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M. Hübscher and P. Meessen (IFT UAM/CSIC, Madrid)

http://arXiv.org/ps/0901.2054
http://arXiv.org/ps/0903.0509
http://arXiv.org/ps/0912.3672


Plan of the Talk:

1 Introduction/motivation

3 The embedding tensor method I: electric gaugings

6 The embedding tensor method II: general gaugings

9 The 4-d tensor hierarchy

14 The meaning of the d = 4 tensor hierarchy

17 Application: general gaugings of N = 1, d = 4 supergravity

18 Ungauged N = 1, d = 4 supergravity

22 Gauging N = 1, d = 4 Supergravity

23 The N = 1, d = 4 bosonic tensor hierarchy

24 The N = 1, d = 4 supersymmetric tensor hierarchy

31 The supersymmetric objects of N = 1 supergravity

32 Domain-wall solutions of N = 1 supergravity

33 Domain-wall sources of N = 1 supergravity

34 Sourceful domain-wall solutions of N = 1 supergravity

37 A simple example

44 Conclusions



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

1 – Introduction/motivation

Three observations:

January 12th 2010 CERN TH Division Page 1



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

1 – Introduction/motivation

Three observations:

1. One of the main tools in Superstring Theory is the correspondence between
(p+ 1)-form potentials in their supergravity description and p-brane states. We
need all the (p+ 1)-form potentials in democratic formulations.
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➳ their non-Abelian gauge symmetries, their scalar potentials that break
supersymmetry fixing the moduli .

➳ their importance in (generalizations of) the AdS/CFT correspondence.

3. The embedding tensor method (Cordaro, Fré, Gualtieri,Termonia & Trigiante,
arXiv:hep-th/9804056. ) can be used to construct systematically the most general
gauged supergravities . This construction requires the introduction of additional
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1 – Introduction/motivation

Three observations:

1. One of the main tools in Superstring Theory is the correspondence between
(p+ 1)-form potentials in their supergravity description and p-brane states. We
need all the (p+ 1)-form potentials in democratic formulations.

2. Gauged supergravities (sometimes obtained via flux compactifications) are
interesting because of

➳ their non-Abelian gauge symmetries, their scalar potentials that break
supersymmetry fixing the moduli .

➳ their importance in (generalizations of) the AdS/CFT correspondence.

3. The embedding tensor method (Cordaro, Fré, Gualtieri,Termonia & Trigiante,
arXiv:hep-th/9804056. ) can be used to construct systematically the most general
gauged supergravities . This construction requires the introduction of additional
(p+ 1)-form potentials.

⇒ By using the embedding tensor method to gauge arbitrary 4-dimensional FTs, we
may be able to find all their (p+ 1)-form potentials, their democratic formulations
and the extended objects (branes ) that can couple to them.
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

What we are going to do in this seminar:

aSo far, only maximal and half-maximal supergravities have been studied from this point of view
de Wit, Samtleben & Trigiante, arXiv:hep-th/0412173, Samtleben & Weidner arXiv:hep-th/0506237, Schon
& Weidner, arXiv:hep-th/0602024, de Wit, Samtleben & Trigiante, arXiv:0705.2101, Bergshoeff, Gomis,
Nutma & Roest, arXiv:0711.2035, de Wit, Nicolai & Samtleben, arXiv:0801.1294. The only exception is
de Vroome & de Wit arXiv:0707.2717, but the U(2) R-symmetry group has not been properly taken
into account.
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and we are going to construct a gauge -invariant action for all of them
(democratic formulation).

3. We will apply these results to N = 1 supergravity taking special care of the
existence of U(1)R symmetry and a superpotential a. We will find all the
(p+ 1)-form potentials of N = 1 supergravity .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

2 – The embedding tensor method I: electric gaugings

Consider a general (N = 1 supergravity -inspired) 4-dimensional ungauged FT with
bosonic fields {Zi, AΛ} (gravity plays no relevant role here)

Su[Zi, AΛ] =

∫

{−2Gij∗dZi∧⋆dZ∗ j∗−2ℑmfΛΣF
Λ∧⋆FΣ+2ℜefΛΣF

Λ∧FΣ−⋆Vu(Z,Z∗)} .

with FΛ ≡ dAΛ, the fundamental (electric ) field strengths and fΛΣ = fΛΣ(Z).
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2 – The embedding tensor method I: electric gaugings

Consider a general (N = 1 supergravity -inspired) 4-dimensional ungauged FT with
bosonic fields {Zi, AΛ} (gravity plays no relevant role here)

Su[Zi, AΛ] =

∫

{−2Gij∗dZi∧⋆dZ∗ j∗−2ℑmfΛΣF
Λ∧⋆FΣ+2ℜefΛΣF

Λ∧FΣ−⋆Vu(Z,Z∗)} .

with FΛ ≡ dAΛ, the fundamental (electric ) field strengths and fΛΣ = fΛΣ(Z).

The action is invariant under the local Abelian transformations

δΛA
Σ = dΛΣ .

Let us assume this action is also invariant under the global transformations

δαZ
i = αAkA

i(Z) ,

δαfΛΣ ≡ −αA£AfΛΣ = αA[TA ΛΣ − 2TA (Λ
ΩfΣ)Ω] ,

δαA
Λ = αATA Σ

ΛAΣ .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

Gauging the global symmetries of a FT with constant parameters αA means
deforming it to make it invariant when the αA are arbitrary functions αA(x).
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Gauging the global symmetries of a FT with constant parameters αA means
deforming it to make it invariant when the αA are arbitrary functions αA(x).

The standard gauging procedure requires the identification of each αA(x) with a
ΛΣ(x) and the use of the corresponding 1-form AΣ as gauge field AA of that
symmetry.
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Gauging the global symmetries of a FT with constant parameters αA means
deforming it to make it invariant when the αA are arbitrary functions αA(x).

The standard gauging procedure requires the identification of each αA(x) with a
ΛΣ(x) and the use of the corresponding 1-form AΣ as gauge field AA of that
symmetry.

Each embedding tensor ϑΛ
A defines a possible set of identifications:

αA(x) ≡ ΛΣϑΣ
A , AA ≡ AΣϑΣ

A .

Leaving ϑΛ
A undetermined we can study all possibilities simultaneously.
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Gauging the global symmetries of a FT with constant parameters αA means
deforming it to make it invariant when the αA are arbitrary functions αA(x).

The standard gauging procedure requires the identification of each αA(x) with a
ΛΣ(x) and the use of the corresponding 1-form AΣ as gauge field AA of that
symmetry.

Each embedding tensor ϑΛ
A defines a possible set of identifications:

αA(x) ≡ ΛΣϑΣ
A , AA ≡ AΣϑΣ

A .

Leaving ϑΛ
A undetermined we can study all possibilities simultaneously.

Now we construct derivatives D

DZi ≡ dZi +AΛϑΛ
AkA

i ,

covariant under

δΛZ
i = ΛΣϑΣ

AkA
i(Z) ,

δΛA
Σ = −DΛΣ ≡ −(dΛΣ + ϑΛ

ATA Ω
ΣAΛΛΩ) .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

D is covariant iff ϑΛ
A is an invariant tensor

δΛϑΣ
A = −ΛΩQΩΣ

A = 0 , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A .

QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.
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A = 0 , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A .

QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.

It is customary to define the generators

XΣΛ
Ω ≡ ϑΣ

BTB Λ
Ω ,

which satisfy the algebra

[TA, TB] = −fAB
C , ⇒ [XΣ, XΛ] = −XΣΛ

ΩXΩ ,
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D is covariant iff ϑΛ
A is an invariant tensor

δΛϑΣ
A = −ΛΩQΩΣ

A = 0 , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A .

QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.

It is customary to define the generators

XΣΛ
Ω ≡ ϑΣ

BTB Λ
Ω ,

which satisfy the algebra

[TA, TB] = −fAB
C , ⇒ [XΣ, XΛ] = −XΣΛ

ΩXΩ ,

Then we construct the covariant 2-form field strengths

FΛ = dAΛ + 1
2XΣΩ

ΛAΣ ∧AΩ ,

and the gauge -invariant action of the electrically gauged FT takes the form

Seg[Z
i, AΛ] =

∫

{−2Gij∗DZi∧⋆DZ∗ j∗−2ℑmfΛΣF
Λ∧⋆FΣ+2ℜefΛΣF

Λ∧FΣ−⋆Veg(Z,Z
∗)}
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In 4-dimensions
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3 – The embedding tensor method II: general gaugings

In 4-dimensions

➳ One can define magnetic (dual ) 1-forms AΛ which one may use as gauge fields:
if the Maxwell equations are

dGΛ = 0 , where GΛ
+ ≡ fΛΣF

Σ+ ,

then we can replace them by the duality relations

GΛ = FΛ , where FΛ ≡ dAΛ .

January 12th 2010 CERN TH Division Page 6-a



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

3 – The embedding tensor method II: general gaugings

In 4-dimensions

➳ One can define magnetic (dual ) 1-forms AΛ which one may use as gauge fields:
if the Maxwell equations are

dGΛ = 0 , where GΛ
+ ≡ fΛΣF

Σ+ ,

then we can replace them by the duality relations

GΛ = FΛ , where FΛ ≡ dAΛ .

➳ The theory (equations of motion) has more non-perturbative global symmetries
that can be gauged . They include electric -magnetic duality rotations:

δαZi = αAkA
i(Z) ,

δαfΛΣ = αA{−TA ΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ} ,

δα

„

AΛ

AΛ

«

= αA

0

@

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

1

A

„

AΣ

AΣ

«

.
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.
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By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.

Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑ

Σ A , AA ≡ AΣϑΣ
A +AΣϑ

Σ A .
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By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.

Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑ

Σ A , AA ≡ AΣϑΣ
A +AΣϑ

Σ A .

Knowing (Gaillard & Zumino) that the TA matrices either belong to sp(2nV ,R) or
vanish, we introduce the symplectic notation

AM ≡
(

AΣ

AΣ

)

ϑM
A ≡

(

ϑΣ
A, ϑΣ A

)

αA(x) ≡ ΛMϑM
A ,

(TA M
N ) ≡

(

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

)

.
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By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.

Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑ

Σ A , AA ≡ AΣϑΣ
A +AΣϑ

Σ A .

Knowing (Gaillard & Zumino) that the TA matrices either belong to sp(2nV ,R) or
vanish, we introduce the symplectic notation

AM ≡
(

AΣ

AΣ

)

ϑM
A ≡

(

ϑΣ
A, ϑΣ A

)

αA(x) ≡ ΛMϑM
A ,

(TA M
N ) ≡

(

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

)

.

The electric and magnetic charges must be mutually local (de Wit, Samtleben &
Trigiante, arXiv:hep-th/0507289) satisfying the second quadratic constraint:

QAB ≡ 1
4ϑ

MAϑM
B = 0 .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

Now we can repeat the procedure of the electric case:

First we construct derivatives D

DZi ≡ dZi +AMϑM
AkA

i ,

covariant under

δΛZ
i = ΛMϑM

AkA
i(Z) ,

δΛA
M = −DΛM ≡ −(dΛM +XNP

MANΛP ) , XNP
M ≡ ϑN

ATA P
M ,

which only works if ϑM
A is an invariant tensor

δΛϑM
A = −ΛNQMN

A = 0 , QMN
A ≡ ϑM

BTB N
PϑP

A − ϑM
BϑN

CfBC
A .
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Now we can repeat the procedure of the electric case:

First we construct derivatives D

DZi ≡ dZi +AMϑM
AkA

i ,

covariant under

δΛZ
i = ΛMϑM

AkA
i(Z) ,

δΛA
M = −DΛM ≡ −(dΛM +XNP

MANΛP ) , XNP
M ≡ ϑN

ATA P
M ,

which only works if ϑM
A is an invariant tensor

δΛϑM
A = −ΛNQMN

A = 0 , QMN
A ≡ ϑM

BTB N
PϑP

A − ϑM
BϑN

CfBC
A .

Before moving forward, we must impose another constraint on the embedding tensor
on top of the two quadratic ones QMN

A = QAB = 0:

LMNP ≡ X(MNP ) = ϑ(M
ATA NP ) = 0 .

This linear or representation constraint is based on supergravity and eliminates
certain possible representations of the embedding tensor . On the other hand, we
cannot construct gauge -covariant 2-form field strengths FM without it!
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

4 – The 4-d tensor hierarchy

To construct the gauge -covariant 2-form field strengths FM we take the covariant
derivative of the gauge -covariant “field strength” DZi:

DDZi = [dAM + 1
2XNP

MAN ∧AP ]ϑM
AkA

i ,

which suggests the definition

FM ≡ dAM + 1
2XNP

MAN ∧AP + ∆FM , ϑM
A∆FM = 0 ,

so we have the Bianchi identity

DDZi = FMϑM
AkA

i .
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4 – The 4-d tensor hierarchy

To construct the gauge -covariant 2-form field strengths FM we take the covariant
derivative of the gauge -covariant “field strength” DZi:

DDZi = [dAM + 1
2XNP

MAN ∧AP ]ϑM
AkA

i ,

which suggests the definition

FM ≡ dAM + 1
2XNP

MAN ∧AP + ∆FM , ϑM
A∆FM = 0 ,

so we have the Bianchi identity

DDZi = FMϑM
AkA

i .

Using the constraint QAB ≡ 1
4ϑ

MAϑM
B = 0 the natural solution is

∆FM = − 1
2ϑ

MABA ≡ ZMABA .
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4ϑ

MAϑM
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δΛBA is determined by the gauge -covariance of FM plus δBA ∼ dΛA.
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DDZi = FMϑM
AkA

i .

Using the constraint QAB ≡ 1
4ϑ

MAϑM
B = 0 the natural solution is

∆FM = − 1
2ϑ

MABA ≡ ZMABA .

δΛBA is determined by the gauge -covariance of FM plus δBA ∼ dΛA.

But we do not need it to move forward.
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If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ]} .
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If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ]} .

The gauge -covariance of the l.h.s. suggests the definition

HA = DBA+TA RSA
R∧[dAS+ 1

3XNP
SAN∧AP ]+∆HA , where ZMA∆HA = 0 .

so we have the Bianchi identity

DFM = ZMAHA .
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If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSA
R ∧ [dAS + 1

3XNP
SAN ∧AP ]} .

The gauge -covariance of the l.h.s. suggests the definition

HA = DBA+TA RSA
R∧[dAS+ 1

3XNP
SAN∧AP ]+∆HA , where ZMA∆HA = 0 .

so we have the Bianchi identity

DFM = ZMAHA .

Using the constraint

QMN
A = ϑM

B(TB N
PϑP

A − ϑN
CfBC

A) ≡ 2ZM
AY AN

P = 0

the natural solution for ZMA∆HA = ZMA∆BA = 0 is

∆HA ≡ Y AM
CCC

M .

δΛCC
M is fully determined by the gauge -covariance of HA.
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If we take the covariant derivative of the gauge -covariant 3-form field strength HA
we find

DHA − TA MNF
M ∧ FN = Y AM

C{DCC
M + FM ∧BC + · · ·} .
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If we take the covariant derivative of the gauge -covariant 3-form field strength HA
we find

DHA − TA MNF
M ∧ FN = Y AM

C{DCC
M + FM ∧BC + · · ·} .

The gauge -covariance of the l.h.s. suggests the definition

GC
M = DCC

M + FM ∧BC + · · · + ∆GC
M , where Y AM

C∆GC
M = 0 .

so we have the Bianchi identity

DHA = TA MNF
M ∧ FN + Y AM

CGC
M .
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If we take the covariant derivative of the gauge -covariant 3-form field strength HA
we find

DHA − TA MNF
M ∧ FN = Y AM

C{DCC
M + FM ∧BC + · · ·} .

The gauge -covariance of the l.h.s. suggests the definition

GC
M = DCC

M + FM ∧BC + · · · + ∆GC
M , where Y AM

C∆GC
M = 0 .

so we have the Bianchi identity

DHA = TA MNF
M ∧ FN + Y AM

CGC
M .

To determine ∆GC
M we need to find invariant tensors that vanish upon contraction

with Y AM
C . They appear automatically when we take the gauge -covariant

derivative of the Bianchi identity and GC
M (if we “forget” we are in 4 dimensions!).

January 12th 2010 CERN TH Division Page 11-b



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧HA} = 0 , ⇒ DGC
M = FM ∧HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .
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Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧HA} = 0 , ⇒ DGC
M = FM ∧HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB +WCNPQ
MFN ∧FP ∧FQ +WCNP

EMFN ∧GE
P .
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Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧HA} = 0 , ⇒ DGC
M = FM ∧HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB +WCNPQ
MFN ∧FP ∧FQ +WCNP

EMFN ∧GE
P .

This implies that there are 3 such tensors WC
MAB,WCNPQ

M ,WCNP
EM that

vanish contracted with Y AM
C and which we can use to build ∆GC

M .
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Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧HA} = 0 , ⇒ DGC
M = FM ∧HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB +WCNPQ
MFN ∧FP ∧FQ +WCNP

EMFN ∧GE
P .

This implies that there are 3 such tensors WC
MAB,WCNPQ

M ,WCNP
EM that

vanish contracted with Y AM
C and which we can use to build ∆GC

M .

The natural solution is

∆GC
M = WC

MABDAB +WCNPQ
MDNPQ +WCNP

EMDE
NP ,

and δΛDAB , δΛD
NPQ, δΛDE

NP will follow from the gauge -covariance of GC
M .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

What have we got so far just by asking for covariance under gauge transformations?
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What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p+ 1)-forms AM , BA, CC
M , DAB , D

NPQ, DE
NP related by gauge

transformations.
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What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p+ 1)-forms AM , BA, CC
M , DAB , D

NPQ, DE
NP related by gauge

transformations.

δΛAM = −DΛM − ZMAΛA ,

δΛBA = DΛA + 2TA NP [ΛN F P + 1
2

AN ∧ δΛAP ] − Y AM
CΛC

M ,

δΛCC
M = DΛC

M − F M ∧ ΛC − δΛAM ∧ BC − 1
3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
MABΛAB

−W CNP Q
M ΛNP Q − W CNP

EM ΛE
NP ,

δΛDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y [A|P

E(ΛB]E
P − BB] ∧ ΛE

P ) + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛN F P − 1
2

AN ∧ δΛAP ] ∧ B|B] ,

δΛDE
NP = DΛE

NP + Λ̃E
(NP ) + 1

2
ZNBΛBE

P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)
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2
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CΛC

M ,

δΛCC
M = DΛC
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3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
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EM ΛE
NP ,
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P − BB] ∧ ΛE
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δΛDE
NP = DΛE
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(NP ) + 1

2
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P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p+ 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.
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|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p+ 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.

This system is known as the (4-dimensional) tensor hierarchy.

It is universal: it exists for all 4-dimensional FTs with gauge symmetry.
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What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p+ 1)-forms AM , BA, CC
M , DAB , D

NPQ, DE
NP related by gauge

transformations.

δΛAM = −DΛM − ZMAΛA ,

δΛBA = DΛA + 2TA NP [ΛN F P + 1
2

AN ∧ δΛAP ] − Y AM
CΛC

M ,

δΛCC
M = DΛC

M − F M ∧ ΛC − δΛAM ∧ BC − 1
3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
MABΛAB

−W CNP Q
M ΛNP Q − W CNP

EM ΛE
NP ,

δΛDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y [A|P

E(ΛB]E
P − BB] ∧ ΛE

P ) + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛN F P − 1
2

AN ∧ δΛAP ] ∧ B|B] ,

δΛDE
NP = DΛE

NP + Λ̃E
(NP ) + 1

2
ZNBΛBE

P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p+ 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.

This system is known as the (4-dimensional) tensor hierarchy.

It is universal: it exists for all 4-dimensional FTs with gauge symmetry.

But, what does it mean?
What is the meaning of the additional fields?
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5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.
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5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.

However, gauging must not introduce new continuous degrees of freedom in a FT:
for p ≤ d− 3 they must be related by duality relations to the fundamental ones.
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5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.

However, gauging must not introduce new continuous degrees of freedom in a FT:
for p ≤ d− 3 they must be related by duality relations to the fundamental ones.
These duality relations together with the 1st order Bianchi identities must give the
2nd order equations of motion.
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5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.

However, gauging must not introduce new continuous degrees of freedom in a FT:
for p ≤ d− 3 they must be related by duality relations to the fundamental ones.
These duality relations together with the 1st order Bianchi identities must give the
2nd order equations of motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .
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5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.

However, gauging must not introduce new continuous degrees of freedom in a FT:
for p ≤ d− 3 they must be related by duality relations to the fundamental ones.
These duality relations together with the 1st order Bianchi identities must give the
2nd order equations of motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .

☞ The 2-forms BA must be related to the Noether 1-form currents jA associated to
the global symmetries via the duality relation

HA = − 1
2 ⋆ jA .

January 12th 2010 CERN TH Division Page 14-d



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to gauge an arbitrary FT.

However, gauging must not introduce new continuous degrees of freedom in a FT:
for p ≤ d− 3 they must be related by duality relations to the fundamental ones.
These duality relations together with the 1st order Bianchi identities must give the
2nd order equations of motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .

☞ The 2-forms BA must be related to the Noether 1-form currents jA associated to
the global symmetries via the duality relation

HA = − 1
2 ⋆ jA .

☞ These two duality relations together with the Bianchi identity DFM = ZMAHA
give a set of electric -magnetic duality -covariant Maxwell equations:

DFΛ = − 1
4ϑΛ

A ⋆ jA , DGΛ = 1
4ϑ

Λ A ⋆ jA .
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☞ The 3-forms CC
M must be “dual to constants”, i.e. to the deformation

parameters. Their indices are indeed conjugate to those of the embedding tensor
ϑM

C . This duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.
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☞ The 3-forms CC
M must be “dual to constants”, i.e. to the deformation

parameters. Their indices are indeed conjugate to those of the embedding tensor
ϑM

C . This duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.

☞ Using the three duality relations in the Bianchi identity of HA we get

D ⋆ jA = 4TA MNG
M ∧GN + ⋆Y A

MC ∂V

∂ϑM
C

.
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☞ The 3-forms CC
M must be “dual to constants”, i.e. to the deformation

parameters. Their indices are indeed conjugate to those of the embedding tensor
ϑM

C . This duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.

☞ Using the three duality relations in the Bianchi identity of HA we get

D ⋆ jA = 4TA MNG
M ∧GN + ⋆Y A

MC ∂V

∂ϑM
C

.

This equation is similar to the consistency condition (gauge or Noether identity)
that Noether currents must satisfy off-shell in FTs with gauge invariance:

D ⋆ jA = −2(kA
iEi + c.c.) + 4TA MNG

M ∧GN + ⋆Y A
MC ∂V

∂ϑM
C
,

where Ei is the e.o.m. of Zi. Both equations, together, imply

kA
iEi + c.c. = 0 ,

which is equivalent to the scalar e.o.m. for symmetric σ-models.

January 12th 2010 CERN TH Division Page 15-b



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

☞ Finally, the indices of the three 4-forms DAB , D
NPQ, DE

NP are conjugate to
those of the constraints QAB, QNPQ, QNP

E . They are Lagrange multipliers
enforcing them.
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☞ Finally, the indices of the three 4-forms DAB , D
NPQ, DE

NP are conjugate to
those of the constraints QAB, QNPQ, QNP

E . They are Lagrange multipliers
enforcing them.

To confirm this interpretation we must construct a gauge -invariant (democratic)
action for all these fields, (including the embedding tensor ϑM

A(x)!).
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☞ Finally, the indices of the three 4-forms DAB , D
NPQ, DE

NP are conjugate to
those of the constraints QAB, QNPQ, QNP

E . They are Lagrange multipliers
enforcing them.

To confirm this interpretation we must construct a gauge -invariant (democratic)
action for all these fields, (including the embedding tensor ϑM

A(x)!).

This gauge -invariant action is given by

S[gµν , Z
i, AM , BA, CA

M , DE
NP , DAB , D

MNP , ϑM
A] =

∫

{

−2Gij∗DZi ∧ ⋆DZ∗ j∗

+ 2FΣ ∧GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X [MN ]ΣA

M ∧AN ∧
(

FΣ − ZΣBBB

)

− 2
3X [MN ]

ΣAM ∧ AN ∧
(

dAΣ − 1
4X [PQ]ΣA

P ∧ AQ
)

−2DϑM
A ∧ (CA

M +AM ∧BA)

+2QNP
E(DE

NP − 1
2A

N ∧ AP ∧BE) + 2QABDAB + 2LMNPD
MNP

}

.
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

6 – Application: general gaugings of N = 1, d = 4 supergravity

Now we want to apply our results to gauge N = 1 d = 4 supergravity with generic
matter content and couplings.

The main difference with the (half-) maximally supersymmetric cases is that
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6 – Application: general gaugings of N = 1, d = 4 supergravity

Now we want to apply our results to gauge N = 1 d = 4 supergravity with generic
matter content and couplings.

The main difference with the (half-) maximally supersymmetric cases is that

☞ (half-) maximally supergravity the group of automorphisms of the
supersymmetry algebra (R-symmetry) Haut ⊂ Gbos ⊂ G, the global symmetry
group. In fact, the always scalars parametrize the coset G/Haut ×Hmatter.
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6 – Application: general gaugings of N = 1, d = 4 supergravity

Now we want to apply our results to gauge N = 1 d = 4 supergravity with generic
matter content and couplings.

The main difference with the (half-) maximally supersymmetric cases is that

☞ (half-) maximally supergravity the group of automorphisms of the
supersymmetry algebra (R-symmetry) Haut ⊂ Gbos ⊂ G, the global symmetry
group. In fact, the always scalars parametrize the coset G/Haut ×Hmatter.

☞ In N = 1 N = 2 supergravity one can write G = Gbos ×Haut, i.e. R-symmetry
only acts on the fermions , which have been ignored in the construction of the
tensor hierarchy .
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6 – Application: general gaugings of N = 1, d = 4 supergravity

Now we want to apply our results to gauge N = 1 d = 4 supergravity with generic
matter content and couplings.

The main difference with the (half-) maximally supersymmetric cases is that

☞ (half-) maximally supergravity the group of automorphisms of the
supersymmetry algebra (R-symmetry) Haut ⊂ Gbos ⊂ G, the global symmetry
group. In fact, the always scalars parametrize the coset G/Haut ×Hmatter.

☞ In N = 1 N = 2 supergravity one can write G = Gbos ×Haut, i.e. R-symmetry
only acts on the fermions , which have been ignored in the construction of the
tensor hierarchy .

We are going to review ungauged N = 1 supergravity and its global symmetries and
then we are going to gauge them using the embedding tensor formalism.
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7 – Ungauged N = 1, d = 4 supergravity
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7 – Ungauged N = 1, d = 4 supergravity
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets
(i = 1, · · ·nV )
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ

(i = 1, · · ·nV )

January 12th 2010 CERN TH Division Page 18-f



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ

(i = 1, · · ·nV )
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets
(i = 1, · · ·nC)
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi

(i = 1, · · ·nC)
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi

(i = 1, · · ·nC)
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi (0, 1/2)
(i = 1, · · ·nC)
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi (0, 1/2)
(i = 1, · · ·nC)

The supergravity multiplet
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi (0, 1/2)
(i = 1, · · ·nC)

The supergravity multiplet ea
µ
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi (0, 1/2)
(i = 1, · · ·nC)

The supergravity multiplet ea
µ ψµ (2, 3/2)
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7 – Ungauged N = 1, d = 4 supergravity

The field content

The basic N = 1, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV (Electric) Vector supermultiplets AΣ
µ λΣ (1, 1/2)

(i = 1, · · ·nV )

nC Chiral multiplets Zi χi (0, 1/2)
(i = 1, · · ·nC)

The supergravity multiplet ea
µ ψµ (2, 3/2)

All fermions are represented by chiral 4-component spinors:

γ5ψµ = −ψµ , etc.
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗

.
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The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗
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N = 1 supersymmetry requires the Hermitean manifold to be Kähler

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗

.

N = 1 supersymmetry requires the Hermitean manifold to be Kähler

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.
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The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗

.

N = 1 supersymmetry requires the Hermitean manifold to be Kähler

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.

The spinors transform as sections of the bundle: under Kähler transformations

δλK = λ(Z) + λ∗(Z∗) , δλψµ = − 1
4 [λ(Z) − λ∗(Z∗)]ψµ ,

and their covariant derivatives contain the pullback of the Kähler connection 1-form
Q ≡ QidZ

i + Qi∗dZ
∗i∗ e.g.

Dµψν = {∇µ + i
2Qµ}ψν .
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N = 1 supergravity allows for an arbitrary holomorphic kinetic matrix fΛΣ(Z) for
the vector fields which occurs in the action in the terms

−2ℑmfΛΣF
Λ ∧ ⋆FΣ + 2ℜefΛΣF

Λ ∧ FΣ , FΛ ≡ dAΛ .
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N = 1 supergravity allows for an arbitrary holomorphic kinetic matrix fΛΣ(Z) for
the vector fields which occurs in the action in the terms

−2ℑmfΛΣF
Λ ∧ ⋆FΣ + 2ℜefΛΣF

Λ ∧ FΣ , FΛ ≡ dAΛ .

Finally, ungauged N = 1 supergravity allows for a holomorphic superpotential
W(Z) which appears through the covariantly holomorphic section of Kähler weight
(1,−1) L(Z,Z∗):

L(Z,Z∗) = W(Z)eK/2 , Di∗L = 0 ,

which couples to the fermions in various ways and gives rise to the scalar potential

Vu(Z,Z∗) = −24|L|2 + 8Gij∗DiLDj∗L∗ .
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N = 1 supergravity allows for an arbitrary holomorphic kinetic matrix fΛΣ(Z) for
the vector fields which occurs in the action in the terms

−2ℑmfΛΣF
Λ ∧ ⋆FΣ + 2ℜefΛΣF

Λ ∧ FΣ , FΛ ≡ dAΛ .

Finally, ungauged N = 1 supergravity allows for a holomorphic superpotential
W(Z) which appears through the covariantly holomorphic section of Kähler weight
(1,−1) L(Z,Z∗):

L(Z,Z∗) = W(Z)eK/2 , Di∗L = 0 ,

which couples to the fermions in various ways and gives rise to the scalar potential

Vu(Z,Z∗) = −24|L|2 + 8Gij∗DiLDj∗L∗ .

The bosonic action is

Su[gµν , Z
i, AΛ] =

∫

{⋆R− 2Gij∗dZi ∧ ⋆dZ∗ j∗ − 2ℑmfΛΣF
Λ ∧ ⋆FΣ

+2ℜefΛΣF
Λ ∧ FΣ − ⋆Vu(Z,Z∗)} .
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The global symmetries

Main difference with the general case: the existence of Haut = U(1)R.
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The global symmetries

Main difference with the general case: the existence of Haut = U(1)R.

☞ U(1)R only acts on the spinors as a multiplication by e−iqα#

, where q is the
Kähler weight. Then A = a,# where the symmetries labeled by a, act on
scalars, and/or 1-forms.
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The global symmetries

Main difference with the general case: the existence of Haut = U(1)R.

☞ U(1)R only acts on the spinors as a multiplication by e−iqα#

, where q is the
Kähler weight. Then A = a,# where the symmetries labeled by a, act on
scalars, and/or 1-forms.

☞ Under U(1)R the scalars Zi are inert but the superpotential L(Z,Z∗), which has

Kähler weight +1 gets a constant phase e−iα#

.

January 12th 2010 CERN TH Division Page 21-b



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The global symmetries

Main difference with the general case: the existence of Haut = U(1)R.

☞ U(1)R only acts on the spinors as a multiplication by e−iqα#

, where q is the
Kähler weight. Then A = a,# where the symmetries labeled by a, act on
scalars, and/or 1-forms.

☞ Under U(1)R the scalars Zi are inert but the superpotential L(Z,Z∗), which has

Kähler weight +1 gets a constant phase e−iα#

.

☞ The superpotential L(Z,Z∗) is not a fundamental field and this phase change is
not a symmetry unless it can be reabsorbed into a transformation of the scalars.
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The global symmetries

Main difference with the general case: the existence of Haut = U(1)R.

☞ U(1)R only acts on the spinors as a multiplication by e−iqα#

, where q is the
Kähler weight. Then A = a,# where the symmetries labeled by a, act on
scalars, and/or 1-forms.

☞ Under U(1)R the scalars Zi are inert but the superpotential L(Z,Z∗), which has

Kähler weight +1 gets a constant phase e−iα#

.

☞ The superpotential L(Z,Z∗) is not a fundamental field and this phase change is
not a symmetry unless it can be reabsorbed into a transformation of the scalars.

☞ But this would mean that we are dealing with a A = a symmetry and we can say
that a non-vanishing superpotential breaks U(1)R and we cannot gauge it.
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .

☞ Gauging symmetries that act on the scalars requires the introduction of a set of
real functions PA(Z,Z∗) called momentum maps or Killing prepotentials:

kA i∗ = i∂i∗PA .
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .

☞ Gauging symmetries that act on the scalars requires the introduction of a set of
real functions PA(Z,Z∗) called momentum maps or Killing prepotentials:

kA i∗ = i∂i∗PA .

☞ Then, the spinors ’ covariant derivatives take the form

Dµψν = {∇µ + i
2Qµ + iAM

µϑM
APA} ψν , etc.
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .

☞ Gauging symmetries that act on the scalars requires the introduction of a set of
real functions PA(Z,Z∗) called momentum maps or Killing prepotentials:

kA i∗ = i∂i∗PA .

☞ Then, the spinors ’ covariant derivatives take the form

Dµψν = {∇µ + i
2Qµ + iAM

µϑM
APA} ψν , etc.

☞ We can also introduce constant momentum maps and vanishing Killing vectors
for symmetries that do not act on the scalars A = a,#: Pa,P#. These
constants give rise to Fayet-Iliopoulos terms.
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .

☞ Gauging symmetries that act on the scalars requires the introduction of a set of
real functions PA(Z,Z∗) called momentum maps or Killing prepotentials:

kA i∗ = i∂i∗PA .

☞ Then, the spinors ’ covariant derivatives take the form

Dµψν = {∇µ + i
2Qµ + iAM

µϑM
APA} ψν , etc.

☞ We can also introduce constant momentum maps and vanishing Killing vectors
for symmetries that do not act on the scalars A = a,#: Pa,P#. These
constants give rise to Fayet-Iliopoulos terms.

☞ According to the previous discussion, the symmetries A = a,# cannot be with a
Fayet-Iliopoulos gauged if L 6= 0.
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8 – Gauging N = 1, d = 4 Supergravity

Main difference with the general case: the presence of fermions .

☞ Gauging symmetries that act on the scalars requires the introduction of a set of
real functions PA(Z,Z∗) called momentum maps or Killing prepotentials:

kA i∗ = i∂i∗PA .

☞ Then, the spinors ’ covariant derivatives take the form

Dµψν = {∇µ + i
2Qµ + iAM

µϑM
APA} ψν , etc.

☞ We can also introduce constant momentum maps and vanishing Killing vectors
for symmetries that do not act on the scalars A = a,#: Pa,P#. These
constants give rise to Fayet-Iliopoulos terms.

☞ According to the previous discussion, the symmetries A = a,# cannot be with a
Fayet-Iliopoulos gauged if L 6= 0.

L 6= 0 , ⇒ ϑM
A(δA

aPa + δA
#P#) = 0 .
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9 – The N = 1, d = 4 bosonic tensor hierarchy

We have found that, for non-vanishing superpotential , the embedding tensor must
satisfy another constraint of purely fermioninc origin

QM ≡ ϑM
A(δA

aPa + δA
#P#) = 0 ,

and, therefore, in that case we expect changes in the standard d = 4 tensor hierarchy
which have to be confirmed by checking supersymmetry .
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9 – The N = 1, d = 4 bosonic tensor hierarchy

We have found that, for non-vanishing superpotential , the embedding tensor must
satisfy another constraint of purely fermioninc origin

QM ≡ ϑM
A(δA

aPa + δA
#P#) = 0 ,

and, therefore, in that case we expect changes in the standard d = 4 tensor hierarchy
which have to be confirmed by checking supersymmetry .

☞ Now (L 6= 0) the constraint ZMA∆HA = 0 can be solved in a more general form:

∆′HA ≡ ∆HA + Y AC , Y A ≡ (δA
aPa + δA

#P#) .
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9 – The N = 1, d = 4 bosonic tensor hierarchy

We have found that, for non-vanishing superpotential , the embedding tensor must
satisfy another constraint of purely fermioninc origin

QM ≡ ϑM
A(δA

aPa + δA
#P#) = 0 ,

and, therefore, in that case we expect changes in the standard d = 4 tensor hierarchy
which have to be confirmed by checking supersymmetry .

☞ Now (L 6= 0) the constraint ZMA∆HA = 0 can be solved in a more general form:

∆′HA ≡ ∆HA + Y AC , Y A ≡ (δA
aPa + δA

#P#) .

☞ Also the constraint Y AM
C∆GC

M = 0 can be solved in a more general way:

∆′GC
M = ∆GC

M + Y CD
M .
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9 – The N = 1, d = 4 bosonic tensor hierarchy

We have found that, for non-vanishing superpotential , the embedding tensor must
satisfy another constraint of purely fermioninc origin

QM ≡ ϑM
A(δA

aPa + δA
#P#) = 0 ,

and, therefore, in that case we expect changes in the standard d = 4 tensor hierarchy
which have to be confirmed by checking supersymmetry .

☞ Now (L 6= 0) the constraint ZMA∆HA = 0 can be solved in a more general form:

∆′HA ≡ ∆HA + Y AC , Y A ≡ (δA
aPa + δA

#P#) .

☞ Also the constraint Y AM
C∆GC

M = 0 can be solved in a more general way:

∆′GC
M = ∆GC

M + Y CD
M .

This will happen in N = 1 supergravity if we find new Stückelberg shifts

δ′BA ∼ δhBA + Y AΛ and δ′CC
M = δhCC

M + Y CΛM .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

10 – The N = 1, d = 4 supersymmetric tensor hierarchy

As a first step to include the tensor hierarchy fields into N = 1 supergravity we are
going to construct supersymmetry transformation rules such that the local
supersymmetry algebra, to leading order in fermions , closes on the new fields up to
duality relations.
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10 – The N = 1, d = 4 supersymmetric tensor hierarchy

As a first step to include the tensor hierarchy fields into N = 1 supergravity we are
going to construct supersymmetry transformation rules such that the local
supersymmetry algebra, to leading order in fermions , closes on the new fields up to
duality relations.

For the lower-rank p-forms we can introduce the supersymmetric partners of the
tensor hierarchy ’s fields and the supersymmetry algebra closes exactly, indicating
that we can supersymmetrize the tensor hierarchy .
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10 – The N = 1, d = 4 supersymmetric tensor hierarchy

As a first step to include the tensor hierarchy fields into N = 1 supergravity we are
going to construct supersymmetry transformation rules such that the local
supersymmetry algebra, to leading order in fermions , closes on the new fields up to
duality relations.

For the lower-rank p-forms we can introduce the supersymmetric partners of the
tensor hierarchy ’s fields and the supersymmetry algebra closes exactly, indicating
that we can supersymmetrize the tensor hierarchy .

This construction requires new duality rules for the supersymmetric partners.
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10 – The N = 1, d = 4 supersymmetric tensor hierarchy

As a first step to include the tensor hierarchy fields into N = 1 supergravity we are
going to construct supersymmetry transformation rules such that the local
supersymmetry algebra, to leading order in fermions , closes on the new fields up to
duality relations.

For the lower-rank p-forms we can introduce the supersymmetric partners of the
tensor hierarchy ’s fields and the supersymmetry algebra closes exactly, indicating
that we can supersymmetrize the tensor hierarchy .

This construction requires new duality rules for the supersymmetric partners.

Observe that we are going to obtain, independently, the gauge transformations of the
fields, confirming or refuting the hierarchy’s results.
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The scalars Zi

δǫZ
i = 1

4 χ̄
iǫ .
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The scalars Zi

δǫZ
i = 1

4 χ̄
iǫ .

At leading order in fermions δηδǫZ
i = 1

4 (δηχi)ǫ , where now

δηχ
i = i 6DZiη∗ + 2Gij∗Dj∗L∗η , DZi = dZi + AMϑM

AkA
i .

January 12th 2010 CERN TH Division Page 25-a



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The scalars Zi

δǫZ
i = 1

4 χ̄
iǫ .

At leading order in fermions δηδǫZ
i = 1

4 (δηχi)ǫ , where now

δηχ
i = i 6DZiη∗ + 2Gij∗Dj∗L∗η , DZi = dZi + AMϑM

AkA
i .

We find the expected result

[δη , δǫ]Z
i = δg.c.t.Z

i + δhZ
i ,

δg.c.t.Z
i = £ξZ

i = +ξµ∂µZ
i ,

δhZ
i = ΛMϑM

AkA
i ,

ξµ ≡ i
4 (ǭγµη∗ − η̄γµǫ∗) ,

ΛM ≡ ξµAM
µ .

January 12th 2010 CERN TH Division Page 25-b



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The 1-forms AM

We introduce supersymmetric partners λΣ for the magnetic 1-forms AΣ and make
the symplectic -covariant Ansatz

δǫA
M

µ = − i
8 ǭ

∗γµλ
M + c.c. ,

δǫλ
M = 1

2

[

6FM+ + iDM
]

ǫ ,

where we have defined the symplectic vector

DM ≡
(

DΛ

DΛ

)

≡
( DΛ

fΛΣDΣ

)

, DΛ = −ℑmfΛΣ (ϑΣ
A + f∗ΣΩϑ

Ω A)PA .
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The 1-forms AM

We introduce supersymmetric partners λΣ for the magnetic 1-forms AΣ and make
the symplectic -covariant Ansatz

δǫA
M

µ = − i
8 ǭ

∗γµλ
M + c.c. ,

δǫλ
M = 1

2

[

6FM+ + iDM
]

ǫ ,

where we have defined the symplectic vector

DM ≡
(

DΛ

DΛ

)

≡
( DΛ

fΛΣDΣ

)

, DΛ = −ℑmfΛΣ (ϑΣ
A + f∗ΣΩϑ

Ω A)PA .

The magnetic fields are related to the electric ones by the duality relations

FΛ
+ = fΛΣF

Σ+ , λΛ = fΛΣλ
Σ ,
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The 1-forms AM

We introduce supersymmetric partners λΣ for the magnetic 1-forms AΣ and make
the symplectic -covariant Ansatz

δǫA
M

µ = − i
8 ǭ

∗γµλ
M + c.c. ,

δǫλ
M = 1

2

[

6FM+ + iDM
]

ǫ ,

where we have defined the symplectic vector

DM ≡
(

DΛ

DΛ

)

≡
( DΛ

fΛΣDΣ

)

, DΛ = −ℑmfΛΣ (ϑΣ
A + f∗ΣΩϑ

Ω A)PA .

The magnetic fields are related to the electric ones by the duality relations

FΛ
+ = fΛΣF

Σ+ , λΛ = fΛΣλ
Σ ,

but we do not need them to show that

[δη , δǫ]A
M = δg.c.t.A

M + δhA
M ,

where
ΛA ≡ −TA MNA

NΛM + bA −PAξ , bA µ ≡ BA µνξ
ν .

January 12th 2010 CERN TH Division Page 26-b



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The 2-forms BA

We introduce the supersymmetric partners of the 2-forms BA µν ζA, ϕA (linear
supermultiplets )

δǫζA = −i
[

1
12 6H ′

A+ 6DϕA

]

ǫ∗ − 4δA
aϕaL∗ǫ ,

δǫBA µν = 1
4 [ǭγµνζA + c.c.] − i

[

ϕAǭ
∗γ[µψν] − c.c.

]

+ 2TA MNA
M

[µδǫA
N

ν] ,

δǫϕA = − 1
8 ζ̄Aǫ+ c.c. ,

where now
H ′

A ≡ HA − Y AC ,

and A = a are the symmetries that do act on scalars.
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The 2-forms BA

We introduce the supersymmetric partners of the 2-forms BA µν ζA, ϕA (linear
supermultiplets )

δǫζA = −i
[

1
12 6H ′

A+ 6DϕA

]

ǫ∗ − 4δA
aϕaL∗ǫ ,

δǫBA µν = 1
4 [ǭγµνζA + c.c.] − i

[

ϕAǭ
∗γ[µψν] − c.c.

]

+ 2TA MNA
M

[µδǫA
N

ν] ,

δǫϕA = − 1
8 ζ̄Aǫ+ c.c. ,

where now
H ′

A ≡ HA − Y AC ,

and A = a are the symmetries that do act on scalars. The duality relations that
relate these fields to the physical ones are

ζA = ∂iPAχ
i , H ′

A = − 1
2 ⋆ jA , ϕA = − 1

2PA .
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The 2-forms BA

We introduce the supersymmetric partners of the 2-forms BA µν ζA, ϕA (linear
supermultiplets )

δǫζA = −i
[

1
12 6H ′

A+ 6DϕA

]

ǫ∗ − 4δA
aϕaL∗ǫ ,

δǫBA µν = 1
4 [ǭγµνζA + c.c.] − i

[

ϕAǭ
∗γ[µψν] − c.c.

]

+ 2TA MNA
M

[µδǫA
N

ν] ,

δǫϕA = − 1
8 ζ̄Aǫ+ c.c. ,

where now
H ′

A ≡ HA − Y AC ,

and A = a are the symmetries that do act on scalars. The duality relations that
relate these fields to the physical ones are

ζA = ∂iPAχ
i , H ′

A = − 1
2 ⋆ jA , ϕA = − 1

2PA .

but, again, we do not need them to show that

[δη , δǫ]BA = δg.c.t.BA + δ′hBA ,

which proves the existence of an extra Stückelberg shift in BA.
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The 3-forms CA
M

In this case we won’t introduce supersymmetric partners. We make the Ansatz

δǫCA
M

µνρ = − i
8

[

PAǭ
∗γµνρλ

M − c.c.
]

− 3BA [µν|δǫA
M

|ρ] − 2TA PQA
M

[µA
P

ν|δǫA
Q
|ρ] .
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The 3-forms CA
M

In this case we won’t introduce supersymmetric partners. We make the Ansatz

δǫCA
M

µνρ = − i
8

[

PAǭ
∗γµνρλ

M − c.c.
]

− 3BA [µν|δǫA
M

|ρ] − 2TA PQA
M

[µA
P

ν|δǫA
Q
|ρ] .

The local supersymmetry algebra closes only upon use of the duality relation

G′
A

M = − 1
2 ⋆ ℜe(PADM) .

January 12th 2010 CERN TH Division Page 28-a



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The 3-forms CA
M

In this case we won’t introduce supersymmetric partners. We make the Ansatz

δǫCA
M

µνρ = − i
8

[

PAǭ
∗γµνρλ

M − c.c.
]

− 3BA [µν|δǫA
M

|ρ] − 2TA PQA
M

[µA
P

ν|δǫA
Q
|ρ] .

The local supersymmetry algebra closes only upon use of the duality relation

G′
A

M = − 1
2 ⋆ ℜe(PADM) .

According to the general results the duality relation must be of the general form

G′
A

M = 1
2 ⋆

∂V

∂ϑM
A
.
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The 3-forms CA
M

In this case we won’t introduce supersymmetric partners. We make the Ansatz

δǫCA
M

µνρ = − i
8

[

PAǭ
∗γµνρλ

M − c.c.
]

− 3BA [µν|δǫA
M

|ρ] − 2TA PQA
M

[µA
P

ν|δǫA
Q
|ρ] .

The local supersymmetry algebra closes only upon use of the duality relation

G′
A

M = − 1
2 ⋆ ℜe(PADM) .

According to the general results the duality relation must be of the general form

G′
A

M = 1
2 ⋆

∂V

∂ϑM
A
.

This corresponds to th manifestly symplectic -invariant scalar potential

Ve−mg = Vu − 1
2ℜeDMϑM

APA = Vu + 1
2MMNϑM

AϑN
BPAPB ,

where

(

MMN
)

≡





IΛΣ IΛΩRΩΣ

RΛΩI
ΩΣ IΛΣ +RΛΩI

ΩΓRΓΣ



 ,
fΛΣ ≡ RΛΣ + iIΛΣ ,

IΛΩIΩΣ ≡ δΛΣ .
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The 3-forms C,C′

The consistency of the previous results requires the existence of a 3-form C
transforming under the extra Stückelberg shift of BA.
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The 3-forms C,C′

The consistency of the previous results requires the existence of a 3-form C
transforming under the extra Stückelberg shift of BA.

We actually find a complex 3-form Cµνρ = C1
µνρ + iC2

µνρ with supersymmetry
transformations

δǫCµνρ = 12iL ǭ∗γ[µνψ
∗
ρ] + 2DiLǭ∗γµνρχ

i + c.c.
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The 3-forms C,C′

The consistency of the previous results requires the existence of a 3-form C
transforming under the extra Stückelberg shift of BA.

We actually find a complex 3-form Cµνρ = C1
µνρ + iC2

µνρ with supersymmetry
transformations

δǫCµνρ = 12iL ǭ∗γ[µνψ
∗
ρ] + 2DiLǭ∗γµνρχ

i + c.c.

Replacing everywhere L −→ (g1 + ig2)L where g1 and g2 are two coupling
constants, the local supersymmetry algebra closes upon the duality relation

dC = (g1 + ig2) ⋆ (−24|L|2 + 8Gij∗DiLDj∗L∗) , or dCi = 1
2 ⋆

∂V

∂gi
, i = 1, 2 .
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The 3-forms C,C′

The consistency of the previous results requires the existence of a 3-form C
transforming under the extra Stückelberg shift of BA.

We actually find a complex 3-form Cµνρ = C1
µνρ + iC2

µνρ with supersymmetry
transformations

δǫCµνρ = 12iL ǭ∗γ[µνψ
∗
ρ] + 2DiLǭ∗γµνρχ

i + c.c.

Replacing everywhere L −→ (g1 + ig2)L where g1 and g2 are two coupling
constants, the local supersymmetry algebra closes upon the duality relation

dC = (g1 + ig2) ⋆ (−24|L|2 + 8Gij∗DiLDj∗L∗) , or dCi = 1
2 ⋆

∂V

∂gi
, i = 1, 2 .

There is always a 3-form for each deformation parameter.
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The 3-forms C,C′

The consistency of the previous results requires the existence of a 3-form C
transforming under the extra Stückelberg shift of BA.

We actually find a complex 3-form Cµνρ = C1
µνρ + iC2

µνρ with supersymmetry
transformations

δǫCµνρ = 12iL ǭ∗γ[µνψ
∗
ρ] + 2DiLǭ∗γµνρχ

i + c.c.

Replacing everywhere L −→ (g1 + ig2)L where g1 and g2 are two coupling
constants, the local supersymmetry algebra closes upon the duality relation

dC = (g1 + ig2) ⋆ (−24|L|2 + 8Gij∗DiLDj∗L∗) , or dCi = 1
2 ⋆

∂V

∂gi
, i = 1, 2 .

There is always a 3-form for each deformation parameter.

The 3-form that appears in the 2-form field strengths happens to be

C = 1
2 (g1C2 − g2C1) .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

The 4-forms DAB, D
NPQ, DE

NP , DM

We only check the closure of the local supersymmetry algebra in the ungauged
ϑM

A = 0 case when there are no symmetries acting on the 1-forms i.e. TA M
N = 0

for simplicity.

The supersymmetry transformations are

δǫDAB = − i
2 ⋆ P [A∂iPB]ǭχ

i + c.c.−B[A ∧ δǫBB] ,

δǫD
NPQ = 10A(N ∧ FP ∧ δǫAQ) ,

δǫDE
NP = CE

P ∧ δǫAN .

δǫD
M = − i

2 ⋆ L
∗ǭλM + c.c.+ C ∧ δǫAM .

This proves that DM can be consistently added to the supersymmetric theory. Its
role in the action will be that of Lagrange multiplier of the constraint QM .
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

11 – The supersymmetric objects of N = 1 supergravity
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

11 – The supersymmetric objects of N = 1 supergravity

One of the main motivations for this work was to find supersymmetric p-brane
objects of N = 1 supergravity and their supersymmetric worldvolume effective
actions, which can be used as sources of the corresponding supersymmetric solutions.

(p+ 1)-potentials ↔ p-brane actions ↔ supersymmetric solutions.
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11 – The supersymmetric objects of N = 1 supergravity

One of the main motivations for this work was to find supersymmetric p-brane
objects of N = 1 supergravity and their supersymmetric worldvolume effective
actions, which can be used as sources of the corresponding supersymmetric solutions.

(p+ 1)-potentials ↔ p-brane actions ↔ supersymmetric solutions.

Only (p+ 1)-form potentials transforming into gravitini can be used to build
effective actions of dynamical p-branes . These are

ea
µ, BA, C

1, C2
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11 – The supersymmetric objects of N = 1 supergravity

One of the main motivations for this work was to find supersymmetric p-brane
objects of N = 1 supergravity and their supersymmetric worldvolume effective
actions, which can be used as sources of the corresponding supersymmetric solutions.

(p+ 1)-potentials ↔ p-brane actions ↔ supersymmetric solutions.

Only (p+ 1)-form potentials transforming into gravitini can be used to build
effective actions of dynamical p-branes . These are

ea
µ, BA, C

1, C2

This agrees with the results on the classification of supersymmetric solutions of
N = 1 supergravity (Gran, Gutowski, & Papadopoulos, and T.O.): only

pp-waves (ea
µ), strings (BA) and domain walls (C1, C2).
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11 – The supersymmetric objects of N = 1 supergravity

One of the main motivations for this work was to find supersymmetric p-brane
objects of N = 1 supergravity and their supersymmetric worldvolume effective
actions, which can be used as sources of the corresponding supersymmetric solutions.

(p+ 1)-potentials ↔ p-brane actions ↔ supersymmetric solutions.

Only (p+ 1)-form potentials transforming into gravitini can be used to build
effective actions of dynamical p-branes . These are

ea
µ, BA, C

1, C2

This agrees with the results on the classification of supersymmetric solutions of
N = 1 supergravity (Gran, Gutowski, & Papadopoulos, and T.O.): only

pp-waves (ea
µ), strings (BA) and domain walls (C1, C2).

We are going to focus on the domain walls associated to the 3-form C1 (g2 = 0). We
consider the ungauged theory with only chiral supermultiplets and superpotential
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

12 – Domain-wall solutions of N = 1 supergravity
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The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

12 – Domain-wall solutions of N = 1 supergravity

The metric of a 4-d domain-wall solution can always be written in the form

ds2 = Hηµνdx
µdxν = H(y)[ηmndx

mdxn − dy2] , m, n = 0, 1, 2 .
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12 – Domain-wall solutions of N = 1 supergravity

The metric of a 4-d domain-wall solution can always be written in the form

ds2 = Hηµνdx
µdxν = H(y)[ηmndx

mdxn − dy2] , m, n = 0, 1, 2 .

If the Zi = Zi(y) the gravitino Killing spinor equation δǫψµ = 0 is be solved by

(e−iα/2ǫ) ± iγ012(e−iα/2ǫ)∗ = 0 , eiα ≡ L/|L| .
and H(y) satisfies the “H flow equation”

∂yH
−1/2 = ±2|L| .
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12 – Domain-wall solutions of N = 1 supergravity

The metric of a 4-d domain-wall solution can always be written in the form

ds2 = Hηµνdx
µdxν = H(y)[ηmndx

mdxn − dy2] , m, n = 0, 1, 2 .

If the Zi = Zi(y) the gravitino Killing spinor equation δǫψµ = 0 is be solved by

(e−iα/2ǫ) ± iγ012(e−iα/2ǫ)∗ = 0 , eiα ≡ L/|L| .
and H(y) satisfies the “H flow equation”

∂yH
−1/2 = ±2|L| .

Using the above BPS projector into the chiralino Killing spinor equations δǫχ
i = 0

we find the “Zi flow equations”

∂yZ
i = ±eiαN iH1/2 .
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12 – Domain-wall solutions of N = 1 supergravity

The metric of a 4-d domain-wall solution can always be written in the form

ds2 = Hηµνdx
µdxν = H(y)[ηmndx

mdxn − dy2] , m, n = 0, 1, 2 .

If the Zi = Zi(y) the gravitino Killing spinor equation δǫψµ = 0 is be solved by

(e−iα/2ǫ) ± iγ012(e−iα/2ǫ)∗ = 0 , eiα ≡ L/|L| .
and H(y) satisfies the “H flow equation”

∂yH
−1/2 = ±2|L| .

Using the above BPS projector into the chiralino Killing spinor equations δǫχ
i = 0

we find the “Zi flow equations”

∂yZ
i = ±eiαN iH1/2 .

The first-order flow equations imply the second-order supergravity e.o.m..

January 12th 2010 CERN TH Division Page 32-d



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

13 – Domain-wall sources of N = 1 supergravity
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13 – Domain-wall sources of N = 1 supergravity

The sources of domain-wall solutions that couple to the 3-form C ≡ 1
2C

1 must have
the form of worldvolume effective actions with C in the Wess-Zumino term.
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13 – Domain-wall sources of N = 1 supergravity

The sources of domain-wall solutions that couple to the 3-form C ≡ 1
2C

1 must have
the form of worldvolume effective actions with C in the Wess-Zumino term.

The supersymmetry transformation of C1

δǫC
1
µνρ = 6iL ǭ∗γ[µνψ

∗
ρ] + DiLǭ∗γµνρχ

i + c.c. ,

suggest that the kinetic term contains a Z-dependent factor (tension) which is a real
function of L, so it must be
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13 – Domain-wall sources of N = 1 supergravity

The sources of domain-wall solutions that couple to the 3-form C ≡ 1
2C

1 must have
the form of worldvolume effective actions with C in the Wess-Zumino term.

The supersymmetry transformation of C1

δǫC
1
µνρ = 6iL ǭ∗γ[µνψ

∗
ρ] + DiLǭ∗γµνρχ

i + c.c. ,

suggest that the kinetic term contains a Z-dependent factor (tension) which is a real
function of L, so it must be

SDW = −
∫

d3ξ
{

|L|
√

|g(3)| ± 1
4!ǫ

mnpCmnp

}

,

where |g3| is the determinant of the pullback g(3) mn of the spacetime metric over the
3-dimensional worldvolume and Cmnp is the pullback of the 3-form Cµνρ.
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13 – Domain-wall sources of N = 1 supergravity

The sources of domain-wall solutions that couple to the 3-form C ≡ 1
2C

1 must have
the form of worldvolume effective actions with C in the Wess-Zumino term.

The supersymmetry transformation of C1

δǫC
1
µνρ = 6iL ǭ∗γ[µνψ

∗
ρ] + DiLǭ∗γµνρχ

i + c.c. ,

suggest that the kinetic term contains a Z-dependent factor (tension) which is a real
function of L, so it must be

SDW = −
∫

d3ξ
{

|L|
√

|g(3)| ± 1
4!ǫ

mnpCmnp

}

,

where |g3| is the determinant of the pullback g(3) mn of the spacetime metric over the
3-dimensional worldvolume and Cmnp is the pullback of the 3-form Cµνρ.

In the static gauge ∂Xµ/∂ξm = δµ
m it can be seen that this action is invariant to

lowest order in fermions under the supersymmetry transformations of gµν , Z
i, C′

µνρ if

the spinors satisfy the BPS domain-wall projection (e−iα/2ǫ) ± iγ012(e−iα/2ǫ)∗ = 0.
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14 – Sourceful domain-wall solutions of N = 1 supergravity

January 12th 2010 CERN TH Division Page 34



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

14 – Sourceful domain-wall solutions of N = 1 supergravity

To couple our candidate to domain-wall source to the bulk N = 1 supergravity
action we need to introduce consistently C into it by
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14 – Sourceful domain-wall solutions of N = 1 supergravity

To couple our candidate to domain-wall source to the bulk N = 1 supergravity
action we need to introduce consistently C into it by

1. Rescaling L −→ gL (g ≡ g1) everywhere except at the 3-form
supersymmetry transformation rule.
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14 – Sourceful domain-wall solutions of N = 1 supergravity

To couple our candidate to domain-wall source to the bulk N = 1 supergravity
action we need to introduce consistently C into it by

1. Rescaling L −→ gL (g ≡ g1) everywhere except at the 3-form
supersymmetry transformation rule.

2. Promoting the constant g to a scalar field g(x) and adding to the bulk
supergravity action a Lagrange -multiplier term containing the 3-form to enforce
the constancy of g.
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14 – Sourceful domain-wall solutions of N = 1 supergravity

To couple our candidate to domain-wall source to the bulk N = 1 supergravity
action we need to introduce consistently C into it by

1. Rescaling L −→ gL (g ≡ g1) everywhere except at the 3-form
supersymmetry transformation rule.

2. Promoting the constant g to a scalar field g(x) and adding to the bulk
supergravity action a Lagrange -multiplier term containing the 3-form to enforce
the constancy of g.

Thus, we consider the bulk supergravity action,

Sbulk =
1

κ2

∫

d4x
√

|g|
[

R + 2Gij∗∂µZ
i∂µZ∗ j∗ − g2(x)V (Z,Z∗) − 1

3
√

|g|
ǫµνρσ∂µg(x)Cνρσ

]
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14 – Sourceful domain-wall solutions of N = 1 supergravity

To couple our candidate to domain-wall source to the bulk N = 1 supergravity
action we need to introduce consistently C into it by

1. Rescaling L −→ gL (g ≡ g1) everywhere except at the 3-form
supersymmetry transformation rule.

2. Promoting the constant g to a scalar field g(x) and adding to the bulk
supergravity action a Lagrange -multiplier term containing the 3-form to enforce
the constancy of g.

Thus, we consider the bulk supergravity action,

Sbulk =
1

κ2

∫

d4x
√

|g|
[

R + 2Gij∗∂µZ
i∂µZ∗ j∗ − g2(x)V (Z,Z∗) − 1

3
√

|g|
ǫµνρσ∂µg(x)Cνρσ

]

and the brane source action

Sbrane = −
∫

d4x f(y)
{

|L|
√

|g(3)| ± 1
4!ǫ

mnpCmnp

}

,

where f(y) is a distribution function of the domain walls’ common transverse
direction x3 ≡ y: f(y) = δ(1)(y − y0) for a single domain wall placed at y = y0 etc.
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The equations of motion that follow from S ≡ Sbulk + Sbrane are

Eµν
g = −κ2

2 f(y)|L|
√

|g(3)|√
|g|

gmn
(3) δm

µδn
ν ,

Gij∗Eg i∗ = −κ2

8 f(y)

√
|g(3)|√
|g|

eiαN i ,

ǫµνρσ∂σg(x) = ±κ2

8 f(y)ǫmnpδm
µδn

νδp
ρ ,

ǫµνρσ∂µCνρσ = 6g(x)V (Z,Z∗) ,

where Eµν
g and Eg i∗ are the Einstein and scalar equations of motion with g(x) 6= 0.
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The equations of motion that follow from S ≡ Sbulk + Sbrane are

Eµν
g = −κ2

2 f(y)|L|
√

|g(3)|√
|g|

gmn
(3) δm

µδn
ν ,

Gij∗Eg i∗ = −κ2

8 f(y)

√
|g(3)|√
|g|

eiαN i ,

ǫµνρσ∂σg(x) = ±κ2

8 f(y)ǫmnpδm
µδn

νδp
ρ ,

ǫµνρσ∂µCνρσ = 6g(x)V (Z,Z∗) ,

where Eµν
g and Eg i∗ are the Einstein and scalar equations of motion with g(x) 6= 0.

The third equation is that of the 3-form and is solved if g is a function of y satisfying

∂yg = ± 1
8κ

2f(y) .

g(y) will have step-like discontinuities at the locations of the domain walls.
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The equations of motion that follow from S ≡ Sbulk + Sbrane are

Eµν
g = −κ2

2 f(y)|L|
√

|g(3)|√
|g|

gmn
(3) δm

µδn
ν ,

Gij∗Eg i∗ = −κ2

8 f(y)

√
|g(3)|√
|g|

eiαN i ,

ǫµνρσ∂σg(x) = ±κ2

8 f(y)ǫmnpδm
µδn

νδp
ρ ,

ǫµνρσ∂µCνρσ = 6g(x)V (Z,Z∗) ,

where Eµν
g and Eg i∗ are the Einstein and scalar equations of motion with g(x) 6= 0.

The third equation is that of the 3-form and is solved if g is a function of y satisfying

∂yg = ± 1
8κ

2f(y) .

g(y) will have step-like discontinuities at the locations of the domain walls.

The fourth equation (g(x)’) states that C is the dual of the scalar potential.
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It can now be checked that the Einstein and scalar equations of motion with sources
are identically satisfied if H(y) and the scalars Zi(y) satisfy the sourceful flow
equations

∂yZ
i = ±g(y)eiαN iH1/2 ,

∂yH
−1/2 = ±2g(y)|L| ,
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It can now be checked that the Einstein and scalar equations of motion with sources
are identically satisfied if H(y) and the scalars Zi(y) satisfy the sourceful flow
equations

∂yZ
i = ±g(y)eiαN iH1/2 ,

∂yH
−1/2 = ±2g(y)|L| ,

which can be derived from the modified fermion supersymmetry transformations

δǫψµ = Dµǫ+ ig(x)Lγµǫ
∗ ,

δǫχ
i = i 6∂Ziǫ∗ + g(x)N iǫ .
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It can now be checked that the Einstein and scalar equations of motion with sources
are identically satisfied if H(y) and the scalars Zi(y) satisfy the sourceful flow
equations

∂yZ
i = ±g(y)eiαN iH1/2 ,

∂yH
−1/2 = ±2g(y)|L| ,

which can be derived from the modified fermion supersymmetry transformations

δǫψµ = Dµǫ+ ig(x)Lγµǫ
∗ ,

δǫχ
i = i 6∂Ziǫ∗ + g(x)N iǫ .

A fully supersymmetric “democratic” formulation of N = 1 d = 4
supergravity including all higher-rank forms and local coupling constants
ϑM

A(x),g1(x),g2(x) is necessary to accomodate these modifications.
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It can now be checked that the Einstein and scalar equations of motion with sources
are identically satisfied if H(y) and the scalars Zi(y) satisfy the sourceful flow
equations

∂yZ
i = ±g(y)eiαN iH1/2 ,

∂yH
−1/2 = ±2g(y)|L| ,

which can be derived from the modified fermion supersymmetry transformations

δǫψµ = Dµǫ+ ig(x)Lγµǫ
∗ ,

δǫχ
i = i 6∂Ziǫ∗ + g(x)N iǫ .

A fully supersymmetric “democratic” formulation of N = 1 d = 4
supergravity including all higher-rank forms and local coupling constants
ϑM

A(x),g1(x),g2(x) is necessary to accomodate these modifications.

Observe that the space-dependent coupling constant g(x), sourced by
domain walls , may modify the effective scalar potential dramatically.
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15 – A simple example

Let us consider the model (1 chiral multiplet) defined by

K = |Z|2 , W = 1 , (L = e
|Z|2/2

, NZ = 2Z
∗
e
|Z|2/2) .

These choices lead to the Mexican-hat-type potential V = −8(3 − ρ2)eρ2/2 (ρ ≡ |Z|) with a
maximum and degenerate minimum at ρ = 0 and ρ = +1 resp. with V (0) = −24 and
V (1) = −16

√
e ∼ −26.4.
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The sourceful flow equations take the form (ArgZ = const)

∂yρ = ±2g(y)ρeρ2/2H1/2 ,

∂yH
−1/2 = ±2g(y)eρ2/2 .
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The sourceful flow equations take the form (ArgZ = const)

∂yρ = ±2g(y)ρeρ2/2H1/2 ,

∂yH
−1/2 = ±2g(y)eρ2/2 .

I Solutions with g = 0: ρ and H are constant and the spacetime is Minkowski .
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The sourceful flow equations take the form (ArgZ = const)

∂yρ = ±2g(y)ρeρ2/2H1/2 ,

∂yH
−1/2 = ±2g(y)eρ2/2 .

I Solutions with g = 0: ρ and H are constant and the spacetime is Minkowski .

II-a Solutions with g(y) 6= 0 and ∂yZ = 0:

⇒ gρ = 0 , ⇒ ρ = 0 and the metric is that of AdS4: H =
1

g2y2
.
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The sourceful flow equations take the form (ArgZ = const)

∂yρ = ±2g(y)ρeρ2/2H1/2 ,

∂yH
−1/2 = ±2g(y)eρ2/2 .

I Solutions with g = 0: ρ and H are constant and the spacetime is Minkowski .

II-a Solutions with g(y) 6= 0 and ∂yZ = 0:

⇒ gρ = 0 , ⇒ ρ = 0 and the metric is that of AdS4: H =
1

g2y2
.

ρ = 1 can only be a solution if g = 0, in which case we have a Minkowski spacetime.
An AdS4 solution with g 6= 0 exists, but it is not supersymmetric .
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The sourceful flow equations take the form (ArgZ = const)

∂yρ = ±2g(y)ρeρ2/2H1/2 ,

∂yH
−1/2 = ±2g(y)eρ2/2 .

I Solutions with g = 0: ρ and H are constant and the spacetime is Minkowski .

II-a Solutions with g(y) 6= 0 and ∂yZ = 0:

⇒ gρ = 0 , ⇒ ρ = 0 and the metric is that of AdS4: H =
1

g2y2
.

ρ = 1 can only be a solution if g = 0, in which case we have a Minkowski spacetime.
An AdS4 solution with g 6= 0 exists, but it is not supersymmetric .

II-b Solutions with g 6= 0 and ∂yZ 6= 0:

H = c/ρ2 ,

ρ =
√

2 erf−1 [G(y)] , G(y) ≡ ±
√

8c
π

∫

g(y)dy + d .
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erf−1 is the inverse of the normalized error function

erf(x) ≡ 2√
π

∫ x

0

e−u2

du = −erf(−x) .
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erf−1 is the inverse of the normalized error function

erf(x) ≡ 2√
π

∫ x
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Then G(y) ∈ [0, 1), which, for constant g requires that we cut the spacetime at finite
values of y. To have more general g(y) or to do the custs consistently we have to
add sources.
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Let us consider, first, a single, infinitely thin domain-wall source of tension q > 0
placed at y = y0:

f(y) = qδ(y−y0) , g(y) = ±κ
2q

16
[θ(y−y0)−θ(y0−y)] , G(y) =

√
cκ2q√
32π

|y−y0|+d .

G(y) is always unbounded and the solution is not well defined unless we cut the
space by hand.
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A possible solution: we introduce two parallel domain walls with opposite tension (a
Randall-Sundrum-like construction) and charge at a different point (y = −y0 with
y0 > 0 for simplicity) so

f(y) = qδ(y − y0) − qδ(y + y0) ,

g(y) = ±κ
2q

16
[θ(y − y0) − θ(y0 − y) − θ(y + y0) + θ(−y0 − y)] ,

G(y) =

√

c

32π
κ2q (|y − y0| − |y + y0|) + d .

g(y)

y

−y y0 0

y

−y y0 0

G(y)

Choosing d =

√

c

8π
κ2qy0 we can set G(+∞) = G(+y0) = 0 and ρ(y) = ρ(+y0) = 0

for y > y0.
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In the interior of the g(y) 6= 0 region ρ approaches zero as ρ ∼ 1
4

√
cκ2q(y0 − y) so the

metric approaches AdS4

H ∼ R2

(y0 − y)2
, R =

4

κ2q
.

The value G(−y0) =
√

c
2πκ

2qy0 = G(−∞), can be tuned by varying distance
between the domain-wall sources (y0). It has to be smaller or equal than 1.

If G(−y0) < 1 then ρ(−y0) is finite and ρ approaches y = −y0 from the interior of
the g(y) 6= 0 region as

ρ ∼ −
√

c

2π

κ2q

erf ′[ρ(−∞)/
√

2]
(y + y0) ,

so the metric approaches another AdS4 region.

This solution we have obtained smoothly interpolates between two AdS4 regions one
of which (the ρ = 0 one) corresponds to a supersymmetric vacuum of the theory.
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The two infinitely-thin domain-wall sources setup can be understood as a crude
approximation to the following configuration with domain-wall sources of finite
thickness

f(y) = qye−y2

, g(y) = ∓κ
2q

16
e−y2

, G(y) = −κ
2q
√
c

8
erf(y) + d .

in which g(y) only vanishes asymptotically.

x
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The profiles of some of the functions ocurring in this solution: the black line: the
source, f(y), red line: the coupling constant g(y), brown line G(y), blue line:
the scalar ρ(y), green line: the effective potential as seen by the solution,
i.e. g2(y)V . Observe that the degeneracy is removed by the sources.

January 12th 2010 CERN TH Division Page 43



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA

16 – Conclusions
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16 – Conclusions

⋆ We have constructed the complete, generic, 4-dimensional tensor hierarchy .
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⋆ We have constructed a democratic action for all the fields of the tensor hierarchy
, interpreting all of them and their relations.
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⋆ We have studied the tensor hierarchy of N = 1 d = 4 supergravity and we have
found an extra constraint for the embedding tensor that leads to an extension.

January 12th 2010 CERN TH Division Page 44-c



The Tensor Hierarchy and Domain Walls of N=1,d=4 SUGRA
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⋆ We have constructed the complete, generic, 4-dimensional tensor hierarchy .

⋆ We have constructed a democratic action for all the fields of the tensor hierarchy
, interpreting all of them and their relations.

⋆ We have studied the tensor hierarchy of N = 1 d = 4 supergravity and we have
found an extra constraint for the embedding tensor that leads to an extension.

⋆ We have interpreted the new fields C1, C2 as associated to two new deformation
parameters g1 and g2 and DM as assciated to a new constraint, as expected on
general grounds.
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16 – Conclusions

⋆ We have constructed the complete, generic, 4-dimensional tensor hierarchy .

⋆ We have constructed a democratic action for all the fields of the tensor hierarchy
, interpreting all of them and their relations.

⋆ We have studied the tensor hierarchy of N = 1 d = 4 supergravity and we have
found an extra constraint for the embedding tensor that leads to an extension.

⋆ We have interpreted the new fields C1, C2 as associated to two new deformation
parameters g1 and g2 and DM as assciated to a new constraint, as expected on
general grounds.

⋆ We have constructed the effective actions for the domain walls associated to C1

and we have used them as sources for the bulk supergravity action. We have
shown how the supersymmetry rules may be modified in a fully democratic
formulation of N = 1 supergravity .
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16 – Conclusions

⋆ We have constructed the complete, generic, 4-dimensional tensor hierarchy .

⋆ We have constructed a democratic action for all the fields of the tensor hierarchy
, interpreting all of them and their relations.

⋆ We have studied the tensor hierarchy of N = 1 d = 4 supergravity and we have
found an extra constraint for the embedding tensor that leads to an extension.

⋆ We have interpreted the new fields C1, C2 as associated to two new deformation
parameters g1 and g2 and DM as assciated to a new constraint, as expected on
general grounds.

⋆ We have constructed the effective actions for the domain walls associated to C1

and we have used them as sources for the bulk supergravity action. We have
shown how the supersymmetry rules may be modified in a fully democratic
formulation of N = 1 supergravity .

⋆ We have seen that in some cases domain-wall sources have to be introduced to
construct sensible domain-wall solutions. These sources introduce a
spacetime-dependent coupling constant g(x) that can have dramatic effects on
the form of the solutions.
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