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Non-extremal black holes and black branes

1 – Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about
the extremal supersymmetric ones:

☞ We know how to construct all the extremal supersymmetric ones in several
d = 4, 5 ungauged supergravities .

☞ We know some things about the extremal non-supersymmetric ones through
their attractors, but, in general, we do not know how to construct the full
solutions.

☞ We do not know much about the non-extremal ones, which should be closer to
reality. Only a handful of examples.

In this talk I will present a general ansatz and a general
formalism to construct non-extremal black-hole and black-
brane solutions and we will study some examples. First, we
will review some general results.
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Non-extremal black holes and black branes

We are interested in explicit solutions of non-extremal black holes and
black branes. We are going to use a generalization of the FGK for-
malism (Ferrara-Gibbons-Kallosh, 1997) which has been used mainly
to study extremal black-hole solutions in only 4 dimensions.
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Non-extremal black holes and black branes

We are interested in explicit solutions of non-extremal black holes and
black branes. We are going to use a generalization of the FGK for-
malism (Ferrara-Gibbons-Kallosh, 1997) which has been used mainly
to study extremal black-hole solutions in only 4 dimensions.

We start by reviewing the FGK formalism

for black holes and black branes.
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Non-extremal black holes and black branes

2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars φi and
(p+ 1)-form potentials AΛ

(p+1) coupled to gravity:

I =

∫

ddx
√

|g|
{

R + Gij(φ)∂µφ
i∂µφj

+4 (−1)p

(p+2)!

[

IΛΣ(φ)F
Λ
(p+2) · FΣ

(p+2) + ξ2RΛΣ(φ)F
Λ
(p+2) ⋆ F

Σ
(p+2)

]}

,

where the last term occurs only when p = p̃ = (d− 4)/2 and

RΛΣ(φ) = −ξ2RΣΛ(φ) , ξ2 = (−1)
d
2+1 = (−1)p+1 .
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2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars φi and
(p+ 1)-form potentials AΛ

(p+1) coupled to gravity:

I =

∫

ddx
√

|g|
{

R + Gij(φ)∂µφ
i∂µφj

+4 (−1)p

(p+2)!

[

IΛΣ(φ)F
Λ
(p+2) · FΣ

(p+2) + ξ2RΛΣ(φ)F
Λ
(p+2) ⋆ F

Σ
(p+2)

]}

,

where the last term occurs only when p = p̃ = (d− 4)/2 and

RΛΣ(φ) = −ξ2RΣΛ(φ) , ξ2 = (−1)
d
2+1 = (−1)p+1 .

We want to find solutions describing single, static, charged, regular, black p-branes
with flat worldvolume in the directions ~y(p) = (y1, · · · , yp) living in a spacetime of
d = p+ p̃+ 4 dimensions.
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Non-extremal black holes and black branes

Our general ansatz for the metric only contains an independent function Ũ(ρ).

ds2(d) = e
2

p+1 Ũ
[

e
2p

p+1 r0ρdt2 − e−
2

p+1 r0ρd~y 2
(p)

]

− e−
2

p̃+1 Ũγ(p̃+3)mndx
mdxn ,

γ(p̃+3)mndx
mdxn ≡

[

r0
sinh (r0ρ)

]
2

p̃+1

[

(

r0
sinh (r0ρ)

)2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

,
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➳ In these coordinates the (outer) event horizon lyes at ρ → +∞ and spatial
infinity at ρ → 0.
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Our general ansatz for the metric only contains an independent function Ũ(ρ).

ds2(d) = e
2

p+1 Ũ
[

e
2p

p+1 r0ρdt2 − e−
2

p+1 r0ρd~y 2
(p)

]

− e−
2
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]
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[

(

r0
sinh (r0ρ)

)2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

,

➳ In these coordinates the (outer) event horizon lyes at ρ → +∞ and spatial
infinity at ρ → 0.

➳ The interior of the inner (Cauchy) horizon the black hole is described by a
metric obtained from the one above by the (non-coordinate) transformation

ρ −→ −̺ , e−Ũ(ρ) −→ −e−Ũ(−̺) .

➳ The inner horizon at ̺ → +∞ and the singularity at ̺ = ̺sing > 0.
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Non-extremal black holes and black branes

In the general metric r0 is always the non-extremality parameter.
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Non-extremal black holes and black branes

In the general metric r0 is always the non-extremality parameter.

If S̃ is the normalized entropy density per unit worldvolume

S̃ ≡ Ahp̃+2

ω(p̃+2)

and T is the Hawking temperature

(2r0)
1

p+1 =
4π

p̃+ 1
T S̃

(d−2)
(p+1)(p̃+2) .

(r0 = 2ST for 4-dimensional black holes.)
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Non-extremal black holes and black branes

In the general metric r0 is always the non-extremality parameter.

If S̃ is the normalized entropy density per unit worldvolume

S̃ ≡ Ahp̃+2

ω(p̃+2)

and T is the Hawking temperature

(2r0)
1

p+1 =
4π

p̃+ 1
T S̃

(d−2)
(p+1)(p̃+2) .

(r0 = 2ST for 4-dimensional black holes.)

This relation is true with the same r0
for both inner and outer horizons.
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Non-extremal black holes and black branes

With this formalism we will be able to compute

the entropies of the inner (−) and outer (+) horizons

and check that the product

S̃+S̃−

is a moduli-independent combination

of conserved quantities.

May 31st 2012 Branes and Black Holes Workshop, London Page 6



Non-extremal black holes and black branes

For regular (S̃ > 0) black branes, in the r0 → 0 limit we find T → 0.
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Non-extremal black holes and black branes

For regular (S̃ > 0) black branes, in the r0 → 0 limit we find T → 0.

In this extremal limit we get the standard metric for extremal p-branes

ds2(d) = e
2Ũ
p+1

[

dt2 − d~y 2
(p)

]

− e−
2Ũ
p̃+1

ρ
2

p̃+1

[

1

ρ2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

= e
2Ũ
p+1

[

dt2 − d~y 2
(p)

]

− e−
2Ũ
p̃+1 d~x 2

(p̃+3) , with |~xp̃+3| ≡ ρ−
1

p̃+1 .
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2Ũ
p̃+1

ρ
2

p̃+1

[

1

ρ2
dρ2

(p̃+ 1)2
+ dΩ2

(p̃+2)

]

= e
2Ũ
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The non-extremality parameter r0 encodes a
great deal of information.

We now r0 as a function of the physical parameters (mass, charges, moduli ) only in
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☞ r0 = M for the Schwarzschild black hole.

☞ r0 =
√

M2 − (q2 + p2) for the Reissner -Nordström black hole.
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For regular (S̃ > 0) black branes, in the r0 → 0 limit we find T → 0.
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1
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The non-extremality parameter r0 encodes a
great deal of information.

We now r0 as a function of the physical parameters (mass, charges, moduli ) only in
a few cases:

☞ r0 = M for the Schwarzschild black hole.

☞ r0 =
√

M2 − (q2 + p2) for the Reissner -Nordström black hole.

What is r0 in more general cases?
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Non-extremal black holes and black branes

The effective action for Ũ(ρ), φi(ρ) is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where
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Non-extremal black holes and black branes

The effective action for Ũ(ρ), φi(ρ) is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where

(QM ) =

(

pΛ

qΛ

)

(MMN ) ≡





(I − ξ2RI−1R)ΛΣ ξ2(RI−1)Λ
Σ

−(I−1R)ΛΣ (I−1)ΛΣ



 ,

are O(n, n) (resp. Sp(n, n)) vector and matrix when ξ2 = +1 (resp. −1). (In general
RΛΣ = pΛ = 0 and the duality group is just SO(n)).
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The effective action for Ũ(ρ), φi(ρ) is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
d−2 Gij φ̇

iφ̇j − e2ŨVBB + r0
2
}

,

where we have defined the black-brane potential

−VBB(φ,Q) ≡ − 1
2Q

MQNMMN (φ) ,

where

(QM ) =

(

pΛ

qΛ

)

(MMN ) ≡





(I − ξ2RI−1R)ΛΣ ξ2(RI−1)Λ
Σ

−(I−1R)ΛΣ (I−1)ΛΣ



 ,

are O(n, n) (resp. Sp(n, n)) vector and matrix when ξ2 = +1 (resp. −1). (In general
RΛΣ = pΛ = 0 and the duality group is just SO(n)).

Finding a p-black brane in d dimensions with charges p, q is equiv-
alent to solving the above mechanical system for Ũ(ρ), φi(ρ).
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Non-extremal black holes and black branes

We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.
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We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.

For extremal (r0 = 0) black branes:

☞ The values of the scalars on the event horizon φi
h are critical points of the

black-brane potential
∂i VBB|φh

= 0 .
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φi
h = φi

h(φ∞, p, q) , φi
∞ ≡ lim
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but in many cases φi
h = φi
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Non-extremal black holes and black branes

We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.

For extremal (r0 = 0) black branes:

☞ The values of the scalars on the event horizon φi
h are critical points of the

black-brane potential
∂i VBB|φh

= 0 .

The general solution (attractor) is

φi
h = φi

h(φ∞, p, q) , φi
∞ ≡ lim

ρ→0+
φi(ρ) ,

but in many cases φi
h = φi

h(p, q) (true attractor)

☞ The value of the black-brane potential at the critical points gives the entropy
density:

S̃ = |VBB(φh, q, p)|
p̃+2

2(p̃+1) = S̃(p, q) ,

which is amenable to a microscopic interpretation.
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Non-extremal black holes and black branes

We can now use the equations of motion to derive general results for black branes,
generalizing those obtained by FGK for 4-dimensional black holes.

For extremal (r0 = 0) black branes:

☞ The values of the scalars on the event horizon φi
h are critical points of the

black-brane potential
∂i VBB|φh

= 0 .

The general solution (attractor) is

φi
h = φi

h(φ∞, p, q) , φi
∞ ≡ lim

ρ→0+
φi(ρ) ,

but in many cases φi
h = φi

h(p, q) (true attractor)

☞ The value of the black-brane potential at the critical points gives the entropy
density:

S̃ = |VBB(φh, q, p)|
p̃+2

2(p̃+1) = S̃(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdSp+2 × Sp̃+2 with the AdSp+2 and Sp̃+2

radii both equal to S̃1/2.
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Non-extremal black holes and black branes

Each critical point yields a possible extremal black-hole
solution and an AdSp+2 × Sp̃+2 geometry. One can go a
long way in the study of extremal black holes with the
attractor only, ignoring the full explicit solution.
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Non-extremal black holes and black branes

Each critical point yields a possible extremal black-hole
solution and an AdSp+2 × Sp̃+2 geometry. One can go a
long way in the study of extremal black holes with the
attractor only, ignoring the full explicit solution.

For r0 6= 0 one can prove the following extremality bound:

r0
2 =

[(p+ 1)(p̃+ 2)T p + p(p̃+ 1)r0]
2

(d− 2)2
+

(p+ 1)(p̃+ 2)

(d− 2)
Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,
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Non-extremal black holes and black branes

Each critical point yields a possible extremal black-hole
solution and an AdSp+2 × Sp̃+2 geometry. One can go a
long way in the study of extremal black holes with the
attractor only, ignoring the full explicit solution.

For r0 6= 0 one can prove the following extremality bound:

r0
2 =

[(p+ 1)(p̃+ 2)T p + p(p̃+ 1)r0]
2

(d− 2)2
+

(p+ 1)(p̃+ 2)

(d− 2)
Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,

However, this expression is useless!
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Furthermore, in the general case, there is no attractor mechanism for the scalars and
the entropy is unrelated to the black brane potential.
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(d− 2)2
+

(p+ 1)(p̃+ 2)

(d− 2)
Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(T p, φ
i
∞, q, p) (secondary hair) are

allowed for regular black branes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor mechanism for the scalars and
the entropy is unrelated to the black brane potential.

In the non-extremal case we need the complete explicit solution.
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Non-extremal black holes and black branes

3 – Construction of explicit solutions: extremal supersymmetric
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Non-extremal black holes and black branes

3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.
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Non-extremal black holes and black branes

3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.
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Non-extremal black holes and black branes

3 – Construction of explicit solutions: extremal supersymmetric

Our construction of non-extremal black brane solutions is based on the construction
of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review the black holes of (ungauged)

N = 2 d = 4 Supergravity coupled to vector multiplets.
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Non-extremal black holes and black branes

In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ ,

where Z is the central charge of the theory

Z(φ, p, q) ≡ 〈V(φ) | Q 〉 ≡ 〈
(

LΛ

MΛ

)

|
(

pΛ

qΛ

)

〉 ≡ pΛMΛ(φ)− qΛLΛ(φ) .
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In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ ,

where Z is the central charge of the theory

Z(φ, p, q) ≡ 〈V(φ) | Q 〉 ≡ 〈
(

LΛ

MΛ

)

|
(

pΛ

qΛ

)

〉 ≡ pΛMΛ(φ)− qΛLΛ(φ) .

Direct integration is not easy but

There is a recipe to construct all the BPS ones.

(Behrndt, Lüst & Sabra (1997), Denef (2000), Lopes Cardoso, de Wit,
Kappeli & Mohaupt, Meessen, O. (2006))
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Non-extremal black holes and black branes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .
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Non-extremal black holes and black branes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes (τ ≡ −ρ):





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0
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1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes (τ ≡ −ρ):





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0

3. R is to be found from I by solving the stabilization equations.
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1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes (τ ≡ −ρ):





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0

3. R is to be found from I by solving the stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.
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1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes (τ ≡ −ρ):





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞pΛ = 0

3. R is to be found from I by solving the stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.

5. The function U(τ) of the FGK formalism is given by

e−2U = 〈R | I 〉 = IΛRΛ − IΛRΛ .
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Non-extremal black holes and black branes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

, Z∞ ≡ Z(φ∞, p, q) , VM
∞ ≡ VM (φ∞) .
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|Z∞|

)

, Z∞ ≡ Z(φ∞, p, q) , VM
∞ ≡ VM (φ∞) .

Then, to construct the most general static BPS solution of a given theory using this
recipe one just has to solve stabilization equations, which can prove to be very
difficult.
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∞ ≡ VM (φ∞) .

Then, to construct the most general static BPS solution of a given theory using this
recipe one just has to solve stabilization equations, which can prove to be very
difficult.

One can check in the explicit solutions all the properties predicted by the FGK
formalism.
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Non-extremal black holes and black branes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

, Z∞ ≡ Z(φ∞, p, q) , VM
∞ ≡ VM (φ∞) .

Then, to construct the most general static BPS solution of a given theory using this
recipe one just has to solve stabilization equations, which can prove to be very
difficult.

One can check in the explicit solutions all the properties predicted by the FGK
formalism.

In this case the complete explicit solutions do not give much more information than
the attractors, but they are going to be used as starting point for the construction of
non-extremal solutions.
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Non-extremal black holes and black branes

4 – Construction of explicit solutions: non-extremal
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Non-extremal black holes and black branes

4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):
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Non-extremal black holes and black branes

4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,
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Non-extremal black holes and black branes

4 – Construction of explicit solutions: non-extremal

The following prescription to deform the extremal supersymmetric solutions of N = 2
d = 4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,

Then, the non-extremal solution is given by

U(τ) = Ue[H(τ)] + r0τ , Zi(τ) = Zi
e[H(τ)] ,

where now the functions H are assumed to be of the form

HM = aM + bM e2r0τ ,

and the constants aM , bM have to be determined by explicitly solving the e.o.m.
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Non-extremal black holes and black branes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.
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Non-extremal black holes and black branes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.
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some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).
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Non-extremal black holes and black branes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effec-
tive action using the HM (τ) as variables that replace U(τ) and
φi(τ) (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan
arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shah-
bazi arXiv:1112.3332). This confirms our hypothesis.
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➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ Although there are some contrary claims in the literature, it is hard to imagine
how it cannot be true if the most general family of solutions has to be
duality-invariant and has to have the right extremal limits.

➳ Experience shows that the hypothesis is true even in more general
supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effec-
tive action using the HM (τ) as variables that replace U(τ) and
φi(τ) (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan
arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shah-
bazi arXiv:1112.3332). This confirms our hypothesis.

More on this, later.
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Non-extremal black holes and black branes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.
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Non-extremal black holes and black branes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non− extremal, non− supersymmetric

Extremal, non− supersymmetric
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Non-extremal black holes and black branes

5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .
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(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),
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add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

May 31st 2012 Branes and Black Holes Workshop, London Page 18-b



Non-extremal black holes and black branes

5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .
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Non-extremal black holes and black branes

5 – A complete example: CP
n

model

This model has n scalars Zi that parametrize the coset space SU(1, n)/SU(n). We
add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .

It is convenient to define the complex charge combinations ΓΛ ≡ qΛ + i
2ηΛΣp

Σ .
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Non-extremal black holes and black branes

In this model the central charge Z , its holomorphic Kähler -covariant derivative and
the black-hole potential are

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .

May 31st 2012 Branes and Black Holes Workshop, London Page 19



Non-extremal black holes and black branes

In this model the central charge Z , its holomorphic Kähler -covariant derivative and
the black-hole potential are

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .

In N = 2 theories, in the extremal case |Z| plays the rôle of superpotential W . |Z̃|
plays here the rôle of “fake” superpotential.
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Non-extremal black holes and black branes

The extremal case
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Non-extremal black holes and black branes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)
ZΛ

hΓΛ = 0 ,
(hypersurface of non− supersymmetric
attractors)
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Non-extremal black holes and black branes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)
ZΛ

hΓΛ = 0 ,
(hypersurface of non− supersymmetric
attractors)

Attractor e−Kh |Zh|2 |Z̃h|2 −Vbhh M

Zi susy
h = Γ∗ i/Γ∗ 0 Γ∗ΛΓΛ > 0 Γ∗ΛΓΛ 0 Γ∗ΛΓΛ |Z∞|

ZΛnsusy
h ΓΛ = 0 −Γ∗ΛΓΛ > 0 0 −Γ∗ΛΓΛ −Γ∗ΛΓΛ |Z̃∞|
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Non-extremal black holes and black branes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .
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Non-extremal black holes and black branes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .
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Non-extremal black holes and black branes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.
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Non-extremal black holes and black branes

Next, we construct the supersymmetric ( extremal ) solutions, associated to the
supersymmetric attractor .

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Defining, for convenience

HΛ ≡ HΛ + i
2ηΛΣH

Σ ≡ eK∞/2 Z∞
|Z∞|Z

∗
Λ∞ − 1√

2
ΓΛτ

the metric function and the scalars are

e−2U = 2H∗ΛHΛ , Zi =
Ri + iIi

R0 + iI0
=

H∗i

H∗0 .
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Non-extremal black holes and black branes

Non-extremal solutions
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Non-extremal black holes and black branes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
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Non-extremal black holes and black branes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
The 2(n+ 1) complex constants AΛ, BΛ are found by imposing the e.o.m. (f ≡ er0τ )

Üe − (U̇e)
2 − Gij∗ Ż

iŻ∗ j∗ = 0 ,

(2r0)
2
[

fÜe + U̇e

]

+ e2UeVbh = 0 ,

(2r0)
2
[

f
(

Z̈i + Gij∗∂kGlj∗ Ż
kŻl

)

+ Żi
]

+ e2UeGij∗∂j∗Vbh = 0 .
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Non-extremal black holes and black branes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.
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Non-extremal black holes and black branes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.

No differential equations remain to be solved!
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Non-extremal black holes and black branes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .
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Non-extremal black holes and black branes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

The solution can be found and it is

AΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,
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Non-extremal black holes and black branes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

The solution can be found and it is

AΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±eK∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,

Here M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2), and one can show that the metric is

regular in all the r0
2 > 0 cases.
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon τ → −∞ the scalars Zi = H∗ i/H∗ 0 take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values.
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Non-extremal black holes and black branes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get harmonic functions with different coefficients:

HΛ
M→|Z̃∞|−→ ±eK∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon τ → −∞ the scalars Zi = H∗ i/H∗ 0 take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values.

There is no attractor behavior in a proper sense.
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Non-extremal black holes and black branes

The structure of the extremal non-supersymmetric
solution as function of the HMs is the same as in
the supersymmetric case.

However, no simple substitution recipe could have
led to it.
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .

But, even though it is suggestive, it is not unique.
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Non-extremal black holes and black branes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±/π = (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

The product S+S− is manifestly mass and moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .

We can write the entropies in the suggestive form

S±/π =
√

NR ±
√

NL , ⇒ S+S−/π
2 = NR −NL ∈ Z .

But, even though it is suggestive, it is not unique. We can also write

S±/π =
(

√

NR ±
√

NL

)2

,

with
NR ≡ M2 − |Z∞|2 , NL ≡ M2 − |Z̃∞|2 ,

so
S+S−/π

2 = (NR −NL)
2 .
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Non-extremal black holes and black branes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:
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Non-extremal black holes and black branes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).
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Non-extremal black holes and black branes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.

May 31st 2012 Branes and Black Holes Workshop, London Page 28-b



Non-extremal black holes and black branes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.

There is an attractor behavior in the evaporation process.
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Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

May 31st 2012 Branes and Black Holes Workshop, London Page 29



Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

In the N = 2 d = 4 case, the FGK formalism can be rewritten in different variables
(Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

U(τ), Zi(τ) (2nV + 1) −→
(

HΛ

HΛ

)

≡ HM , (2nV + 2)

plus one constraint that will appear automatically.

May 31st 2012 Branes and Black Holes Workshop, London Page 29-a



Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

In the N = 2 d = 4 case, the FGK formalism can be rewritten in different variables
(Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

U(τ), Zi(τ) (2nV + 1) −→
(

HΛ

HΛ

)

≡ HM , (2nV + 2)

plus one constraint that will appear automatically.

These variables transform linearly under the duality group, that acts on it as a
subgroup of Sp(2n+ 2,R).
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Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

In the N = 2 d = 4 case, the FGK formalism can be rewritten in different variables
(Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

U(τ), Zi(τ) (2nV + 1) −→
(

HΛ

HΛ

)

≡ HM , (2nV + 2)

plus one constraint that will appear automatically.

These variables transform linearly under the duality group, that acts on it as a
subgroup of Sp(2n+ 2,R).

We introduce an auxiliary function X and proceed as in the BPS case defining the
Kähler-neutral, real, symplectic vectors RM and IM

RM + iIM ≡ VM/X .
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Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

In the N = 2 d = 4 case, the FGK formalism can be rewritten in different variables
(Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

U(τ), Zi(τ) (2nV + 1) −→
(

HΛ

HΛ

)

≡ HM , (2nV + 2)

plus one constraint that will appear automatically.

These variables transform linearly under the duality group, that acts on it as a
subgroup of Sp(2n+ 2,R).

We introduce an auxiliary function X and proceed as in the BPS case defining the
Kähler-neutral, real, symplectic vectors RM and IM

RM + iIM ≡ VM/X .

We know that the RM can be expressed as a function of the IM s and vice-versa
solving the stabilization equations.
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Non-extremal black holes and black branes

6 – H-FGK formalism for N = 2, d = 4 supergravity

Or: Where the HMs come from

In the N = 2 d = 4 case, the FGK formalism can be rewritten in different variables
(Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

U(τ), Zi(τ) (2nV + 1) −→
(

HΛ

HΛ

)

≡ HM , (2nV + 2)

plus one constraint that will appear automatically.

These variables transform linearly under the duality group, that acts on it as a
subgroup of Sp(2n+ 2,R).

We introduce an auxiliary function X and proceed as in the BPS case defining the
Kähler-neutral, real, symplectic vectors RM and IM

RM + iIM ≡ VM/X .

We know that the RM can be expressed as a function of the IM s and vice-versa
solving the stabilization equations. Then, we introduce two dual sets of variables

H̃M ≡ RM , HM ≡ IM .
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Non-extremal black holes and black branes

We define the Hessian potential W(H) ≡ H̃M (H)HM , or W(H) ≡ H̃MHM (H).
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Non-extremal black holes and black branes

We define the Hessian potential W(H) ≡ H̃M (H)HM , or W(H) ≡ H̃MHM (H).

W is homogenous of second order in the HM variables and satisfies

∂MW ≡ ∂W

∂HM
= 2H̃M , ∂M

W ≡ ∂W

∂H̃M

= 2HM ,
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Non-extremal black holes and black branes

We define the Hessian potential W(H) ≡ H̃M (H)HM , or W(H) ≡ H̃MHM (H).

W is homogenous of second order in the HM variables and satisfies

∂MW ≡ ∂W

∂HM
= 2H̃M , ∂M

W ≡ ∂W

∂H̃M

= 2HM ,

Then, the FGK effective action can be written in the form

Ieff [H] =

∫

dτ
{

1
2∂M∂N logW

(

ḢM ḢN + 1
2QMQN

)

+
(

W
−1ḢMHM

)2

+
(

W
−1QMHM

)2
}

,

May 31st 2012 Branes and Black Holes Workshop, London Page 30-b



Non-extremal black holes and black branes

We define the Hessian potential W(H) ≡ H̃M (H)HM , or W(H) ≡ H̃MHM (H).

W is homogenous of second order in the HM variables and satisfies

∂MW ≡ ∂W

∂HM
= 2H̃M , ∂M

W ≡ ∂W

∂H̃M

= 2HM ,

Then, the FGK effective action can be written in the form

Ieff [H] =

∫

dτ
{

1
2∂M∂N logW

(

ḢM ḢN + 1
2QMQN

)

+
(

W
−1ḢMHM

)2

+
(

W
−1QMHM

)2
}

,

All the information about the model is encoded in the Hessian potential W(H).
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We define the Hessian potential W(H) ≡ H̃M (H)HM , or W(H) ≡ H̃MHM (H).

W is homogenous of second order in the HM variables and satisfies

∂MW ≡ ∂W

∂HM
= 2H̃M , ∂M

W ≡ ∂W

∂H̃M

= 2HM ,

Then, the FGK effective action can be written in the form

Ieff [H] =

∫

dτ
{

1
2∂M∂N logW

(

ḢM ḢN + 1
2QMQN

)

+
(

W
−1ḢMHM

)2

+
(

W
−1QMHM

)2
}

,

All the information about the model is encoded in the Hessian potential W(H).

Having the HM (τ) that solve this action, the black-hole solution is given by

e−2U(τ) = W[H(τ)] , Zi(τ) =
H̃i(H) + iHi

H̃0(H) + iH0
.
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This shows that we can write all the static black-hole solu-
tions of a given model N = 2 d = 4 supergravity exactly in
the same way in terms of the functions HM (τ).
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Non-extremal black holes and black branes

This shows that we can write all the static black-hole solu-
tions of a given model N = 2 d = 4 supergravity exactly in
the same way in terms of the functions HM (τ).

But these functions will be different for different solutions.
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The equations of motion of the HM s are

− 1
2∂M∂N logW

(

ḢM ḢN − 1
2QMQN

)

+
(

W
−1ḢMHM

)2

−
(

W
−1QMHM

)2
= r0

2 ,

1
2∂M logW

(

ḦM − r0
2HM

)

+
(

W
−1ḢMHM

)2

= 0 ,

1
2∂P∂M∂N logW

[

ḢMḢN − 1
2QMQN

]

+ ∂P∂M logWḦM

− d

dτ

(

∂Λ

∂ḢP

)

+
∂Λ

∂HP
= 0 ,

with

Λ ≡
(

W
−1ḢMHM

)2

+
(

W
−1QMHM

)2
.

In the extremal case r0 = 0 one sees immediately that ḢP = ± 1√
2
QP satisfying the

no-NUT condition ḢPHP = 0 solve all the equations.
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Non-extremal black holes and black branes

We are searching for more general results.
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Non-extremal black holes and black branes

We are searching for more general results.

But we decided to start studying the d = 5 case first, which is somewhat simpler and
for which there is another H-FGK formalism.
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Non-extremal black holes and black branes

We are searching for more general results.

But we decided to start studying the d = 5 case first, which is somewhat simpler and
for which there is another H-FGK formalism.

Actually, there are two: one for black holes and another for black strings.
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Non-extremal black holes and black branes

7 – H-FGK formalism for N = 2, d = 5 supergravity
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7 – H-FGK formalism for N = 2, d = 5 supergravity

The theories

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .
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Non-extremal black holes and black branes

7 – H-FGK formalism for N = 2, d = 5 supergravity

The theories

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .
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7 – H-FGK formalism for N = 2, d = 5 supergravity

The theories

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .

The scalar metric gxy, and the vector kinetic matrix, aIJ , are given by

gxy = hIxh
I
y and aIJ = 3hIhJ − 2CIJKhK = hIhJ + hIxh

x
J .
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7 – H-FGK formalism for N = 2, d = 5 supergravity

The theories

The scalar manifold of these theories is the hypersurface in “h-space”

V(h) = CIJKhIhJhK = 1 .

If we then define the derived objects

hI ≡ CIJKhJhK , hI
x ≡ −

√
3
∂hI

∂φx
and hIx ≡

√
3
∂hI

∂φx
,

we can see that they satisfy the following relations

hIhI = 1 and hIhIx = hIh
I
x = 0 .

The scalar metric gxy, and the vector kinetic matrix, aIJ , are given by

gxy = hIxh
I
y and aIJ = 3hIhJ − 2CIJKhK = hIhJ + hIxh

x
J .

The bosonic action for N = 2 d = 5 supergravity with n vector supermultiplets is

I5 =

∫

5

(

R ⋆1 + 1
2gxy dφ

x ∧ ⋆dφy − 1
2aIJF

I ∧ ⋆F J + 1
3
√
3
CIJKF I ∧ F J ∧AK

)

.
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The FGK formalisms for black holes and black strings
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Non-extremal black holes and black branes

The FGK formalisms for black holes and black strings

This theory admits black-hole (p = 0, p̃ = 1) and black strings (p = 1, p̃ = 0)
solutions. The corresponding metric ansätze are particular cases of the general one.
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Non-extremal black holes and black branes

The FGK formalisms for black holes and black strings

This theory admits black-hole (p = 0, p̃ = 1) and black strings (p = 1, p̃ = 0)
solutions. The corresponding metric ansätze are particular cases of the general one.

The effective action is

Ieff [Ũ , φi] =

∫

dτ
{

( ˙̃U)2 + (p+1)(p̃+2)
3 gxyφ̇

xφ̇y − e2ŨVBB + r0
2
}

,

where, in each case, we have to replace the black-brane potential VBB by the the
black-hole Vbh(φ, q) and black-string potentials







−Vbh(φ, q) ≡ aIJqIqJ = Ze
2 + 3 ∂xZe ∂

xZe ,

−Vbs(φ, p) ≡ aIJp
IpJ = Zm

2 + 3 ∂xZm ∂xZm ,

where we have defined the electric and magnetic central charges by

Ze(φ, q) ≡ hIqI , Zm(φ, p) ≡ hIp
I .
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8 – H-variables for black holes

We replace the original variables Ũ , φx by new ones H̃I and HI defined by

e−Ũ/2hI(φ) ≡ H̃I ,

e−ŨhI(φ) ≡ HI ,

and the new (unconstrained) function W

W(H̃) ≡ 2CIJKH̃IH̃JH̃K .

The homogeneity properties imply that

e−
3
2 Ũ = 1

2W(H) ,
hI = (W/2)−2/3HI ,

hI = (W/2)−1/3H̃I .

Changing the action to the HI variables, it becomes

− 3
2I[H] =

∫

dρ
[

∂I∂J logW
(

ḢIḢJ + qIqJ
)

− 3
2r0

2
]

.

May 31st 2012 Branes and Black Holes Workshop, London Page 36



Non-extremal black holes and black branes

9 – K-variables for black strings

We introduce two new sets of variables, KI and K̃I , related to the original ones
(Ũ , φx) by

e−ŨhI(φ) ≡ KI ,

e−2ŨhI(φ) ≡ K̃I ,

and the new (unconstrained) function V

V(K) ≡ CIJKKIKJKK .

The homogeneity properties imply that

e−3Ũ = V(K) ,

hI = V
−2/3K̃I ,

hI = V
−1/3KI .

Changing the action to the KI variables, it becomes

−3I[K] =

∫

dρ
[

∂I∂J logV
(

K̇IK̇J + pIpJ
)

− 3r0
2
]

.
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Non-extremal black holes and black branes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.
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Non-extremal black holes and black branes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .
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Non-extremal black holes and black branes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.
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Non-extremal black holes and black branes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.

Multiplying the equations of motion by HK we obtain

∂I logW ḦI = 3
2r0

2 ,

which is the equation of Ũ expressed in the new variables.
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Non-extremal black holes and black branes

The effective actions are formally (only formally!) very similar. let’s take the action
for black holes to show how to use it.

The equations of motion derived from the effective action are

∂K∂I∂J logW
(

HIḦJ − ḢIḢJ + qIqJ

)

= 0 .

Multiplying these equations by ḢK we get Ḣ = 0, the Hamiltonian constraint

H ≡ ∂I∂J logW
(

ḢIḢJ − qIqJ
)

+ 3
2r0

2 = 0 ,

where the integration constant has been set to 3
2r0

2 by hand.

Multiplying the equations of motion by HK we obtain

∂I logW ḦI = 3
2r0

2 ,

which is the equation of Ũ expressed in the new variables.

How useful are these new variables?
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Non-extremal black holes and black branes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.
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Non-extremal black holes and black branes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.

☞ A bit more difficult to see: in the extremal case r0 = 0

HI = AI + ρBI ,

always solves all the equations of motion if

∂KVbh(B, q) = 0 .

(The scalars are always ϕI = HI/H0 and on the horizon ϕI = BI/B0).
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Non-extremal black holes and black branes

☞ In H-variables one immediately sees that, in the extremal case r0 = 0

HI = AI ± ρqI , ∀ I ,
always solves the equations of motion in all theories.

☞ A bit more difficult to see: in the extremal case r0 = 0

HI = AI + ρBI ,

always solves all the equations of motion if

∂KVbh(B, q) = 0 .

(The scalars are always ϕI = HI/H0 and on the horizon ϕI = BI/B0).

☞ The BIs are called fake charges. Defining the fake electric central charges

Ze(φ,B) ≡ hIBI ,

it is immediate to see that the following first-order flow equations are satisfied

de−Ũ

dρ
= Ze(φ,B) ,

dφx

dρ
= −3eŨ∂xZe(φ,B) .
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Non-extremal black holes and black branes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .
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Non-extremal black holes and black branes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .

These first-order equations imply the second-order ones if Vbh(φ,B) = Vbh(φ, q).
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Non-extremal black holes and black branes

These first-order equations are extremely easy to obtain:

de−Ũ = d(hIhIe
−Ũ )

= dhIhIe
−Ũ + hId(hIe

−Ũ )

= hId(hIe
−Ũ )

= hIdHI

= hIBIdρ

= Ze(φ,B)dρ .

These first-order equations imply the second-order ones if Vbh(φ,B) = Vbh(φ, q).

Observe that the interest of these first-order equations is
mainly formal since they are very difficult to integrate to
obtain complete solutions.
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Non-extremal black holes and black branes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.
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Non-extremal black holes and black branes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .
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Non-extremal black holes and black branes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .

☞ It is possible to find all the non-extremal black holes of all the theories with
diagonal ∂I∂J logW(H).
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Non-extremal black holes and black branes

☞ The non-extremal case is more complicated, but we can use our hyperbolic ansatz

HI = AI cosh r0ρ+BI
sinh r0ρ

r0
.

☞ The AIs are easy to find, but, to find the BIs, one has to solve the e.o.m.

∂K∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 ,

∂I∂J logW(H)
(

BIBJ − r0
2AIAJ − qIqJ

)

= 0 .

☞ It is possible to find all the non-extremal black holes of all the theories with
diagonal ∂I∂J logW(H).

☞ It is also possible to find all the non-extremal black holes with constant scalars
of all the theories.
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☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .
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Non-extremal black holes and black branes

☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .

☞ These equations look identical to those of the extremal case, but the BIs are
different and the range of the coordinate ρ̂ is not enough to reach an attractor.
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Non-extremal black holes and black branes

☞ Defining the new coordinate

ρ̂ ≡ sinh(r0ρ)

r0 cosh(r0ρ)

we find the first-order flow equations

de−Ũ

dρ̂
= Ze(φ,B) ,

dφx

dρ̂
= −3eŨ∂xZe(φ,B) .

☞ These equations look identical to those of the extremal case, but the BIs are
different and the range of the coordinate ρ̂ is not enough to reach an attractor.

☞ The first-order flow equations imply the second-order e.o.m. if

Vbh(φ,B)− Vbh(φ, q) = r0
2 .
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10 – Conclusions
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10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

We have proven that part of our ansatz is completely general, constructing a
formalism (“H-FGK”) that simplifies the construction of extremal and
non-extremal (black-hole and also black-string solutions in d = 5.
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Non-extremal black holes and black branes

10 – Conclusions

⋆ We have generalized the FGK formalism to all spacetime and worldvolume
dimensions.

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing
1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

We have proven that part of our ansatz is completely general, constructing a
formalism (“H-FGK”) that simplifies the construction of extremal and
non-extremal (black-hole and also black-string solutions in d = 5.

⋆ We have shown the power of this approach finding very general solutions and
results such as the first-order flow equations for extremal and non-extremal
objects.
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Non-extremal black holes and black branes

We are closer to determining the general form of all single,
static, black-hole and black-string solutions of N = 2 ,d = 4, 5
theories.
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