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Supersymmetric non-Abelian monopoles and black holes

1 — Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2,d =4
SUGRASs because there are extreme supersymmetric black-holes in them.
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Supersymmetric non-Abelian monopoles and black holes

1 — Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2,d =4
SUGRASs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian clectric ¢, and magnetic p®
charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p,q, Z(io)‘?
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Supersymmetric non-Abelian monopoles and black holes

1 — Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2,d =4
SUGRASs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian and magnetic p*
charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, 7Zéo)‘ 3
and entropies related to the charges by the moduli-independent attractor formula

S = 7-‘-‘Zﬁxed(p) Q)‘ )

which leads to a microscopic interpretation.
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Supersymmetric non-Abelian monopoles and black holes

1 — Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2,d =4
SUGRASs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian and magnetic p*
charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, 7Zéo)‘ 3
and entropies related to the charges by the moduli-independent attractor formula

S = 7T‘Zﬁxed(pa Q)‘ )

which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hiibscher, Meessen & O., hep-th/0606281.
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Supersymmetric non-Abelian monopoles and black holes

1 — Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2,d =4
SUGRASs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian and magnetic p*
charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, 7Zéo)‘ 3
and entropies related to the charges by the moduli-independent attractor formula

S = 7T‘Zﬁxed(pa Q)‘ )

which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hiibscher, Meessen & O., hep-th/0606281.

Now it is natural to ask what happens in the gauged theories. There are several
possible gaugings in N = 2, d = 4 theories. Let’s review the theory.
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content
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2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets
(i=1,ny, I=12)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Zv A,
i=1,---ny , I=1,2)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Z' A, A\
i=1,---ny , I=1,2)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins

ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
ng Hypermultiplets
(u=1,---4ng , a=1,---2ngy)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
ng Hypermultiplets q"
(u=1,---4ng , a=1,---2ngy)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
ng Hypermultiplets q" Ca
(u=1,---4ng , a=1,---2ngy)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
ny Hypermultiplets q" Ca (0,1/2)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,---ny , I=1,2)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
The supergravity multiplet
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,--ny , I=12)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
The supergravity multiplet AY e,
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(i=1,--ny , I=12)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)
The supergravity multiplet AY e, V1 (1,2,3/2)
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(G=1,---ny , I=1,2)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet AY e, V1 (1,2,3/2)

All vector fields are collectively denoted by A%, = (A4°%,, A?,) and the complex
scalars Z' are described by (LMZ,Z*), MA(Z, Z*)).
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(G=1,---ny , I=1,2)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet AY e, V1 (1,2,3/2)

All vector fields are collectively denoted by A%, = (A4°%,, A?,) and the complex

scalars Z' are described by (LMZ,Z*), MA(Z, Z*)).
All fermions are represented by chiral 4-component spinors:

YsVr, = —V1, , €te.
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Supersymmetric non-Abelian monopoles and black holes

2 - N =2,d=4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2,d = 4 massless supermultiplets are

Bosons  Fermions Spins
ny Vector supermultiplets Zv A, A (0,1,1/2)
(G=1,---ny , I=1,2)
ny Hypermultiplets q" Ca (0,1/2)
(u=1,---4ng , a=1,---2ngy)

The supergravity multiplet AY e, V1 (1,2,3/2)

All vector fields are collectively denoted by A%, = (A4°%,, A?,) and the complex

scalars Z' are described by (LMZ,Z*), MA(Z, Z*)).
All fermions are represented by chiral 4-component spinors:

YsVr, = —V1, , €te.

We are not going to consider hypermultiplets in this seminar.
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Supersymmetric non-Abelian monopoles and black holes

The couplings
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Supersymmetric non-Abelian monopoles and black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;-0,Z 0" 77" .
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Supersymmetric non-Abelian monopoles and black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;-0,Z 0" 77" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Gij» = 0;0;=K,
where K is the Kahler potential.
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Supersymmetric non-Abelian monopoles and black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;-0,Z 0" 77" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Qz-j* = &;c‘?j*lC,

where K is the Kahler potential.

N = 1 supersymmetry requires the Kahler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kahler manifold such that the connection is the

Kahler connection Q; = 9;/C, Q;« = 0;+ K.
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Supersymmetric non-Abelian monopoles and black holes

The couplings

The complex scalars parametrize a Hermitean o-model with kinetic term

2G;-0,Z 0" 77" .
N =1 supersymmetry requires the Hermitean manifold to be a Kahler manifold
Qz-j* = &iaij,

where K is the Kahler potential.

N = 1 supersymmetry requires the Kahler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kahler manifold such that the connection is the

Kahler connection Q; = 9;/C, Q;« = 0;+ K.

The spinors are sections of the bundle: under Kahler transformations

aAnd their covariant derivatives contain the pullback of the Kahler connection 1-form
Q= QdZ" + QpdZ*" |
D,uwlu — {v,u + %Q,u}wl'y .
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Supersymmetric non-Abelian monopoles and black holes
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

- ( EA(<Zz’,ZZ**)> ) |
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

October 21st 2008 University of Groningen Page 4-b



Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

All the couplings of the ungauged theory are completely codified in three objects:
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

All the couplings of the ungauged theory are completely codified in three objects:
[1 The Kahler potential /C.
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

All the couplings of the ungauged theory are completely codified in three objects:
[1 The Kahler potential /C.

[1 The period matrix Max(Z, Z*).
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

All the couplings of the ungauged theory are completely codified in three objects:
[1 The Kahler potential /C.

[1 The period matrix Max(Z, Z*).

[ The :(
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Supersymmetric non-Abelian monopoles and black holes

N = 2 supersymmetry requires the Kahler-Hodge manifold to be a special
Kéhler manifold, so it is the base space of a 2(ny + 1)-dimensional vector bundle
with Sp[2(ny + 1), R] structure group, on which we can define the

_( LMz, Z7)
a (Z2,z%) )~
The symplectic transformations that act on V' also act on the symplectic vector of
Abelian vector field strengths
FA
Fe ( ) .

All the couplings of the ungauged theory are completely codified in three objects:
[1 The Kahler potential /C.

[1 The period matrix Max(Z, Z*).

0 The =( £ A((ZZ:ZZ**)) )

These three elements are not independent. They are related by the constraints of
special Kahler geometry. They can also be derived from a prepotential.
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is
S = /d4:c g| [R+2G;j+0,Z'0"Z*7" + 2SmNys FAWEE

—2ReNps FAH % F> ] .
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is
S = /d4:c g| [R+2G;j+0,Z'0"Z*7" + 2SmNys FAWEE

—2ReNps FAH % F> ] .

These theories have supersymmetric, extreme, black holes, with Abelian charges. In
order to study the situation with non- Abelian vector fields we must gauge these
theories.
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is
S = /d‘laf; g1 [RJr ZQij*ﬁuZic‘?“Z*j* + 2%HL/\/'AEFAWFEW

—2ReNps FAH % F> ] .

These theories have supersymmetric, extreme, black holes, with Abelian charges. In
order to study the situation with non- Abelian vector fields we must gauge these
theories.

We are going to see that, if we do not add hypermultiplets there are just three
possibilities:
1. We gauge an U(1) subgroup of the SU(2) C SU(2) x U(1) R-symmetry group,
using Fayet-Iliopoulos terms.

2. We gauge a subgroup G of the isometry group of the special Kahler manifold in
combination with the U(1) subgroup of the R-symmetry group.

3. If G contains an SU(2) factor we can combine this gauging with the SU(2)
subgroup of the R-symmetry group by using SU(2) Fayet-Iliopoulos terms.
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

o I — 1B
[0 global R-symmetry SU(2) x U(1): { g((jl()g) - :i’m - j\lffb[;“
ITp = W
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

o I — 1B
[0 global R-symmetry SU(2) x U(1): { g((jl()g) - :i’m - ZIJ@QIJW
ITp = W

[0 local [U(1)]™v
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

o I — 1B
[0 global R-symmetry SU(2) x U(1): { g((jl()g) - :i’m - ZIJ@QIJW
Tp = w

[0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

— I _ 2B
[0 global R-symmetry SU(2) x U(1): { g((jl()g) - :i’m - ZIJ@QIJW
Tp = w
0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

— I _ 2B
[0 global R-symmetry SU(2) x U(1): { g((jl()z) - :i’m - ZIJ@QIJW
Tp = w
0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
[0 global SO(ny + 1) rotations of the vectors (Sp|2(ny + 1), R] in the e.o.m.).
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

— I _ 2B
[0 global R-symmetry SU(2) x U(1): { g((jl()z) - :i’m - ZIJ@QIJW
Tp = w
0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
[0 global SO(ny + 1) rotations of the vectors (Sp|2(ny + 1), R] in the e.o.m.).

[l global isometries of the special Kahler metric G;;-.

October 21st 2008 University of Groningen Page 6-g



Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

— I _ 2B
[0 global R-symmetry SU(2) x U(1): { g((jl()z) - :i’m - ZIJ@QIJW
Tp = w
0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
[0 global SO(ny + 1) rotations of the vectors (Sp|2(ny + 1), R] in the e.o.m.).
[l global isometries of the special Kahler metric G;;-.

These transformations are not independent due to Njs.
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

— I _ 2B
[0 global R-symmetry SU(2) x U(1): { g((jl()g) - :i’m - ZIJ@QIJW
Tp = w
0 local [U(1)]™v

This makes it possible to gauge the R-symmetry U(1) C SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
[0 global SO(ny + 1) rotations of the vectors (Sp|2(ny + 1), R] in the e.o.m.).
[l global isometries of the special Kahler metric G;;-.

These transformations are not independent due to AMps:. Furthermore, ordinary
isometries are not symmetries of the full theory:

The isometries must preserve the Kahler, Hodge and special
Kahler structures.
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Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
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Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
[1 The global transformations to consider are

50427; — aA (Z) ) [KA7 KE] — _fAZQKQ )
0; + c.c..

where
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Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
[1 The global transformations to consider are

50427; — aA (Z) ) [KA7 KE] — _fAZQKQ )

where — 0; + c.c..
[1 The vector fields and period matrix must transform as

0, A%, = a” fro®AY,, SoNas = =20 fon" Ne)r -
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where — 0; + c.c..
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[1 The preservation of the metric implies that the K are Killing vectors of G ;-.

October 21st 2008 University of Groningen Page 7-c



Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
[1 The global transformations to consider are

5aZi — aA (Z) ) [KAaKE] — _fAZQKQ )

where — 0; + c.c..
[1 The vector fields and period matrix must transform as

0, A%, = a” fro®AY,, SoNas = =20 fon" Ne)r -

[1 The preservation of the metric implies that the K are Killing vectors of G ;-.

[1 The preservation of the Hermitean structure implies the holomorphicity of the
components of the Killing vectors: = kA" (Z).
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Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
[1 The global transformations to consider are

5aZi — aA (Z) ) [KAaKE] — _fAZQKQ )

where — 0; + c.c..
[1 The vector fields and period matrix must transform as

0, A%, = a” fro®AY,, SoNas = =20 fon" Ne)r -

[1 The preservation of the metric implies that the K are Killing vectors of G ;-.

[1 The preservation of the Hermitean structure implies the holomorphicity of the
components of the Killing vectors: = kA" (Z).

[1 The Kahler structure will be preserved if
1. The Kéhler potential is preserved (up to Kéhler transformations)

LK =0 OK + 0i+IC = M (Z) + N\ (Z7).
2. The Kahler 2-form J = iG;;-dZ "' ANdZ*" is also preserved:
£aJ =0.
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Supersymmetric non-Abelian monopoles and black holes

Then,
dJ =0 = £.J=d(i,.. J),
= d(ix, J) =0, =i, J =dPr, & = 10,
£Aj — O)
for some real O-forms Py: the or Killing
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Supersymmetric non-Abelian monopoles and black holes

Then,
dJ =0 = £.J=d(i,.. J),
= d(ix, J) =0, =i, J =dPr, & = 10,
£ad =0,
for some real O-forms Py: the or Killing . They are
defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, for vanishing Killing

vectors, giving rise to Fayet-Iliopoulos terms that gauge the U (1) R-symmetry group.
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Then,
dJ =0 = £.J=d(i,.. J),
= d(ix, J) =0, =i, J =dPr, & = 10,
£ad =0,
for some real O-forms Py: the or Killing . They are
defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, for vanishing Killing

vectors, giving rise to Fayet-Iliopoulos terms that gauge the U (1) R-symmetry group.

[1 The preservation of the Hodge structure requires that we accompany the
transformations 6, with U(1) transformations. In particular, the spinors must

transform as L
5CX¢I,LL — T3¢ ()‘A - A;k\),lvbf,ua
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Then,
dJ =0 = £.J=d(i,.. J),
= d(ix, J) =0, =i, J =dPr, & = 10,
£ad =0,
for some real O-forms Py: the or Killing . They are
defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, for vanishing Killing

vectors, giving rise to Fayet-Iliopoulos terms that gauge the U (1) R-symmetry group.

[1 The preservation of the Hodge structure requires that we accompany the
transformations 6, with U(1) transformations. In particular, the spinors must

transform as L
5CX¢I,LL — T3¢ ()‘A - A;k\),lvbf,ua

[1 The preservation of the special Kahler structure requires that the
transforms as

(5a£A = —%Ozz()\g — )\%)EA + OéEfZQAEQ )

O = —2a”(As — A}) — a” fop " :
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Supersymmetric non-Abelian monopoles and black holes

[1 This last requirement leads to an expression of the Killing vectors in terms of
i . fan®? in which there is no room for arbitrary constants
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i . fan®? in which there is no room for arbitrary constants

[1 If all these conditions are met, this is a global symmetry of the theory that we
can gauge.
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Summarizing, we can gauge
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Supersymmetric non-Abelian monopoles and black holes

[1 This last requirement leads to an expression of the Killing vectors in terms of
i . fan®? in which there is no room for arbitrary constants

[1 If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. ( ) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
lhep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].
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[1 This last requirement leads to an expression of the Killing vectors in terms of
i . fan®? in which there is no room for arbitrary constants

[1 If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. ( ) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
lhep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. ( ) A non-Abelian subgroup G of the isometry
group of the special Kahler scalar manifold.
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[1 This last requirement leads to an expression of the Killing vectors in terms of
i . fan®? in which there is no room for arbitrary constants

[1 If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. ( ) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
lhep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. ( ) A non-Abelian subgroup G of the isometry
group of the special Kahler scalar manifold.

(a) The group G acts on the spinors as a local U(1) R-symmetry transformation.
THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE. We
call this theory N = 2,d = 4 Super-Einstein- Yang-Mills.
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[1 This last requirement leads to an expression of the Killing vectors in terms of
i . fan®? in which there is no room for arbitrary constants

[1 If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. ( ) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
lhep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. ( ) A non-Abelian subgroup G of the isometry
group of the special Kahler scalar manifold.

(a) The group G acts on the spinors as a local U(1) R-symmetry transformation.
THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE. We
call this theory N = 2,d = 4 Super-Einstein- Yang-Mills.

(b) The group G includes an SU(2) factor and acts on the spinors as a local
U(1) x SU(2) R-symmetry via SU(2) Fayet-Iliopoulos terms. (Work in
progress).
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Supersymmetric non-Abelian monopoles and black holes

3-N=2d=4SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives

0,7° — D,7°=0,7+ gA* k\",

Dy, — @szhz{vu—l—%(Qu—l—gAAu ) Y1
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Supersymmetric non-Abelian monopoles and black holes

3-N=2d=4SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives
0,7° — D,7°=0,7+ gA* k\",
Dubr, — Db, ={V, + %(Qu +9AAM ) Y1

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.
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3-N=2d=4SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives
0,7° — D,7°=0,7+ gA* k\",
Dubr, — Db, ={V, + %(Qu ‘i‘gAAu ) Y1

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.

The action of the bosonic fields takes the form

s = /d% 9] [R+26,,-D,Z°DF2*7" 1 2SmNy s FAW S,

—2ReNps FAWYE>,, —V(Z,Z%)] ,
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Supersymmetric non-Abelian monopoles and black holes

3-N=2d=4SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives
0,7° — D,7°=0,7+ gA* k\",
Dubr, — Db, ={V, + %(Qu ‘i‘gAAu ) Y1

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.

The action of the bosonic fields takes the form

s = /d% 9] [R+26,,-D,Z°DF2*7" 1 2SmNy s FAW S,

—2ReNps PO F>,, —V(Z,2%)] ,

where the potential is given by

V(Z,2*) = —1g*SmN HIA®

'V
-

(just as in N = 1 without )
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Supersymmetric non-Abelian monopoles and black holes

4 — The supersymmetric solutions of N =2,d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.
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Supersymmetric non-Abelian monopoles and black holes

4 — The supersymmetric solutions of N =2,d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration?
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Supersymmetric non-Abelian monopoles and black holes

4 — The supersymmetric solutions of N =2,d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally

supersymmetric theory with bosonic fields ¢® and fermionic fields ¢/ is invariant
under

3.9 ~ ept dc¢! ~ Be + €.
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Supersymmetric non-Abelian monopoles and black holes

4 — The supersymmetric solutions of N =2,d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally

supersymmetric theory with bosonic fields ¢® and fermionic fields ¢/ is invariant
under

3.9 ~ ept dc¢! ~ Be + €.

Then, a bosonic configuration (¢/ = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter ¢®(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

5e¢f‘¢f:0 ~ Je + qbbe =0,
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Supersymmetric non-Abelian monopoles and black holes

4 — The supersymmetric solutions of N =2,d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally

supersymmetric theory with bosonic fields ¢® and fermionic fields ¢/ is invariant
under

3.9 ~ ept dc¢! ~ Be + €.

Then, a bosonic configuration (¢/ = 0) will be invariant under the infinitesimal

supersymmetry transformation generated by the parameter ¢®(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

b
8eq? | ys_o ~ Be+ e =0,
In N=2,d=4 SEYM the fermionic supersymmetry transformations are
Sctbr, = Duer +ergTtyvel, Duer ={V, + 2(Qu + gA ") }er,

SN = @7 I (FT 4 SgL kA e,

October 21st 2008 University of Groningen Page 11-d


http://arXiv.org/ps/0806.1477

Supersymmetric non-Abelian monopoles and black holes

5 — The supersymmetric solutions of N =2, d =4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hiibscher,
Meessen, O., Vaula arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally

supersymmetric theory with bosonic fields ¢® and fermionic fields ¢/ is invariant
under

3.9 ~ ept dc¢! ~ Be + €.

Then, a bosonic configuration (¢/ = 0) will be invariant under the infinitesimal

supersymmetry transformation generated by the parameter ¢®(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

b
5€¢f‘¢f:0 ~ 0e+d’e=0,
And the Killing spinor equations are

5€¢1M = @pﬁ[ + €]JT+,UJ,/7V€J =0.

SN = iRZ' + el (EFF + 59L k" )e = 0.
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Supersymmetric non-Abelian monopoles and black holes

Our goal is to find, for all possible N = 2,d = 4 SEYM theories all the bosonic field

configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.
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Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in
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Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.
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Supersymmetric non-Abelian monopoles and black holes

Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.

2. Constructing bilinears (complex scalar X = %5 1€l e’ 4 real vectors,

V1k = jelyte;, and 3 anti-self-dual 2-forms ®;; = €ryuwey) and find which
equations they must satisfy if € is a Killing spinor.
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Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.

2. Constructing bilinears (complex scalar X = %5 1€l e’ 4 real vectors,
V1k = jelyte;, and 3 anti-self-dual 2-forms ®;; = €ryuwey) and find which
equations they must satisfy if € is a Killing spinor.

3. Finding consistency /integrability conditions from these equations to determine
the general form of the supersymmetric configurations.
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Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.

2. Constructing bilinears (complex scalar X = %5 1€l e’ 4 real vectors,
V1k = jelyte;, and 3 anti-self-dual 2-forms ®;; = €ryuwey) and find which
equations they must satisfy if € is a Killing spinor.

3. Finding consistency /integrability conditions from these equations to determine
the general form of the supersymmetric configurations.

4. Proving directly that all those configurations that satisfy the necessary
conditions indeed admit Killing spinors.
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Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.

2. Constructing bilinears (complex scalar X = %5 1€l e’ 4 real vectors,
V1k = jelyte;, and 3 anti-self-dual 2-forms ®;; = €ryuwey) and find which
equations they must satisfy if € is a Killing spinor.

3. Finding consistency /integrability conditions from these equations to determine
the general form of the supersymmetric configurations.

4. Proving directly that all those configurations that satisfy the necessary
conditions indeed admit Killing spinors.

5. Imposing the independent equations of motion to find all the supersymmetric
solutions.
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Supersymmetric non-Abelian monopoles and black holes

Our goal is to find, for all possible N = 2,d =4 SEYM theories all the bosonic field
configurations e®,(x), A% (), Z'(z) that admit Killing spinors and then impose the
equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)
4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor e.

2. Constructing bilinears (complex scalar X = %5 1€l e’ 4 real vectors,

V1k = jelyte;, and 3 anti-self-dual 2-forms ®;; = €ryuwey) and find which
equations they must satisfy if € is a Killing spinor.

3. Finding consistency /integrability conditions from these equations to determine
the general form of the supersymmetric configurations.

4. Proving directly that all those configurations that satisfy the necessary
conditions indeed admit Killing spinors.

5. Imposing the independent equations of motion to find all the supersymmetric
solutions.

This method does not classify the supersymmetric configurations by their number of
independent Killing spinors. It should be supplemented by the spinorial geometry
method of Papadopoulos, Gran, Roest, Gutowski et al.
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Supersymmetric non-Abelian monopoles and black holes

General results

In general, the vector bilinear V# = V{# is a Killing vector (consistency condition)
that can be timelike or null, providing a preliminary classification of the
configurations. In general
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General results

In general, the vector bilinear V# = V{# is a Killing vector (consistency condition)
that can be timelike or null, providing a preliminary classification of the
configurations. In general

[0 Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.
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General results

In general, the vector bilinear V# = V{# is a Killing vector (consistency condition)
that can be timelike or null, providing a preliminary classification of the
configurations. In general

[0 Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

[1 The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).
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Supersymmetric non-Abelian monopoles and black holes

General results

In general, the vector bilinear V# = V{# is a Killing vector (consistency condition)
that can be timelike or null, providing a preliminary classification of the
configurations. In general

[0 Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

[1 The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N =2,d =4 SEYM theories, the null class only seems to contain
of pp-waves and strings, as in the ungauged case.
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Supersymmetric non-Abelian monopoles and black holes

General results

In general, the vector bilinear V# = V{# is a Killing vector (consistency condition)
that can be timelike or null, providing a preliminary classification of the
configurations. In general

[0 Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

[1 The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N =2,d =4 SEYM theories, the null class only seems to contain
of pp-waves and strings, as in the ungauged case.

The timelike class contains very interesting non-Abelian generalizations of the
Abelian black-hole solutions.

We are going to focus on this case.
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Supersymmetric non-Abelian monopoles and black holes

Our results for the timelike case can be

summarized in the following
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Supersymmetric non-Abelian monopoles and black holes

RECIPE:

0 Find a set of Yang-Mills fields A%,,, and functions Z? in R satisfying

% €ryz FAQE — —% QEIA 5
which is the Bogomol'nyi equation satisfied by known magnetic monopole

solutions.
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Supersymmetric non-Abelian monopoles and black holes

RECIPE:

0 Find a set of Yang-Mills fields A%,,, and functions Z? in R satisfying

% €ryz FAQE — —% QEIA 5
which is the Bogomol'nyi equation satisfied by known magnetic monopole

solutions.
[ Use the above solution to find a solution of

~ ~

DmOmIn = 39° [facs far’ I7I°] Ia,

which is a linear equation for the 7,s alone.
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RECIPE:

0 Find a set of Yang-Mills fields A%,,, and functions Z? in R satisfying

% €ryz FAQE — —% QEIA 5
which is the Bogomol'nyi equation satisfied by known magnetic monopole

solutions.
[ Use the above solution to find a solution of

~ ~

DmOmIn = 39° [facs far’ I7I°] Ia,

which is a linear equation for the 7, s alone. For compact gauge groups a
possible solution is always

IA OCIA.
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Supersymmetric non-Abelian monopoles and black holes

RECIPE:

0 Find a set of Yang-Mills fields A%,,, and functions Z? in R satisfying

% €ryz FAQE — —% QEIA 5
which is the Bogomol'nyi equation satisfied by known magnetic monopole

solutions.
[ Use the above solution to find a solution of

~ ~

DmOmIn = 39° [facs far’ I7I°] Ia,

which is a linear equation for the 7, s alone. For compact gauge groups a
possible solution is always

IA OCIA.

The real 1= (Z*,7,) determines completely the solution. The
physical fields g,,., AL u, Z* are derived from them as follows:
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Supersymmetric non-Abelian monopoles and black holes
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Supersymmetric non-Abelian monopoles and black holes

00 Solve the stabilization equations to find R* and 7. N.B.:
78 = Sm(LA/X), Iy = Sm(My/X),
RA = Re(LA) X)), Ry = Re(My/X).

These equations are strongly model-dependent and can be derived from the
prepotential.
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Supersymmetric non-Abelian monopoles and black holes

00 Solve the stabilization equations to find R* and 7. N.B.:
74 = Sm(LA/X), Iy = Sm(Myp/X),

RY = Re(Lr/ X)), Ra = Re(My/X).

These equations are strongly model-dependent and can be derived from the
prepotential.

[1 The scalars are, then, given by

Lo L)X R+ T

L0 L0/X  RO44Z0°

Z' =
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Supersymmetric non-Abelian monopoles and black holes

Solve the stabilization equations to find R* and 2. N.B.:
78 = Sm(LA/X), Iy = Sm(My/X),

RA = Re(LA) X)), Ry = Re(M,y/X).
These equations are strongly model-dependent and can be derived from the
prepotential.
The scalars are, then, given by
Lo L)X R+ T
L0 L0/X  RO44Z0°

Z' =

We find the 1-form on R® & by solving the equation
(d)ay = 2€0y:( T | D,T) = 11D, I — IT*D, s,

(if 75 o< Z® then & = 0)
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Supersymmetric non-Abelian monopoles and black holes

00 Solve the stabilization equations to find R* and 7. N.B.:
74 = Sm(LA/X), Iy = Sm(Myp/X),

RAY = Re(LPr/N), Ry = Re(My/X).

These equations are strongly model-dependent and can be derived from the
prepotential.

[1 The scalars are, then, given by

Lo L)X R+ T

L0 L0/X  RO44Z0°

Z' =

[0 We find the 1-form on R? & by solving the equation
(d)ay = 2€0y:( T | D,T) = 11D, I — IT*D, s,

(if 75 o< Z® then & = 0)

[1 and compute

2X]* = (R|I)™.
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Supersymmetric non-Abelian monopoles and black holes
[1 The physical gauge field is given by
AD dat = —V2| X|PRA(dt + ) + AP pdx®,
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Supersymmetric non-Abelian monopoles and black holes
[1 The physical gauge field is given by
AD dat = —V2| X|PRA(dt + ) + AP pdx®,

[1 and the spacetime metric is

ds® = 2|X|%(dt + &)* — dr*dx” .

2| X
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
. We make the “hedgehog” Ansatz

% = I n%, A%, = ® ,,,° nb, nazxa/r, r=vVazbxb.
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
. We make the “hedgehog” Ansatz

% = I n", A%, = ® ,,,° nb, nazaf;a/r, r=vVazbxb.

A 2-parameter (u and p) family of solutions is given by

10) = Y2H,u), H() = cot(dp) - L
_oH _ - _ !
o(r) = EGP(,W'), Go(r) = . Sh(r )
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
. We make the “hedgehog” Ansatz

% = I n", A%, = ® ,,,° nb, nazaf;a/r, r=vVazbxb.

A 2-parameter (u and p) family of solutions is given by

10) = Y2H,u), H() = cot(dp) - L
_oH _ - _ !
o(r) = EGP(,W'), Go(r) = . Sh(r )

The two most interesting cases are p = 0, 0.
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Supersymmetric non-Abelian monopoles and black holes

6 — Monopoles

The p = 0 solution can be written in the form

1 1
Aam — @ b H G G _ -
1 & Golur), Golr) = -
2 1
7¢ = Q Ho(ur) n®, Ho(r) = cothr — —.
g r

The profiles of the functions G and H are

[

o o
D (o]
1 Y T I B B Y |

©
~

©
(V)

o

o
=
o
N
o
w
o
N
o
[
o

7% is regular at r = 0 for p = 0, and describes the 't Hooft-Polyakov monopole.
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Supersymmetric non-Abelian monopoles and black holes

7 — Black Hedgehogs

In the limit p — oo we find the “black hedgehog” solution

1
1¢ = —\/§<Ioo + —) n®
gr
b
Aam — <C5mba n_
qgr
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Supersymmetric non-Abelian monopoles and black holes

7 — Black Hedgehogs

In the limit p — oo we find the “black hedgehog” solution

1
1¢ = —\/§<Ioo + —) n®
gr
b
n
Aam = €mba — .
gr
The YM field is at r =0 but in EYM theory may
cover it by an event horizon.
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Supersymmetric non-Abelian monopoles and black holes

7 — Black Hedgehogs

In the limit p — oo we find the “black hedgehog” solution

1
1¢ = —\/§<IOO + —) n®
gr
b
Aam — <C5mba n_ .
qr
The YM field is at r =0 but in EYM theory

cover it by an event horizon.

The possible existence of an event horizon covering the
studied in specific models.

may

at r = 0 has to be

October 21st 2008 University of Groningen
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Supersymmetric non-Abelian monopoles and black holes
Before finding R and |.\'| we have to find the 7,s solving
DmDmIn = 39° |fact fayr' I2I2] 1o,
and solve the staticity constraint

(T | DmI)=0.

October 21st 2008 University of Groningen Page 22



Supersymmetric non-Abelian monopoles and black holes
Before finding R and |.\'| we have to find the 7,s solving
DmDmIn = 39° |fact fayr' I2I2] 1o,
and solve the staticity constraint

(T |®D,1)=0.
In this simple case

g
T, = 2J I°,
27

where J is an arbitrary constant.
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Supersymmetric non-Abelian monopoles and black holes

Before finding R and |.\'| we have to find the 7,s solving

DmDmIn = 3¢* [fat far® TI2] 1o,
and solve the staticity constraint

(T | D) =0.

In this simple case
Y
Lo = 3 I )
QJ

where J is an arbitrary constant.

If we split the index A into an a-index and an u-index labeling the ungauged
directions, the staticity constraint only acts non-trivially on the ungauged part:

Z,d1* — 1*d7, + 7, ®1* — 1°®1, = 1, dI* — I dZ, = 0,

which we can solve as in the Abelian case or just set to zero.
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Supersymmetric non-Abelian monopoles and black holes

Before finding R and |.\'| we have to find the 7,s solving

DmDmIn = 3¢* [fat far® TI2] 1o,
and solve the staticity constraint

(T | DmI)=0.

In this simple case
Y
Lo = 3 I )
: 2j

where J is an arbitrary constant.

If we split the index A into an a-index and an u-index labeling the ungauged
directions, the staticity constraint only acts non-trivially on the ungauged part:

Z,d1* — 1*d7, + 7, ®1* — 1°®1, = 1, dI* — I dZ, = 0,

which we can solve as in the Abelian case or just set to zero.

This determines completely the family of solutions but, in order to find explicit
expressions for R and |.X'| and the spacetime metric we must solve the stabilization
equations which depend on the specific model considered.
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a @3 model whose prepotential reads
F=1tms X" X%, n = diag(—, [+]") .
The Kahler potential is

e® =177, |ZP?<1.
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a @3 model whose prepotential reads
f:ﬁnAgXAXE, n = diag( —, [+]") .
The Kahler potential is
e® =177, |ZP?<1.
The stabilization equations are solved by

RA = —%77/\2 IE , RA = 277AE IE,
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a @3 model whose prepotential reads
F=1tms X" X%, n = diag(—, [+]") .
The Kahler potential is

e® =177, |ZP?<1.

The stabilization equations are solved by

RA = —%77/\2 IE , RA = 277AE IE,
and the metric function is given by
1
~9rr = gy = o ThmanTY - 2Ty = g [I9% - 0% 4 40% - 417
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a @3 model whose prepotential reads
F=1tms X" X%, n = diag(—, [+]") .
The Kahler potential is

e® =177, |ZP?<1.

The stabilization equations are solved by

RA = —%77/\2 IE , RA = 277AE IE,
and the metric function is given by
1
~9rr = gy = o ThmanTY - 2Ty = g [I9% - 0% 4 40% - 417

With the hedgehog Ansatz 792 = 72 and SU(2) effectively reduces to a U(1) in the
metric!
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a @3 model whose prepotential reads
F=1tms X" X%, n = diag(—, [+]") .
The Kahler potential is

e® =177, |ZP?<1.

The stabilization equations are solved by

RA = —%77/\2 IE , RA = ZHAE IE,
and the metric function is given by
1
9 =5 L AT — 2T\ Ty = L[Z0% — 79?4 47,2 — 47.7] .

With the hedgehog Ansatz 792 = 72 and SU(2) effectively reduces to a U(1) in the
metric! For black holes with finite entropy (attractor) we need at least two U(1)s.

However, since Z¢ is bound in the monopole, we do not need Z°, 7, and we can set
them to constants.
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Supersymmetric non-Abelian monopoles and black holes

Normalizing to have asymptotic flatness, we get, for the monopole

1
—9rr =1 + /’LQ [g_z + j2] [1 - HQ(MT)} ;
which is completely regular and describes an object of mass
M= pull/g® + T7] .

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)
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Supersymmetric non-Abelian monopoles and black holes

Normalizing to have asymptotic flatness, we get, for the monopole
1
—9rr =1 + /’LQ [g_z + j2] [1 - HQ(MT)} ;
which is completely regular and describes an object of mass

M= pull/g® + T7] .

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)

To embed the black hedgehog into this model and get a regular solution (|Z]? < 1)

we need non-trivial Z° or 7. The conditions for regularity are the same as in an
standard, Abelian U(1) x U(1) black hole of this model:

M = Z2p° +Zoqo —2u [1/g*> + T3] >0,

A1 0y A(00)2 2M21 2 2 0
e §[(p)+(90)]—g—2[/9 + J?| >0,

and can always be satisfied.
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Supersymmetric non-Abelian monopoles and black holes

Normalizing to have asymptotic flatness, we get, for the monopole
1
—9rr =1 + /’L2 [g_z + j2] [1 - HQ(MT)} ;
which is completely regular and describes an object of mass

M = ull/¢* + T%] .

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)

To embed the black hedgehog into this model and get a regular solution (|Z]? < 1)

we need non-trivial Z° or 7. The conditions for regularity are the same as in an
standard, Abelian U(1) x U(1) black hole of this model:

M = Z2p° +Zoewqo —2u[1/g* + T?| >0,

A 1 0 A( )2 2“21 2 2
o s1(P")° +4(q0)*] — ?[/9 + J?%| >0,

and can always be satisfied.

How does the attractor mechanism work in this solution?
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

*Work to appear.
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the NV = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

*Work to appear.
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the NV = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

[0 Monopoles ('t Hooft-Polyakov’s in SU(2) but also Weinberg’s in SO(5) and
Wilkinson-Bais’ in SU(N)?).

*Work to appear.
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the NV = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

[0 Monopoles ('t Hooft-Polyakov’s in SU(2) but also Weinberg’s in SO(5) and
Wilkinson-Bais’ in SU(N)?).
[1 Regular extreme black-holes with truly non-Abelian hair (i.e. not just

Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

*Work to appear.

October 21st 2008 University of Groningen Page 25-c


http://arXiv.org/ps/0712.1530

Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the N = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

[0 Monopoles ('t Hooft-Polyakov’s in SU(2) but also Weinberg’s in SO(5) and
Wilkinson-Bais’ in SU(N)?).

[1 Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

[1 Regular extreme black-holes with Bartnik-McKinnon’s-like clouds of
non-Abelian YM field close to the horizon P. Meessen arXiv:0803.0684 and
work in progress.

*Work to appear.
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the N = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

[0 Monopoles ('t Hooft-Polyakov’s in SU(2) but also Weinberg’s in SO(5) and
Wilkinson-Bais’ in SU(N)?).

[1 Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

[1 Regular extreme black-holes with Bartnik-McKinnon’s-like clouds of
non-Abelian YM field close to the horizon P. Meessen arXiv:0803.0684 and
work in progress.

The embedding of these solutions in supergravity should provide a starting point
for their embedding in superstring theory.

*Work to appear.
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Supersymmetric non-Abelian monopoles and black holes

8 — Conclusions

We have found the general way of constructing all the N = 2,d =4
Einstein-Yang-Mills SUGRAs finding an interesting class of non-Abelian
solutions that describe in a fully analytic form

[0 Monopoles ('t Hooft-Polyakov’s in SU(2) but also Weinberg’s in SO(5) and
Wilkinson-Bais’ in SU(N)?).

[1 Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

[1 Regular extreme black-holes with Bartnik-McKinnon’s-like clouds of
non-Abelian YM field close to the horizon P. Meessen arXiv:0803.0684 and
work in progress.

The embedding of these solutions in supergravity should provide a starting point
for their embedding in superstring theory.

There is still much work to do to classify all the possible supersymmetric
solutions....

*Work to appear.
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