Monopoles, instantons and non-Abelian black holes

Tomás Ortín
(I.F.T. UAM/CSIC, Madrid)

Seminar given on December 15th, 2016 at the APCTP 2016 Workshop on Frontiers of Physics
Based on 1503.01044 1512.07131 1605.00005 and work in preparation.
Work done in collaboration with P.F. Ramírez (IFT UAM/CSIC, Madrid) and P. Meessen (U. Oviedo)

Plan of the Talk:

1 Introduction
3 Generalized Bogomol'nyi equations
6 Solutions to the $\mathrm{SU}(2)$ Bogomol'nyi equations: Protogenov's
8 Solutions to the $\mathrm{SU}(2)$ Bogomol'nyi equations: Ramírez's
9 Solutions to the equations for the Φ_{A}
11 Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM
13 A simple example with gauge group $S U(2)$
16 5-dimensional non-Abelian black holes
19 A simple example with gauge group $\mathrm{SU}(2)$
20 Conclusions
22 Instantons Vs. Monopoles

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.
Many families of extremal black-hole solutions found.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.

Many families of extremal black-hole solutions found.
Attractor mechanism discovered.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.

Many families of extremal black-hole solutions found.
Attractor mechanism discovered.
Entropies have been given microscopic interpretations.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.

Many families of extremal black-hole solutions found.
Attractor mechanism discovered.
Entropies have been given microscopic interpretations.
Extremal non-supersymmetric and non-extremal solutions.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric
black-holes in them.
Many families of extremal black-hole solutions found.
Attractor mechanism discovered.
Entropies have been given microscopic interpretations.
Extremal non-supersymmetric and non-extremal solutions.
However, Nature (and superstring theory) contain non-Abelian fields that can be described with gauged SUGRAs
\Rightarrow Super-Einstein-Yang-Mills (SEYM) theories.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.
Many families of extremal black-hole solutions found.
Attractor mechanism discovered.
Entropies have been given microscopic interpretations.
Extremal non-supersymmetric and non-extremal solutions.
However, Nature (and superstring theory) contain non-Abelian fields that can be described with gauged SUGRAs
\Rightarrow Super-Einstein-Yang-Mills (SEYM) theories.
The timelike supersymmetric solutions of $\mathcal{N}=2, d=4$ SEYM theories were classified in 0806.1477 and the first non-Abelian black-hole solutions (fully analytical!) were constructed in 0712.1530.

1 - Introduction

There has been a lot of work on supersymmetric solutions of ungauged SUGRAs with more than 8 supercharges because there are extreme supersymmetric black-holes in them.
Many families of extremal black-hole solutions found.
Attractor mechanism discovered.
Entropies have been given microscopic interpretations.
Extremal non-supersymmetric and non-extremal solutions.
However, Nature (and superstring theory) contain non-Abelian fields that can be described with gauged SUGRAs

$$
\Rightarrow \text { Super-Einstein-Yang-Mills (SEYM) theories. }
$$

The timelike supersymmetric solutions of $\mathcal{N}=2, d=4$ SEYM theories were classified in 0806.1477 and the first non-Abelian black-hole solutions (fully analytical!) were constructed in 0712.1530 .
The timelike supersymmetric solutions of $\mathcal{N}=1, d=5$ SEYM theories were classified in 0705.2567 (earlier) but no non-Abelian black-hole solutions were constructed until very recently (1512.07131).

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.
Kronheimer's relation between selfdual instantons in Gibbons-Hawking spaces and BPS monopoles in $\mathbb{E}^{3}(1503.01044)$.

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.
Kronheimer's relation between selfdual instantons in Gibbons-Hawking spaces and BPS monopoles in $\mathbb{E}^{3}(1503.01044)$.
Final result: There is a set of differential equations in \mathbb{E}^{3} (including Bogomol'nyi equations for BPS monopoles) whose solutions can be used to construct, insdistinctly,

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.
Kronheimer's relation between selfdual instantons in Gibbons-Hawking spaces and BPS monopoles in $\mathbb{E}^{3}(1503.01044)$.

Final result: There is a set of differential equations in \mathbb{E}^{3} (including Bogomol'nyi equations for BPS monopoles) whose solutions can be used to construct, insdistinctly,
() Timelike supersymmetric solutions of $\mathcal{N}=2, d=4$ SEYM theories.

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.
Kronheimer's relation between selfdual instantons in Gibbons-Hawking spaces and BPS monopoles in $\mathbb{E}^{3}(1503.01044)$.

Final result: There is a set of differential equations in \mathbb{E}^{3} (including Bogomol'nyi equations for BPS monopoles) whose solutions can be used to construct, insdistinctly,
(.)Timelike supersymmetric solutions of $\mathcal{N}=2, d=4$ SEYM theories.
, Timelike supersymmetric solutions of $\mathcal{N}=1, d=5$ SEYM theories.

Keys to the $\mathcal{N}=1, d=5$ SEYM black-hole solutions:
4-(3-)dimensional efective problem through the Gibbons-Hawking ansatz for the 4d- hyper-Kähler base space.
Kronheimer's relation between selfdual instantons in Gibbons-Hawking spaces and BPS monopoles in $\mathbb{E}^{3}(1503.01044)$.
Final result: There is a set of differential equations in \mathbb{E}^{3} (including Bogomol'nyi equations for BPS monopoles) whose solutions can be used to construct, insdistinctly,
(Timelike supersymmetric solutions of $\mathcal{N}=2, d=4$ SEYM theories.
(Timelike supersymmetric solutions of $\mathcal{N}=1, d=5$ SEYM theories.

We are going to present these equations and some relevant solutions.

The variables:

The variables:
${ }^{\text {||IIIT }} \Phi^{\Lambda}$

2 - Generalized Bogomol'nyi equations

The variables:
Φ^{Λ}
${ }^{\text {IIIIL+ }} \Phi_{\Lambda}$

2 - Generalized Bogomol'nyi equations

The variables:
${ }^{\text {NIIII }} \Phi^{\Lambda}$
${ }^{\text {IIIILT}} \Phi_{\Lambda}$
||1IT $\breve{A}^{\Lambda}{ }_{\underline{r}}$

2 - Generalized Bogomol'nyi equations

The variables:
"
${ }^{1014}$
${ }^{1} \mid$
The equations:

2 - Generalized Bogomol'nyi equations

The variables:
Φ^{Λ}
${ }^{n}$
||1 $\breve{A}^{\Lambda}{ }_{\underline{r}}$
The equations:

$$
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}^{\Lambda}{ }_{\underline{s w}}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{\Lambda}=0 .
$$

2 - Generalized Bogomol'nyi equations

The variables:
Φ^{Λ}
Φ_{Λ}
||11 $\breve{A}^{\Lambda}{ }_{\underline{r}}$
The equations:

$$
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{\Lambda}=0 .
$$

$$
\breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{\Lambda}-g^{2} f_{\Lambda \Sigma}{ }^{\Omega} f_{\Delta \Omega}{ }^{\Gamma} \Phi^{\Sigma} \Phi^{\Delta} \Phi_{\Gamma}=0 .
$$

2 - Generalized Bogomol'nyi equations

The variables:
Φ^{Λ}
Φ_{Λ}
||1" $\breve{A}^{\Lambda}{ }_{\underline{r}}$
The equations:

$$
\begin{gathered}
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{\Lambda}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{\Lambda}=0 . \\
\breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{\Lambda}-g^{2} f_{\Lambda \Sigma}^{\Omega} f_{\Delta \Omega}^{\Gamma} \Phi^{\Sigma} \Phi^{\Delta} \Phi_{\Gamma}=0 . \\
\Phi_{\Lambda} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi^{\Lambda}-\Phi^{\Lambda} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{\Lambda}=0 .
\end{gathered}
$$

In general there will be a Abelian sector (λ) and a non-Abelian sector (A) which will always be $\mathrm{SU}(2)$ in this talk:

$$
\begin{aligned}
& \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{\lambda}-\partial_{\underline{r}} \Phi^{\lambda}=0, \Rightarrow \partial_{\underline{r}} \partial_{\underline{r}} \Phi^{\lambda}=0 \\
& \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{A}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}=0, \\
& \partial_{\underline{r}} \partial_{\underline{r}} \Phi_{\lambda}=0, \Rightarrow \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{A \underline{s w}}-\partial_{\underline{r}} \Phi_{A}=0 \\
& \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}-g^{2}\left(\Phi^{B} \Phi^{B} \Phi_{A}-\Phi^{A} \Phi^{B} \Phi_{B}\right)=0 \\
&\left(\Phi_{\lambda} \partial_{\underline{r}} \partial_{\underline{r}} \Phi^{\lambda}-\Phi^{\lambda} \partial_{\underline{r}} \partial_{\underline{r}} \Phi_{\lambda}\right)+ \\
&\left(\Phi_{A} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}-\Phi^{A} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}\right)=0
\end{aligned}
$$

In general there will be a Abelian sector (λ) and a non-Abelian sector (A) which will always be $\mathrm{SU}(2)$ in this talk:

$$
\begin{aligned}
& \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{\lambda}-\partial_{\underline{r}} \Phi^{\lambda}=0, \Rightarrow \partial_{\underline{r}} \partial_{\underline{r}} \Phi^{\lambda}=0 \\
& \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{A}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}=0, \\
& \partial_{\underline{r}} \partial_{\underline{r}} \Phi_{\lambda}=0, \Rightarrow \frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{A \underline{s w}}-\partial_{\underline{r}} \Phi_{A}=0 \\
& \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}-g^{2}\left(\Phi^{B} \Phi^{B} \Phi_{A}-\Phi^{A} \Phi^{B} \Phi_{B}\right)=0 \\
&\left(\Phi_{\lambda} \partial_{\underline{r}} \partial_{\underline{r}} \Phi^{\lambda}-\Phi^{\lambda} \partial_{\underline{r}} \partial_{\underline{r}} \Phi_{\lambda}\right)+ \\
&\left(\Phi_{A} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}-\Phi^{A} \breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}\right)=0
\end{aligned}
$$

The solutions of the Abelian sector are completely determined by a choice of harmonic functions $\Phi^{\lambda}, \Phi_{\lambda}$ in \mathbb{E}^{3}. What happens in the non-Abelian sector?

The solutions non-Abelian sector $\Phi^{A}, \Phi_{A}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ are naturally solved in two steps:

The solutions non-Abelian sector $\Phi^{A}, \Phi_{A}, \breve{A}^{\Lambda} \underline{\underline{r}}$ are naturally solved in two steps:

Solve the $\operatorname{SU}(2)$ Bogomol'nyi equations for Φ^{A} and $\breve{A}_{\underline{r}}$

$$
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{A}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}=0,
$$

The solutions non-Abelian sector $\Phi^{A}, \Phi_{A}, \breve{A}^{\Lambda} \underline{\underline{r}}$ are naturally solved in two steps:

Solve the $\operatorname{SU}(2)$ Bogomol'nyi equations for Φ^{A} and $\breve{A}_{\underline{r}}$

$$
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{A}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}=0,
$$

Solve the equation for the Φ_{A}

$$
\breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}-g^{2}\left(\Phi^{B} \Phi^{B} \Phi_{A}-\Phi^{A} \Phi^{B} \Phi_{B}\right)=0,
$$

The solutions non-Abelian sector $\Phi^{A}, \Phi_{A}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ are naturally solved in two steps:

Solve the $\operatorname{SU}(2)$ Bogomol'nyi equations for Φ^{A} and $\breve{A}_{\underline{r}}$

$$
\frac{1}{2} \varepsilon_{\underline{r s w}} \breve{F}_{\underline{s w}}^{A}-\breve{\mathfrak{D}}_{\underline{r}} \Phi^{A}=0,
$$

Solve the equation for the Φ_{A}

$$
\breve{\mathfrak{D}}_{\underline{r}} \breve{\mathfrak{D}}_{\underline{r}} \Phi_{A}-g^{2}\left(\Phi^{B} \Phi^{B} \Phi_{A}-\Phi^{A} \Phi^{B} \Phi_{B}\right)=0
$$

The last set of equation mixing $\Phi^{A}, \Phi_{A}, \breve{A}_{r}$ is automatically solved except at the singularities, where one has to impose conditions on the integration constant (Denef,Bates.)

3 - Solutions to the $\operatorname{SU}(2)$ Bogomol'nyi equations: Protogenov's

All the spherically-symmetric configurations $\Phi^{A}, \breve{A}_{\underline{\underline{r}}}$ can be brought to the form (hedgehog ansatz)

$$
\Phi^{A}=-\delta^{A}{ }_{r} f(r) x^{r}, \quad \breve{A}_{\underline{r}}^{A}=-\varepsilon^{A}{ }_{r s} x^{s} h(r),
$$

3 - Solutions to the $\operatorname{SU}(2)$ Bogomol'nyi equations: Protogenov's

All the spherically-symmetric configurations $\Phi^{A}, \breve{A}_{\underline{\underline{r}}}$ can be brought to the form (hedgehog ansatz)

$$
\Phi^{A}=-\delta^{A}{ }_{r} f(r) x^{r}, \quad \breve{A}_{\underline{r}}^{A}=-\varepsilon^{A}{ }_{r s} x^{s} h(r),
$$

The Bogomol'nyi equations become an system of ODFs for $f(r)$ and $h(r)$

$$
\left\{\begin{array}{r}
r \partial_{r} h+2 h+f\left(1+g r^{2} h\right)=0 \\
r \partial_{r}(h-f)-g r^{2} h(h-f)=0
\end{array}\right.
$$

Monopoles, instantons and non-Abelian black holes
Protogenov found in 1977 all the solutions of this system:

Protogenov found in 1977 all the solutions of this system:
N" A 2-parameter family (μ and s, a.k.a. Protogenov" "hair")

$$
f_{\mu, s}=\frac{1}{g r^{2}}[1-\mu r \operatorname{coth}(\mu r+s)], \quad h_{\mu, s}=\frac{1}{g r^{2}}\left[1-\frac{\mu r}{\sinh (\mu r+s)}\right],
$$

$s=0$ is the 't Hooft-Polyakov monopole in the BPS limit and $s=\infty$ the Wu-Yang $\mathrm{SU}(2)$ monopole (plus a constant).

Protogenov found in 1977 all the solutions of this system:
"nt A 2-parameter family (μ and s, a.k.a. Protogenov "hair")

$$
f_{\mu, s}=\frac{1}{g r^{2}}[1-\mu r \operatorname{coth}(\mu r+s)], \quad h_{\mu, s}=\frac{1}{g r^{2}}\left[1-\frac{\mu r}{\sinh (\mu r+s)}\right],
$$

$s=0$ is the 't Hooft-Polyakov monopole in the BPS limit and $s=\infty$ the Wu-Yang $\mathrm{SU}(2)$ monopole (plus a constant).
INI A 1-parameter (λ) family of coloured monopoles

$$
f_{\lambda}=\frac{1}{g r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right], \quad h_{\lambda}=f_{\lambda}
$$

$\lambda=0$ is the Wu-Yang $\mathrm{SU}(2)$ monopole.

Protogenov found in 1977 all the solutions of this system:
"n'* A 2-parameter family (μ and s, a.k.a. Protogenov "hair")

$$
f_{\mu, s}=\frac{1}{g r^{2}}[1-\mu r \operatorname{coth}(\mu r+s)], \quad h_{\mu, s}=\frac{1}{g r^{2}}\left[1-\frac{\mu r}{\sinh (\mu r+s)}\right],
$$

$s=0$ is the 't Hooft-Polyakov monopole in the BPS limit and $s=\infty$ the Wu-Yang $\mathrm{SU}(2)$ monopole (plus a constant).
INI A 1-parameter (λ) family of coloured monopoles

$$
f_{\lambda}=\frac{1}{g r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right], \quad h_{\lambda}=f_{\lambda}
$$

$\lambda=0$ is the $\mathrm{Wu}-\mathrm{Yang} \mathrm{SU}(2)$ monopole.
The only globally regular solution is the' t Hooft-Polyakov monopole in the BPS limit, but in the coupling with gravity the singularities may not be such.

Protogenov found in 1977 all the solutions of this system:
"n'* A 2-parameter family (μ and s, a.k.a. Protogenov "hair")

$$
f_{\mu, s}=\frac{1}{g r^{2}}[1-\mu r \operatorname{coth}(\mu r+s)], \quad h_{\mu, s}=\frac{1}{g r^{2}}\left[1-\frac{\mu r}{\sinh (\mu r+s)}\right],
$$

$s=0$ is the 't Hooft-Polyakov monopole in the BPS limit and $s=\infty$ the Wu-Yang $\mathrm{SU}(2)$ monopole (plus a constant).
INI A 1-parameter (λ) family of coloured monopoles

$$
f_{\lambda}=\frac{1}{g r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right], \quad h_{\lambda}=f_{\lambda}
$$

$\lambda=0$ is the Wu -Yang $\mathrm{SU}(2)$ monopole.
The only globally regular solution is the' t Hooft-Polyakov monopole in the BPS limit, but in the coupling with gravity the singularities may not be such.
The coloured monopoles are very interesting solutions: their charge is screened at infinity and they can be generalized to multicenter solutions.

4 - Solutions to the $\mathrm{SU}(2)$ Bogomol'nyi equations: Ramírez's

Recently (1608.01330), Ramírez has shown that the $\mathrm{SU}(2)$ Bogomol'nyi equations are solved by

$$
\Phi^{A}=\delta^{A \underline{r}} \frac{1}{g P} \partial_{\underline{r}} P, \quad \breve{A}_{\underline{r}}^{A}=\varepsilon^{A}{ }_{r s} \frac{1}{g P} \partial_{\underline{s}} P,
$$

where P is any real function satisfying

$$
\frac{1}{P} \partial_{\underline{r}} \partial_{\underline{r}} P=0, \text { like, for instance, } P=P_{0}+\sum_{\alpha} \frac{P_{\alpha}}{\left|\vec{x}-\vec{x}_{\alpha}\right|}
$$

4 - Solutions to the SU(2) Bogomol'nyi equations: Ramírez's

Recently (1608.01330), Ramírez has shown that the $\mathrm{SU}(2)$ Bogomol'nyi equations are solved by

$$
\Phi^{A}=\delta^{A \underline{r}} \frac{1}{g P} \partial_{\underline{r}} P, \quad \breve{A}_{\underline{r}}^{A}=\varepsilon^{A}{ }_{r s} \frac{1}{g P} \partial_{\underline{s}} P,
$$

where P is any real function satisfying

$$
\frac{1}{P} \partial_{\underline{r}} \partial_{\underline{r}} P=0, \text { like, for instance, } P=P_{0}+\sum_{\alpha} \frac{P_{\alpha}}{\left|\vec{x}-\vec{x}_{\alpha}\right|}
$$

For just one pole, this is the coloured monopole with $\lambda^{2}=P_{0} / P_{1}$. Many poles: many coloured monopoles in equilibrium. All the coefficients of the poles must have the same sign.

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.
Simplest solution, always available: $\Phi_{A}=0$ (purely magnetic).

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.
Simplest solution, always available: $\Phi_{A}=0$ (purely magnetic).
N|" Next simplest solution, always available: $\Phi_{A} \propto \Phi^{A}, \forall A$ (trivial dyonic solution). Just one more parameter: the proportionality constant. (The last set of equations are trivially solved everywhere.)

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.
Simplest solution, always available: $\Phi_{A}=0$ (purely magnetic).
Next simplest solution, always available: $\Phi_{A} \propto \Phi^{A}, \forall A$ (trivial dyonic solution). Just one more parameter: the proportionality constant. (The last set of equations are trivially solved everywhere.)
nut New solution: Ramírez's dyon:

$$
\Phi^{A}=\delta^{A \underline{r}} \frac{1}{g P} \partial_{\underline{r}} Q
$$

where Q is any real function satisfying

$$
\frac{1}{P} \partial_{\underline{r}} \partial_{\underline{r}} Q=0, \text { like, for instance, } Q=Q_{0}+\sum_{\alpha} \frac{Q_{\alpha}}{\left|\vec{x}-\vec{x}_{\alpha}\right|}
$$

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.
Nim Simplest solution, always available: $\Phi_{A}=0$ (purely magnetic).
Next simplest solution, always available: $\Phi_{A} \propto \Phi^{A}, \forall A$ (trivial dyonic solution). Just one more parameter: the proportionality constant. (The last set of equations are trivially solved everywhere.)
num New solution: Ramírez's dyon:

$$
\Phi^{A}=\delta^{A \underline{r}} \frac{1}{g P} \partial_{\underline{r}} Q
$$

where Q is any real function satisfying

$$
\frac{1}{P} \partial_{\underline{r}} \partial_{\underline{r}} Q=0, \text { like, for instance, } Q=Q_{0}+\sum_{\alpha} \frac{Q_{\alpha}}{\left|\vec{x}-\vec{x}_{\alpha}\right|}
$$

P and Q must have common poles, but the coefficients (always common sign) can be different: many more parameters if there is more than one pole

5 - Solutions to the equations for the Φ_{A}

The Φ_{A} have electric character.
Nim Simplest solution, always available: $\Phi_{A}=0$ (purely magnetic).
Next simplest solution, always available: $\Phi_{A} \propto \Phi^{A}, \forall A$ (trivial dyonic solution). Just one more parameter: the proportionality constant. (The last set of equations are trivially solved everywhere.)
new New solution: Ramírez's dyon:

$$
\Phi^{A}=\delta^{A \underline{r}} \frac{1}{g P} \partial_{\underline{r}} Q
$$

where Q is any real function satisfying

$$
\frac{1}{P} \partial_{\underline{r}} \partial_{\underline{r}} Q=0, \text { like, for instance, } Q=Q_{0}+\sum_{\alpha} \frac{Q_{\alpha}}{\left|\vec{x}-\vec{x}_{\alpha}\right|}
$$

P and Q must have common poles, but the coefficients (always common sign) can be different: many more parameters if there is more than one pole
The last equation is solved quite non-trivially everywhere: no constraints on the integration constants!

$$
\Phi^{\lambda}, \Phi_{\lambda}, \Phi^{A}, \Phi_{A}, \breve{A}_{\underline{r}}
$$

to the equations, we construct supergravity solutions

AS FOLLOWS:

6 - Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM

A theory of $\mathcal{N}=2, d=4$ SEYM can be completely characterized (up to the gauging) by one these three objects:

6 - Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM

A theory of $\mathcal{N}=2, d=4$ SEYM can be completely characterized (up to the gauging) by one these three objects:

- The prepotential $\mathcal{F}(\mathcal{X})$, a homogenous function of degree 2 of \mathcal{X}^{Λ}.

6 - Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM

A theory of $\mathcal{N}=2, d=4$ SEYM can be completely characterized (up to the gauging) by one these three objects:

- The prepotential $\mathcal{F}(\mathcal{X})$, a homogenous function of degree 2 of \mathcal{X}^{Λ}.
- The canonical symplectic section $\mathcal{V}\left(Z, Z^{*}\right)=\binom{\mathcal{L}^{\Lambda}}{\mathcal{M}_{\Lambda}}$, a covariantly holomorphic symplectic vector.

6 - Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM

A theory of $\mathcal{N}=2, d=4$ SEYM can be completely characterized (up to the gauging) by one these three objects:

- The prepotential $\mathcal{F}(\mathcal{X})$, a homogenous function of degree 2 of \mathcal{X}^{Λ}.
- The canonical symplectic section $\mathcal{V}\left(Z, Z^{*}\right)=\binom{\mathcal{L}^{\Lambda}}{\mathcal{M}_{\Lambda}}$, a covariantly holomorphic symplectic vector.
- The Hesse potential $W(\mathcal{I})$, a homogenous function of degree 2 of the real symplectic vector $\left(\mathcal{I}^{M}\right)=\binom{\mathcal{I}^{\Lambda}}{\mathcal{I}_{\Lambda}}$.

6 - Solutions of $\mathcal{N}=2 . d=4 \mathrm{SU}(2)$ SEYM

A theory of $\mathcal{N}=2, d=4$ SEYM can be completely characterized (up to the gauging) by one these three objects:

- The prepotential $\mathcal{F}(\mathcal{X})$, a homogenous function of degree 2 of \mathcal{X}^{Λ}.
- The canonical symplectic section $\mathcal{V}\left(Z, Z^{*}\right)=\binom{\mathcal{L}^{\Lambda}}{\mathcal{M}_{\Lambda}}$, a covariantly holomorphic symplectic vector.
- The Hesse potential $W(\mathcal{I})$, a homogenous function of degree 2 of the real symplectic vector $\left(\mathcal{I}^{M}\right)=\binom{\mathcal{I}^{\Lambda}}{\mathcal{I}_{\Lambda}}$.

The last is the most apropriate for us because

$$
\binom{\mathcal{I}^{\Lambda}}{\mathcal{I}_{\Lambda}}=-\sqrt{2}\binom{\Phi^{\Lambda}}{\Phi_{\Lambda}},
$$

and the $\breve{A}_{\underline{r}}^{\Lambda}$ are the corresponding part of the $\mathcal{N}=2, d=4$ supergravity vector fields.

In a given theory characterized by the Hesse potential $W(I)$, the physical fields of a timelike supersymmetric solution can be constructed from the $I^{M}(x)$ as follows:

In a given theory characterized by the Hesse potential $W(I)$, the physical fields of a timelike supersymmetric solution can be constructed from the $I^{M}(x)$ as follows:
nnt The metric has the form

$$
d s^{2}=\mathbf{W}^{-1}(d t+\omega)^{2}-\mathbf{W} d x^{r} d x^{r}
$$

where the 1-form $\omega=\omega_{\underline{r<}} d x^{r}$ on \mathbb{R}^{3} is found by solving the equation

$$
(d \omega)_{\underline{r s}}=2 \epsilon_{\underline{r s t}} \mathcal{I}_{M} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{M}=2 \epsilon_{\underline{r s t}}\left[\mathcal{I}_{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{\Lambda}-\mathcal{I}^{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}_{\Lambda}\right]
$$

The last equation of $\Phi^{\Lambda}, \Phi_{\Lambda}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ implies the integrability condition of this equation. ω is trivial when the integrability condition is satisfied trivially (static solutions).

In a given theory characterized by the Hesse potential $W(I)$, the physical fields of a timelike supersymmetric solution can be constructed from the $I^{M}(x)$ as follows:
nnt The metric has the form

$$
d s^{2}=\mathbf{W}^{-1}(d t+\omega)^{2}-\mathbf{W} d x^{r} d x^{r}
$$

where the 1-form $\omega=\omega_{\underline{r<}} d x^{r}$ on \mathbb{R}^{3} is found by solving the equation

$$
(d \omega)_{\underline{r s}}=2 \epsilon_{\underline{r s t}} \mathcal{I}_{M} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{M}=2 \epsilon_{\underline{r s t}}\left[\mathcal{I}_{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{\Lambda}-\mathcal{I}^{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}_{\Lambda}\right]
$$

The last equation of $\Phi^{\Lambda}, \Phi_{\Lambda}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ implies the integrability condition of this equation. ω is trivial when the integrability condition is satisfied trivially (static solutions).
${ }^{\text {|IIt }}$ Define and compute $\tilde{\mathcal{I}}_{M} \equiv \frac{1}{2} \frac{\partial \mathrm{~W}}{\partial I^{M}}$.

In a given theory characterized by the Hesse potential $W(I)$, the physical fields of a timelike supersymmetric solution can be constructed from the $I^{M}(x)$ as follows:
nnt The metric has the form

$$
d s^{2}=\mathbf{W}^{-1}(d t+\omega)^{2}-\mathbf{W} d x^{r} d x^{r}
$$

where the 1-form $\omega=\omega_{\underline{r<}} d x^{r}$ on \mathbb{R}^{3} is found by solving the equation

$$
(d \omega)_{\underline{r s}}=2 \epsilon_{\underline{r s t}} \mathcal{I}_{M} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{M}=2 \epsilon_{\underline{r s t}}\left[\mathcal{I}_{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{\Lambda}-\mathcal{I}^{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}_{\Lambda}\right]
$$

The last equation of $\Phi^{\Lambda}, \Phi_{\Lambda}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ implies the integrability condition of this equation. ω is trivial when the integrability condition is satisfied trivially (static solutions).
|II+ Define and compute $\tilde{\mathcal{I}}_{M} \equiv \frac{1}{2} \frac{\partial \mathrm{~W}}{\partial \mathcal{I}^{M}}$.
${ }^{\text {|u|l| }}$ The scalars are, then, given by $Z^{i}=\frac{\tilde{\mathcal{I}}^{i}+i \mathcal{I}^{i}}{\tilde{\mathcal{I}}^{0}+i \mathcal{I}^{0}}$.

In a given theory characterized by the Hesse potential $W(I)$, the physical fields of a timelike supersymmetric solution can be constructed from the $I^{M}(x)$ as follows:
nnt The metric has the form

$$
d s^{2}=\mathbf{W}^{-1}(d t+\omega)^{2}-\mathbf{W} d x^{r} d x^{r}
$$

where the 1-form $\omega=\omega_{\underline{r<}} d x^{r}$ on \mathbb{R}^{3} is found by solving the equation

$$
(d \omega)_{\underline{r s}}=2 \epsilon_{\underline{r s t}} \mathcal{I}_{M} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{M}=2 \epsilon_{\underline{r s t}}\left[\mathcal{I}_{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}^{\Lambda}-\mathcal{I}^{\Lambda} \breve{\mathfrak{D}}_{\underline{t}} \mathcal{I}_{\Lambda}\right]
$$

The last equation of $\Phi^{\Lambda}, \Phi_{\Lambda}, \breve{A}^{\Lambda}{ }_{\underline{r}}$ implies the integrability condition of this equation. ω is trivial when the integrability condition is satisfied trivially (static solutions).
|II+ Define and compute $\tilde{\mathcal{I}}_{M} \equiv \frac{1}{2} \frac{\partial \mathrm{~W}}{\partial \mathcal{I}^{M}}$.
${ }^{|1|+~ T h e ~ s c a l a r s ~ a r e, ~ t h e n, ~ g i v e n ~ b y ~} Z^{i}=\frac{\tilde{\mathcal{I}}^{i}+i \mathcal{I}^{i}}{\tilde{\mathcal{I}}^{0}+i \mathcal{I}^{0}}$.
The physical gauge field is given by $A^{\Lambda}{ }_{\mu} d x^{\mu}=-\frac{1}{\sqrt{2}} \mathrm{~W}^{-2} \mathcal{I}^{\Lambda}(d t+\omega)+\breve{A}^{\Lambda}{ }_{\underline{r}} d x^{r}$,

7 - A simple example with gauge group $S U(2)$

The simplest model that admits a $\mathrm{SU}(2)$ gauging is the $\overline{\mathbb{C P}}^{3}$ model, with Hesse potential

$$
\mathbf{W}=\frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Lambda} \mathcal{I}^{\Sigma}+2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Lambda} \mathcal{I}_{\Sigma}, \quad \text { with } \eta=\operatorname{diag}(+---) .
$$

(3 vector multiplets transforming in the adjoint of $\mathrm{SU}(2)$)

7 - A simple example with gauge group $S U(2)$

The simplest model that admits a $\mathrm{SU}(2)$ gauging is the $\overline{\mathbb{C P}}^{3}$ model, with Hesse potential

$$
\mathbf{W}=\frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Lambda} \mathcal{I}^{\Sigma}+2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Lambda} \mathcal{I}_{\Sigma}, \quad \text { with } \eta=\operatorname{diag}(+---) .
$$

(3 vector multiplets transforming in the adjoint of $\mathrm{SU}(2)$)
The simplest solutions: only $\mathcal{I}^{\Lambda}=\mathcal{I}^{0}, \mathcal{I}^{A}$ non-vanishing: $\omega=0$ (static).

7 - A simple example with gauge group $S U(2)$

The simplest model that admits a $\mathrm{SU}(2)$ gauging is the $\overline{\mathbb{C P}}^{3}$ model, with Hesse potential

$$
\mathbf{W}=\frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Lambda} \mathcal{I}^{\Sigma}+2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Lambda} \mathcal{I}_{\Sigma}, \quad \text { with } \eta=\operatorname{diag}(+---) .
$$

(3 vector multiplets transforming in the adjoint of $\mathrm{SU}(2)$)
The simplest solutions: only $\mathcal{I}^{\Lambda}=\mathcal{I}^{0}, \mathcal{I}^{A}$ non-vanishing: $\omega=0$ (static).
Abelian sector: $\mathcal{I}^{0}=-\sqrt{2} \Phi^{0} \equiv-\sqrt{2} H$ is a harmonic function in \mathbb{E}^{3}

7 - A simple example with gauge group $S U(2)$

The simplest model that admits a $\mathrm{SU}(2)$ gauging is the $\overline{\mathbb{C P}}^{3}$ model, with Hesse potential

$$
\mathbf{W}=\frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Lambda} \mathcal{I}^{\Sigma}+2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Lambda} \mathcal{I}_{\Sigma}, \quad \text { with } \quad \eta=\operatorname{diag}(+---) .
$$

(3 vector multiplets transforming in the adjoint of $\mathrm{SU}(2)$)
The simplest solutions: only $\mathcal{I}^{\Lambda}=\mathcal{I}^{0}, \mathcal{I}^{A}$ non-vanishing: $\omega=0$ (static).
Abelian sector: $\mathcal{I}^{0}=-\sqrt{2} \Phi^{0} \equiv-\sqrt{2} H$ is a harmonic function in \mathbb{E}^{3}
Non-Abelian sector: $\mathcal{I}^{A}=-\sqrt{2} \Phi^{A}$ is a Higgs field satisfying the Bogomol'nyi equation in \mathbb{E}^{3} for some $\breve{A}^{A}{ }_{\underline{r}}$.

7 - A simple example with gauge group $S U(2)$

The simplest model that admits a $\mathrm{SU}(2)$ gauging is the $\overline{\mathbb{C P}}^{3}$ model, with Hesse potential

$$
\mathbf{W}=\frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Lambda} \mathcal{I}^{\Sigma}+2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Lambda} \mathcal{I}_{\Sigma}, \quad \text { with } \eta=\operatorname{diag}(+---) .
$$

(3 vector multiplets transforming in the adjoint of $\mathrm{SU}(2)$)
The simplest solutions: only $\mathcal{I}^{\Lambda}=\mathcal{I}^{0}, \mathcal{I}^{A}$ non-vanishing: $\omega=0$ (static).
Abelian sector: $\mathcal{I}^{0}=-\sqrt{2} \Phi^{0} \equiv-\sqrt{2} H$ is a harmonic function in \mathbb{E}^{3}
Non-Abelian sector: $\mathcal{I}^{A}=-\sqrt{2} \Phi^{A}$ is a Higgs field satisfying the Bogomol'nyi equation in \mathbb{E}^{3} for some $\breve{A}^{A}{ }_{\underline{r}}$.

Let us see some choices with good properties (we focus on the metric only for the sake of simplicity).

Global monopole: $H=1+\mathrm{BPS}$ 't Hooft-Polyakov monopole

$$
d s^{2}=\mathbf{W}^{-1} d t^{2}-\mathbf{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathbf{W}=1-\frac{1}{g^{2} r^{2}}[1-\mu r \operatorname{coth}(\mu r)]^{2}
$$

Globally regular. Mass but no horizon nor entropy. (BPS 't Hooft-Polyakov monopoles always do this when combined with other fields).

Global monopole: $H=1+$ BPS 't Hooft-Polyakov monopole

$$
d s^{2}=\mathbf{W}^{-1} d t^{2}-\mathbf{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathbf{W}=1-\frac{1}{g^{2} r^{2}}[1-\mu r \operatorname{coth}(\mu r)]^{2}
$$

Globally regular. Mass but no horizon nor entropy. (BPS 't Hooft-Polyakov monopoles always do this when combined with other fields).
Coloured black hole: $H=1+p^{0} / r+$ coloured monopole:
$d s^{2}=\mathbf{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad$ where $\mathrm{W}=\left(1+\frac{p^{0}}{r}\right)^{2}-\frac{1}{g^{2} r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right]^{2}$.
Horizon at $r=0$.
The monopole contributes to the entropy but not to the mass: HAIR!

Global monopole: $H=1+$ BPS 't Hooft-Polyakov monopole

$$
d s^{2}=\mathbf{W}^{-1} d t^{2}-\mathbf{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathbf{W}=1-\frac{1}{g^{2} r^{2}}[1-\mu r \operatorname{coth}(\mu r)]^{2}
$$

Globally regular. Mass but no horizon nor entropy. (BPS 't Hooft-Polyakov monopoles always do this when combined with other fields).
Coloured black hole: $H=1+p^{0} / r+$ coloured monopole:

$$
d s^{2}=\mathbf{W}^{-1} d t^{2}-\mathbf{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathbf{W}=\left(1+\frac{p^{0}}{r}\right)^{2}-\frac{1}{g^{2} r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right]^{2}
$$

Horizon at $r=0$.
The monopole contributes to the entropy but not to the mass: HAIR!
Dumbbell solution: $H=p^{0} / r+$ coloured monopole (in $d=6$, Cano, Ortín \& Santoli (2016)):

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=\frac{\left(p^{0}\right)^{2}}{r^{2}}-\frac{1}{g^{2} r^{2}}\left[\frac{1}{1+\lambda^{2} r}\right]^{2}
$$

Flows fom one $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ to another $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ of different radius!

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Always regular if the following conditions are met (Meessen, Ortín \& Ramírez, in preparation):

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Always regular if the following conditions are met (Meessen, Ortín \& Ramírez, in preparation):

1. The masses of the individual black holes are positive.

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Always regular if the following conditions are met (Meessen, Ortín \& Ramírez, in preparation):

1. The masses of the individual black holes are positive.
2. The entropies of the individual black holes are strictly positive.

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Always regular if the following conditions are met (Meessen, Ortín \& Ramírez, in preparation):

1. The masses of the individual black holes are positive.
2. The entropies of the individual black holes are strictly positive.
3. For any pair of black holes, the sum of their entropies is smaller than the entropy of a single black hole with the sum of their charges (related to Hawking's theorem).

Multi-coloured black holes: $H=1+\sum_{\alpha} p_{\alpha}^{0} /\left|\vec{x}-\vec{x}_{\alpha}\right|+$ coloured monopoles (Ramírez's multimonopole solution given by $P=P_{0}+\sum_{\alpha} P_{\alpha} /\left|\vec{x}-\vec{x}_{\alpha}\right|$)

$$
d s^{2}=\mathrm{W}^{-1} d t^{2}-\mathrm{W}\left(d r^{2}+r^{2} d \Omega_{(2)}^{2}\right), \quad \text { where } \mathrm{W}=H^{2}-\frac{1}{g^{2} P^{2}} \vec{\nabla} P \vec{\nabla} P
$$

Always regular if the following conditions are met (Meessen, Ortín \& Ramírez, in preparation):

1. The masses of the individual black holes are positive.
2. The entropies of the individual black holes are strictly positive.
3. For any pair of black holes, the sum of their entropies is smaller than the entropy of a single black hole with the sum of their charges (related to Hawking's theorem).

These are the simplest, but more general solutions are possible (dyonic, with objects of different types, black hedgehogs, etc.).

8 - 5-dimensional non-Abelian black holes

A theory of $\mathcal{N}=1, d=4$ SEYM can be completely characterized (up to the gauging) in two ways

8 - 5-dimensional non-A belian black holes

A theory of $\mathcal{N}=1, d=4$ SEYM can be completely characterized (up to the gauging) in two ways

- By a completely symmetric tensor $C_{I J K}, I, J, K,=1, \cdots, n_{V 5}$ that defines the hypersurface in $\mathbb{R}^{n_{V 5}+1}$

$$
C_{I J K} h^{I} h^{J} h^{K}=1 .
$$

8 - 5-dimensional non-A belian black holes

A theory of $\mathcal{N}=1, d=4$ SEYM can be completely characterized (up to the gauging) in two ways

- By a completely symmetric tensor $C_{I J K}, I, J, K,=1, \cdots, n_{V 5}$ that defines the hypersurface in $\mathbb{R}^{n_{V 5}+1}$

$$
C_{I J K} h^{I} h^{J} h^{K}=1 .
$$

- By a potential $\mathrm{W}(H)$ which is a function homogeneous of degree $3 / 2$ on set of variables H_{I}.

8 - 5-dimensional non-A belian black holes

A theory of $\mathcal{N}=1, d=4$ SEYM can be completely characterized (up to the gauging) in two ways

- By a completely symmetric tensor $C_{I J K}, I, J, K,=1, \cdots, n_{V 5}$ that defines the hypersurface in $\mathbb{R}^{n_{V 5}+1}$

$$
C_{I J K} h^{I} h^{J} h^{K}=1 .
$$

- By a potential $\mathrm{W}(H)$ which is a function homogeneous of degree $3 / 2$ on set of variables H_{I}.
Again, the last description is better adapted to our needs.

8 - 5-dimensional non-A belian black holes

A theory of $\mathcal{N}=1, d=4$ SEYM can be completely characterized (up to the gauging) in two ways

- By a completely symmetric tensor $C_{I J K}, I, J, K,=1, \cdots, n_{V 5}$ that defines the hypersurface in $\mathbb{R}^{n_{V 5}+1}$

$$
C_{I J K} h^{I} h^{J} h^{K}=1 .
$$

- By a potential $\mathrm{W}(H)$ which is a function homogeneous of degree $3 / 2$ on set of variables H_{I}.
Again, the last description is better adapted to our needs.
We are interested in a special class of solutions that can be described in terms of functions M, H, Φ^{I}, L_{I}, which are related to the building blocks $\Phi^{\Lambda}, \Phi_{\Lambda}$, $\Lambda=0,1, \cdots, n_{V 5}+1$ by
$\Phi^{I}=\Phi^{I+1}, \quad L_{I}=-\frac{2 \sqrt{2}}{3} \Phi_{I+1}, \quad H=-2 \sqrt{2} \Phi^{0}, \quad M=+\sqrt{2} \Phi_{0} . I=1, \cdots, n_{V 5}$.

The 5-dimensional metric has the form

$$
d s^{2}=(\mathbf{W} / 2)^{-4 / 3}(d t+\hat{\omega})^{2}-(\mathbf{W} / 2)^{2 / 3}\left[H^{-1}(d z+\chi)^{2}+H d x^{r} d x^{r}\right]
$$

The 5-dimensional metric has the form

$$
d s^{2}=(\mathbf{W} / 2)^{-4 / 3}(d t+\hat{\omega})^{2}-(\mathrm{W} / 2)^{2 / 3}\left[H^{-1}(d z+\chi)^{2}+H d x^{r} d x^{r}\right]
$$

and can be reconstructed from the above functions as follows:

$$
\begin{aligned}
d \chi & =\star_{3} d H \\
d H_{I} & =L_{I}+8 C_{I J K} \Phi^{J} \Phi^{K} / H \\
\hat{\omega} & =\omega_{5}(d z+\chi)+\omega
\end{aligned}
$$

where ω is the same one would find for the 4-dimensional solution.

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Strings, but no black holes.

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Strings, but no black holes.
Next simplest HK metric: $H=1 / r, \omega=\cos \theta$, which is $\mathbb{R}_{-\{0\}}^{4}$:

$$
d \hat{s}^{2}=r(d z+\cos \theta)^{2}+\frac{d r^{2}}{r}+r\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Strings, but no black holes.
Next simplest HK metric: $H=1 / r, \omega=\cos \theta$, which is $\mathbb{R}_{-\{0\}}^{4}$:

$$
d \hat{s}^{2}=r(d z+\cos \theta)^{2}+\frac{d r^{2}}{r}+r\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Redefining the radial coordinate $r=\rho^{2} / 4$

$$
d \hat{s}^{2}=\frac{\rho^{2}}{4}(d z+\cos \theta)^{2}+d \rho^{2}+\frac{\rho^{2}}{4}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)=d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2} .
$$

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Strings, but no black holes.
Next simplest HK metric: $H=1 / r, \omega=\cos \theta$, which is $\mathbb{R}_{-\{0\}}^{4}$:

$$
d \hat{s}^{2}=r(d z+\cos \theta)^{2}+\frac{d r^{2}}{r}+r\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Redefining the radial coordinate $r=\rho^{2} / 4$

$$
d \hat{s}^{2}=\frac{\rho^{2}}{4}(d z+\cos \theta)^{2}+d \rho^{2}+\frac{\rho^{2}}{4}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)=d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2} .
$$

The coordinate z is now an angular coordinate. The uplifted monopoles will depend on $\rho=\left|\vec{x}_{(4)}\right|$.

Simplest HK metric: $H=1, \omega=0$, which is \mathbb{R}^{4}. The uplifted monopoles will have a translational invariance and the metric a translational isometry:

Strings, but no black holes.
Next simplest HK metric: $H=1 / r, \omega=\cos \theta$, which is $\mathbb{R}_{-\{0\}}^{4}$:

$$
d \hat{s}^{2}=r(d z+\cos \theta)^{2}+\frac{d r^{2}}{r}+r\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Redefining the radial coordinate $r=\rho^{2} / 4$

$$
d \hat{s}^{2}=\frac{\rho^{2}}{4}(d z+\cos \theta)^{2}+d \rho^{2}+\frac{\rho^{2}}{4}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)=d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2} .
$$

The coordinate z is now an angular coordinate. The uplifted monopoles will depend on $\rho=\left|\vec{x}_{(4)}\right|$.

We may obtain black holes, but beware of the singularities!!.

9 - A simple example with gauge group $\mathrm{SU}(2)$

It is given by $C_{0 \Lambda \Sigma}=\frac{1}{3!} \eta_{\Lambda \Sigma} \Lambda \Sigma=1, x x, y=A+1$ or by

$$
\mathbf{W}=\left\{\frac{27}{2} H_{0} \eta^{\Lambda \Sigma} H_{\Lambda} H_{\Sigma}\right\}^{1 / 2},
$$

which gives

$$
\begin{aligned}
(\mathrm{W} / 2)^{2 / 3}= & H^{-1}\left\{\frac { 1 } { 4 } (6 H L _ { 0 } + 8 \eta _ { x y } \Phi ^ { x } \Phi ^ { y }) \left[9 H^{2} \eta^{x y} L_{x} L_{y}+48 H \Phi^{0} L_{x} \Phi^{x}\right.\right. \\
& \left.\left.+64\left(\Phi^{0}\right)^{2} \eta_{x y} \Phi^{x} \Phi^{y}\right]\right\}^{1 / 3}
\end{aligned}
$$

The simplest solution has just $H, L_{0}, L_{1}, \Phi^{A+1}$

$$
(\mathrm{W} / 2)^{2 / 3}=\left\{\frac{27}{2}\left(L_{0}-\frac{4}{3} \Phi^{A+1} \Phi^{A+1}\right)\left(L_{1}\right)^{2}\right\}^{1 / 3}
$$

and it is just a D1D5W black hole with a non-Abelian contribution which has to be the BPST instanton for one center (more centers are under investigation)

Monopoles, instantons and non-Abelian black holes

10 - Conclusions

Monopoles, instantons and non-Abelian black holes

10 - Conclusions

Supersymmetric non-Abelian can be obtained easily in fully analytic form in $d=4,5$ dimensions.

10 - Conclusions

Supersymmetric non-Abelian can be obtained easily in fully analytic form in $d=4,5$ dimensions.

They present interesting new features that, for the first time, can be studied analytically.

10 - Conclusions

Supersymmetric non-Abelian can be obtained easily in fully analytic form in $d=4,5$ dimensions.

They present interesting new features that, for the first time, can be studied analytically.

Explaining these entropies from a mircorscopic point of view presents a new challenge to superstring theory.

10 - Conclusions

Supersymmetric non-Abelian can be obtained easily in fully analytic form in $d=4,5$ dimensions.

They present interesting new features that, for the first time, can be studied analytically.

Explaining these entropies from a mircorscopic point of view presents a new challenge to superstring theory.

More general non-Abelian solutions can be obtained: black rings (Ortín, Ramírez, 1605.00005), microstate geometries (Ramírez, 1608.01330), and non-extremal black holes (work in progress).

11 - Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:

11 - Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:
The metric of a 4 -d HK space admitting a free $\mathrm{U}(1)$ action shifting $z \sim z+4 \pi$ by an arbitrary constant is of the form (Gibbons, Hawking, 1979)

$$
d \hat{s}^{2}=H^{-1}(d z+\chi)^{2}+H d x^{r} d x^{r} \quad(r=1,2,3),
$$

where (unhatted $\Rightarrow \mathbb{E}^{3}$)

$$
d H=\star d \chi, \quad \Rightarrow d \star d H=0, \quad \text { in } \mathbb{R}^{3} .
$$

11 - Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:
The metric of a 4 -d HK space admitting a free $\mathrm{U}(1)$ action shifting $z \sim z+4 \pi$ by an arbitrary constant is of the form (Gibbons, Hawking, 1979)

$$
d \hat{s}^{2}=H^{-1}(d z+\chi)^{2}+H d x^{r} d x^{r} \quad(r=1,2,3)
$$

where (unhatted $\Rightarrow \mathbb{E}^{3}$)

$$
d H=\star d \chi, \quad \Rightarrow \quad d \star d H=0, \quad \text { in } \mathbb{R}^{3} .
$$

For any gauge group G , let \hat{A} be a gauge field whose field strength \hat{F} is selfdual $\hat{\star} \hat{F}=+\hat{F}$ in the above HK metric (orientation!).

11 - Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:
The metric of a 4 -d HK space admitting a free $\mathrm{U}(1)$ action shifting $z \sim z+4 \pi$ by an arbitrary constant is of the form (Gibbons, Hawking, 1979)

$$
d \hat{s}^{2}=H^{-1}(d z+\chi)^{2}+H d x^{r} d x^{r} \quad(r=1,2,3)
$$

where (unhatted $\Rightarrow \mathbb{E}^{3}$)

$$
d H=\star d \chi, \quad \Rightarrow \quad d \star d H=0, \quad \text { in } \mathbb{R}^{3} .
$$

For any gauge group G, let \hat{A} be a gauge field whose field strength \hat{F} is selfdual $\hat{\star} \hat{F}=+\hat{F}$ in the above HK metric (orientation!).
Then, the 3 -dimensional gauge and Higgs fields A and Φ defined by

$$
\begin{aligned}
\Phi & \equiv-H \hat{A}_{z} \\
A_{\underline{r}} & \equiv \hat{A}_{\underline{r}}-\chi_{\underline{r}} \hat{A}_{z}
\end{aligned}
$$

satisfy the Bogomol'nyi equation in $\mathbb{E}^{3} \mathfrak{D}_{\underline{r}} \Phi=\frac{1}{2} \epsilon_{\underline{r \underline{s} t}} F_{\underline{s t}}$.

