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All timelike 4-d susy solutions

1 – Introduction: the search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method
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1 – Introduction: the search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method

☞ 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N = 1 d = 11);
Gauntlett & Gutowski (Gauged N = 1 d = 5); Caldarelli & Klemm ( Pure
gauged N = 2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2, 0) d = 6)
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1 – Introduction: the search for all 4-d susy solutions

☞ Gibbons & Hull (1982) (Pure N = 2 supergravity).

☞ Tod (1983) (Pure N = 2 supergravity). ⇒ A complete answer is possible.

☞ Tod (1995) (Pure N = 4 supergravity).

☞ Gauntlett, Gutowski, Hull, Pakis & Reall (2002) (Pure N = 1 d = 5
supergravity).

Spinor-bilinears method

☞ 2003: Gauntlett & Pakis + Gauntlett, Gutowski & Pakis (N = 1 d = 11);
Gauntlett & Gutowski (Gauged N = 1 d = 5); Caldarelli & Klemm ( Pure
gauged N = 2 d = 4); Gutowski, Martelli & Reall; Chamseddine,
Figueroa-O’Farrill & Sabra (N = (2, 0) d = 6)

☞ 2004: Cariglia & Mac Conamhna (N = 1 d = 7 and gauged N = (2, 0) d = 6)

☞ 2005: Belloŕın & O. (Pure N = 4 d = 4 revisited)

☞ 2006: Belloŕın, Meessen & O. (N = 1 d = 5 with vector multiplets); Meessen
& O. (N = 2 d = 4 with vector multiplets); Hübscher, Meessen & O. (N = 2
d = 4 with vector multiplets and hypermultiplets).
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☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets).
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All timelike 4-d susy solutions

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).
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All timelike 4-d susy solutions

☞ 2007: Belloŕın & O. (Gauged N = 1 d = 5 with vector multiplets).

☞ 2008: Cacciatori, Klemm, Mansi & Zorzan (Gauged N = 1 d = 5 with vector
multiplets); Hübscher, Meessen, O. & Vaulà (non-Abelian Gauged N = 2 d = 4
with vector multiplets); Belloŕın (Gauged N = 1 d = 5 with vector and tensor
multiplets).

☞ 2010: Deger, Samtleben & Sarioglu (Gauged N = 8 d = 3).

However, in d = 4 the spinor -bilinears method has not given satisfactory results fo
N > 2. (It has not been tried for d > 4).

For N> 2 there are too many spinor bilinears and we do
not know how to extract the (not spacetime-geometric)
information they must surely contain.
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Other methods
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All timelike 4-d susy solutions

Other methods

☞ Spinorial geometry 2004: Gillard, Gran & Papadopoulos.

Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.
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Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.

☞ Timelike dimensional reduction to d = 3 2009: Bossard, Nicolai & Stelle.

Powerful, but only developed for particular classes of timelike solutions. It is
difficult to recover the 4-dimensional form.
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All timelike 4-d susy solutions

Other methods

☞ Spinorial geometry 2004: Gillard, Gran & Papadopoulos.

Gives a more detailed classification of supersymmetric backgrounds, but it is less
useful to give general classes of solutions.

☞ Timelike dimensional reduction to d = 3 2009: Bossard, Nicolai & Stelle.

Powerful, but only developed for particular classes of timelike solutions. It is
difficult to recover the 4-dimensional form.

☞ Black-hole attractors 1996: Ferrara, Kallosh & Strominger.

This mechanism can be used as a powerful tool to find partial information about
extremal (supersymmetric and non-supersymmetric ) black holes.
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All timelike 4-d susy solutions

These methods give complementary information.
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All timelike 4-d susy solutions

However, in our opinion, the spinor-bilinear method would give the most if we could
solve its problems for N> 2.
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All timelike 4-d susy solutions

In this talk we are going to show how to solve those
problems and determine the form of all the timelike su-
persymmetric solutions of all d = 4 supergravities using
the spinor-bilinear method.
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All timelike 4-d susy solutions

2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.
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All timelike 4-d susy solutions

2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .
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2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .
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2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.
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2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{
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µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.

The n complex scalars are encoded into the 2n̄-dimensional symplectic section
(n̄ = 1 + n)

V =

(

LΛ

MΛ

)

, 〈V | V∗〉 = −2i .
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2 – Review of the N=2 case

Since the timelike supersymmetric solutions of N> 2 turn out to be related to those
of N = 2 theories (Hübscher, Meessen & O. (2006)), we briefly review them first.

The N = 2 supergravity multiplet is
{

ea
µ, ψI µ, A

IJ
µ

}

, I, J, · · · = 1, 2 , ⇒ AIJ
µ = A0

µε
IJ .

The (n) N = 2 vector multiplets are
{

Ai
µ, λ

i
I , Z

i
}

, i = 1, · · · , n , ⇒ AΛ
µ , Λ = 0, · · · , n .

The (m) hypermultiplets are

{ζα, q
u} , u = 1, · · · , 4m, α = 1, · · · , 2m.

The n complex scalars are encoded into the 2n̄-dimensional symplectic section
(n̄ = 1 + n)

V =

(

LΛ

MΛ

)

, 〈V | V∗〉 = −2i .

This is a extremely redundant (but useful) description of the scalars .
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,
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The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,

D is the Lorentz-, Kähler- and SU(2)- covariant derivative (Kähler + SU(2) = U(2))

DµǫI = (∂µ + 1
4ωµ

abγab + i
2 Qµ) ǫI + Aµ I

J ǫJ ,

and where U
αI

u(q) is the Quadbein.
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermions are

δǫψI µ = DµǫI + εIJ T+
µνγ

ν ǫJ ,

δǫλ
iI = i 6∂ZiǫI + εIJ 6Gi + ǫJ .

δǫζα = −iCαβ U
βI

u εIJ 6∂qu ǫJ ,

where the graviphoton and matter vector field strengths are

T+ = 〈 V | F+ 〉 , Gi + = i
2Gij∗〈Dj∗V∗ | F+ 〉 , F+ ≡

(

FΛ +

N ∗
ΛΣF

Σ +

)

,

D is the Lorentz-, Kähler- and SU(2)- covariant derivative (Kähler + SU(2) = U(2))

DµǫI = (∂µ + 1
4ωµ

abγab + i
2 Qµ) ǫI + Aµ I

J ǫJ ,

and where U
αI

u(q) is the Quadbein. The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗j∗

+ 2Huv∂µq
u∂µqv

+2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

]

.
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3 – The N = 2 Killing Spinor Equations (KSEs)
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All timelike 4-d susy solutions

3 – The N = 2 Killing Spinor Equations (KSEs)

They take the form

DµǫI + εIJ T+
µνγ

ν ǫJ = 0 ,

i 6∂ZiǫI + εIJ 6Gi + ǫJ = 0 ,

−iCαβ U
βI

u εIJ 6∂qu ǫJ = 0 .
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All timelike 4-d susy solutions

3 – The N = 2 Killing Spinor Equations (KSEs)

They take the form

DµǫI + εIJ T+
µνγ

ν ǫJ = 0 ,

i 6∂ZiǫI + εIJ 6Gi + ǫJ = 0 ,

−iCαβ U
βI

u εIJ 6∂qu ǫJ = 0 .

The goal is to find all the bosonic field configurations {ea
µ, A

Λ
µ, Z

i, qu}
such that the above KSEs admit at least one solution ǫI .
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:
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The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.
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The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).
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All timelike 4-d susy solutions

The spinor-bilinear method consists in the following steps:

1. Assume that one has a bosonic field configuration such that ǫI exists.

2. Construct all the independent bilinears with the commuting Killing spinor ǫI

and find the equations they satisfy:

(a) Due to the Fierz identities. (Spinor-bilinear algebra)

(b) Due to the KSEs.

3. Find their integrability conditions and show that they are also sufficient to solve
the KSEs. At this point all supersymmetric configurations are determined.

4. Determine which equations of motion are independent for supersymmetric
configurations. This is determined by the Killing Spinor Identities (KSIs).

5. Impose the independent equations of motion on the supersymmetric
configurations we just identified.
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All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:
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All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 9-a



All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 9-b



All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.
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All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.

With them one can construct a tetrad

V a
µ ≡ 1√

2
V I

J µ(σa)J
I , V I

J µ = 1√
2
V a

µ(σa)I
J ,

with σ0 = 1 and σm the 2 × 2 Pauli matrices as an orthonormal tetrad in which
V 0 =

√
2V is timelike and the V ms are spacelike.
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All timelike 4-d susy solutions

4 – The N = 2 spinor-bilinears algebra

The independent bilinears that we can construct with one U(2) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = XεIJ .
X is an SU(2) singlet but has U(1) Kähler weight.

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4-d Fierz identities imply that V a ≡ V I
I a is always non-spacelike:

V 2 = −V I
J · V J

I = 2M IJM IJ = 4|X|2 ≥ 0 .

We only consider the timelike case X 6= 0 in which all V I
J a are independent.

With them one can construct a tetrad

V a
µ ≡ 1√

2
V I

J µ(σa)J
I , V I

J µ = 1√
2
V a

µ(σa)I
J ,

with σ0 = 1 and σm the 2 × 2 Pauli matrices as an orthonormal tetrad in which
V 0 =

√
2V is timelike and the V ms are spacelike. (This will not work for N> 2!)
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)

5. 0 = 〈 E0 | ℑm(V/X) 〉, (⇒ no NUT charges) (Belloŕın, Meessen, Ort́ın (2008)).
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All timelike 4-d susy solutions

5 – The N = 2 Killing Spinor Identities (KSI)s

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, E i, Eu} satisfy the KSIs:

1. E0m = Emn = 0.

2. Em = 0.

3. Eu = 0, (⇒ no attractor mechanism for hyperscalars )

4. E00 = −4|X|〈 E0 | ℜe(V/X) 〉, (Bogomol’nyi bound)

5. 0 = 〈 E0 | ℑm(V/X) 〉, (⇒ no NUT charges) (Belloŕın, Meessen, Ort́ın (2008)).

6. E i∗ = 2

(

X

X∗

)1/2

〈 E0 | Di∗V∗ 〉, (⇒ attractor mechanism)
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All timelike 4-d susy solutions

The only independent equations
of motion that have to be im-
posed on N = 2 , d = 4 super-
symmetric configurations are

E0 = 0 .
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All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:
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All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)
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All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:
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All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.
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All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 12-d



All timelike 4-d susy solutions

6 – The N = 2 supersymmetric solutions

They can be constructed as follows:

1. Define the U(1)-neutral real symplectic vectors R and I
R + iI ≡ V/X .

(⇒ No Kähler nor SU(2) gauge -fixing is necessary!)

2. The components of I are given by a symplectic vector real functions H harmonic
in the 3-dimensional transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be found from I by solving the generalized stabilization equations (using
the redundancy of V).

4. The scalars Zi are given by the quotients

Zi =
Vi/X

V0/X
=

Ri + iIi

R0 + iI0
.
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All timelike 4-d susy solutions

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .
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All timelike 4-d susy solutions

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .
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All timelike 4-d susy solutions

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .
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All timelike 4-d susy solutions

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .

γmn is determined indirectly from the hyperscalars : its spin connection ̟mn in the
basis {V m} is related to the pullback of the SU(2) connection of the hyper-Kähler
manifold A

I
Jµ = 1√

2
A

m
u(σm)I

J∂µq
u, by

̟m
np = εnpq

A
q
m .
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All timelike 4-d susy solutions

5. The hyperscalars qu(x) are the mappings satisfying

U
αJ

m (σm)J
I = 0 , U

αJ
n ≡ V n

m∂mq
u

U
αJ

u .

6. The metric takes the form

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndx
mdxn .

where
1

2|X|2 = 〈R | I 〉 , (dω)mn = 2ǫmnp〈 I | ∂pI 〉 .

γmn is determined indirectly from the hyperscalars : its spin connection ̟mn in the
basis {V m} is related to the pullback of the SU(2) connection of the hyper-Kähler
manifold A

I
Jµ = 1√

2
A

m
u(σm)I

J∂µq
u, by

̟m
np = εnpq

A
q
m .

7. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ = 2
√

2|X|2(dt+ ω) .
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All timelike 4-d susy solutions

7 – The all-N formulation of 4-d sugras
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All timelike 4-d susy solutions

7 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,
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All timelike 4-d susy solutions

7 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,

All vector multiplets can be written in the form

{

Ai µ, λiI , P iIJ µ, λi
IJK

}

, i = 1, · · · , n .
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All timelike 4-d susy solutions

7 – The all-N formulation of 4-d sugras

All 4-d supergravity multiplets can be written in the form

{

ea
µ, ψI µ, A

IJ
µ, χIJK , P IJKL µ, χ

IJKLM
}

, I, J, · · · = 1, · · · , N ,

All vector multiplets can be written in the form

{

Ai µ, λiI , P iIJ µ, λi
IJK

}

, i = 1, · · · , n .

The price to pay for using this representation is that all the fields that can be related
by SU(N) duality relations, are:

• N = 4 : P ∗ i IJ = 1
2ε

IJKLP i KL, and λiI = 1
3!εIJKLλi

IJK .

• N = 6 : P ∗ IJ = 1
4!ε

IJK1···K4PK1···K4
, χIJK = 1

3!εIJKLMNλ
IJK ,

and χI1···I5 = εI1···I5JλJ .

• N = 8 : P ∗ I1···I4 = 1
4!ε

I1···I4J1···J4P J1···J4
, and χI1I2I3

= 1
5!εI1I2I3J1···J5

χJ1···J5 .

These constraints must be taken into account in the action.
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All timelike 4-d susy solutions

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
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All timelike 4-d susy solutions

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.
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All timelike 4-d susy solutions

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.

They generalize the N = 2 sections

VIJ = VεIJ ,=

(

LΛεIJ

MΛεIJ

)

, and Vi = DiV =

(

fΛ
i

hΛ i

)

.
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All timelike 4-d susy solutions

The scalars are encoded into the 2n̄-dimensional (n̄ ≡ n+ N(N−1)
2 ) symplectic vectors

VIJ =

(

fΛ
IJ

hΛ IJ

)

, and Vi =

(

fΛ
i

hΛ i

)

, Λ = 1, · · · , n̄ ,

normalized
〈VIJ | V∗KL〉 = −2iδKL

IJ , 〈Vi | V∗ j〉 = −iδij .
They can be combined into the Usp(n̄, n̄) matrix

U ≡ 1√
2

(

f + ih f∗ + ih∗

f − ih f∗ − ih∗

)

.

They generalize the N = 2 sections

VIJ = VεIJ ,=

(

LΛεIJ

MΛεIJ

)

, and Vi = DiV =

(

fΛ
i

hΛ i

)

.

The graviphotons AIJ
µ do not appear directly, only through the “dressed” vectors

AΛ
µ ≡ 1

2f
Λ

IJA
IJ

µ + fΛ
iA

i
µ .
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,

where the graviphoton and matter vector field strengths are

T IJ
+ = 〈 VIJ | F+ 〉 , T i

+ = 〈 Vi | F+ 〉 , FΛ
+ = N ∗

ΛΣF
Σ + ,
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All timelike 4-d susy solutions

The supersymmetry transformations of the fermioninc fields are

δǫψIµ = DµǫI + T IJ
+

µνγ
νǫJ ,

δǫχIJK = − 3i
2 6T [IJ

+ǫK] + i 6P IJKLǫ
L ,

δǫλiI = − i
2 6T i

+ǫI + i 6P iIJǫ
J ,

δǫχIJKLM = −5i 6P [IJKLǫM ] + i
2εIJKLMN 6T−ǫN + i

4εIJKLMNOP 6TNO−ǫP ,

δǫλiIJK = −3i 6P i[IJǫK] + i
2εIJKL 6T i

−ǫL + i
4εIJKLMN 6TLM−ǫN ,

where the graviphoton and matter vector field strengths are

T IJ
+ = 〈 VIJ | F+ 〉 , T i

+ = 〈 Vi | F+ 〉 , FΛ
+ = N ∗

ΛΣF
Σ + ,

and where
DµǫI ≡ ∇µǫI − ǫJΩµ

J
I ,

and Ωµ
J

I is the pullback of the connection of the scalar manifold (⊂ U(N)).

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 16-b



All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .
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All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:
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All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .
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All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .
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All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .

For N = 4 :























EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν

+P ∗ IJKL AP ∗ ij
ATi

+
µνT j

+ µν ,

E iIJ = D
µP ∗ iIJ

µ + T i−
µνT

IJ −µν + 1
2ε

IJKLT i
+

µνTKL
+ µν .
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All timelike 4-d susy solutions

The action for the bosonic fields is

S =

∫

d4x
√

|g|
[

R+ 2ℑmNΛΣF
Λ µνFΣ

µν − 2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

+ 2
4!α1P

∗ IJKL
µP IJKL

µ + α2P
∗ iIJ

µP iIJ
µ
]

,

where
N = hf−1 = N T , hΛ = NΛΣf

Σ . DhΛ = N ∗
ΛΣDfΛ .

The N -specific constraints must be taken into account to find the e.o.m.:

For N = 2 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν + P ∗ iIJ AP ∗ jk
AT j

+
µνT k

+ µν .

For N = 3 : E iIJ = D
µP ∗ iIJ

µ + 2T i−
µνT

IJ −µν .

For N = 4 :























EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν

+P ∗ IJKL AP ∗ ij
ATi

+
µνT j

+ µν ,

E iIJ = D
µP ∗ iIJ

µ + T i−
µνT

IJ −µν + 1
2ε

IJKLT i
+

µνTKL
+ µν .

For N = 5 : EIJKL = D
µP ∗ IJKL

µ + 6T [IJ|−
µνT

|KL]−µν . etc.
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All timelike 4-d susy solutions

8 – The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

DµǫI + T IJ
+

µνγ
νǫJ = 0 ,

6P IJKLǫ
L − 3

2 6T [IJ
+ǫK] = 0 ,

6P i IJǫ
J − 1

2 6T i
+ǫI = 0 ,

6P [IJKLǫM ] = 0 ,

6P i [IJǫK] = 0 .

The last two KSEs should only be considered for N = 5 and N = 3 , resp.
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All timelike 4-d susy solutions

8 – The all-N Killing Spinor Equations (KSEs)

For all values of N the independent KSEs take the form

DµǫI + T IJ
+

µνγ
νǫJ = 0 ,

6P IJKLǫ
L − 3

2 6T [IJ
+ǫK] = 0 ,

6P i IJǫ
J − 1

2 6T i
+ǫI = 0 ,

6P [IJKLǫM ] = 0 ,

6P i [IJǫK] = 0 .

The last two KSEs should only be considered for N = 5 and N = 3 , resp.

Again, our goal is to find all the bosonic field configurations
{ea

µ, A
Λ

µ, P IJKL µ, P i IJ µ} such that the above KSEs admit at least
one solution ǫI .
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 19-d



All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.

We only consider the timelike case.
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All timelike 4-d susy solutions

9 – The all-N spinor-bilinears algebra

The independent bilinears that we can construct with one U(N) vector of Weyl
spinors ǫI are:

1. A complex antisymmetric matrix of scalars MIJ ≡ ǭIǫJ = −MJI .

2. A Hermitean matrix of vectors V I
J a ≡ iǭIγaǫJ .

The 4- Fierz identities imply the following properties for them:

1. M I[JMKL] = 0, so rank (M IJ ) ≤ 2.

2. V a ≡ V I
I a is always non-spacelike: V 2 = 2M IJM IJ ≡ 2|M |2 ≥ 0.

We only consider the timelike case.

3. We can choose a tetrad {ea
µ} such that e0µ ≡ 1√

2
|M |−1V µ. Then, defining

V m
µ ≡ |M |em

µ we can decompose

V I
J µ = 1

2J I
JV µ + 1√

2
(σm)I

JV
m

µ ,

where J I
J = 2M IKMJK |M |−2 is a rank 2 projector (Tod):

J 2 = J , J I
I = +2 , J I

Jǫ
J = ǫI .
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All timelike 4-d susy solutions

The main properties satisfied by the three σm matrices are:

σmσn = δmnJ + iεmnpσp ,

J σm = σmJ = σm ,

(σm)I
I = 0 ,

JK
JJ L

I = 1
2JK

IJ L
J + 1

2 (σm)K
I(σ

m)L
J ,

MK[I(σ
m)K

J] = 0 ,

2|M |−2MLI(σ
m)I

JM
JK = (σm)K

L ,
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All timelike 4-d susy solutions

The main properties satisfied by the three σm matrices are:

σmσn = δmnJ + iεmnpσp ,

J σm = σmJ = σm ,

(σm)I
I = 0 ,

JK
JJ L

I = 1
2JK

IJ L
J + 1

2 (σm)K
I(σ

m)L
J ,

MK[I(σ
m)K

J] = 0 ,

2|M |−2MLI(σ
m)I

JM
JK = (σm)K

L ,

{J , σ1, σ2, σ3} is an x-dependent basis of a u(2) subalgebra
of u(N) in the 2-dimensional eigenspace of J of eigenvalue
+1 and provide a basis in the space of Hermitean matrices
A satisfying JAJ = A
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All timelike 4-d susy solutions

10 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):
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All timelike 4-d susy solutions

10 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.
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All timelike 4-d susy solutions

10 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.
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All timelike 4-d susy solutions

10 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.

3.







EMNPQJ [I
M J̃ J

N J̃K
P J̃ L]

Q = 0 ,

E i MNJ [I
M J̃ J]

N = 0 ,
(⇒ no attractor mechanism)
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All timelike 4-d susy solutions

10 – The all-N Killing Spinor Identities (KSIs)

If we assume that a given bosonic field configuration admits a Killing spinor ǫI , then
we find that the (off-shell) “equations of motion” {Eµν , Eµ, EIJKL, E i IJ} satisfy the

KSIs (J̃ I
J ≡ δI

J − J I
J):

1. E0m = Emn = 0.

2. Em = 0.

3.







EMNPQJ [I
M J̃ J

N J̃K
P J̃ L]

Q = 0 ,

E i MNJ [I
M J̃ J]

N = 0 ,
(⇒ no attractor mechanism)

4. E00 = −2
√

2〈 E0 | ℜe

(

VIJ
M IJ

|M |

)

〉, (Bogomol’nyi bound)
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All timelike 4-d susy solutions

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).
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All timelike 4-d susy solutions

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)
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All timelike 4-d susy solutions

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :
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All timelike 4-d susy solutions

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :

N = 3 : E i IJ = −2
√

2
M IJ

|M | 〈 E
0 | V∗ i 〉 ,
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All timelike 4-d susy solutions

5. 〈 E0 | ℑm

(

VIJ
M IJ

|M |

)

〉, (⇒ no NUT charge).

6.







EMNPQJ [I
MJ J

N J̃K
P J̃ L]

Q ,

E i MNJ [I
MJ J]

N ,
are related to E0 (⇒ attractor mechanism)

The precise form of the relation depends on N :

N = 3 : E i IJ = −2
√

2
M IJ

|M | 〈 E
0 | V∗ i 〉 ,

N = 4 :























EIJKL = −2
√

2
M [IJ|

|M | 〈 E0 | V∗ |KL] 〉 ,

E iIJ = −2
√

2

{

M IJ

|M | 〈 E
0 | Vi 〉 + 1

2εIJKL
MKL

|M | 〈 E0 | V∗ i 〉
}

,

etc.
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All timelike 4-d susy solutions

The only independent equations
of motion that have to be im-
posed on any d = 4 supersym-
metric configuration are

E0 = 0 .
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.

2. Choose three N ×N , Hermitean , traceless, x-dependent (σm)I
J , satisfying the

same properties as the Pauli matrices in the subspace preserved by J .
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All timelike 4-d susy solutions

11 – The all-N supersymmetric solutions

The construction of any timelike supersymmetric solution proceeds as follows:

I. Choose the U(2) subgroup determining the associated N = 2 truncation:

1. Choose x-dependent rank-2, N ×N complex antisymmetric M IJ . With it we
construct the projector J I

J ≡ 2|M |−2M IKMJK .
Supersymmetry requires is covariant constancy

DJ ≡ dJ − [J ,Ω] = 0 ,

which implies constancy for N = 2 , N = 3 and N = 4 , but not in general.

2. Choose three N ×N , Hermitean , traceless, x-dependent (σm)I
J , satisfying the

same properties as the Pauli matrices in the subspace preserved by J .
We also have to impose the constraint

J dσmJ = 0 .
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All timelike 4-d susy solutions

Once the U(2) subgroup has been chosen, we can split the Vielbeins P IJKL µ and
P i IJ µ, into associated to the would-be vector multiplets in the N = 2 truncation

P IJKL J I
[MJ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ J

L] ,

which are driven by the attractor mechanism (i.e. they are determined by the
electric and magnetic charges) and those associated to the hypermultiplets

P IJKL J I
[M J̃ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ̃ J

L] .

which are not.

In hyper-less solutions (e.g. black holes) the σms matrices are not needed at all.
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All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 26



All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary)
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All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:
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All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.
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All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.

May 20th 2010 Symmetries and Dualities in Gravitational Theories 2010, Brussels Page 26-d



All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.

4. The metric is

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn .
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All timelike 4-d susy solutions

II. After the choice of U(2) subgroup, the solutions are constructed:

1. Define the real symplectic vectors R and I
R + iI ≡ |M |−2VIJM

IJ .

(U(N) singlets ⇒ no U(N) gauge -fixing necessary) 2. The components of I are
given by a symplectic vector real functions H harmonic in the 3-dimensional
transverse space with metric γmn:

∇2
(3)H = 0.

3. R is to be be found from I by solving the generalized stabilization equations.

4. The metric is

ds2 = |M |2(dt+ ω)2 − |M |−2γmndx
mdxn .

where
|M |−2 = (M IJM IJ )−2 = 〈R | I 〉 ,

(dω)mn = 2ǫmnp〈 I | ∂pI 〉 .
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All timelike 4-d susy solutions

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.
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All timelike 4-d susy solutions

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.
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All timelike 4-d susy solutions

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.

5. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ =
√

2|M |2(dt+ ω) .
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All timelike 4-d susy solutions

γmn is determined indirectly from the would-be hypers in the associated N = 2
truncation and its curvature vanishes when those scalars vanish.

Its spin connection ̟mnis related to Ω, by

̟mn = iεmnpTr [σpΩ] .

(Observe that only the su(2) components of Ω constribute to ̟mn.

5. The vector field strengths are

F = − 1
2d(RV̂ ) − 1

2 ⋆ (V̂ ∧ dI) , V̂ =
√

2|M |2(dt+ ω) .

6. The scalars in the vector multiplets in the associated N = 2 truncation

P IJKL J I
[MJ J

N J̃ K
P J̃ L

Q] , and P i IJ J I
[KJ J

L] ,

can be found from R and I, while those in the hypers must be found independently
by solving

P IJKL m J I
[M J̃ J

N J̃ K
P J̃ L

Q](σ
m)Q

R = 0 ,

P i IJ m J I
[KJ̃ J

L](σ
m)L

M = 0 ,

which solve their equations of motion according to the Killing Spinor Identities.
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All timelike 4-d susy solutions

12 – Final comments
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All timelike 4-d susy solutions

12 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .
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All timelike 4-d susy solutions

12 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).
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All timelike 4-d susy solutions

12 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former.
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All timelike 4-d susy solutions

12 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former. (1-line derivations of the attactor flow
equations can be readily given (O. in preparation))
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All timelike 4-d susy solutions

12 – Final comments

⋆ We have found the general form of all the timelike supersymmetric solutions of
all d = 4 supergravities .

⋆ We have proven the relation between the timelike supersymmetric solutions of
all d = 4 supergravities and those of the N = 2 theories (for black holes
conjectured by Ferrara, Gimon & Kallosh (2006) and proven by Bossard (2010)).

⋆ We have shown how the would-be scalars in vector multiplets and
hypermultiplets can be distinguished and we have shown that the attractor
mechanism only acts on the former. (1-line derivations of the attactor flow
equations can be readily given (O. in preparation))

⋆ Much work remains to be done in order to make explicit the construction of the
solutions. In particular one has to find general parametrizations of the matrices
M IJ and J I

J , solve the stabilization equations, impose the covariant constancy
of J etc. (Meessen & O., work in progress).
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All timelike 4-d susy solutions

A simple derivation of the attractor flow eqs. in N = 1, d = 5 supergravity

Assume
hI/f ≡ lI + qIρ ,

and define the central charge

Z[φ(ρ), q] ≡ hI(φ)qI .

Using hIhI = 1 and hIdhI = 0

df−1 = d(hIhI/f) = hId(hI/f) ,

from which we get
df−1

dρ
= Z[φ(ρ), q] .

Using now the above properties plus hI
xhIy = gxy, where hIy = −

√
3∂yhI and

hI
x =

√
3∂xhI

dφx = hIxhIydφ
y = −

√
3hIxdhI = −

√
3hIxd(fhI/f) = −

√
3fhIxd(hI/f) ,

from which we get
dφx

dρ
= −fgxy∂yZ[φ(ρ), q] .
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