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1 — Introduction: the search for all 4-d susy solutions
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All timelike 4-d susy solutions

1 — Introduction: the search for all 4-d susy solutions

[0 Gibbons & Hull (1982) (Pure N = 2 supergravity ).
[1 Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
0 Tod (1995) (Pure N =4 supergravity ).
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All timelike 4-d susy solutions

1 — Introduction: the search for all 4-d susy solutions

Gibbons & Hull (1982) (Pure N = 2 supergravity ).
Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
Tod (1995) (Pure N =4 supergravity ).

Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N =1 d=5
supergravity ).

1 OO OO O

Spinor-bilinears method
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All timelike 4-d susy solutions

1 — Introduction: the search for all 4-d susy solutions

Gibbons & Hull (1982) (Pure N = 2 supergravity ).
Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
Tod (1995) (Pure N =4 supergravity ).

Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N =1 d=5
supergravity ).

1 OO OO O

Spinor-bilinears method

[0 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N =1 d=11);
Gauntlett & Gutowski (Gauged N =1 d = 5); Caldarelli & Klemm ( Pure
gauged N =2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2,0) d =6)
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1 — Introduction: the search for all 4-d susy solutions

Gibbons & Hull (1982) (Pure N = 2 supergravity ).
Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
Tod (1995) (Pure N =4 supergravity ).

Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N =1 d=5
supergravity ).
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Spinor-bilinears method

[0 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N =1 d=11);
Gauntlett & Gutowski (Gauged N =1 d = 5); Caldarelli & Klemm ( Pure
gauged N =2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2,0) d =6)

[0 2004: Cariglia & Mac Conamhna (N =1 d =7 and gauged N = (2,0) d =6)
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1 — Introduction: the search for all 4-d susy solutions

Gibbons & Hull (1982) (Pure N = 2 supergravity ).
Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
Tod (1995) (Pure N =4 supergravity ).

Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N =1 d=5
supergravity ).

1 OO OO O

Spinor-bilinears method

[0 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N =1 d=11);
Gauntlett & Gutowski (Gauged N =1 d = 5); Caldarelli & Klemm ( Pure
gauged N =2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2,0) d =6)

[0 2004: Cariglia & Mac Conamhna (N =1 d =7 and gauged N = (2,0) d =6)
[0 2005: Bellorin & O. (Pure N =4 d = 4 revisited)

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 1-h



All timelike 4-d susy solutions

1 — Introduction: the search for all 4-d susy solutions

Gibbons & Hull (1982) (Pure N = 2 supergravity ).
Tod (1983) (Pure N = 2 supergravity). = A complete answer is possible.
Tod (1995) (Pure N =4 supergravity ).

Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N =1 d=5
supergravity ).

1 OO OO O

Spinor-bilinears method

[0 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N =1 d=11);
Gauntlett & Gutowski (Gauged N =1 d = 5); Caldarelli & Klemm ( Pure
gauged N =2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2,0) d =6)

[0 2004: Cariglia & Mac Conamhna (N =1 d =7 and gauged N = (2,0) d =6)
2005: Bellorin & O. (Pure N =4 d = 4 revisited)

[1 2006: Bellorin, Meessen & O. (N =1 d =5 with vector multiplets); Meessen

& O. (N =2 d = 4 with vector multiplets); Hiibscher, Meessen & O. (N = 2
d = 4 with vector multiplets and hypermultiplets).

[]
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All timelike 4-d susy solutions

[0 2007: Bellorin & O. (Gauged N =1 d =5 with vector multiplets).
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All timelike 4-d susy solutions

[0 2007: Bellorin & O. (Gauged N =1 d =5 with vector multiplets).

[0 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N =1 d =5 with vector
multiplets); Hiibscher, Meessen, O. & Vaula (non-Abelian Gauged N =2 d =14
with vector multiplets); Bellorin (Gauged N =1 d = 5 with vector and tensor
multiplets).
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All timelike 4-d susy solutions

[0 2007: Bellorin & O. (Gauged N =1 d =5 with vector multiplets).

[0 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N =1 d =5 with vector
multiplets); Hiibscher, Meessen, O. & Vaula (non-Abelian Gauged N =2 d =14
with vector multiplets); Bellorin (Gauged N =1 d = 5 with vector and tensor
multiplets).

[1 2010: Deger, Samtleben & Sarioglu (Gauged N =8 d = 3).
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All timelike 4-d susy solutions

[0 2007: Bellorin & O. (Gauged N =1 d =5 with vector multiplets).

[0 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N =1 d =5 with vector
multiplets); Hiibscher, Meessen, O. & Vaula (non-Abelian Gauged N =2 d =14
with vector multiplets); Bellorin (Gauged N =1 d = 5 with vector and tensor
multiplets).

[1 2010: Deger, Samtleben & Sarioglu (Gauged N =8 d = 3).

However, in d = 4 the spinor -bilinears method has not given satisfactory results fo
N > 2. (It has not been tried for d > 4).
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All timelike 4-d susy solutions

[0 2007: Bellorin & O. (Gauged N =1 d =5 with vector multiplets).

[0 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N =1 d =5 with vector
multiplets); Hiibscher, Meessen, O. & Vaula (non-Abelian Gauged N =2 d =14
with vector multiplets); Bellorin (Gauged N =1 d = 5 with vector and tensor
multiplets).

[ 2010: Deger, Samtleben & Sarioglu (Gauged N =8 d = 3).

However, in d = 4 the spinor -bilinears method has not given satisfactory results fo
N > 2. (It has not been tried for d > 4).

For N> 2 there are too many spinor bilinears and we do
not know how to extract the (not spacetime-geometric)
information they must surely contain.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 2-d



All timelike 4-d susy solutions

Other methods
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All timelike 4-d susy solutions

Other methods

[1 Spinorial geometry 2004: Gillard, Gran & Papadopoulos.

Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.
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All timelike 4-d susy solutions

Other methods

[1 Spinorial geometry 2004: Gillard, Gran & Papadopoulos.

Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.

[0 Timelike dimensional reduction to d = 3 2009: Bossard, Nicolai & Stelle.

Powertul, but only developed for particular classes of timelike solutions. It is
difficult to recover the 4-dimensional form.
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All timelike 4-d susy solutions

Other methods

[1 Spinorial geometry 2004: Gillard, Gran & Papadopoulos.

Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.

[0 Timelike dimensional reduction to d = 3 2009: Bossard, Nicolai & Stelle.

Powertul, but only developed for particular classes of timelike solutions. It is
difficult to recover the 4-dimensional form.

[1 Black-hole attractors 1996: Ferrara, Kallosh & Strominger.

This mechanism can be used as a powerful tool to find partial information about
extremal (supersymmetric and non-supersymmetric ) black holes.
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All timelike 4-d susy solutions

These methods give complementary information.
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All timelike 4-d susy solutions

However, in our opinion, the spinor-bilinear method would give the most if we could
solve its problems for N> 2.
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All timelike 4-d susy solutions

In this talk we are going to show how to solve those
problems and determine the form of all the timelike su-
persymmetric solutions of all d = 4 supergravities using
the spinor-bilinear method.
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All timelike 4-d susy solutions

2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.
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2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is

{e“ s irp, AV, LJ---=1,2, =A",=4°,""
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2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is

{e“ s irp, AV, LJ---=1,2, =A",=4°,""
The (n) N =2 vector multiplets are

(A" N, 20 i=1,--,n, =AY, A=0,-,n.
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2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{e“ s irp, AV, LJ---=1,2, =A",=4°,""
The (n) N =2 vector multiplets are
(A" N, 20 i=1,--,n, =AY, A=0,-,n.
The (m) hypermultiplets are
{Casq*}, u=1,---,4m, a=1,---.,2m.
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All timelike 4-d susy solutions

2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{e“ s irp, AV, LJ---=1,2, =A",=4°,""
The (n) N =2 vector multiplets are
(A" N, 20 i=1,--,n, =AY, A=0,-,n.
The (m) hypermultiplets are
{Casq*}, u=1,---,4m, a=1,---.,2m.

The n complex scalars are encoded into the 2n-dimensional section
(n=14+n)
CA * .
V:(MA), V| V* =-2i.
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All timelike 4-d susy solutions

2 — Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those

of N =2 theories (Hiibscher, Meessen & O. (2006)), we briefly review them first.
The N = 2 supergravity multiplet is

{e“ s irp, AV, LJ---=1,2, =A",=4°,""
The (n) N =2 vector multiplets are
(A", 0,20 i=1,---,n, =AY, A=0,,n.
The (m) hypermultiplets are
{Casq*}, u=1,---,4m, a=1,---.,2m.

The n complex scalars are encoded into the 2n-dimensional section
(n=14+n)
LA . :
V:(MA), V| V* =-2i.

This is a extremely redundant (but useful) description of the scalars .
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

Sy = Duer+erg T €,
e = 1 97% + Y @t ey,
56 a _iCaﬁ UIBIu E1J @qu €J7
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

Sy = Duer+erg T €,
Oc = i @Z% + @t oe;.
56 o — —i(cag Uﬁlu ETJ ﬁq“ EJ,

where the graviphoton and matter vector field strengths are

TH=(V|Ft), G'T=Lig"(DpVv*|Fty, FF

At
(wiree )
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

Sy = Duer+erg T €,
e = 1 97% + Y @t ey,
56 o — —Z'Cag Uﬁlu ETJ ﬁq“ EJ,

where the graviphoton and matter vector field strengths are

i i g R FAY
T+=<V|f+>, G+=§Qj <DJ*V |f+>, F+E(N7\EFE+ )7

© is the Lorentz-, Kéhler- and SU(2)- covariant derivative (Kahler 4+ SU(2) = U(2))
Q,LLEI — (&u + %wuab/Yab + % Qu) €r + A,LLIJ €J
and where U%!, (q) is the Quadbein.
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

Sy = Duer+erg T €,
e = 1 97% + Y @t ey,
56 o — —Z'Cag Uﬁlu ETJ ﬁq“ EJ,

where the graviphoton and matter vector field strengths are

i i g R FAY
T+=<V|f+>, G+=§QJ <DJ*V |f+>, f+E(N7\EFE+ )7

© is the Lorentz-, Kéhler- and SU(2)- covariant derivative (Kahler 4+ SU(2) = U(2))
Q,LLEI — (&u + %wuabfYab + % Qu) € + A,LLIJ €J,
and where U%! ,(q) is the Quadbein. The action for the bosonic fields is

> = /déli’j 9l [R+ 26«0, Z°0* 2" + 2H 00 q" O ¢"

+2%HL/\/AEFA“VFEMV — QRGNAzFA“V *FEM,/] .
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All timelike 4-d susy solutions

3 — The N =2 Killing Spinor Equations (KSEs)
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All timelike 4-d susy solutions

3 — The N =2 Killing Spinor Equations (KSEs)

They take the form

@,uEI + €17 T+W’YV e/ = 0,
i §7i 1+ @it e, = 0,
—’i@ag Uﬁlu ErJ @q“ 6‘] = 0.
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All timelike 4-d susy solutions

3 — The N =2 Killing Spinor Equations (KSEs)

They take the form

@,LLEI + €17 T+,Lw'7y e/ = 0,
i @7 + @it e; = 0,
—’L'(Cag UBIU EIJ @q“ 6‘] = 0.

The goal is to find all the bosonic field configurations {e?,, A* ,, Z* ¢“}

such that the above KSEs admit at least one solution eX.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:

(a) Due to the Fierz identities. ( )
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:
(a) Due to the Fierz identities. ( )

(b) Due to the KSEs.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:
(a) Due to the Fierz identities. ( )

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:

(a) Due to the Fierz identities. ( )

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that €’ exists.

2. Construct all the independent bilinears with the commuting Killing spinor €’

and find the equations they satisfy:
(a) Due to the Fierz identities. ( )

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).

5. Impose the independent equations of motion on the supersymmetric
configurations we just identified.
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All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:
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All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:

1. A complex antisymmetric matrix of scalars M;; = €;e; = Xegy.
X is an SU(2) singlet but has U(1) Kéhler weight.
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All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:

1. A complex antisymmetric matrix of scalars M;; = €;e; = Xegy.
X is an SU(2) singlet but has U(1) Kéhler weight.

2. A Hermitean matrix of vectors V? ;, = ie! Ya€J -
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All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:

1. A complex antisymmetric matrix of scalars M;; = €;e; = Xegy.
X is an SU(2) singlet but has U(1) Kéhler weight.

2. A Hermitean matrix of vectors V! ;, = ie! Ya€J -

The 4-d Fierz identities imply that V, = V!, is always

Vie Vi, V/y=2M"M;; =4X*>0.

We only consider the timelike case X # 0 in which all V! ;, are independent.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 9-c



All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:

1. A complex antisymmetric matrix of scalars M;; = €;e; = Xegy.
X is an SU(2) singlet but has U(1) Kéhler weight.

2. A Hermitean matrix of vectors V! ;, = ie! Ya€J -

The 4-d Fierz identities imply that V, = V!, is always

Vie Vi, V/y=2M"M;; =4X*>0.

We only consider the timelike case X # 0 in which all V! ;, are independent.

With them one can construct a tetrad

‘/'CLIUJEL‘/IJIUJ(O_CL)JI7 VIJM: %Valu(o_a)fjj

with 0¥ = 1 and o™ the 2 x 2 Pauli matrices as an orthonormal tetrad in which
V0 = /2V is timelike and the VV™s are spacelike.
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All timelike 4-d susy solutions

4 — The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
Spinors €y are:

1. A complex antisymmetric matrix of scalars M;; = €;e; = Xegy.
X is an SU(2) singlet but has U(1) Kéhler weight.

2. A Hermitean matrix of vectors V! ;, = ielv,e.

The 4-d Fierz identities imply that V, = V!, is always

Vie Vi, V/y=2M"M;; =4X*>0.

We only consider the timelike case X # 0 in which all V! ;, are independent.

With them one can construct a tetrad

Va,u %VIJIU,(O-CL)ny VIJM: %Valu(o_a)fjj

with 0¥ = 1 and o™ the 2 x 2 Pauli matrices as an orthonormal tetrad in which
V0 = \/2V is timelike and the Vs are spacelike. ( N> 2!)
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All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:
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5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

1, gYe — game — (),
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All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

1, gYe — game — (),

2. EM™ = 0.
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All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

1, gYe — game — (),
2. EM = (.

3. £, =0, (= no attractor mechanism for hyperscalars )

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 10-c



All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

1. gV =¢gmn = 0.
2. &M =0.
3. £, =0, (= no attractor mechanism for hyperscalars )

4. £ = —4|X|(EY | Re(V/X)), (Bogomol'nyi bound)
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All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

L, 9% = 7 = (i)

2. EM =0.

3. £, =0, (= no attractor mechanism for hyperscalars )
4. £ = —4|X|(EY | Re(V/X)), (Bogomol'nyi bound)

5. 0= (&Y | Sm(V/X)), (= no NUT charges) (Bellorin, Meessen, Ortin (2008)).
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All timelike 4-d susy solutions

5 — The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, EF, E* &, } satisfy the KSIs:

1, gYe — game — (),
2. EM = (.

3. £, =0, (= no attractor mechanism for hyperscalars )
4. £ = —4|X|(EY | Re(V/X)), (Bogomol'nyi bound)

5. 0= (&Y | Sm(V/X)), (= no NUT charges) (Bellorin, Meessen, Ortin (2008)).

v\ 1/2
6. £ = 2(;) (E°| D+ V*), (= attractor mechanism)
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All timelike 4-d susy solutions

The only independent equations
of motion that have to be im-
posed on N = 2 , d = 4 super-
symmetric configurations are

gV =0.
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:
1. Define the U(1)-neutral real vectors R and 7

R+iI=V/X.
(= No Kéhler nor SU(2) gauge -fixing is necessary!)
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real vectors R and 7
R+iI=V/X.

(= No Kéhler nor SU(2) gauge -fixing is necessary!)

2. The components of 7 are given by a vector real functions H harmonic
in the 3-dimensional transverse space with metric vy,:
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real vectors R and 7
R+iI=V/X.

(= No Kéhler nor SU(2) gauge -fixing is necessary!)

2. The components of 7 are given by a vector real functions H harmonic
in the 3-dimensional transverse space with metric vy,:

2 _
V2 H = 0.
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:
1. Define the U(1)-neutral real vectors R and 7
R+iI=V/X.

(= No Kahler nor SU(2) gauge -fixing is necessary!)

2. The components of 7 are given by a vector real functions H harmonic
in the 3-dimensional transverse space with metric vy,:

2 _
V2 H = 0.

3. R is to be found from Z by solving the generalized stabilization equations (using
the redundancy of V).
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All timelike 4-d susy solutions

6 — The N = 2 supersymmetric solutions

They can be constructed as follows:
1. Define the U(1)-neutral real vectors R and 7
R+iI=V/X.

(= No Kahler nor SU(2) gauge -fixing is necessary!)

2. The components of 7 are given by a vector real functions H harmonic
in the 3-dimensional transverse space with metric vy,:

2 _
V2 H = 0.

3. R is to be found from Z by solving the generalized stabilization equations (using
the redundancy of V).

4. The scalars Z* are given by the quotients
i VX REiT
-~ VO/X RO44Z0C
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All timelike 4-d susy solutions

5. The hyperscalars ¢“(x) are the mappings satisfying

ue’s (am)JI = 0, ue’/, = V" 0mq" ue’,, .
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All timelike 4-d susy solutions

5. The hyperscalars ¢“(x) are the mappings satisfying

Ua.]m (O_m)JI _ O, Uonn — Vnm mqu UaJu-

6. The metric takes the form

ds® = 2|X|*(dt + w)* — Ymndz" dx™ .

2| X2
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All timelike 4-d susy solutions
5. The hyperscalars ¢“(x) are the mappings satisfying
Ua.]m (O_m)JI _ O, Uonn — Vnm mqu UaJu-
6. The metric takes the form

ds® = 2|X|*(dt + w)* —

2‘X‘27mdajmd:v” :

where
1

2| X2

=(R|7T), (dw)mn = 2€mnp(Z | OPT) .
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All timelike 4-d susy solutions
5. The hyperscalars ¢“(x) are the mappings satisfying

Ua.]m (O_m)JI _ O, Uonn — Vnm mqu UaJu-

6. The metric takes the form

ds® = 2|X|?(dt + w)* — Ymndz" dx™ .

2| X2

where
1

2|X1?
Ymn 1S determined indirectly from the hyperscalars : its spin connection ™" in the

basis {V""} is related to the pullback of the SU(2) connection of the hyper-Kahler

manifold A 7, = %Amu(am)ljﬁuq“, by

=(R|7T), (dw)mn = 2€mnp(ZL | OPT ).

P = e™PIAY,, .
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All timelike 4-d susy solutions
5. The hyperscalars ¢“(x) are the mappings satisfying
Ua.]m (O_m)JI _ O, UaJn — Vnm mqu UaJu-
6. The metric takes the form

ds® = 2|X|?(dt + w)* —

Z‘X‘vada:md:v” :

where
1

2|X1?
Ymn 1S determined indirectly from the hyperscalars : its spin connection ™" in the

basis {V""} is related to the pullback of the SU(2) connection of the hyper-Kahler

manifold A 7, = %Amu(am)ljﬁuq“, by

=(R|7T), (dw)mn = 2€mnp(ZL | OPT ).

P = e™PIAY,, .

7. The vector field strengths are
F=—-12dRV)-1x(VAdI), V =2v2|X|?(dt + w).
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All timelike 4-d susy solutions

7 — The all-N formulation of 4-d sugras
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All timelike 4-d susy solutions

7 — The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

a 1J IJKLM _
{6 s I,UnA [7%) IJKaPIJKLuy }7 17J7°'°_17'°'7N7

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 14-a



All timelike 4-d susy solutions

7 — The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

a 1J IJKLM _
{6 s I,UnA [7%) IJKaPIJKLuy }7 17J7°'°_17'°'7N7

All vector multiplets can be written in the form

I1JK .
{Ai,ua iIaPiIJua ) }7 7’:17"'7”“
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All timelike 4-d susy solutions

7 — The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

a 1J IJKLM _
{6 s I,LHA [7%) IJK)PIJKLLw }7 17J7°'°_17'°'7N7

All vector multiplets can be written in the form

I1JK .
{Ai,ua iIaPiIJua ) }7 7’:17"'7”“

The price to pay for using this representation is that all the fields that can be related
by SU(N) relations, are:
o N =414: P*iIJ:%sleLPiKL, and @'IZ%&‘]JKL ,L'IJK.

. pxlJ _ 1 _IJK, K _ 1 IJK
e N=6: P*"Y = e """ M Pg Kk, \IJK = 3€IJKLMN ,

-~ I-Is _ [ 0055 0lf 7.
. It oDy 1 Tqedadr-eJ 1 Ji--eJ
o N=8: P f=gpe s o ‘P .5, and I iinie = T il dh i LS

These constraints must be taken into account in the action.
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All timelike 4-d susy solutions

The scalars are encoded into the 2n-dimensional (n = n+ N(A; 1)) vectors
A A
Vi5ijg= f LJ ; and VYV, = f ‘ ; A:1,° n,
ha g A
normalized ol ol , ,
<V[J ‘ V* > = —210" 17, <Vz' ‘ V*3> = —10;7 .
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All timelike 4-d susy solutions

The scalars are encoded into the 2n-dimensional (n = n+ N(]g_l)) vectors
A A
Vijg= o ; and VYV, = S ; A=1,. n,
hary ha
normalized , ,
Vig | VEEY = —2i6% 5, Vi | V) = —id? .
They can be combined into the Usp(n,n) matrix
U= L f+h f*+ih*
— V2 \ f—ih ff—ah* )
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All timelike 4-d susy solutions

The scalars are encoded into the 2n-dimensional (n = n+ N(]g_l)) vectors
A A
Viy= I ; and = S ; A=1,---,n,
hars ha i
normalized , ,
Vg | VEEY = —2i6% Y, Vi | V) = —id;? .
They can be combined into the Usp(n,n) matrix
=L f+ih f*4+ih*
— V2 \ f—ih ff—ah* )
They generalize the N = 2 sections
_ _ £A5IJ _ _ / Az'
V]J—Vé‘[J,—( MA51J ) . and VZ—DZV—< hAi .
May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 15-b



All timelike 4-d susy solutions

The scalars are encoded into the 2n-dimensional (n = n+ N(]g_l)) vectors
A A
VIJ:<f”), and V@-:<fz), A=1,---,n,
hars ha i
normalized , ,
Vg | VEEY = —2i6% Y, Vi | V) = —id;? .
They can be combined into the Usp(n,n) matrix
= L f+ih f*4+ih*
— V2 \ f—ih f*—ih* )
They generalize the N = 2 sections
_ _ £A5IJ _ _ fAz'
VIJ_VE:IJ)_ ( MAng ) . and VZ—DZV— ( hAi .

The graviphotons A!” . do not appear directly, only through the “dressed” vectors

AA;L — %fAIJAIJ,u + fAz'AipJ .
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

O 'ty = Duer+Trst e,
b1y = —% Tustex)+i Prorxre®,
behir = —2 Titer+i Pipge’,
b raxkimM = —5i Puskrem + s€rskimn T + 2erykimnop TVO €,
e irgk = —3i Pyrsex)+ sergxrn Tim €l + terskimn T "en,
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

O 'ty = Duer+Trst e,
b1y = —% Tustex)+i Prorxre®,
behir = —2 Titer+i Pipge’,
b raxkimM = —5i Puskrem + s€rskimn T + 2erykimnop TVO €,
e irgk = —3i Pyrsex)+ sergxrn Tim €l + terskimn T "en,

where the graviphoton and matter vector field strengths are

Trs = (Vs | FYY, Tyt =(Vi|Ft), Fat=NiF>T,
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

O 'ty = Duer+Trst e,
b1y = —% Tustex)+i Prorxre®,
behir = —2 Titer+i Pipge’,
b raxkimM = —5i Puskrem + s€rskimn T + 2erykimnop TVO €,
e irgk = —3i Pyrsex)+ sergxrn Tim €l + terskimn T "en,

where the graviphoton and matter vector field strengths are

Trs = (Vs | FYY, Tyt =(Vi|Ft), Fat=NiF>T,

and where
0 J
@,LLGI— ;IU,EI_GJ wo I

and Q7 is the pullback of the connection of the scalar manifold (C U(N)).
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All timelike 4-d susy solutions

The action for the bosonic fields is

S = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 IJKL 1J
+ 5o P* WPrixct + aoP* Pt

where

N=hf1=NT, ha = Nasf®. Dhy = NN
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All timelike 4-d susy solutions

The action for the bosonic fields is

S = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 IJKL 1J
+ 5o P* WPrixct + aoP* Pt

where

N=hf1=NT, ha = Nasf®. Dhy = NN

The N-specific constraints must be taken into account to find the e.o.m.:
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All timelike 4-d susy solutions

The action for the bosonic fields is

S = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 IJKL 1J
+ 5o P* WPrixct + aoP* Pt

where

N=hf1=NT, ha = Nasf®. Dhy = NN
The N-specific constraints must be taken into account to find the e.o.m.:

For N = 2 : (c/’z'IJ — @,MP*UJM —|—2T?:_'L“/TIJ_'LLV ‘|‘P*iIJAP*jkATj+MyT]@+MV.
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All timelike 4-d susy solutions

The action for the bosonic fields is

S = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 IJKL 1J
+ 5o P* WPrixct + aoP* Pt

where

N=hf"1=NT, ha = Nasf>. Dhy = NisD L.
The N-specific constraints must be taken into account to find the e.o.m.:
For N = 2 : (c/’z'IJ — M P* iIJM T 2Tz'—W/TIJ—,LW 1 p* iIJAP*jkATj+Mka+“V.
For N =3 : &4/ =porp*t) ori— T —Hv,
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All timelike 4-d susy solutions

The action for the bosonic fields is

S = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 IJKL 1J
+ 5o P* WPrixct + aoP* Pt

where

N=hf"1=NT, ha = Nasf>. Dhy = NisD L.
The N-specific constraints must be taken into account to find the e.o.m.:
For N = 2 : (c/’z'IJ — M P* iIJM T 2Tz'—W/TIJ—,LW 1 p* uJAP*jkATj—i_,uka_i_'Lwo
For N =3 : &4/ =porp*t) ori— T —Hv,

( _ * 1J|— KL)— pv
SIJKL _ oup IJKLM—|—6T[ | ,UJ/T| |—
For N =4 : 4 L E e SRR VI NI A
| giIJ — QMP*iIJ/,L—i_Ti_ILLI/TIJ_MV—l_%gleLTi+MUTKL+MV'
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All timelike 4-d susy solutions

The action for the bosonic fields is

g = /d% 9] [R + 2SmN \s FAME>,, — 2ReN \s FA % F>

2 [JKL 1.
+ 5o P* WPrixct + aoP* Pt

where

N=hf"1=NT, ha = Nasf>. Dhy = NisD L.
The N-specific constraints must be taken into account to find the e.o.m.:
For N = 2 : (c/’z'IJ — M P* iIJM T 2Tz'—W/TIJ—,LW 1 p* uJAP*jkATj—i_,uka_i_'Lwo
For N =3 : &4/ =porp*t) ori— T —Hv,

( _ * 1J|— KL)— pv
SIJKL _ oup IJKLM—|—6T[ | ,UJ/T| |—
For N =4 : 4 L E e SRR VI NI A
| giIJ — QMP*iIJ/,L—i_Ti_ILLI/TIJ_MV—l_%gleLTi+MUTKL+MV'

For N =5 : /L — @“P*”KLM +6T[”|_WT|KL]_W. etc.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 17-e



All timelike 4-d susy solutions

8 — The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

Duer +Trst e = 0,
Proxrel — 2 Tustexy = 0,
Pirse! — 5 Titer = 0,
Pirikremy = 0,

Pirsexy = 0.

The last two KSEs should only be considered for N =5 and N = 3, resp.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 18



All timelike 4-d susy solutions

8 — The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

Duer +Trst e = 0,
Proxrel — 2 Tustexy = 0,
Pirse! — 5 Titer = 0,
Pirikremy = 0,

Piirsexy = 0.

The last two KSEs should only be considered for N =5 and N = 3, resp.

Again, our goal is to find all the bosonic field configurations

{e“u,AAM,PUKLM,P“JM} such that the above KSEs admit at least

one solution €.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.

2. A Hermitean matrix of vectors V! ;, = ielv,e.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.

2. A Hermitean matrix of vectors V! ;, = ielv,e.
The 4- Fierz identities imply the following properties for them:
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.
2. A Hermitean matrix of vectors V! ;, = ielv,e.

The 4- Fierz identities imply the following properties for them:
1. MyMgr) =0, sorank (Mry) < 2.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.
2. A Hermitean matrix of vectors V! ;, = ielv,e.

The 4- Fierz identities imply the following properties for them:
1. MyMgr) =0, sorank (Mry) < 2.

2. Vo, =Vi;, is always : V2 =2M!"M;; =2|M|? > 0.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.
2. A Hermitean matrix of vectors V! ;, = ielv,e.

The 4- Fierz identities imply the following properties for them:
1. MyMgr) =0, sorank (Mry) < 2.

2. Vo, =Vi;, is always : V2 =2M!"M;; =2|M|? > 0.
We only consider the timelike case.
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All timelike 4-d susy solutions

9 — The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U (V) vector of Weyl
spinors €y are:

1. A complex antisymmetric matrix of scalars My =€rey = —M j;.
2. A Hermitean matrix of vectors V! ;, = ielv,e.
The 4- Fierz identities imply the following properties for them:
1. MyMgr) =0, sorank (Mry) < 2.
2. Vo, =Vi;, is always : V2 =2M!"M;; =2|M|? > 0.
We only consider the timelike case.

3. We can choose a tetrad {e%,} such that e*, = %\M\_lvu. Then, defining
Vv, =|Mle™, we can decompose

VIJM — %jIJVM + \/Lg((fm)j«]vmu )

where J!; = 2M*5 M ;5 |M|~? is a rank 2 projector (Tod):
J*=J, T =42, TJled =€ .
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All timelike 4-d susy solutions

The main properties satisfied by the three ¢ matrices are:

oM™ = T 4 g™ PP,
Jo™m™m = o J =0c™,
(e™)'r = 0,
JE; T = 275 T+ 2(c™)F(a™)%
MK[I(Um)KJ] = 0,
2lM |2 M1 (o™) ;M5 = (o™)* L,
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All timelike 4-d susy solutions

The main properties satisfied by the three ¢ matrices are:

oo™ = 0" J 4+ ie™mPoP |
Jo™m™m = o J =0c™,
(e™)'r = 0,
JE; T = 275 T+ 2(c™)F(a™)%
MK[I(Um)KJ] = 0,
2)M|2M (™) yMIE = (o™)* L,

{T,0t, 0% 03} is an z-dependent basis of a u(2) subalgebra
of u(NV) in the 2-dimensional eigenspace of J of eigenvalue
+1 and provide a basis in the space of Hermitean matrices

satistying J AJ =
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All timelike 4-d susy solutions

10 — The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, Ex, ELIRL £11I1 qatisfy the

KSIs (71; =61, — J%)):
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All timelike 4-d susy solutions

10 — The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, Ex, ELIRL £11I1 qatisfy the

KSIs (71; =61, — J%)):

1, g — g — ()
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All timelike 4-d susy solutions

10 — The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, Ex, ELIRL £11I1 qatisfy the

KSIs (71; =61, — J%)):
1. &0m = gmn — (.

2. &M =0.
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All timelike 4-d susy solutions

10 — The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, Ex, ELIRL £11I1 qatisfy the

KSIs (71, =617 — J7)):
1. £V = gmn = (.
2. &M =0.
EMNPQ gl 7l TKpTHg = 0,

3. (= no attractor mechanism)
EiMN 71 71 — ¢
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All timelike 4-d susy solutions

10 — The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor €7, then
we find that the (off-shell) “equations of motion” {E#V, Ex, ELIRL £11I1 qatisfy the

KSIs (71; =61, — J%)):

1, g — g — ()

2. &M =0.
EMNPQ gl 7l TKpTHg = 0,
3. (= no attractor mechanism)
EMN gLy, 7y = 0,
MIJ
4. €90 = —2/2(&EY | Re (V” ] ) ), (Bogomol’nyi bound)
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All timelike 4-d susy solutions

MIJ
| M|

5. (€% ] Sm (VIJ ) ), (= no NUT charge).
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All timelike 4-d susy solutions

MIJ
| M|

5. (€% ] Sm (V[J ) ), (= no NUT charge).

EMNEQ T, 77 nTE pT g,
6. are related to £Y (= attractor mechanism)
EiMN g, 771,
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All timelike 4-d susy solutions

MIJ
| M|

5. (€% ] Sm (V[J ) ), (= no NUT charge).

EMNPQ U\ TInT K pTH g,
6. are related to £° (= attractor mechanism)
EiMN g, 771,

The precise form of the relation depends on N:
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All timelike 4-d susy solutions

MIJ
| M|

5. (€% ] Sm (V[J ) ), (= no NUT charge).

EMNPQ U\ TInT K pTH g,
6. are related to £° (= attractor mechanism)
EiMN g, 771,

The precise form of the relation depends on N:

MIJ

N=3:&=-2V2
M|

(E2[V**),
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All timelike 4-d susy solutions

MIJ
| M|

5. (€% ] Sm (V[J ) ), (= no NUT charge).

EMNPQ U\ TInT K pTH g,
6. are related to £° (= attractor mechanism)

giMNj[IMjJ]N,

The precise form of the relation depends on /V:

1J _ \[MU 0 ;
N=3:¢&ll=_2 (E0 | V*iy,
| M|
r [1J
cIJKL _ _2\[]\‘4 ‘|<50|V*|KL]>7
N=4:
IJ 0 MKL 0 * 1
Eirg = —22 Wi ‘<5 | Vi) + €KL | (E° V) o,
\
etc.
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All timelike 4-d susy solutions

The only independent equations
of motion that have to be im-
posed on any d =4 supersyms-
metric configuration are

gV =0.
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

. Choose the U(2) subgroup determining the associated N = 2 truncation:
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose z-dependent rank-2, N x N complex antisymmetric M ;. With it we
construct the projector J!; = 2|M|72M 5 M ;.
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose z-dependent rank-2, N x N complex antisymmetric M ;. With it we
construct the projector J!; = 2|M|72M 5 M ;.
Supersymmetry requires is covariant constancy

DT =dJ —|T,Q] =0,

which implies constancy for N =2, N =3 and N =4 , but not in general.
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose z-dependent rank-2, N x N complex antisymmetric M ;. With it we
construct the projector J!; = 2|M|72M 5 M ;.
Supersymmetry requires is covariant constancy

DT =dJ —|T,Q] =0,
which implies constancy for N =2, N =3 and N =4 , but not in general.

2. Choose three N x N, Hermitean , traceless, z-dependent (™) ;, satisfying the
same properties as the Pauli matrices in the subspace preserved by 7.
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All timelike 4-d susy solutions

11 — The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose z-dependent rank-2, N x N complex antisymmetric M ;. With it we
construct the projector J!; = 2|M|72M 5 M ;.
Supersymmetry requires is covariant constancy

DT =dJ —|T,Q] =0,
which implies constancy for N =2, N =3 and N =4 , but not in general.

2. Choose three N x N, Hermitean , traceless, z-dependent (0™)! ;, satisfying the
same properties as the Pauli matrices in the subspace preserved by 7.

We also have to impose the constraint

Jdo™ T =0.
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All timelike 4-d susy solutions

Once the U(2) subgroup has been chosen, we can split the Vielbeins Py k7, and
P; 1., Into associated to the would-be vector multiplets in the N = 2 truncation

Prkr I T nT5pT g, and Py I (xJ7 L,

which are driven by the attractor mechanism (i.e. they are determined by the
electric and magnetic charges) and those associated to the hypermultiplets

~ ~ ~

Prokr T T nT*pT g, and Py T xJ”L.

which are not.
In hyper-less solutions (e.g. black holes) the o”s matrices are not needed at all.
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:
1. Define the real vectors R and 7

R + 1L = ‘M‘_2V]JMIJ -
(U(N) singlets = no U(NN) gauge -fixing necessary)
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real vectors R and 7
R+ = |M|2V ;M.

(U(N) singlets = no U(N) gauge -fixing necessary) 2. The components of 7 are
given by a vector real functions A harmonic in the 3-dimensional

transverse space with metric v,,,:
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real vectors R and 7
R+ = |M|2V ;M.

(U(N) singlets = no U(N) gauge -fixing necessary) 2. The components of 7 are
given by a vector real functions A harmonic in the 3-dimensional

transverse space with metric v,,,:

2 _
V2, H =0.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 26-c



All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:
1. Define the real vectors R and 7
R+ = |M|2V ;M.

(U(N) singlets = no U(N) gauge -fixing necessary) 2. The components of 7 are
given by a vector real functions A harmonic in the 3-dimensional
transverse space with metric 7,,:

2 _
V2, H =0.

3. R is to be be found from 7 by solving the generalized stabilization equations.
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:
1. Define the real vectors R and 7

R+ = |M|2V ;M.

(U(N) singlets = no U(N) gauge -fixing necessary) 2. The components of 7 are
given by a vector real functions A harmonic in the 3-dimensional
transverse space with metric 7,,:

2 _
V2, H =0.

3. R is to be be found from 7 by solving the generalized stabilization equations.

4. The metric is
ds® = |M|*(dt + w)? — |M| *ypndz™dz™ .
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All timelike 4-d susy solutions

. After the choice of U(2) subgroup, the solutions are constructed:
1. Define the real vectors R and 7
R+ = |M|2V ;M.

(U(N) singlets = no U(N) gauge -fixing necessary) 2. The components of 7 are
given by a vector real functions A harmonic in the 3-dimensional
transverse space with metric 7,,:

2 _
V2, H =0.

3. R is to be be found from 7 by solving the generalized stabilization equations.

4. The metric is
ds® = |M|*(dt + w)? — |M| *ypndz™dz™ .

where
IM|=2 = (M"M;;)™?=(R|TI),

(dw)mn

2€mnp(ZL | OPL) .
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All timelike 4-d susy solutions

Ymn 1S determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.
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All timelike 4-d susy solutions

Ymn 1S determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ww™"is related to €2, by

w™" = ieM"PTr [P .

(Observe that only the su(2) components of () constribute to w™".
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All timelike 4-d susy solutions

Ymn 1S determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ww™"is related to €2, by

w™" = ieM"PTr [P .

(Observe that only the su(2) components of () constribute to w™".
5. The vector field strengths are

F=-LdRV)-1x(VAdI), V =V2|M*(dt + w).
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All timelike 4-d susy solutions

Ymn 1S determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ww™"is related to €2, by

w™" = ieM"PTr [P .

(Observe that only the su(2) components of () constribute to w™".

5. The vector field strengths are
F=-LdRV)-1x(VAdI), V =V2|M*(dt + w).
6. The scalars in the vector multiplets in the associated N = 2 truncation
Prokr I T ' nT*pT g, and Py T (xd”’r,

can be found from R and 7, while those in the hypers must be found independently
by solving

Proiim T T nTEpT g (e™9r = 0,

Pitgm TN T n(c™Ey = 0,

which solve their equations of motion according to the Killing Spinor Identities.
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All timelike 4-d susy solutions

12 — Final comments
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All timelike 4-d susy solutions

12 — Final comments

* We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .
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All timelike 4-d susy solutions

12 — Final comments

* We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

* We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the NV = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).
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All timelike 4-d susy solutions

12 — Final comments

* We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

* We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the NV = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

* We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor

mechanism only acts on the former.
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All timelike 4-d susy solutions

12 — Final comments

* We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

* We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the NV = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

* We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former. (1-line derivations of the attactor flow

equations can be readily given (O. in preparation))
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All timelike 4-d susy solutions

12 — Final comments

* We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

* We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the NV = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

* We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former. (1-line derivations of the attactor flow

equations can be readily given (O. in preparation))

* Much work remains to be done in order to make explicit the construction of the
solutions. In particular one has to find general parametrizations of the matrices

M*’ and J!;, solve the stabilization equations, impose the covariant constancy
of J etc. (Meessen & O., work in progress).
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All timelike 4-d susy solutions

A simple derivation of the attractor flow eqs. in N = 1,d = 5 supergravity

Assume
hi/f =1l +aqip,
and define the central charge
Z[¢(p),q) = b (d)ar -
Using h!h; =1 and h'dh; =0
df~t = d(W'ha/f) = Bld(ha/ )

from which we get
o Zlo(p), d]
dIO T IO 7q .

Using now the above properties plus k!, h Iy = Yay, Where hp, = —\/gc‘?yh 7 and
hla: — \/gazchl

d¢” = h'"hryde? = —v/3h'*dhy = —V/3h'"d(fh1/f) = —=V3fh'"d(h1/[),

from which we get

d¢p®
dp
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