eq. (24) in Ref. [195]). Finally, &
is a (dimensionless) integration constant, which was called C; in Ref. [195].
All the coordinates entering in the above solution are dimensionless, except
those spanning the unwrapped part of the world-volume of the brane, £ ,i =
0,...,3, which have dimensions of a length.
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Uplift formulas and eleven dimensional solution

The seven-dimensional solution can be lifted to eleven dimensions with the
help of eq.s (4.1) and (4.2) of Ref. [232], which we rewrite here:

2
s> = A'Pdsly + g A3 (Xo‘lduﬁ +) X (duf + 12 (dops + gA<i))2)) :
=1

(C.1.2a)
2 ~ 5 1 2

fACs =29y (Xiui - AXa) em +98Xoeq + 5 > X, dX, Ad(pl)

a=0 a=0

2
1 | .
t o > X7Pd(F) A (A + g AD) ATTFD (C.1.2b)
=1

Here and below, hats will always refer to eleven-dimensional quantities. The
above formulas are written in the notation of Ref. [232]: g is the seven dimen-
sional gauged supergravity coupling constant, £(7) is the seven dimensional
volume form, A®?) are the two U(1) gauge fields, the X, are a suitable
parameterization of the 2 scalars present in the theory and A is given by:

2
A= ZXa,ui ,
a=0

where p, parameterize a two-sphere: u2 + p? + p2 = 1. The quantities
appearing in the uplift formulas are given in terms of those appearing in
eq. (C.1.1) by the following expressions:

1 (Rs\°
¢ \2)"
X0:X1:€2)‘,

) (C.1.3)

A = A = e cos? x +sin? y,

) = =/~ det Gyry dég A~ déa A dB A d@ A dp.,
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where we have chosen the following parameterization for y; :

o = cos x cos B,
p1 = cos xsiné, (C.1.4)
Lo = Siny .

By using the above expressions we are now ready to write the full solution
in eleven dimensions:

2
dg® = A3 ((%) e nydeidg? + R4 (e* — 1)(d6? + sin® éd¢2)>
0

2
4A
+ A28 <%) (EdpQ + Adx? + cos? x(d#? + sin® fdy?)
- 2
+ePsin? (d¢ + cos 9d¢) ) , (C.1.52)
S O R YV A N 0 3 3 A
dCs = Tt € Ple” — 7)sinf| 2(A+2)d§" A ---ANdE" NdONdP N dp
0

+ ia,,(e&) sin(2x) d€O A -+ - AdEX A O A dp A dy

16 (e — 1)?sin 6

5 7]
1 e*sin(2y) _dEON - AdEB A dp A dx A (d¢+cos€dg5> )
(C.1.5b)

where we have also relabeled the angles appearing in (C.1.2): ¢1 = ¢, ¢9 =
. This solution describes the near horizon geometry of an M5-brane wrapped
on a two-sphere. The unwrapped world-volume coordinates are £, ..., £3, the
wrapped ones are f and @, and the remaining coordinates are transverse to
the M5. It can be easily seen that the metric in eq. (C.1.5) reduces to the
one given in eq. (26) of Ref. [195] if we restrict ourselves to work at the IR
fixed point analysed there.

From eq. (C.1.5b) we can compute the three-form potential. It is equal
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to:

. R €% cos® ycosfsind
T8 A

R? € (A + 2) cos? y sin x cos f

8 A2

R 9,(e™) cos® xsin® x cos 6
8 A?

The last step consists in compactifying to ten dimensions the M5-brane so-
lution just obtained along one of its non-wrapped world-volume coordinates
(that we choose to be &%) to get the solution describing the geometry of
N wrapped D4-branes. The compactification is obtained by means of the
standard expressions in the ten dimensional string frame:

dO A dp A dy

dx Ndo A (dd) + cos 5dg5> (C.1.6)

+

dp A de A (dw + cos éd@) .

(Gst);w = (é33)1/2éuua (0173)
€2¢ = (G33)3/2 y (Cl7b)
(03)uup = (é3)uup; (Cl?C)

where we have split eleven dimensional indices in i = {u, &3} . This is all we
need to get the final expression for the wrapped D4-brane solution presented
in section 10.1.2.

C.1.2 Fractional D2/D6-brane system

In this section we will describe in some detail how to find the supergravity
solution describing a fractional D2/D6-brane system. We will always work in
the Einstein frame. The Type ITA effective action in the orbifold background
(10.2.1) is given, in our conventions, by:

2K2

1 1
Stia = —{ / dzv/-G R - 3 / (d¢ A*dp + e ®Hy A *Hs
_ e3¢/2F2 N*Fy — e¢/2F4 A *F4 + By ANFy A F4> } , (C18)

where the field strengths are given by:
ngdBQ, F2:d01, F4:d03, F4:F4—01AH3, (019)
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and k = 877/2g,o/?. In order to find a D-brane solution we must add to

the previous bulk action a boundary action whose corresponding Lagrangian
we call £;. The equations of motion are then obtained by varying the total
action Sya + Sp .

The first step in order to find a supergravity solution in the orbifold
background (see for instance Ref. [200]) is substituting in the action (C.1.8)
the form (10.2.5) of the fields:

7/2

BQ :bw2, 03 203+A1/\WQ. (0110)

Recalling that the 2-form w, is normalized as in eq. (10.2.3), one obtains:
1 1 _ -
A = 2—#{ / d'%sV/-G R— / (d¢A*d¢—e3¢/2d01/\*d01—e¢/2d03A*d03)

1 _
. Z/ (e—¢db A*5db — e¥2Gy A*Gly — 2b A dCy A dAl) } . (C.1.11)
RL,5

where we have introduced the quantity:

By varying the previous action one finds the equations of motion for the fields
Ci1, C3, Ay, b and ¢ respectively:

1
d (€% *dCy) — §e¢/2db AN*Gy AN Qy + 2#% =0, (C.1.13a)
1
_ 1 0
d (e *dC3) + @b A dAL A Qu + 2&25—5” =0, (C.1.13b)
3
$/2 * > 20Ls
d (e?? *G5) + db A dCs + 4k SA. =0, (C.1.13c)
1
d (e7? *db — e?/2C) A*°Gy) + dCs A dA; + 4&2% =0, (C.1.13d)

1 _ _
d*do + §e3¢/2d01 A*dCy + Ze<f>/2d03 A*dCs
oLy _
5S¢

where we have defined Q4 = §(2%)---6(z%) dz® A --- A dx®. By varying
the action with respect to the metric one gets also the Einstein equations

1 1
+5 [e—¢ db A *db+ S Gy A *602] Ay + 267 0, (C.1.13¢)
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that it is convenient to split into three separate equations (according to
which components of the metric are involved in each case). By denoting

with 279 = {z°,...,2°} the coordinates on R and by aP% = {5, ..., 2%}
the orbifolded coordinates we find the following equations:
1 0Ly "
Rps = 5RGpo + 267 oo = oo+ UT5 (C.1.14a)
1 0Ly u
Ry — 5RGpq + 2/{2m =T, (C.1.14b)
R, — §RGW + 2k e Ty - (C.1.14¢)

The energy-momentum tensors above refer separately to those of the “twisted”
and “untwisted” fields, and are given by:

1 1 1 1
T;V = §(au¢ 81/‘/5 - 5(8¢)2GHV) + §€3¢/2(F2NAF21/A - Z(FZ)QGW)
(C.1.15a)
1
+ 7. 3!e¢/2(F4uABCF4uABC - g(F4)2G/w) )
1y—Ge (1 _ 1 1 1
Too = Nl (56 ?(0pb 05b — 5 (98)*Glpo) + §€¢/2(G2pAGzaA - 1(02)2(;/)0)) :

(C.1.15b)

i i 0 1 :
where, in the expression for 77, indices y, v run over the appropriate coor-

dinates (according to the equation in which they are used) and, in all cases,
summed indices (A, B,...) run over all ten dimensional coordinates. In the

expression for Tlfg, G'¢) refers to the determinant of the restriction of the ten

dimensional metric to the 6-dimensional subspace RS,
As explained in section 10.2.1, we are interested in a bound state of N
fractional D2-branes and M D6-branes. The world-volume of the D2-branes

extends in the directions z°, 2!, 2, while these branes are stuck at the orbifold

fixed point 2® = 27 = 2® = 2% = 0. The D6-branes extend in the directions

20, 2t, 2% as well as along the orbifolded directions 2%, 27, 28, 2°.
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For the “untwisted” fields we consider the following standard Ansatz for
a D2/D6 system:

ds® = Hy"®Hy ¥, pda®da? + HYPH/®s,;do'de? + HY®HS /%6, da? da? |

(C.1.16a)

e = Hy/*H*/* (C.1.16b)
Cy = (Hy' — 1) dz® Ada' A da?, (C.1.16¢)
where we have divided the coordinates in three groups: z®# = {20, !, 22}
denote the coordinates along the world-volume of both branes, z%/ =
{z3,2*, 2%} denote the ones transverse to both, while 2% = {z° z7, 2% 2°}

denote the (orbifolded) coordinates along the world-volume of the D6-branes
and transverse to the D2-branes. The function H, depends on the radial
coordinate p = /(23)2 + ... + (29)2 of the space transverse to the D2-brane,
while the function Hg depends only on the radial coordinate of the common
transverse space 7 = /0;;x'x7 .

In order to find a sensible Ansatz for the fields A; and C; we need to take
a more careful look at the contributions coming from the boundary action
describing the world-volume theory of the branes. For our system, such an
action is the sum of a term describing the D2-branes and a term describing
the D6-branes:

Sy = NSy + MS;, (C.1.17)

The relevant parts of the action (as explained in Ref. [242], only the linear
terms contribute) are given by (see appendix C.2):

_ 1y 3, —¢/4 5
SQ—QK{ /da:e Vv —det Gop 1+27r2a’

- b As
Cs |1
* /M3 ’ ( * 27r2a’> * 212/

S@-:%{—/dﬁrei‘z’ —detGU+/ 07}
o
K My

(Y (e
T 22y {/d €y/—det Gop b /M3A3}+"" (C.1.18b)

}, (C.1.18a)
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where the indices «, 3,... run along the common world-volume M3 and
p, 0, ... along the whole D6-brane world-volume M7 .

We notice that the previous boundary actions do not depend on the fields

C: and A;. This means that eq.s (C.1.13a) and (C.1.13¢) will not contain

the contribution coming from the boundary action:
1
d (e*/? *dCy) — 5e¢>/2db A*Gy AQy =0, (C.1.19a)
d (e? *Gs) + db A dC3 = 0. (C.1.19b)

Taking into account the expression in eq. (C.1.16¢c) for Cs, we see that the
second equation is easily satisfied by imposing:

e?/? %Gy = Hy 'db A dz° A dz* A dx? (C.1.20)

Eq. (C.1.20) implies that the second term of eq. (C.1.19a) vanishes. Then,
eq. (C.1.19a) can be satisfied by imposing:

e *dC, = —d (Hg') da® Ada* Ada® AdaS A---Adz®.  (C.1.21)

Eq.s (C.1.20) and (C.1.21) imply after some manipulations the following
expressions for A; and C :

1 )
dAy = Cy A db + ey Hedbda? A dz® | (C.1.22a)
1 ,
dCy = S0, Hedz? dz* (C.1.22b)

where ;1. is such that 345 = 3% = +1.

We are now ready to find the complete solution. Inserting the Ansitze
(C.1.16)-(C.1.22) into the equations of motion (C.1.13) and computing all
the relevant contributions coming from the boundary action S, after some
algebra we get:

(5”(9,8] + H651"16p8q) HQ + %Hﬁé”@bajb(S(x(j) e (5(%9)
+kTy NS (23) -+ 6(2°) =0 (C.1.23a)

from the eq. (C.1.13b) for Cs,

KTQ

oSy (4N — M)6(2*)---6(z°) = 0,

(C.1.23b)

H' (Hy80:0;b + 250 Hydb) —
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from the eq. (C.1.13d) for b and

1 - .
CH,((890:0; + Hed"9,0,) Hy + %Hﬁ-é”a,-bajbé(xﬁ) --6(2"))

4
3 KJTQ ( 6T6

— CH,'699,0;Hs + =2 (N — —M> 6(2%)-+-0(2") =0, (C.1.23¢)
4 4 Ty

from the eq. (C.1.13e) for ¢. Plugging eq. (C.1.23a) into eq. (C.1.23c) we get
the following equation for the function Hg:

690,0;Hs = —2kTsMo(z®) - - 6(2°), (C.1.24)
whose solution is given by the following harmonic function:
'M
He(r) =1+ % . (C.1.25)

Analogously, using eq. (C.1.24) into eq. (C.1.23b) we obtain the following
equation for the function Z = Hgb:
K)TQ

690,09, = 5 5

(2N — M)5(23)---6(z°), (C.1.26)

which is solved by:

Z(r) = (C.1.27)

2 T

(2rv/a?)” (1 _ g/a(2N - M))

where we have chosen the constant term in order to satisfy the condition
(10.2.6) for the background value of the field b. We are now left with
eq. (C.1.23a), which is in general difficult to solve. Finally, after some com-
putation one can show that with our Ansatz the equations (C.1.14) for the
metric are also satisfied provided that eq. (C.1.23a) holds.

Finally, the fields C; and A, are obtained by integrating eq.s (C.1.22).
In order to do so, we change the coordinate system into polar coordinates in
the common transverse space: (z*,z%, 2°) — (1,0, ). Then we obtain:

!
C, = @ cosfdyp (C.1.28a)
! —
A= —7r20/98\/a_(4N M) cos Odp . (C.1.28b)

svVal M
1+ et

The supergravity solution that we have found is summarized in eq. (10.2.9).
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C.2 World-volume actions for fractional
branes

The world-volume action for a fractional Dp-brane (p < 5) transverse to
the orbifold space R*/Z, can be obtained in several ways. Recalling that a
fractional Dp-brane is a D(p + 2)-brane wrapped? on the vanishing cycle 3,
defined in section 10.2.1, one can get the action for a fractional Dp-brane
starting from the one of a D(p 4 2)-brane, which in the Einstein frame is:

Sp+2 = SDBI + SVVZ s (C.2.1)

with:

T, p=
SDBI = _pT-FQ / dp+3§€Tl¢\/— det [Gab + 6_% (Bab + 27roz’Fab)} s

(C.2.2a)
T, )
Sy — o2 / 3Gy AP (C.2.2b)
k MP+3 q
where £%b- = {£0) ... £P*?} are the coordinates of the brane world-volume

and T, = /7(27v/a')*P. All bulk fields in eq.s (C.2.2) are pullbacks onto
the world-volume M, 3 of the brane.

Let us start by considering the DBI part of the action. In order to wrap
the brane on the cycle ¥y we have to impose the decomposition in eq. (10.2.4)
for the field By (we suppose that it has no components outside the cycle).
The metric has no support on X, so eq. (C.2.2a) becomes:

T .
Sper = —p—+2/dp+1£eTl¢\/— det [Gap + e 22mal o8] e_%/ bws
K

P

T, p—3 4 b
:—ﬁ/df’ﬂfe 1 ¢\/—det [Ga5+e 221l aﬂ] (1+—> ,

2m2a/!

(C.2.3)

where we have used eq.s (10.2.2-10.2.6) and the relation T}, = (27v/a/)?T}5 .
The coordinates £%P = {£°, ..., £P} are the coordinates of the world-volume

2To be precise, we are considering fractional branes of “type 1”7, which have a B-flux
on the shrinking cycle but not an F-flux.
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M, of the fractional Dp-brane. Turning to the WZ part, we have to decom-
pose the R-R potentials in a similar fashion as in eq. (10.2.4):

Cq = éq + Aq_z A Wa (024)

(notice that C,,3 vanishes). To discuss what is the result of wrapping, let
us first consider the highest rank field C) 3, whose contribution to the WZ
action is given by:

T, 1, T, A
p—+2/ Cp+3 = pt2 / Ap+1 N wy = 2—p 5 p2+1, s (025)
K IMpis K IMpys R

where we have used eq.s (10.2.3). Considering now Cp41, one gets:

N——

Tp+2 / Tpio / ~ ~ b
C, . ANB — =2 Cy1bAwy = L2 C 14+ ——
P R PR s wp = o i P T 5y
(C.2.6)
Therefore the first term of the WZ action is:
T, . b Apis
P C 1 P C.2.7
2% Mysn p+1 ( + 27.(.2al> + 220! ( )

If we consider any other lower rank potential, one can see that the relevant
contributions to the WZ action always involve the following combinations of
fields:

. b A,
¢, =C, (1 + 27r2a’) + 5 (C.2.8)

This means that the world-volume action for a fractional Dp-brane can always
be put in the form:
Sp = Spg1 + Swz , (C.2.9)

where:

T =3 b
Spgr = —i/dp“&e i ¢\/— det [Gap + €72 210! o) (1 + %) :

TP 2o’ F
Swa =32 /M ) D Cgne . (C.2.10b)
p q
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The precise expression of the action for a fractional Dp-brane is confirmed
by the couplings of the brane to the bulk fields, computed with the bound-
ary state formalism [200] and with explicit computation of string scattering
amplitudes on a disk [243].

In this Chapter we also consider D-branes whose world-volume directions
extend along the whole orbifold space, namely D(p + 4)-branes with four
longitudinal directions along 2°,...,2% and p + 1 along °,...,27. In this
case the terms linear in the bulk fields of the boundary action can be inferred
from the couplings computed with the boundary state® [215], and one gets:

T 1
Sp+4 _ Iptd ) / dp+5§e%¢ — det Gpa 4 / Cp+5
kK Myp+s

T

_p; +1 _ b _
+2/§2(27T\/(?)2{/dp ¢\/—det Gog b /

M

Ap+1} ..., (C211)
p+1

where z#? are the coordinates of the brane world-volume M, 5, while
z*P are the coordinates along the part M, of the world-volume which
lie outside the orbifold directions. The ellipses in the action (C.2.11) stand
for terms of higher order in the fields, not accounted by the boundary state
approach.

C.3 The running coupling constant of N’ =4,
D=2+1SYM theory

In this appendix, we briefly compute the expression of the running gauge
coupling constant of N' =4, D = 2 + 1 super Yang-Mills theory, in order
to compare the perturbative gauge theory result [244] (see Ref. [245] for a
review) with what we obtain from the supergravity solutions for the wrapped
and the fractional brane systems.

The one-loop effective action for a D-dimensional field theory expanded
around a background which is a solution of the classical field equations can

30ne has also to take into account the fact that the boundary state sees the fields
correctly normalized on the covering space, while we are using fields that are correctly
normalized on the orbifold [213].
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be expressed as*:

1 _ 1 N;
Ser = /de{FlfyFﬁy + 2 Trlog Ay + (7 - 1) Trlog A

49\2(M

— Ny TrlogAl/g} , (C.3.1)

where N; and Ny are respectively the number of scalars and Dirac fermions
and where:

(A, = — (D) b+ 2f*PF5,,  (Ag)" =— (D)™, Ay =ilD,
(C.3.2)
D,, being the covariant derivative and f%° the gauge group structure con-
stants. The part of the determinants in eq. (C.3.1) quadratic in the gauge
fields can be extracted obtaining:

1 1
Ser = 7 /deF2 {2— + I} : (C.3.3)

9ym
where: . o 4
S _u2s
I = / e MR, (C.3.4)

where p is the mass of the fields, and

Cy +

126 + T 5 (C.3.5)

N, D—26  2P/AN
R=2 |:—5 fo y
where [D/2] = D/2 if D is even and [D/2] = 22 if D is odd, and where
the constants ¢ set the normalization of the generators of the gauge group
(Tr(X\°) = ¢§%) in the representations under which the scalars, the vector
and the fermions respectively transform. Concentrating on the case D = 3,
we get:

1 * ds 2 1
I = MR=—R C.3.6
(4%)3/2/0 s1/2° 8y’ ( )
with N, 23 N
s !
=2 |8 — 20+ ey 3.
R [120 1€ + 3 Cf (C.3.7)

%A bar on an operator in eq.s (C.3.1) and (C.3.2) indicates that the operator is evaluated
at the background value A}, of the gauge field.
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In our case we have a theory with gauge group SU(N) and 8 supercharges,
coupled to M hypermultiplets in its fundamental representation. The vector
multiplet contains 2 Dirac fermions and 3 scalars, while each hypermultiplet
is made up of 2 Dirac fermions and 4 scalars. Recalling that ¢ = % for
the fundamental representation and ¢ = N for the adjoint representation,
eq. (C.3.7) gives:

R=-2N+ M, (C.3.8)

and the running effective coupling given by eq.s (C.3.3)-(C.3.6) is equal to:

11 (1_92 2N—M> (€39
e YM , . .
Gom(t) G 8

This expression of the one-loop running coupling constant is in complete
agreement with both our results in eq.s (10.1.21) and (10.2.21).
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