
Supersymmetric Gauged Mechanics

Memoria de trabajo presentada por Laura Gil Álvarez
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Abstract

In this work, we obtain the supersymmetrization of a bosonic action describing the motion
of a point-like particle with N = 1, 2 worldline supersymmetry in the superspace framework,
discussing the addition of a scalar potential, which will lead to a certain condition that must
be satisfied for a potential to be supersymmetrizable. We will study the global symmetries of
this action, and then the supersymmetric gauging of these symmetries. Finally, we apply this
formalism to the supersymmetrization of effective actions describing black hole solutions.
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Introduction

Symmetry has been present in the history of sciences since the ancient Greece as a proportion
and harmony related to beauty. From the Platonic solid to Kepler’s laws, geometrical shapes
have been used to describe nature. After the studies of Emmy Noether, these symmetries were
related to the existence of conserved quantities and conservation laws. In the 20th century and
beyond, starting from Einstein’s General Relativity, symmetry principles started to be seen as
the primary feature of nature that constrains the physical laws. This thought was consolidated
with the birth of Quantum Mechanics, and since then, symmetries have played a fundamental
role in Physics.

A symmetry principle can be understood as a principle of equivalence which summarizes the
regularities of the laws of physics that govern some physical system which do not depend on its
specific state, endowing nature with coherence and structure. Symmetry principles constitute
a guidance to construct theories.

A symmetry of a physical system is a transformation of dynamical variables that leaves its
physical observables unchanged. In a classical system, it implies the invariance of the action
and, thus, the equations of motion remain the same. For that reason symmetries can be used
to derive new solutions. Symmetries are also useful because they lead to conservation laws and
constraints. As the first Noether’s theorem states, for each global, continuous symmetry of a
physical system there exists a conserved quantity, such as the conservation of energy due to time
translational invariance, or the conservation of momentum due to the invariance under spatial
translations; and as the second Noether’s theorem says, for each local, continuous symmetry of
a physical system there exist a constraint between the equations of motion of the system.

But symmetries are sometimes hidden in nature. We can find some approximate symmetries,
that is, symmetries which are slightly violated, and which lead to approximate conservation
laws, such as the isotopic symmetry of the nuclear force, explaining the small difference between
the masses of the up and down quarks. It is also possible to deal with a system in which the
laws of physics are invariant under some symmetry, but the vacuum state of the system is not.
This is what we call a spontaneously broken (or hidden) symmetry, which is not manifest, and
then, not directly observable. An example of spontaneously broken symmetries is the invari-
ance under rotations of a ferromagnet or the breaking of the Standard Model gauge symmetry
SU(2)L×U(1)Y to U(1)em by the Higgs mechanism.

This existence of unobservable symmetries has lead to the search for new symmetries in
order to unify the forces in nature. The first of these attempts took place around 1960. At
that time, in the context of strong interactions, many hadrons had been successfully organized
in multiplets of SO(3) of flavour by Gell-Mann and Ne’eman [1]. Then, many people started
wondering about the existence of larger multiplets containing particles of different spins. The
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incompatibility of those new symmetries and relativistic invariance was highlighted by the so-
called No-Go theorems. The most remarkable of these impossibility theorems is due to Coleman
and Mandula (1967) [2], which proves that it is not possible to unify the internal and space-
time symmetries within a quantum field theory, implying that most general symmetry of the
S-matrix is the direct product of Poincaré and internal symmetries, which does not mix parti-
cles with different spins.

But Coleman and Mandula were considering symmetry groups with only bosonic generators,
which satisfy commutation relations among themselves. In 1971, Gol’fand and Likhtman [3]
proposed an extension of the Poincaré algebra known as superPoincaré algebra, in which some
of the generators satisfied anticommuting relations. This transformations whose generators an-
ticommute are what we call supersymmetry transformations. Supersymmetry is an extension
of the ordinary spacetime symmetries obtained by adding N anticommuting generators Qi to
the usual set of translations and Lorentz generators constituting the Poincaré group. This set
of commuting and anticommuting generators close a graded superalgebra which contains the
usual relativistic symmetries of spacetime plus new symmetries.

This idea of considering anticommuting generators would inspire Haag,  Lopuzaǹski and
Sohnius (1975) to extended the Coleman and Mandula theorem, proving that the largest pos-
sible symmetry of the S-matrix could also include those extra anticommuting symmetries [4].

Supersymmetry was first noticed in the context of string theory as a two-dimensional world
sheet symmetry, and used as purely theoretical tool. In 1971, Ramond, Neveu and Schwarz built
a supersymmetric action within the framework of string theory, in which they included transfor-
mations mixing scalar and spinorial fields [5]. This same year, Gervais and Sakita did something
similar, obtaining a symmetry between bosons and fermions for a lineal supersymmetric action
in two dimensions [6]. After some time, it was also considered to be a possible symmetry of
four-dimensional quantum field theories connecting bosons and fermions into multiplets. This
symmetry, if realized in nature, would have many relevant implications in elementary particle
physics. Volkov and Akulov proposed in 1973 a non-linear Lagrangian invariant under super-
symmetry transformations to study the possibility of neutrinos to be Goldstone bosons [7].
Simultaneously, Wess and Zumino constructed a linearly realized supersymmetric field theory
in four dimensions describing spin 0 and 1/2 particles, the so-called Wess-Zumino model [8].

Supersymmetry, when linearly realized, connects fermions and bosons, i. e., for each parti-
cle with spin J there exists another particle of the same mass with spin J ± 1/2. Due to the
fact that these superpartners, degenerate in mass with the usual spectrum of particles, had not
been observed so far, supersymmetry must be spontaneously broken at our scale of energy.

Supersymmetric models in particle physics are interesting since they heal divergences due to
cancellations between fermion loops and boson loops. The most studied of those models might
be the Minimal Supersymmetric Standard Model (MSSM), an extension to the Standard Model
that considers each particle to have a supersymmetric partner associated. It was proposed in
1981 as an elegant way to stabilize the weak scale, solving the hierarchy problem [9], and also
unifying fermions (matter) and bosons (carriers of force).

Supersymmetry also provides a candidate to a theory of quantum gravity, which could
combine gravity and the Standard Model. This supersymmetric theory of gravity is called
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supergravity, and consists in a local version of supersymmetry, which allows to unify the four
fundamental forces in nature. The non-renormalizability and the presence of anomalies in su-
pergravity models has lead to discard these theories as a fundamental description of nature.
One exception is the case of N = 8 supergravity, which has been proved to be finite up to 4
loops [16]. However, supergravity theories appear as the low energy limit of string theories,
which are supposed to be finite, so it is still interesting to study them.

Supersymmetry can be used to study certain bosonic systems as the bosonic sectors of a
supersymmetric theory,1 which enjoy special properties and take a more constrained form. One
example can be the action describing a point-like particle moving in a spacetime with a metric
gµν , which takes the form:

S(0)[xµ] =

∫
dτ
{

1
2
gµν ẋ

µẋν − V (x)
}
, (1)

where we have also considered a scalar potential V (x). As we are going to see, this action is
the bosonic sector of a N = 1, 2 supersymmetric action only if the potential has a certain form.

It is well known that the N = 1 supersymmetric extensions of relativistic particle mechan-
ics – known as spinning particle models – describe Dirac fermions after quantization en d = 4
dimensions. The first supersymmetric models describing spinning particles considered fermions
moving in a flat spacetime [17–19], and were generalized to particles moving in an arbitrary
background afterwards [20,21].

Supersymmetry can also be useful to study more general mechanical systems. For exam-
ple, let us consider now a mechanical effective action leading to black hole solutions from a
supergravity-like theory of the form:

S[g, A, ϕ] =

∫
d4x
√
|g|
{
R + Gij∂µϕi∂µϕj

+2Im[NΛΣ]FΛ µνFΣ
µν − 2Re[NΛΣ]FΛ µν ? FΣ

µν

}
, (2)

where Gij and NΛΣ are symmetric matrices which depend on the scalar fields ϕi. The equations
of motion of the solutions of this action describing the dynamics of a general single, static,
spherically-symmetric black hole in d = 4 dimensions with scalar and vector fields can be found
from the following effective action [22]:

Seff[U,ϕi] =

∫
dτ
{
U̇2 + 1

2
Gijϕ̇iϕ̇j − e2UVbh

}
, (3)

where QM are the electric and magnetic charges of the vector fields and the black hole potential
Vbh = Vbh(ϕ,Q) is given by:

− Vbh(ϕ,Q) = 1
2
QMMMNQN , (4)

where M =M(ϕ) is a matrix that depends on NΛΣ.

1By bosonic sector we mean the system obtained by consistently setting all the fermionic variables to zero
in a supersymmetric theory.
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In N = 2 supergravity, this black hole potential can be rewritten in terms of the central
charges (or fake central charges) [23] of the system Z(ϕ,Q) is the following way:

− Vbh(ϕ,Q) = |Z|2 + 2Gij∂i|Z|∂j|Z|. (5)

If we make a correspondence between the coordinates appearing there and the components
of the position variable xµ = (U,ϕi). We can see that it takes the form of the action describing
the motion of a point-like particle moving in a spacetime (1), where the metric tensor is defined

as gµν =

(
2 0
0 Gij

)
and the potential V (x) = 1

2
gµν∂µW∂νW , with W = 2eU |Z|.

With these redefinitions the action can be rewritten as a perfect square up to a total
derivative, which is known as the BPS form:

S(0)[xµ] =

∫
dτ
{

1
2
gµν(ẋ

µ ± gµρ∂ρW )(ẋν ± gνσ∂σW )
}
, (6)

which can be trivially extremized2 by the first order equation of motion:

ẋµ = ∓gµρ∂ρW, (7)

those equations are known in the literatures as flow equations, and are used to develop the at-
tractor mechanism in black hole solutions. This expression can be used to establish an analogy
with the Hamilton-Jacobi formalism, which will be more deeply discussed in chapter 4.

As we will see, the form of the potential for the effective action describing a black hole is
the same that will appear when studying N = 1, 2 supersymmetric extensions of the action (1).
For that reason we will extend this action by promoting the variables describing the position
of the particle to a superfield by adding anticommuting variables, which will be related to the
spin degrees of freedom of the particle.

In d=4, N = 2 supergravity theories, the scalar fields are complex, so we can redefine our
coordinates as a real variable xµ = (U,ϕi, ψi), being ϕi and ψi the real and imaginary part of
the scalar fields, so that there appear 2n+1 real fields. One can introduce an extra variable
and a new set of variables HM with M = 1, . . . , 2n + 2 can be defined. These new variables
have the property of transforming linearly under duality. The action then, can be written in
terms of these variables in the following way:

S(0)[HM ] =

∫
dτ
{

1
2
gMNḢ

MḢN − V (H)
}
, (8)

where this metric tensor gMN is known to be singular [11]. When we introduced an extra
variable, we implicitly included a local symmetry. Due to the singularity of the metric, not
all the variables are dynamical, and this action can be thought off as coming from an action
including a non-singular metric g̃MN where this local symmetry has been gauged:

S(0)[HM ] =

∫
dτ
{

1
2
g̃MNDH

MDHN − V (H)
}
, (9)

(the ordinary derivatives of the fields have been substituted by covariant derivatives.) In order
to study systems of this form we will study the global symmetries of the supersymmetrized
action describing a point-like particle within the superspace framework, we will gauge them
and use them to eliminate degrees of freedom by fixing the gauge.

2In this case the metric tensor gµν is positive definite since Gij is positive too.
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Chapter 1

Worldline Supersymmetry and
Superspace

We are interested in building actions describing particles which are invariant under supersym-
metry through the extension of bosonic actions in spacetime. Since supersymmetry acts on
fields in by interchanging bosons and fermions, working with supersymmetry transformations
on spacetime might be a bit cumbersome. This task becomes much easier if we use the su-
perspace approach, in which supersymmetry is built into the construction manifestly. This
description will allow us to write directly supersymmetry-invariant actions and to develop a
much more compact and elegant notation in which supersymmetry properties will be more
transparent.

1.1 Superspace

Superspace is the arena in which the geometrical realization of supersymmetry takes place.
It is constructed by extending spacetime to include N additional directions parametrized by
a set of constant Grassmann numbers θi. Since the Poincaré group contains the symmetries
which generate the ordinary spacetime (translations and rotations), we will extend it to a su-
perPoincaré group by adding N supersymmetry generators Qi which generate the translations
along the new Grassmann directions, which in opposition to Poincaré generators, satisfy an
anticommuting algebra.

Superspace was first introduced by Volkov and Akulov in 1973 as a way to geometrize su-
persymmetry, but the first definition of a superfield as a function of the superspace coordinates
was due to Salam and Strathdee (1978) [10]. In 1977, Wess and Zumino interpreted the differ-
ential geometry of superspace as that of N = 1 supergravity, opening the way to many other
contributions to the field.

There are many kinds of superspace theories considering different supergroups and different
numbers of Grassmann coordinates.1 We will consider superspace to be parametrized by one
spacetime coordinate τ and N Grassmann coordinates θi, all of them real: τ ∗ = τ , (θi)∗ = θi.

1For example, Arnowitt and Nath (1975, 1978) introduced a larger supergroup Osp(3,1/4N ) with 4 bosonic
and 4N fermionic coordinates to study local supersymmetry [12]. Ogievetski and Sokatchov (1978) [13] and
Siegel and Gates (1981) [14] developed the chiral superspace approach where they considered two chiral complex
superspaces related by complex conjugation .
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They satisfy the following commutation and anticommutation relations:

[τ, τ ] = [τ, θi] =
{
θi, θj

}
= 0, (1.1)

where [a, b] and {a, b} are respectively the commutator and anticommutator of a and b.

Differentiation and integration over Grassmann variables is defined as follows:

∂iθ
j = δi

j,

∫
dθi θj = δij where ∂i = ∂

∂θi
, (1.2)

which implies that integration and differentiation over Grassmann variables is the same oper-
ation. Using those properties, let us define

θ̂ = 1
N !
εi1...iN θ

i1 . . . θiN = θ1 . . . θN , (1.3)

where εi1,...iN is the completely antisymmetric Levi-Civita symbol. With this, we can define
integration such that:∫

dN θ̂ θ̂ = 1 where dN θ̂ = (−1)N−1 1
N !
εi1...iN dθiN ∧ · · · ∧ dθi1 = dθN ∧ · · · ∧ dθ1. (1.4)

As we can see, integration over θ̂ selects the terms with the highest dependence in θi. This
procedure – the so-called Berezin integration [15] – will be widely used, since we will define
supersymmetric actions by integrating superfields over superspace.

Another interesting property of Grassmann coordinates is the fact that they square to zero.
This implies that any analytic function f(τ, θ) defined over superspace can be expanded in a
finite power series in θi:

f(τ, θi) = f0(τ) + θifi(τ) + 1
2
θiθjfij(τ) + . . .+ θ̂f̂(τ), (1.5)

where the coefficients obtained in this decomposition are Grassmann even, bosonic, functions
of τ , completely antisymmetric in the lower indices. Its higher component, then, will be pro-
portional to the completely antisymmetric Levi-Civita symbol:

fi1...iN (τ) = f̂(τ)εi1...iN . (1.6)

We will apply this procedure to decompose superfields in superspace in terms of spacetime
functions, such that the function f(τ, θi) is the generalization to superspace of the spacetime
function f0(τ). This superfields will be used later on to build invariant actions in superspace,
that, when expanded in components and setting all the fermions2 to zero, will reduce to bosonic
actions in spacetime.

1.2 Superalgebra

The definition of a Lie algebra can be extended to include, apart from the usual commuting
relations, anticommuting relations [4]. These algebras are called superalgebras or graded Lie
algebras. The generators of the symmetries of superspace satisfy a supersymmetric extension

2In this work the word ”fermion” makes reference to an anticommuting variable, not a fermionic particle.
This abuse of language should not lead to confusion.
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of the Poincaré algebra, which is a Z2-graded algebra, i. e., being Oa an operator of a Lie
algebra, then

OaOb − (−1)ηaηbObOa = iccabOc, (1.7)

where ccab are the structure coefficients and ηa carries the parity of the Oa operator:

ηa =

{
0 for Oa bosonic,
1 for Oa fermionic.

(1.8)

Functions in superspace, defined by f(τ, θi), transform under the one-dimensional Poincaré
group (translations, generated by P) in the usual way:

δτ = c, (1.9)

where c is a constant. In order to extend the Poincaré algebra to a superPoincaré algebra
we introduce N additional generators Qi satisfying the supertranslation algebra. The explicit
expression of the commutation and anticommutation relations between P and Qi and the trans-
formations of the fields under Qi depends on the number of Grassmann coordinates considered.
We are going to study the cases of N = 1, 2, since they are the ones we are interested in.
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Chapter 2

N = 1 SUSY mechanics

As shown by several authors, the motion of a spinning point-like particle can be described by
the supersymmetric extension of the worldline action for a point-like particle in a d-dimensional
Minkowski spacetime [17–21]. We are going to generalize that action to superspace. We will
construct a scalar, bosonic superfield, which is the supersymmetric extension of the xµ vari-
able (which describes the position of the particle), by adding a Grassmann variable ψa as its
superpartner, and we will also endow the construction with a supercovariant derivative, the
analogous to the ordinary τ derivative in superspace.

With those ingredients we will be ready to build an invariant action in superspace, that
reduces to the original bosonic action in spacetime when setting the Grassmann variables ψa

to zero. We will also discuss the addition of a scalar potential to the action. A function of
the superfieldW(Φ) would be automatically supersymmetry invariant, it would not give a real,
bosonic potential when going back to spacetime. In order to introduce a well behaved potential
we will have to define a fermionic, scalar superfield. As we will see, the form of the potential
will not be the most general, but it must satisfy a certain condition.

After that, we will study the global symmetries of this action by promoting the well known
isometries of the bosonic part of the action to superisometries in superspace. The generalization
of those transformations to local symmetries will allow us to set some fields to zero when fixing
the gauge.

2.1 Superalgebra

In N = 1 supersymmetry, superspace is parametrized by the worldline coordinate τ and a real
Grassmann coordinate θ such that θ∗ = θ. In this case, the Poincaré algebra can be expanded
by adding a supersymmetry generator Q such that they satisfy the following commuting and
anticommuting relations:

{Q,Q} = 2P , [Q,P ] = 0. (2.1)

As we can see there, two supersymmetry transformations yield a τ -space translation. This
algebra is realized on superfields in terms of differential operators in superspace. Taking the
representation of the translational generator to be P = i∂/∂τ ≡ i∂, it is straightforward to
check that the following expression provides a representation of the supersymmetry generator
on superfields:

Q =
∂

∂θ
+ iθ∂ ≡ ∂θ + iθ∂, (2.2)
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where the i factor has been chosen such that Q is a Hermitean operator, since we have taken
the convention of change of order of the Grassmann variables under complex conjugation:

(φψ)∗ = ψ∗φ∗ = ψφ = −φψ for φ, ψ Grassman variables. (2.3)

We define the transformation of a superfield F (τ, θ) = F0(τ) + iθF1(τ) under supersymme-
tries as the action of Q over it:

δεF (τ, θ) = −εQF (τ, θ), (2.4)

where ε is an anticommuting, real parameter. We can see that due to the structure of the
supersymmetry generator, the highest component of a superfield – which is the one selected by
Berezin integration, and therefore, the one that will be appearing in our actions – transforms
under supersymmetry as a total derivative in τ :

δε

∫
dτdθ F =

∫
dτdθ

{
−iεF1 + iθεḞ0

}
= iε

∫
dτ d

dτ
F0. (2.5)

After integrating in τ , this will give a surface term which will not contribute to the action.

This implies that any action built by integrating superfields in superspace will be auto-
matically supersymmetry invariant, just by construction. This is the point of working in the
superspace framework: there is no need to check for the invariance of our actions under super-
symmetry as long as our superfields are well defined.

However, an action constructed just by superfields leads to non-dynamical equations of
motion for the fundamental variables in spacetime. In order to make our theory non-trivial
we need kinetic terms to our action. Then, we would like to introduce τ derivatives of the
superfields, but these are not superfields. It can be easily checked that τ derivatives of su-
perfields are not invariant under supersymmetry transformations since this operator does not
include derivatives in θ and therefore it does not commute with the supersymmetry transforma-
tions. This issue can be solved by defining a supercovariant derivative such that it commutes
with the supersymmetry transformations [D, δε] = 0, i. e., such that it anticommutes with Q,
{D,Q} = 0:

D = ∂θ − iθ∂, (2.6)

and obeys this relation:
{D,D} = −2P . (2.7)

This definition makes the supercovariant derivative of a superfield transform as a super-
field, and the transformation under supersymmetry of its higher term to transform as a total
derivative:

δε

∫
dτdθ DF = ε

∫
dτ d

dτ
(F1) = iε

∫
dτ d

dτ
(DF )0, (2.8)

and the same happens for further covariant derivatives of a superfield.

Another property to be widely used is that the supercovariant derivative of a superfield
itself also becomes a total derivative in τ once it has been integrated over θ:∫

dτdθ DF = −i
∫

dτ d
dτ
F0. (2.9)
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Once we have proved that any action constructed from covariant derivatives of superfields and
superfields is automatically invariant under supersymmetry we do not have to worry about
the invariance of our action. The next step to take will be to define our superfields by their
expansion in θ. This will allow us to expand our action by components and study it from the
τ -space point of view.

2.2 Superfields

A scalar superfield1 Φ(τ, θ) is defined as a function of the superspace coordinates which trans-
forms under the superPoincaré group in the following way:

δξΦ = iξPΦ = −ξ∂Φ, δεΦ = −εQΦ = −ε(∂θ + iθ∂)Φ, (2.10)

where δξ is a translation in τ . This implies that a product of superfields and the covariant
derivative of a superfield are also superfields. Let us define a bosonic, real, scalar superfield
Φ such that Φ∗ = +Φ as a function of the superspace coordinates by its expansion in the
Grassmann coordinates θ as done in (1.5):

Φ(τ, θ) = x(τ) + iθψ(τ), (2.11)

where x(τ) is a bosonic function and ψ(τ) is a Grassmann function, both real.

As we can see, a superfield is a collection of ordinary spacetime functions organized in what
we call a multiplet. In general, the components of the superfields represent ordinary variables in
spacetime. In this case, the bosonic component of the superfield x can be used as a coordinate
x(τ) of the position of a point-like particle. The role played by the Grassmann variable will be
seen later on, when introducing copies of the superfield.

However, there are two kinds of non-physical variables that can appear as components of
the superfields: auxiliary variables, with non-derivative terms in the action, which can be inte-
grated out from the action by using the equations of motion; and compensating variables, that
only carry gauge degrees of freedom. They will appear when making the global symmetries of
our action local.

The transformations of the components of the superfield under supersymmetry can be de-
rived from the global transformations of the superfield under Q, defined by (2.4). When ex-
panding in components and equating powers of θ, we obtain [24]:

δεx = −iεψ, δεψ = εẋ, (2.12)

where the overdot denotes an ordinary τ derivative. It is straightforward to verify that those
components close the following supersymmetry algebra:

[δε1 , δε2 ] = δξ where ξ = −2iε1ε2. (2.13)

In order to describe the motion of a spinning point-like particle in a spacetime of d dimen-
sions with a metric gµν(x), we introduce d copies of the scalar superfield:

Φµ = xµ + iθψµ, (2.14)

1Since we are not studying a field theory but a mechanical model, the term “field” in this work does not make
reference to an actual field, but to a variable. If would be more correct to call our superfield Φ “supercoordinate”,
since it is a generalization of the coordinate x to superspace. This abuse of language should not lead to confusion.
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where µ = 0, 1, . . . , d− 1 is a Lorentz index. We are interested in dealing with the Grassmann
functions ψ in tangent space because this is the usual treatment for spinors (although this
variables ψ are not spinorial representations of Lorentz group). For that purpose, let us intro-
duce a Vielbein eµa(x) such that it connects curved spacetime indices µ to tangent indices a
by ηab = eaµe

b
νgµν , where ηab is the flat Minkowski metric. In those coordinates, the superfield

takes the form:
Φµ = xµ + iθeµaψ

a, (2.15)

and its components transform as follows under supersymmetry:

δεx
µ = −iεeµaψa, δεψ = εẋµ − iεψbωbacψc = εẋµ + δεx

µωµ
a
bψ

b, (2.16)

where ω a
µ b is the Levi-Civita connection given by:

ωab
c = −Ωab

c + Ωb
c
a − Ωba

c, Ωc
ab = eµae

ν
b∂[µ eν]

c. (2.17)

It is straightforward to check that those transformations still close the supersymmetry al-
gebra (2.13).

In the next section we will define a supersymmetric action by integration of this superfield
and its supercovariant derivative in superspace.

2.3 Action for a Point-like Particle

As commented before, the motion of a spin-1/2 fermion in a curved spacetime with metric
gµν is known to be described by the supersymmetric extension of the action for an ordinary
point-like particle in a one dimensional spacetime, which has the form2

Skin[xµ] =

∫
dτ 1

2
gµν ẋ

µẋν , (2.18)

where xµ represents the position of the particle and τ is the proper time. We will also add a
bosonic potential V (x) at some point. We want to generalize this expression to superspace,
building a supersymmetry invariant action from the previously defined bosonic superfield Φ in
superspace such that when integrating over the supersymmetric coordinates θ and setting all
the Grassmann variables to zero, it reduces to (2.18).

One can construct an action of this form with two covariant derivatives of the bosonic
superfield, but this would not include terms in τ derivatives of the Grassmann variable ψa,
so it will will lead to a trivial supersymmetrization of the bosonic action. The simplest way
to construct a non-trivial supersymmetry invariant action is to also consider a term with the
second covariant derivative of the superfield. After a short calculation, we can see that the
supercovariant derivative of the superfields, when expanding in components, is given by:

DΦµ = ieµaψ
a − iθẋµ, D2Φµ = −iΦ̇µ. (2.19)

With those ingredients one can construct the following action:

S
(0)
kin[Φ] =

∫
dτ dθ

{
−1

2
Gµν(Φ)D2ΦµDΦν

}
, (2.20)

2Since we are using the mostly minuses convention for the metric η = (+−−−), there should be a normal-
ization factor −m in the action. We will omit it from now on. If we impose gµν ẋ

µẋν = 0, this action can be
used to describe a massless particle. In general, the constraint gµν ẋ

µẋν is usually called Hamiltonian constraint.
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where Gµν(Φ) is the extension of the spacetime metric gµν , and plays the role of a metric tensor
in superspace. It can be expanded in θ as follows:

Gµν(Φ) = gµν(x) + iθ∂agµνψ
a, (2.21)

where we have defined ∂a = eµa∂µ. After splitting this action in components and integrating
over θ, it takes the form of (2.18) plus a kinetic term for the supersymmetric partner of x,
which is what we were looking for:

S
(0)
kin[xµ, ψa] =

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb
}
, (2.22)

where Dψa = ψ̇a − ẋµω a
µ bψ

b is the covariant derivative of the Grassmann variable ψa. This
action, which is supersymmetry invariant, describes the motion of a point-like particle, being
xµ(τ) its position. In d = 4 Minkowski spacetime, after quantization, it can be shown that the
Grassmann functions ψa(τ) are related to the spin degrees of freedom of the particle [17].

We study now the variation of the action under arbitrary variations of the fields δxµ and
δψa vanishing at the endpoints, as done in [24], which is given by, up to total derivatives:

δS
(0)
kin[xµ, ψa] =

∫
dτ

{
δxρ

[
−gρµ∇2

τx
µ − i

2
ẋµRµρabψ

aψb
]

+ iηab∆ψ
aDψb

}
, (2.23)

where we have defined the covariantized variation of the Grassmann variable ψa:

∆ψa = δψa − δxµωµabψb. (2.24)

The equations of motion providing the invariance of the action can be read from the ex-
pression above:

Dψa = 0, (2.25)

∇2
τx

µ +
i

2
ẋνRν

µ
abψ

aψb = 0, , (2.26)

where Rν
µ
ab is the Riemann tensor for the spacetime metric gµν . As expected, if we set the

Grassmann variables ψa to zero we recover the equations of motion for a free point-like particle
moving in a geodesic in spacetime.

In the case of d = 4 we can find a physical interpretation for those expressions defining the
following antisymmetric tensor, which describes the relativistic spin of the particle, and which
is called spin polarization tensor :

Sµν = −iψµψν . (2.27)

Written in terms of the spin polarization tensor Sµν , the equations above take the following
form:

DSµν = 0, (2.28)

∇2
τx

µ +
i

2
ẋνRν

µ
ρσS

ρσ = 0. (2.29)

The first equation of motion implies the covariant conservation of the spin polarization tensor
along the worldline, while the second one can be thought of as the spin-dependent gravitational
interaction felt by a spinning particle, which is similar to the electromagnetic Lorentz force [25]:

mẍµ = qF µ
ν ẋ

ν , (2.30)
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where a combination of the spin polarization tensor and the Riemann tensor replaces the elec-
tromagnetic tensor F µν . As shown in many articles studying the electrodynamics of charged
point-like particles [26], the space-like components εijkS

ij are proportional to the particle’s
magnetic dipole moment, while its time-like components Si3 represent its electric dipole mo-
ment.

If we were studying free fermions, we would be interested in setting the electric dipole
moment to vanish in the rest frame, which can be expressed as the covariant constraint:

gµνS
µρẋν = 0, (2.31)

or equivalently, in terms of the Grassmann variables ψa, as fixing to zero the conserved super-
charge Q:

Q = gµνe
ν
aẋ

µψa = 0. (2.32)

Another conserved quantity for this system is the worldline Hamiltonian H:

H = gµν ẋ
µẋν = 1, (2.33)

which is the generator of the τ translations. We have fixed H = $m to describe a particle
with mass $m, where $ = 0 corresponds to the case of a massless particle. In terms of the
appropriate Poisson-Dirac brackets [25], it can be shown that those conserved quantities close
the supersymmetry algebra:

{Q,Q}PD = −2iH, (2.34)

which is equivalent to (2.1).

2.4 Scalar Potential

Once we have constructed a supersymmetry invariant action, we are interested in adding a
scalar supersymmetric potential to it. Naively, one could add a scalar function W(Φ) to the
action, but in order to reduce to a real, bosonic potential V (x) when setting the Grassmann
variables ψa to zero, it would have to be fermionic and imaginary, which is not possible. Instead
of doing this, let us introduce N fermionic, real superfields Σn, with n = 1, . . . , N :

Σn(τ, θ) = ηn(τ)− θfn(τ), (2.35)

where ηn(τ) and fn(τ) are a fermionic and a bosonic real functions. They transform under
supersymmetry in the following way:

δεη
n = εfn, δεf

n = −iεη̇n. (2.36)

As we can see, the highest component of this fermionic superfield transforms under super-
symmetry as a total derivative, and it is straightforward to check that the same thing will
happen to its covariant derivative DΣn. This means that we can build supersymmetry invari-
ant actions by integrating Σn and its derivatives in superspace, as we previously did with the
bosonic superfield Φ.

Let us consider an action of the following form:

S
(0)
kin[Σ] = 1

2

∫
dτ dθ ΣnDΣn =

∫
dτ
{

1
2
fnfn + i

2
ηnη̇n

}
. (2.37)
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When splitting in components and integrating over θ, we have obtained a quadratic term
for the bosonic variable fn (which will be eliminated using the equations of motion later on
since it plays the role of an auxiliary field) and a kinetic term for the Grassmann variable ηn.
It would be interesting to have a term coupling the fermionic and bosonic sector in order to
have interaction. It can be constructed by adding another term of the form:

S
(0)
pot[Φ,Σ] =

∫
dτ dθ ΣnUn(Φ) = −

∫
dτ {fnUn(x)− iψa∂aUn(x)ηn} , (2.38)

where λ is a real positive constant and Un(Φ) is a bosonic, real function in superspace which
can be expanded as follows:

Un(Φ) = Un(x) + iθψa∂aUn(x). (2.39)

With these two terms, the potential takes the form:

S
(0)
kin+pot[Φ,Σ] =

∫
dτ dθ

{
1
2
ΣnDΣn + λΣnUn(Φ)

}

=

∫
dτ
{

1
2
fnfn + i

2
ηnη̇n + λ [Unf

n − iψa∂aUnηn]
}
. (2.40)

As we can see, a new term coupling the fermionic ψa and bosonic ηn variables has appeared.
Since fn is a non-dynamical variable, we can use the equations of motion to integrate it out
from the action:

S
(0)
tot [Φ,Σ] =

∫
dτdθ

{
1
2
ΣnDΣn + λΣnUn(Φ)

}

=

∫
dτ
{
−λ2

2
UnUn + i

2
ηnη̇n + iλψa∂aUnη

n
}
, (2.41)

and the full action reads:

S
(0)
tot [Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
ΣnDΣn + λΣnUn(Φ)

}
=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb − λ2

2
UnUn + i

2
ηnη̇n + iλψa∂aUnη

n
}
. (2.42)

If now we set the fermions to zero to recover the original bosonic action (2.18), we obtain:

S
(0)
tot [x

µ] =

∫
dτ
{

1
2
gµν ẋ

µẋν − λ2

2
UnUn

}
. (2.43)

We have found the expected bosonic action plus a scalar potential V (x) which is not the
most general, but has the following form:

V (x) = λ2

2
UnUn (2.44)

Due to the fact that Un(x) is a real function, this structure implies the positivity of the
potential, meaning that only actions of this form with a positive definite potentials V (x) ≥ 0
can be supersymmetrized in this way. In the following section we will consider the kinetic term
for the fermionic field to be introduced with a metric tensor, finding a more general condition
for the potential to be supersymmetrized.
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2.4.1 Generalization of the Scalar Potential

As we will see in this section, the presence of a metric tensor Hmn in the kinetic term for the
fermionic field Σn will result in a different condition for the potential to be supersymmetrizable.
This tensor Hmn(Φ) can be expanded in θ as follows:

Hmn(Φ) = hmn(x) + iθψa∂ahmn(x). (2.45)

Considering a term of this form the potential takes the form when splitting in components
and integrating over θ:

S
(0)
kin+pot[Φ,Σ] =

∫
dτ dθ

{
1
2
HmnΣmDΣn + λΣnUn(Φ)

}

=

∫
dτ
{

1
2
hmnf

mfn + i
2
hmnη

mη̇n + i
2
ψa∂ahmnη

mfn + λ [Unf
n − iψa∂aUnηn]

}
.

(2.46)

After using the equations of motion to integrate out the fermionic variable fn as we did
before, the action becomes:

S
(0)
kin+pot[Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
HmnΣmDΣn + λΣnUn(Φ)

}
=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb + i
2
hmnη

mη̇n − λ2

2
hmnUmUn

−1
8
hmn∂ahrn∂bhmsψ

aψbηrηs − iλψa∂aUnηn
}
, (2.47)

where hmn is the inverse of hmn such that hmrhmn = δrn. If we choose the indices n,m, . . . to
be Lorentz indices and Hmn to be the metric tensor Gµν , the action we have obtained is:

S
(0)
tot [Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
GµνΣµDΣν + λΣµUµ(Φ)

}
=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb + i
2
gµνη

µη̇ν − λ2

2
gµνUµUν

−1
8
gµν∂agρν∂bgµσψ

aψbηρησ − iλψa∂aUµηµ
}
. (2.48)

We have obtained an expression for the action which is not written in terms of spacetime
tensors. This is due to the fact that the supercovariant derivative of the fermionic field DΣµ

does not transform as a spacetime tensor. In order to solve this problem we redefine this object
as the pull-back of the spacetime covariant derivative in the worldline:

DΣµ → DΣµ +DΦνΓµνρΣ
ρ, (2.49)

where Γµνρ(Φ) are the Christoffel symbols for the metric Gµν . With this variation, the action
takes the following form:

S
(0)
tot [Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
GµνΣµ(DΣν +DΦρΓνρσΣρ) + λΣµUµ(Φ)

}
=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb + i
2
gµνη

µDην − λ2

2
gµνUµUν

+ 1
16
Rabρσψ

aψbηρησ − iλψa∂aUµηµ
}
, (2.50)
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where Rabµν is the Riemann tensor and the ordinary τ derivative of the variable ηµ has been
substituted by its covariant derivative:

Dηµ = η̇µ + ẋνΓµνρη
ρ. (2.51)

If we set the Grassmann variables ψa and ηµ to zero, we obtain the following bosonic action:

S
(0)
tot [x

µ] =

∫
dτ
{

1
2
gµν ẋ

µẋν − λ2

2
gµνUµUν

}
, (2.52)

which is the action describing a point-like particle (2.18) plus a potential which now has the
form:

V (x) = λ2

2
gµνUµUν . (2.53)

Comparing with the previous form of the potential (2.44), we can see that we have arrived
to a more general result. In this case, the potential does not have to be positive definite since
the metric tensor gµν is not necessarily positive.

Also, we have to take into account that in the potential we previously considered, the
fermionic field did not transform under superisometries, and therefore the potential was auto-
matically invariant under them. But since the metric tensor Gµν depends on the superfield Φ,
the new term we have added to the action will transform under them. Then, in order to ensure
the invariance of the action, the fermionic field Σµ and the function Uµ(Φ) must transform
under isometries, and new conditions will arise from the invariance of this term. This will be
shown in the following section

2.5 Global Symmetries

Let us now study the symmetries of the supersymmetric action for a point-like particle obtained
in the previous section. We will consider the potential to be introduced with a metric tensor
since, as we have seen in the previous section, it leads to a more general condition.

The bosonic part of the action that we are generalizing (2.18) may be invariant (up to total
derivatives) under isometries of the metric tensor gµν , transformations of the coordinates xµ of
the form δαx

µ = αAkµA (being αA constants, with A an index which labels the generators of the
spacetime symmetries) if kµA is a Killing vector of the metric, i. e. if the Lie derivative of the
metric along kµA vanishes:

£kAgµν = ∇(µ|kA|ν) = 0. (2.54)

For the purpose of examining the symmetries of this form under which our supersymmetric
action is invariant, our concern will be to extend those isometries to superspace. In order to
study these superisometries, let us consider the following variation of the superfield:

δχΦµ = χAKµA(Φ), (2.55)

where KµA is a bosonic, real function resulting from trivially extending the Killing field kµA to
superspace. χA is a real, bosonic superparameter independent of τ , which is a generalization
of αA to superspace, and can be expanded in θ as follows:

χA = αA + iθβA, (2.56)
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where αA is bosonic and βA is fermionic, both constant, real parameters.

In order to provide the invariance under superisometries of the term proportional to λ in
the action, we set the transformation of the fermionic superfield Σµ and the function Uµ(Φ) to
be:

δχΣµ = χA∂νKµAΣν , δχUµ = −χA∂µKνAUν . (2.57)

If we expand every term in (2.55) and (2.57) we obtain the following expression for the
transformations of the fields:

δχx
µ = αAkµA, (2.58)

δχψ
a = αA∂νk

µ
Aψ

a + βAkaA, (2.59)

δχη
µ = αA∂νk

µ
Aη

µ. (2.60)

As we can see, the transformation of xµ has the form of the isometry of the bosonic part
of the action that we were looking for, and the transformation of the fermionic variable ηµ was
also expected. However, the transformation of the Grassmann variable ψa is different. While
the δα term can be expected in similarity with the transformation of ηµ and xµ, an extra trans-
formation under the fermionic parameter βA has been found. This δβ transformation will be
understood after fixing the gauge in next section.

It is straightforward to check that the first and second supercovariant derivatives of the
bosonic superfield Φµ and the supercovariant derivative of the fermionic field Σµ transform
under χA as:

δχDΦµ = χADΦρ∂ρKµA, (2.61)

δχD2Φµ = χAD2Φρ∂ρKµA, (2.62)

δχDΣµ = χAD(∂ρKµAΣρ). (2.63)

With these transformation properties we can obtain an expression for the variation of the
action (2.22) under χA which, up to total derivatives, reads:

δχS
(0)
tot [Φ,Σ] = −1

2
χA
∫

dτ dθ
{

£KA
Gµν

(
D2ΦµDΦν + ΣµDΣν

)}
. (2.64)

We conclude that the transformations (2.55) are symmetries of the action (2.42) if they are
isometries of the metric tensor Gµν , i. e. if KA is a Killing field of Gµν :

£KA
gµν = ∇(µ|KA|ν) = 0. (2.65)

The expansion of this condition in components can provide information about the τ -space
functions. We find that (2.55) being a superisometry of the supersymmetric action implies
kA(x) being a Killing vector of the spacetime metric gµν(x) – which was our starting point:

£kAgµν = ∇(µ|kA|ν) = 0, (2.66)
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which is the spacetime version of the superspace condition we have found.

In order to make the term of the potential which is proportional to λ automatically invariant
under superisometries, we have chosen the transformation of the function Uµ(Φ) under χA to
be of the form δχUµ = −χA∂µKνAUν . However, the definition of Uµ as a scalar function of the
bosonic superfield Φ implies that it must transform under superisometries in the following way:

δχUµ = χAKνA∂µUν . (2.67)

If we want to keep the invariance of this term consistent, these two transformation rules
must be equivalent. After imposing this condition, we can conclude that the bosonic component
of Uµ must be a total derivative of a scalar function:

Uµ(x) = ∂µU(x). (2.68)

This implies that the previously obtained condition to make the potential supersymmetriz-
able, (2.72), becomes:

V (x) = λ2

2
gµν∂µU∂νU. (2.69)

2.5.1 Summary

So far, we have constructed an action which is invariant under supersymmetry transformations
and isometries, and which takes the following form when expanding in components:

S
(0)
tot [Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
GµνΣµ(DΣν +DΦρΓνρσΣρ) + λΣµUµ(Φ)

}
=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηabψ

aDψb + i
2
gµνη

µDην − λ2

2
gµνUµUν

+ 1
16
Rabρσψ

aψbηρησ − iλψa∂aUµηµ
}
. (2.70)

If we set the Grassmann variables ψa and ηµ to zero, we obtain the bosonic action (2.18)
which was our starting point and a bosonic potential:

S
(0)
tot [x

µ] =

∫
dτ
{

1
2
gµν ẋ

µẋν − V (x)
}
, (2.71)

where the potential takes the following form:

V (x) = λ2

2
gµν∂µU∂νU. (2.72)

We would like to re-express the action as a perfect square (up to a total derivative):∫
dτdθ

{
1
2
gµν(ẋ

µ ± λ√
2
gµρ∂ρU)(ẋν ± λ√

2
gνσ∂σU)

}
, (2.73)

since this is the BPS form of the action. If the spacetime metric gµν is not singular, we can
trivially find a first order equation which implies the second order equations of motion since it
extremizes the action:

ẋµ = ∓ λ√
2
gµρ∂ρU. (2.74)

A flow equation of this king appears for the FGK effective action (3) [22]. However, the
minus sign in the potential does not allow us to put the action in that form. One could naively
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redefine the metric tensor for the fermionic superfield as hmn = κgµν , with κ = ±1, but this
will result in a change of sign of the kinetic term for the fermionic variable ηµ. At a classical
level it seems consistent since the ψa dependent part and the ηµ dependent part of the action
are separate. Otherwise this would present problems at a quantum level, since it could lead
to an energy of a non-definite sign. Furthermore, this action may not be derived from local
worldline supersymmetry models.

There is another way to look at this change of sign of the potential. If we rename the
Grassmann variables ψa = ψa1 and perform a change of variables of the form ηµ = eµaψ

a
2 , the

action can be written in a more compact way:

S
(0)
tot [Φ,Σ] =

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
δijηabψ

a
iDψ

b
j − λ2

2
gµνUµUν

+ 1
16
Rµνρσψ

µ
1ψ

ν
1ψ

ρ
2ψ

σ
2 − iλ∂µ∂νUψµν

}
, (2.75)

where we have defined ψµν = εijψµi ψ
ν
j . In this case, a change in the sign of the potential

equivalent to changing the δ by the third Pauli matrix σ3 =

(
1 0
0 −1

)
:

S
(0)
tot [Φ,Σ] =

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
(σ3)ijηabψ

a
iDψ

b
j + λ2

2
gµνUµUν

− 1
16
Rabρσψ

a
1ψ

b
1ψ

ρ
2ψ

σ
2 − iλ∂µ∂νUψµν

}
. (2.76)

As we will see in the next chapter, this the form of the action inN = 2 pseudo-supersymmetry,
meaning that it this case, the addition of a potential is equivalent to considering an extra su-
persymmetry generator.

2.6 Gauging of the Symmetries

We are interested in extending the superparameter χA to be a general function of the spacetime
coordinate τ , since it will be used later on to eliminate variables from the action:

χA(τ, θ) = αA(τ) + iθβA(τ). (2.77)

Now, its bosonic and fermionic components will also depend on τ , which implies that in
the transformations of the gauge supercovariant derivatives (2.61, 2.62) there will appear new
terms depending on the τ derivatives of χA. These terms make the action non-invariant under
isometries. In order to address this issue, let us define the gauge supercovariant derivatives for
the bosonic and fermionic superfields:

DΦµ ≡ DΦµ +AAKµA, (2.78)

D2Φµ ≡ D2Φµ +DAAKµA, (2.79)

DΣµ ≡ DΣµ +AA∂νKµAΣν , (2.80)

where AA(τ) is a gauge superfield. Due to the fact that the supercovariant derivative of a
bosonic, real superfield is a fermionic, imaginary superfield (which can be checked trivially),
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AA will also be a fermionic, imaginary function of the superspace coordinates. In order to keep
the transformations of the gauge supercovariant derivatives of the superfields that provide the
invariance of the action free from χ̇A terms, AA must transform in the following way:

δχAA = DχA − fBCAABχC , (2.81)

where fBC
A are the structure coefficients. We chose the gauge superfield to take the form

AA = iζA − iθAA, with ζA and AA a fermionic and a bosonic real parameters respectively.

When expanding as a power series in θ, the expression for the transformation of AA, one
obtains the transformation rules for its components:

δχζ
A = βA − fBCAζBαC , (2.82)

δχA
A = α̇A − fBCAABαC − ifBCAζBβC . (2.83)

Let us consider the total transformations of the components of AA (supersymmetry and
transformations under χA):

δζA = εAA + βA − fBCAζBαC , (2.84)

δAA = −iεζ̇ + α̇A − fBCAABαC − ifBCAζBβC . (2.85)

We can fix βA = fBC
AζBαC− εAA in order to set the transformations of ζA to zero at every

point of the superspace, and then consistently choose its value to be ζA = 0 to eliminate it. It
makes the transformations of the components of the gauge superfield to have the form:

δχA
A = α̇A − fBCAABαC . (2.86)

Notice that after fixing the gauge, AA = −iθAA is a nilpotent superfield such that (AA)2 = 0.
In the last years, nilpotent superfields have been widely used in the literature, mainly in the
constructions of supersymmetric models describing cosmological chaotic inflation, which also
includes uplifting [27].

With this gauge election βA = −εAA we can see that the δβ transformations become super-
symmetry transformations. Then, the total variation of the Grassmann functions ψa:

δε,χψ
a = εẋµ + iεΩbc

aψcψb − εAAkaA + αA∂νk
µ
Aψ

a. (2.87)

We can absorb the new term in the supersymmetry transformation of ψa so that its variation
under isometries only depends on αA. The δε transformations then become:

δεψ
a = ε(ẋµ − AAkaA) + iεΩbc

aψcψb = εDxµ + iεΩbc
aψcψb, (2.88)

where Dxµ = ẋµ − AAkaA is the covariant derivative of the spacetime coordinate xµ, the su-
persymmetry transformation of xµ has been covariantized. As we can see, gauging the superi-
sometries in superspace is equivalent, at component level, to the gauging of the isometries in
spacetime.
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It is easy to verify that this transformation is consistent with the universality of the super-
symmetry algebra (2.13), which now has a new term:

[δε1 , δε1 ] = δξ + δα


ξ = −2iε1ε2,

αA = 2iε1ε2A
A.

(2.89)

After substituting the supercovariant derivatives by the gauge supercovariant ones, the
action (2.42) takes the following form:

S
(1)
tot [Φ,Σ] =

∫
dτ dθ

{
−1

2
GµνD2ΦµDΦν + 1

2
GµνΣµDΣν + λΣµUµ(Φ)

}

=

∫
dτ
{

1
2
gµνDx

µDxν + i
2
ηabψ

aDψb − λ2

2
gµν∂µU∂νU + i

2
gµνη

µDην + iλψa∂aUµη
µ
}
,

(2.90)

where the ordinary proper time derivatives of the spacetime fields xµ and ψa have been substi-
tuted by covariant derivatives defined as:

Dxµ = ẋµ − AAkµA, (2.91)

Dψa = Dψa − AA∂bkaAψb, (2.92)

Dηµ = Dηµ − AA∂νkµAη
ν . (2.93)

As we have seen, by fixing the gauge we have managed to make the superisometry trans-
formations dependent of just one spacetime parameter. With this gauge election, gauging the
the χA transformations in superspace is equivalent to gauging the αA transformations of the
components of the bosonic and fermionic superfields in spacetime.

As we have seen, the covariant derivative of the Grassmann variable ψa is given by:

Dψa = ψ̇a − (AAλA
a
b + ẋµωµ

a
b)ψ

b, where λA
a
b = ∇bk

a
A = −∇akA a. (2.94)

While the term ẋµωµ
a
b is the pull-back of the spin connection over the worldline, he term

∇bk
a
A can be seen as a generalization of the momentum map. This λA

a
b terms satisfy the

following properties:

i) [λA, λB]ab = fAB
CλC

a
b − kcAkdBRcd

a
b, (2.95)

ii) ∇aλA
b
c = −kdARad

b
c, (2.96)

where fAB
C are structure coefficients and Rad

a
b is the Riemann tensor. This second property

is similar to the defining property if momentum maps:

DµP iA = −Rµν
ikνA, (2.97)

where i is a Lie algebra index. If we multiply both sides of this expression by Γ(Mi)
a
b, (the

generators of the relevant holonomy group in some representation) these relations are almost
identical with the identification:

∇aλA
b
c ≡ P iAΓ(Mi)

b
a (2.98)

Rµν
a
b ≡ Rµν

iΓ(Mi)
b
a. (2.99)
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The deeper understanding of this term could lead to a generalization of the momentum map
related not only with certain holonomy groups of the spacetime. This could be a future way of
investigation.
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Chapter 3

N = 2 SUSY mechanics

Now we are interested in building a supersymmetric action in a superspace extended with
N = 2 Grassmann coordinates, repeating the procedure followed in the N = 1 case. As we will
see, although the form of the action is different, the results will be pretty similar.

3.1 Superalgebra

N = 2 superspace is parametrized by one spacetime coordinate τ and two Grassmann coor-
dinates θi with i = 1, 2. In this case, the Poincaré algebra is extended to superPoincaré by
adding to the translation operator P , two supersymmetry generators Qi associated to the two
θi coordinates. The form of the superPoincaré algebra is similar to (2.1):

{Qi,Qj} = 2ηijP , (3.1)

where η is a real symmetric, 2×2, invertible matrix, which can therefore be taken to be the
identity or the first or third Pauli matrices:

δ =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
. (3.2)

The cases of η being the first and third Pauli matrices are equivalent up to an unitary
transformation of the supersymmetry generators. However, it is not possible to go from the
case of η = δ to η = σ1, σ3 by performing an unitary transformation since this would imply a
change in the determinant of η. For simplicity, we will consider η to be either the identity or
σ3, thus it will be diagonal, and recovering the N = 1 case will be easier.

So we conclude that, in opposition to the case of N = 1, there exist two inequivalent N = 2
supersymmetry algebras. If we split (3.1) in components, we find two N = 1 algebras: one is
exactly the one we considered in the previous chapter (2.1), and the other one is also the same
N = 1 algebra up to a sign, which can be understood as a redefinition of the supersymmetry
generator Q.

While the first case corresponds to a positive definite energy (Q1)2 + (Q2)2 = P , the second
one corresponds to an energy with non-definite sign (Q1)2 − (Q2)2 = P . In this case, the
algebra is called a pseudo-supersymmetry algebra. In [28] it is shown how each solution of the
Hamilton-Jacobi equation defines an N = 2 pseudo-supersymmetric extension of the system.
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This correspondence will be studied more deeply later on.

Now that we are considering two generators Qi there appears a new symmetry transforming
the supercharges in each other, the so-called R-symmetry. Any function carrying an internal
index i will transform in the following way under this symmetry:

δΛfi = fj(Λ
−1)j i, (3.3)

where Λ is a unitary 2×2 matrix. In the case of N = 2 supersymmetric dimension this transfor-
mation leaves invariant only two matrices: ηij and εij (the completely antisymmetric Levi-Civita
symbol). Since we will impose R-symmetry to be a symmetry of our action invariant, we will
use this two matrices to built our model. We can see how do they transform under Λ:

ηij = Λi
kΛ

j
lη
kl, εij = Λi

kΛ
j
lε
kl. (3.4)

Depending on the form chosen for η, the R-symmetry of our system will be either O(2) (for
η = δ, with detη = 1) or O(1,1) (for η = σ3, with detη = −1). Taking into account that the
invariance of εij is equivalent to detΛ = 1, the two different groups of this symmetry are found
to be:

Λ ∈
{

SO(2) for η = δ
SO(1,1) for η = σ3

(3.5)

Let us now study the representation of our generators in terms of differential operators
in superspace. Since no difference has been introduced in τ space, we can take the previ-
ously considered representation for the translation generator, P = i∂. With this election, the
representation for the supersymmetric generators Qi can be chosen to be:

Qi =
∂

∂θi
+ iηijθ

j∂τ ≡ ∂i + iηijθ
j∂, (3.6)

which corresponds to a generalization of (2.2) to superspace. Since we are considering N = 2
supersymmetry generators, there will also be two anticommuting parameters for a consistent
definition of the supersymmetry transformations. The transformation of a superfield under
supersymmetry is given by δεΦ = −εiQiΦ. As in the N = 1 case, the highest component of a
superfield transforms under supersymmetry as a total derivative:

δε

∫
dτd2θ̂ Φ = −εi

∫
dτd2θ̂

{
iΦi + iθj(ηijΦ0 + εijΦ̂) + iηijε

jkΦ̇k

}
= −iεiηijεjk

∫
dτ d

dτ
Φk.

(3.7)
So we can also construct supersymmetric actions by Berezin integration of superfields in

superspace. In fact, this result is valid for any N , which can be proved by defining a general
expression for the supersymmetry generators.

Since τ derivatives of superfields do not transform as a superfield, we will also have to
define two supercovariant derivatives Di, such that each of them anticommutes with one of the
supersymmetric generators Qi:

Di = ∂i − iηijθj∂ such that {Di,Qj} = [Di,P ] = 0, {Di,Dj} = −2ηijP . (3.8)

It is straightforward to check that, as happened in the N = 1 case, the supercovariant
derivative of a superfield and its transformation under Qi transform as a total derivative in τ
once it has been integrated in superspace:∫

dτd2θ̂ DiΦ = −iηijεjk
∫

dτ d
dτ

Φk, δε

∫
dτd2θ̂ DiΦ = ηjkε

kj

∫
dτ d

dτ

{
εilΦ̂− ηilΦ0

}
,

(3.9)
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so we can also use supercovariant derivatives of the superfields when constructing actions, as
we did in N = 1. Then, the next step to take will be to define superfields as functions of the
superspace coordinates.

3.2 Superfields

A scalar superfield Φ(τ, θ) is defined as a function of the superspace coordinates which trans-
forms under the superPoincaré group in the following way:

δξΦ = −ξ∂Φ, δεΦ = −ε(∂i + iηijθ
j∂)Φ, (3.10)

where δξ is a translation in τ . Let us define a real, bosonic, superfield Φ as a function of the
superspace coordinates by its expansion in the supersymmetric coordinates. For the N = 2
case, it will have three components:

Φ(τ, θ) = x(τ) + iθiψi(τ) + iθ̂F (τ), (3.11)

where x(τ) is a bosonic, real position parameter and ψi(τ) are two real, fermionic functions.
F (τ) is a bosonic, real field which will play the role of an auxiliary field. If we apply the
expression for the transformation of Φ under supersymmetry we can obtain the transformations
of its components by expanding in θi:

δεx = −iεiψi, δεψi = εjηijẋ− εjεijF, δεF = −εiηijεjkψ̇k. (3.12)

It is straightforward to check that those supersymmetric transformations together with the
τ translations, close the supersymmetry algebra (2.13). As we can see, if we set θ2 = 0 trun-
cating the expansion in superspace at the first Grassmann generator, and also set to zero the
auxiliary field F , we obtain the supersymmetric transformations satisfied by the fermionic and
bosonic variables for the N = 1 case (2.16).

If we now introduce d copies of the scalar superfield Φµ:

Φµ = xµ + iθieµaψ
a
i + iθ̂F µ. (3.13)

where µ = 0, . . . , d − 1 is a Lorentz index. Again, we have chosen to work with the fermionic
variables in the tangent space, whose flat indices are a = 0, . . . , d − 1. The supersymmetry
transformations of its components become:

δεx
µ = −iεieµaψai , (3.14)

δεψ
a
i = εjηije

a
µẋ

µ + iεjΩ a
cb ψ

c
(jψ

b
i) − εjεij(F a + iC a

bc ψ
bc), (3.15)

δεF
µ = −εiηijεjkψ̇µk , (3.16)

where we have defined F a = eaµF
µ,ψµi = eµaψ

a
i and ψab = εijψai ψ

b
j . In the next section we

will use this superfield and its covariant derivative to build a N = 2 supersymmetry invariant
action.
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3.3 Action for a Point-like Particle

Now, we are going to supersymmetrize the worldline action for a point-like particle moving in
a d-dimensional spacetime with a metric gµν (2.18) by integration on superspace of the bosonic
superfield Φµ defined in the previous sections and its supercovariant derivative, which is given
by the following expression:

DiΦµ = ieµaψ
a
i + iθj(εijF

µ − ηijẋµ) + ηijε
jkθ̂ψ̇µk . (3.17)

Unlike in the case of N = 1, there appears a term in τ derivatives of the Grassmann vari-
ables ψai in the first supercovariant derivative of the superfield. This implies that we can obtain
a non-trivial supersymmetrization of the bosonic action (2.18) with two supercovariant deriva-
tives, there is no need to use the second supercovariant derivative to obtain a kinetic term for
the Grassmann variables when integrating over spacetime as we did in the N = 1 case. We also
notice that there are not terms on τ derivatives of F µ, so we will be able to eliminate it from
the action by using the equations of motions since this function does not represent a physical
field in ordinary τ space.

Our supersymmetric action, then, will have the form of the immediate supersymmetrization
of (2.18):

S
(0)
kin[Φ] =

∫
dτ d2θ̂

{
−1

4
detη ηijGµν(Φ)DiΦµDjΦν

}

=

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηijηabψ

a
iDψ

b
j + 1

2
detη (F µ − iψρσΓµρσ)gµν(F

ν − iψαβΓναβ)

− 1
2
detη ψµνψρσ(∂µ∂νgρσ − ΓαµνΓρσ α)

}
, (3.18)

where Γαµν(x) are the Christoffel symbols obtained from the spacetime metric gµν . Gµν(Φ) is the
generalization to superspace of the metric tensor in spacetime gµν(x), and can be expanded in
θ as follows:

Gµν(Φ) = Gµν(x) + i∂aGµνθiψai + iθ̂
[
∂ρGµνF ρ + i∂ρ∂σGµνeρaeσbψab

]
. (3.19)

As commented before, the variable F µ plays the role of an auxiliary field, so one can integrate
it out from the action by using its equations of motion:

δS(0)

δF µ
= F µ − iψρσΓµρσ = 0 (3.20)

This expression can also be used to eliminate the variable F µ in (3.15), which gives the
following supersymmetry transformation of the Grassmann variable ψai :

δεψ
a
i = εjηije

a
µẋ

µ − iεjψbjωbacψci = εjηije
a
µẋ

µ + δεx
µωµ

a
cψ

c
i , (3.21)

which is the same transformation that for the N = 1 case. Substituting also the equations of
motion in the action gives:

S
(0)
kin[xµ, ψa] =

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηijηabψ

a
iDψ

b
j + 1

16
detη ψµi ψ

ν
i ψ

ρ
jψ

σ
jRµνρσ

}
. (3.22)
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where Rµνρσ is the Riemann tensor for the metric gµν(x). If we compare with the supersym-
metric action for a spinning point-like particle in N = 1 (2.42), we can see that there appears
a new term proportional to the Riemann tensor of the spacetime.

In the next section we will discuss the addition of a scalar potential to the action, obtaining
a condition for this potential to be supersymmetrized.

3.4 Scalar Potential

Now we are interested in adding a scalar potential to our supersymmetric action. In the case
of N = 2, we can just add a real, bosonic function of the superfield W(Φ) since it will lead to
a real, bosonic potential V (x) when integrating in superspace. We define the expansion of our
potential in the following way:

W(Φ) = W (x) + iθiψai ∂aW (x) + iθ̂
(
F a∂aW (x)− i

2
∂a∂bW (x)ψab

)
, (3.23)

where W (x) is a bosonic, real function. Since the highest component of the potential is imagi-
nary, we will have to put a i factor in order to make the full action real. With this new term,
the action reads:

S
(0)
tot [Φ] =

∫
dτ d2θ̂

{
1
4
detη ηijGµν(Φ)DiΦµDjΦν + iW(Φ)

}
. (3.24)

After integrating over superspace, the action takes the following form:

S
(0)
tot [x

µ, ψa] =

∫
dτ
{

1
2
gµν ẋ

µẋν + i
2
ηijηabψ

a
iDψ

b
j + 1

16
ψµi ψ

ν
i ψ

ρ
jψ

σ
jRµνρσ

−1
2
detη gµν∂µW (x)∂νW (x) + iψµν∇µ∂νW (x)

}
. (3.25)

If we make the correspondence W (x) = U(x) and chose η to be σ3 we recover the action con-
structed in theN = 1 case. We can conclude that the introduction of a scalar potential inN = 1
supersymmetry in a certain way is equivalent to considering N = 2 pseudo-supersymmetry.

If now we set the Grassmann variables to zero in order to recover the bosonic action we
obtain:

S
(0)
tot [x

µ] =

∫
dτ
{

1
2
gµν ẋ

µẋν − 1
2
detη gµν∂µW (x)∂νW (x)

}
, (3.26)

which is the expected bosonic action plus a scalar potential:

V (x) = 1
2
detη gµν∂µW (x)∂νW (x), (3.27)

which has the form of the potential appearing in a FGK action (3) when we chose η = σ3.
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3.5 Global Symmetries

In order to study the global symmetries of the action defined in the last section, let us consider
a variation of the superfield of the same form as in the previous case, a generalization of the
isometries of a bosonic action δαx

µ = αAkµA:

δχΦµ = χAKµA(Φ), (3.28)

where, as in the N = 1 case, KµA is a bosonic, real extension of the Killing field kµA of the metric
gµν to superspace and χA is a real, bosonic generalization of the parameter αA to superspace.
Its expansion in θ will have now an extra term:

χA = αA + iθiβAi + iθ̂γA, (3.29)

where αA and γA are bosonic and βAi are fermionic, all of them real parameters. If we expand the
expression for the transformation of the superfield (3.28) in θi we can obtain the transformations
of the components of Φµ:

δχx
µ = αAkµA, (3.30)

δχψ
a
i = αA∂bk

a
Aψ

b
i − αAk

µ
AΩρ

baψ
b
i + βAi k

a
A. (3.31)

where we have defined kaA = eaµk
µ
A. As in the previous case, there appears a βAi extra transfor-

mation. Its meaning will be understood once the gauge is fixed.

The supercovariant derivative of the superfield Φµ transforms under χA in the following
way:

δχDΦµ = χADΦρ∂ρKµA. (3.32)

With that expression we can compute also the variation of the action under χA:

δχS
(0)
tot [Φ] = χA

∫
dτ dθ

{
−1

4
£KA
Gµν(Φ)DΦµDΦν + i£KA

W
}
. (3.33)

We have arrived to the same result as in the N = 1 case: the transformations (3.28) are
symmetries of the action (3.22) if they are isometries of the metric tensor Gµν(Φ) and if they
leave the potential W(Φ) invariant under χA:

£KA
W(Φ) = KµA∂µW(Φ) = 0, (3.34)

which translate into its analogous expression in ordinary τ space:

£kAW (x) = kµA∂µW (x) = 0. (3.35)

Our next concern will be to generalize this transformations to be local, considering the gauge
parameters to depend on the worldline parameter τ . In order to keep the action invariant under
this local isometries, we will have to define a gauge supercovariant derivative for the superfield.
This generalization will allow us to eliminate some degrees of freedom by fixing the gauge.
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3.6 Gauging

In order to make the χA transformation local we let the components of this parameter to be
general functions of τ :

χA(τ, θi) = αA(τ) + iθiβAi (τ) + iθ̂γA(τ). (3.36)

This τ dependence of the parameters will appear in the expression for the transformation
of the supercovariant derivatives of the superfield as τ derivatives of the parameters. Since this
action is not invariant under this local transformations, we will have to define a gauge superco-
variant derivative such that the action obtained by exchanging the supercovariant derivatives by
these gauge supercovariant derivatives is invariant up to total derivatives under local isometries:

DiΦ
µ = DiΦµ +AAi K

µ
A, (3.37)

where AAi is a fermionic, imaginary gauge superfield whose expansion in θi is:

AAi = iζAi − iθjAAij − θ̂ΥA
i , (3.38)

where ζAi and ΥA
i are fermionic variables and AAij is a bosonic variable, all of them real. Due to

the fact that AAi has to be invariant under R-symmetry, its bosonic component AAij has to be
proportional to the two invariant matrices, ηij and εij, so it will have the following form:

AAij = ηijA
A + εijB

A. (3.39)

In order to make the transformations of the gauge supercovariant derivatives free from τ
derivatives of χA, the gauge superfield must transform under χ as follows:

δχAAi = DiχA − fBCAABi χC . (3.40)

If we split this expression in components, we find:

δχζ
A
i = βAi − fBCAζBi αC , (3.41)

δχA
A
ij = ηijα̇

A − fBCAABijαC − εijγA − ifBCAζBi βCj , (3.42)

δχΥA
i = ηijε

jkβ̇Ak − εjkABijβCj + fBC
AζBi γ

C − fBCAΥB
i α

C . (3.43)

We can use γA to eliminate the antisymmetric part of AAij. With this, the total (isometries
+ supersymmetry) transformations of the components of the gauge superfield become:

δζAi = εkηikA
A + βAi − fBCAζBi αC , (3.44)

δχA
A
ij = −iεkεkjΥA

i − iεkηkj ζ̇Ai + ηijα̇
A − fBCAηijABαC − ifBCAζBi βCj , (3.45)

δχΥA
i = εkηjkε

jlȦAηil + ηijε
jkβ̇Ak − εjkηijABβCj + fBC

AζBi γ
C − fBCAΥB

i α
C . (3.46)

Fixing βAi = −εjηijAA we can consistently set ζAi = 0 and ΥA
i = 0. This relation between

the β transformations and supersymmetries results in a redefinition of the supersymmetric
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transformation of the fermionic fields:

δεψ
a
i = εjηije

a
µẋ

µ + βAi k
a
A + δεx

µωµ
a
cψ

c
i

= εjηije
a
µ(ẋµ − AAkµA) + δεx

µωµ
a
cψ

c
i

= εjηijDx
µ + δεx

µωµ
a
cψ

c
i , (3.47)

which can be thought of as a covariantization of the supersymmetric transformations. When
substituting the supercovariant derivatives in the action, ordinary derivatives for fermionic and
bosonic fields will also be replaced by gauge covariant ones:

S
(1)
tot [Φ] =

∫
dτ d2θ̂

{
−1

4
detη ηijGµν(Φ)DiΦ

µDjΦ
ν + iW(Φ)

}

=

∫
dτ
{

1
2
gµνDx

µDxν + i
2
ηijηabψ

a
iDψ

b
j + 1

16
detη ψµi ψ

ν
i ψ

ρ
jψ

σ
jRµνρσ

−1
2
detη gµν∂µW (x)∂νW (x) + iψµν∇µ∂νW (x)

}
. (3.48)

When setting all the Grassmann variables to zero, we obtain the following action:

S
(1)
tot [x

µ] =

∫
dτ
{

1
2
gµνDx

µDxν − 1
2
detη gµν∂µW (x)∂νW (x)

}
. (3.49)

which corresponds to a bosonic gauged action with a scalar potential of the form:

V (x) = 1
2
detη gµν∂µW (x)∂νW (x). (3.50)
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Chapter 4

Supersymmetry and Hamilton-Jacobi
formalism

As we have seen, the bosonic part of our N = 2 pseudo-supersymmetric action can be written
as a sum of squares such that the second order Euler-Lagrange equations are contained in a
first order equations, which in the literature are called flow equations :

ẋµ = ∓ λ√
2
gµν∂νU. (4.1)

When the action takes the BPS form (6), the first order equations imply the second order
Euler-Lagrange equations. The universality of this construction can be traced to the existence
of another well known universal construction for mechanical systems: the Hamilton-Jacobi for-
malism.

In order to clarify this idea let us define the canonically conjugate momenta for the xµ

variable:
πµ = gµν ẋ

ν , (4.2)

Then, the equations (4.1) can be compared with those of the Hamilton-Jacobi formalism,
which can be obtained through a function S(τ, xµ) called Hamilton’s principal function in the
following way:

πµ =
∂S

∂xµ
, H = −∂S

∂τ
, (4.3)

where
H = 1

2
gµνπµπν + V (x), (4.4)

is the Hamiltonian. If we define Hamilton’s principal function for this system as:

S(τ, x) = ∓ λ√
2
U(x)− Eτ, (4.5)

where E is the energy of the system. With this, (4.3) and (4.4) become:

πµ = ∓ λ√
2
∂µU,

λ2

2
gµν∂µU∂νU + V = E. (4.6)

If we find a solution for the last of these equations, then the solutions of the mechanical system
satisfy the first order equations that can be rearranged in the form:

ẋµ = ∓ λ√
2
gµν∂µU, (4.7)
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which was our starting point. All mechanical systems admit this treatment for a number of
functions S and U associated to different solutions. The Hamilton-Jacobi theory provides
methods for computing them. If we consider a potential of the form:

V = −λ2

2
gµν∂µU∂νU, (4.8)

we can find a trivial solution with zero energy. As we have seen, this is the form of the
potential in the N = 2 pseudo-supersymmetry case. This correspondence between the solutions
of Hamilton-Jacobi equations for a mechanical system and the N = 2 pseudo-supersymmetric
extension of this model was noticed by Townsend in [28].
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Conclusions

In this work, we have constructed a N = 1, 2 (pseudo-)supersymmetry invariant action whose
bosonic sector describes a point-like particle moving in superspace with a metric, including a
scalar potential. We have found that the inclusion of a potential in a certain way in the N = 1
is equivalent to the N = 2 pseudo-supersymmetric case.

We have studied the gauging, consistent with supersymmetry, of these models, obtaining a
term in the definition of the covariant derivative of the fermionic fields that can be seen as a
momentum map in tangent space. Finally, we have made a connection with Hamilton-Jacobi
formalism, recovering the results obtained by Townsend in [28] in a different way.

This work can be extended by considering supersymmetry to be local, constructing a su-
pergravity model. Also, the term identified as a momentum map can be studied to generalize
the concept of momentum map to something related not only with certain holonomy groups of
the spacetime.
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