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1 – Introduction

What we talk about when we talk about black holes in
Supergravity and Superstring Theories.

String Theory is a theory of vibrating strings that can be classically defined on any
background. Superstring Theories have spacetime-supersymmetric spectra.

QM imposes consistency conditions on the possible backgrounds: they must satisfy
Einstein equations (with matter).

Supersymmetry ⇒ supersymmetric generalizations of Einstein equations, i.e. the
equations of motion of a Supergravity Theory.

Supergravity can always be viewed as GR plus very precise combinations and
couplings of bosonic and fermionic matter. The fermions can always be consistently
decoupled.

The QM -consistent backgrounds of Superstring Theory are just
the classical solutions of GR coupled to bosonic matter in a way
dictated by supersymmetry.
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standard GR sense.
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Some of these solutions have an event horizon and describe a black hole in the
standard GR sense.

For instance, the Schwarzschild and Kerr black holes are solutions of all Supergravity
Theories (with no scalar potential) and, therefore, are QM -consistent backgrounds
of the corresponding Superstring Theory.

Thus, the black holes of Supergravity and Superstring Theory are just the black
holes of GR in vacuum and with specific couplings to matter (in d = 4 just scalars
and 1-forms).

There are many new black hole solutions with non-trivial scalar, Abelian and
non-Abelian 1-form fields with interesting properties that offer new perspectives on
the old ones.

In this talk we are going to review general properties of the so-
lutions of Supergravity and some general families of black-hole
solutions. We will restrict our attention to static black holes in 4
dimensions and we will focus specially on N = 2 Supergravity .
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2 – Properties of the field configurations of Supergravity Theories

The field configurations (not necessarily solutions) of Supergravity Theories may
have new properties, which follow from the invariance of the theory under local
supersymmetry transformations:

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .
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2 – Properties of the field configurations of Supergravity Theories

The field configurations (not necessarily solutions) of Supergravity Theories may
have new properties, which follow from the invariance of the theory under local
supersymmetry transformations:

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .

A bosonic configuration (φf = 0) can be invariant under the infinitesimal
supersymmetry transformation generated by the parameter ǫα(x) if

δǫφ
f ∼ ∂ǫ+ φbǫ = 0 . (Killing spinor equations)

Field configurations admitting one or more Killing spinors are
said to have unbroken supersymmetries, or to be supersymmetric
or BPS (Bogomol’nyi-Prasad-Somerfield).

This is a generalization of the concept of isometry, an infinitesimal g.c.t. generated
by a ξµ(x) that leaves the metric gµν invariant

δξgµν = 2∇(µξν) = 0 . (Killing (vector) equation)
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Black Holes in Supergravity and Superstring Theories

To each bosonic symmetry we associate a generator of a symmetry algebra

ξµ(I)(x) → PI , [PI , PJ ] = fIJ
KPK .
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To each bosonic symmetry we associate a generator of a symmetry algebra

ξµ(I)(x) → PI , [PI , PJ ] = fIJ
KPK .

The supersymmetries are associated to the odd generators

ǫα(n)(x) → Qn ,

of a superalgebra
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mQm , {Qn,Qm} = fnm

IPI .

(The consistency of this picture requires that all BPS solutions have isometries.)
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To each bosonic symmetry we associate a generator of a symmetry algebra

ξµ(I)(x) → PI , [PI , PJ ] = fIJ
KPK .

The supersymmetries are associated to the odd generators

ǫα(n)(x) → Qn ,

of a superalgebra

[Qn, PI ] = fnI
mQm , {Qn,Qm} = fnm

IPI .

(The consistency of this picture requires that all BPS solutions have isometries.)

The field configurations of Supergravity Theories can be classified by their number of
unbroken supersymmetries and by their symmetry superalgebra.

Those with some (BPS), have special properties that make them most interesting.

Some (but not all) extremal black holes are BPS.
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Black Holes in Supergravity and Superstring Theories

In supersymmetric theories it is easy to show that the mass of all states is always
non-negative.
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Black Holes in Supergravity and Superstring Theories

In supersymmetric theories it is easy to show that the mass of all states is always
non-negative.

This property can be translated to spacetimes in Supergravity (Deser & Teitelboim
(1977), Grisaru (1978)). The proof predates that of the positivity of mass in GR
(Schoen & Yau (1979)).
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(Schoen & Yau (1979)).

Witten (1981) (and then Nester & Israel) showed that the positivity of mass in GR
follows from the one in N = 1 Supergravity, whose bosonic sector is pure GR.

The mass of the static solutions of Einstein-Maxwell theory satisfies the same BPS
bound as the states of N = 2 Supergravity (Gibbons & Hull (1982)):

M ≥ |q + ip|
q + ip ≡ Z is the central charge of N = 2 Supergravity
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non-negative.

This property can be translated to spacetimes in Supergravity (Deser & Teitelboim
(1977), Grisaru (1978)). The proof predates that of the positivity of mass in GR
(Schoen & Yau (1979)).

Witten (1981) (and then Nester & Israel) showed that the positivity of mass in GR
follows from the one in N = 1 Supergravity, whose bosonic sector is pure GR.

The mass of the static solutions of Einstein-Maxwell theory satisfies the same BPS
bound as the states of N = 2 Supergravity (Gibbons & Hull (1982)):

M ≥ |q + ip|
q + ip ≡ Z is the central charge of N = 2 Supergravity

This bound coincides with the extremality bound of the Reissner-Nordström black
hole :

r0
2 ≡M2 − |q + ip|2 ≥ 0 ,

(it is a solution of Einstein-Maxwell & N = 2 Supergravity ).
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In supersymmetric theories it is easy to show that the mass of all states is always
non-negative.

This property can be translated to spacetimes in Supergravity (Deser & Teitelboim
(1977), Grisaru (1978)). The proof predates that of the positivity of mass in GR
(Schoen & Yau (1979)).

Witten (1981) (and then Nester & Israel) showed that the positivity of mass in GR
follows from the one in N = 1 Supergravity, whose bosonic sector is pure GR.

The mass of the static solutions of Einstein-Maxwell theory satisfies the same BPS
bound as the states of N = 2 Supergravity (Gibbons & Hull (1982)):

M ≥ |q + ip|
q + ip ≡ Z is the central charge of N = 2 Supergravity

This bound coincides with the extremality bound of the Reissner-Nordström black
hole :

r0
2 ≡M2 − |q + ip|2 ≥ 0 ,

(it is a solution of Einstein-Maxwell & N = 2 Supergravity ).

When the BPS bound is saturated, the solution turns out to be BPS and the
Reissner-Nordström black hole becomes extremal.
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Black Holes in Supergravity and Superstring Theories

In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

September 1st 2011 ERE2011, U. Complutense de Madrid Page 6



Black Holes in Supergravity and Superstring Theories

In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

☞ The BPS bound is M ≥ |Z∞|.

September 1st 2011 ERE2011, U. Complutense de Madrid Page 6-a



Black Holes in Supergravity and Superstring Theories

In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

☞ The BPS bound is M ≥ |Z∞|.
☞ M = |Z∞| implies unbroken supersymmetry (BPS).

September 1st 2011 ERE2011, U. Complutense de Madrid Page 6-b



Black Holes in Supergravity and Superstring Theories

In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

☞ The BPS bound is M ≥ |Z∞|.
☞ M = |Z∞| implies unbroken supersymmetry (BPS).

September 1st 2011 ERE2011, U. Complutense de Madrid Page 6-c



Black Holes in Supergravity and Superstring Theories

In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

☞ The BPS bound is M ≥ |Z∞|.
☞ M = |Z∞| implies unbroken supersymmetry (BPS).

☞ Is the Supergravity solution is a (regular) black hole for all values of Zi
∞, q, p?

Do we need to find all the supersymmetric solutions?
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In more general N = 2 Supergravity theories (more scalars, Zi, and more vectors AΛ

and electric qΛ and magnetic pΛ charges) with the central charge Z∞ ≡ Z(Zi∞, q, p)

☞ The BPS bound is M ≥ |Z∞|.
☞ M = |Z∞| implies unbroken supersymmetry (BPS).

☞ Is the Supergravity solution is a (regular) black hole for all values of Zi
∞, q, p?

Do we need to find all the supersymmetric solutions?

☞ There are extremal black holes which are not BPS (Khuri & Ort́ın, (1997)). The
extremality bound cannot be just r0

2 =M2 − |Z∞|2 ≥ 0. Do we need to find all
the extremal and non-extremal solutions?
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☞ They saturate the BPS bound, and have minimal energy for the given charges.
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☞ They saturate the BPS bound, and have minimal energy for the given charges.

☞ They are stable under classical and quantum perturbations (non-renormalization
theorems).
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3 – Properties of BPS field configurations

☞ They saturate the BPS bound, and have minimal energy for the given charges.

☞ They are stable under classical and quantum perturbations (non-renormalization
theorems).

☞ Sometimes, their sources can be identified as certain BPS states of Superstring
Theory. For black-hole solutions, this leads to the identification of the conformal
field theory dual, leading to the computation of their microscopical entropy S
Strominger & Vafa (1996).
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☞ They saturate the BPS bound, and have minimal energy for the given charges.

☞ They are stable under classical and quantum perturbations (non-renormalization
theorems).

☞ Sometimes, their sources can be identified as certain BPS states of Superstring
Theory. For black-hole solutions, this leads to the identification of the conformal
field theory dual, leading to the computation of their microscopical entropy S
Strominger & Vafa (1996).

☞ Typically (no general proofs and no general understanding) there are static BPS
solutions describing several BPS “centers” (black holes , branes) in equilibrium
(multicenter solutions). (The “equilibrium of forces” picture could be
misleading.)
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solutions describing several BPS “centers” (black holes , branes) in equilibrium
(multicenter solutions). (The “equilibrium of forces” picture could be
misleading.)

☞ The maximally supersymmetric solutions (not always maximally symmetric) can
be interpreted as vacua. Configurations preserving less supersymmetry spatially
interpolate between them.
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3 – Properties of BPS field configurations

☞ They saturate the BPS bound, and have minimal energy for the given charges.

☞ They are stable under classical and quantum perturbations (non-renormalization
theorems).

☞ Sometimes, their sources can be identified as certain BPS states of Superstring
Theory. For black-hole solutions, this leads to the identification of the conformal
field theory dual, leading to the computation of their microscopical entropy S
Strominger & Vafa (1996).

☞ Typically (no general proofs and no general understanding) there are static BPS
solutions describing several BPS “centers” (black holes , branes) in equilibrium
(multicenter solutions). (The “equilibrium of forces” picture could be
misleading.)

☞ The maximally supersymmetric solutions (not always maximally symmetric) can
be interpreted as vacua. Configurations preserving less supersymmetry spatially
interpolate between them.

☞ Last, but not least, BPS configurations are simple, depend on very few
independent functions and (the fields) satisfy 1st order (flow) differential
equations that have attractor points for the scalar fields.
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Black Holes in Supergravity and Superstring Theories

We would like to know which of these prop-
erties are shared by the extremal but non-
supersymmetric black hole solutions.
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There are two main approaches:
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Black Holes in Supergravity and Superstring Theories

There are two main approaches:

(1) Algebraic approach

{

(Ferrara, Gibbons & Kallosh, (1997)) (general formalism)
Ceresole & Dall′Agata (2007) (”fake”superpotentials)

(2) Explicit solutions



























































































Supersymmetric (i .e. extremal) :
Tod (1983) (pure N = 2)
Behrndt, Luest & Sabra (1997)(general N = 2)
Caldarelli & Klemm (2003) (Abelian− gauged N = 2)
Huebscher, Meessen, O. & Vaula (2007), Meessen, (2008)
(non−Abelian− gauged N = 2)
Meessen, O. & Vaula (2010) (all N ≥ 2)

Non− extremal :
Cvetic & Youm (1996)
O. (1996)
Kastor & Win (1996)
Mohaupt & Vaughan (2010) (general Ansatz d = 5)
Galli, O., Perz & Shahbazi (2011) (general Ansatz d = 4)
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Black Holes in Supergravity and Superstring Theories

4 – Algebraic (FGK) approach

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,
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I =
∫

d4x
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R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

It can describe the bosonic sectors of all 4-d ungauged supergravities for appropriate
Gij and NΛΣ(φ)
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4 – Algebraic (FGK) approach

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

It can describe the bosonic sectors of all 4-d ungauged supergravities for appropriate
Gij and NΛΣ(φ)

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.
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4 – Algebraic (FGK) approach

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
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R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

It can describe the bosonic sectors of all 4-d ungauged supergravities for appropriate
Gij and NΛΣ(φ)

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.

r0 is the non-extremality parameter (2M for Schwarzschild )

r0
2 = 2ST.
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Black Holes in Supergravity and Superstring Theories

4 – Algebraic (FGK) approach

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

It can describe the bosonic sectors of all 4-d ungauged supergravities for appropriate
Gij and NΛΣ(φ)

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.

r0 is the non-extremality parameter (2M for Schwarzschild )

r0
2 = 2ST.

τ is such that the event horizon is at τ → −∞ and spatial infinity is at τ → 0−.
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4 – Algebraic (FGK) approach

Ferrara, Gibbons and Kallosh (1997) considered the general 4-dimensional action

I =
∫

d4x
√

|g|
{

R+ Gij(φ)∂µφ
i∂µφj

+2ℑmNΛΣ(φ)F
Λ
µνF

Σµν − 2ℜeNΛΣ(φ)F
Λ
µν ⋆ F

Σµν
}

,

It can describe the bosonic sectors of all 4-d ungauged supergravities for appropriate
Gij and NΛΣ(φ)

They also considered the general metric for any static non-extremal black hole

ds2 = e2U(τ)dt2 − e−2U(τ)

[

r0
4

sinh4 r0τ
dτ2 +

r0
2

sinh2 r0τ
dΩ2

(2)

]

.

r0 is the non-extremality parameter (2M for Schwarzschild )

r0
2 = 2ST.

τ is such that the event horizon is at τ → −∞ and spatial infinity is at τ → 0−.

For the Schwarzschild black hole r0 = 2M and U = er0τ .
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Black Holes in Supergravity and Superstring Theories

The general system reduces to an effective mechanical system with variables
U(τ), φi(τ):

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh + r0
2

}

,
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Black Holes in Supergravity and Superstring Theories

The general system reduces to an effective mechanical system with variables
U(τ), φi(τ):

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh + r0
2

}

,

where FGK defined the black-hole potential

−Vbh(φ, q, p) ≡ −1

2
(pΛ qΛ)





(I+RI
−1

R)ΛΣ −(RI
−1)Λ

Σ

−(I−1
R)ΛΣ (I−1)ΛΣ









pΣ

qΣ



 ,

where

RΛΣ ≡ ℜeNΛΣ(φ)) , IΛΣ ≡ ℑmNΛΣ(φ)) , (I−1)ΛΣ
IΣΓ = δΛΓ .
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Black Holes in Supergravity and Superstring Theories

The general system reduces to an effective mechanical system with variables
U(τ), φi(τ):

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh + r0
2

}

,

where FGK defined the black-hole potential

−Vbh(φ, q, p) ≡ −1

2
(pΛ qΛ)





(I+RI
−1

R)ΛΣ −(RI
−1)Λ

Σ

−(I−1
R)ΛΣ (I−1)ΛΣ









pΣ

qΣ



 ,

where

RΛΣ ≡ ℜeNΛΣ(φ)) , IΛΣ ≡ ℑmNΛΣ(φ)) , (I−1)ΛΣ
IΣΓ = δΛΓ .

Finding a black hole with charges p, q is equivalent to solving the
above system for U(τ), φi(τ).
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)

☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)

☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdS2 × S2 with the AdS2 and S2 radii
both equal to (− Vbh|φh

)1/2.
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Black Holes in Supergravity and Superstring Theories

For extremal (r0 = 0) black holes

☞ The values of the scalars on the event horizon φih are critical points of the
black-hole potential

∂i Vbh|φh
= 0 .

The general solution (attractor) is

φih = φih(φ∞, q, p) , φi∞ ≡ lim
τ→0−

φi(τ) ,

but in many cases φih = φih(q, p) (true attractor)

☞ The value of the black-hole potential at the critical points gives the entropy :

S = −π Vbh(φ, q, p)|φh
= S(p, q) ,

which is amenable to a microscopic interpretation.

☞ The near-horizon geometry is always AdS2 × S2 with the AdS2 and S2 radii
both equal to (− Vbh|φh

)1/2.

Each critical point yields a possible extremal black-hole
solution and an AdS2×S2 geometry. One can go a long way
with the attractor only, ignoring the full explicit solution.
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Black Holes in Supergravity and Superstring Theories

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .
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In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!
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Black Holes in Supergravity and Superstring Theories

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.
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Black Holes in Supergravity and Superstring Theories

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a priori.
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Black Holes in Supergravity and Superstring Theories

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor for the scalars and the
entropy is unrelated to the black-hole potential.
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Black Holes in Supergravity and Superstring Theories

In the general case one can prove the following extremality bound:

r0
2 =M2 + 1

2Gij(φ∞)ΣiΣj + Vbh(φ∞, q, p) ,≥ 0 ,

where
U ∼ 1 +Mτ ,

φi ∼ φi∞ − Σiτ .

However, this expression is useless!

According to the no-hair “theorem” only Σi = Σi(M,φi∞, q, p) (secondary hair) are
allowed for regular black holes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor for the scalars and the
entropy is unrelated to the black-hole potential.

We need to find the complete explicit solution in the non-
extremal case.
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Black Holes in Supergravity and Superstring Theories

Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .
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Black Holes in Supergravity and Superstring Theories

Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .
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Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .

Furthermore
∂iY = 0 ⇒ ∂iVbh = 0 ,
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Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .

Furthermore
∂iY = 0 ⇒ ∂iVbh = 0 ,

and
M = lim

τ→0−

∂UY , Σi = − lim
τ→0−

Gij∂jY .
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Black Holes in Supergravity and Superstring Theories

Whenever we can write −
[

e2UVbh − r0
2
]

= (∂UY )2 + 2Gij∂iY ∂jY for some

(generalized) superpotential Y (U, φi, p, q, r0), we can rewrite the effective action as

Ieff [U, φ
i] =

∫

dτ
{

(U ′ − ∂UY )2 + 1
2Gij(φ

i ′ − 2Gik∂kY )(φj ′ − 2Gjl∂lY ) + 2Y ′} .

The action is minimized by configurations satisfying the first-order gradient flow
equations (Miller, Schalm & Weinberg (2007), Janssen, Smyth, Van Riet & Vercnocke
(2008), Perz, Smyth, Van Riet & Vercnocke (2008))

U ′ = ∂UY , φi ′ = 2Gij∂jY .

Furthermore
∂iY = 0 ⇒ ∂iVbh = 0 ,

and
M = lim

τ→0−

∂UY , Σi = − lim
τ→0−

Gij∂jY .

A generalized superpotential Y (U, φi, p, q, r0) exists in all theories whose scalar
manifold (after timelike dimensional reduction) is a symmetric coset space (in
particular for all N > 2 supergravities ) (Andrianopoli, D’Auria, Orazi & Trigiante
(2009), Chemissany, Fré, Rosseel, Sorin, Trigiante & Van Riet (2010)).
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Black Holes in Supergravity and Superstring Theories

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .
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Black Holes in Supergravity and Superstring Theories

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = Z for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
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In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = Z for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for N = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).
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Black Holes in Supergravity and Superstring Theories

In the extremal case r0 = 0, if there is a generalized superpotential Y (U, φi, p, q), it
factorizes

Y (U, φi, p, q) = eUW (φi, p, q) ,

where W (φi, p, q) is called the superpotential, and the flow equations take the form
(Ceresole & Dall’Agata (2007))

U ′ = eUW , φi ′ = 2 eUGij∂jW .

A superpotential W (φi, p, q) always exists for all N ≥ 2, associated to the central
charge (W = Z for N = 2 ), the flow equations are related to the Killing spinor
equations, and the corresponding extremal black-hole solutions are supersymmetric .
However, in general there are extremal black-hole solutions that are not
supersymmetric and satisfy the above flow equations for a different (“fake”)
superpotential. They have been found for N = 2 and other supergravity theories
(Bossard, Michel & Pioline (2009), Ceresole, Dall’Agata, Ferrara & Yeranyan (2009)).

The stationary values of the superpotential ∂iW |φh
= 0 give the the entropy:

S = π|W (φh, p, q)|2 ,
while the mass is

M = |W (φ∞, p, q)| .
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Black Holes in Supergravity and Superstring Theories

5 – Direct construction of solutions: extremal supersymmetric
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Black Holes in Supergravity and Superstring Theories

5 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.
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Black Holes in Supergravity and Superstring Theories

5 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review two examples:
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Black Holes in Supergravity and Superstring Theories

5 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review two examples:

☞ (Ungauged) N = 2 Supergravity coupled to vector multiplets.
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Black Holes in Supergravity and Superstring Theories

5 – Direct construction of solutions: extremal supersymmetric

By analyzing the integrability conditions of the Killing spinor equations δǫφ
f = 0 it

is possible to determine the general form of all the supersymmetric solutions of any
Supergravity theory (Tod (1983)), and then find the supersymmetric black hole
solutions.

We are going to review two examples:

☞ (Ungauged) N = 2 Supergravity coupled to vector multiplets.

☞ Non-Abelian gaugings of the above theory.
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

September 1st 2011 ERE2011, U. Complutense de Madrid Page 17



Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content
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6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are
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6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets
(i = 1, · · ·nV , I = 1, 2)
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ

(i = 1, · · ·nV , I = 1, 2)
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI

(i = 1, · · ·nV , I = 1, 2)
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets
(u = 1, · · · 4nH , α = 1, · · · 2nH)
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6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu

(u = 1, · · · 4nH , α = 1, · · · 2nH)
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Black Holes in Supergravity and Superstring Theories

6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα
(u = 1, · · · 4nH , α = 1, · · · 2nH)
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The supergravity multiplet
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The field content
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µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).
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µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).

All fermions are represented by chiral 4-component spinors:

γ5ψIµ = −ψIµ , etc.
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6 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z
∗)).

All fermions are represented by chiral 4-component spinors:

γ5ψIµ = −ψIµ , etc.

Hypermultiplets can be ignored for black-hole solutions.
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The couplings
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Black Holes in Supergravity and Superstring Theories

The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .
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The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗ .

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.

Local N = 2 supersymmetry requires the Kähler-Hodge manifold to be a special
Kähler manifold, so it is the base space of a 2(nV + 1)-dimensional vector bundle
with Sp[2(nV + 1),R] structure group, on which we can define the constrained
symplectic section

V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.
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Black Holes in Supergravity and Superstring Theories

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)
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All the couplings of the ungauged theory are completely codified in three objects:
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V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).
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Black Holes in Supergravity and Superstring Theories

V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).

☞ The symplectic sections V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

These three elements are not independent. They are related by the constraints of
special Kähler geometry. They can also be derived from a prepotential.
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V can be thought of as just a redundant description of the physical scalars with
manifest symplectic symmetry, which also acts on the electric and magnetic charges:

(

pΛ

qΛ

)

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z
∗).

☞ The symplectic sections V =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

These three elements are not independent. They are related by the constraints of
special Kähler geometry. They can also be derived from a prepotential.

The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R + 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

ΛµνFΣ
µν

−2ℜeNΛΣF
Λµν ⋆ FΣ

µν

]

.
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Black Holes in Supergravity and Superstring Theories

All the static supersymmetric (hence, extremal ) black holes of any of these N = 2
theories can be constructed following this simple recipe: (Denef (2000), Behrndt, Lüst
& Sabra (1997), Meessen, O. (2006))
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All the static supersymmetric (hence, extremal ) black holes of any of these N = 2
theories can be constructed following this simple recipe: (Denef (2000), Behrndt, Lüst
& Sabra (1997), Meessen, O. (2006))

1. Define the U(1)-neutral real symplectic vectors R and I
R+ iI ≡ V/X ,

for some complex X .
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Black Holes in Supergravity and Superstring Theories

All the static supersymmetric (hence, extremal ) black holes of any of these N = 2
theories can be constructed following this simple recipe: (Denef (2000), Behrndt, Lüst
& Sabra (1997), Meessen, O. (2006))

1. Define the U(1)-neutral real symplectic vectors R and I
R+ iI ≡ V/X ,

for some complex X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





IΛ
∞ − 1√

2
pΛτ

IΛ∞ − 1√
2
qΛτ



 , IΛ
∞qΛ − IΛ∞p

Λ = 0 .
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All the static supersymmetric (hence, extremal ) black holes of any of these N = 2
theories can be constructed following this simple recipe: (Denef (2000), Behrndt, Lüst
& Sabra (1997), Meessen, O. (2006))

1. Define the U(1)-neutral real symplectic vectors R and I
R+ iI ≡ V/X ,

for some complex X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





IΛ
∞ − 1√

2
pΛτ

IΛ∞ − 1√
2
qΛτ



 , IΛ
∞qΛ − IΛ∞p

Λ = 0 .

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).

September 1st 2011 ERE2011, U. Complutense de Madrid Page 20-c
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All the static supersymmetric (hence, extremal ) black holes of any of these N = 2
theories can be constructed following this simple recipe: (Denef (2000), Behrndt, Lüst
& Sabra (1997), Meessen, O. (2006))

1. Define the U(1)-neutral real symplectic vectors R and I
R+ iI ≡ V/X ,

for some complex X .

2. The components of I are given by a symplectic vector real functions harmonic in
the 3-dimensional transverse space. For single black holes :





IΛ

IΛ



 =





IΛ
∞ − 1√

2
pΛτ

IΛ∞ − 1√
2
qΛτ



 , IΛ
∞qΛ − IΛ∞p

Λ = 0 .

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).
4. The scalars Zi are given by the quotients

Zi =
V i/X

V0/X
=

Ri + iIi

I0 + iI0
.
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Black Holes in Supergravity and Superstring Theories

4. The metric takes the form (in FGK coordinates)

ds2 = e2Udt2 − e−2U

[

dτ2

τ4
+

1

τ2
dΩ2

(2)

]

.

September 1st 2011 ERE2011, U. Complutense de Madrid Page 21



Black Holes in Supergravity and Superstring Theories

4. The metric takes the form (in FGK coordinates)

ds2 = e2Udt2 − e−2U

[

dτ2

τ4
+

1

τ2
dΩ2

(2)

]

.

where
e−2U = IΛRΛ − IΛRΛ .
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4. The metric takes the form (in FGK coordinates)

ds2 = e2Udt2 − e−2U

[

dτ2

τ4
+

1

τ2
dΩ2

(2)

]

.

where
e−2U = IΛRΛ − IΛRΛ .

In practice, the main difficulty in this construction is the resolution of the
stabilization equations for the theory considered.
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4. The metric takes the form (in FGK coordinates)

ds2 = e2Udt2 − e−2U

[

dτ2

τ4
+

1

τ2
dΩ2

(2)

]

.

where
e−2U = IΛRΛ − IΛRΛ .

In practice, the main difficulty in this construction is the resolution of the
stabilization equations for the theory considered.

One can check in the explicit solutions all the properties predicted by the algebraic
approach.
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Black Holes in Supergravity and Superstring Theories

4. The metric takes the form (in FGK coordinates)

ds2 = e2Udt2 − e−2U

[

dτ2

τ4
+

1

τ2
dΩ2

(2)

]

.

where
e−2U = IΛRΛ − IΛRΛ .

In practice, the main difficulty in this construction is the resolution of the
stabilization equations for the theory considered.

One can check in the explicit solutions all the properties predicted by the algebraic
approach.

In this case the solutions do not give much more information than the algebraic
approach, but they are going to be used as starting point for the construction of
non-extremal solutions later on.
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Black Holes in Supergravity and Superstring Theories

The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):
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Black Holes in Supergravity and Superstring Theories

The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .
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The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .

For instance, for SU(2) one can take the solution that leads to the ’t Hooft-Polyakov
monopole, but one can also take singular solutions (Meessen (2008)).
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Black Holes in Supergravity and Superstring Theories

The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .

For instance, for SU(2) one can take the solution that leads to the ’t Hooft-Polyakov
monopole, but one can also take singular solutions (Meessen (2008)).

2. Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone.
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The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .

For instance, for SU(2) one can take the solution that leads to the ’t Hooft-Polyakov
monopole, but one can also take singular solutions (Meessen (2008)).

2. Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone. For compact gauge groups a possible
solution is always

IΛ ∝ IΛ .
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The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .

For instance, for SU(2) one can take the solution that leads to the ’t Hooft-Polyakov
monopole, but one can also take singular solutions (Meessen (2008)).

2. Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone. For compact gauge groups a possible
solution is always

IΛ ∝ IΛ .

3. The real symplectic vector I = (IΛ, IΛ) determines completely the solution as in
the Abelian case.
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Black Holes in Supergravity and Superstring Theories

The above recipe can be generalized to construct static non-Abelian supersymmetric
black holes (Hübscher, Meessen, O. &,Vaulà (2007)):

1. Take a solution of the Bogomol’nyi equations in R
3 for the gauge group under

consideration:
1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ .

For instance, for SU(2) one can take the solution that leads to the ’t Hooft-Polyakov
monopole, but one can also take singular solutions (Meessen (2008)).

2. Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone. For compact gauge groups a possible
solution is always

IΛ ∝ IΛ .

3. The real symplectic vector I = (IΛ, IΛ) determines completely the solution as in
the Abelian case.

In this way, genuinely no-Abelian black-hole solutions have been obtained in fully
analytic form (unlike Bartnik & McKinnon’s). They exhibit gauge-covariant
attractors (Hübscher, Meessen, O. &,Vaulà (2007), Meessen (2008)).
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Black Holes in Supergravity and Superstring Theories

7 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 Supergravity theories has been given
(Galli, O., Perz & Shahbazi (2011)):
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Black Holes in Supergravity and Superstring Theories

7 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 Supergravity theories has been given
(Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions H(τ) = H∞ − qατ/

√
2 given by the

standard prescription for supersymmetric black holes ,
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7 – Direct construction of solutions: non-extremal

Based on the study of several examples, the following prescription to deform the
extremal supersymmetric solutions of N = 2 Supergravity theories has been given
(Galli, O., Perz & Shahbazi (2011)):

If the supersymmetric solution is given by

U(τ) = Ue[H(τ)] , Zi(τ) = Zi
e[H(τ)] ,

where Ue and Zi
e depend on harmonic functions H(τ) = H∞ − qατ/

√
2 given by the

standard prescription for supersymmetric black holes ,

Then, the non-extremal solution is given by

U(τ) = Ue[Ĥ(τ)] + r0τ , Zi(τ) = Zi
e[Ĥ(τ)] ,

where where the harmonic functions H have been replaced by

Ĥ = a+ be2r0τ ,

and the constants a, b have to be determined by explicitly solving the e.o.m.
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Black Holes in Supergravity and Superstring Theories

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.
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Black Holes in Supergravity and Superstring Theories

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric
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We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non− extremal, supersymmetric
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Black Holes in Supergravity and Superstring Theories

We are going to give an explicit example, showing that one can recover both the
extremal supersymmetric and non-supersymmetric black holes of a model from the
general non-extremal solution found with this prescription.

Extremal, supersymmetric

Non− extremal, supersymmetric

Extremal, non− supersymmetric
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8 – A complete example: CP
n

model

This model and has n scalars Zi to which we add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .
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8 – A complete example: CP
n

model

This model and has n scalars Zi to which we add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential and metric (SU(1, n)/SU(n)) are

K = − log (Z∗ΛZΛ) , Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.
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8 – A complete example: CP
n

model

This model and has n scalars Zi to which we add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential and metric (SU(1, n)/SU(n)) are

K = − log (Z∗ΛZΛ) , Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads

V = eK/2





ZΛ

− i
2ZΛ



 .
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8 – A complete example: CP
n

model

This model and has n scalars Zi to which we add for convenience Z0 ≡ 1, so we have

(ZΛ) ≡ (1, Zi) , (ZΛ) ≡ (1, Zi) = (1,−Zi) , (ηΛΣ) = diag(+− · · ·−) .

The Kähler potential and metric (SU(1, n)/SU(n)) are

K = − log (Z∗ΛZΛ) , Gij∗ = −eK
(

ηij∗ − eKZ∗
i Zj∗

)

.

The covariantly holomorphic symplectic section reads

V = eK/2





ZΛ

− i
2ZΛ



 .

It is convenient to define the complex charge combinations

ΓΛ ≡ qΛ + i
2ηΛΣp

Σ .
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The central charge Z , its holomorphic Kähler -covariant derivative and the
black-hole potential are given by

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = 2eK|ZΛΓΛ|2 − Γ∗ΛΓΛ .
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Black Holes in Supergravity and Superstring Theories

The central charge Z , its holomorphic Kähler -covariant derivative and the
black-hole potential are given by

Z = eK/2ZΛΓΛ ,

DiZ = e3K/2Z∗
i Z

ΛΓΛ − eK/2Γi ,

|Z̃|2 ≡ Gij∗DiZDj∗Z∗ = eK|ZΛΓΛ|2 − Γ∗ΛΓΛ ,

−Vbh = 2eK|ZΛΓΛ|2 − Γ∗ΛΓΛ .

Remember that in N = 2 theories, in the extremal case |Z| plays the rôle of

superpotential W . In this case |Z̃| will play the rôle of “fake” superpotential.
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In this case we can write

−
[

e2UVbh − r0
2
]

= Υ2 + 4Gij∗ΨiΨ
∗
j∗ ,

where

Υ =
eU√
2

√

|Z|2 + |Z̃|2 + e−2Ur02 +

√

(

|Z|2 + |Z̃|2 + e−2Ur02
)2

− 4|Z|2|Z̃|2 ,

Ψi = e2U
Z∗ DiZ

Υ
,

September 1st 2011 ERE2011, U. Complutense de Madrid Page 27
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In this case we can write

−
[

e2UVbh − r0
2
]

= Υ2 + 4Gij∗ΨiΨ
∗
j∗ ,

where

Υ =
eU√
2

√

|Z|2 + |Z̃|2 + e−2Ur02 +

√

(

|Z|2 + |Z̃|2 + e−2Ur02
)2

− 4|Z|2|Z̃|2 ,

Ψi = e2U
Z∗ DiZ

Υ
,

Since

∂UΨi − ∂iΥ = ∂iΨj − ∂jΨi = ∂i∗Ψj − ∂jΨ
∗
i∗ = 0 ,

there exists a generalized superpotential, whose gradient generates the vector field
(Υ,Ψi,Ψ

∗
j∗) and the first-order equations

U ′ = Υ , Zi ′ = 2Gij∗Ψ∗
j∗ .

although it is very difficult to find explicitly.

September 1st 2011 ERE2011, U. Complutense de Madrid Page 27-a



Black Holes in Supergravity and Superstring Theories

The extremal case
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Black Holes in Supergravity and Superstring Theories

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)

ZΛ
hΓΛ = 0 ,

(non− supersymmetric hypersurface)
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Black Holes in Supergravity and Superstring Theories

The extremal case

We start by calculating the critical points of the black-hole potential:

Gij∗∂j∗Vbh = 2ZΛΓΛ

(

Γ∗ i − Γ∗ 0Zi
)

= 0 ⇒



















Zi
h = Γ∗ i/Γ∗ 0 ,

(isolated, supersymmetric attractor)

ZΛ
hΓΛ = 0 ,

(non− supersymmetric hypersurface)

Attractor e−Kh |Zh|2 |Z̃h|2 −Vbhh M

Zi susy
h = Γ∗ i/Γ∗ 0 Γ∗ΛΓΛ > 0 Γ∗ΛΓΛ 0 Γ∗ΛΓΛ |Z∞|

ZΛnsusy
h ΓΛ = 0 −Γ∗ΛΓΛ > 0 0 −Γ∗ΛΓΛ −Γ∗ΛΓΛ |Z̃∞|
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Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor. They are constructed in terms of the real harmonic
functions IΣ and IΣ.
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Black Holes in Supergravity and Superstring Theories

Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor. They are constructed in terms of the real harmonic
functions IΣ and IΣ.

In this model, the stabilization equations are solved by

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ ,
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Next, we construct the supersymmetric (extremal ) solutions, associated to the
supersymmetric attractor. They are constructed in terms of the real harmonic
functions IΣ and IΣ.

In this model, the stabilization equations are solved by

RΛ = 1
2ηΛΣIΣ , RΛ = −2ηΛΣIΣ ,

Defining the complex combinations of harmonic functions

HΛ ≡ IΛ + i
2ηΛΣIΣ ≡ HΛ∞ − 1√

2
ΓΛτ ,

we find the form of the metric and the complex scalar fields in terms of those
harmonic functions

e−2U = 2H∗ΛHΛ , Zi =
Ri + iIi

R0 + iI0
=

H∗i

H∗0 .
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The solution depends on the n+ 1 charges ΓΛ and on the n+ 1 constants HΛ∞.
these are determined from

Zi
∞ = H∗ i

∞/H∗ 0
∞ ,
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Black Holes in Supergravity and Superstring Theories

The solution depends on the n+ 1 charges ΓΛ and on the n+ 1 constants HΛ∞.
these are determined from

Zi
∞ = H∗ i

∞/H∗ 0
∞ ,

asymptotic flatness

2H∗Λ
∞ HΛ∞ = 1 ,
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The solution depends on the n+ 1 charges ΓΛ and on the n+ 1 constants HΛ∞.
these are determined from

Zi
∞ = H∗ i

∞/H∗ 0
∞ ,

asymptotic flatness

2H∗Λ
∞ HΛ∞ = 1 ,

and absence of NUT charge,

ℑm
(

H∗Λ
∞ ΓΛ

)

= 0 .
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The solution depends on the n+ 1 charges ΓΛ and on the n+ 1 constants HΛ∞.
these are determined from

Zi
∞ = H∗ i

∞/H∗ 0
∞ ,

asymptotic flatness

2H∗Λ
∞ HΛ∞ = 1 ,

and absence of NUT charge,

ℑm
(

H∗Λ
∞ ΓΛ

)

= 0 .

The complete supersymmetric solution is, therefore, given by the n+ 1 complex
harmonic functions

Hsusy
Λ = eK∞/2 Z∞

|Z∞|Z
∗
Λ∞ − 1√

2
ΓΛτ ,
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Non-extremal solutions
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Non-extremal solutions

Our ansatz for the non-extremal solution is

e−2U = e−2[Ue(Ĥ)+r0τ ] , e−2Ue(Ĥ) = 2Ĥ∗ΛĤΛ , Zi = Zi
e(Ĥ) = Ĥ∗ i/Ĥ∗ 0 ,

where

ĤΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n .
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Non-extremal solutions

Our ansatz for the non-extremal solution is

e−2U = e−2[Ue(Ĥ)+r0τ ] , e−2Ue(Ĥ) = 2Ĥ∗ΛĤΛ , Zi = Zi
e(Ĥ) = Ĥ∗ i/Ĥ∗ 0 ,

where

ĤΛ ≡ AΛ +BΛe2r0τ , Λ = 0, · · · , n .

The 2(n+ 1) complex constants AΛ, BΛ are found by requiring our Ansatz to solve
the e.o.m. (f ≡ er0τ )

Ü e − (U̇ e)
2 − Gij∗ Ż

iŻ∗ j∗ = 0 ,

(2r0)
2
[

fÜ e + U̇ e

]

+ e2UeVbh = 0 ,

(2r0)
2
[

f
(

Z̈i + Gij∗∂kGlj∗ Ż
kŻl

)

+ Żi
]

+ e2UeGij∗∂j∗Vbh = 0 .
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The e.o.m. are solved if the the constants satisfy the algebraic equations

ℑm(B∗ΛAΛ) = 0 ,

A∗ΛAΣξΛΣ = 0 ,

(A∗ΛBΣ +B∗ΛAΣ)ξΛΣ = 0 ,

B∗ΛBΣξΛΣ = 0 ,

(2r0)
2(B∗

iA
∗
0 −B∗

0A
∗
i )A

∗ΛAΛ + (Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ = 0 ,

−(2r0)
2(B∗

iA
∗
0 − B∗

0A
∗
i )B

∗ΛBΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

(Γ∗
iA

∗
0 − Γ∗

0A
∗
i )A

∗ΛΓΛ + (Γ∗
iB

∗
0 − Γ∗

0B
∗
i )B

∗ΛΓΛ = 0 ,

where we have defined

ξΛΣ ≡ 2
(

ΓΛΓ
∗
Σ + 8r0

2AΛB
∗
Σ

)

− ηΛΣ

(

ΓΩΓ∗
Ω + 8r0

2AΩB∗
Ω

)

.
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Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .
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Black Holes in Supergravity and Superstring Theories

Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

Up to a phase to be determined in the supersymmetric extremal limit the solution is

AΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,

M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) .
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Furthermore, we need to normalize the metric at spatial infinity and relate AΛ, BΛ
to the physical parameters:

2(A∗Λ +B∗Λ)(AΛ +BΛ) = 1 ,

4ℜe[B∗Λ(AΛ +BΛ)] = 1−M/r0 ,

A∗ i +B∗ i

A∗ 0 +B∗ 0
= Zi∞ .

Up to a phase to be determined in the supersymmetric extremal limit the solution is

AΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1 +
(M2 − eK∞ |Z∗Σ

∞ Γ∗
Σ|2)

Mr0

]

+
ΓΛZ

∗Σ∞Γ∗
Σ

Mr0

}

,

BΛ = ±e
K∞/2

2
√
2

{

Z∗
Λ∞

[

1− (M2 − eK∞ |Z∗Σ
∞ Γ∗

Σ|2)
Mr0

]

− ΓΛZ
∗Σ
∞ Γ∗

Σ

Mr0

}

,

M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) .

The metric is regular in all the r0
2 > 0 cases.
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Supersymmetric and non-supersymmetric extremal limits
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Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:
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Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z|2 = eK∞ |ZΣ
∞ΓΣ|2. We get

ĤΛ
M→|Z∞|−→ ± Z∗

∞
|Z∞|H

susy
Λ ,

which determines the overall phase.
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Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z|2 = eK∞ |ZΣ
∞ΓΣ|2. We get

ĤΛ
M→|Z∞|−→ ± Z∗

∞
|Z∞|H

susy
Λ ,

which determines the overall phase.

2. Non-supersymmetric , when M2 → |Z̃|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ. We get

ĤΛ
M→|Z̃∞|−→ ±e

K∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.
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Supersymmetric and non-supersymmetric extremal limits

Since M2r0
2 = (M2 − |Z∞|2)(M2 − |Z̃∞|2) there are two r0 → 0 (extremal ) limits:

1. Supersymmetric , when M2 → |Z|2 = eK∞ |ZΣ
∞ΓΣ|2. We get

ĤΛ
M→|Z∞|−→ ± Z∗

∞
|Z∞|H

susy
Λ ,

which determines the overall phase.

2. Non-supersymmetric , when M2 → |Z̃|2 = eK∞ |ZΣ
∞ΓΣ|2 − Γ∗ΣΓΣ. We get

ĤΛ
M→|Z̃∞|−→ ±e

K∞/2

2
√
2

{

Z∗
Λ∞ − 1

|Z̃∞|
[

−Z∗
Λ∞Γ∗ΣΓΣ + ΓΛZ

∗Σ
∞ Γ∗

Σ

]

τ

}

.

On the event horizon the scalars take the values

Z∗ i
h =

ΓiZ∗Λ
∞ Γ∗

Λ − Z∗ i
∞Γ∗ΣΓΣ

Γ0Z∗Γ
∞ Γ∗

Γ − Γ∗ΩΓΩ
,

which depend manifestly on the asymptotic values (so there is no attractor
behavior in this case).
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Physical properties of the non-extremal solutions
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Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon):

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .
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Black Holes in Supergravity and Superstring Theories

Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon):

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

They can also be written in the suggestive form

S± = π
(

√

NR ±
√

NL

)2

,

with

NR ≡M2 − |Z∞|2 , NL ≡M2 − |Z̃∞|2 ,
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Physical properties of the non-extremal solutions

One can compute the “entropies” of the inner and outer horizons (event horizon (+)
and Cauchy horizon):

S±
π

= (M2 − |Z∞|2)± (M2 − |Z̃∞|2)± 2Mr0 .

They can also be written in the suggestive form

S± = π
(

√

NR ±
√

NL

)2

,

with

NR ≡M2 − |Z∞|2 , NL ≡M2 − |Z̃∞|2 ,

The product of these “entropies” S+S− is manifestly moduli-independent for all
values of r0.
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The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges and is independent of the choice of moduli
Zi∞:
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Black Holes in Supergravity and Superstring Theories

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges and is independent of the choice of moduli
Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).
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Black Holes in Supergravity and Superstring Theories

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges and is independent of the choice of moduli
Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.
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Black Holes in Supergravity and Superstring Theories

The endpoint of the evaporation process of the non-extremal black holes is
completely determined by their charges and is independent of the choice of moduli
Zi∞:

➳ Thus, if Γ∗ΛΓΛ > 0, which is the property that characterizes the
supersymmetric attractor , then |Z∞| > |Z̃∞| and the evaporation process will
stop when M = |Z∞| (supersymmetry restoration).

➳ If Γ∗ΛΓΛ < 0, then |Z̃∞| > |Z∞| and the evaporation process will stop when

M = |Z̃∞|.

We can speak of an attractor behavior in the evaporation process.
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9 – Conclusions
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9 – Conclusions

⋆ We have reviewed the general properties of the solutions of Supergravity theories
and, in particular, f the BPS (supersymmetric ) ones.
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9 – Conclusions

⋆ We have reviewed the general properties of the solutions of Supergravity theories
and, in particular, f the BPS (supersymmetric ) ones.

⋆ We have discussed the FGK (algebraic) approach to black holes and a
classification of the solutions according to their extremality and supersymmetry
properties.
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9 – Conclusions

⋆ We have reviewed the general properties of the solutions of Supergravity theories
and, in particular, f the BPS (supersymmetric ) ones.

⋆ We have discussed the FGK (algebraic) approach to black holes and a
classification of the solutions according to their extremality and supersymmetry
properties.

⋆ We have seen that black-hole solutions generically satisfy first-order, gradient
flow equations (not only the extremal or supersymmetric ones).
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Black Holes in Supergravity and Superstring Theories

9 – Conclusions

⋆ We have reviewed the general properties of the solutions of Supergravity theories
and, in particular, f the BPS (supersymmetric ) ones.

⋆ We have discussed the FGK (algebraic) approach to black holes and a
classification of the solutions according to their extremality and supersymmetry
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• QM corrections to the geometry and entropy .
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