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Monopoles, instantons and non-Abelian black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs
with more than 8 supercharges because there are extreme supersymmetric
black-holes in them.
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However, Nature (and superstring theory) contain non-Abelian fields that can be
described with gauged SUGRAs

⇒ Super-Einstein-Yang-Mills (SEYM) theories.
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There has been a lot of work on supersymmetric solutions of ungauged SUGRAs
with more than 8 supercharges because there are extreme supersymmetric
black-holes in them.

☞ Many families of extremal black-hole solutions found.

☞ Attractor mechanism discovered.

☞ Entropies have been given microscopic interpretations.

☞ Extremal non-supersymmetric and non-extremal solutions.

However, Nature (and superstring theory) contain non-Abelian fields that can be
described with gauged SUGRAs

⇒ Super-Einstein-Yang-Mills (SEYM) theories.

The timelike supersymmetric solutions of N = 2, d = 4 SEYM theories were
classified in 0806.1477 and the first non-Abelian black-hole solutions (fully
analytical!) were constructed in 0712.1530.

The timelike supersymmetric solutions of N = 1, d = 5 SEYM theories were
classified in 0705.2567 (earlier) but no non-Abelian black-hole solutions were
constructed until very recently (1512.07131).
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Keys to the N = 1, d = 5 SEYM black-hole solutions:

☞ 4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the
4d- hyper-Kähler base space.

☞ Kronheimer’s relation between selfdual instantons in Gibbons-Hawking spaces
and BPS monopoles in E3 (1503.01044).

Final result: There is a set of differential equations in E
3 (including Bogomol’nyi

equations for BPS monopoles) whose solutions can be used to construct,
insdistinctly,

➳ Timelike supersymmetric solutions of N = 2, d = 4 SEYM theories.

➳ Timelike supersymmetric solutions of N = 1, d = 5 SEYM theories.

We are going to present these equations
and some relevant solutions.
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Λ
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➠ ΦΛ

➠ ĂΛ
r
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1
2εrswF̆

Λ
sw − D̆rΦ

Λ = 0 .

D̆rD̆rΦΛ − g2fΛΣ
Ωf∆Ω

ΓΦΣΦ∆ΦΓ = 0 .

ΦΛD̆rD̆rΦ
Λ − ΦΛ

D̆rD̆rΦΛ = 0 .
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Monopoles, instantons and non-Abelian black holes

In general there will be a Abelian sector (λ) and a non-Abelian sector (A) which will
always be SU(2) in this talk:

1
2εrswF̆

λ
sw − ∂rΦ

λ = 0 , ⇒ ∂r∂rΦ
λ = 0 ,

1
2εrswF̆

A
sw − D̆rΦ

A = 0 ,

∂r∂rΦλ = 0 , ⇒ 1
2εrswF̆Asw − ∂rΦA = 0 ,

D̆rD̆rΦA − g2
(

ΦBΦBΦA − ΦAΦBΦB

)

= 0 ,

(

Φλ∂r∂rΦ
λ − Φλ∂r∂rΦλ

)

+

(

ΦAD̆rD̆rΦ
A − ΦA

D̆rD̆rΦA

)

= 0 .
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1
2εrswF̆

λ
sw − ∂rΦ

λ = 0 , ⇒ ∂r∂rΦ
λ = 0 ,

1
2εrswF̆

A
sw − D̆rΦ

A = 0 ,

∂r∂rΦλ = 0 , ⇒ 1
2εrswF̆Asw − ∂rΦA = 0 ,

D̆rD̆rΦA − g2
(

ΦBΦBΦA − ΦAΦBΦB

)

= 0 ,

(

Φλ∂r∂rΦ
λ − Φλ∂r∂rΦλ

)

+

(

ΦAD̆rD̆rΦ
A − ΦA

D̆rD̆rΦA

)

= 0 .

The solutions of the Abelian sector are completely determined by a choice of
harmonic functions Φλ,Φλ in E

3. What happens in the non-Abelian sector?
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The solutions non-Abelian sector ΦA,ΦA, Ă
Λ
r are naturally solved in two steps:

☞ Solve the SU(2) Bogomol’nyi equations for ΦA and Ăr

1
2εrswF̆

A
sw − D̆rΦ

A = 0 ,

☞ Solve the equation for the ΦA

D̆rD̆rΦA − g2
(

ΦBΦBΦA − ΦAΦBΦB

)

= 0 ,

The last set of equation mixing ΦA,ΦA, Ăr is automatically solved except at the
singularities, where one has to impose conditions on the integration constant
(Denef,Bates.)
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3 – Solutions to the SU(2) Bogomol’nyi equations: Protogenov’s

All the spherically-symmetric configurations ΦA, Ăr can be brought to the form
(hedgehog ansatz)

ΦA = −δArf(r)x
r, ĂA

r = −εArsx
sh(r),
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3 – Solutions to the SU(2) Bogomol’nyi equations: Protogenov’s

All the spherically-symmetric configurations ΦA, Ăr can be brought to the form
(hedgehog ansatz)

ΦA = −δArf(r)x
r, ĂA

r = −εArsx
sh(r),

The Bogomol’nyi equations become an system of ODFs for f(r) and h(r)







r∂rh+ 2h+ f(1 + gr2h) = 0 ,

r∂r(h− f)− gr2h(h− f) = 0 .
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Protogenov found in 1977 all the solutions of this system:
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Protogenov found in 1977 all the solutions of this system:

➠ A 2-parameter family (µ and s, a.k.a. Protogenov “hair”)

fµ,s =
1

gr2
[1− µr coth (µr + s)], hµ,s =

1

gr2

[

1− µr

sinh (µr + s)

]

,

s = 0 is the ’t Hooft-Polyakov monopole in the BPS limit and s = ∞ the
Wu-Yang SU(2) monopole (plus a constant).
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]
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λ = 0 is the Wu-Yang SU(2) monopole.
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Protogenov found in 1977 all the solutions of this system:

➠ A 2-parameter family (µ and s, a.k.a. Protogenov “hair”)

fµ,s =
1

gr2
[1− µr coth (µr + s)], hµ,s =

1

gr2

[

1− µr

sinh (µr + s)

]

,

s = 0 is the ’t Hooft-Polyakov monopole in the BPS limit and s = ∞ the
Wu-Yang SU(2) monopole (plus a constant).

➠ A 1-parameter (λ) family of coloured monopoles

fλ =
1

gr2

[

1

1 + λ2r

]

, hλ = fλ .

λ = 0 is the Wu-Yang SU(2) monopole.

The only globally regular solution is the ’ t Hooft-Polyakov monopole in the BPS
limit, but in the coupling with gravity the singularities may not be such.

The coloured monopoles are very interesting solutions: their charge is screened at
infinity and they can be generalized to multicenter solutions.
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4 – Solutions to the SU(2) Bogomol’nyi equations: Ramı́rez’s

Recently (1608.01330), Ramı́rez has shown that the SU(2) Bogomol’nyi equations
are solved by

ΦA = δAr 1

gP
∂rP , ĂA

r = εArs
1

gP
∂sP ,

where P is any real function satisfying

1

P
∂r∂rP = 0 , like, for instance, P = P0 +

∑

α

Pα

|~x− ~xα|
.

December 15th 2016 Workshop on Frontiers of Physics, APCTP Page 8

http://arXiv.org/pdf/1608.01330.pdf


Monopoles, instantons and non-Abelian black holes

4 – Solutions to the SU(2) Bogomol’nyi equations: Ramı́rez’s

Recently (1608.01330), Ramı́rez has shown that the SU(2) Bogomol’nyi equations
are solved by

ΦA = δAr 1

gP
∂rP , ĂA

r = εArs
1

gP
∂sP ,

where P is any real function satisfying

1

P
∂r∂rP = 0 , like, for instance, P = P0 +

∑

α

Pα

|~x− ~xα|
.

For just one pole, this is the coloured monopole with λ2 = P0/P1.
Many poles: many coloured monopoles in equilibrium.
All the coefficients of the poles must have the same sign.
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5 – Solutions to the equations for the ΦA

The ΦA have electric character.
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5 – Solutions to the equations for the ΦA

The ΦA have electric character.

➠ Simplest solution, always available: ΦA = 0 (purely magnetic).

➠ Next simplest solution, always available: ΦA ∝ ΦA , ∀A (trivial dyonic
solution). Just one more parameter: the proportionality constant. (The last set
of equations are trivially solved everywhere.)
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➠ Next simplest solution, always available: ΦA ∝ ΦA , ∀A (trivial dyonic
solution). Just one more parameter: the proportionality constant. (The last set
of equations are trivially solved everywhere.)

➠ New solution: Ramı́rez’s dyon:

ΦA = δAr 1

gP
∂rQ ,

where Q is any real function satisfying
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P
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5 – Solutions to the equations for the ΦA

The ΦA have electric character.

➠ Simplest solution, always available: ΦA = 0 (purely magnetic).

➠ Next simplest solution, always available: ΦA ∝ ΦA , ∀A (trivial dyonic
solution). Just one more parameter: the proportionality constant. (The last set
of equations are trivially solved everywhere.)

➠ New solution: Ramı́rez’s dyon:

ΦA = δAr 1

gP
∂rQ ,

where Q is any real function satisfying

1

P
∂r∂rQ = 0 , like, for instance, Q = Q0 +

∑

α

Qα

|~x− ~xα|
.

P and Q must have common poles, but the coefficients (always common sign) can be
different: many more parameters if there is more than one pole
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5 – Solutions to the equations for the ΦA

The ΦA have electric character.

➠ Simplest solution, always available: ΦA = 0 (purely magnetic).

➠ Next simplest solution, always available: ΦA ∝ ΦA , ∀A (trivial dyonic
solution). Just one more parameter: the proportionality constant. (The last set
of equations are trivially solved everywhere.)

➠ New solution: Ramı́rez’s dyon:

ΦA = δAr 1

gP
∂rQ ,

where Q is any real function satisfying

1

P
∂r∂rQ = 0 , like, for instance, Q = Q0 +

∑

α

Qα

|~x− ~xα|
.

P and Q must have common poles, but the coefficients (always common sign) can be
different: many more parameters if there is more than one pole

The last equation is solved quite non-trivially everywhere: no constraints on the
integration constants!
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Now, given a solution

Φλ,Φλ,Φ
A,ΦA, Ăr

to the equations, we construct supergravity solutions

AS FOLLOWS:
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6 – Solutions of N = 2.d = 4 SU(2) SEYM

A theory of N = 2, d = 4 SEYM can be completely characterized (up to the gauging)
by one these three objects:
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• The prepotential F(X ), a homogenous function of degree 2 of XΛ.
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6 – Solutions of N = 2.d = 4 SU(2) SEYM

A theory of N = 2, d = 4 SEYM can be completely characterized (up to the gauging)
by one these three objects:

• The prepotential F(X ), a homogenous function of degree 2 of XΛ.

• The canonical symplectic section V(Z,Z∗) =

(

LΛ

MΛ

)

, a covariantly

holomorphic symplectic vector.
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6 – Solutions of N = 2.d = 4 SU(2) SEYM

A theory of N = 2, d = 4 SEYM can be completely characterized (up to the gauging)
by one these three objects:

• The prepotential F(X ), a homogenous function of degree 2 of XΛ.

• The canonical symplectic section V(Z,Z∗) =

(

LΛ

MΛ

)

, a covariantly

holomorphic symplectic vector.

• The Hesse potential W(I), a homogenous function of degree 2 of the real

symplectic vector (IM ) =

(

IΛ

IΛ

)

.
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6 – Solutions of N = 2.d = 4 SU(2) SEYM

A theory of N = 2, d = 4 SEYM can be completely characterized (up to the gauging)
by one these three objects:

• The prepotential F(X ), a homogenous function of degree 2 of XΛ.

• The canonical symplectic section V(Z,Z∗) =

(

LΛ

MΛ

)

, a covariantly

holomorphic symplectic vector.

• The Hesse potential W(I), a homogenous function of degree 2 of the real

symplectic vector (IM ) =

(

IΛ

IΛ

)

.

The last is the most apropriate for us because
(

IΛ

IΛ

)

= −
√
2

(

ΦΛ

ΦΛ

)

,

and the ĂΛ
r are the corresponding part of the N = 2, d = 4 supergravity vector fields.
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In a given theory characterized by the Hesse potential W(I), the physical fields of a
timelike supersymmetric solution can be constructed from the IM (x) as follows:
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In a given theory characterized by the Hesse potential W(I), the physical fields of a
timelike supersymmetric solution can be constructed from the IM (x) as follows:

➠ The metric has the form

ds2 = W
−1(dt+ ω)2 −Wdxrdxr ,

where the 1-form ω = ωr<dx
r on R3 is found by solving the equation

(dω)rs = 2ǫrstIM D̆tIM = 2ǫrst

[

IΛD̆tIΛ − IΛ
D̆tIΛ

]

.

The last equation of ΦΛ,ΦΛ, Ă
Λ
r implies the integrability condition of this

equation. ω is trivial when the integrability condition is satisfied trivially (static
solutions).
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In a given theory characterized by the Hesse potential W(I), the physical fields of a
timelike supersymmetric solution can be constructed from the IM (x) as follows:

➠ The metric has the form

ds2 = W
−1(dt+ ω)2 −Wdxrdxr ,

where the 1-form ω = ωr<dx
r on R3 is found by solving the equation

(dω)rs = 2ǫrstIM D̆tIM = 2ǫrst

[

IΛD̆tIΛ − IΛ
D̆tIΛ

]

.

The last equation of ΦΛ,ΦΛ, Ă
Λ
r implies the integrability condition of this

equation. ω is trivial when the integrability condition is satisfied trivially (static
solutions).

➠ Define and compute ĨM ≡ 1
2

∂W

∂IM
.
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In a given theory characterized by the Hesse potential W(I), the physical fields of a
timelike supersymmetric solution can be constructed from the IM (x) as follows:

➠ The metric has the form

ds2 = W
−1(dt+ ω)2 −Wdxrdxr ,

where the 1-form ω = ωr<dx
r on R3 is found by solving the equation

(dω)rs = 2ǫrstIM D̆tIM = 2ǫrst

[

IΛD̆tIΛ − IΛ
D̆tIΛ

]

.

The last equation of ΦΛ,ΦΛ, Ă
Λ
r implies the integrability condition of this

equation. ω is trivial when the integrability condition is satisfied trivially (static
solutions).

➠ Define and compute ĨM ≡ 1
2

∂W

∂IM
.

➠ The scalars are, then, given by Zi =
Ĩi + iIi

Ĩ0 + iI0
.
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In a given theory characterized by the Hesse potential W(I), the physical fields of a
timelike supersymmetric solution can be constructed from the IM (x) as follows:

➠ The metric has the form

ds2 = W
−1(dt+ ω)2 −Wdxrdxr ,

where the 1-form ω = ωr<dx
r on R3 is found by solving the equation

(dω)rs = 2ǫrstIM D̆tIM = 2ǫrst

[

IΛD̆tIΛ − IΛ
D̆tIΛ

]

.

The last equation of ΦΛ,ΦΛ, Ă
Λ
r implies the integrability condition of this

equation. ω is trivial when the integrability condition is satisfied trivially (static
solutions).

➠ Define and compute ĨM ≡ 1
2

∂W

∂IM
.

➠ The scalars are, then, given by Zi =
Ĩi + iIi

Ĩ0 + iI0
.

➠ The physical gauge field is given by AΛ
µdx

µ = − 1√
2
W

−2IΛ(dt+ ω) + ĂΛ
rdx

r ,
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7 – A simple example with gauge group SU(2)

The simplest model that admits a SU(2) gauging is the CP
3
model, with Hesse

potential

W = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , with η = diag(+−−−) .

(3 vector multiplets transforming in the adjoint of SU(2))
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The simplest model that admits a SU(2) gauging is the CP
3
model, with Hesse

potential

W = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , with η = diag(+−−−) .

(3 vector multiplets transforming in the adjoint of SU(2))

The simplest solutions: only IΛ = I0, IA non-vanishing: ω = 0 (static).
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7 – A simple example with gauge group SU(2)

The simplest model that admits a SU(2) gauging is the CP
3
model, with Hesse

potential

W = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , with η = diag(+−−−) .

(3 vector multiplets transforming in the adjoint of SU(2))

The simplest solutions: only IΛ = I0, IA non-vanishing: ω = 0 (static).

Abelian sector: I0 = −
√
2Φ0 ≡ −

√
2H is a harmonic function in E3
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7 – A simple example with gauge group SU(2)

The simplest model that admits a SU(2) gauging is the CP
3
model, with Hesse

potential

W = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , with η = diag(+−−−) .

(3 vector multiplets transforming in the adjoint of SU(2))

The simplest solutions: only IΛ = I0, IA non-vanishing: ω = 0 (static).

Abelian sector: I0 = −
√
2Φ0 ≡ −

√
2H is a harmonic function in E3

Non-Abelian sector: IA = −
√
2ΦA is a Higgs field satisfying the Bogomol’nyi

equation in E3 for some ĂA
r.
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7 – A simple example with gauge group SU(2)

The simplest model that admits a SU(2) gauging is the CP
3
model, with Hesse

potential

W = 1
2ηΛΣIΛIΣ + 2ηΛΣIΛIΣ , with η = diag(+−−−) .

(3 vector multiplets transforming in the adjoint of SU(2))

The simplest solutions: only IΛ = I0, IA non-vanishing: ω = 0 (static).

Abelian sector: I0 = −
√
2Φ0 ≡ −

√
2H is a harmonic function in E3

Non-Abelian sector: IA = −
√
2ΦA is a Higgs field satisfying the Bogomol’nyi

equation in E3 for some ĂA
r.

Let us see some choices with good properties (we focus on the metric only for the
sake of simplicity).
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Global monopole: H = 1+ BPS ’t Hooft-Polyakov monopole

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = 1− 1

g2r2
[1− µr coth (µr)]2 .

Globally regular. Mass but no horizon nor entropy. (BPS ’t Hooft-Polyakov
monopoles always do this when combined with other fields).
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Global monopole: H = 1+ BPS ’t Hooft-Polyakov monopole

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = 1− 1

g2r2
[1− µr coth (µr)]2 .

Globally regular. Mass but no horizon nor entropy. (BPS ’t Hooft-Polyakov
monopoles always do this when combined with other fields).

Coloured black hole: H = 1 + p0/r+ coloured monopole:

ds2 = W
−1dt2−W(dr2+ r2dΩ2

(2)) , where W =

(

1 +
p0

r

)2

− 1

g2r2

[

1

1 + λ2r

]2

.

Horizon at r = 0.
The monopole contributes to the entropy but not to the mass: HAIR!
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Global monopole: H = 1+ BPS ’t Hooft-Polyakov monopole

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = 1− 1

g2r2
[1− µr coth (µr)]2 .

Globally regular. Mass but no horizon nor entropy. (BPS ’t Hooft-Polyakov
monopoles always do this when combined with other fields).

Coloured black hole: H = 1 + p0/r+ coloured monopole:

ds2 = W
−1dt2−W(dr2+ r2dΩ2

(2)) , where W =

(

1 +
p0

r

)2

− 1

g2r2

[

1

1 + λ2r

]2

.

Horizon at r = 0.
The monopole contributes to the entropy but not to the mass: HAIR!

Dumbbell solution: H = p0/r+ coloured monopole (in d = 6, Cano, Ort́ın & Santoli
(2016)):

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W =
(p0)2

r2
− 1

g2r2

[

1

1 + λ2r

]2

.

Flows fom one AdS2×S2 to another AdS2×S2 of different radius!
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Monopoles, instantons and non-Abelian black holes

Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .
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Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .

Always regular if the following conditions are met (Meessen, Ort́ın & Ramı́rez,
in preparation):
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Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .

Always regular if the following conditions are met (Meessen, Ort́ın & Ramı́rez,
in preparation):

1. The masses of the individual black holes are positive.
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Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .

Always regular if the following conditions are met (Meessen, Ort́ın & Ramı́rez,
in preparation):

1. The masses of the individual black holes are positive.

2. The entropies of the individual black holes are strictly positive.
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Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .

Always regular if the following conditions are met (Meessen, Ort́ın & Ramı́rez,
in preparation):

1. The masses of the individual black holes are positive.

2. The entropies of the individual black holes are strictly positive.

3. For any pair of black holes, the sum of their entropies is smaller than the
entropy of a single black hole with the sum of their charges (related to
Hawking’s theorem).
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Multi-coloured black holes: H = 1 +
∑

α p0α/|~x− ~xα|+ coloured monopoles
(Ramı́rez’s multimonopole solution given by P = P0 +

∑

α Pα/|~x− ~xα|)

ds2 = W
−1dt2 −W(dr2 + r2dΩ2

(2)) , where W = H2 − 1

g2P 2
~∇P ~∇P .

Always regular if the following conditions are met (Meessen, Ort́ın & Ramı́rez,
in preparation):

1. The masses of the individual black holes are positive.

2. The entropies of the individual black holes are strictly positive.

3. For any pair of black holes, the sum of their entropies is smaller than the
entropy of a single black hole with the sum of their charges (related to
Hawking’s theorem).

These are the simplest, but more general solutions are possible (dyonic, with objects
of different types, black hedgehogs, etc.).
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Monopoles, instantons and non-Abelian black holes

8 – 5-dimensional non-Abelian black holes

A theory of N = 1, d = 4 SEYM can be completely characterized (up to the gauging)
in two ways
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8 – 5-dimensional non-Abelian black holes

A theory of N = 1, d = 4 SEYM can be completely characterized (up to the gauging)
in two ways

• By a completely symmetric tensor CIJK , I, J,K,= 1, · · · , nV 5 that defines the
hypersurface in RnV 5+1

CIJKhIhJhK = 1 .
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A theory of N = 1, d = 4 SEYM can be completely characterized (up to the gauging)
in two ways

• By a completely symmetric tensor CIJK , I, J,K,= 1, · · · , nV 5 that defines the
hypersurface in RnV 5+1

CIJKhIhJhK = 1 .

• By a potential W(H) which is a function homogeneous of degree 3/2 on set of
variables HI .
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8 – 5-dimensional non-Abelian black holes

A theory of N = 1, d = 4 SEYM can be completely characterized (up to the gauging)
in two ways

• By a completely symmetric tensor CIJK , I, J,K,= 1, · · · , nV 5 that defines the
hypersurface in RnV 5+1

CIJKhIhJhK = 1 .

• By a potential W(H) which is a function homogeneous of degree 3/2 on set of
variables HI .

Again, the last description is better adapted to our needs.
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8 – 5-dimensional non-Abelian black holes

A theory of N = 1, d = 4 SEYM can be completely characterized (up to the gauging)
in two ways

• By a completely symmetric tensor CIJK , I, J,K,= 1, · · · , nV 5 that defines the
hypersurface in RnV 5+1

CIJKhIhJhK = 1 .

• By a potential W(H) which is a function homogeneous of degree 3/2 on set of
variables HI .

Again, the last description is better adapted to our needs.

We are interested in a special class of solutions that can be described in terms of
functions M,H,ΦI , LI , which are related to the building blocks ΦΛ,ΦΛ,
Λ = 0, 1, · · · , nV 5 + 1 by

ΦI = ΦI+1 , LI = −2
√
2

3
ΦI+1 , H = −2

√
2Φ0 , M = +

√
2Φ0 .I = 1, · · · , nV 5 .
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The 5-dimensional metric has the form

ds2 = (W/2)−4/3(dt+ ω̂)2 − (W/2)2/3
[

H−1(dz + χ)2 +Hdxrdxr
]

,
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Monopoles, instantons and non-Abelian black holes

The 5-dimensional metric has the form

ds2 = (W/2)−4/3(dt+ ω̂)2 − (W/2)2/3
[

H−1(dz + χ)2 +Hdxrdxr
]

,

and can be reconstructed from the above functions as follows:

dχ = ⋆3dH ,

dHI = LI + 8CIJKΦJΦK/H ,

ω̂ = ω5(dz + χ) + ω .

where ω is the same one would find for the 4-dimensional solution.
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Monopoles, instantons and non-Abelian black holes

Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:
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Monopoles, instantons and non-Abelian black holes

Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .

The coordinate z is now an angular coordinate. The uplifted monopoles will depend
on ρ = |~x(4)|.
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .

The coordinate z is now an angular coordinate. The uplifted monopoles will depend
on ρ = |~x(4)|.

We may obtain black holes, but beware of the singularities!!.

December 15th 2016 Workshop on Frontiers of Physics, APCTP Page 18-e



Monopoles, instantons and non-Abelian black holes

9 – A simple example with gauge group SU(2)

It is given by C0ΛΣ = 1
3!ηΛΣ ΛΣ = 1, x x, y = A+ 1 or by

W =
{

27
2 H0η

ΛΣHΛHΣ

}1/2
,

which gives

(W/2)2/3 = H−1
{

1
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x
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]}1/3
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The simplest solution has just H,L0, L1,Φ
A+1

(W/2)2/3 =
{

27
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(
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3Φ
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)

(L1)
2
}1/3

.

and it is just a D1D5W black hole with a non-Abelian contribution which has to be
the BPST instanton for one center (more centers are under investigation)
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⋆ Supersymmetric non-Abelian can be obtained easily in fully analytic form in
d = 4, 5 dimensions.

⋆ They present interesting new features that, for the first time, can be studied
analytically.

⋆ Explaining these entropies from a mircorscopic point of view presents a new
challenge to superstring theory.
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10 – Conclusions

⋆ Supersymmetric non-Abelian can be obtained easily in fully analytic form in
d = 4, 5 dimensions.

⋆ They present interesting new features that, for the first time, can be studied
analytically.

⋆ Explaining these entropies from a mircorscopic point of view presents a new
challenge to superstring theory.

⋆ More general non-Abelian solutions can be obtained: black rings (Ort́ın,
Ramı́rez, 1605.00005), microstate geometries (Ramı́rez, 1608.01330) , and
non-extremal black holes (work in progress).
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Kronheimer, MSc Thesis, 1985:

The metric of a 4-d HK space admitting a free U(1) action shifting z ∼ z + 4π by an
arbitrary constant is of the form (Gibbons, Hawking, 1979)

dŝ 2 = H−1(dz + χ)2 +Hdxrdxr (r = 1, 2, 3) ,

where (unhatted ⇒ E3)

dH = ⋆dχ , ⇒ d ⋆ dH = 0 , in R
3 .
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The metric of a 4-d HK space admitting a free U(1) action shifting z ∼ z + 4π by an
arbitrary constant is of the form (Gibbons, Hawking, 1979)

dŝ 2 = H−1(dz + χ)2 +Hdxrdxr (r = 1, 2, 3) ,

where (unhatted ⇒ E3)

dH = ⋆dχ , ⇒ d ⋆ dH = 0 , in R
3 .

For any gauge group G, let Â be a gauge field whose field strength F̂ is selfdual
⋆̂F̂ = +F̂ in the above HK metric (orientation!).

Then, the 3-dimensional gauge and Higgs fields A and Φ defined by

Φ ≡ −HÂz ,

Ar ≡ Âr − χrÂz ,

satisfy the Bogomol’nyi equation in E3
DrΦ = 1

2ǫrstF st.
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