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interesting because of

➳ their non-Abelian gauge symmetries, their scalar potentials that break
supersymmetry fixing the moduli .

➳ their importance in (generalizations of) the AdS/CFT correspondence.
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1 – Introduction/motivation

Three reasons to do what we do:

1. One of the main tools in Superstring Theory is the correspondence between
(p + 1)-form potentials in their supergravity description and p-brane states. We
need all the (p + 1)-form potentials in democratic formulations.

2. Gauged supergravities (sometimes obtained via flux compactifications) are
interesting because of

➳ their non-Abelian gauge symmetries, their scalar potentials that break
supersymmetry fixing the moduli .

➳ their importance in (generalizations of) the AdS/CFT correspondence.

3. The embedding tensor method (Cordaro, Fré, Gualtieri,Termonia & Trigiante,
arXiv:hep-th/9804056. ) can be used to construct systematically the most general
gauged supergravities . This construction requires the introduction of additional
(p + 1)-form potentials.

We are going to use the embedding tensor method to find all the (p + 1)-form
potentials and the corresponding democratic formulations of 4-dimensional
supergravities (or any other 4-dimensional field theory with gauge symmetry).
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4-D Tensor Hierarchies

The next steps in this program will be:

aSo far, only maximal and half-maximal supergravities have been studied from this point of view
de Wit, Samtleben & Trigiante, arXiv:hep-th/0412173, Samtleben & Weidner arXiv:hep-th/0506237, Schon
& Weidner, arXiv:hep-th/0602024, de Wit, Samtleben & Trigiante, arXiv:0705.2101, Bergshoeff, Gomis,
Nutma & Roest, arXiv:0711.2035, de Wit, Nicolai & Samtleben, arXiv:0801.1294.
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2. The identification of the branes associated to the (p + 1)-form potentials through
the study of brane worldvolume effective actions or classical (possibly
supersymmetric ) solutions (work in progress).

3. The identification of the embedding tensor components with the fluxes of
higher-dimensional fields.

aSo far, only maximal and half-maximal supergravities have been studied from this point of view
de Wit, Samtleben & Trigiante, arXiv:hep-th/0412173, Samtleben & Weidner arXiv:hep-th/0506237, Schon
& Weidner, arXiv:hep-th/0602024, de Wit, Samtleben & Trigiante, arXiv:0705.2101, Bergshoeff, Gomis,
Nutma & Roest, arXiv:0711.2035, de Wit, Nicolai & Samtleben, arXiv:0801.1294.

February 3rd 2009 5th Spanish (1st Iberian) Meeting Page 2-c



4-D Tensor Hierarchies

The next steps in this program will be:

1. The application to specific supergravities with given matter content and
symmetries (e.g. N = 1 , see and listen to M. Hübscher’s talk in this meeting)
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4-D Tensor Hierarchies

2 – The embedding tensor method: electric gaugings

Consider a general (N = 1 supergravity -inspired) 4-dimensional ungauged theory
with bosonic fields {Zi, AΛ} (the metric plays no relevant role here)

Su[Zi, AΛ] =

∫

{−2Gij∗dZi∧⋆dZ∗ j∗

−2ℑmfΛΣFΛ∧⋆FΣ+2ℜefΛΣFΛ∧FΣ−⋆Vu(Z, Z∗)} .

with FΛ ≡ dAΛ, the fundamental (electric ) field strengths and fΛΣ(Z).
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Consider a general (N = 1 supergravity -inspired) 4-dimensional ungauged theory
with bosonic fields {Zi, AΛ} (the metric plays no relevant role here)

Su[Zi, AΛ] =

∫

{−2Gij∗dZi∧⋆dZ∗ j∗

−2ℑmfΛΣFΛ∧⋆FΣ+2ℜefΛΣFΛ∧FΣ−⋆Vu(Z, Z∗)} .

with FΛ ≡ dAΛ, the fundamental (electric ) field strengths and fΛΣ(Z).

The action is invariant under the local Abelian transformations

δΛAΣ = dΛΣ .

Let us assume this action is invariant under the global transformations

δαZi = αAkA
i(Z) ,

δαfΛΣ ≡ −αA£AfΛΣ = αA[TA ΛΣ − 2TA (Λ
ΩfΣ)Ω] ,

δαAΛ = αATA Σ
ΛAΣ .
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Gauging the global symmetries of a theory with constant parameters αA means
modifying the theory so it is also invariant when the αA are arbitrary functions
αA(x).
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modifying the theory so it is also invariant when the αA are arbitrary functions
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Gauging requires the identification of each αA(x) with a ΛΣ and the use of the
corresponding 1-form AΣ as gauge field AA of that symmetry.

Each embedding tensor ϑΛ
A defines a possible identification:

αA(x) ≡ ΛΣϑΣ
A , AA ≡ AΣϑΣ

A .

Leaving ϑΛ
A undetermined we can study all possibilities simultaneously.
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Gauging the global symmetries of a theory with constant parameters αA means
modifying the theory so it is also invariant when the αA are arbitrary functions
αA(x).

Gauging requires the identification of each αA(x) with a ΛΣ and the use of the
corresponding 1-form AΣ as gauge field AA of that symmetry.

Each embedding tensor ϑΛ
A defines a possible identification:

αA(x) ≡ ΛΣϑΣ
A , AA ≡ AΣϑΣ

A .

Leaving ϑΛ
A undetermined we can study all possibilities simultaneously.

Now we construct derivatives D

DZi ≡ dZi + AΛϑΛ
AkA

i ,

covariant under

δΛZi = ΛΣϑΣ
AkA

i(Z) ,

δΛAΣ = −DΛΣ ≡ −(dΛΣ + ϑΛ
ATA Ω

ΣAΛΛΩ) .
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4-D Tensor Hierarchies

This only works if ϑΛ
A is an invariant tensor

δΛϑΣ
A = −ΛΩQΩΣ

A = 0 , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A .

QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.
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BTB Λ
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A − ϑΣ
BϑΛ

CfBC
A .

QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.

It is customary to define the generators

XΣΛ
Ω ≡ ϑΣ

BTB Λ
Ω ,

which satisfy the algebra

[TA, TB] = −fAB
C , ⇒ [XΣ, XΛ] = −XΣΛ

ΩXΩ ,
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QΩΣ
A = 0 is known as the quadratic constraint in the embedding tensor formalism.

It is customary to define the generators

XΣΛ
Ω ≡ ϑΣ

BTB Λ
Ω ,

which satisfy the algebra

[TA, TB] = −fAB
C , ⇒ [XΣ, XΛ] = −XΣΛ

ΩXΩ ,

Then we construct the covariant 2-form field strengths

FΛ = dAΛ + 1
2XΣΩ

ΛAΣ ∧ AΩ ,

and the gauge -invariant action of the electrically gauged theory takes the form

Seg[Z
i, AΛ] =

∫

{−2Gij∗DZi∧⋆DZ∗ j∗

−2ℑmfΛΣFΛ∧⋆FΣ+2ℜefΛΣFΛ∧FΣ−⋆Veg(Z, Z∗)}
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3 – The embedding tensor method: general gaugings

In 4-dimensions

➳ One can define magnetic (dual ) 1-forms AΛ which one may use as gauge fields:
if the Maxwell equations are

dGΛ = 0 , where GΛ
+ ≡ fΛΣFΣ+ ,

then we can replace it by the duality relation

GΛ = FΛ , where FΛ ≡ dAΛ .
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3 – The embedding tensor method: general gaugings

In 4-dimensions

➳ One can define magnetic (dual ) 1-forms AΛ which one may use as gauge fields:
if the Maxwell equations are

dGΛ = 0 , where GΛ
+ ≡ fΛΣFΣ+ ,

then we can replace it by the duality relation

GΛ = FΛ , where FΛ ≡ dAΛ .

➳ The theory (equations of motion) has more non-perturbative global symmetries
that can be gauged . They include electric -magnetic duality rotations:

δαZi = αAkA
i(Z) ,

δαfΛΣ = αA{−TA ΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ} ,

δα

„

AΛ

AΛ

«

= αA

0

@

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

1

A

„

AΣ

AΣ

«

.
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4-D Tensor Hierarchies

By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.
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Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑΣ A , AA ≡ AΣϑΣ
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Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑΣ A , AA ≡ AΣϑΣ

A + AΣϑΣ A .

Knowing (Gaillard & Zumino) that the TA matrices either belong to sp(2nV , R) or
vanish, we introduce the symplectic notation

AM ≡

(

AΣ

AΣ

)

ϑM
A ≡

(

ϑΣ
A, ϑΣ A

)

αA(x) ≡ ΛMϑM
A ,

(TA M
N ) ≡

(

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

)

.
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By general gaugings we mean gaugings of the perturbative and non-perturbative sym-
metries using electric and magnetic 1-forms as gauge fields.

Now we need to relate the αA to the gauge parameters of the 1-forms ΛΛ or ΛΛ We
need new (magnetic ) components for the embedding tensor : ϑΛ A. Then

αA(x) ≡ ΛΣϑΣ
A + ΛΣϑΣ A , AA ≡ AΣϑΣ

A + AΣϑΣ A .

Knowing (Gaillard & Zumino) that the TA matrices either belong to sp(2nV , R) or
vanish, we introduce the symplectic notation

AM ≡

(

AΣ

AΣ

)

ϑM
A ≡

(

ϑΣ
A, ϑΣ A

)

αA(x) ≡ ΛMϑM
A ,

(TA M
N ) ≡

(

TA Σ
Λ TA

ΣΛ

TA ΣΛ TA
Σ

Λ

)

.

We cannot gauge simultaneously a 1-form and its dual de Wit, Samtleben & Trigiante,
arXiv:hep-th/0507289:

QAB ≡ 1
4ϑMAϑM

B = 0 .
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4-D Tensor Hierarchies

Now we can repeat the procedure of the electric case:

First we construct derivatives D

DZi ≡ dZi + AMϑM
AkA

i ,

covariant under

δΛZi = ΛMϑM
AkA

i(Z) ,

δΛAM = −DΛM ≡ −(dΛM + XNP
MANΛP ) , XNP

M ≡ ϑN
ATA P

M ,

which only works if ϑM
A is an invariant tensor

δΛϑM
A = −ΛNQMN

A = 0 , QMN
A ≡ ϑM

BTB N
P ϑP

A − ϑM
BϑN

CfBC
A .
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Now we can repeat the procedure of the electric case:

First we construct derivatives D

DZi ≡ dZi + AMϑM
AkA

i ,

covariant under

δΛZi = ΛMϑM
AkA

i(Z) ,

δΛAM = −DΛM ≡ −(dΛM + XNP
MANΛP ) , XNP

M ≡ ϑN
ATA P

M ,

which only works if ϑM
A is an invariant tensor

δΛϑM
A = −ΛNQMN

A = 0 , QMN
A ≡ ϑM

BTB N
P ϑP

A − ϑM
BϑN

CfBC
A .

Before moving forward, we must impose another constraint on the embedding tensor
on top of the two quadratic ones QMN

A = QAB = 0:

LMNP ≡ X(MNP ) = ϑ(M
ATA NP ) = 0 .

This linear or representation constraint is based on supergravity and eliminates
certain possible representations of the embedding tensor . On the other hand, we
cannot construct gauge -covariant 2-form field strengths FM without it!
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4-D Tensor Hierarchies

4 – The 4-d tensor hierarchy

To construct the gauge -covariant 2-form field strengths FM we take the covariant
derivative of the gauge -covariant “field strength” DZi:

DDZi = [dAM + 1
2XNP

MAN ∧ AP ]ϑM
AkA

i ,

which suggests the definition

FM ≡ dAM + 1
2XNP

MAN ∧ AP + ∆FM , ϑM
A∆FM = 0 ,

so we have the Bianchi identity

DDZi = FMϑM
AkA

i .
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4-D Tensor Hierarchies

4 – The 4-d tensor hierarchy

To construct the gauge -covariant 2-form field strengths FM we take the covariant
derivative of the gauge -covariant “field strength” DZi:

DDZi = [dAM + 1
2XNP

MAN ∧ AP ]ϑM
AkA

i ,

which suggests the definition

FM ≡ dAM + 1
2XNP

MAN ∧ AP + ∆FM , ϑM
A∆FM = 0 ,

so we have the Bianchi identity

DDZi = FMϑM
AkA

i .

Using the constraint QAB ≡ 1
4ϑMAϑM

B = 0 the natural solution is

∆FM = − 1
2ϑMABA ≡ ZMABA .
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so we have the Bianchi identity

DDZi = FMϑM
AkA

i .

Using the constraint QAB ≡ 1
4ϑMAϑM

B = 0 the natural solution is

∆FM = − 1
2ϑMABA ≡ ZMABA .

δΛBA is determined by the gauge -covariance of FM plus δBA ∼ dΛA.
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To construct the gauge -covariant 2-form field strengths FM we take the covariant
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2XNP
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AkA

i ,

which suggests the definition

FM ≡ dAM + 1
2XNP

MAN ∧ AP + ∆FM , ϑM
A∆FM = 0 ,

so we have the Bianchi identity

DDZi = FMϑM
AkA

i .

Using the constraint QAB ≡ 1
4ϑMAϑM

B = 0 the natural solution is

∆FM = − 1
2ϑMABA ≡ ZMABA .

δΛBA is determined by the gauge -covariance of FM plus δBA ∼ dΛA.

But we do not need it to move forward.
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4-D Tensor Hierarchies

If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSAR ∧ [dAS + 1
3XNP

SAN ∧ AP ]} .
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4-D Tensor Hierarchies

If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSAR ∧ [dAS + 1
3XNP

SAN ∧ AP ]} .

The gauge -covariance of the l.h.s. suggests the definition

HA = DBA+TA RSAR∧[dAS+ 1
3XNP

SAN∧AP ]+∆HA , where ZMA∆HA = 0 .

so we have the Bianchi identity

DFM = ZMAHA .
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If we take the covariant derivative of the gauge -covariant 2-form field strength FM

we find

DFM = ZMA{DBA + TA RSAR ∧ [dAS + 1
3XNP

SAN ∧ AP ]} .

The gauge -covariance of the l.h.s. suggests the definition

HA = DBA+TA RSAR∧[dAS+ 1
3XNP

SAN∧AP ]+∆HA , where ZMA∆HA = 0 .

so we have the Bianchi identity

DFM = ZMAHA .

Using the constraint

QMN
A = ϑM

B(TB N
P ϑP

A − ϑN
CfBC

A) ≡ 2ZM
AY AN

P = 0

the natural solution for ZMA∆HA = ZMA∆BA = 0 is

∆HA ≡ Y AM
CCC

M .

δΛCC
M is fully determined by the gauge -covariance of HA.
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the natural solution for ZMA∆HA = ZMA∆BA = 0 is
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CCC
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δΛCC
M is fully determined by the gauge -covariance of HA.

But we do not need it to move forward.
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4-D Tensor Hierarchies

If we take the covariant derivative of the gauge -covariant 3-form field strength HA

we find

DHA − TA MNFM ∧ FN = Y AM
C{DCC

M + FM ∧ BC + · · ·} .
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4-D Tensor Hierarchies

If we take the covariant derivative of the gauge -covariant 3-form field strength HA

we find

DHA − TA MNFM ∧ FN = Y AM
C{DCC

M + FM ∧ BC + · · ·} .

The gauge -covariance of the l.h.s. suggests the definition

GC
M = DCC

M + FM ∧ BC + · · · + ∆GC
M , where Y AM

C∆GC
M = 0 .

so we have the Bianchi identity

DHA = TA MNFM ∧ FN + Y AM
CGC

M .
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4-D Tensor Hierarchies

If we take the covariant derivative of the gauge -covariant 3-form field strength HA

we find

DHA − TA MNFM ∧ FN = Y AM
C{DCC

M + FM ∧ BC + · · ·} .

The gauge -covariance of the l.h.s. suggests the definition

GC
M = DCC

M + FM ∧ BC + · · · + ∆GC
M , where Y AM

C∆GC
M = 0 .

so we have the Bianchi identity

DHA = TA MNFM ∧ FN + Y AM
CGC

M .

To determine ∆GC
M we need to find invariant tensors that vanish upon contraction

with Y AM
C . They appear automatically when we take the gauge -covariant

derivative of the Bianchi identity and GC
M (if we “forget” we are in 4 dimensions!).
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4-D Tensor Hierarchies

Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧ HA} = 0 , ⇒ DGC
M = FM ∧ HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .
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4-D Tensor Hierarchies

Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧ HA} = 0 , ⇒ DGC
M = FM ∧ HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB + W CNPQ
MFN ∧FP ∧FQ + W CNP

EMFN ∧GE
P .
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4-D Tensor Hierarchies

Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧ HA} = 0 , ⇒ DGC
M = FM ∧ HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB + W CNPQ
MFN ∧FP ∧FQ + W CNP

EMFN ∧GE
P .

This implies that there are 3 such tensors WC
MAB, WCNPQ

M , WCNP
EM that

vanish contracted with Y AM
C and which we can use to build ∆GC

M .
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Acting with D on the Bianchi identity of HA we find

Y AM
C{DGC

M − FM ∧ HA} = 0 , ⇒ DGC
M = FM ∧ HA + ∆DGC

M ,

where
Y AM

C∆DGC
M = 0 .

Acting with D on the above identity we find

D∆DGC
M = WC

MABHA ∧HB + W CNPQ
MFN ∧FP ∧FQ + W CNP

EMFN ∧GE
P .

This implies that there are 3 such tensors WC
MAB, WCNPQ

M , WCNP
EM that

vanish contracted with Y AM
C and which we can use to build ∆GC

M .

The natural solution is

∆GC
M = W C

MABDAB + W CNPQ
MDNPQ + W CNP

EMDE
NP ,

and δΛDAB , δΛDNPQ, δΛDE
NP will follow from the gauge -covariance of GC

M .
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4-D Tensor Hierarchies

What have we got so far just by asking for covariance under gauge transformations?
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4-D Tensor Hierarchies

What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p + 1)-forms AM , BA, CC
M , DAB , DNPQ, DE

NP related by gauge
transformations.
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4-D Tensor Hierarchies

What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p + 1)-forms AM , BA, CC
M , DAB , DNPQ, DE

NP related by gauge
transformations.

δΛAM = −DΛM − ZMAΛA ,

δΛBA = DΛA + 2TA NP [ΛN F P + 1
2

AN ∧ δΛAP ] − Y AM
CΛC

M ,

δΛCC
M = DΛC

M − F M ∧ ΛC − δΛAM ∧ BC − 1
3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
MABΛAB

−W CNP Q
M ΛNP Q − W CNP

EM ΛE
NP ,

δΛDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y [A|P

E(ΛB]E
P − BB] ∧ ΛE

P ) + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛN F P − 1
2

AN ∧ δΛAP ] ∧ B|B] ,

δΛDE
NP = DΛE

NP + Λ̃E
(NP ) + 1

2
ZNBΛBE

P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)
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M , DAB , DNPQ, DE

NP related by gauge
transformations.

δΛAM = −DΛM − ZMAΛA ,

δΛBA = DΛA + 2TA NP [ΛN F P + 1
2

AN ∧ δΛAP ] − Y AM
CΛC

M ,

δΛCC
M = DΛC

M − F M ∧ ΛC − δΛAM ∧ BC − 1
3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
MABΛAB

−W CNP Q
M ΛNP Q − W CNP

EM ΛE
NP ,

δΛDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y [A|P

E(ΛB]E
P − BB] ∧ ΛE

P ) + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛN F P − 1
2

AN ∧ δΛAP ] ∧ B|B] ,

δΛDE
NP = DΛE

NP + Λ̃E
(NP ) + 1

2
ZNBΛBE

P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p + 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.
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What have we got so far just by asking for covariance under gauge transformations?
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NP related by gauge
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δΛBA = DΛA + 2TA NP [ΛN F P + 1
2
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(NP ) + 1
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P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p + 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.

This sytem is known as the (4-dimensional) tensor hierarchy.

It is universal: it exists for all 4-dimensional theories with gauge symmetry.
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What have we got so far just by asking for covariance under gauge transformations?

➠ A tower of (p + 1)-forms AM , BA, CC
M , DAB , DNPQ, DE

NP related by gauge
transformations.

δΛAM = −DΛM − ZMAΛA ,

δΛBA = DΛA + 2TA NP [ΛN F P + 1
2

AN ∧ δΛAP ] − Y AM
CΛC

M ,

δΛCC
M = DΛC

M − F M ∧ ΛC − δΛAM ∧ BC − 1
3

TC NP AM ∧ AN ∧ δΛAP + ΛM HC − W C
MABΛAB

−W CNP Q
M ΛNP Q − W CNP

EM ΛE
NP ,

δΛDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y [A|P

E(ΛB]E
P − BB] ∧ ΛE

P ) + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛN F P − 1
2

AN ∧ δΛAP ] ∧ B|B] ,

δΛDE
NP = DΛE

NP + Λ̃E
(NP ) + 1

2
ZNBΛBE

P − F N ∧ ΛE
P + CE

P ∧ δΛAN + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δΛAR

+ΛN GE
P ,

δΛDNP Q = DΛNP Q − 3Z(N|AΛ̃A
|P Q) − 2A(N ∧ dAP ∧ δΛAQ) − 3

4
XRS

(N AP | ∧ AR ∧ AS ∧ δΛA|Q) − 3Λ(N F P ∧

(Yes, we actually computed them.)

➠ The covariant (p + 2)-form field strengths FM , HA, GC
M , related by Bianchi

identities.

This sytem is known as the (4-dimensional) tensor hierarchy.

It is universal: it exists for all 4-dimensional theories with gauge symmetry.

But, what does it mean?
What is the meaning of the additional fields?
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory.
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory. However,
gauging must not introduce new continuous degrees of freedom in a theory: they
must be related by duality relations to the fundamental ones.
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory. However,
gauging must not introduce new continuous degrees of freedom in a theory: they
must be related by duality relations to the fundamental ones. These duality relations
together with the 1st order Bianchi identities must give the 2nd order equations of
motion.
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory. However,
gauging must not introduce new continuous degrees of freedom in a theory: they
must be related by duality relations to the fundamental ones. These duality relations
together with the 1st order Bianchi identities must give the 2nd order equations of
motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory. However,
gauging must not introduce new continuous degrees of freedom in a theory: they
must be related by duality relations to the fundamental ones. These duality relations
together with the 1st order Bianchi identities must give the 2nd order equations of
motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .

☞ The 2-forms BA must be related to the Noether 1-form currents associated to
the global symmetries jA via the duality relation

HA = − 1
2 ⋆ jA .
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4-D Tensor Hierarchies

5 – The meaning of the d = 4 tensor hierarchy

These are the fields that we need to make a general gauging of any theory. However,
gauging must not introduce new continuous degrees of freedom in a theory: they
must be related by duality relations to the fundamental ones. These duality relations
together with the 1st order Bianchi identities must give the 2nd order equations of
motion.

☞ The magnetic 1-forms AΛ must be related to the electric ones AΛ via the duality
relation

FΛ = GΛ .

☞ The 2-forms BA must be related to the Noether 1-form currents associated to
the global symmetries jA via the duality relation

HA = − 1
2 ⋆ jA .

☞ These two duality relations together with the Bianchi identity DFM = ZMAHA

give a set of electric -magnetic duality -covariant Maxwell equations:

DFΛ = − 1
4ϑΛ

A ⋆ jA , DGΛ = 1
4ϑΛ A ⋆ jA .
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4-D Tensor Hierarchies

☞ The 3-forms CC
M must be dual to constants: the embedding tensor ϑM

C . This
duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.
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4-D Tensor Hierarchies

☞ The 3-forms CC
M must be dual to constants: the embedding tensor ϑM

C . This
duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.

☞ Using the three duality relations in the Bianchi identity of HA we get

D ⋆ jA = 4TA MNGM ∧ GN + ⋆Y A
MC ∂V

∂ϑM
C

.
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4-D Tensor Hierarchies

☞ The 3-forms CC
M must be dual to constants: the embedding tensor ϑM

C . This
duality is expressed through the formula

GC
M = 1

2 ⋆
∂V

∂ϑM
C

.

☞ Using the three duality relations in the Bianchi identity of HA we get

D ⋆ jA = 4TA MNGM ∧ GN + ⋆Y A
MC ∂V

∂ϑM
C

.

This equation is similar to the consistency condition (gauge or Noether identity)
that Noether currents must satisfy off-shell in theories with gauge invariance:

D ⋆ jA = −2(kA
iEi + c.c.) + 4TA MNGM ∧ GN + ⋆Y A

MC ∂V

∂ϑM
C

,

where Ei is the e.o.m. of Zi. Both equations, together, imply

kA
iEi + c.c. = 0 ,

which is equivalent to the scalar e.o.m. for symmetric σ-models.
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4-D Tensor Hierarchies

☞ Finally, the indices of the 3 4-forms DAB , DNPQ, DE
NP are conjugate to those

of the constraints QAB , QNPQ, QNP
E . They are Lagrange multipliers enforcing

them.
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4-D Tensor Hierarchies

☞ Finally, the indices of the 3 4-forms DAB , DNPQ, DE
NP are conjugate to those

of the constraints QAB , QNPQ, QNP
E . They are Lagrange multipliers enforcing

them.

To show that this interpretation is right, we must construct a gauge -invariant action
for these fields, including the embedding tensor .
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4-D Tensor Hierarchies

☞ Finally, the indices of the 3 4-forms DAB , DNPQ, DE
NP are conjugate to those

of the constraints QAB , QNPQ, QNP
E . They are Lagrange multipliers enforcing

them.

To show that this interpretation is right, we must construct a gauge -invariant action
for these fields, including the embedding tensor .

The gauge -invariant action is

S =

∫

{

−2Gij∗DZi ∧ ⋆DZ∗ j∗

+ 2FΣ ∧ GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X [MN ]ΣAM ∧ AN ∧

(

FΣ − ZΣBBB

)

− 2
3X [MN ]

ΣAM ∧ AN ∧
(

dAΣ − 1
4X [PQ]ΣAP ∧ AQ

)

−2DϑM
A ∧ (CA

M + AM ∧ BA)

+2QNP
E(DE

NP − 1
2AN ∧ AP ∧ BE) + 2QABDAB + 2LMNP DMNP

}

,
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4-D Tensor Hierarchies

☞ Finally, the indices of the 3 4-forms DAB , DNPQ, DE
NP are conjugate to those

of the constraints QAB , QNPQ, QNP
E . They are Lagrange multipliers enforcing

them.

To show that this interpretation is right, we must construct a gauge -invariant action
for these fields, including the embedding tensor .

The gauge -invariant action is

S =

∫

{

−2Gij∗DZi ∧ ⋆DZ∗ j∗

+ 2FΣ ∧ GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2ZΣ

BBB

)

− 4
3X [MN ]ΣAM ∧ AN ∧

(

FΣ − ZΣBBB

)

− 2
3X [MN ]

ΣAM ∧ AN ∧
(

dAΣ − 1
4X [PQ]ΣAP ∧ AQ

)

−2DϑM
A ∧ (CA

M + AM ∧ BA)

+2QNP
E(DE

NP − 1
2AN ∧ AP ∧ BE) + 2QABDAB + 2LMNP DMNP

}

,

And the e.o.m. in full glory are....
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4-D Tensor Hierarchies

1
2
δS/δZi = Gij∗D ⋆ DZ∗ j∗ − ∂iGM

+ ∧ GM+ − ⋆ 1
2
∂iV ,

− 1
4
⋆

δS

δAM
= DFM − 1

4
ϑM

A ⋆ jA − 1
3
dX [P Q]M ∧ AP ∧ AQ − 1

2
Q(NM)

EAN ∧ BE

−LMNP AN ∧
`

dAP + 3
8
X [RS]

P AR ∧ AS
´

+ 1
8
QNP

ETE QMAN ∧ AP ∧ AQ

−d(FM − GM ) − X [MN ]
P AN ∧ (FP − GP ) + 1

2
DϑM

A ∧ BA + 1
2
QMP

ECE
P

⋆
δS

δBA

= ϑPA(FP − GP ) + QABBB − DϑM
A ∧ AM − 1

2
QNP

AAN ∧ AP ,

1
2

δS

δϑM
A

= (GA
M − 1

2
⋆ ∂V/∂ϑM

A) − AM ∧ (HA + 1
2

⋆ jA)

+ 1
2
TA NP AM ∧ AN ∧ (F P − G¶) − (F M − GM ) ∧ BA ,

δS

δDAB

= QAB ,
δS

δDE
NP

= QNP
E ,

δS

δDMNP
= LMNP .
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⋆ What happens in higher dimensions? (work in progress)
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