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☞ Unifies matter and interactions (bosons φb and fermions φf ).

☞ Interesting for BSM phenomenology.

☞ Required for consistency of superstring theory.

Supersymmetry plus locality lead to supergravity

➳ Extensions of GR with fermions plus other bosonic fields (N = 8 UV finite?).

➳ Low-energy effective field theories for superstring theory on different
backgrounds.

➳ Supersymmetric completions of bosonic theories containing gravity
(“embedding”).

➳ Required for consistency of gravity/gauge (AdS/CFT ) correspondence.
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theory.
The identification of the sources of supersymmetric (a.k.a. BPS ) black holes in
terms of states (“D-branes”) of Superstring Theory on a suitable blackground is
the keystone of the microscopic interpretation (via the “gauge dual”) of these
black hole’s entropy.
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b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ (φb + φ̄fφf )ǫ .

A bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by ǫα(x) if it satisfies the

δǫφ
f ∼ ∂ǫ+ φbǫ = 0 . Killing Spinor Equations (KSEs)

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 3-c



SUSY Solutions of 4-D SUGRAS

Supersymmetric Solutions: Definition

A field configuration of a supergravity theory (no necessarily solving its equations of
motion) is supersymmetric if it is invariant under some supersymmetry
transformations.

The supersymmetry transformations take the generic form

δǫφ
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A bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by ǫα(x) if it satisfies the

δǫφ
f ∼ ∂ǫ+ φbǫ = 0 . Killing Spinor Equations (KSEs)

This generalizes the concept of isometry, an infinitesimal g.c.t. generated by ξµ(x)
that leaves the metric gµν invariant because it satisfies

δξgµν = 2∇(µξν) = 0 . Killing (Vector)Equation

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 3-d



SUSY Solutions of 4-D SUGRAS

Each bosonic symmetry is associated to a generator

ξµ
(I)(x) → PI ,

of a (Lie ) symmetry algebra

[PI , PJ ] = fIJ
KPK .

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 4



SUSY Solutions of 4-D SUGRAS

Each bosonic symmetry is associated to a generator

ξµ
(I)(x) → PI ,

of a (Lie ) symmetry algebra

[PI , PJ ] = fIJ
KPK .

Each supersymmetry is associated to an odd generator

ǫα(n)(x) → Qn ,

of a (Lie ) symmetry superalgebra

[Qn, PI ] = fnI
mQm , {Qn,Qm} = fnm

IPI .

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 4-a



SUSY Solutions of 4-D SUGRAS

Each bosonic symmetry is associated to a generator

ξµ
(I)(x) → PI ,

of a (Lie ) symmetry algebra

[PI , PJ ] = fIJ
KPK .

Each supersymmetry is associated to an odd generator

ǫα(n)(x) → Qn ,

of a (Lie ) symmetry superalgebra

[Qn, PI ] = fnI
mQm , {Qn,Qm} = fnm

IPI .

Every supersymmetric field configuration has a supersymmetry superalgebra. For
instance, the superalgebra of Minkowski spacetime is the Poincaré superalgebra with

{Qα,Qβ} = (γµC)αβPµ .
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results can be extrapolated to different domains (invariance under dualities.).

➛ Supersymmetric field configurations are more symmetric and have simpler
functional forms that depend on a smaller number of independent functions.

➛ Supersymmetric solutions are easier to find: the off-shell equations of motion of
supersymmetric configurations are related by the Killing Spinor Identities
(Kallosh & O. hep-th/9306085, Belloŕın & O. hep-th/0501246)

➛ In supersymmetric black-hole solutions there is an attractor mechanism at work
which suppresses primary scalar hair and hints at a microscopic interpretation of
the entropy (Ferrara, Kallosh & Strominger, hep-th/9508072,9602111, 9602136).
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These linear relations between the off-shell bosonic equations of motion E(φb) are
necessary conditions for unbroken supersymmetry .
We only need to check a few equations of motion on a supersymmetric configuration.
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The KSIs also constrain the possible sources enforcing cosmic censorship if we require
them to hold everywhere in spacetime (Belloŕın, Meessen & O. hep-th/0606201).
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By definition, for supersymmetric φb we have δǫφ
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∣
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φf=0
(ǫ is a Killing spinor ) and

we obtain the Killing Spinor Identities

E(φb) (δǫφ
b),f1

∣

∣

φf=0
= 0 .

These linear relations between the off-shell bosonic equations of motion E(φb) are
necessary conditions for unbroken supersymmetry .
We only need to check a few equations of motion on a supersymmetric configuration.

The KSIs also constrain the possible sources enforcing cosmic censorship if we require
them to hold everywhere in spacetime (Belloŕın, Meessen & O. hep-th/0606201).

Finally, they provide powerful consistency checks when we try to find large families
of supersymmetric solutions, as we are going to do.
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The Attractor Mechanism

Consider a supersymmetric , static, spherically symmetric, asymptotically flat,
black-hole solution given by

{grr(r), F
Λ

tr(r), (⋆F
Λ

tr)(r), φ
i(r)} .
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Consider a supersymmetric , static, spherically symmetric, asymptotically flat,
black-hole solution given by

{grr(r), F
Λ

tr(r), (⋆F
Λ

tr)(r), φ
i(r)} .

These solutions are fully characterized by the electric and magnetic charges qΛ, p
Λ

and the asymptotic values of the scalars φi∞. Supersymmetry imposes the
saturation of the BPS bound: M = f(qΛ, p

Λ, φi∞).

It can be shown that at the event horizon r = rH the scalars φi and the metric
function r2grr take their attractor value which only depends on the conserved
charges qΛ, p

Λ and not on φi∞):

φi(rH) = φi
attract(q, p) , rH

2grr(rH) = 4πS(q, p) .
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Consider a supersymmetric , static, spherically symmetric, asymptotically flat,
black-hole solution given by

{grr(r), F
Λ

tr(r), (⋆F
Λ

tr)(r), φ
i(r)} .

These solutions are fully characterized by the electric and magnetic charges qΛ, p
Λ

and the asymptotic values of the scalars φi∞. Supersymmetry imposes the
saturation of the BPS bound: M = f(qΛ, p

Λ, φi∞).

It can be shown that at the event horizon r = rH the scalars φi and the metric
function r2grr take their attractor value which only depends on the conserved
charges qΛ, p

Λ and not on φi∞):

φi(rH) = φi
attract(q, p) , rH

2grr(rH) = 4πS(q, p) .

This proves that, at least for these supersymmetric black
holes, the Bekenstein -Hawking entropy S(q, p) only de-
pends on charges which are going to be quantized, and
therefore it is just a function of integer numbers amenable
to a microscopic interpretation.
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2 – The search for all 4-d susy solutions
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☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity).
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SUSY Solutions of 4-D SUGRAS

2 – The search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).
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SUSY Solutions of 4-D SUGRAS

2 – The search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method
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SUSY Solutions of 4-D SUGRAS

2 – The search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method

☞ 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N = 1 d = 11);
Gauntlett & Gutowski (Gauged N = 1 d = 5); Caldarelli & Klemm ( Pure
gauged N = 2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2, 0) d = 6)
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SUSY Solutions of 4-D SUGRAS

2 – The search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method

☞ 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N = 1 d = 11);
Gauntlett & Gutowski (Gauged N = 1 d = 5); Caldarelli & Klemm ( Pure
gauged N = 2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2, 0) d = 6)

☞ 2004: Cariglia & Mac Conamhna (N = 1 d = 7 and gauged N = (2, 0) d = 6)
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SUSY Solutions of 4-D SUGRAS

2 – The search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method

☞ 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N = 1 d = 11);
Gauntlett & Gutowski (Gauged N = 1 d = 5); Caldarelli & Klemm ( Pure
gauged N = 2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2, 0) d = 6)

☞ 2004: Cariglia & Mac Conamhna (N = 1 d = 7 and gauged N = (2, 0) d = 6)

☞ 2005: Belloŕın & O. (Pure N = 4 d = 4 revisited)

☞ 2006: Belloŕın, Meessen & O. (N = 1 d = 5 with vector multiplets); Meessen
& O. (N = 2 d = 4 with vector multiplets); Hübscher, Meessen & O. (N = 2
d = 4 with vector multiplets and hypermultiplets).
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SUSY Solutions of 4-D SUGRAS

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets and
hypermultiplets).
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SUSY Solutions of 4-D SUGRAS

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets and
hypermultiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 10-a



SUSY Solutions of 4-D SUGRAS

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets and
hypermultiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).

☞ 2010: Deger, Samtleben & Sarioglu (Gauged N = 8 d = 3).
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SUSY Solutions of 4-D SUGRAS

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets and
hypermultiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).

☞ 2010: Deger, Samtleben & Sarioglu (Gauged N = 8 d = 3).

However, in d = 4 the spinor -bilinears method has not given satisfactory results fo
N > 2. (It has not been tried for d > 4).
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SUSY Solutions of 4-D SUGRAS

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets and
hypermultiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).

☞ 2010: Deger, Samtleben & Sarioglu (Gauged N = 8 d = 3).

However, in d = 4 the spinor -bilinears method has not given satisfactory results fo
N > 2. (It has not been tried for d > 4).

For N> 2 there are too many spinor bilinears and we do
not know how to extract the (not spacetime-geometric)
information they must surely contain.
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SUSY Solutions of 4-D SUGRAS

In this talk we are going to show how to solve those
problems and determine the form of all the timelike su-
persymmetric solutions of all d = 4 supergravities using
the spinor-bilinear method.
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.

The n complex scalars are encoded into the 2n̄-dimensional symplectic section
(n̄ = 1 + n)

V =

(

LΛ

MΛ

)

, 〈V | V∗〉 = −2i .
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SUSY Solutions of 4-D SUGRAS

3 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.

The n complex scalars are encoded into the 2n̄-dimensional symplectic section
(n̄ = 1 + n)

V =

(

LΛ

MΛ

)

, 〈V | V∗〉 = −2i .

This is a extremely redundant (but useful) description of the scalars .
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,

D is the Lorentz-, Kähler- and SU(2)- covariant derivative (Kähler + SU(2) = U(2))

DµǫI = (∂µ + 1
4ωµ

abγab + i
2 Qµ) ǫI + Aµ I

J ǫJ ,

and where U
αI

u(q) is the Quadbein.
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,

D is the Lorentz-, Kähler- and SU(2)- covariant derivative (Kähler + SU(2) = U(2))

DµǫI = (∂µ + 1
4ωµ

abγab + i
2 Qµ) ǫI + Aµ I

J ǫJ ,

and where U
αI

u(q) is the Quadbein. The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗j∗

+ 2Huv∂µq
u∂µqv

+2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

]

.
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SUSY Solutions of 4-D SUGRAS

4 – The N = 2 Killing Spinor Equations (KSEs)
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SUSY Solutions of 4-D SUGRAS

4 – The N = 2 Killing Spinor Equations (KSEs)

They take the form

DµǫI + εIJ T+
µνγ

ν ǫJ = 0 ,

i 6∂ZiǫI + εIJ 6Gi + ǫJ = 0 ,

−iCαβ U
βI

u εIJ 6∂qu ǫJ = 0 .
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SUSY Solutions of 4-D SUGRAS

4 – The N = 2 Killing Spinor Equations (KSEs)

They take the form

DµǫI + εIJ T+
µνγ

ν ǫJ = 0 ,

i 6∂ZiǫI + εIJ 6Gi + ǫJ = 0 ,

−iCαβ U
βI

u εIJ 6∂qu ǫJ = 0 .

The goal is to find all the bosonic field configurations {ea
µ, A

Λ
µ, Z

i, qu}
such that the above KSEs admit at least one solution ǫI .
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:
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The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.
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The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).
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SUSY Solutions of 4-D SUGRAS

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).

5. Impose the independent equations of motion on the supersymmetric
configurations we just identified.
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.

With them one can construct a tetrad

V a
µ ≡ 1√

2
V I

J µ(σa)J
I , V I

J µ = 1√
2
V a

µ(σa)I
J ,

with σ0 = 1 and σm the 2 × 2 Pauli matrices as an orthonormal tetrad in which
V 0 =

√
2V is timelike and the V ms are spacelike.
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SUSY Solutions of 4-D SUGRAS

5 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.

With them one can construct a tetrad

V a
µ ≡ 1√

2
V I

J µ(σa)J
I , V I

J µ = 1√
2
V a

µ(σa)I
J ,

with σ0 = 1 and σm the 2 × 2 Pauli matrices as an orthonormal tetrad in which
V 0 =

√
2V is timelike and the V ms are spacelike. (This will not work for N> 2!)
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 17-c



SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)

5. 0 = 〈 E0 | ℑm(V/X) 〉, (⇒ no NUT charges) (Belloŕın, Meessen, Ort́ın (2008)).
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SUSY Solutions of 4-D SUGRAS

6 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)

5. 0 = 〈 E0 | ℑm(V/X) 〉, (⇒ no NUT charges) (Belloŕın, Meessen, Ort́ın (2008)).

6. E i∗ = 2

(

X

X∗

)1/2

〈 E0 | Di∗V∗ 〉, (⇒ attractor mechanism)
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SUSY Solutions of 4-D SUGRAS

The only independent equations
of motion that have to be im-
posed on N = 2 , d = 4 super-
symmetric configurations are

E0 = 0 .
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SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:
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SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)
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SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:
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SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.
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SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 19-d



SUSY Solutions of 4-D SUGRAS

7 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).

4. The scalars Zi are given by the quotients

Zi =
Vi/X

V0/X
=

Ri + iIi

R0 + iI0
.
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SUSY Solutions of 4-D SUGRAS

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .
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SUSY Solutions of 4-D SUGRAS

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .
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SUSY Solutions of 4-D SUGRAS

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .
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SUSY Solutions of 4-D SUGRAS

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .

γmn is determined indirectly from the hyperscalars : its spin connection ̟mn in the
basis {V m} is related to the pullback of the SU(2) connection of the hyper-Kähler
manifold A

I
Jµ = 1√

2
A

m
u(σm)I

J∂µq
u, by

̟m
np = εnpq

A
q
m .
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SUSY Solutions of 4-D SUGRAS

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .

γmn is determined indirectly from the hyperscalars : its spin connection ̟mn in the
basis {V m} is related to the pullback of the SU(2) connection of the hyper-Kähler
manifold A

I
Jµ = 1√

2
A

m
u(σm)I

J∂µq
u, by

̟m
np = εnpq

A
q
m .

7. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ = 2
√

2|X|2(dt+ ω) .
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SUSY Solutions of 4-D SUGRAS

8 – The all-N formulation of 4-d sugras
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SUSY Solutions of 4-D SUGRAS

8 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,
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SUSY Solutions of 4-D SUGRAS

8 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,

All vector multiplets can be written in the form

{

Ai µ, λiI , P iIJ µ, λi
IJK

}

, i = 1, · · · , n .
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SUSY Solutions of 4-D SUGRAS

8 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,

All vector multiplets can be written in the form

{

Ai µ, λiI , P iIJ µ, λi
IJK

}

, i = 1, · · · , n .

The price to pay for using this representation is that all the fields that can be related
by SU(N) duality relations, are:

• N = 4 : P ∗ i IJ = 1
2ε

IJKLP i KL, and λiI = 1
3!εIJKLλi

IJK .

• N = 6 : P ∗ IJ = 1
4!ε

IJK1···K4PK1···K4
, χIJK = 1

3!εIJKLMNλ
IJK ,

and χI1···I5 = εI1···I5JλJ .

• N = 8 : P ∗ I1···I4 = 1
4!ε

I1···I4J1···J4P J1···J4
, and χI1I2I3

= 1
5!εI1I2I3J1···J5

χJ1···J5 .

These constraints must be taken into account in the action.
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SUSY Solutions of 4-D SUGRAS

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
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SUSY Solutions of 4-D SUGRAS

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.
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SUSY Solutions of 4-D SUGRAS

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.

They generalize the N = 2 sections

VIJ = VεIJ ,=

(

LΛεIJ

MΛεIJ

)

, and Vi = DiV =

(

fΛ
i

hΛ i

)

.
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SUSY Solutions of 4-D SUGRAS

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.

They generalize the N = 2 sections

VIJ = VεIJ ,=

(

LΛεIJ

MΛεIJ

)

, and Vi = DiV =

(

fΛ
i

hΛ i

)

.

The graviphotons AIJ
µ do not appear directly, only through the “dressed” vectors

AΛ
µ ≡ 1

2f
Λ

IJA
IJ

µ + fΛ
iA

i
µ .
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,

where the graviphoton and matter vector field strengths are

T IJ
+ = 〈 VIJ | F+ 〉 , T i

+ = 〈 Vi | F+ 〉 , FΛ
+ = N ∗

ΛΣF
Σ + ,
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SUSY Solutions of 4-D SUGRAS

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,

where the graviphoton and matter vector field strengths are

T IJ
+ = 〈 VIJ | F+ 〉 , T i

+ = 〈 Vi | F+ 〉 , FΛ
+ = N ∗

ΛΣF
Σ + ,

and where
DµǫI ≡ ∇µǫI − ǫJΩµ

J
I ,

and Ωµ
J

I is the pullback of the connection of the scalar manifold (⊂ U(N)).
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SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .
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SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:
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SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .
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SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 24-c



SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .

For N = 4 :























EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν

+P ∗ IJKL AP ∗ ij
ATi

+
µνT j

+ µν ,

E iIJ = D
µP ∗ iIJ

µ + T i−
µνT

IJ −µν + 1
2ε

IJKLT i
+

µνTKL
+ µν .
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SUSY Solutions of 4-D SUGRAS

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .

For N = 4 :























EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν

+P ∗ IJKL AP ∗ ij
ATi

+
µνT j

+ µν ,

E iIJ = D
µP ∗ iIJ

µ + T i−
µνT

IJ −µν + 1
2ε

IJKLT i
+

µνTKL
+ µν .

For N = 5 : EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν . etc.
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SUSY Solutions of 4-D SUGRAS

9 – The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

DµǫI + T IJ
+

µνγ
νǫJ = 0 ,

6P IJKLǫ
L − 3

2 6T [IJ
+ǫK] = 0 ,

6P i IJǫ
J − 1

2 6T i
+ǫI = 0 ,

6P [IJKLǫM ] = 0 ,

6P i [IJǫK] = 0 .

The last two KSEs should only be considered for N = 5 and N = 3 , resp.
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SUSY Solutions of 4-D SUGRAS

9 – The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

DµǫI + T IJ
+

µνγ
νǫJ = 0 ,

6P IJKLǫ
L − 3

2 6T [IJ
+ǫK] = 0 ,

6P i IJǫ
J − 1

2 6T i
+ǫI = 0 ,

6P [IJKLǫM ] = 0 ,

6P i [IJǫK] = 0 .

The last two KSEs should only be considered for N = 5 and N = 3 , resp.

Again, our goal is to find all the bosonic field configurations
{ea

µ, A
Λ

µ, P IJKL µ, P i IJ µ} such that the above KSEs admit at least
one solution ǫI .
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 26



SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.

We only consider the timelike case.
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SUSY Solutions of 4-D SUGRAS

10 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.

We only consider the timelike case.

3. We can choose a tetrad {ea
µ} such that e0µ ≡ 1√

2
|M |−1V µ. Then, defining

V m
µ ≡ |M |em

µ we can decompose

V I
J µ = 1

2J I
JV µ + 1√

2
(σm)I

JV
m

µ ,

where J I
J = 2M IKMJK |M |−2 is a rank 2 projector (Tod):

J 2 = J , J I
I = +2 , J I

Jǫ
J = ǫI .
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SUSY Solutions of 4-D SUGRAS

The main properties satisfied by the three σm matrices are:

σmσn = δmnJ + iεmnpσp ,

J σm = σmJ = σm ,

(σm)I
I = 0 ,

JK
JJ L

I = 1
2JK

IJ L
J + 1

2 (σm)K
I(σ

m)L
J ,

MK[I(σ
m)K

J] = 0 ,

2|M |−2MLI(σ
m)I

JM
JK = (σm)K

L ,
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SUSY Solutions of 4-D SUGRAS

The main properties satisfied by the three σm matrices are:

σmσn = δmnJ + iεmnpσp ,

J σm = σmJ = σm ,

(σm)I
I = 0 ,

JK
JJ L

I = 1
2JK

IJ L
J + 1

2 (σm)K
I(σ

m)L
J ,

MK[I(σ
m)K

J] = 0 ,

2|M |−2MLI(σ
m)I

JM
JK = (σm)K

L ,

{J , σ1, σ2, σ3} is an x-dependent basis of a u(2) subalgebra
of u(N) in the 2-dimensional eigenspace of J of eigenvalue
+1 and provide a basis in the space of Hermitean matrices
A satisfying JAJ = A
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SUSY Solutions of 4-D SUGRAS

11 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):
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SUSY Solutions of 4-D SUGRAS

11 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.
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SUSY Solutions of 4-D SUGRAS

11 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.
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SUSY Solutions of 4-D SUGRAS

11 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.

3.







EMNPQJ [I
M J̃ J

N J̃K
P J̃ L]

Q = 0 ,

E i MNJ [I
M J̃ J]

N = 0 ,
(⇒ no attractor mechanism)
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SUSY Solutions of 4-D SUGRAS

11 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.

3.







EMNPQJ [I
M J̃ J

N J̃K
P J̃ L]

Q = 0 ,

E i MNJ [I
M J̃ J]

N = 0 ,
(⇒ no attractor mechanism)

4. E00 = −2
√

2〈 E0 | ℜe

(

VIJ
M IJ

|M |

)

〉, (Bogomol’nyi bound)
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SUSY Solutions of 4-D SUGRAS

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 29



SUSY Solutions of 4-D SUGRAS

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)
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SUSY Solutions of 4-D SUGRAS

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :
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SUSY Solutions of 4-D SUGRAS

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :

N = 3 : E i IJ = −2
√

2
M IJ

|M | 〈 E
0 | V∗ i 〉 ,
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SUSY Solutions of 4-D SUGRAS

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :

N = 3 : E i IJ = −2
√

2
M IJ

|M | 〈 E
0 | V∗ i 〉 ,

N = 4 :























EIJKL = −2
√

2
M [IJ|

|M | 〈 E0 | V∗ |KL] 〉 ,

E iIJ = −2
√

2

{

M IJ

|M | 〈 E
0 | Vi 〉 + 1

2εIJKL
MKL

|M | 〈 E0 | V∗ i 〉
}

,

etc.
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SUSY Solutions of 4-D SUGRAS

The only independent equations
of motion that have to be im-
posed on any d = 4 supersym-
metric configuration are

E0 = 0 .
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SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:
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SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:
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SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
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SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 31-c



SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.

2. Choose three N ×N , Hermitean , traceless, x-dependent (σm)I
J , satisfying the

same properties as the Pauli matrices in the subspace preserved by J .
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SUSY Solutions of 4-D SUGRAS

12 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.

2. Choose three N ×N , Hermitean , traceless, x-dependent (σm)I
J , satisfying the

same properties as the Pauli matrices in the subspace preserved by J .
We also have to impose the constraint

J dσmJ = 0 .
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SUSY Solutions of 4-D SUGRAS

Once the U(2) subgroup has been chosen, we can split the Vielbeins P IJKL µ and
P i IJ µ, into associated to the would-be vector multiplets in the N = 2 truncation

P IJKL J I
[MJ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ J

L] ,

which are driven by the attractor mechanism (i.e. they are determined by the
electric and magnetic charges) and those associated to the hypermultiplets

P IJKL J I
[M J̃ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ̃ J

L] .

which are not.

In hyper-less solutions (e.g. black holes) the σms matrices are not needed at all.
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary)

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 33-a



SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.

4. The metric is

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn .
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SUSY Solutions of 4-D SUGRAS

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.

4. The metric is

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn .

where
|M |−2 = (M IJM IJ )−2 = 〈R | I 〉 ,

(dω)mn = 2ǫmnp〈 I | ∂pI 〉 .
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SUSY Solutions of 4-D SUGRAS

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.
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SUSY Solutions of 4-D SUGRAS

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.
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SUSY Solutions of 4-D SUGRAS

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.

5. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ =
√

2|M |2(dt+ ω) .
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SUSY Solutions of 4-D SUGRAS

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.

5. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ =
√

2|M |2(dt+ ω) .

6. The scalars in the vector multiplets in the associated N = 2 truncation

P IJKL J I
[MJ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ J

L] ,

can be found from R and I, while those in the hypers must be found independently
by solving

P IJKL m J I
[M J̃ J

N J̃ K
P J̃ L

Q](σ
m)Q

R = 0 ,

P i IJ m J I
[KJ̃ J

L](σ
m)L

M = 0 ,

which solve their equations of motion according to the Killing Spinor Identities.
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SUSY Solutions of 4-D SUGRAS

13 – Final comments
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SUSY Solutions of 4-D SUGRAS

13 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .
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SUSY Solutions of 4-D SUGRAS

13 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).
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SUSY Solutions of 4-D SUGRAS

13 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former.
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SUSY Solutions of 4-D SUGRAS

13 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former.

⋆ ‘1-line” derivations of the attactor flow equations can be readily given.
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13 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former.

⋆ ‘1-line” derivations of the attactor flow equations can be readily given.

⋆ Much work remains to be done in order to make explicit the construction of the
solutions. In particular one has to find general parametrizations of the matrices
M IJ and J I

J , solve the stabilization equations, impose the covariant constancy
of J etc. (Meessen & O., work in progress).
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SUSY Solutions of 4-D SUGRAS

Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity
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SUSY Solutions of 4-D SUGRAS

Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Consider N = 1, d = 5 supergravity coupled to n vector multiplets

{Ax
µ, λ

ix, φx} , x = 1, · · · , n .
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Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Consider N = 1, d = 5 supergravity coupled to n vector multiplets

{Ax
µ, λ

ix, φx} , x = 1, · · · , n .
The matter vector fields Ax

µ and the graviphoton A0
µ are combined into an

SO(n+ 1) vector AI
µ with I = 0, x.
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Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Consider N = 1, d = 5 supergravity coupled to n vector multiplets

{Ax
µ, λ

ix, φx} , x = 1, · · · , n .
The matter vector fields Ax

µ and the graviphoton A0
µ are combined into an

SO(n+ 1) vector AI
µ with I = 0, x. To make manifest the symmetries, the n real

scalars φx are described by n+ 1 functions hI(φ) which are constrained:

CIJKh
IhJhK = 1 .
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Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Consider N = 1, d = 5 supergravity coupled to n vector multiplets

{Ax
µ, λ

ix, φx} , x = 1, · · · , n .
The matter vector fields Ax

µ and the graviphoton A0
µ are combined into an

SO(n+ 1) vector AI
µ with I = 0, x. To make manifest the symmetries, the n real

scalars φx are described by n+ 1 functions hI(φ) which are constrained:

CIJKh
IhJhK = 1 .

We introduce a function f and assume (hI ≡ CIJKh
JhK)

hI/f ≡ lI + qIρ ,

for some coordinate ρ.
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Attractor flow equations

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Consider N = 1, d = 5 supergravity coupled to n vector multiplets

{Ax
µ, λ

ix, φx} , x = 1, · · · , n .
The matter vector fields Ax

µ and the graviphoton A0
µ are combined into an

SO(n+ 1) vector AI
µ with I = 0, x. To make manifest the symmetries, the n real

scalars φx are described by n+ 1 functions hI(φ) which are constrained:

CIJKh
IhJhK = 1 .

We introduce a function f and assume (hI ≡ CIJKh
JhK)

hI/f ≡ lI + qIρ ,

for some coordinate ρ. Let’s define the central charge

Z[φ(ρ), q] ≡ hI(φ)qI .
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SUSY Solutions of 4-D SUGRAS

Then, using hIhI = 1 and dhIhI = hIdhI = 0

df−1 = d(hIhI/f) = hId(hI/f) ,
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Then, using hIhI = 1 and dhIhI = hIdhI = 0

df−1 = d(hIhI/f) = hId(hI/f) ,

from which we get
df−1

dρ
= Z[φ(ρ), q] .
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Then, using hIhI = 1 and dhIhI = hIdhI = 0

df−1 = d(hIhI/f) = hId(hI/f) ,

from which we get
df−1

dρ
= Z[φ(ρ), q] .

Using now the above properties plus hI
xhIy = gxy, where hIy = −

√
3∂yhI and

hI
x =

√
3∂xhI

dφx = hIxhIydφ
y = −

√
3hIxdhI = −

√
3hIxd(fhI/f) = −

√
3fhIxd(hI/f) ,
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Then, using hIhI = 1 and dhIhI = hIdhI = 0

df−1 = d(hIhI/f) = hId(hI/f) ,

from which we get
df−1

dρ
= Z[φ(ρ), q] .

Using now the above properties plus hI
xhIy = gxy, where hIy = −

√
3∂yhI and

hI
x =

√
3∂xhI

dφx = hIxhIydφ
y = −

√
3hIxdhI = −

√
3hIxd(fhI/f) = −

√
3fhIxd(hI/f) ,

from which we get
dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .
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SUSY Solutions of 4-D SUGRAS

The autonomous system of ordinary differential equations



















df−1

dρ
= Z[φ(ρ), q] ,

dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .

are the black-hole attractor flow equations of N = 1, d = 5 supergravity coupled to
vector supermultiplets.
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The autonomous system of ordinary differential equations



















df−1

dρ
= Z[φ(ρ), q] ,

dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .

are the black-hole attractor flow equations of N = 1, d = 5 supergravity coupled to
vector supermultiplets.

The scalars will be attracted to the fixed points at which the r.h.s. vanishes:

∂yZ[φ, q]

∣

∣

∣

∣

φ=φfix

= 0 , (Attractor equations).
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The autonomous system of ordinary differential equations



















df−1

dρ
= Z[φ(ρ), q] ,

dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .

are the black-hole attractor flow equations of N = 1, d = 5 supergravity coupled to
vector supermultiplets.

The scalars will be attracted to the fixed points at which the r.h.s. vanishes:

∂yZ[φ, q]

∣

∣

∣

∣

φ=φfix

= 0 , (Attractor equations).

φfix depends on the constants qI and not on the constants lI

φfix = φfix(q)
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The autonomous system of ordinary differential equations



















df−1

dρ
= Z[φ(ρ), q] ,

dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .

are the black-hole attractor flow equations of N = 1, d = 5 supergravity coupled to
vector supermultiplets.

The scalars will be attracted to the fixed points at which the r.h.s. vanishes:

∂yZ[φ, q]

∣

∣

∣

∣

φ=φfix

= 0 , (Attractor equations).

φfix depends on the constants qI and not on the constants lI

φfix = φfix(q)

At the attractor point ρattract φ(ρattract) = φfix

df−1

dρ

∣

∣

∣

∣

ρ=ρattract

= Z[φfix(q), q] ≡ Zfix(q) .
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SUSY Solutions of 4-D SUGRAS

Now for all N ≥ 2, d = 4 supergravities

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 39



SUSY Solutions of 4-D SUGRAS

Now for all N ≥ 2, d = 4 supergravities

Assume that, for some coordinate ρ I ≡ I0 + qρ.
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SUSY Solutions of 4-D SUGRAS

Now for all N ≥ 2, d = 4 supergravities

Assume that, for some coordinate ρ I ≡ I0 + qρ.

We define the central charges

ZIJ [φ(ρ), q] ≡ 〈VIJ | q 〉 = pΛhΛ IJ − qΛf
Λ

IJ ,

Zi[φ(ρ), q] ≡ 〈Vi | q 〉 = pΛhΛ i − qΛf
Λ

i .
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SUSY Solutions of 4-D SUGRAS

Now for all N ≥ 2, d = 4 supergravities

Assume that, for some coordinate ρ I ≡ I0 + qρ.

We define the central charges

ZIJ [φ(ρ), q] ≡ 〈VIJ | q 〉 = pΛhΛ IJ − qΛf
Λ

IJ ,

Zi[φ(ρ), q] ≡ 〈Vi | q 〉 = pΛhΛ i − qΛf
Λ

i .

Then

D
MIJ

|M |2 = D

(

MKL

|M |2
i
2 〈 VKL | V∗ IJ 〉

)

= i
2D〈 (R + iI) | V∗ IJ 〉

= i
2 〈 d(R + iI) | V∗ IJ 〉 = i

2 〈 d(R− iI) | V∗ IJ 〉 − 〈 dI | V∗ IJ 〉

= i
2

MKL

|M |2 〈 dV∗KL | V∗ IJ 〉 − 〈 q | V∗ IJ 〉dρ

= 1
2P

∗KLIJ MKL

|M |2 + Z∗ IJ [φ(ρ), q]dρ .
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SUSY Solutions of 4-D SUGRAS

With the above identitiy we can compute

d|M |−2 =
M IJ

|M |2 D
M IJ

|M |2 +
MIJ

|M |2 D
M IJ

|M |2 =
M IJZ∗ IJ +M IJZIJ

|M |2 [φ(ρ), q]dρ ,
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SUSY Solutions of 4-D SUGRAS

With the above identitiy we can compute

d|M |−2 =
M IJ

|M |2 D
M IJ

|M |2 +
MIJ

|M |2 D
M IJ

|M |2 =
M IJZ∗ IJ +M IJZIJ

|M |2 [φ(ρ), q]dρ ,

which leads to the flow equation (for all N ≥ 2)

d

dρ
|M |−1 = ℜe

(

M IJZIJ

|M |

)

.

July 23rd 2010 4th Mexican Meeting in Mathematical and Experimental Physics Page 40-a



SUSY Solutions of 4-D SUGRAS

With the above identitiy we can compute

d|M |−2 =
M IJ

|M |2 D
M IJ

|M |2 +
MIJ

|M |2 D
M IJ

|M |2 =
M IJZ∗ IJ +M IJZIJ

|M |2 [φ(ρ), q]dρ ,

which leads to the flow equation (for all N ≥ 2)

d

dρ
|M |−1 = ℜe

(

M IJZIJ

|M |

)

.

We can also compute

0 = M [IJ
D
MKL]

|M |2 = M [IJZ∗KL][φ(ρ), q]dρ+ 1
2P

∗MN [IJJK
MJ L]

N ,
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SUSY Solutions of 4-D SUGRAS

With the above identitiy we can compute

d|M |−2 =
M IJ

|M |2 D
M IJ

|M |2 +
MIJ

|M |2 D
M IJ

|M |2 =
M IJZ∗ IJ +M IJZIJ

|M |2 [φ(ρ), q]dρ ,

which leads to the flow equation (for all N ≥ 2)

d

dρ
|M |−1 = ℜe

(

M IJZIJ

|M |

)

.

We can also compute

0 = M [IJ
D
MKL]

|M |2 = M [IJZ∗KL][φ(ρ), q]dρ+ 1
2P

∗MN [IJJK
MJ L]

N ,

which leads to the flow equation (N ≥ 4)

P ∗MN [IJJK
MJ L]

N = −M [IJZ∗KL][φ(ρ), q]dρ .
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SUSY Solutions of 4-D SUGRAS

The third flow equation (N = 2, 3, 4, 6) follows from

1
2

M IJ

|M |2P iIJ = − i
2

M IJ

|M |2 〈 dVIJ | Vi 〉 = − i
2 〈 d(R + iI) | Vi 〉

= 〈 dI | Vi 〉 − i
2 〈 d(R− iI) | Vi 〉

= −Zi[φ(ρ), q]dρ ,
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SUSY Solutions of 4-D SUGRAS

The third flow equation (N = 2, 3, 4, 6) follows from

1
2

M IJ

|M |2P iIJ = − i
2

M IJ

|M |2 〈 dVIJ | Vi 〉 = − i
2 〈 d(R + iI) | Vi 〉

= 〈 dI | Vi 〉 − i
2 〈 d(R− iI) | Vi 〉

= −Zi[φ(ρ), q]dρ ,

and takes the final form

P i KLJK
IJ L

J = −2M IJZi[φ(ρ), q]dρ .
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SUSY Solutions of 4-D SUGRAS

The third flow equation (N = 2, 3, 4, 6) follows from

1
2

M IJ

|M |2P iIJ = − i
2

M IJ

|M |2 〈 dVIJ | Vi 〉 = − i
2 〈 d(R + iI) | Vi 〉

= 〈 dI | Vi 〉 − i
2 〈 d(R− iI) | Vi 〉

= −Zi[φ(ρ), q]dρ ,

and takes the final form

P i KLJK
IJ L

J = −2M IJZi[φ(ρ), q]dρ .

These flow equations lead to the generic N attractor equations (work in progress).
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