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Non-extremal black holes

1 — Introduction

[1 Black holes are, perhaps, the most mysterious and interesting objects that occur
in theories that include Einstein’s gravity: supergravity and theories in
particular.
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Non-extremal black holes

1 — Introduction

[1 Black holes are, perhaps, the most mysterious and interesting objects that occur
in theories that include Einstein’s gravity: supergravity and theories in
particular.

[1 In the last years we have learned a lot about black-hole solutions, but mostly
about the extremal supersymmetric ones:

1. We know how to construct all the extremal supersymmetric ones in several
d = 4,5 ungauged supergravities .

2. We know some things about the extremal non-supersymmetric ones through
their attractors, but, in general, we do not know how to construct the full
solutions.

3. We do not know much about the non-extremal ones, which should be closer
to reality. Only a handful of examples.

In this talk I will present a general ansatz to construct non-
extremal black-hole solutions and,as an example, we will
study a family of solutions obtained with it. First, we will
review the formalism.
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Non-extremal black holes

Two main approaches:
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Algebraic
approach

Explicit
solutions

Non-extremal black holes

Two main approaches:

Ferrara, Gibbons & Kallosh, (1997) (general formalism)
Ceresole & Dall’Agata (2007) (”fake”superpotentials)

Supersymmetric (i.e. extremal) :

Tod (1983) (pure N = 2)

Behrndt, Luest & Sabra (1997)(N = 2 + Vs.)

Caldarelli & Klemm (2003) (pure gauged N = 2)

Huebscher, Meessen, O. & Vaula (2007), Meessen, (2008)

(N = 2 4 Vs non — Abelian — gauged)

Cacciatori, Klemm, Mansi & Zorzan (2008) (N = 2 + Vs Abelian — gaug
Meessen, O. & Vaula (2010) (all N > 2)

Non — extremal :

Cvetic & Youm (1996)

0. (1996)

Kastor & Win (1996)

Mohaupt & Vaughan (2010) (general Ansatz d = 5)

Galli, O., Perz & Shahbazi (2011) (general Ansatz d = 4)

October 25th 2011

U. Degli Studi di Milano Page 2-a



Non-extremal black holes

We are interested in explicit solutions of non-extremal black holes,
but we are going to rely heavily on the FGK formalism which is the
basis of the algebraic approach (mainly used for extremal black-hole
solutions).
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Non-extremal black holes

We are interested in explicit solutions of non-extremal black holes,
but we are going to rely heavily on the FGK formalism which is the
basis of the algebraic approach (mainly used for extremal black-hole
solutions).

We start by reviewing the FGK formalism.
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Non-extremal black holes

2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I = [d[gl{R+Gi($)0.610"¢

+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )
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Non-extremal black holes

2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action
I = [d*z/Igl{R+ Gi;(¢)0u9'0"¢’
+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )

describing the bosonic sectors of any 4d ungauged supergravity for given G;;, Nas.
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Non-extremal black holes

2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I = [d*/]g] {R+ Gij(9)8,0' 04
+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )

describing the bosonic sectors of any 4d ungauged supergravity for given G;;, Nas.
They also considered the general metric for any static non-extremal black hole

7’02

— dr? + —
sinh™ ro7 sinh” rg

7’04

ds? = 2V (M) gt? — ¢=2U(7) dQé) :
T
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Non-extremal black holes

2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I = [d*/]g] {R+ Gij(9)8,0' 04
+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )

describing the bosonic sectors of any 4d ungauged supergravity for given G;;, Nas.
They also considered the general metric for any static non-extremal black hole

7’02

— dr? + —
sinh™ ro7 sinh” rg

4
ds? — o2U(T) 342 _ ,—2U(7) o

anz. | .
— )

In the general metric rg is always the non-extremality parameter:
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2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I = [d*/]g] {R+ Gij(9)8,0' 04
+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )

describing the bosonic sectors of any 4d ungauged supergravity for given G;;, Nas.
They also considered the general metric for any static non-extremal black hole

7’02

— dr? + —
sinh™ ro7 sinh” rg

7’04

ds? = 2V (M) gt? — ¢=2U(7) dQé) :
T

In the general metric rg is always the non-extremality parameter:
O rg = for the Schwarzschild black hole.

O rg = \/ > — (g2 + p2) for the Reissner -Nordstrém black hole.
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Non-extremal black holes

2 — FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I = [d*/]g] {R+ Gij(9)8,0' 04
+28mN 5 (¢) F2 pu F>H — 2ReNps () FA % F>HV )

describing the bosonic sectors of any 4d ungauged supergravity for given G;;, Nas.
They also considered the general metric for any static non-extremal black hole

7’02

— dr? + —
sinh™ ro7 sinh” rg

7’04

ds? = 2V (M) gt? — ¢=2U(7) dQé) :
T

In the general metric rg is always the non-extremality parameter:
O rg = for the Schwarzschild black hole.

O rg = \/ > — (g2 + p2) for the Reissner -Nordstrém black hole.

0 What is rg like for more general black holes?
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r( is related to the black hole ’s
entropy 5 and temperature 7' by

ro® = 25T.
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r( is related to the black hole ’s
entropy 5 and temperature 7' by

ro® = 25T.

When ry = 0, the metric takes the form

5 > = 2V g2 — 72U | gr? + TQdQ%Q)] :
T T

2
ds? = 2V (M) qg? —=2U(T) [(d—T) + id%)

with r = —1/=
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r( is related to the black hole ’s
entropy 5 and temperature 7' by

ro® = 25T.

When ry = 0, the metric takes the form

5 > = 2V g2 — 72U | gr? + TQdQ%Q)] :
T T

2
ds? = 2V (M) qg? —=2U(T) [(d—T) + id%)

with r = —1/=

The coordinate 7 always covers the exterior of the black hole ’s event horizon which
is at 7 — —oo while spatial infinity is at 7 — 07.
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r( is related to the black hole ’s
entropy 5 and temperature 7' by

ro® = 25T.

When ry = 0, the metric takes the form

5 > = 2V g2 — 72U | gr? + TQdQ%Q)] :
T T

2
ds? = 2V (M) qg? —=2U(T) [(d—T) + id%)

with r = —1/=

The coordinate 7 always covers the exterior of the black hole ’s event horizon which
is at 7 — —oo while spatial infinity is at 7 — 07.

When the black hole has a Cauchy horizon (Galli, O., Perz, Shahbazi (2011)) the
coordinate 7 also covers the interior of the Cauchy horizon which is at 7 — 400
while the singularity is at some finite, positive value of 7.
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r( is related to the black hole ’s
entropy 5 and temperature 7' by

ro® = 25T.

When ry = 0, the metric takes the form

5 > = 2V g2 — 72U | gr? + TQdQ%Q)] :
T T

2
ds? = 2V (M) qg? —=2U(T) [(d—T) + id%)

with r = —1/=

The coordinate 7 always covers the exterior of the black hole ’s event horizon which
is at 7 — —oo while spatial infinity is at 7 — 07.

When the black hole has a Cauchy horizon (Galli, O., Perz, Shahbazi (2011)) the
coordinate 7 also covers the interior of the Cauchy horizon which is at 7 — 400
while the singularity is at some finite, positive value of 7.

To determine completely the metric of any static, regular, spherically symmetric
black hole we only need to find the function U(7).
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(7), ¢*(7) and the
electrostatic and magnetostatic potentials A% (7), Ap+(7).
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(7), ¢*(7) and the
electrostatic and magnetostatic potentials A% (7), Ap+(7).

The latter can be integrated out so they are effectively replaced by the electric, ga,
and magnetic, p* charges. The general system reduces to an effective mechanical
system with variables U(7), ¢*(7):

I|U, ¢'] = /dT {(U')2 + %gijgbi/qu/ — " Vin +"“02} a
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(7), ¢*(7) and the
electrostatic and magnetostatic potentials A% (7), Ap+(7).

The latter can be integrated out so they are effectively replaced by the electric, ga,
and magnetic, p* charges. The general system reduces to an effective mechanical
system with variables U(7), ¢*(7):

I|U, ¢'] = /dT {(U')2 + %gmbi’sbj' — " Vin +"“02} a

where FGK defined the black-hole potential

, (T+RI Ry —(RI1)A" p™
~Vin(9,q,p) = —§(pA qn) :
—(3719%)As (379 )\ a»
where
Rax = ReNas(9), Jas = SmAN s (0), (37 HA% g = 641
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(7), ¢*(7) and the
electrostatic and magnetostatic potentials A% (7), Ap+(7).

The latter can be integrated out so they are effectively replaced by the electric, ga,
and magnetic, p* charges. The general system reduces to an effective mechanical
system with variables U(7), ¢*(7):

I|U, ¢'] = /dT {(U')2 + %Qiﬂi’qﬁj' — " Vin +"“02} a

where FGK defined the black-hole potential

, (T+RI Ry —(RI1)A" p™
~Vin(9,q,p) = —§(pA qn) :
—(3719%)As (379 )\ a»
where
Rax = ReNas(9), Jas = SmAN s (0), (37 HA% g = 641

Finding a black hole with charges p, ¢ is equivalent to solving the
above mechanical system for U(7), ¢"(7).
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Non-extremal black holes

For extremal (ry = 0) black holes
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Non-extremal black holes

For extremal (ry = 0) black holes

[0 The values of the scalars on the event horizon ¢! are critical points of the

black-hole potential
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Non-extremal black holes

For extremal (ry = 0) black holes

[0 The values of the scalars on the event horizon ¢! are critical points of the
black-hole potential

The general solution ( ) is
St = Ph(Poo, 0 P) Poo = lim ¢'(7),
7—0
but in many cases ¢!, = ¢! (q,p) (true )
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Non-extremal black holes

For extremal (ry = 0) black holes

[0 The values of the scalars on the event horizon ¢! are critical points of the
black-hole potential

The general solution ( ) is
St = Ph(Poo, 0 P) Poo = lim ¢'(7),
7—0
but in many cases ¢!, = ¢! (q,p) (true )

[0 The value of the black-hole potential at the critical points gives the
— -7 Vbh(gba Q7p)’¢h — (pa Q) )

which is amenable to a microscopic interpretation.

October 25th 2011 U. Degli Studi di Milano Page 7-c



Non-extremal black holes

For extremal (ry = 0) black holes

[0 The values of the scalars on the event horizon ¢! are critical points of the

black-hole potential

The general solution ( ) is
St = Ph(Poo, 0 P) Poo = lim ¢'(7),
7—0
but in many cases ¢!, = ¢! (q,p) (true )

[0 The value of the black-hole potential at the critical points gives the
— -7 Vbh(gba Q7p)’¢h — (pa Q) )

which is amenable to a microscopic interpretation.

[0 The near-horizon geometry is always AdS,; x S? with the AdS,; and S? radii

both equal to (— Vinl,, )2
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Non-extremal black holes

For extremal (ry = 0) black holes

[0 The values of the scalars on the event horizon ¢! are critical points of the
black-hole potential

The general solution ( ) is
St = Ph(Poo, 0 P) Poo = lim ¢'(7),
7—0
but in many cases ¢!, = ¢! (q,p) (true )

[0 The value of the black-hole potential at the critical points gives the
— -7 Vbh(qba Q7p)’¢h — (pa Q) )

which is amenable to a microscopic interpretation.

[0 The near-horizon geometry is always AdS,; x S? with the AdS,; and S? radii
both equal to (— Vinl,, )2

Each critical point yields a possible extremal black-hole

solution and an AdS; x S? geometry. One can go a long way
with the only, ignoring the full explicit solution.
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Non-extremal black holes

In the general case one can prove the following extremality bound:

T02 — ’ -+ %gm(gboo)zzzj + Vbh(gboo, Q7p) , 2 07

where
U ~ 14+ Mt,

o~ g =i
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where
U ~ 14+ Mt,

o~ g =i

However, this expression is useless!
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Non-extremal black holes

In the general case one can prove the following extremality bound:

T02 — ’ -+ %gm(gboo)zzzj + Vbh(gboo, Q7p) , 2 07
where
U ~ 14+ Mt,
5 ~ i, -Tir
However, this expression is useless!

According to the no-hair “theorem” only X' = X4(\/, ¢'_,q,p) (secondary hair) are
allowed for regular black holes.
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T02 — ’ -+ %gm(gboo)zzzj + Vbh(gboo, Q7p) , 2 07

where
U ~ 14+ Mt,

o~ g =i

However, this expression is useless!

According to the no-hair “theorem” only X' = X4(\/, ¢'_,q,p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a prior:.
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Non-extremal black holes

In the general case one can prove the following extremality bound:

T02 — ’ -+ %gm(gboo)zzzj + Vbh(gboo, Q7p) , 2 07

where
U ~ 14+ Mt,

P ~ Pl —X'T.
However, this expression is useless!

According to the no-hair “theorem” only X' = X4(\/, ¢'_,q,p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a prior:.

Furthermore, in the general case, there is no for the scalars and the
is unrelated to the black-hole potential.
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Non-extremal black holes

In the general case one can prove the following extremality bound:

T02 — ’ -+ %gm(gboo)zzzj + Vbh(gboo, Q7p) , 2 07

where
U ~ 14+ Mt,

P ~ Pl —X'T.
However, this expression is useless!

According to the no-hair “theorem” only X' = X4(\/, ¢'_,q,p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a prior:.

Furthermore, in the general case, there is no for the scalars and the
is unrelated to the black-hole potential.

We need to find the complete explicit solution in the non-
extremal case.
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Non-extremal black holes

Whenever we can write — [e2Y Vi, — ro?] = (OuY)? +2G79,Y9;Y for some
(generalized) superpotential Y (U, ¢', p,q,10), we can rewrite the effective action as

LslU, ¢'] = /dT [(U = 8uY)? + 1Gi(6" — 268, Y) (¢ — 2679, Y) + 2"} .
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Non-extremal black holes

Whenever we can write — [e2Y Vi, — ro?] = (OuY)? +2G79,Y9;Y for some
(generalized) superpotential Y (U, ¢', p,q,10), we can rewrite the effective action as

LglU, $'] = /dT [(U = 8uY)? + 1Gi(6" — 268, Y) (¢ — 2679, Y) + 2"} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U =0dyY, "' =2G709;Y .
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Whenever we can write — [e2Y Vi, — ro?] = (OuY)? +2G79,Y9;Y for some
(generalized) superpotential Y (U, ¢', p,q,10), we can rewrite the effective action as

LglU, $'] = /dT [(U = 8uY)? + 1Gi(6" — 268, Y) (¢ — 2679, Y) + 2"} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
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U =0dyY, "' =2G709;Y .

Furthermore

82'}/20 == &;Vbh:O,
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Non-extremal black holes

Whenever we can write — [e2Y Vi, — ro?] = (OuY)? +2G79,Y9;Y for some
(generalized) superpotential Y (U, ¢', p,q,10), we can rewrite the effective action as

LglU, $'] = /dT [(U = 8uY)? + 1Gi(6" — 268, Y) (¢ — 2679, Y) + 2"} .

The action is minimized by configurations satisfying the first-order gradient flow
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Non-extremal black holes

Whenever we can write — [e2Y Vi, — ro?] = (OuY)? +2G79,Y9;Y for some
(generalized) superpotential Y (U, ¢', p,q,10), we can rewrite the effective action as

LglU, $'] = /dT [(U = 8uY)? + 1Gi(6" — 268, Y) (¢ — 2679, Y) + 2"} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U =0dyY, "' =2G709;Y .
Furthermore
(%Y =0 = &;Vbh = O,
and . N
= lim OyY, Y'=— lim GY9,;Y.
T—0— T—0—

A generalized superpotential Y (U, ¢*, p, q,7¢) exists in all theories whose scalar
manifold (after timelike dimensional reduction) is a symmetric coset space (in
particular for all N > 2 supergravities ) (Andrianopoli, D’Auria, Orazi & Trigiante
(2009), Chemissany, Fré, Rosseel, Sorin, Trigiante & Van Riet (2010)).
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Non-extremal black holes

In the extremal case ro = 0, if there is a generalized superpotential Y (U, ¢, p, q), it

factorizes | ’ |
Y(U,¢" p,q) =e W(o',p,q),

where W (@', p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ='W, ¢ =2eYGYO,W .
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Non-extremal black holes
In the extremal case ro = 0, if there is a generalized superpotential Y (U, ¢, p, q), it

factorizes | ’ |
Y(U,¢" p,q) =e W(o',p,q),

where W (@', p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ='W, ¢ =2eYGYO,W .

A superpotential W (@', p, q) always exists for all N > 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
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In the extremal case ro = 0, if there is a generalized superpotential Y (U, ¢, p, q), it

factorizes | ’ |
Y(U,¢" p,q) =e W(o',p,q),

where W (@', p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ='W, ¢ =2eYGYO,W .

A superpotential W(¢*, p, q) always exists for all N > 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for V = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).
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In the extremal case ro = 0, if there is a generalized superpotential Y (U, ¢, p, q), it

factorizes | ’ |
Y(U,¢" p,q) =e W(o',p,q),

where W (@', p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ='W, ¢ =2eYGYO,W .

A superpotential W(¢*, p, q) always exists for all N > 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for V = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).

The stationary values of the superpotential 0;W| b = 0 give the the

— W’W(Qbh,p, Q)|2 )

while the 1S
= |W(¢oo> D, q)| -
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3 — Direct construction of solutions: extremal supersymmetric
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Non-extremal black holes

3 — Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations d.¢/ = 0 it
is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole

solutions.
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Non-extremal black holes

3 — Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations d.¢/ = 0 it
is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole

solutions.

We are going to review the example of (ungauged) N = 2
Supergravity coupled to vector multiplets.
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets
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The field content
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The basic N = 2, d = 4 massless supermultiplets are
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets
(i: 1,---nv , I = 1,2)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Z' A",
(i: 1,---nv , I = 1,2)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets 7t A, AT
(i:l,-.-nv, I:172)

October 25th 2011 U. Degli Studi di Milano Page 12-g



Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ng Hypermultiplets
(u=1,---dng , a=1,---2ngy)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ng Hypermultiplets q"
(u=1,---dng , a=1,---2ngy)
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ng Hypermultiplets q“ Ca
(u=1,---dng , a=1,---2ngy)
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ny Hypermultiplets q“ Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ny Hypermultiplets q“ Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
The supergravity multiplet
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
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4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ny Hypermultiplets q“ Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
The supergravity multiplet A, e, Vi1, (1,2,3/2)
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Z' A", A (0,1,1/2)

(i: 1,---nv , I = 1,2)

ny Hypermultiplets q“ Ca (0,1/2)

(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet A, e, Vi1, (1,2,3/2)
All vector fields are collectively denoted by A%, = (A°,, A?,) and the complex
scalars Z* are described by (LA(Z, Z%), MA(Z, Z*)).
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ny Hypermultiplets q“ Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet A, e, Vi1, (1,2,3/2)

All vector fields are collectively denoted by A%, = (A°,, A?,) and the complex
scalars Z* are described by (LA(Z, Z%), MA(Z, Z*)).

All fermions are represented by chiral 4-component spinors:

YsVru = —Yr1u ,€tc.
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Non-extremal black holes

4 — N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Z' A", A (0,1,1/2)
(i: 1,---nv , I = 1,2)
ny Hypermultiplets q“ Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet A, e, Vi1, (1,2,3/2)

All vector fields are collectively denoted by A%, = (A°,, A?,) and the complex
scalars Z* are described by (LA(Z, Z%), MA(Z, Z*)).

All fermions are represented by chiral 4-component spinors:

YsVru = —Yr1u ,€tc.

Hypermultiplets can be ignored for black-hole solutions.
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The couplings
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;+ 0, Z 0" Z*7" .
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;+ 0, Z 0" Z*7" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Gij = 0;05=K,
where /C is the Kahler potential.
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;+ 0, Z 0" Z*7" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Gij = 0;05=K,
where /C is the Kahler potential.

N = 1 supersymmetry requires the Kahler manifold to be a Hodge manifold,

i.e. a complex line bundle over a Kahler manifold such that the connection is the
Kahler connection Q; = 0;,K, Q- = 9;-K.
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;+ 0, Z 0" Z*7" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Gij = 0;05=K,
where /C is the Kahler potential.

N = 1 supersymmetry requires the Kahler manifold to be a Hodge manifold,

i.e. a complex line bundle over a Kahler manifold such that the connection is the
Kahler connection Q; = 0;,K, Q- = 9;-K.

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

) ( N ) |
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(n)
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can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(n)

All the couplings of the ungauged theory are completely codified in three objects:
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

pA
g
All the couplings of the ungauged theory are completely codified in three objects:
[0 The Kahler potential £.
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

pA
g
All the couplings of the ungauged theory are completely codified in three objects:
[0 The Kahler potential £.

[0 The period matrix Nax(Z, Z*).
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

pA
g
All the couplings of the ungauged theory are completely codified in three objects:
[0 The Kahler potential £.

[0 The period matrix Nax(Z, Z*).

0 The :( £*(Z,Z%) )
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

A
A
All the couplings of the ungauged theory are completely codified in three objects:
[0 The Kahler potential £.
[0 The period matrix Nax(Z, Z*).
_( £AZ,z%)
[0 The —< (ij*))

These three elements are not independent. They are related by the constraints of
special Kahler geometry. They can also be derived from a prepotential.
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Non-extremal black holes

can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

pA
g
All the couplings of the ungauged theory are completely codified in three objects:
[0 The Kahler potential £.

[0 The period matrix Nax(Z, Z*).

0 The :< EA((ZZ:ZZ:)) )

These three elements are not independent. They are related by the constraints of
special Kahler geometry. They can also be derived from a prepotential.

The action of the bosonic fields of the ungauged theory is of the general FGK form:
S = /d4:U Il [R—|— QQij*(?MZié’“Z*j* + Q%m/\/AEFAWFZW

—2ReN As FAW x FZ ] = —Vin =212+ GY D, ZDj 2.
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Non-extremal black holes
In order to find static extremal black holes one could try to integrate directly the

equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

~Von = |Z|? + GY D;ZDj Z* .
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Non-extremal black holes
In order to find static extremal black holes one could try to integrate directly the

equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

~Von = |Z|? + GY D;ZDj Z* .

There is a recipe to construct all the BPS ones:
(Denef (2000), Behrndt, Liist & Sabra (1997), Meessen, O. (2006))
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Non-extremal black holes

1. For some complex X, define the Kahler-neutral, real, vectors /< and

+il=V/X.
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Non-extremal black holes

1. For some complex X, define the Kahler-neutral, real, vectors /< and
+il=V/X.
2. The components of / are given by a vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :
A A(r) S \%pAT
A A(T) Aoco — %QAT
with no sources of NUT charge, i.e. { /1o | Q) = 1% oqn —  acop™ =0

October 25th 2011 U. Degli Studi di Milano Page 16-a



Non-extremal black holes

1. For some complex X, define the Kahler-neutral, real, vectors /< and
+il=V/X.
2. The components of / are given by a vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :
A A(r) S \%pAT
A A(T) Aoco — %C]AT
with no sources of NUT charge, i.e. { /1o | Q) = 1% oqn —  acop™ =0

3. R is to be found from Z by solving the generalized stabilization equations.
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Non-extremal black holes

1. For some complex X, define the Kahler-neutral, real, vectors /< and
+il=V/X.
2. The components of / are given by a vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :
A A(r) S \%pAT
A A(T) Aoco — %C]AT
with no sources of NUT charge, i.e. { /1o | Q) = 1% oqn —  acop™ =0

3. R is to be found from Z by solving the generalized stabilization equations.
i/ X B i 4 7
0/X — 704470

4. The scalars Z* are given by the quotients Z* =
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Non-extremal black holes

1. For some complex X, define the Kahler-neutral, real, vectors /< and
+il=V/X.
2. The components of / are given by a vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :
A A(r) S \%pAT
A A(T) Aoco — %C]AT
with no sources of NUT charge, i.e. { /1o | Q) = 1% oqn —  acop™ =0

3. R is to be found from Z by solving the generalized stabilization equations.
i/ X B i 4 7

0/X — 704470

5. The function U(7) of the FGK formalism is given by

4. The scalars Z* are given by the quotients Z* =

=2

e 2V =(R|ZI)=I"Ra —ZIxR".
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Non-extremal black holes

The asymptotic values of the harmonic functions, //% satisfying the condition
N = (Hs | @) = 0 have the general form
Z*
MOO::I:\@%m( %|ZOO|> :
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Non-extremal black holes

The asymptotic values of the harmonic functions, //% satisfying the condition
N = (Hs | @) = 0 have the general form
Z*
MOO::I:\@%m( %|ZOO|> :

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.
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Non-extremal black holes

The asymptotic values of the harmonic functions, //% satisfying the condition
N = (Hs | @) = 0 have the general form
Z*
MOO::I:\@%m( £|ZOO|> :

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

October 25th 2011 U. Degli Studi di Milano Page 17-b



Non-extremal black holes

M

. satistying the condition

The asymptotic values of the harmonic functions,
N = {(H | @) =0 have the general form

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the algebraic
approach ( FGK formalism).
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Non-extremal black holes

M

. satistying the condition

The asymptotic values of the harmonic functions,
N = {(H | @) =0 have the general form

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the algebraic
approach ( FGK formalism).

In this case the complete explicit solutions do not give much more information than
the algebraic approach, but they are going to be used as starting point for the
construction of non-extremal solutions later on.
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Non-extremal black holes

5 — Direct construction of solutions: non-extremal
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Non-extremal black holes

5 — Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been
given (Galli, O., Perz & Shahbazi (2011)):
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Non-extremal black holes

5 — Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been

given (Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(r) = Ue[/1(1)], Z'(1) = Ze[H(T)],

where U, and Z' depend on harmonic functions //M(7) = /M __ — %QM T given by

the standard prescription for supersymmetric black holes ,
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Non-extremal black holes

5 — Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been
given (Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(r) = Ue[/1(1)], Z'(1) = Ze[H(T)],

where U, and Z' depend on harmonic functions //M(7) = /M __ — %QM T given by

the standard prescription for supersymmetric black holes ,

Then, the non-extremal solution is given by
U(r) = Ue[H(7)] + 107, Z'(1) = Z'e[H(7)],

where now the functions are assumed to be of the form

M __ M‘|‘ M627"07'

Y

and the constants «™, /™ have to be determined by explicitly solving the e.o.m.
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Non-extremal black holes

[1 We are assuming that all the black hole solutions have the same dependence on

some functions //# (7), which are harmonic in the extremal case and something
else in the non-extremal cases.
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Non-extremal black holes

[1 We are assuming that all the black hole solutions have the same dependence on

some functions //# (7), which are harmonic in the extremal case and something
else in the non-extremal cases.

[1 For the moment, we have no proof for this hypothesis, which is justified only by
the results.
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[1 We are assuming that all the black hole solutions have the same dependence on

some functions //# (7), which are harmonic in the extremal case and something
else in the non-extremal cases.

[1 For the moment, we have no proof for this hypothesis, which is justified only by
the results.

[J Actually, there are some claims in the literature against this hypothesis.

October 25th 2011 U. Degli Studi di Milano Page 19-b



Non-extremal black holes

[1 We are assuming that all the black hole solutions have the same dependence on

some functions //# (7), which are harmonic in the extremal case and something
else in the non-extremal cases.

[1 For the moment, we have no proof for this hypothesis, which is justified only by
the results.

[J Actually, there are some claims in the literature against this hypothesis.

[1 However, it is hard to imagine how it cannot be true if the most general family of
solutions has to be duality-invariant and has to have the right extremal limits.
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Non-extremal black holes

[1 We are assuming that all the black hole solutions have the same dependence on
some functions //# (7), which are harmonic in the extremal case and something
else in the non-extremal cases.

[1 For the moment, we have no proof for this hypothesis, which is justified only by
the results.

[J Actually, there are some claims in the literature against this hypothesis.

[1 However, it is hard to imagine how it cannot be true if the most general family of
solutions has to be duality-invariant and has to have the right extremal limits.

[1 Furthermore, preliminary results indicate that

It may be possible to prove this hypothesis in general.

work in progress.
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.
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Non-extremal black holes
We are going to give an explicit example, showing that one can recover both the

extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non — extremal, supersymmetric
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non — extremal, supersymmetric

Extremal, non — supersymmetric

October 25th 2011 U. Degli Studi di Milano Page 20-c



Non-extremal black holes

6 — A complete example: CP' model

This model and has n scalars Z* that parametrize the coset space SU(1,n)/SU(n).
We add for convenience Z" = 1, so we have

(Z%)=(Q,2, (Zp)=(1,2;) =(1,-2"), (nax) = diag(+—---—).
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Non-extremal black holes

6 — A complete example: CP' model

This model and has n scalars Z* that parametrize the coset space SU(1,n)/SU(n).
We add for convenience Z" = 1, so we have

(Z%)=(Q,2, (Zp)=(1,2;) =(1,-2"), (nax) = diag(+—---—).

The Kahler potential is K = —log (Z*}Z,),
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Non-extremal black holes

6 — A complete example: CP' model

This model and has n scalars Z* that parametrize the coset space SU(1,n)/SU(n).
We add for convenience Z" = 1, so we have

(Z%)=(Q,2, (Zp)=(1,2;) =(1,-2"), (nax) = diag(+—---—).

The Kahler potential is K = —log (Z*}Z,),

and the Kahler metric is Qij* = —BIC (77@]* — 6’CZ;<ZJ'*) :
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Non-extremal black holes

6 — A complete example: CP' model

This model and has n scalars Z* that parametrize the coset space SU(1,n)/SU(n).
We add for convenience Z" = 1, so we have

(Z%)=(Q,2, (Zp)=(1,2;) =(1,-2"), (nax) = diag(+—---—).

The Kahler potential is K = —log (Z*}Z,),

and the Kahler metric is Qij* = —BIC (77@]* — 6’CZ;<ZJ'*) :

The covariantly holomorphic symplectic section reads | = e/*/2
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Non-extremal black holes

6 — A complete example: CP' model

This model and has n scalars Z* that parametrize the coset space SU(1,n)/SU(n).
We add for convenience Z" = 1, so we have

(Z%)=(Q,2, (Zp)=(1,2;) =(1,-2"), (nax) = diag(+—---—).

The Kihler potential is K = —log (Z**Z,),
and the Kahler metric is Qij* = —BIC (77@]* — QKZ;ZJ'*) :

ZA

The covariantly holomorphic symplectic section reads | = e/*/2

i
— 17

It is convenient to define the complex charge combinations I'y = ga + %ﬁAzpz .
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Non-extremal black holes

The central charge Z, its holomorphic Kahler -covariant derivative and the
black-hole potential are given by

Zz = ek/2ZAD,
D,Z = 63’C/ZZ;<ZAFA _ 6K/2F,L' 7
1ZI? = GY D;ZD;. 2% = X|ZAT |2 — T*AT,

—Vin = |22+ |22
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Non-extremal black holes

The central charge Z, its holomorphic Kahler -covariant derivative and the
black-hole potential are given by

Zz = ek/2ZAD,
D,Z = e3K/272¥ZAT, — 52T

1ZI? = GY D;ZD;. 2% = X|ZAT |2 — T*AT,
—Vin = |22+ |22

Remember that in NV = 2 theories, in the extremal case | Z| plays the role of
superpotential W. In this case |Z| will play the role of “fake” superpotential.
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Non-extremal black holes

In this case we can write

— [GQUVbh — T02] — Y2 + 4Qij*\11i\11j* ;

where
eV ~ ~ 2 ~
Y= S [IZR 2R e 2 (1212 + 1212 + e=20m02) " — 4|22 22,
25D, 2
\Iji — 2U ?
e —T ,
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Non-extremal black holes

In this case we can write

— [GQUVbh — T02] — Y2 + 4Qij*\11i\11j* ;

where
eV ~ ~ 2 ~
Y= S [IZR 2R e 2 (1212 + 1212 + e=20m02) " — 4|22 22,
25D, 2
\Iji — 2U ?
e —T ,
Since

8(]\117; — 8ZT = 82\113 — ayqu = 8z*qu — 8J\If:<* = 0,

there exists a generalized superpotential, whose gradient generates the vector field
(T, ¥;, ¥%. ) and the first-order equations

U'=7, ZV =2G7 T,

although it is very difficult to find explicitly.
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Non-extremal black holes

The extremal case

October 25th 2011 U. Degli Studi di Milano Page 24



Non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

( Zih — P*i/F*O’
(isolated, supersymmetric )
G 9+ Vo =2Z T (T*1 =T*Z) =0 = «
ZMp =0,
{ (non — supersymmetric hypersurface)
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Non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

( Zih — P*i/F*O’
(isolated, supersymmetric )
G 9+ Vo =2Z T (T*1 =T*Z) =0 = «
ZMp =0,
{ (non — supersymmetric hypersurface)

e Kn | Z1|? | Zn|? —Vbhn
ZoSY =T 1*0 | ATy >0 | I*ATDy 0 ATy | | 2o
ZAPSUYD ) = —T*AT) >0 0 —T*AT) | =T*AT, | |20l
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric

First we solve the stabilization equations:

1 > A
A = 3MAS L, = —21 > -
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric

First we solve the stabilization equations:
A= Sanl b= o™y,

Then, the solutions are completely determined by the harmonic functions
M(ry=HM — \%QMT with

Z*
M :i\@%m( Qﬁﬁ) .
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the

supersymmetric
First we solve the stabilization equations:

1 5 A
A= 30MAsl™, = =2n""1yx.

Then, the solutions are completely determined by the harmonic functions
M(ry=HM — \%QMT with

Z*
M :i\@%m( Qﬁﬁ) .

Defining, for convenience’s sake

. Z
p— 1 E p— ]COO/Q—OO * — L

the metric function and the scalars are

_ - + 17
€ 2U:2 A A AR : —
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Non-extremal black holes

Non-extremal solutions
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Non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

€—2U _ 6_2[Ue( )—|—7“0’7'], €—2Ue( ) 9 * A A, 7 Zie( ) _ *z/ * 0

— A _I_ Ae27’07'

CA=0,---,n.
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Non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

€—2U _ 6_2[Ue( )—|—7“0'7'], €—2Ue( ) 9 * A A, 7 Zie( ) _ *z/ * 0

Y

A= JA 4 pAg2roT A —( ... p.

The 2(n 4+ 1) complex constants 5, /o are found by imposing the e.o.m. (f =¢e"07)

where

Uo — (Ue)? = Gij= 2°2*7" = 0,
(27“0)2 [f(je + Ue] —+ €2U6Vbh = O,
(2T0)2 {f (ZZ —+ gij*ﬁkglj* ZkZl> —+ ZZ] -+ eQUegij*é’j* Vi = 0.
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Non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

Sm(B*44,) = 0,

ANy = 0,

(A*ABS 4 BrAaS)e, o — 0

*AB¥¢)s = 0,

(2r0)%(B; Ay — BEAD) A* A AL + (TFAF —T5ANA*AT, = 0,
—(2r0)?(Bf Ay — B§A3)B* 2B + (T By —T§BY)B*ATy = 0,
(CyAS —TEAN AT + (DB =I5B B*ATa = 0,

where Eaxy = 2 (DAL'S + 8102 A BY) — nax (T9TE + 8rg2 AR BY) .
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Non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

Sm(B*44,) = 0,

ANy = 0,

(A*ABS 4 BrAaS)e, o — 0

*AB¥¢)s = 0,

(2r0)%(B; Ay — BEAD) A* A AL + (TFAF —T5ANA*AT, = 0,
—(2r0)?(Bf Ay — B§A3)B* 2B + (T By —T§BY)B*ATy = 0,
(CyAS —TEAN AT + (DB =I5B B*ATa = 0,

where Eaxy = 2 (DAL'S + 8102 A BY) — nax (T9TE + 8rg2 AR BY) .

No differential equations remain to be solved!
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Non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate 'z, 'z
to the physical parameters:

2( >|<A_|_ *A)( A+ A) = 1,
ARe[B*A(Ap+ Ba)] = 1—M/r,
>|<O_|_ «0 ZOO
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Non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate 'z, 'z
to the physical parameters:

2( >|<A_|_ *A)( A+ A) = 1,
ARe[B*A(Ap+ Ba)] = 1—M/r,
*0 1 /9%0 = 2l

Up to a phase to be determined in the supersymmetric extremal limit the solution is

- lLe’<ioo/2 {ZX L 2_e’<oo|2;§rgy2)'+PAZ*EOOF*Z}

1+
24/2 70 T0

S PN [EET L ) B e
2\/5 A oo ro ro )

A = =T
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Non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate 'z, 'z
to the physical parameters:

2( >|<A_|_ *A)( A+ A) = 1,
ARe[B*A(Ap+ Ba)] = 1—M/r,
*0 1 /9%0 = 2l

Up to a phase to be determined in the supersymmetric extremal limit the solution is

B 2 * * 7 * *
L [ L) ary)
2\@ i 70 | To
L eSel2 T (12— K= |Z5Erp?)]  TaZiTh
A = X Zpoo |1— B )
2\/5 i T0 | To

Here \/?rg2 = (11?2 — |Z50]?)(V/? — |Z5]?), and one can show that the metric is
regular in all the 79 > 0 cases.
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since 1/2rg2 = (M? — |Z5|?) (/2 — |Z5|?) there are two 19 — 0 (extremal ) limits:
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since 1/2rg2 = (M? — |Z5|?) (/2 — |Z5|?) there are two 19 — 0 (extremal ) limits:

1. Supersymmetric , when /2 — |Z|? = eX=|ZZT's|2. We get the harmonic
functions of the supersymmetric case.
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since 1/2rg2 = (M? — |Z5|?) (/2 — |Z5|?) there are two 19 — 0 (extremal ) limits:

1. Supersymmetric , when /2 — |Z|? = eX=|ZZT's|2. We get the harmonic
functions of the supersymmetric case.

2. Non-supersymmetric , when /2 = |Z2,|? = ef~|Z2Tg|? — T*>Ts.

October 25th 2011 U. Degli Studi di Milano Page 29-c



Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since 1/2rg2 = (M? — |Z5|?) (/2 — |Z5|?) there are two 19 — 0 (extremal ) limits:

1. Supersymmetric , when /2 — |Z|? = eX=|ZZT's|2. We get the harmonic
functions of the supersymmetric case.

2. Non-supersymmetric , when /2 — |Z|? = ef~|Z2 T2 — " >T'y,.
We get

y {ZXOO— e [—ZXOOP*EFE+PA2;EF*E}T}.
2v/2 |Z 5|
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since 1/2rg2 = (M? — |Z5|?) (/2 — |Z5|?) there are two 19 — 0 (extremal ) limits:

1. Supersymmetric , when /2 — |Z|? = eX=|ZZT's|2. We get the harmonic
functions of the supersymmetric case.

2. Non-supersymmetric , when /2 — |Z|? = ef~|Z2 T2 — " >T'y,.
We get

215wl =l {Z* L [-Z5 [ Ty + TAZ25Ty) }
- — |- T

A 2\/5 A oo |Zoo| A oo 2 Afoo 1+ 1

On the event horizon 7 — —oo the scalars Z* = 7/**/7/*Y take the values

gt D72 AT% — 23T 2T
BT TOZxITE —T*0Tqg

which depend manifestly on the asymptotic values (so there is no
behavior in this case).
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Non-extremal black holes

The structure of the extremal non-supersymmetric

solution as function of the 'Ms is the same as in
the supersymmetric case.

However, no simple substitution recipe could have
led to it.
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Non-extremal black holes

Physical properties of the non-extremal solutions
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Non-extremal black holes

Physical properties of the non-extremal solutions

¢

One can compute the ” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at 7 — —oo and 7 — 400 resp.:

(12— |2 £ (12 = |2l £ 200,
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Non-extremal black holes

Physical properties of the non-extremal solutions

¢

One can compute the ” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at 7 — —oo and 7 — 400 resp.:

(12— |2 £ (12 = |2l £ 200,

They can also be written in the suggestive form

L= (VITEVT)

with

2_’200’2, = 2_’27()@’27
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Non-extremal black holes

Physical properties of the non-extremal solutions

¢

One can compute the ” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at 7 — —oo and 7 — 400 resp.:

(12— |2 £ (12 = |2l £ 200,

They can also be written in the suggestive form

iZW(\/_i\/_>2,
with

= 2_’200’27 = 2_’200’27

The product 5, 5_ is manifestly moduli-independent for all values of rq:

n _/71_2 _ (F* AFA)2 .
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Z*.:
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Z*.:

00 Thus, if [*AT5 > 0, which is the property that characterizes the

supersymmetric , then |Zo| > | 20| and the evaporation process will
stop when \/ = |Z | (supersymmetry restoration).
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Z*.:

00 Thus, if [*AT5 > 0, which is the property that characterizes the

supersymmetric , then |Zo| > | 20| and the evaporation process will
stop when \/ = |Z | (supersymmetry restoration).

O If T*AT, < 0, then | 25| > | 20| and the evaporation process will stop when
= |2l
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Z*.:

00 Thus, if [*AT5 > 0, which is the property that characterizes the

supersymmetric , then |Zo| > | 20| and the evaporation process will
stop when \/ = |Z | (supersymmetry restoration).

O If T*AT, < 0, then | 25| > | 20| and the evaporation process will stop when
= |2l

There is an behavior in the evaporation process.
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Non-extremal black holes

7 — FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.
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Non-extremal black holes

7 — FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without F* i 55 F*H term.
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Non-extremal black holes

7 — FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without F* 1 75 F*H term.

The generic metric has the form

) B ] B > dp?
d 2 _ 2U 342 _d—_gU QQ .
S=edn e sinh () sinh (Bp) ) (d—3)2 T Pha-2)
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Non-extremal black holes

7 — FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without F* 1 75 F*H term.

The generic metric has the form

2 B i=g B ° dp?
2 _ 22U 32 —2U 2
— _ d—3 + d) .
ds” = dim ¢ [Sinh (Bp)] [(sinh (Bp)) (d—3)? a2

Now, the extremality parameter is B and the event horizon is at p — +00 (p = —7 in
d = 4). In general the inner horizon is not covered by the metric.
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Non-extremal black holes

7 — FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without F* 1 75 F*H term.

The generic metric has the form

) B ] B > dp?
s ¢ Sl (2] By ) @3z e

Now, the extremality parameter is B and the event horizon is at p — +00 (p = —7 in
d = 4). In general the inner horizon is not covered by the metric. One arrives to the
effective mechanical system

I[U7 (bz] — /d/){(U) EZ 3% gzy(bz(b‘? 2UVbh‘|‘B2} )

where the black-hole potential is given by (only electric charges)

d
Vo = o 2((d 23)) I gags .
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.

What is the general form of the non-extremal black holes in higher d?
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.

What is the general form of the non-extremal black holes in higher d?

In Meessen & O. arXiv:1107.5454 we showed, by direct integration of the equations of
motion of the effective mechanical system, that the deformation procedure used in

d = 4 dimensions also works in simple examples of N =2 d = 5 Supergravity
coupled to vector supermultiplets.
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Non-extremal black holes

8 — Conclusions
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

October 25th 2011 U. Degli Studi di Milano Page 35-b



Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK

formalism to algebraic relations between integration constants, that we have
been able to solve.
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

We have extended the FGK formalism to higher dimensions and we have shown
how the same Ansatz also works in an NV =2 d = 5 example.
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Non-extremal black holes

8 — Conclusions

We have reviewed the FGK formalism to study black holes .

We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

We have extended the FGK formalism to higher dimensions and we have shown
how the same Ansatz also works in an NV =2 d = 5 example.

We are currently working on generalizations to non-static solutions and to p # 0
black branes.
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Non-extremal black holes

We may be close to determining the general form of all sin-
gle, static, black-hole solutions of N =2 ,d = 4,5 theories.
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