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in theories that include Einstein’s gravity: supergravity and theories in
particular.
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Non-extremal black holes

1 – Introduction

☞ Black holes are, perhaps, the most mysterious and interesting objects that occur
in theories that include Einstein’s gravity: supergravity and theories in
particular.

☞ In the last years we have learned a lot about black-hole solutions, but mostly
about the extremal supersymmetric ones:

1. We know how to construct all the extremal supersymmetric ones in several
d = 4, 5 ungauged supergravities .

2. We know some things about the extremal non-supersymmetric ones through
their attractors, but, in general, we do not know how to construct the full
solutions.

3. We do not know much about the non-extremal ones, which should be closer
to reality. Only a handful of examples.

In this talk I will present a general ansatz to construct non-
extremal black-hole solutions and,as an example, we will
study a family of solutions obtained with it. First, we will
review the formalism.
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Two main approaches:

Algebraic
approach

{

Ferrara, Gibbons & Kallosh, (1997) (general formalism)
Ceresole & Dall′Agata (2007) (”fake”superpotentials)
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Supersymmetric (i .e. extremal) :
Tod (1983) (pure N = 2)
Behrndt, Luest & Sabra (1997)(N = 2 + Vs.)
Caldarelli & Klemm (2003) (pure gauged N = 2)
Huebscher, Meessen, O. & Vaula (2007), Meessen, (2008)
(N = 2 + Vs non−Abelian− gauged)
Cacciatori, Klemm, Mansi & Zorzan (2008) (N = 2 + Vs Abelian− gauged)
Meessen, O. & Vaula (2010) (all N ≥ 2)

Non− extremal :
Cvetic & Youm (1996)
O. (1996)
Kastor & Win (1996)
Mohaupt & Vaughan (2010) (general Ansatz d = 5)
Galli, O., Perz & Shahbazi (2011) (general Ansatz d = 4)
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Non-extremal black holes

We are interested in explicit solutions of non-extremal black holes ,
but we are going to rely heavily on the FGK formalism which is the
basis of the algebraic approach (mainly used for extremal black-hole
solutions).
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Non-extremal black holes

We are interested in explicit solutions of non-extremal black holes ,
but we are going to rely heavily on the FGK formalism which is the
basis of the algebraic approach (mainly used for extremal black-hole
solutions).

We start by reviewing the FGK formalism.
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Non-extremal black holes

2 – FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,
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2 – FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

describing the bosonic sectors of any 4d ungauged supergravity for given Gij ,NΛΣ.

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.
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[
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In the general metric r0 is always the non-extremality parameter:

☞ r0 =M for the Schwarzschild black hole.

☞ r0 =
√

M2 − (q2 + p2) for the Reissner -Nordström black hole.
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2 – FGK formalism

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
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µνF
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Λ
µν ⋆ F

Σµν
}

,

describing the bosonic sectors of any 4d ungauged supergravity for given Gij ,NΛΣ.

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.

In the general metric r0 is always the non-extremality parameter:

☞ r0 =M for the Schwarzschild black hole.

☞ r0 =
√

M2 − (q2 + p2) for the Reissner -Nordström black hole.

☞ What is r0 like for more general black holes?
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r0 is related to the black hole ’s
entropy S and temperature T by

r0
2 = 2ST.
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Non-extremal black holes

It can be shown (Gibbons, Kallosh, Kol (1997)) that r0 is related to the black hole ’s
entropy S and temperature T by

r0
2 = 2ST.

When r0 = 0, the metric takes the form

ds2 = e2U(τ)dt2−e−2U(τ)

[

(

dτ

τ2

)2

+
1

τ2
dΩ2

(2)

]

= e2U(r)dt2−e−2U(r)
[

dr2 + r2dΩ2
(2)

]

,

with r = −1/τ.
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The coordinate τ always covers the exterior of the black hole ’s event horizon which
is at τ → −∞ while spatial infinity is at τ → 0−.
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,
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The coordinate τ always covers the exterior of the black hole ’s event horizon which
is at τ → −∞ while spatial infinity is at τ → 0−.

When the black hole has a Cauchy horizon (Galli, O., Perz, Shahbazi (2011)) the
coordinate τ also covers the interior of the Cauchy horizon which is at τ → +∞
while the singularity is at some finite, positive value of τ .
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It can be shown (Gibbons, Kallosh, Kol (1997)) that r0 is related to the black hole ’s
entropy S and temperature T by

r0
2 = 2ST.

When r0 = 0, the metric takes the form

ds2 = e2U(τ)dt2−e−2U(τ)

[

(

dτ

τ2

)2

+
1

τ2
dΩ2

(2)

]

= e2U(r)dt2−e−2U(r)
[

dr2 + r2dΩ2
(2)

]

,

with r = −1/τ.

The coordinate τ always covers the exterior of the black hole ’s event horizon which
is at τ → −∞ while spatial infinity is at τ → 0−.

When the black hole has a Cauchy horizon (Galli, O., Perz, Shahbazi (2011)) the
coordinate τ also covers the interior of the Cauchy horizon which is at τ → +∞
while the singularity is at some finite, positive value of τ .

To determine completely the metric of any static, regular, spherically symmetric
black hole we only need to find the function U(τ).
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(τ), φi(τ) and the
electrostatic and magnetostatic potentials AΛ

t(τ), AΛ t(τ).
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Non-extremal black holes

To determine a complete solution, we need to find, on top of U(τ), φi(τ) and the
electrostatic and magnetostatic potentials AΛ

t(τ), AΛ t(τ).

The latter can be integrated out so they are effectively replaced by the electric, qΛ,
and magnetic, pΛ charges. The general system reduces to an effective mechanical
system with variables U(τ), φi(τ):

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh + r0
2

}

,
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electrostatic and magnetostatic potentials AΛ

t(τ), AΛ t(τ).

The latter can be integrated out so they are effectively replaced by the electric, qΛ,
and magnetic, pΛ charges. The general system reduces to an effective mechanical
system with variables U(τ), φi(τ):

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh + r0
2

}

,

where FGK defined the black-hole potential

−Vbh(φ, q, p) ≡ −1

2
(pΛ qΛ)





(I+RI
−1

R)ΛΣ −(RI
−1)Λ

Σ

−(I−1
R)ΛΣ (I−1)ΛΣ









pΣ

qΣ



 ,

where

RΛΣ ≡ ℜeNΛΣ(φ) , IΛΣ ≡ ℑmNΛΣ(φ) , (I−1)ΛΣ
IΣΓ = δΛΓ .
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 ,

where

RΛΣ ≡ ℜeNΛΣ(φ) , IΛΣ ≡ ℑmNΛΣ(φ) , (I−1)ΛΣ
IΣΓ = δΛΓ .

Finding a black hole with charges p, q is equivalent to solving the
above mechanical system for U(τ), φi(τ).
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Non-extremal black holes

For extremal (r0 = 0) black holes
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Non-extremal black holes

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .
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For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)
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black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)

☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.
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☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdS2 × S2 with the AdS2 and S2 radii
both equal to (− Vbh|φh

)1/2.
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For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)

☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdS2 × S2 with the AdS2 and S2 radii
both equal to (− Vbh|φh

)1/2.

Each critical point yields a possible extremal black-hole
solution and an AdS2×S2 geometry. One can go a long way
with the attractor only, ignoring the full explicit solution.
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Non-extremal black holes

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .
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2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.
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However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor for the scalars and the
entropy is unrelated to the black-hole potential.
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where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor for the scalars and the
entropy is unrelated to the black-hole potential.

We need to find the complete explicit solution in the non-
extremal case.
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Non-extremal black holes

Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .
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(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .
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∂iY = 0 ⇒ ∂iVbh = 0 ,
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U ′ = ∂UY , φi ′ = 2Gij∂jY .

Furthermore
∂iY = 0 ⇒ ∂iVbh = 0 ,

and
M = lim

τ→0−

∂UY , Σi = − lim
τ→0−

Gij∂jY .
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Non-extremal black holes

Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .

Furthermore
∂iY = 0 ⇒ ∂iVbh = 0 ,

and
M = lim

τ→0−

∂UY , Σi = − lim
τ→0−

Gij∂jY .

A generalized superpotential Y (U, φi, p, q, r0) exists in all theories whose scalar
manifold (after timelike dimensional reduction) is a symmetric coset space (in
particular for all N > 2 supergravities ) (Andrianopoli, D’Auria, Orazi & Trigiante
(2009), Chemissany, Fré, Rosseel, Sorin, Trigiante & Van Riet (2010)).
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Non-extremal black holes

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .
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Non-extremal black holes

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
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In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for N = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).
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Non-extremal black holes

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = |Z| for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for N = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).

The stationary values of the superpotential ∂iW |φh
= 0 give the the entropy:

S = π|W (φh, p, q)|2 ,
while the mass is

M = |W (φ∞, p, q)| .
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Non-extremal black holes

3 – Direct construction of solutions: extremal supersymmetric
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Non-extremal black holes

3 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.
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Non-extremal black holes

3 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review the example of (ungauged) N = 2
Supergravity coupled to vector multiplets.
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets
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4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets
(i = 1, · · ·nV , I = 1, 2)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ

(i = 1, · · ·nV , I = 1, 2)
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4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content
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µ λiI

(i = 1, · · ·nV , I = 1, 2)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets
(u = 1, · · · 4nH , α = 1, · · · 2nH)
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The field content
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nH Hypermultiplets qu
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα
(u = 1, · · · 4nH , α = 1, · · · 2nH)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).

All fermions are represented by chiral 4-component spinors:

γ5ψIµ = −ψIµ , etc.
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Non-extremal black holes

4 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).

All fermions are represented by chiral 4-component spinors:

γ5ψIµ = −ψIµ , etc.

Hypermultiplets can be ignored for black-hole solutions.
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Non-extremal black holes

The couplings
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.
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Non-extremal black holes

The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.

Local N = 2 supersymmetry requires the Kähler-Hodge manifold to be a special
Kähler manifold, so it is the base space of a 2(nV + 1)-dimensional vector bundle
with Sp[2(nV + 1),R] structure group, on which we can define the constrained
symplectic section

V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.
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Non-extremal black holes

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)
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V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:
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)

All the couplings of the ungauged theory are completely codified in three objects:
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☞ The Kähler potential K.
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Non-extremal black holes

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).
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Non-extremal black holes

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).

☞ The symplectic sections V =

(
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Non-extremal black holes

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).

☞ The symplectic sections V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

These three elements are not independent. They are related by the constraints of
special Kähler geometry. They can also be derived from a prepotential.
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Non-extremal black holes

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).

☞ The symplectic sections V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

These three elements are not independent. They are related by the constraints of
special Kähler geometry. They can also be derived from a prepotential.

The action of the bosonic fields of the ungauged theory is of the general FGK form:

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

ΛµνFΣ
µν

−2ℜeNΛΣF
Λµν ⋆ FΣ

µν

]

,⇒ −Vbh = |Z|2 + Gij∗DiZDj∗Z∗ .
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Non-extremal black holes

In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ .

October 25th 2011 U. Degli Studi di Milano Page 15



Non-extremal black holes

In order to find static extremal black holes one could try to integrate directly the
equations of motion of the FGK formalism for the black-hole potential of N = 2
d = 4 theories:

−Vbh = |Z|2 + Gij∗DiZDj∗Z∗ .

There is a recipe to construct all the BPS ones:
(Denef (2000), Behrndt, Lüst & Sabra (1997), Meessen, O. (2006))
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Non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .
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Non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞p

Λ = 0
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1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞p

Λ = 0

3. R is to be found from I by solving the generalized stabilization equations.
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Non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞p

Λ = 0

3. R is to be found from I by solving the generalized stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.
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Non-extremal black holes

1. For some complex X , define the Kähler-neutral, real, symplectic vectors R and I
R+ iI ≡ V/X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





HΛ(τ)

HΛ(τ)



 =





HΛ∞ − 1√
2
pΛτ

HΛ∞ − 1√
2
qΛτ



 ,

with no sources of NUT charge, i.e. 〈H∞ | Q 〉 = HΛ
∞qΛ −HΛ∞p

Λ = 0

3. R is to be found from I by solving the generalized stabilization equations.

4. The scalars Zi are given by the quotients Zi =
Vi/X

V0/X
=

Ri + iIi

I0 + iI0
.

5. The function U(τ) of the FGK formalism is given by

e−2U = 〈R | I 〉 = IΛRΛ − IΛRΛ .
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Non-extremal black holes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.
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Non-extremal black holes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.
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HM
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(

VM
∞

Z∗
∞

|Z∞|

)

.

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

October 25th 2011 U. Degli Studi di Milano Page 17-b



Non-extremal black holes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the algebraic
approach ( FGK formalism).
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Non-extremal black holes

The asymptotic values of the harmonic functions, HM
∞ satisfying the condition

N = 〈H∞ | Q 〉 = 0 have the general form

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Then, to construct the most general BPS solution of a given theory using this recipe
one only has to solve stabilization equations.

This can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the algebraic
approach ( FGK formalism).

In this case the complete explicit solutions do not give much more information than
the algebraic approach, but they are going to be used as starting point for the
construction of non-extremal solutions later on.
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Non-extremal black holes

5 – Direct construction of solutions: non-extremal
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Non-extremal black holes

5 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been
given (Galli, O., Perz & Shahbazi (2011)):
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5 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been
given (Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,
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Non-extremal black holes

5 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 d = 4 Supergravity theories has been
given (Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions HM (τ) = HM∞ − 1√

2
QMτ given by

the standard prescription for supersymmetric black holes ,

Then, the non-extremal solution is given by

U(τ) = Ue[H(τ)] + r0τ , Zi(τ) = Zi
e[H(τ)] ,

where now the functions H are assumed to be of the form

HM = aM + bM e2r0τ ,

and the constants aM , bM have to be determined by explicitly solving the e.o.m.
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Non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.
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Non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ For the moment, we have no proof for this hypothesis, which is justified only by
the results.
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the results.
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Non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ For the moment, we have no proof for this hypothesis, which is justified only by
the results.

➳ Actually, there are some claims in the literature against this hypothesis.

➳ However, it is hard to imagine how it cannot be true if the most general family of
solutions has to be duality-invariant and has to have the right extremal limits.
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Non-extremal black holes

➳ We are assuming that all the black hole solutions have the same dependence on
some functions HM (τ), which are harmonic in the extremal case and something
else in the non-extremal cases.

➳ For the moment, we have no proof for this hypothesis, which is justified only by
the results.

➳ Actually, there are some claims in the literature against this hypothesis.

➳ However, it is hard to imagine how it cannot be true if the most general family of
solutions has to be duality-invariant and has to have the right extremal limits.

➳ Furthermore, preliminary results indicate that

It may be possible to prove this hypothesis in general.
work in progress.
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.
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We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non− extremal, supersymmetric
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Non-extremal black holes

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non− extremal, supersymmetric

Extremal, non− supersymmetric
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Non-extremal black holes

6 – A complete example: CP
n

model

This model and has n scalars Zi that parametrize the coset space SU(1, n)/SU(n).
We add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .
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This model and has n scalars Zi that parametrize the coset space SU(1, n)/SU(n).
We add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),
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6 – A complete example: CP
n

model

This model and has n scalars Zi that parametrize the coset space SU(1, n)/SU(n).
We add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.
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Non-extremal black holes

6 – A complete example: CP
n

model

This model and has n scalars Zi that parametrize the coset space SU(1, n)/SU(n).
We add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .
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Non-extremal black holes

6 – A complete example: CP
n

model

This model and has n scalars Zi that parametrize the coset space SU(1, n)/SU(n).
We add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential is K = − log (Z∗ΛZΛ),

and the Kähler metric is Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads V = eK/2





ZΛ

− i
2ZΛ



 .

It is convenient to define the complex charge combinations ΓΛ ≡ qΛ + i
2ηΛΣp

Σ .
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Non-extremal black holes

The central charge Z , its holomorphic Kähler -covariant derivative and the
black-hole potential are given by

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .
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Non-extremal black holes

The central charge Z , its holomorphic Kähler -covariant derivative and the
black-hole potential are given by

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = |Z|2 + |Z̃|2 .

Remember that in N = 2 theories, in the extremal case |Z| plays the rôle of

superpotential W . In this case |Z̃| will play the rôle of “fake” superpotential.
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Non-extremal black holes

In this case we can write

−
[

e2UVbh − r0
2
]

= Υ2 + 4Gij∗ΨiΨ
∗
j∗ ,

where

Υ =
eU√
2

√

|Z|2 + |Z̃|2 + e−2Ur02 +

√

(

|Z|2 + |Z̃|2 + e−2Ur02
)2

− 4|Z|2|Z̃|2 ,

Ψi = e2U
Z∗ DiZ

Υ
,
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Non-extremal black holes

In this case we can write

−
[

e2UVbh − r0
2
]

= Υ2 + 4Gij∗ΨiΨ
∗
j∗ ,

where

Υ =
eU√
2

√

|Z|2 + |Z̃|2 + e−2Ur02 +

√

(

|Z|2 + |Z̃|2 + e−2Ur02
)2

− 4|Z|2|Z̃|2 ,

Ψi = e2U
Z∗ DiZ

Υ
,

Since

∂UΨi − ∂iΥ = ∂iΨj − ∂jΨi = ∂i∗Ψj − ∂jΨ
∗
i∗ = 0 ,

there exists a generalized superpotential, whose gradient generates the vector field
(Υ,Ψi,Ψ

∗
j∗) and the first-order equations

U ′ = Υ , Zi ′ = 2Gij∗Ψ∗
j∗ .

although it is very difficult to find explicitly.
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Non-extremal black holes

The extremal case
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Non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)

ZΛ
hΓΛ = 0 ,

(non− supersymmetric hypersurface)
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Non-extremal black holes

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)

ZΛ
hΓΛ = 0 ,

(non− supersymmetric hypersurface)

Attractor e−Kh |Zh|2 |Z̃h|2 −Vbhh M

Zi susy
h = Γ∗ i/Γ∗ 0 Γ∗ΛΓΛ > 0 Γ∗ΛΓΛ 0 Γ∗ΛΓΛ |Z∞|

ZΛnsusy
h ΓΛ = 0 −Γ∗ΛΓΛ > 0 0 −Γ∗ΛΓΛ −Γ∗ΛΓΛ |Z̃∞|
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor.
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor.

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor.

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.
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Non-extremal black holes

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor.

First we solve the stabilization equations:

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ .

Then, the solutions are completely determined by the harmonic functions
HM (τ) = HM − 1√

2
QMτ with

HM
∞ = ±

√
2ℑm

(

VM
∞

Z∗
∞

|Z∞|

)

.

Defining, for convenience’s sake

HΛ ≡ HΛ + i
2ηΛΣH

Σ ≡ eK∞/2 Z∞
|Z∞|Z

∗
Λ∞ − 1√

2
ΓΛτ

the metric function and the scalars are

e−2U = 2H∗ΛHΛ , Zi =
Ri + iIi

R0 + iI0
=

H∗i

H∗0 .
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Non-extremal black holes

Non-extremal solutions
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Non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
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Non-extremal black holes

Non-extremal solutions

Our Ansatz for the non-extremal solution is

e−2U = e−2[Ue(H)+r0τ ] , e−2Ue(H) = 2H∗ΛHΛ , Zi = Zi
e(H) = H∗ i/H∗ 0 ,

where HΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n.
The 2(n+ 1) complex constants AΛ, BΛ are found by imposing the e.o.m. (f ≡ er0τ )

Üe − (U̇e)
2 − Gij∗ Ż

iŻ∗ j∗ = 0 ,

(2r0)
2
[

fÜe + U̇e

]

+ e2UeVbh = 0 ,

(2r0)
2
[

f
(

Z̈i + Gij∗∂kGlj∗ Ż
kŻl

)

+ Żi
]

+ e2UeGij∗∂j∗Vbh = 0 .
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Non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.
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Non-extremal black holes

The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.

No differential equations remain to be solved!
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Non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .
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Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

Up to a phase to be determined in the supersymmetric extremal limit the solution is

AΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,
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Non-extremal black holes

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

Up to a phase to be determined in the supersymmetric extremal limit the solution is

AΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,

Here M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2), and one can show that the metric is

regular in all the r0
2 > 0 cases.

October 25th 2011 U. Degli Studi di Milano Page 28-b



Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get

HΛ
M→|Z̃∞|−→ ±e

K∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.
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Non-extremal black holes

Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z∞|2 = eK∞ |ZΣ
∞ΓΣ|2. We get the harmonic

functions of the supersymmetric case.

2. Non-supersymmetric , when M2 → |Z̃∞|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ.

We get

HΛ
M→|Z̃∞|−→ ±e

K∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon τ → −∞ the scalars Zi = H∗ i/H∗ 0 take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values (so there is no attractor
behavior in this case).
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Non-extremal black holes

The structure of the extremal non-supersymmetric
solution as function of the HMs is the same as in
the supersymmetric case.

However, no simple substitution recipe could have
led to it.
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Non-extremal black holes

Physical properties of the non-extremal solutions
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Non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .
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Non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

They can also be written in the suggestive form

S± = π
(

√

NR ±
√

NL

)2

,

with

NR ≡M2 − |Z∞|2 , NL ≡M2 − |Z̃∞|2 ,
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Non-extremal black holes

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon) at τ → −∞ and τ → +∞ resp.:

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

They can also be written in the suggestive form

S± = π
(

√

NR ±
√

NL

)2

,

with

NR ≡M2 − |Z∞|2 , NL ≡M2 − |Z̃∞|2 ,

The product S+S− is manifestly moduli-independent for all values of r0:

S+S−/π
2 = (Γ∗ΛΓΛ)

2 .
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.
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Non-extremal black holes

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges, independently of the moduli Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.

There is an attractor behavior in the evaporation process.
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Non-extremal black holes

7 – FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.
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7 – FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without FΛ
µν ⋆ F

Σµν term.
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Non-extremal black holes

7 – FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without FΛ
µν ⋆ F

Σµν term.

The generic metric has the form

ds2 = e2Udt2 − e−
2

d−3
U

[ B
sinh (Bρ)

]
2

d−3

[

( B
sinh (Bρ)

)2
dρ2

(d− 3)2
+ dΩ2

(d−2)

]

.
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Non-extremal black holes

7 – FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without FΛ
µν ⋆ F

Σµν term.

The generic metric has the form

ds2 = e2Udt2 − e−
2

d−3
U

[ B
sinh (Bρ)

]
2

d−3

[

( B
sinh (Bρ)

)2
dρ2

(d− 3)2
+ dΩ2

(d−2)

]

.

Now, the extremality parameter is B and the event horizon is at ρ→ +∞ (ρ = −τ in
d = 4). In general the inner horizon is not covered by the metric.
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Non-extremal black holes

7 – FGK formalism in higher dimensions d

The simplest generalization: static, non-extremal , black holes in arbitrary
dimension d.

The generic action is the same without FΛ
µν ⋆ F

Σµν term.

The generic metric has the form

ds2 = e2Udt2 − e−
2

d−3
U

[ B
sinh (Bρ)

]
2

d−3

[

( B
sinh (Bρ)

)2
dρ2

(d− 3)2
+ dΩ2

(d−2)

]

.

Now, the extremality parameter is B and the event horizon is at ρ→ +∞ (ρ = −τ in
d = 4). In general the inner horizon is not covered by the metric. One arrives to the
effective mechanical system

I[U, φi] =
∫

dρ
{

(U̇)2 + (d−3)
(d−2) Gij φ̇iφ̇j − e2UVbh + B2

}

,

where the black-hole potential is given by (only electric charges)

Vbh = α2 2(d−3)
(d−2) ℑΛΣqΛqΣ .
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.

What is the general form of the non-extremal black holes in higher d?
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Non-extremal black holes

A straightforward generalization of the results proved by FGK in d = 4 can be
proven for d > 4.

What is the general form of the non-extremal black holes in higher d?

In Meessen & O. arXiv:1107.5454 we showed, by direct integration of the equations of
motion of the effective mechanical system, that the deformation procedure used in
d = 4 dimensions also works in simple examples of N = 2 d = 5 Supergravity
coupled to vector supermultiplets.
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Non-extremal black holes

8 – Conclusions
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Non-extremal black holes

8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .
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8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).
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8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.
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8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.
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Non-extremal black holes

8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).
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Non-extremal black holes

8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

⋆ We have extended the FGK formalism to higher dimensions and we have shown
how the same Ansatz also works in an N = 2 d = 5 example.
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Non-extremal black holes

8 – Conclusions

⋆ We have reviewed the FGK formalism to study black holes .

⋆ We have proposed a general Ansatz to solve the equations of the FGK formalism
for non-extremal black holes based on the functional form of the extremal
supersymmetric ones (basically, a deformation procedure).

⋆ We have worked out a complete example, showing

1. How the deformation procedure reduces the differential equations of the FGK
formalism to algebraic relations between integration constants, that we have
been able to solve.

2. How we can recover very hard to find extremal non-supersymmetric solutions
from the non-extremal ones.

3. How the black-hole solutions generically satisfy first-order, gradient flow
equations (not only the extremal or supersymmetric ones).

⋆ We have extended the FGK formalism to higher dimensions and we have shown
how the same Ansatz also works in an N = 2 d = 5 example.

⋆ We are currently working on generalizations to non-static solutions and to p 6= 0
black branes.
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Non-extremal black holes

We may be close to determining the general form of all sin-
gle, static, black-hole solutions of N = 2 ,d = 4, 5 theories.
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