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Summary

A period of exponential expansion of the universe in its early stages of evolution, an inflationary

epoch, is a basic ingredient of all current cosmological theories.

This inflationary expansion can solve, among others, the horizon problem, related to the

homogeneity (and isotropy) of the Cosmic Microwave Background (CMB) radiation, that is a

causal problem.

Since solving a causal problem is one of the main motivations of the inflationary scenario,

we have explored in this work the idea of using causality considerations to check for the internal

consistency of inflationary theories and to constrain them. In terms of internal consistency for

example one can investigate whether the inflationary conditions at the onset of inflation need to

happen in regions smaller than the particle horizon at that time (what is called local inflation

in Vachaspati & Trodden (1999) [21]).

We have searched the literature for authors that work in this direction, and we have found

that yes, causality can put constraints on how the exponential expansion has to proceed, for

example on when the decay of the inflaton field has to start (Ellis & Stoeger 1988) [12] or on

when the inflationary epoch itself has to begin (Ellis et al. 2002)[18].

We have also found that the study of the embedding of the inflationary region within its back-

ground non-inflationary spacetime can complement the causal consistency question, in the sense

that good embeddings, respecting the weak energy condition, can be found for fully causally

produced initial inflationary regions, that is, in the conditions of local inflation (Berera & Gor-

don 2001) [22].

On the other hand, given the future eternal nature of the inflationary process, Borde, Guth

and Vilenkin (2003)[23] asked themselves whether it could also be eternal in past directions. We

have finally reproduced their calculations, that show that inflationary spacetimes with positive

average expansion rates are singular, with incomplete causal geodesics, and therefore not past

eternal.
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Introduction

During the last decades cosmology has become an also observational branch of physics: thanks

to a handful of fully cosmologically-oriented experiments we can now not only theorize about

our universe, but also confirm or discard observationally our theories.

The current standard cosmological model [1], [2] tells us that our universe started around 14

Gyr ago from an initial singularity1 and after a short inflationary period continued expanding

(and cooling down) at a slower rate until around 5 Myr ago [3] when its expansion started to

accelerate again. The matter-energy content is about 4% of standard baryonic matter, Ωb ∼ 0.04,

21% of cold dark matter, Ωcdm ∼ 0.21, and the rest 74% of dark energy, ΩΛ ∼ 0.74. The

spatial geometry is very close to flat, Ωk ∼ 0, and the current value for the Hubble constant is

H0 ∼ 74km s−1Mpc−1.

These values for the parameters comprise the so-called concordance model, that has been

constructed to encompass the following (non-complete) set of cosmological data:

• The Cosmic Microwave Background (CMB) radiation, that tells us that the universe was

homogeneous and isotropic to a precision of 10−5 in temperature in current distance scales

of 100 Mpc and larger [4].

• Deep galaxy surveys, that probe the large scale structure of the baryonic matter content

of the universe [5].

• Distances to type Ia Supernovae, that provide independent distance scale estimations and

probe the current accelerated expansion [3].

• Dynamics of galaxies (like rotational curves) and clusters of galaxies, that help quantify

the dark matter content of the universe.

1We should rather say from an initial state with extremely high temperature, density and curvature that

cannot be described properly with neither General Relativity (GR) nor Quantum Field Theory (QFT); a state

therefore beyond what current physical theories can tackle.
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4 Introduction

• Gravitational lensing experiments, that give independent measurements of the (dark) mat-

ter content.

The early inflationary period, inflation, has become crucial to explain some of these exper-

imental facts, and also to explain, for example, why we do not observe the massive magnetic

monopoles predicted by Grand Unification Theories [4].

Among the observational features inflation can explain, the most important are the homo-

geneity (and isotropy) of the CMB radiation and the spatial flatness of the universe. The Hot

Big Bang theory (HBB), without inflation, that was the standard cosmological model in the 80s,

could by no means explain any of the two.

There are, of course, alternatives to standard inflation, like, for example, the cyclic cosmolo-

gies of Steinhardt & Turok (2002) [6], or the island cosmology of Dutta & Vachaspati (2009)

[7]. Even regular cosmologies (without initial singularity) are postulated by numerous authors,

like the bouncing universes of Novello & Bergliaffa (2008) [8], the ekpyrotic universes of Lehners

(2008) [9] (where the singularity is in fact a collision of branes that is preceeded by an ekpyrotic

slowly contracting phase), the emergent universes of Ellis & Maartens (2004) [10] that undergo

no quantum gravity era, etc.

All these alternatives, however, include in their formulations an inflationary epoch as an

unavoidable ingredient, so the study of inflation is a basic question.

The problem of explaining the large-scale homogeneity and isotropy of the CMB radiation within

the framework of the HBB cosmology, is a causal problem. The CMB photons were produced

during recombination, an epoch of the early universe in which the plasma was cool enough as

to allow free electrons to recombine with the nuclei already present (recombination is posterior

to the Big Bang nucleosynthesis phase). Sometime afterwards, the mean free path of photons

became larger than the size of the universe at that moment, so they decoupled from the rest of

the plasma, during decoupling [11].

The Last Scattering Surface (LSS) is the region where the CMB photons come from, and

whose physical properties they map. When we look at those photons, whose interaction all the

way down to us with the rest of the universe has been quite scarce, we see that their (microwave)

spectrum is homogeneous and isotropic to a level of precision of 10−5 in ∆T/T , telling us that

the LSS had the same degree of homogeneity.

When you compute backwards in time the sizes of the current homogeneous regions under

the standard HBB expansion history, given by the HBB scale factor, a(t), you find that these

regions are much bigger than the size of the particle horizon of the universe at that time. So, if

the last scattering surface is not causally connected, how can it be homogeneous? This question
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is often refered to as the horizon problem.

Therefore, since solving a causal problem is one of the main motivations of inflation, it is

important to make sure that acausal phenomena or initial conditions are not required in the

inflationary scenario. In other words: causality can be used to check for the internal consistency

of inflationary theories.

Some authors work in this direction. For example Ellis & Stoeger (1988) [12] analysed in

detail the horizon problem and explained how the inflationary exponential expansion could solve

it. But they also pointed out that, in order to respect causality, the decay of the inflaton field

must occur not only at the end of the inflationary phase (as was suggested in 1981 in old inflation

[13]), but rather during the whole inflationary epoch. This way, the problem of graceful exit from

inflation could be solved.

The problem is the following: if the decay starts close to the end of inflation, due to its

stochastic nature, some regions within the inflationary patch will decay (thermalize) and some

others will not. The short period of time from there to decoupling will prevent the thermalized

regions to get causally connected to the rest, so we find again the horizon problem but this time

at the end of inflation.

Subsequent inflationary theories, like new inflation [14], [15] or chaotic inflation [16], [17]

required the decay to start soon after the onset of inflation, so causal connection could have

time to proceed and homogeneize the whole last scattering surface.

In a more recent work, Ellis et al. (2002) [18] have pointed out that HBB postinflationary

cosmologies with positive curvature, only solve the horizon problem if inflation starts close to

the Planck era, with extremely high values of ΩΛ. Otherwise, the existence of event horizons,

prevents again the homogeneization of the whole LSS.

Although spatially flat cosmologies are most commonly accepted as the ones describing

best our universe, the fact is that current cosmological data are also compatible with non-flat

cosmologies, with non-critical total energy densities, Ωtot 6= 1 [19].

Event horizons are crucial ingredients of inflationary theories. As we will define in section

1.8 the event horizon of any event of a spacetime is the surface at the proper distance light would

travel from that event to t → +∞. If this distance is bounded, as in the case of exponential

expansion, we have causal horizons that isolate the events within them from those in the outside.

Inflationary spacetimes are therefore composed of causally disconnected regions that evolve in

an independent way [20].

Vachaspati & Trodden (1999) [21] and Berera & Gordon (2001) [22] are the other authors

we have found in the literature that deal with these questions. They both talk about local
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inflation, meaning that the inflationary conditions that trigger the exponential expansion must

occur in a patch of the background spacetime that does not exceed the size of its causal border

at that time. This way, inflation proceeds from an initial patch of the universe that is causally

connected.

The question they study is whether the embedding of the inflationary patch within its back-

ground sorrounding spacetime is well behaved, in the sense that positive energies are measured

in the boundary of the two spacetimes.

The first authors [21] analyse only the flat case, Ωtot = 1, and find that initial non-local (or

acausal) homogeneity is a necessary condition for the embedding to be well behaved, finding

therefore an inconsistency in the inflationary scenario. Berera & Gordon [22] however, who

generalize the study to any initial global geometry, any initial Ωtot, find that local inflation can

actually occur if Ωtot < 1 at the onset of inflation.

We see that causal arguments can actually constrain inflationary theories, that is the idea

we are investigating in this work. Our aim is to introduce ourselves in this area, by studying

carefully causality issues in General Relativity (in chapter 1) and by learning the fundamentals

of the inflationary scenario and exploring the literature on the specific topic of causality in

inflation (in chapter 2).

As a mainly introductory work, we will not be presenting results, but rather the tools,

concepts and questions that we would like to address as the natural continuation of the work.

As part of the introduction we have reproduced (in section 2.3) the work by Borde, Guth and

Vilenkin (2003) [23] on the non-past eternal nature of inflation.



Chapter 1

Causal structure

We review in this chapter the language and techniques we will use in this work, that are those

of causality in general 4D spacetimes. We will be dealing with pseudo-Riemannian1 manifolds,

M, endowed with metrics gab of Lorentzian signature2 that do not necessarily obey Einstein’s

field equations. (M, gab) is what we call a spacetime.

As well as the causal aspects, we are also interested in identifying and studying the geo-

metrical entities and tools relevant for cosmology, in particular for example we are interested in

non-connected spacetimes, which, as we will see in chapter 2 (see section 2.2), are produced in

the inflationary phase of the universe.

The simplest definition of a connected spacetime is that it cannot be written as the union

of two disjoint open subsets. For our purpose however, the concept of arcwise connected is

more suitable: a spacetime where any two events can be connected by a continuous arc (map or

application).

The main references for this chapter are Nakahara [24], Wald [25], Hawking and Ellis [26],

Penrose [27], Geroch [28] and Poisson [29].

Vector field; integral curves; flow

Let’s recall first that F (M) is the set of continuous real functions on M:

F (M) = {f : M → R / f−1[(a, b)] is an open set of M} . (1.1)

A vector field V = V µ∂µ is the set of nonvanishing vectors of continuous components V µ(x)

that live in M. More technically, V = V µ∂µ is a vector field if V (f) is also continuous for any

continuous function f of F (M).

1with symmetric metrics for which if gabX
aY b = 0 ∀ Y ⇒ X = 0

2We use (−, +, +, +) in this work

7



8 Causal structure

The integral curves xµ(λ) of a vector field V are the curves whose tangent vectors are

those of V at each point p of the curve: V µ|p = dxµ(λ)
dλ |p. Each integral curve is parametrized by

a parameter λ, that can be chosen to be the affine parameter. They never intersect with each

other.

The vector field is said to generate the integral curves, and viceversa.

And, finally, the flow generated by V is the application or map, Φ, that produces all the

integral curves, starting from the initial points {P0 = xµ(0)} of each curve and letting the

parameter λ run:

Φ : R ×M → M ,

(λ, P0) 7→ Φ(λ, P0) ≡ Φλ(P0) = xµ(λ) . (1.2)

The relationship between the flow and the vector field is the following: V µ|p = d
dλ{Φλ[xµ(P0)]},

since V µ|p = dxµ(λ)
dλ |p, and xµ(λ) = Φλ(P0) = Φλ[xµ(P0)].

For a given value of λ, Φλ(P0) ∀ P0 is a diffeomorphism of M into M that changes from curve

to curve within the family of integral curves. Being a diffeomorphism means that Φλ(P0) is

differentiable and with inverse also differentiable.

Parallel transport; connection; covariant derivative

In a curved spacetime it is not possible in general to cover the whole manifold with a unique

chart/coordinate system. Rather, there is an atlas to cover it and local tangent spaces on every

point of the manifold. The charts are homeomorphic with open subsets of Minkowski spacetime,

that is, they can be continously deformed into open flat subsets.

The structure therefore is quite more complex than in the flat Euclidean, or Minkowskian,

case, and the usual directional derivative, ∂µ, cannot be used to calculate how vector or tensor

fields vary on the manifold along the directions given by the (local) coordinate systems.

In order to do so, we have to parallel transport the vector or tensor field along these

directions and see how it varies. For clarity we continue the explanation for the simpler case of

a vector field, V ν(x), whose infinitesimal change following the rule of the parallel transport is

the following:

V ν(x) → V ν(x + ∆xµ) = V ν(x) + ∆xµΓν
µδV

δ . (1.3)

The operator Γν
µδ is a non-tensor called the connection that gives us how each vector of

the coordinate basis eµ = ∂µ varies along the other coordinate directions, {eν = ∂ν ,ν 6= µ}:

∇νe
δ
µ ≡ ∇eν eδ

µ = ∂νe
δ
µ + Γδ

νλeλ
µ = ∂νδ

δ
µ + Γδ

νλeλ
µ = Γδ

νµ , (1.4)
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where µ in eµ just labels the vector of the coordinate basis we are working with, and not its

coordinate.

Γν
µδ is called a connection (between tangent spaces) because the vectors equivalent to those

of Tp(M) in another Tq(M) are constructed parallel transporting them with Γν
µδ from Tp(M)

to Tq(M).

If we moved V ν(x) to x + ∆xµ without parallel transporting it, but simply expressing its

components in that local coordinate system, the one at x + ∆xµ, we would get the vector field

Ṽ ν(x + ∆xµ). Now, the covariant derivative is the limit when ∆xµ → 0 of the difference

between this vector field and that obtained making the parallel transport:

∇µV ν = lim
∆xµ→0

Ṽ ν(x + ∆xµ) − V ν(x + ∆xµ)

∆xµ
= ∂µV ν + Γν

µδV
δ , (1.5)

that is the usual/Euclidean directional derivative ∂µV ν plus the term Γν
µδV

δ that takes into

account the non-trivial parallel transport. The covariant derivative, ∇µV ν , tells us how V ν

varies along any coordinate direction ∂µ.

The fundamental theorem of the pseudo-Riemannian geometry states that there is a unique

symmetric connection Γ compatible with the metric, and it is called the Levi-Cività connection.

Compatibility means that for any pair of vector fields V and W in M, their scalar product

g(V, W ) = gabV
aW b remains constant when parallel-transporting them along any curve in M

(the metric is covariantly constant: ∇µgνσ = 0).

1.1 Causal curves

A differentiable curve c(λ) is a past causal curve when its tangent vector field T is timelike

or null past-directed (see section 1.2):

Tµ =
dc(λ)

dλ
|p =

dxµ(λ)

dλ
|p 6= 0 is timelike or null past-directed. (1.6)

A differentiable curve c(λ) is a future causal curve when its tangent vector field T is

timelike or null future-directed:

Tµ =
dc(λ)

dλ
|p =

dxµ(λ)

dλ
|p 6= 0 is timelike or null future-directed. (1.7)

Inextendible causal curves

Let c(λ) be a causal past or future curve. A point pend ∈ M is a past or future endpoint of

c(λ) if the curve never gets out of any neighborhood of pend once it gets into it. Formally, pend
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is a past or future endpoint of c(λ) if ∀ Op neighborhood of pend ∃ λ0 / c(λ) ∈ Op ∀ λ > λ0.

The endpoint does not neccessarily belong to the curve.

A curve that does not have a past or future endpoint is called an inextendible past or

future curve. Inextendible here must be understood as endless, without endpoint, inextendible

because the curve is as extended as it can be.

1.2 Geodesics

Among the causal curves, we are most interested in the worldlines of free-falling particles: the

timelike and null geodesics. Let (M, gab) be our spacetime, and let p, q ∈ M be two points of

M with their corresponding tangent spaces Tp(M) and Tq(M).

Let Γ be the Levi-Cività connection parallel-transporting vector fields from Tp(M) to Tq(M)

and let γ(λ) be a curve in M, xµ(λ) in some coordinates. The tangent vector field to γ(λ) is

Tµ = d
dλxµ(λ). The curve γ(λ) is called a geodesic when its tangent vector field T is parallel-

transported along γ(λ), i.e., ∇T T = 0, that in components are the so-called geodesic equations:

dTµ

dλ
+ Γµ

αβTαT β = 0 ,

(1.8)

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 .

where λ is the affine parameter of the curve for which actually ∇T T = 0.

These differential equations have a unique solution for a given set of initial conditions so

∀ p ∈ M and ∀ t ∈ Tp(M) there exists a unique solution to them, or to put it another way,

∀ p ∈ M there exists a bundle of geodesics emanating from it generated by the vectors of the

tangent space in p.

The geodesic that joins the points p, q ∈ M is the curve that extremizes their arclength, l:

l =

∫

c
(±gabT

aT b)1/2dλ . (1.9)

Incomplete geodesics

An inextendible causal geodesic in at least one direction (future or past) is said to be an incom-

plete geodesic when its affine parameter in that direction is bounded. Spacetimes with one

incomplete geodesic are called singular spacetimes. The incomplete geodesic can be either

spacelike, null or timelike, so a spacetime with only spacelike incomplete geodesics can not be

detected as such.



Geodesics 11

Recalling that inextendible in this context means endless, incomplete causal geodesics are

timelike or null geodesics that extend all along the manifold without getting into endpoints, but

still with finite values for their affine parameters.

Null cone; light cone

Figure 1.1: Null cone of p ∈ (M, gab).

The null cone of p, also-called light cone by some authors, is the usual light cone of special

relativity (SR), that is isomorphic to the tangent space Tp(M) in p. The null cone is therefore

populated by vectors of the tangent space, not by events q of the manifold.

Spacelike (s), timelike (t) and null (n) vectors are defined as in figure 1.1 and for a metric

of signature (-,+,+,+) their length is positive, negative and null respectively:

s2 = sµsµ > 0 ,

(1.10)

t2 = tµtµ < 0 ,

(1.11)

n2 = nµnµ = 0 . (1.12)

FLC and PLC stand for future light cone and past light cone, and the regions inside them

are the chronological future, I+(p), and past, I−(p) of p, as defined in section 1.4.
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The light cone of the event (or point) p of the manifold M is the subset of M generated

by all the null geodesics that emanate from p. Unlike the null cone, the light cone is indeed

populated by events q of the manifold.

1.3 Congruences of geodesics

Let O ⊂ M be an open subset of the spacetime (M, gab). A congruence of geodesics γs(λ)

in O is a one-parameter family of geodesics with affine parameter λ with nonvanishing tangent

vector field T . It can also be defined as a family of integral curves of a vector field T such that

through each p ∈ O only one of the curves of the congruence passes. The map (λ, s) 7→ γs(λ) is

smooth, one-to-one and of smooth inverse.

γs(λ) creates a 2D surface in the manifold with coordinates {∂λ, ∂s}:

T =
dγs(λ)

dλ
is the tangent vector field

X =
dγs(λ)

ds
is the deviation vector field (1.13)

The congruence deviation field X is the solution to the geodesic deviation equation:

aµ = −Rµ
νσλXσT νT λ, (1.14)

with aµ = ∇T (∇T Xµ) and Rµ
νσλ the Riemann curvature tensor. The quantity vµ = ∇T Xµ

measures the variation of the relative distance among geodesics along their trayectories, and

therefore aµ = ∇T (∇T Xµ) is the relative acceleration among them. The geodesic deviation

equation is obtained from the definition of aµ by simply realizing that ∇T (∇T Xµ) is related to

the action of the Riemann tensor on the vector fields Tµ and Xµ. The solutions to this equation

are called Jacobi fields.

1.3.1 Expansion scalar, Raychaudhuri equation

The expansion scalar, θ, measures the mean expansion of infinitesimally close geodesics, that

is the fractional change of the volume subtended by the geodesics of the congruence per unit

affine parameter along them.

To define it we have to start by defining the tensorial field Bab:

Bab ≡ ∇bTa (1.15)

with T a the timelike unitary (TaT
a = −1) tangent vector field of the congruence. Bab is purely

spatial, BabT
a = BabT

b = 0, and has the following physical interpretation: ∇T Xb = Bb
aX

a and
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therefore Bb
a measures how nonparallel is the transport of Xb along the congruence (Xb is the

deviation vector field of the congruence). An observer following the geodesics would find their

sorrounding geodesics diverging, converging, twisting or rotating due to the action of the map

Bab. If Bab = 0 then the deviation vectors are parallel-transported along the congruence and

the observer would see their sorroundings always staying the same.

And now we need to define the extended metric hab:

hab = gab + TaTb , (1.16)

so that ha
b = gachcb is the operator that projects the tangent vector field T a into its perpendicular

subspace.

Now we can define the expansion θ:

θ ≡ Babhab . (1.17)

From its definition and using the geodesic deviation equation (1.14) we can find the dynamical

equation of θ, the so-called Raychaudhuri equation:

T c∇cθ =
dθ

dλ
= −

1

3
θ2 − σabσ

ab + ωabω
ab − RcdT

cT d (1.18)

where Rcd is the Ricci tensor, σab is the shear, that measures how an initial sphere would get

distorted into an ellipsoid, and ωab is the antisymmetric part of Bab that measures the rotation

of the geodesics of the congruence. This equation is crucial for the singularity theorems.

1.4 Causal past and future

The causal past, J−(p), of an event p ∈ M is the set of points of the manifold that can

be reached from p with past-directed causal curves, that is, with past-directed null or timelike

curves:

J−(p) ≡ {q ∈ M/ ∃ c(λ) timelike or null past-directed /p, q ∈ c(λ) } . (1.19)

The causal future, J+(p), of an event p ∈ M is the set of points of the manifold that

can be reached from p with future-directed causal curves, that is, with future-directed null or

timelike curves:

J+(p) ≡ {q ∈ M/ ∃ c(λ) timelike or null future-directed /p, q ∈ c(λ) } . (1.20)

When only timelike curves are considered to join p, we are dealing with the chronological

past and future of p:

I−(p) ≡ {q ∈ M/ ∃ c(λ) timelike past-directed /p, q ∈ c(λ) } , (1.21)
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I+(p) ≡ {q ∈ M/ ∃ c(λ) timelike future-directed /p, q ∈ c(λ) } . (1.22)

Since it is always possible to continously deform a timelike curve into another one that ends

within a neighborhood of q, I−(p) and I+(p) are always open sets.

For a subset S ⊂ M its causal past and future are defined:

J−(S) = ∪p∈S J−(p) , (1.23)

J+(S) = ∪p∈S J+(p) , (1.24)

i.e., simply the union of the individual pasts and futures of all the points in S. Similarly the

chronological past and future of S are constructed with the union of the individual ones:

I−(S) = ∪p∈SI−(p) , (1.25)

I+(S) = ∪p∈SI+(p) , (1.26)

which are also always open sets.

Convex normal neighborhood

A neighborhood of an event p, Up, is called a convex normal neighborhood when every two

events in Up are joined by a unique geodesic that does not leave Up.

Formally, Up is a convex normal neighborhood when ∀ q, r ∈ Up ∃! γ(λ) geodesic that joins

q and r staying entirely within Up.

The chronological future of Up, I+(Up), is the set of points q ∈ M which are linked to p by

timelike future geodesics contained in Up. Therefore I+(Up) ⊂ Up.

For a convex normal neighborhood, I+(Up) and its boundary ∂I+(Up) are generated by

timelike and null geodesics respectively, as in Minkowski spacetime. This makes this object

crucial to give any spacetime (M, gab), and locally, the causal structure of Minkowski spacetime.

Achronal set and its edge

A subset of M, A ⊂ M is called achronal if none of the points in A belongs to the chronological

future of any of the rest of the events in A. Formally, A ⊂ M is an achronal set if ∄ p, q ∈

A / q ∈ I+(p), i.e., if I+(A) ∩ A = 0.

The edge of A, edge(A), is the set of points of A that have for every neighboorhod around

them one event in their chronological future and one event in their chronological past that can
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Figure 1.2: A represents an achronal subset of a conformally flat spacetime, M, where null

worldlines are straight lines at ±45◦. The points e and e′ are the edge of A.

be joined by a timelike curve that does not intersect A; that lies entirely outside A. That is,

the set of points p ∈ A/ ∀ Op open neighborhood of p, ∃ q ∈ I+(p) and ∃ r ∈ I−(p) which are

joined by a timelike curve that does not intersect A.

See in fig. 1.2 how ∀p /∈ edge(A) it is not possible to join q and r without intersecting A.

1.5 Domains of dependence

While I±(S) and J±(S) are the collections of points of the manifold that can be causally related

to the subset S ⊂ M, it is also interesting to define the collections of points of the manifold

which are causally completely determined by a given subset S of the manifold. These are the

domains of dependence of S, D±(S).

The past domain of dependence of the subset S ⊂ M, D−(S) is the collection of points

p ∈ M whose future inextendible causal curves, all of them, intersect S:

D−(S) ≡ {p ∈ M / every future inextendible causal curve through p intersects S} .

(1.27)

The future domain of dependence of the subset S ⊂ M, D+(S) is the collection of points

p ∈ M whose past inextendible causal curves, all of them, intersect S:

D+(S) ≡ {p ∈ M / every past inextendible causal curve through p intersects S} .

(1.28)

Therefore, the physical conditions in S completely determine the physical conditions in

D+(S) and the physical conditions in D−(S) determine those of S.
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The (total) domain of dependence is the union of both the past and future ones: D(S) =

D+(S) ∪ D−(S).

Figure 1.3: These are the future, D+(S), and past, D−(S), domains of dependence of the subset

S ∈ M. As in figure 1.2 consider M a conformally flat spacetime.

Cauchy surface

A closed achronal subset A ⊂ M for which D(A) = M, i.e., that determines completely the

physical conditions of the whole manifold, is called a Cauchy surface.

It is a surface because a theorem proves that closed achronal subsets without edge are (D-1)

dimensional submanifolds of M and C0 (continuous).

A spacetime (M, gab) that has a Cauchy surface is called a globally hyperbolic spacetime.

1.6 Orientable manifolds

Let M be a D-dimensional connected manifold covered with an atlas {ui}. M is said to be

orientable if for any pair of charts ui, uj with a non-empty intersection, the Jacobian of the

transformation between their coordinates, {xµ} and {yν} respectively, has a positive determi-

nant, det(∂xµ/∂yν) > 0.

To illustrate, the Möbius strip is an example of a non-orientable manifold, since this deter-

minant is negative for the intersection between the two charts you need (at least) to make its

atlas.

A manifold in which a continous designation of past and future can be done in the local light

cones on every point p ∈ M is called a time-orientable manifold.
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1.7 Causality in manifolds

Spacetimes with nontrivial closed causal curves (c(λ) = p ∀ λ is the trivial one) are usually

considered to be non-physical because they would allow observers to travel back in time. Also

those whose causal curves are not closed but are allowed to bend arbitrarily close to themselves

are not considered physical either, since a small perturbation of the metric could close the curves.

The criteria for good causal behaviour are the following:

A spacetime (M, gab) is strongly causal if ∀ p ∈ M and ∀ Op neighborhood of p ∃ O ⊂

Op / ∄ causal curves passing through O more than once. This eliminates the possibility of the

curve becoming arbitrarily close to itself.

Let now be the metric g̃ab = gab− tatb defined in (M, gab) with ta 6= 0 a timelike vector. This

metric is also of Lorentz signature and can be thought to broaden the local light cones, since a

timelike vector of gab is also a timelike vector of g̃ab and a null vector of gab is timelike for g̃ab.

We say that (M, gab) is causally stable when a timelike continous vector field ta exists in M

such that (M, g̃ab) contains no timelike closed curves. This is the criterium commonly used to

consider a spacetime causally well behaved.

1.8 Miscellanea

In order to homogenize the language and ease discussions and understanding along the text,

we introduce here several standard definitions of horizons and related concepts, that are often

given in the literature for the particular case of a flat FRWL cosmology, with metric ds2 =

−dt2 + a(t)2d~x2. Here cosmology stands for time-orientable spacetime.

One of our objectives is to generalize these definitions for arbitrary cosmologies, with any

general gµν , and this way relate them to the objects we have previously formally introduced.

Particle horizon

The particle horizon is the surface photons may have reached travelling from the origin of

times in a FRWL universe, t = 0, to any posterior time t. The comoving radial coordinate of

this surface, rph, is:

rph(t) = c

∫ t

0

dt′

a(t′)
. (1.29)

The universe at t = 0 is a particular achronal subset of M, A0 ∈ M, that we will call the

initial patch of the universe. Its causal future is J+(A0) and in particular its null future,

that we can call H+(A0), contains all the particle horizons reached at different t values as the
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cosmology evolves.

The generalized concept of particle horizon is therefore that at each t an achronal subset

of H+(A0), H+
t (A0), is the particle horizon of the initial patch of the universe, A0, with the

following structure:

H+
t (A0) = ∪p∈A0

H+
t (p)

H+(A0) = ∪∀tH
+
t (A0) (1.30)

See also, recalling the definition of flow at the beggining of the chapter, how we can think

of the evolution of a cosmology as a flow that generates the geodesics of A0 as the cosmological

time, t, passes.

Event horizon

The event horizon is the surface photons can reach by travelling from a certain t in a FRWL

universe up to t → +∞. The comoving radial coordinate of this surface, reh, is:

reh(t) = c

∫ +∞

t

dt′

a(t′)
. (1.31)

Recession velocity

The recession velocity measures how proper distance D(t) =
∫

ds = a(t)r among comoving

observers in a FRWL universe changes due to the expansion, and not due to local peculiar

velocities, ṙ(z) = 0:

vrec(t, z) = Ḋ(t) = ȧ(t)r(z) + a(t) ˙r(z) = ȧ(t)r(z) = c
ȧ(t)

a0

∫ z

0

dz′

H(z′)
, (1.32)

since r(z) = c
a0

∫ z
0

dz′

H(z′) . H(z) is the standard Hubble parameter, H = ȧ
a , and z is the redshift.

Hubble sphere

The Hubble sphere is the proper distance, Dhs, at which the recession velocity equals the

speed of light:

vrec(t, z) = ȧ(t)r(z) = H(t)D(t) = c ⇒ Dhs =
c

H(t)
. (1.33)

Objects beyond the Hubble sphere receed faster than the speed of light. This fact is not in

contradiction with either Special Relativity (SR) or General Relativity (GR) since c as a local

maximum for the relative velocities among physical objects still holds.
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At any given time, objects beyond the Hubble sphere are causally disconnected from those

inside it, but since its size changes with the expansion history of the cosmology, they may become

causally connected at some other time. In particular, during the HBB evolution,

Ḋhs = c

[
1 −

a(t)

ȧ(t)2
ä(t)

]
> 0, (1.34)

i.e., the Hubble sphere grows, and overcomes previously superluminal regions, making them

subluminal. That is why the Hubble sphere is not a horizon, and should not be considered

as such. Unfortunately, the term Hubble horizon is vastly used in the literature, leading to

confusion [30].

Spacetime diagrams

Spacetime diagrams plot comoving radial distance, a · r, in their x axis and conformal time τ

in their y axis. Therefore, for a conformally flat spacetime, with metric ds2 = a(τ)2[−dτ2 +dr2],

the worldlines of comoving observers are vertical lines of constant r and those of lightrays are

straight lines at ±45◦ (see fig. 1.4).

lα
˜

Figure 1.4: Causal border of the universe for us today, rph(τ0).

We have located the comoving observer “us” at r = 0 and radial distances are, therefore,

measured relative to us. The particle horizon is plotted for the whole history of this observer,

whose current conformal time is τ0 (today). The current size of the particle horizon is rph(τ0),
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that is the distance photons emitted at τ = 0 would have travelled in their way to us today. See

how events inside the particle horizon always share common past regions with us (and among

themselves, see shaded area).

eγ)

Figure 1.5: Regions of the spacetime accesible to us today are those with r ≤ rl.

In figure 1.5 we see one of the characteristic features of these spacetimes. Note that events

happening all over the spacetime (for any value of r) at times much earlier than today will not

be detected by us unless they happen “close enough”: within distances below rl. Events beyond

rl will affect us sometime in the future (see below about the last scattering surface, rl).

Last scattering surface as the effective causal border of the universe

As we explained in the introduction, the last scattering surface is where the photons of the

CMB radiation interacted for the last time with matter, at decoupling, when the age of the

universe was around 105 yr. Before that, the universe was opaque, that is, the photons’ mean

free path was quite short, and therefore, radiation never scaped and cannot reach us today [11].

So even though there are no causal limitations to reach t = 0, effectively no information is

reaching us coming from before decoupling, so the effective causal border of our universe is the

last scattering surface. This limit is also called visual horizon sometimes [12], see fig. 1.6.
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Figure 1.6: Visual horizon, r = rvh, today for us, the r = 0 observer. For a pure HBB cosmology

without inflation.





Chapter 2

Causality issues in inflation

The inflationary paradigm is considered nowadays a good description of the very early evolution

of the universe, shortly after the initial singularity. After inflation, the universe continues

evolving as the Hot Big Bang (HBB) scenario predicts, into our present Λ-CDM universe: an

acceleratingly expanding spatially flat dark energy dominated universe (74%), with cold dark

matter (21%) and traces of standard baryonic matter (4%).

Inflationary theories started to be constructed in the early 80s, mainly by A.H. Guth, A.D.

Linde, P. Steinhardt and collaborators, to solve some of the major problems in cosmology at

that time:

• The horizon problem: the CMB photons decoupled from matter when the age of the

universe was around 105 yr [20], therefore they map the physical conditions of the universe

then. Today, we observe homogeneity in the CMB radiation in regions that at decoupling

were not causally connected. How could they share then the same physical conditions?

• The flatness problem: the current value of the total mass-energy density of the universe,

ρtot, relative to the critical density, ρc ≡ 3H2/8πG, is measured to be Ωtot = ρtot/ρc =

1.006 ± 0.006 [31]. This implies that the universe is spatially flat, which is an unstable

equilibrium point of the Friedmann equations (see equation 2.1 below). This means that

any small departure from 1 will quickly grow pulling the universe away from flatness, so,

how could it retain the Ωtot = 1 value over its whole evolution?

• The formation of structure: the current observed distribution of baryonic matter (galaxies,

clusters and superclusters of galaxies, walls, etc.) points towards a bottom-up formation

scenario that needs primordial density pertubartions as seeds for the subsequent aggrega-

tion of matter. How are these primordial perturbations formed?

• The absence of magnetic monopoles: all Grand Unified Theories developed in the 70s

23
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predicted the existence of very massive magnetic monopoles, that may have been copiously

produced in early epochs of the evolution of the universe, something that is not at all

observed.

Although there are individual alternative explanations to all these questions, the main

strength of inflation is that it can account by itself for all of them. In order to do so, inflation

depicts an initial very high density, ρ, and homogeneous patch of the universe that sponta-

neously happens to be in a false vacuum state with negative pressure, p = −ρ, that triggers the

exponential expansion of this patch over the underlying non-inflationary rest of the universe.

This negative pressure, equivalent to a repelling gravity, is responsible for the exponential

expansion, that proceeds as many e-folds1 as necessary (around 60 [21]) to produce the homo-

geneity and flatness observed.

The simplest way to realize inflation is by considering a massive scalar field, Φ, the inflaton,

with a potential of the form V (Φ) = m2

2 Φ2[32]. The fluctuations of this field at the end of the

inflationary phase are the primordial density perturbations needed for the subsequent formation

of structure.

The accelerated exponential expansion brings the total density towards the critical value,

making Ωtot = 1. This can be easily seen as follows. The next equation is obtained from the

Friedmann equations and gives us the evolution of Ωtot for any expansion history, a(t), so it is

valid for both the post-inflationary and inflationary phases. While the post-inflationary (HBB)

phase is characterized by a deccelerated expansion, ä < 0, during inflation ä > 0, and therefore

|Ωtot(t)− 1| is constantly decreasing. The 60 e-folds bring Ωtot so close to 1 that the subsequent

HBB evolution (with d
dt |Ωtot(t) − 1| > 0) can hardly move it away from that value.

|Ωtot(t) − 1| =
|k|

H2a2
,

(2.1)

d

dt
|Ωtot(t) − 1| = −2ä

|k|

H3a3
.

The horizon problem is solved by inflating the initial homogeneous region into a much bigger

one in a way that preserves its homogeneity (for more details see section 2.1 below). And finally

the monopole problem is solved because inflation dilutes the monopole density to extremely low

values [4].

So we have a small patch of the universe that starts expanding exponentially soon after the

initial singularity. In the chaotic inflation scenario [20] the inflaton is rolling down its potential

1An e-fold is the lapse of time in which the universe has multiplied its size by a factor of e.
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while expanding in its way to reheating, that is the epoch just after inflation, where the field

oscillates around its minimum to produce all the particles for the subsequent HBB evolution.

We say, then, that the inflationary patch has thermalized and produced a pocket universe, not

a bubble universe to avoid the spherical symmetry the word bubble suggests [4].

While still inflating, a region of the inflationary patch can suffer an upward quantum fluc-

tuation of Φ that makes it recover a high value of the energy density that enables inflation to

restart in that region. This is how chaotic inflation produces many inflationary patches and

pocket universes once it starts. And with a fractal structure [32].

In new inflation however [4], the inflationary patch continues expanding forever and regions

of it continuous and stochastically thermalize, producing the flux of pocket universes that is

characteristic of new inflation.

Note the difference between both scenarios: new inflation produces a flux of pocket universes

coming from a unique eternal inflationary patch while chaotic inflation produces a pocket uni-

verse out of every inflating patch that as well produces another inflationary patch, that in turn

will produce a pocket universe and another inflationary patch, etc.

This is why inflation is future eternal and produces not only a pocket universe, but a flux of

them, a so-called multiverse. While being eternal in the future, it was shown in ref. [23] that it

cannot be eternal in the past. So the question of what was there before inflation is still open.

After this brief introduction, in section 2.1 we start analising in detail the horizon problem

since it is a basic causality issue in inflation. Section 2.2 explains why inflation produces pocket

universes populated with causally non-connected regions, and section 2.3 reproduces the theorem

leading the authors of ref. [23] to conclude that inflation is not past eternal. Finally, in section

2.4 we see how the study of the embedding of the inflationary spacetime within its background

can constrain the cosmological parameters.

2.1 The horizon problem

The so-called horizon problem can be explained as follows. The detailed measurements of the

CMB radiation starting in the 90s with COBE [33] and improved later on with WMAP [34] and

PLANCK [35] have shown that the universe was extremely homogeneous (and isotropic) when

this radiation was formed, or more precisely when the CMB photons decoupled from matter, at

decoupling (tdec ≃ 3 · 105 years [11]). This homogeneity amounts to ∆T/T = 10−5.

The present sizes of the homogeneous regions are of the order of 100 Mpc [4], regions that

when traced back to decoupling with the usual expansion history of the HBB universe (for

example that in [36]) happen to be bigger than the particle horizon at that epoch.
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The question arises here: how is it possible that regions that are not causally connected at

the epoch of decoupling can share identical physical conditions?

In terms of causality the horizon problem is clearly explained in the following spacetime

diagram (see fig. 2.1).

eγ)

Figure 2.1: Spacetime diagram for a HBB conformally flat universe without inflation. We are

the observer O at r = 0. τdec is the epoch of decoupling and τ0 is today.

The points CMB1 and CMB2 of the last scattering surface that we can see today, are well

outside our particle horizon at decoupling and therefore do not share any events in their past

light cones (see shaded areas). There can be then no physical reason for them having the same

temperature, unless acausal physical mechanisms are invoked.

When an inflationary epoch is included before decoupling the situation is solved as seen in

fig. 2.2. Now CMB1 and CMB2 are well inside our particle horizon at decoupling, so they

have causal connection with us. They also share a common past region (see shaded area) that

according to Ellis & Stoeger (1988) [12] can explain their identical physical conditions. However,

they both have independently causal contact with regions other than their past common region

so in order to justify their claim, the authors of [12] had to determine the volumes of these

independent regions in comparison with that of the common past region, finding the latter

much bigger than the former.

Another interesting aspect of causality within the inflationary idea, as pointed out also in

[12], is that due to its stochastic nature, the decay of the inflaton cannot happen close to the
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β

Figure 2.2: Spacetime diagram for a conformally flat universe with an inflationary epoch, start-

ing at τInfl.start and ending at τInfl.end.

end of inflation, it rather has to start close to its beginning.

lk

Figure 2.3: Spacetime diagram for a conformally flat universe with an inflationary epoch. τ2

indicates when the inflaton starts to decay.
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In fig. 2.3 we have selected the observer O at r = 0 to be inside the region of the inflating

patch that is actually decaying. If the decay starts at τ2, that is, close to the end of inflation,

and occurs in a small neighborhood around us, then there is no way CMB1 and CMB2 can get

affected by it at the time of decoupling.

eγ)

Figure 2.4: Spacetime diagram for a conformally flat universe with an inflationary epoch. τ1

indicates when the inflaton starts to decay.

In the τ1 case however (see fig. 2.4) the two CMB events are by far causally connected to the

decaying region. This is why the authors of [12] claim that the decay of the inflaton must start

soon, or be present all along the inflationary epoch. Otherwise the last scattering surface would

be populated by both decayed and non-decayed regions, being therefore not homogeneous.

We think, however, that following their line of reasoning all we can say is that the time at

which the decay starts and the size of the initial decaying region are not independent quantities

if we want the full CMB radiation to be causally produced.

As you can see in fig. 2.5, in order to have CMB1 and CMB2 causally connected to the

decaying region surrounding the observer O, the decay of the inflaton must not occur later than

τmax: otherwise CMB1 and CMB2 will not be causally connected to the decaying region around

O, as in fig. 2.3 above.

However, when you consider the possible sizes of the decaying region, rd, you find that they

also limit the time at which the decay has to start (see figs. 2.6, 2.7): for decays starting at

τmax or later, CMB1 and CMB2 are causally connected to the decaying region if its size exceeds
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β

Figure 2.5: Spacetime diagram for a conformally flat universe with an inflationary epoch. τmax

indicates the latest (see text), after the onset of inflation, the decay of the inflaton has to start.

l̄

Figure 2.6: Spacetime diagram for a conformally flat universe with an inflationary epoch. If the

decay of the inflaton starts after τmax, the decaying region around O has to be at least of the

size of



30 Causality issues in inflation

β

Figure 2.7: Spacetime diagram for a conformally flat universe with an inflationary epoch. If

the decay of the inflaton starts before τmax, any size of the decaying region around O will be

causally connected to both CMB1 and CMB2.

rmin(τ), if rd ≥ rmin(τ); if the decay starts early, before τmax, any size (of course smaller than

the particle horizon) will do (fig. 2.7).

So we find that the decay of the inflaton does not necessarily have to happen all along the

inflationary epoch: if the decaying region is big enough, it can happen well after inflation starts,

and still an homogeneous last scattering surface is produced.

Obviously, the trivial solution to this would be having the whole inflationary patch decay-

ing at once, in which case no causal problem would arise whatsoever. This is, however, very

unlikely [20].

2.2 The event horizon during inflation

The reason why inflation produces a set of causally disconnected regions within one pocket

universe, even starting from a causally connected patch, is the following: in a spatially flat
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exponentially expanding region, the proper size of the event horizon, Deh, is constant,

reh(t) = c

∫ +∞

t

dt′

a(t′)
= c

∫ +∞

t

dt′

a0eH(t′−t)
=

c

a(t)H
,

(2.2)

Deh(t) = a(t) reh(t) =
c

H
,

with H constant during inflation. Therefore, each event of the inflationary spacetime will only

ever be causally connected to events within this constant radius, and this for the whole duration

of the inflationary epoch. However, due to the expansion, comoving structures get bigger than

this, overcome the event horizon or leave the horizon as is usually said [30], and this way become

causally disconnected.

Since, during inflation, the event horizon has the same size as the Hubble sphere (see section

1.8), we will call these regions Hubble regions, or Hubble volumes.

By the time inflation ends, after n e-folds, the initial patch has grown en in proper size and

is composed of many causally disconnected Hubble regions. A very simple estimation [4] can

give us an idea of how many of them: consider initially a Hubble region and let one Hubble

time pass (∆t = H−1). The region has grown by a factor of e, a factor of e3 ∼ 20 in volume, so

after one e-fold, from a unique initial Hubble region we come up with 20 independent of them.

For the standard estimation of 60 e-folds until the end of inflation we would have ∼ 2060 ∼ 1078

non-connected Hubble volumes.

The causal isolation of each Hubble volume preserves the inflationary conditions within, al-

lowing the full inflationary process to proceed once it has started, and independently of whatever

may be happening outside [32]. This behaviour is a generalization of the “no-hair” theorems,

related to black holes, to the case of de Sitter spacetimes [38], [39].

This isolation is a crucial ingredient for the inflationary expansion: any inhomogeneity inside

the Hubble region will have left the horizon within a time of order the Hubble time, or one e-fold.

This is how inflation actually produces the homogeneization within each Hubble volume, and

for all the Hubble volumes it produces.

Also, the fact that the evolution of the field proceeds independently within such domains

allows for the small inhomogeneities that will be the seeds for the structure formation in the

subsequent evolution [32].

Starting from an initial homogeneous inflationary patch is clearly necessary in this context;

otherwise the inhomogeneities can hardly be small enough as to preserve the 10−5 level of

homogeneity of the last scattering surface. Furthermore, if the initial inflationary patch is not

homogeneous, there is also no way to explain how the independent Hubble volumes can evolve

in the same way.
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2.3 Why inflation is not eternal in the past

Borde, Guth and Vilenkin (2003) [23] (hereafter BGV2003) addressed the question whether

inflation is eternal in the past. When realizing that the inflationary process is eternal in the

future once it starts, they asked themselves whether it could also be eternal in past directions.

There was another motivation for this work: the weak energy condition (w.e.c.) is very

often violated in inflationary models due to quantum effects [37], in particular whenever the

fluctuations result in an increase of the Hubble parameter, dH/dt > 0.

The weak energy condition,

Tµνξ
µξν ≥ 0 , (2.3)

with ξµ any timelike vector, states basically that any timelike observer always measures positive

energy densities. This is one of the conditions in the singularity theorems [26] that eventually

lead spacetimes to be singular, so the question now was whether inflationary spacetimes, that

do not respect it in general, are therefore regular. Here we mean by singular spacetimes that

they contain incomplete timelike or null geodesics.

In order to answer the question, BGV2003 assume another condition for the inflationary

spacetime: that the average of the Hubble parameter along past directed trayectories is never

negative,

Hav ≡
1

λf − λi

∫ λf

λi

H(λ)dλ > 0 , (2.4)

where λf , λi are the values of the affine parameter in the past of the null or timelike geodesic

along which we are calculating the average. This condition only excludes the possibility that

the spacetime we are considering contracts significantly in this past epoch. The authors call this

condition the “averaged expansion condition”.

The goal of the authors of [23] is to see whether this condition implies incompleteness for

any null or timelike geodesic.

We have reproduced all the calculations of the paper, first considering a region of the in-

flationary patch smaller than a Hubble volume, (H−1)
3
, that is therefore well described with

a flat, homogeneous and isotropic Robertson-Walker (RW) metric, ds2 = −dt2 + a(t)2d~x2, and

afterwards we have done the generalization for any general metric, ds2 = gµνdxµdxν .

For each case we had to determine the behaviour of the affine parameter, whether it is

bounded or not, for both a null geodesic and a timelike non-comoving geodesic.

For the null geodesics in the RW metric:

∫ λf

λi

H(λ)dλ =

∫ tf

ti

ȧ(t)

a(t)
dt =

∫ a(tf )

a(ti)

da

a(t)
=

a(tf ) − a(ti)

a(tf )
≤ 1 , (2.5)
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since H = ȧ(t)
a(t) and a(tf ) > a(ti). Therefore,

0 < Hav =
1

λf − λi

∫ λf

λi

H(λ)dλ ≤
1

λf − λi
. (2.6)

So,

λf − λi ≤
1

Hav
, (2.7)

and the value of λf is bounded.

For the non-comoving timelike geodesics :

∫ τf

τi

H(τ)dτ =

∫ τf

τi

ȧ(τ)

a(τ)
dτ =

∫ tf

ti

m

E

ȧ(t)

a(t)
dt =

∫ a(tf )

a(ti)

mda√
m2a2 + p2

fa2
f

, (2.8)

where τ is the affine parameter of the timelike geodesic and we have used P 0 = E = mdt/dτ

and E2 = m2 + p2. The integral 2.8 has the following solution:

∫ τf

τi

H(τ)dτ = ln

(
m

pf
+

Ef

pf

)
− ln


 mai

pfaf
+

√
m2a2

i + p2
fa2

f

pfaf


 . (2.9)

The second term can be written in the form,

ln


 mai

pfaf
+

√
m2a2

i + p2
fa2

f

pfaf


 = ln

[
mai

pfaf
+

√
1 +

m2a2
i

p2
fa2

f

]
, (2.10)

that is always ≥ 0, so ∫ τf

τi

H(τ)dτ ≤ ln

(
m

pf
+

Ef

pf

)
, (2.11)

is again bounded and therefore the timelike geodesic is incomplete.

A crucial question when generalizing this result to any spacetime is what expression for the

Hubble parameter to use. The usual H = ȧ/a is not general enough since it is specifically

defined for RW metrics, so what BGV2003 do at this point is the following: they first consider

a congruence of comoving timelike geodesics defined in a simple Minkowski spacetime and find

a suitable expression for H in this context (see fig. 2.8).

The vector field U is the tangent vector field of the congruence as measured by the observer,

O, and ∆r is its infinitesimal path when moving from its intersection with one of the comoving

test particles to the following. The observer measures U1 and U2 velocities for them.

Clearly, O will measure expansion when the two velocities are different, in particular they

will see the universe expanding (or contracting) when a non-zero component of ∆U = U2 − U1



34 Causality issues in inflation

Figure 2.8: Congruence of comoving timelike geodesics, γc, intersected by an observer O, with

geodesic γO, in Minkowski spacetime.

exists along its own geodesic: ∆U ·∆r 6= 0. If ∆r is defined from the second intersection towards

the first as in fig. 2.8, then H has to be defined as follows:

H =
−∆Uµ∆rµ

|∆r|2
, (2.12)

that is dimensionally correct. From this definition of H we can find the general expression for

any metric. Let us do it step by step.

The tangent vector of the geodesic of the observer, γO, is V µ (see fig. 2.9), and ∆rµ is

therefore,

∆rµ = −V µ∆λ, (2.13)

with ∆λ the affine parameter of γO. This vector has components in the direction of the comoving

geodesics of the congruence:

−V µ∆λUµ, (2.14)

and components in the direction perpendicular to the comoving geodesics of the congruence:

−V µ∆λ + V ν∆λUνU
µ, (2.15)
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Figure 2.9: Congruence of comoving timelike geodesics, γc, intersected by an observer O, with

geodesic γO, in a general spacetime (M, gab).

so we can write

∆rµ = (V νUνU
µ − V µ)∆λ = (γUµ − V µ)∆λ, (2.16)

since γ ≡ V νUν .

Now we go for ∆Uµ. We have to parallel transport Uµ along the geodesic of the observer

and see how it changes, therefore,

∆Uµ = ∇V Uµ∆λ = V ν∇νU
µ∆λ. (2.17)

And finally,

|∆r|2 = ∆rµ∆rµ = (k − γ2)∆λ2, (2.18)

with k ≡ V νVν , where we have used equation 2.16.

These are all the ingredients of the general expression for the Hubble parameter:

H =
−∆Uµ∆rµ

|∆r|2
=

−V ν∇νU
µ∆λ(γUµ − Vµ)∆λ

(k − γ2)∆λ2
=

−VµV ν∇νU
µ

(γ2 − k)
, (2.19)

where we have neglected the term −γ(V ν∇νU
µ)Uµ that comes out from the algebra since it is

a component of ∇V Uµ along Uµ itself that does not contribute to the expansion (only relative

displacements of the geodesics in their perpendicular directions can produce the expansion).
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With some more algebra, H can be expressed:

H =
d

dλ
F (γ), (2.20)

with

F (γ) =
1

γ
, (2.21)

for a null observer (k = 0). And

F (γ) =
1

2
ln(

γ + 1

γ − 1
), (2.22)

for a timelike observer (k = 1).

We can now go back to the “averaged expansion condition” and see whether the geodesic of

the observer is incomplete or not:

∫ λf

λi

H(λ)dλ =

∫ λf

λi

d

dλ
F (γ)dλ = F (γf ) − F (γi) ≤ F (γf ), (2.23)

the integral is bounded since F (γ) is always positive. We have therefore,

λf − λi ≤
F (γf )

Hav
, (2.24)

so the affine parameter of γO is bounded and therefore γO is past incomplete.

So, BGV2003 conclude that general inflationary spacetimes, without significant contracting

phases in the past, hold incomplete null or timelike geodesics, are therefore singular in past

directions, and so cannot be past eternal.

We agree however with Linde (1990) [20] when he says that cosmological singularities should

be linked to all null or timelike geodesics of the spacetime being incomplete, not just some of

them.

2.4 Embedding of the inflationary patch within the background

spacetime

Vachaspati & Trodden (1999) [21] and Berera & Gordon (2001) [22] have studied the question

of the embedding of the inflationary patch within a background non-inflationary spacetime.

They consider the embedding well behaved when an observer measures positive energy den-

sities in the boundary of the two spacetimes, or in other words, when the boundary satisfies the

weak energy condition (w.e.c.):

Tµνξ
µξν ≥ 0 , (2.25)

with ξµ any timelike vector.
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In order to study the behaviour of the boundary, they consider a congruence of null rays

that crosses it, and study how the expansion scalar, θ (see section 1.3.1), changes as a result of

this crossing. As we saw in section 1.3.1 Raychaudhuri’s equation is the dynamical equation for

θ, and in the case of a congruence that respects the weak energy condition it can be simplified

to:
dθ

dλ
≤ 0 , (2.26)

with λ the affine parameter of the congruence.

Therefore, what the authors have to study is whether the crossing of the null congruence

increases or decreases the value of θ and therefore violates (or not) the w.e.c.

Now we have to make use of the concept of anti-trapped region. Such regions appear in

expanding spacetimes whenever the expansion is fast enough, and are characterized by the fact

that both outgoing and ingoing ligth rays, emmited from a sphere centered on any observer, are

divergent, have positive values for θ. In this case, the sphere is called an anti-trapped surface,

and all spheres bigger than this one are also anti-trapped. In fact, in an expanding spacetime,

all regions bigger than the Minimal Anti-trapped Surface (MAS) are anti-trapped.

Figure 2.10: Normal and antritrapped surfaces in an expanding spacetime. MAS stands for

Minimal Antitrapped Surface (see text).

Normal regions on the contrary, have convergent ingoing null geodesics and diverging out-
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going ones. Therefore, since the MAS separates an inner normal region (with θ negative for

ingoing null rays) from an outer anti-trapped one (with θ positive for ingoing null rays), the

value of θ on the MAS has to be zero (see figure 2.10).

So the point is finding an embedding that does not violate the w.e.c, for which dθ/dλ ≤ 0,

for either an ingoing null congruence or an outgoing null congruence crossing the boundary of

the two spacetimes.

In the references quoted, the background non-inflationary spacetime is considered to be an

expanding FRWL universe, and the inflationary spacetime is also described by a RW metric but

with the scale factor increasing exponentially with time.

Under these conditions, the size of the MAS, DMAS, is:

DMAS =





H−1 1

(1−Ω)1/2
arcsinh

(√
1−Ω
Ω

)
, 0 < Ω < 1

H−1, Ω = 1

H−1 1

(Ω−1)1/2
arcsin

(√
Ω−1
Ω

)
, 1 < Ω < 2

(2.27)

If the inflationary patch has developed an antitrapped surface inside and it is embedded in a

normal region of the background spacetime, for incoming lightrays from the background (with

θ < 0) into the inflating antritrapped region (with θ > 0) we will have dθ/dλ > 0, and, therefore,

such a configuration is not a good embedding.

All the other 3 combinations, namely, a normal inflationary patch embedded in a normal

background, a normal inflationary patch embedded in an anti-trapped background and an anti-

trapped inflationary patch embedded in an anti-trapped background, are good embeddings be-

cause they respect the w.e.c.

Now we have to introduce in the reasoning the ingredient of causality. And here is where

we differ from the authors of [21] and [22]. They say that the initial inflationary patch has

to be smaller than the size of the Hubble horizon of the background spacetime in order to be

causally produced. Here the confusion between Hubble sphere and event or particle horizon (as

we explained in 1.8) is playing a critical role, leading, in our view, to wrong conclusions.

Anyway, let us follow their line of reasoning. We have an initial inflationary patch that is

smaller than the background Hubble horizon, D0 < 1/Hbg, and therefore is causally connected.

Since for the Ω = 1 spacetimes of the authors of [21] the size of the MAS equals that of the

Hubble horizon (see eq. 2.27), the initial inflationary patch is inside a normal region of the

background spacetime.

In order for the initial inflationary patch to be stable against perturbations, its initial size,
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D0, has to be larger than the Hubble horizon, D0 > 1/Hinf , and therefore the boundary of

the inflationary patch is in an anti-trapped region of the inflationary spacetime. So we have an

anti-trapped inflationary region surrounded by a normal background region, that is something

that, as we have already explained, leads to the violation of the w.e.c.

If the initial inflationary patch is larger than the background Hubble horizon, the exterior

will also be an anti-trapped region, in which case no violation of the w.e.c. should occur. The

authors of [21], therefore, conclude that the initial inflationary patch has to have an acausal

size, something that can actually invalidate the whole inflationary idea.

The work of Berera & Gordon (2001) [22] came to solve the puzzle. They generalized the

calculations of the previous authors to an initial inflationary patch with any global geometry,

that can subsequently evolve to the flat Ω = 1 geometry with the exponential expansion.

When the initial geometry of the inflationary patch is open, Ω < 1, the size of the MAS is

larger than that of the Hubble horizon (see eq. 2.27), so we can have an initial inflationary patch

in a normal region, larger than the inflationary Hubble horizon and therefore still stable against

perturbations. If we preserve the causal origin of the patch and therefore it is initially smaller

than the background Hubble horizon, we will have a normal inflationary region embedded in a

normal background region, something that respects the weak energy condition provided that θ

is smaller in the inflationary side of the boundary.

As inflation proceeds, Ω → 1, and the size of the inflationary patch becomes larger than

1/Hinf , so we have the boundary in an anti-trapped region of the inflationary spacetime. To

respect now the w.e.c., the background spacetime on the other side of the boundary also has to

be an anti-trapped region, so the MAS size of the background spacetime has to be smaller than

the size of the inflationary region at that time. The authors of [22], however, conclude that the

size of the background MAS has to be smaller than the one of the inflationary MAS, a condition

that still produces a good embedding but that is much more restrictive.

Summarizing, Berera & Gordon [22] find good embedding solutions that preserve the causal

formation of the initial inflationary patch, giving a solid base to the inflationary idea in terms

of causality.

We would like, however, to reproduce this work but eliminating the use of Hubble horizons,

by using as criterium for the initial inflationary patch to be causally connected that it is smaller

than the particle horizon of the background spacetime, rather than smaller than the Hubble

sphere (the criterium incorrectly used in these works).





Chapter 3

Conclusions and future work

We have explored the idea of using causality considerations to constrain inflationary theories

and to check for their internal consistency.

Ellis & Stoeger (1988) [12] did this, finding that causality actually constrains the time when

the inflaton field has to start decaying, that at the moment was considered to be very close to

the end of inflation. After their analysis it has been considered to start soon after the onset of

inflation, or from its very beginning.

Other authors that have analysed the internal consistency of the inflationary scenario in

terms of causality, although somewhat indirectly, are Vachaspati & Trodden (1999) [21]. They

studied the embedding of the inflationary patch within its background non-inflationary space-

time, requiring their boundary to be energetically well behaved, in the sense that positive energy

densities would be measured by observers crossing it.

Their work analyses only the flat case, Ω = 1, for both the inflationary and non-inflationary

expanding background, and they surprisingly find that the only way to have a good embedding

under these conditions is to start with an inflationary patch that is bigger than the causal border

of the background spacetime at that moment.

This result is shocking because it can invalidate the whole inflationary idea: if the exponential

expansion solves the causal problem related to the homogeneity (and isotropy) of the CMB

radiation (the horizon problem) but the initial inflationary region still has to be acausal in order

to do it, the internal consistency of the inflationary scenario is in doubt.

After studying in detail this work, we disagree with their criterium to consider a region

causally connected: they use the Hubble horizon as the causal border of the universe at a given

time of its evolution, while it is the particle horizon what should be used instead.

As we explained in section 1.8, following the work of Davis & Lineweaver (2004) [30], the

41
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term Hubble horizon leads to confusion and refers to two, in general, different concepts. One is

the Hubble sphere, which is the surface at which recession velocities of comoving objects equals

the speed of light. And the other is the event horizon, that is really a causal horizon, in fact

it is the future causal horizon of every event of the considered spacetime. In flat inflationary

spacetimes the event horizon and the Hubble sphere coincide, but for other expansion histories,

not exponential, this is not neccesarily true. Furthermore, what dictates whether or not certain

region of the spacetime can have been causally formed is the size of the particle horizon, not

that of the event horizon.

An early response to the work of Vachaspati & Trodden (1999) [21] is the paper by Berera &

Gordon (2001) [22] that solves the causal puzzle but not the Hubble horizon confusion. These

authors improve the previous analysis by allowing the initial inflationary patch to be spatially

open, with Ω < 1, and find this way embeddings energetically well behaved for initial sizes

smaller than the Hubble horizon, therefore causally connected.

We would like to addres this question in the near future, improving the latter analysis with

the more precise definition of causally connected region we have discussed above.

Regarding the constraint causality can impose on how long after the onset of inflation the

inflaton has to start decaying, we have found that there exists an upper limit, we have called

τmax, above which the decay can start at any time provided the size of the decaying region is

big enough (while still smaller than the particle horizon). Quantifying this is another question

we want to address soon as the natural continuation of this work.

Another issue we have tackled regards the non-past eternal nature of the inflationary process.

By construction, inflation is eternal in future directions once it starts. Borde, Guth and Vilenkin

[23] asked themselves whether it could also be eternal in past directions. We have reproduced

here their calculations, that show that inflationary spacetimes of any metric, with positive

average expansion rates, are singular, with incomplete past causal geodesics, and therefore not

past eternal.

We would also like to generalize many basic definitions regarding spacetime horizons making

use of the general form for the Hubble expansion rate, H, that the previous authors have

developed in order to prove their theorem.
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