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Some new results on extremal and non-extremal black holes

1 – Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about
the extremal supersymmetric ones:

☞ (In principle) we know how to construct all the extremal supersymmetric ones in
all d = 4 and some d = 5 ungauged supergravities .

☞ We know some things about the extremal non-supersymmetric ones through
their attractors, but, in general, we do not know how to construct the full
solutions.

☞ We do not know much about the non-extremal ones, which should be closer to
reality. Only a handful of examples.

In this talk I will present a general ansatz and a general
formalism to construct non-extremal black-hole and black-
brane solutions. Then we can take their extremal non-
supersymmetric limits.
I will review a complete explicit example.
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Some new results on extremal and non-extremal black holes

Our ansatz is based on a hypothesis on the universal dependence of all black-hole
solutions on certain functions which are harmonic in the extremal cases and
something else in the non-extremal ones.
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tions and the study of general properties of families of black
holes.
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Our ansatz is based on a hypothesis on the universal dependence of all black-hole
solutions on certain functions which are harmonic in the extremal cases and
something else in the non-extremal ones.

We will prove the ansatz constructing a new formalism (H-
FGK formalism) which simplifies the construction of solu-
tions and the study of general properties of families of black
holes.

Writing all the black-hole solutions of ungauged supergravity in a generic form
brings several bonuses:

☞ We are going to show the existence of a hidden conformal symmetry in all
non-extremal black-hole solutions.

☞ We are going to show how we can deform any black-hole solution to get another
solution whose near-horizon limit is Lifshitz-like spacetime with hyperscaling
violation.

☞ Inspired by this, we will also identify Lifshitz-like spacetimes with hyperscaling
violation in the near-singularity limit of the black holes.
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Some new results on extremal and non-extremal black holes

Our main tool will be a generalization of the FGK formalism
(Ferrara-Gibbons-Kallosh, 1997) which has been extensively used to
study extremal black-hole solutions in 4 dimensions only.
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Some new results on extremal and non-extremal black holes

Our main tool will be a generalization of the FGK formalism
(Ferrara-Gibbons-Kallosh, 1997) which has been extensively used to
study extremal black-hole solutions in 4 dimensions only.

We start by reviewing the FGK formalism

for black holes and black branes

in d dimensions.
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Some new results on extremal and non-extremal black holes

2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars φi and
(p+ 1)-form potentials AΛ

(p+1) coupled to gravity:

I =

∫

ddx
√

|g|
{

R + Gij(φ)∂µφ
i∂µφj

+4 (−1)p

(p+2)!

[

IΛΣ(φ)F
Λ
(p+2) · FΣ

(p+2) + ξ2RΛΣ(φ)F
Λ
(p+2) ⋆ F

Σ
(p+2)

]}

,

where the last term occurs only when p = p̃ = (d− 4)/2 and

RΛΣ(φ) = −ξ2RΣΛ(φ) , ξ2 = (−1)
d
2+1 = (−1)p+1 .
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2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars φi and
(p+ 1)-form potentials AΛ

(p+1) coupled to gravity:

I =

∫

ddx
√

|g|
{

R + Gij(φ)∂µφ
i∂µφj

+4 (−1)p

(p+2)!

[

IΛΣ(φ)F
Λ
(p+2) · FΣ

(p+2) + ξ2RΛΣ(φ)F
Λ
(p+2) ⋆ F

Σ
(p+2)

]}

,

where the last term occurs only when p = p̃ = (d− 4)/2 and

RΛΣ(φ) = −ξ2RΣΛ(φ) , ξ2 = (−1)
d
2+1 = (−1)p+1 .

We want to find solutions describing single, static, charged, regular, black p-branes
with flat worldvolume in the directions ~y(p) = (y1, · · · , yp) living in a spacetime of
d = p+ p̃+ 4 dimensions.
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Some new results on extremal and non-extremal black holes

Our general ansatz for the metric only contains an independent function Ũ(ρ).

ds2(d) = e
2

p+1 Ũ
[

e
2p

p+1 r0ρdt2 − e−
2

p+1 r0ρd~y 2
(p)

]

− e−
2

p̃+1 Ũγ(p̃+3)mndx
mdxn ,

γ(p̃+3)mndx
mdxn ≡

[

r0
sinh (r0ρ)

]
2

p̃+1

[

(

r0
sinh (r0ρ)

)2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

,
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e
2p

p+1 r0ρdt2 − e−
2

p+1 r0ρd~y 2
(p)

]

− e−
2
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[

(

r0
sinh (r0ρ)

)2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

,

➳ In these coordinates the (outer) event horizon lies at ρ → +∞ and spatial
infinity at ρ → 0.

➳ The interior of the inner (Cauchy) horizon the black hole is described by a
metric obtained from the one above by the (non-coordinate) transformation

ρ −→ −̺ , e−Ũ(ρ) −→ −e−Ũ(−̺) .

➳ The inner horizon at ̺ → +∞ and the singularity at ̺ = ̺sing > 0.
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Some new results on extremal and non-extremal black holes

In the general metric r0 is always the non-extremality parameter.
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Some new results on extremal and non-extremal black holes

In the general metric r0 is always the non-extremality parameter.

If S̃ is the normalized entropy density per unit worldvolume

S̃ ≡ Ahp̃+2

ω(p̃+2)

and T is the Hawking temperature

(2r0)
1

p+1 =
4π

p̃+ 1
T S̃

(d−2)
(p+1)(p̃+2) .

(r0 = 2ST for 4-dimensional black holes.)
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In the general metric r0 is always the non-extremality parameter.

If S̃ is the normalized entropy density per unit worldvolume

S̃ ≡ Ahp̃+2

ω(p̃+2)

and T is the Hawking temperature

(2r0)
1

p+1 =
4π

p̃+ 1
T S̃

(d−2)
(p+1)(p̃+2) .

(r0 = 2ST for 4-dimensional black holes.)

This relation is true with the same r0
for both inner and outer horizons.
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Some new results on extremal and non-extremal black holes

With this formalism we will be able to compute

the entropies of the inner (−) and outer (+) horizons

and check that the product

S̃+S̃−

is a moduli-independent combination

of conserved quantities.
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Some new results on extremal and non-extremal black holes

For regular (S̃ > 0) black branes, in the r0 → 0 limit we find T → 0.
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2Ũ
p̃+1 d~x 2

(p̃+3) , with |~xp̃+3| ≡ ρ−
1

p̃+1 .

September 11th 2012 CERN TH Division Page 8-a



Some new results on extremal and non-extremal black holes

For regular (S̃ > 0) black branes, in the r0 → 0 limit we find T → 0.

In this extremal limit we get the standard metric for extremal p-branes

ds2(d) = e
2Ũ
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2Ũ
p̃+1

ρ
2

p̃+1

[

1

ρ2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

= e
2Ũ
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The non-extremality parameter r0 encodes a
great deal of information.

We now r0 as a function of the physical parameters (mass, charges, moduli ) only in
a few cases:

☞ r0 = M for the Schwarzschild black hole.

☞ r0 =
√

M2 − (q2 + p2) for the Reissner -Nordström black hole.

What is r0 in more general cases?
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Some new results on extremal and non-extremal black holes

The effective action for Ũ(ρ), φi(ρ) is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where
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Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where

(QM ) =

(

pΛ

qΛ

)

(MMN ) ≡





(I − ξ2RI−1R)ΛΣ ξ2(RI−1)Λ
Σ

−(I−1R)ΛΣ (I−1)ΛΣ



 ,

are O(n, n) (resp. Sp(n, n)) vector and matrix when ξ2 = +1 (resp. −1). (In general
RΛΣ = pΛ = 0 and the duality group is just SO(n)).
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The effective action for Ũ(ρ), φi(ρ) is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where

(QM ) =

(

pΛ

qΛ

)

(MMN ) ≡





(I − ξ2RI−1R)ΛΣ ξ2(RI−1)Λ
Σ

−(I−1R)ΛΣ (I−1)ΛΣ



 ,

are O(n, n) (resp. Sp(n, n)) vector and matrix when ξ2 = +1 (resp. −1). (In general
RΛΣ = pΛ = 0 and the duality group is just SO(n)).

Finding a p-black brane in d dimensions with charges p, q is equiv-
alent to solving the above mechanical system for Ũ(ρ), φi(ρ).
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Some new results on extremal and non-extremal black holes

We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.
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The general solution (attractor) is
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h = φi
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Some new results on extremal and non-extremal black holes

We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.

For extremal (r0 = 0) black branes:

☞ The values of the scalars on the event horizon φi
h are critical points of the

black-brane potential
∂i VBB|φh

= 0 .

The general solution (attractor) is

φi
h = φi

h(φ∞, p, q) , φi
∞ ≡ lim

ρ→0+
φi(ρ) ,

but in many cases φi
h = φi

h(p, q) (true attractor)

☞ The value of the black-brane potential at the critical points gives the entropy
density:

S̃ = |VBB(φh, q, p)|
p̃+2

2(p̃+1) = S̃(p, q) ,

which is amenable to a microscopic interpretation.
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We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.

For extremal (r0 = 0) black branes:

☞ The values of the scalars on the event horizon φi
h are critical points of the

black-brane potential
∂i VBB|φh

= 0 .

The general solution (attractor) is

φi
h = φi

h(φ∞, p, q) , φi
∞ ≡ lim

ρ→0+
φi(ρ) ,

but in many cases φi
h = φi

h(p, q) (true attractor)

☞ The value of the black-brane potential at the critical points gives the entropy
density:

S̃ = |VBB(φh, q, p)|
p̃+2

2(p̃+1) = S̃(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdSp+2 × Sp̃+2 with the AdSp+2 and Sp̃+2

radii both equal to S̃1/2.
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Some new results on extremal and non-extremal black holes

Each critical point yields a possible extremal black-brane
solution and an AdSp+2 × Sp̃+2 geometry. One can go a
long way in the study of extremal black holes with the
attractor only, ignoring the full explicit solution.
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According to the no-hair “theorem” only Σi = Σi(T p, φ
i
∞, q, p) (secondary hair) are

allowed for regular black branes.
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the entropy is unrelated to the black brane potential.
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(d− 2)
Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(T p, φ
i
∞, q, p) (secondary hair) are

allowed for regular black branes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor mechanism for the scalars and
the entropy is unrelated to the black brane potential.

In the non-extremal case we need the complete explicit solution.
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Some new results on extremal and non-extremal black holes

3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.
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3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.
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Some new results on extremal and non-extremal black holes

3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review the black holes of (ungauged)

N = 2 d = 4 Supergravity coupled to vector multiplets.
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Some new results on extremal and non-extremal black holes

In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ ,

where Z is the central charge of the theory

Z(φ, p, q) ≡ 〈V(φ) | Q 〉 ≡ 〈
(

LΛ

MΛ

)

|
(

pΛ

qΛ

)

〉 ≡ pΛMΛ(φ)− qΛLΛ(φ) .
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In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ ,

where Z is the central charge of the theory

Z(φ, p, q) ≡ 〈V(φ) | Q 〉 ≡ 〈
(

LΛ

MΛ

)

|
(

pΛ

qΛ

)

〉 ≡ pΛMΛ(φ)− qΛLΛ(φ) .

Direct integration is not easy but

There is a recipe to construct all the BPS ones.

(Behrndt, Lüst & Sabra (1997), Denef (2000), Lopes Cardoso, de Wit,
Kappeli & Mohaupt (2000), Meessen, O. (2006))
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Some new results on extremal and non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .
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Some new results on extremal and non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes (τ ≡ −ρ):





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0
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 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0

3. R is to be found from I by solving the stabilization equations.
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3. R is to be found from I by solving the stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.
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HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0

3. R is to be found from I by solving the stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.

5. The function U(τ) of the FGK formalism is given by

e−2U = 〈R | I 〉 = IΛRΛ − IΛRΛ .
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Some new results on extremal and non-extremal black holes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

, Z∞ ≡ Z(φ∞, p, q) , VM
∞ ≡ VM (φ∞) .
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Then, to construct the most general static BPS solution of a given theory using this
recipe one just has to solve stabilization equations, which can prove to be very
difficult.
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One can check in the explicit solutions all the properties predicted by the FGK
formalism.
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The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

, Z∞ ≡ Z(φ∞, p, q) , VM
∞ ≡ VM (φ∞) .

Then, to construct the most general static BPS solution of a given theory using this
recipe one just has to solve stabilization equations, which can prove to be very
difficult.

One can check in the explicit solutions all the properties predicted by the FGK
formalism.

In this case the complete explicit solutions do not give much more information than
the attractors, but they are going to be used as starting point for the construction of
non-extremal solutions.
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Some new results on extremal and non-extremal black holes

4 – Construction of explicit solutions: non-extremal

September 11th 2012 CERN TH Division Page 16



Some new results on extremal and non-extremal black holes

4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):
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4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,
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4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,

Then, the non-extremal solution is given by

U(τ) = Ue[H(τ)] + r0τ , Zi(τ) = Zi
e[H(τ)] ,

where now the functions H are assumed to be of the form

HM = aM + bM e2r0τ ,

and the constants aM , bM have to be determined by explicitly solving the e.o.m.
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Some new results on extremal and non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.
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➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

September 11th 2012 CERN TH Division Page 17-a



Some new results on extremal and non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
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➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).
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➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effec-
tive action using the HM (τ) as variables that replace U(τ) and
φi(τ) (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan
arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shah-
bazi arXiv:1112.3332). This confirms our hypothesis.
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➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effec-
tive action using the HM (τ) as variables that replace U(τ) and
φi(τ) (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan
arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shah-
bazi arXiv:1112.3332). This confirms our hypothesis.

More on this, later.
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Some new results on extremal and non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.
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Some new results on extremal and non-extremal black holes

5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

September 11th 2012 CERN TH Division Page 19



Some new results on extremal and non-extremal black holes

5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),
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add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),
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)
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The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .
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5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .

It is convenient to define the complex charge combinations ΓΛ ≡ qΛ + i
2ηΛΣp

Σ .
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Some new results on extremal and non-extremal black holes

In this model the central charge Z , its holomorphic Kähler -covariant derivative and
the black-hole potential are

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .
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Some new results on extremal and non-extremal black holes

In this model the central charge Z , its holomorphic Kähler -covariant derivative and
the black-hole potential are

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .

In N = 2 theories, in the extremal case |Z| plays the rôle of superpotential W . |Z̃|
plays here the rôle of “fake” superpotential.
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Some new results on extremal and non-extremal black holes

The extremal case
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Some new results on extremal and non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)
ZΛ

hΓΛ = 0 ,
(hypersurface of non− supersymmetric
attractors)
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Some new results on extremal and non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)
ZΛ

hΓΛ = 0 ,
(hypersurface of non− supersymmetric
attractors)

Attractor e−Kh |Zh|2 |Z̃h|2 −Vbhh M

Zi susy
h = Γ∗ i/Γ∗ 0 Γ∗ΛΓΛ > 0 Γ∗ΛΓΛ 0 Γ∗ΛΓΛ |Z∞|

ZΛnsusy
h ΓΛ = 0 −Γ∗ΛΓΛ > 0 0 −Γ∗ΛΓΛ −Γ∗ΛΓΛ |Z̃∞|
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Some new results on extremal and non-extremal black holes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .
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Some new results on extremal and non-extremal black holes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .
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Some new results on extremal and non-extremal black holes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.
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Some new results on extremal and non-extremal black holes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Defining, for convenience

HΛ ≡ HΛ + i
2ηΛΣH

Σ ≡ eK∞/2 Z∞
|Z∞|Z

∗
Λ∞ − 1√

2
ΓΛτ

the metric function and the scalars are

e−2U = 2H∗ΛHΛ , Zi =
Ri + iIi

R0 + iI0
=

H∗i

H∗0 .
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Some new results on extremal and non-extremal black holes

Non-extremal solutions
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Some new results on extremal and non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
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Some new results on extremal and non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
The 2(n+ 1) complex constants AΛ, BΛ are found by imposing the e.o.m. (f ≡ er0τ )

Üe − (U̇e)
2 − Gij∗ Ż

iŻ∗ j∗ = 0 ,

(2r0)
2
[

fÜe + U̇e

]

+ e2UeVbh = 0 ,

(2r0)
2
[

f
(

Z̈i + Gij∗∂kGlj∗ Ż
kŻl

)

+ Żi
]

+ e2UeGij∗∂j∗Vbh = 0 .
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Some new results on extremal and non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.
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Some new results on extremal and non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.

No differential equations remain to be solved!
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Some new results on extremal and non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .
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Some new results on extremal and non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

The solution can be found and it is

AΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,
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Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

The solution can be found and it is

AΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,

Here M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2), and one can show that the metric is

regular in all the r0
2 > 0 cases.
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients non-linear in the
charges!:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients non-linear in the
charges!:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon τ → −∞ the scalars Zi = H∗ i/H∗ 0 take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values.
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Some new results on extremal and non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients non-linear in the
charges!:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon τ → −∞ the scalars Zi = H∗ i/H∗ 0 take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values.

There is no attractor behavior in a proper sense.
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Some new results on extremal and non-extremal black holes

The structure of the extremal non-supersymmetric
solution as function of the HMs is the same as in
the supersymmetric case.

However, no simple substitution recipe could have
led to it.
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon (-)) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon (-)) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon (-)) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon (-)) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .

But, even though it is suggestive, it is not unique.
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Some new results on extremal and non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon (-)) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .

But, even though it is suggestive, it is not unique. We can also write

S±/π =
(

√

NR ±
√

NL

)2

,

with
NR ≡ M2 − |Z∞|2 , NL ≡ M2 − |Z̃∞|2 ,

so
S+S−/π

2 = (NR −NL)
2 .
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Some new results on extremal and non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:
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Some new results on extremal and non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).
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Some new results on extremal and non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.
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Some new results on extremal and non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.

There is an attractor behavior in the evaporation process.
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Some new results on extremal and non-extremal black holes

6 – H-FGK formalism for N = 2, d = 5 supergravity

Or: Where the HMs come from (The 5-dimensional case)
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Some new results on extremal and non-extremal black holes

6 – H-FGK formalism for N = 2, d = 5 supergravity

Or: Where the HMs come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .
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Some new results on extremal and non-extremal black holes

6 – H-FGK formalism for N = 2, d = 5 supergravity

Or: Where the HMs come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .
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6 – H-FGK formalism for N = 2, d = 5 supergravity

Or: Where the HMs come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .

The scalar metric gxy, and the vector kinetic matrix, aIJ , are given by

gxy = hIxh
I
y and aIJ = 3hIhJ − 2CIJKhK = hIhJ + hIxh

x
J .
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6 – H-FGK formalism for N = 2, d = 5 supergravity

Or: Where the HMs come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .

The scalar metric gxy, and the vector kinetic matrix, aIJ , are given by

gxy = hIxh
I
y and aIJ = 3hIhJ − 2CIJKhK = hIhJ + hIxh

x
J .

The bosonic action for N = 2 d = 5 supergravity with n vector supermultiplets is

I5 =

∫

5

(

R ⋆1 + 1
2gxy dφ

x ∧ ⋆dφy − 1
2aIJF

I ∧ ⋆F J + 1
3
√
3
CIJKF I ∧ F J ∧AK

)

.
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Some new results on extremal and non-extremal black holes

The FGK formalisms for black holes and black strings
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Some new results on extremal and non-extremal black holes

The FGK formalisms for black holes and black strings

This theory admits black-hole (p = 0, p̃ = 1) and black strings (p = 1, p̃ = 0)
solutions. The corresponding metric ansätze are particular cases of the general one.
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Some new results on extremal and non-extremal black holes

The FGK formalisms for black holes and black strings

This theory admits black-hole (p = 0, p̃ = 1) and black strings (p = 1, p̃ = 0)
solutions. The corresponding metric ansätze are particular cases of the general one.

The effective action is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
3 gxyφ̇

xφ̇y − e2ŨVBB + r0
2
}

,

where, in each case, we have to replace the black-brane potential VBB by the the
black-hole Vbh(φ, q) and black-string potentials







−Vbh(φ, q) ≡ aIJqIqJ = Ze
2 + 3 ∂xZe ∂

xZe ,

−Vbs(φ, p) ≡ aIJp
IpJ = Zm

2 + 3 ∂xZm ∂xZm ,

where we have defined the electric and magnetic central charges by

Ze(φ, q) ≡ hIqI , Zm(φ, p) ≡ hIp
I .
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Some new results on extremal and non-extremal black holes

7 – H-variables for black holes

We replace the original variables Ũ , φx by new ones H̃I and HI defined by

e−Ũ/2hI(φ) ≡ H̃I ,

e−ŨhI(φ) ≡ HI ,

and the new (unconstrained) function W

W(H̃) ≡ 2CIJKH̃IH̃JH̃K .

The homogeneity properties imply that

e−
3
2 Ũ = 1

2W(H) ,
hI = (W/2)−2/3HI ,

hI = (W/2)−1/3H̃I .

Changing the action to the HI variables, it becomes

− 3
2I[H] =

∫

dρ
[

∂I∂J logW
(

ḢIḢJ + qIqJ
)

− 3
2r0

2
]

.
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8 – K-variables for black strings

We introduce two new sets of variables, KI and K̃I , related to the original ones
(Ũ , φx) by

e−ŨhI(φ) ≡ KI ,

e−2ŨhI(φ) ≡ K̃I ,

and the new (unconstrained) function V

V(K) ≡ CIJKKIKJKK .

The homogeneity properties imply that

e−3Ũ = V(K) ,

hI = V
−2/3K̃I ,

hI = V
−1/3KI .

Changing the action to the KI variables, it becomes

−3I[K] =

∫

dρ
[

∂I∂J logV
(

K̇IK̇J + pIpJ
)

− 3r0
2
]

.
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Some new results on extremal and non-extremal black holes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.
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Some new results on extremal and non-extremal black holes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .
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Some new results on extremal and non-extremal black holes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.
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Some new results on extremal and non-extremal black holes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.

Multiplying the equations of motion by HK we obtain

∂I logW ḦI = 3
2r0

2 ,

which is the equation of Ũ expressed in the new variables.
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Some new results on extremal and non-extremal black holes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.

Multiplying the equations of motion by HK we obtain

∂I logW ḦI = 3
2r0

2 ,

which is the equation of Ũ expressed in the new variables.

How useful are these new variables?
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Some new results on extremal and non-extremal black holes
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Some new results on extremal and non-extremal black holes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.
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Some new results on extremal and non-extremal black holes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.

☞ A bit more difficult to see: in the extremal case r0 = 0

HI = AI + ρBI ,

always solves all the equations of motion if

∂KVbh(B, q) = 0 .

(The scalars are always ϕI = HI/H0 and on the horizon ϕI = BI/B0).
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Some new results on extremal and non-extremal black holes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.

☞ A bit more difficult to see: in the extremal case r0 = 0

HI = AI + ρBI ,

always solves all the equations of motion if

∂KVbh(B, q) = 0 .

(The scalars are always ϕI = HI/H0 and on the horizon ϕI = BI/B0).

☞ The BIs are called fake charges. Defining the fake electric central charges

Ze(φ,B) ≡ hIBI ,

it is immediate to see that the following first-order flow equations are satisfied

de−Ũ

dρ
= Ze(φ,B) ,

dφx

dρ
= −3eŨ∂xZe(φ,B) .
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Some new results on extremal and non-extremal black holes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .
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Some new results on extremal and non-extremal black holes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .

These first-order equations imply the second-order ones if Vbh(φ,B) = Vbh(φ, q).
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Some new results on extremal and non-extremal black holes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .

These first-order equations imply the second-order ones if Vbh(φ,B) = Vbh(φ, q).

Observe that the interest of these first-order equations is
merely formal since they are very difficult to integrate to
obtain complete solutions.
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Some new results on extremal and non-extremal black holes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.
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Some new results on extremal and non-extremal black holes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .
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Some new results on extremal and non-extremal black holes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .

☞ It is possible to find all the non-extremal black holes of all the theories with
diagonal ∂I∂J logW(H).
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Some new results on extremal and non-extremal black holes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .

☞ It is possible to find all the non-extremal black holes of all the theories with
diagonal ∂I∂J logW(H).

☞ It is also possible to find all the non-extremal black holes with constant scalars
of all the theories.
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Some new results on extremal and non-extremal black holes

☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .
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Some new results on extremal and non-extremal black holes

☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .

☞ These equations look identical to those of the extremal case, but the BIs are
different and the range of the coordinate ρ̂ is not enough to reach an attractor.
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Some new results on extremal and non-extremal black holes

☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .

☞ These equations look identical to those of the extremal case, but the BIs are
different and the range of the coordinate ρ̂ is not enough to reach an attractor.

☞ The first-order flow equations imply the second-order e.o.m. if

Vbh(φ,B)− Vbh(φ, q) = r0
2 .
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Some new results on extremal and non-extremal black holes

9 – Hidden conformal symmetry of non-extremal black holes

In Bertini, Cacciatori and Klemm arXiv:1106.0999 it was found that the
time-radial part of the Klein-Gordon equation in the d = 4 background of a
Schwarzschild black hole approaches the Casimir of the sl(2) algebra.

This result suggests the presence of a hidden full conformal symmetry, as in the
extremal Kerr case Guica, Hartman, Song, Strominger arXiv:0809.4266.
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Some new results on extremal and non-extremal black holes

9 – Hidden conformal symmetry of non-extremal black holes

In Bertini, Cacciatori and Klemm arXiv:1106.0999 it was found that the
time-radial part of the Klein-Gordon equation in the d = 4 background of a
Schwarzschild black hole approaches the Casimir of the sl(2) algebra.

This result suggests the presence of a hidden full conformal symmetry, as in the
extremal Kerr case Guica, Hartman, Song, Strominger arXiv:0809.4266.

Using our knowledge of the metric of a generic d = 4 black hole

ds2(4) = e2Udt2 − e−2Uγ(−1)mndx
mdxn ,

γ(−1)mndx
mdxn , ≡ dτ2

W 4
−1

+
dΩ2

−1

W 2
−1

,

dΩ2
−1 ≡ dθ2 + sin2θ dφ2 ,

W−1 =
sinh r0τ

r0
,

we can extend this result to all the static, spherically symmetric, black holes of any
ungauged supergravity (O., Shahbazi, arXiv:1204.5910).
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Some new results on extremal and non-extremal black holes

In the above background, the massless Klein-Gordon equation 2Φ = 0 can be
written in the form

e−2U∂2
tΦ− e2UW−1

4∂2
τΦ− e2UW−1

2∆S2Φ = 0 ,

where ∆S2 is the Laplacian on the round S2 of unit radius.

September 11th 2012 CERN TH Division Page 40



Some new results on extremal and non-extremal black holes

In the above background, the massless Klein-Gordon equation 2Φ = 0 can be
written in the form

e−2U∂2
tΦ− e2UW−1

4∂2
τΦ− e2UW−1

2∆S2Φ = 0 ,

where ∆S2 is the Laplacian on the round S2 of unit radius.

Using the separation ansatz

Φ = e−iωtR(τ)Y l
m(θ, φ) , and ∆S2Y l

m(θ, φ) = −l(l + 1)Y l
m(θ, φ) ,

we find

ω2e−4UW−1
−2R(τ) +W−1

2∂2
τR(τ) = l(l + 1)R(τ) ,
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Some new results on extremal and non-extremal black holes

In the above background, the massless Klein-Gordon equation 2Φ = 0 can be
written in the form

e−2U∂2
tΦ− e2UW−1

4∂2
τΦ− e2UW−1

2∆S2Φ = 0 ,

where ∆S2 is the Laplacian on the round S2 of unit radius.

Using the separation ansatz

Φ = e−iωtR(τ)Y l
m(θ, φ) , and ∆S2Y l

m(θ, φ) = −l(l + 1)Y l
m(θ, φ) ,

we find

ω2e−4UW−1
−2R(τ) +W−1

2∂2
τR(τ) = l(l + 1)R(τ) ,

Then, we can rewrite the Klein-Gordon equation as

K4Φ = l(l + 1)Φ , with K4 ≡ −e−4UW−1
−2∂2

t +W−1
2∂2

τ .
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Some new results on extremal and non-extremal black holes

To make manifest the hidden conformal symmetry we have to Find a representation
of sl(2) in terms of differential operators in the t− τ submanifolds, i.e. find three
real Lm, m = 0,±1

Lm = amt(t, τ)∂t + amτ (t, τ)∂τ ,

such that:
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Some new results on extremal and non-extremal black holes

To make manifest the hidden conformal symmetry we have to Find a representation
of sl(2) in terms of differential operators in the t− τ submanifolds, i.e. find three
real Lm, m = 0,±1

Lm = amt(t, τ)∂t + amτ (t, τ)∂τ ,

such that:

☞ Their Lie brackets are those of sl(2)

[Lm, Ln] = (m− n)Lm+n ,
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Some new results on extremal and non-extremal black holes

To make manifest the hidden conformal symmetry we have to Find a representation
of sl(2) in terms of differential operators in the t− τ submanifolds, i.e. find three
real Lm, m = 0,±1

Lm = amt(t, τ)∂t + amτ (t, τ)∂τ ,

such that:

☞ Their Lie brackets are those of sl(2)

[Lm, Ln] = (m− n)Lm+n ,

☞ Their quadratic Casimir coincides with the differential operator K4

H2 ≡ L2
0 − 1

2 (L1L−1 + L−1L1) = K4 .
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Some new results on extremal and non-extremal black holes

Substituting in the equations, the ansatz

L1 = l(t) [−m(τ)∂t + n(τ)∂τ ] ,

L0 = − c

r0
∂t ,

L−1 = −l−1(t) [m(τ)∂t + n(τ)∂τ ] .

we find

l(t) = aer0t/c , n2(τ) = W−1
2 , m(τ) =

c

r0
cosh r0τ , and c2 =

(

e−2UW−1
−2

)2
.
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Some new results on extremal and non-extremal black holes

Substituting in the equations, the ansatz

L1 = l(t) [−m(τ)∂t + n(τ)∂τ ] ,

L0 = − c

r0
∂t ,

L−1 = −l−1(t) [m(τ)∂t + n(τ)∂τ ] .

we find

l(t) = aer0t/c , n2(τ) = W−1
2 , m(τ) =

c

r0
cosh r0τ , and c2 =

(

e−2UW−1
−2

)2
.

The last equation is only acceptable in the two ranges of values of τ in which
eU ∼ 1/W−1: the two near-horizon regions τ → ∓∞ in which

(

e−2UW−1
−2

)2 τ→∓∞∼
(

A±
4π

)2

+O(e±r0τ ) = c2 +O(e±r0τ ) .

September 11th 2012 CERN TH Division Page 42-a



Some new results on extremal and non-extremal black holes

Conclusion: in any 4-dimensional, charged, static, black-hole solution of an
ungauged supergravity there are two triplets of vector fields L±

m, m = 0,±1 given
by

L±
1 = −er0πt/S±

r0

(

S±
π

cosh (r0τ)∂t + sinh (r0τ)∂τ

)

L±
0 = − S±

r0π
∂t ,

L±
−1 = −e−r0πt/S±

r0

(

S±
π

cosh (r0τ)∂t − sinh (r0τ)∂τ

)

,

where S± = A±

4 , which generate two sl(2) algebras whose quadratic Casimirs

H± 2 ≡ (L±
0)

2 − 1
2

(

L±
1L

±
−1 + L±

−1L
±
1

)

,

approximate the massless Klein-Gordon equation in the two near-horizon regions:

K4Φ =
{

−e−4UW−1
−2∂2

t +W−1
2∂2

τ

}

Φ
τ→∓∞−→ W−1

{

− (S±/π)
2
∂2
t + ∂2

τ

}

Φ = H± 2Φ .
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Some new results on extremal and non-extremal black holes

The extremal limit r0 → 0 is singular because taking the near-horizon limit and of
taking the extremal limit r0 → 0 do not commute.
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Some new results on extremal and non-extremal black holes

The extremal limit r0 → 0 is singular because taking the near-horizon limit and of
taking the extremal limit r0 → 0 do not commute.

The sl(2) algebra can be extended to a complete Witt algebra, (a Virasoro algebra
with no central charges):

L±
m = −emr0πt/S±

r0

(

S±
π

cosh (mr0τ)∂t + sinh (mr0τ)∂τ

)

.
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Some new results on extremal and non-extremal black holes

The extremal limit r0 → 0 is singular because taking the near-horizon limit and of
taking the extremal limit r0 → 0 do not commute.

The sl(2) algebra can be extended to a complete Witt algebra, (a Virasoro algebra
with no central charges):

L±
m = −emr0πt/S±

r0

(

S±
π

cosh (mr0τ)∂t + sinh (mr0τ)∂τ

)

.

These results can easily be extended to d-dimensional black
holes using the general form of the black-hole metric etc.
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Some new results on extremal and non-extremal black holes

The extremal limit r0 → 0 is singular because taking the near-horizon limit and of
taking the extremal limit r0 → 0 do not commute.

The sl(2) algebra can be extended to a complete Witt algebra, (a Virasoro algebra
with no central charges):

L±
m = −emr0πt/S±

r0

(

S±
π

cosh (mr0τ)∂t + sinh (mr0τ)∂τ

)

.

These results can easily be extended to d-dimensional black
holes using the general form of the black-hole metric etc.

But the main question is: what is the meaning of this sym-
metry? (Is it really a symmetry? What of?) Can we use it
to compute entropies?
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Some new results on extremal and non-extremal black holes

10 – Hyperscaling-violating Lifshitz-like solutions

(Bueno, Chemissany, Meessen, O., Shahbazi, in preparation)

These solutions have spatially homogeneous metrics of the form

ds2d+2 = ℓ2r−2(d−θ)/d
[

r−2(z−1)dt2 − dr2 − dxidxi
]

,

which are covariant under the scale transformations

xi → λxi , t → λzt , r → λr , ds2d+2 → λ2θ/dds2d+2 ,

where λ is a dimensionless parameter, ℓ is the Lifshitz radius, z is the dynamical
critical exponent and θ is the hyperscaling violating exponent.
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Some new results on extremal and non-extremal black holes

10 – Hyperscaling-violating Lifshitz-like solutions

(Bueno, Chemissany, Meessen, O., Shahbazi, in preparation)

These solutions have spatially homogeneous metrics of the form

ds2d+2 = ℓ2r−2(d−θ)/d
[

r−2(z−1)dt2 − dr2 − dxidxi
]

,

which are covariant under the scale transformations

xi → λxi , t → λzt , r → λr , ds2d+2 → λ2θ/dds2d+2 ,

where λ is a dimensionless parameter, ℓ is the Lifshitz radius, z is the dynamical
critical exponent and θ is the hyperscaling violating exponent.

☞ The metric z = 1 and θ = 0 this metric is AdSd+2 and is holographically related
to conformal theories.
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10 – Hyperscaling-violating Lifshitz-like solutions

(Bueno, Chemissany, Meessen, O., Shahbazi, in preparation)

These solutions have spatially homogeneous metrics of the form

ds2d+2 = ℓ2r−2(d−θ)/d
[

r−2(z−1)dt2 − dr2 − dxidxi
]

,

which are covariant under the scale transformations

xi → λxi , t → λzt , r → λr , ds2d+2 → λ2θ/dds2d+2 ,

where λ is a dimensionless parameter, ℓ is the Lifshitz radius, z is the dynamical
critical exponent and θ is the hyperscaling violating exponent.

☞ The metric z = 1 and θ = 0 this metric is AdSd+2 and is holographically related
to conformal theories.

☞ The metrics with z 6= 1 and θ = 0 this metric is Lifshitz (Lf) and is
holographically related to scale- but not conformally-invariant quantum theories.
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10 – Hyperscaling-violating Lifshitz-like solutions

(Bueno, Chemissany, Meessen, O., Shahbazi, in preparation)

These solutions have spatially homogeneous metrics of the form

ds2d+2 = ℓ2r−2(d−θ)/d
[

r−2(z−1)dt2 − dr2 − dxidxi
]

,

which are covariant under the scale transformations

xi → λxi , t → λzt , r → λr , ds2d+2 → λ2θ/dds2d+2 ,

where λ is a dimensionless parameter, ℓ is the Lifshitz radius, z is the dynamical
critical exponent and θ is the hyperscaling violating exponent.

☞ The metric z = 1 and θ = 0 this metric is AdSd+2 and is holographically related
to conformal theories.

☞ The metrics with z 6= 1 and θ = 0 this metric is Lifshitz (Lf) and is
holographically related to scale- but not conformally-invariant quantum theories.

☞ The metrics with θ 6= 0 hyperscaling-violating Lifshitz-like metrics (hvLf) are
holographically related to theories in which the would-be scale symmetry is
violated.
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Some new results on extremal and non-extremal black holes

We are going to construct hvLf metrics using the FGK formalism and the following
observation: if we use the metrics

ds2(4) = e2Udt2 − e−2Uγκmndx
mdxn ,

γκmndx
mdxn , ≡ dτ2

Wκ
4
+

dΩ2
κ

W 2
κ

,

with dΩ2
κ,Wκ given by one of these three cases

dΩ2
−1 ≡ dϑ2 + sin2ϑdφ2 , W−1 = sinh r0τ

r0
,

dΩ2
+1 ≡ dϑ2 + sinh2ϑdφ2 , W1 = cosh r0τ

r0
,

dΩ2
0 ≡ dϑ2 + dφ2 , W±

0 = ae∓r0τ ,

the effective equations of motion satisfied by U(τ) and φi(τ) are the same!

September 11th 2012 CERN TH Division Page 46



Some new results on extremal and non-extremal black holes

We are going to construct hvLf metrics using the FGK formalism and the following
observation: if we use the metrics

ds2(4) = e2Udt2 − e−2Uγκmndx
mdxn ,

γκmndx
mdxn , ≡ dτ2

Wκ
4
+

dΩ2
κ

W 2
κ

,

with dΩ2
κ,Wκ given by one of these three cases

dΩ2
−1 ≡ dϑ2 + sin2ϑdφ2 , W−1 = sinh r0τ

r0
,

dΩ2
+1 ≡ dϑ2 + sinh2ϑdφ2 , W1 = cosh r0τ

r0
,

dΩ2
0 ≡ dϑ2 + dφ2 , W±

0 = ae∓r0τ ,

the effective equations of motion satisfied by U(τ) and φi(τ) are the same!

Then, using U(τ) and φi(τ) from a black-hole solution (κ = −1) we can get three
new solutions. We are going to consider only the κ = 0 ones.

September 11th 2012 CERN TH Division Page 46-a



Some new results on extremal and non-extremal black holes

What are the general features of the solutions obtained in this way?
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What are the general features of the solutions obtained in this way?

They are related to those of the metric function e−2U in black-hole solutions:
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What are the general features of the solutions obtained in this way?

They are related to those of the metric function e−2U in black-hole solutions:

☞ For asymptotically-flat black holes is

lim
τ→0−

e−2U = 1 .
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Some new results on extremal and non-extremal black holes

What are the general features of the solutions obtained in this way?

They are related to those of the metric function e−2U in black-hole solutions:

☞ For asymptotically-flat black holes is

lim
τ→0−

e−2U = 1 .

☞ When τ approaches the horizons τ → ∓∞,

e−2U ∼ S±
4πr02

e∓2r0τ ,

In the spherically-symmetric case the spacetime metric approaches a product of
a 2-dimensional Rindler metric Ri2 and a 2-sphere S2 of area 4S±. Both
horizons satisfy r0 = 2S±T±
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Some new results on extremal and non-extremal black holes

What are the general features of the solutions obtained in this way?

They are related to those of the metric function e−2U in black-hole solutions:

☞ For asymptotically-flat black holes is

lim
τ→0−

e−2U = 1 .

☞ When τ approaches the horizons τ → ∓∞,

e−2U ∼ S±
4πr02

e∓2r0τ ,

In the spherically-symmetric case the spacetime metric approaches a product of
a 2-dimensional Rindler metric Ri2 and a 2-sphere S2 of area 4S±. Both
horizons satisfy r0 = 2S±T±

☞ e−2U vanishes for some value of τ s ∈ (0,+∞) at which the physical singularity of
the black-hole lies. The generic behaviour of the black-hole metric near
the singularities has not been studied. We have to do it case by case.
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Some new results on extremal and non-extremal black holes

We can construct two κ = 0 metrics, but we only study one:

ds2(−) = e2Udt2 − e−2U
[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The general properties of e−2U imply in the near-horizon limit τ → −∞
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We can construct two κ = 0 metrics, but we only study one:

ds2(−) = e2Udt2 − e−2U
[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The general properties of e−2U imply in the near-horizon limit τ → −∞

ds2(−) ∼
4πr0

2

S+
e2r0τdt2 − S+

4πr02
e−2r0τ

[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.
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Some new results on extremal and non-extremal black holes

We can construct two κ = 0 metrics, but we only study one:

ds2(−) = e2Udt2 − e−2U
[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The general properties of e−2U imply in the near-horizon limit τ → −∞

ds2(−) ∼
4πr0

2

S+
e2r0τdt2 − S+

4πr02
e−2r0τ

[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The change of coordinates r ≡ e−r0τ , t̃ ≡ 4πr0
2

S+
t/r0 , x1 ≡ ϑ , x2 ≡ φ brings the

metric to the form

ds2(−) ∼
S+

4π
r4

[

r−6dt̃ 2 − dr2 − dxidxi
]

,

which is a hvLf metric with z = 4, θ = 6 and Lifshitz radius ℓ2 ∼ S+ up to
dimensionless factors (functions of the quotient S+/r0

2).
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We can construct two κ = 0 metrics, but we only study one:

ds2(−) = e2Udt2 − e−2U
[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The general properties of e−2U imply in the near-horizon limit τ → −∞

ds2(−) ∼
4πr0

2

S+
e2r0τdt2 − S+

4πr02
e−2r0τ

[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The change of coordinates r ≡ e−r0τ , t̃ ≡ 4πr0
2

S+
t/r0 , x1 ≡ ϑ , x2 ≡ φ brings the

metric to the form

ds2(−) ∼
S+

4π
r4

[

r−6dt̃ 2 − dr2 − dxidxi
]

,

which is a hvLf metric with z = 4, θ = 6 and Lifshitz radius ℓ2 ∼ S+ up to
dimensionless factors (functions of the quotient S+/r0

2).

ds2(−) is regular at τ = 0. Spatial infinity is not there and we can analytically extend

the metric up to τ s.
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We can construct two κ = 0 metrics, but we only study one:

ds2(−) = e2Udt2 − e−2U
[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The general properties of e−2U imply in the near-horizon limit τ → −∞

ds2(−) ∼
4πr0

2

S+
e2r0τdt2 − S+

4πr02
e−2r0τ

[

e−4r0τr0
4dτ2 + e−2r0τr0

2
(

dϑ2 + dφ2
)]

.

The change of coordinates r ≡ e−r0τ , t̃ ≡ 4πr0
2

S+
t/r0 , x1 ≡ ϑ , x2 ≡ φ brings the

metric to the form

ds2(−) ∼
S+

4π
r4

[

r−6dt̃ 2 − dr2 − dxidxi
]

,

which is a hvLf metric with z = 4, θ = 6 and Lifshitz radius ℓ2 ∼ S+ up to
dimensionless factors (functions of the quotient S+/r0

2).

ds2(−) is regular at τ = 0. Spatial infinity is not there and we can analytically extend

the metric up to τ s.

In the other near-horizon limitτ → +∞ the metric approaches Ri2 × R
2.
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Some new results on extremal and non-extremal black holes

To study a near-singularity limit we consider the solution whose e−2U is that of the
usual Reissner-Nordström black hole. In the usual coordinates, the new solution is

ds2(±) =
(r − r+)(r − r−)

r2
dt2 − r0

4r2

(r − r±)(r − r∓)5
dr2 − r0

2r2

(r − r∓)2
(dϑ2 + dφ2) .
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Some new results on extremal and non-extremal black holes

To study a near-singularity limit we consider the solution whose e−2U is that of the
usual Reissner-Nordström black hole. In the usual coordinates, the new solution is

ds2(±) =
(r − r+)(r − r−)

r2
dt2 − r0

4r2

(r − r±)(r − r∓)5
dr2 − r0

2r2

(r − r∓)2
(dϑ2 + dφ2) .

It is immediate to see that in the r → 0 limit it can be put in the hvLf form with
z = 3, θ = 4.
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Some new results on extremal and non-extremal black holes

To study a near-singularity limit we consider the solution whose e−2U is that of the
usual Reissner-Nordström black hole. In the usual coordinates, the new solution is

ds2(±) =
(r − r+)(r − r−)

r2
dt2 − r0

4r2

(r − r±)(r − r∓)5
dr2 − r0

2r2

(r − r∓)2
(dϑ2 + dφ2) .

It is immediate to see that in the r → 0 limit it can be put in the hvLf form with
z = 3, θ = 4.

Actually, in the r → 0 limit, the behaviour of this metric is analogous to that of the
standard Reissner-Nordström black hole in a small patch around ϑ = π/2 where
dϑ2 + sin2 ϑdφ2 ∼ dϑ2 + dφ2:

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2(dϑ2 + dφ2)

∼ r+r−
r2

dt2 − r2

r+r−
dr2 − r2(dϑ2 + dφ2) ,

i.e. hvLf with z = 3, θ = 4 and ℓ =
√
r+r−.
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Some new results on extremal and non-extremal black holes

We can also take the near-horizon limit of the Schwarzschild metric with negative
mass (and a naked, timelike singularity) in a neighborhood of ϑ = π/2:

ds2 =

(

1 +
2|M |
r

)

dt2 −
(

1 +
2|M |
r

)−1

dr2 − r2(dθ2 + dφ2)

∼ 2|M |
r

dt2 − r

2|M |dr
2 − r2(dϑ2 + dφ2) ,

which is an hvLf metric with z = 4, θ = 6 and ℓ = |M |/2.
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Some new results on extremal and non-extremal black holes

We can also take the near-horizon limit of the Schwarzschild metric with negative
mass (and a naked, timelike singularity) in a neighborhood of ϑ = π/2:

ds2 =

(

1 +
2|M |
r

)

dt2 −
(

1 +
2|M |
r

)−1

dr2 − r2(dθ2 + dφ2)

∼ 2|M |
r

dt2 − r

2|M |dr
2 − r2(dϑ2 + dφ2) ,

which is an hvLf metric with z = 4, θ = 6 and ℓ = |M |/2.

This suggests the possibility of finding a quantum system
dual to these singularities...
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11 – Conclusions
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Some new results on extremal and non-extremal black holes

11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.
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11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).
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11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.
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11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.
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11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

We have proven that part of our ansatz is completely general, constructing a
formalism (“H-FGK”) that simplifies the construction of extremal and
non-extremal (black-hole and also black-string solutions in d = 5.
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11 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

We have proven that part of our ansatz is completely general, constructing a
formalism (“H-FGK”) that simplifies the construction of extremal and
non-extremal (black-hole and also black-string solutions in d = 5.

⋆ We have shown the power of this approach finding very general solutions and
results such as the first-order flow equations for extremal and non-extremal
objects.
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Some new results on extremal and non-extremal black holes

⋆ We have shown that all the single, static, charged black holes of all ungauged
supergravities have a hidden sl(2) invariance that may be part of a full
conformal invariance.
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Some new results on extremal and non-extremal black holes

⋆ We have shown that all the single, static, charged black holes of all ungauged
supergravities have a hidden sl(2) invariance that may be part of a full
conformal invariance.

⋆ We have used the FGK formalism to construct new solutions that asymptote
hvLf spacetimes, and we have shown that the near-singularity limits of known
solutions also have this behaviour. Is there a holographic dual of these
singularities?
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Some new results on extremal and non-extremal black holes

We are closer to determining the general form of all single,
static, black-hole and black-string solutions of N = 2 ,d = 4, 5
theories.

September 11th 2012 CERN TH Division Page 53


	Introduction
	FGK formalism for black p-branes in d dimensions
	Construction of explicit solutions: extremal supersymmetric
	Construction of explicit solutions: non-extremal
	A complete example: CPn model
	H-FGK formalism for N=2, d=5 supergravity
	H-variables for black holes
	K-variables for black strings
	Hidden conformal symmetry of non-extremal black holes
	Hyperscaling-violating Lifshitz-like solutions
	Conclusions

