
Supersymmetric non-Abelian
monopoles and black holes

in N=2,d=4
Super-Einstein-Yang-Mills

Theories

Tomás Ort́ın

(I.F.T. UAM/CSIC, Madrid)

Seminar given on the 21st of October of 2008 at the University of Groningen

Based on 0802.1799 and 0806.1477.
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Supersymmetric non-Abelian monopoles and black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.
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Supersymmetric non-Abelian monopoles and black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

October 21st 2008 University of Groningen Page 1-a



Supersymmetric non-Abelian monopoles and black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.
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There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hübscher, Meessen & O., hep-th/0606281.
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Supersymmetric non-Abelian monopoles and black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hübscher, Meessen & O., hep-th/0606281.

Now it is natural to ask what happens in the gauged theories. There are several
possible gaugings in N = 2, d = 4 theories. Let’s review the theory.
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2 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets
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2 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)
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2 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)
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(u = 1, · · · 4nH , α = 1, · · · 2nH)
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a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z∗)).
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Supersymmetric non-Abelian monopoles and black holes

2 – N = 2, d = 4 ungauged SUGRA coupled to vector multiplets

The field content

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ) and the complex

scalars Zi are described by constrained symplectic sections (LΛ(Z,Z∗),MΛ(Z,Z∗)).
All fermions are represented by chiral 4-component spinors:

γ5ψIµ = −ψIµ , etc.

We are not going to consider hypermultiplets in this seminar.
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2Gij∗∂µZ
i∂µZ∗ j∗

.
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i∂µZ∗ j∗

.

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold
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where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
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Supersymmetric non-Abelian monopoles and black holes

The couplings

The complex scalars parametrize a Hermitean σ-model with kinetic term

2Gij∗∂µZ
i∂µZ∗ j∗

.

N = 1 supersymmetry requires the Hermitean manifold to be a Kähler manifold

Gij∗ = ∂i∂j∗K ,

where K is the Kähler potential.

Local N = 1 supersymmetry requires the Kähler manifold to be a Hodge manifold,
i.e. a complex line bundle over a Kähler manifold such that the connection is the
Kähler connection Qi = ∂iK ,Qj∗ = ∂j∗K.

The spinors are sections of the bundle: under Kähler transformations

δfK = f(Z) + f∗(Z∗) , δfψIµ = − 1
4 [f(Z) − f∗(Z∗)]ψIµ ,

and their covariant derivatives contain the pullback of the Kähler connection 1-form
Q̂ ≡ QidZ

i + Qi∗dZ
∗i∗

DµψIν = {∇µ + i
2Qµ}ψIν .
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Supersymmetric non-Abelian monopoles and black holes

Local N = 2 supersymmetry requires the Kähler-Hodge manifold to be a special
Kähler manifold, so it is the base space of a 2(nV + 1)-dimensional vector bundle
with Sp[2(nV + 1),R] structure group, on which we can define the constrained
symplectic section

V =

(

LΛ(Z,Z∗)
MΛ(Z,Z∗)

)

.
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Local N = 2 supersymmetry requires the Kähler-Hodge manifold to be a special
Kähler manifold, so it is the base space of a 2(nV + 1)-dimensional vector bundle
with Sp[2(nV + 1),R] structure group, on which we can define the constrained
symplectic section

V =

(

LΛ(Z,Z∗)
MΛ(Z,Z∗)

)

.

The symplectic transformations that act on V also act on the symplectic vector of
Abelian vector field strengths

F =

(

FΛ

FΛ

)

.

All the couplings of the ungauged theory are completely codified in three objects:

☞ The Kähler potential K.

☞ The period matrix NΛΣ(Z,Z∗).

☞ The symplectic sections V =

(

LΛ(Z,Z∗)
MΛ(Z,Z∗)

)

.

These three elements are not independent. They are related by the constraints of
special Kähler geometry. They can also be derived from a prepotential.
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗

+ 2ℑmNΛΣF
Λ µνFΣ

µν

−2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

]

.
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗

+ 2ℑmNΛΣF
Λ µνFΣ

µν

−2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

]

.

These theories have supersymmetric, extreme, black holes, with Abelian charges. In
order to study the situation with non- Abelian vector fields we must gauge these
theories.
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Supersymmetric non-Abelian monopoles and black holes

The action of the bosonic fields

The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗

+ 2ℑmNΛΣF
Λ µνFΣ

µν

−2ℜeNΛΣF
Λ µν ⋆ FΣ

µν

]

.

These theories have supersymmetric, extreme, black holes, with Abelian charges. In
order to study the situation with non- Abelian vector fields we must gauge these
theories.

We are going to see that, if we do not add hypermultiplets there are just three
possibilities:

1. We gauge an U(1) subgroup of the SU(2) ⊂ SU(2) × U(1) R-symmetry group,
using Fayet-Iliopoulos terms.

2. We gauge a subgroup G of the isometry group of the special Kähler manifold in
combination with the U(1) subgroup of the R-symmetry group.

3. If G contains an SU(2) factor we can combine this gauging with the SU(2)
subgroup of the R-symmetry group by using SU(2) Fayet-Iliopoulos terms.
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The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

➳ global R-symmetry SU(2) × U(1):

{

U(1) −→ ψ′
Iµ = e

i
4
βψIµ ,

SU(2) −→ ψ′
Iµ = ΛI

JψJµ .
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The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

➳ global R-symmetry SU(2) × U(1):

{

U(1) −→ ψ′
Iµ = e

i
4
βψIµ ,

SU(2) −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV

This makes it possible to always gauge the R-symmetry U(1) ⊂ SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).
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{

U(1) −→ ψ′
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i
4
βψIµ ,

SU(2) −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV

This makes it possible to always gauge the R-symmetry U(1) ⊂ SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:
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Supersymmetric non-Abelian monopoles and black holes

The global symmetries to be gauged

The ungauged theory has, by construction, the following symmetries (apart from
g.c.t.s and local Lorentz t.)

➳ global R-symmetry SU(2) × U(1):

{

U(1) −→ ψ′
Iµ = e

i
4
βψIµ ,

SU(2) −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV

This makes it possible to always gauge the R-symmetry U(1) ⊂ SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:

➠ global SO(nV + 1) rotations of the vectors (Sp[2(nV + 1),R] in the e.o.m.).
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The ungauged theory has, by construction, the following symmetries (apart from
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{

U(1) −→ ψ′
Iµ = e
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4
βψIµ ,

SU(2) −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV

This makes it possible to always gauge the R-symmetry U(1) ⊂ SU(2) using just one
vector field (Fayet-Iliopoulos terms). In order to gauge the full SU(2) the vector
multiplets must have this symmetry (see below).

Additionally, it may have the following invariances:

➠ global SO(nV + 1) rotations of the vectors (Sp[2(nV + 1),R] in the e.o.m.).

➠ global isometries of the special Kähler metric Gij∗ .

These transformations are not independent due to NΛΣ. Furthermore, ordinary
isometries are not symmetries of the full theory:

The isometries must preserve the Kähler, Hodge and special
Kähler structures.
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Supersymmetric non-Abelian monopoles and black holes

These conditions can be formally expressed as follows:
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These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..
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ΛAΩ
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ΓNΣ)Γ .
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➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .
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➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .

➛ The preservation of the Hermitean structure implies the holomorphicity of the
kΛ

i components of the Killing vectors: kΛ
i = kΛ

i(Z).
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➛ The global transformations to consider are
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i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..

➛ The vector fields and period matrix must transform as

δαA
Λ

µ = αΣfΣΩ
ΛAΩ

µ , δαNΛΣ = −2αΩfΩ(Λ
ΓNΣ)Γ .

➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .

➛ The preservation of the Hermitean structure implies the holomorphicity of the
kΛ

i components of the Killing vectors: kΛ
i = kΛ

i(Z).

➛ The Kähler structure will be preserved if
1. The Kähler potential is preserved (up to Kähler transformations)

£ΛK ≡ kΛ
i∂iK + k∗Λ

i∗∂i∗K = λΛ(Z) + λ∗Λ(Z∗) .

2. The Kähler 2-form J = iGij∗dZi ∧ dZ∗j∗

is also preserved:

£ΛJ = 0 .

October 21st 2008 University of Groningen Page 7-e



Supersymmetric non-Abelian monopoles and black holes

Then,

dJ = 0 ⇒ £ΛJ = d(ikΛ
J ) ,

£ΛJ = 0 ,







⇒ d(ikΛ
J ) = 0 , ⇒ ikΛ

J = dPΛ ,⇔ kΛ i∗ = i∂i∗PΛ .

for some real 0-forms PΛ: the momentum maps or Killing prepotentials.
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



⇒ d(ikΛ
J ) = 0 , ⇒ ikΛ

J = dPΛ ,⇔ kΛ i∗ = i∂i∗PΛ .

for some real 0-forms PΛ: the momentum maps or Killing prepotentials. They are
defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, momentum maps for vanishing Killing
vectors, giving rise to Fayet-Iliopoulos terms that gauge the U(1) R-symmetry group.
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defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, momentum maps for vanishing Killing
vectors, giving rise to Fayet-Iliopoulos terms that gauge the U(1) R-symmetry group.

➛ The preservation of the Hodge structure requires that we accompany the
transformations δα with U(1) transformations. In particular, the spinors must
transform as

δαψIµ = − 1
4α

Λ(λΛ − λ∗Λ)ψIµ ,
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for some real 0-forms PΛ: the momentum maps or Killing prepotentials. They are
defined up to an additive real constant. In N = 1 theories (but not in N = 2, as we
will see) it is possible to have constant, momentum maps for vanishing Killing
vectors, giving rise to Fayet-Iliopoulos terms that gauge the U(1) R-symmetry group.

➛ The preservation of the Hodge structure requires that we accompany the
transformations δα with U(1) transformations. In particular, the spinors must
transform as

δαψIµ = − 1
4α

Λ(λΛ − λ∗Λ)ψIµ ,

➛ The preservation of the special Kähler structure requires that the symplectic
section transforms as

δαLΛ = − 1
2α

Σ(λΣ − λ∗Σ)LΛ + αΣfΣΩ
ΛLΩ ,

δαMΛ = − 1
2α

Σ(λΣ − λ∗Σ)MΛ − αΣfΣΛ
ΩMΩ ,
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Supersymmetric non-Abelian monopoles and black holes

➛ This last requirement leads to an expression of the Killing vectors in terms of
LΛ,MΛ, fΛΣ

Ω in which there is no room for arbitrary constants
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➛ This last requirement leads to an expression of the Killing vectors in terms of
LΛ,MΛ, fΛΣ

Ω in which there is no room for arbitrary constants

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.
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➛ This last requirement leads to an expression of the Killing vectors in terms of
LΛ,MΛ, fΛΣ

Ω in which there is no room for arbitrary constants

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
[hep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

October 21st 2008 University of Groningen Page 9-c



Supersymmetric non-Abelian monopoles and black holes
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Ω in which there is no room for arbitrary constants

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
[hep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. (If the above conditions are met) A non-Abelian subgroup G of the isometry
group of the special Kähler scalar manifold.
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➛ This last requirement leads to an expression of the Killing vectors in terms of
LΛ,MΛ, fΛΣ

Ω in which there is no room for arbitrary constants

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
[hep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. (If the above conditions are met) A non-Abelian subgroup G of the isometry
group of the special Kähler scalar manifold.

(a) The group G acts on the spinors as a local U(1) R-symmetry transformation.
THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE. We
call this theory N = 2, d = 4 Super-Einstein-Yang-Mills.
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➛ This last requirement leads to an expression of the Killing vectors in terms of
LΛ,MΛ, fΛΣ

Ω in which there is no room for arbitrary constants

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) subgroup of the R-symmetry group, via Fayet-Iliopoulos terms.
The timelike supersymmetric solutions of these theories have been classified in
Caldarelli & Klemm, hep-th/0307022, Cacciatori, Caldarelli, Klemm & Mansi,
hep-th/0406238, Cacciatori, Caldarelli, Klemm, Mansi & Roest, arXiv:0704.0247
[hep-th] and Cacciatori, Klemm, Mansi & Zorzan, arXiv:0804.0009 [hep-th].

2. (If the above conditions are met) A non-Abelian subgroup G of the isometry
group of the special Kähler scalar manifold.

(a) The group G acts on the spinors as a local U(1) R-symmetry transformation.
THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE. We
call this theory N = 2, d = 4 Super-Einstein-Yang-Mills.

(b) The group G includes an SU(2) factor and acts on the spinors as a local
U(1) × SU(2) R-symmetry via SU(2) Fayet-Iliopoulos terms. (Work in
progress).
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Supersymmetric non-Abelian monopoles and black holes

3 – N = 2, d = 4 SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives

∂µZ
i −→ DµZ

i ≡ ∂µZ
i + gAΛ

µkΛ
i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν
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To gauge the theory we replace the standard by gauge-covariant derivatives

∂µZ
i −→ DµZ

i ≡ ∂µZ
i + gAΛ

µkΛ
i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.
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i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.

The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗

+ 2ℑmNΛΣF
Λ µνFΣ

µν

−2ℜeNΛΣF
Λ µν⋆FΣ

µν − V (Z,Z∗)
]

,
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3 – N = 2, d = 4 SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives

∂µZ
i −→ DµZ

i ≡ ∂µZ
i + gAΛ

µkΛ
i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g as we will see.

The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗

+ 2ℑmNΛΣF
Λ µνFΣ

µν

−2ℜeNΛΣF
Λ µν⋆FΣ

µν − V (Z,Z∗)
]

,

where the potential is given by

V (Z,Z∗) = − 1
4g

2ℑmN−1|ΛΣPΛPΣ ≥ 0 .

(just as in N = 1 without superpotential!)
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Supersymmetric non-Abelian monopoles and black holes

4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hübscher,
Meessen, O., Vaulà arXiv:0806.1477.

, ,

,
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4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hübscher,
Meessen, O., Vaulà arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally
supersymmetric theory with bosonic fields φb and fermionic fields φf is invariant
under

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .
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,
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4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hübscher,
Meessen, O., Vaulà arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally
supersymmetric theory with bosonic fields φb and fermionic fields φf is invariant
under

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .

Then, a bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter ǫα(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

δǫφ
f
∣

∣

φf=0
∼ ∂ǫ+ φbǫ = 0 ,

, ,

,
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4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hübscher,
Meessen, O., Vaulà arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally
supersymmetric theory with bosonic fields φb and fermionic fields φf is invariant
under

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .

Then, a bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter ǫα(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

δǫφ
f
∣

∣

φf=0
∼ ∂ǫ+ φbǫ = 0 ,

In N = 2, d = 4 SEYM the fermionic supersymmetry transformations are

δǫψI µ = DµǫI + εIJT
+

µνγ
νǫJ , DµǫI ≡ {∇µ + i

2 (Qµ + gAΛ
µPΛ)}ǫI ,

δǫλ
Ii = i 6DZiǫI + εIJ ( 6Gi + + 1

2gL∗ΛkΛ
i)ǫJ ,
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5 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric solutions of all these theories have been classified in Hübscher,
Meessen, O., Vaulà arXiv:0806.1477.

What do we mean by supersymmetric (or BPS) field configuration? A locally
supersymmetric theory with bosonic fields φb and fermionic fields φf is invariant
under

δǫφ
b ∼ ǭφf , δǫφ

f ∼ ∂ǫ+ φbǫ .

Then, a bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter ǫα(x) if it satisfies the
Killing Spinor Equations (KSEs) (one for each f)

δǫφ
f
∣

∣

φf=0
∼ ∂ǫ+ φbǫ = 0 ,

And the Killing spinor equations are

δǫψI µ = DµǫI + εIJT
+

µνγ
νǫJ = 0 .

δǫλ
Ii = i 6DZiǫI + εIJ ( 6Gi + + 1

2gL∗ΛkΛ
i)ǫJ= 0 .
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Supersymmetric non-Abelian monopoles and black holes

Our goal is to find, for all possible N = 2, d = 4 SEYM theories all the bosonic field
configurations ea

µ(x), AΛ
µ(x), Zi(x) that admit Killing spinors and then impose the

equations of motion to find supersymmetric solutions.
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Our goal is to find, for all possible N = 2, d = 4 SEYM theories all the bosonic field
configurations ea

µ(x), AΛ
µ(x), Zi(x) that admit Killing spinors and then impose the

equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)

4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor ǫ.
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Supersymmetric non-Abelian monopoles and black holes

Our goal is to find, for all possible N = 2, d = 4 SEYM theories all the bosonic field
configurations ea

µ(x), AΛ
µ(x), Zi(x) that admit Killing spinors and then impose the

equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)

4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor ǫ.

2. Constructing bilinears (complex scalar X = 1
2εIJ ǭ

IǫJ , 4 real vectors,

V I
J

µ = iǭIγµǫJ , and 3 anti-self-dual 2-forms ΦIJ µν = ǭIγµνǫJ) and find which
equations they must satisfy if ǫ is a Killing spinor.
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equations of motion to find supersymmetric solutions.

Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)

4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor ǫ.

2. Constructing bilinears (complex scalar X = 1
2εIJ ǭ

IǫJ , 4 real vectors,

V I
J

µ = iǭIγµǫJ , and 3 anti-self-dual 2-forms ΦIJ µν = ǭIγµνǫJ) and find which
equations they must satisfy if ǫ is a Killing spinor.

3. Finding consistency/integrability conditions from these equations to determine
the general form of the supersymmetric configurations.
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equations they must satisfy if ǫ is a Killing spinor.

3. Finding consistency/integrability conditions from these equations to determine
the general form of the supersymmetric configurations.

4. Proving directly that all those configurations that satisfy the necessary
conditions indeed admit Killing spinors.

5. Imposing the independent equations of motion to find all the supersymmetric
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Our goal is to find, for all possible N = 2, d = 4 SEYM theories all the bosonic field
configurations ea
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Our method, (pioneered by Gauntlett and collaborators ( Class. Quant. Grav. 20 (2003)

4587 [hep-th/0209114]), consists in

1. Assuming that the configuration admits one Killing spinor ǫ.

2. Constructing bilinears (complex scalar X = 1
2εIJ ǭ

IǫJ , 4 real vectors,

V I
J

µ = iǭIγµǫJ , and 3 anti-self-dual 2-forms ΦIJ µν = ǭIγµνǫJ) and find which
equations they must satisfy if ǫ is a Killing spinor.

3. Finding consistency/integrability conditions from these equations to determine
the general form of the supersymmetric configurations.

4. Proving directly that all those configurations that satisfy the necessary
conditions indeed admit Killing spinors.

5. Imposing the independent equations of motion to find all the supersymmetric
solutions.

This method does not classify the supersymmetric configurations by their number of
independent Killing spinors. It should be supplemented by the spinorial geometry
method of Papadopoulos, Gran, Roest, Gutowski et al.
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General results

In general, the vector bilinear V µ ≡ V I
I
µ is a Killing vector (consistency condition)

that can be timelike or null, providing a preliminary classification of the
configurations. In general
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configurations. In general

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.
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that can be timelike or null, providing a preliminary classification of the
configurations. In general

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

➳ The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N = 2, d = 4 SEYM theories, the null class only seems to contain superpositions
of pp-waves and strings, as in the ungauged case.
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Supersymmetric non-Abelian monopoles and black holes

General results

In general, the vector bilinear V µ ≡ V I
I
µ is a Killing vector (consistency condition)

that can be timelike or null, providing a preliminary classification of the
configurations. In general

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

➳ The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N = 2, d = 4 SEYM theories, the null class only seems to contain superpositions
of pp-waves and strings, as in the ungauged case.

The timelike class contains very interesting non-Abelian generalizations of the
Abelian black-hole solutions.

We are going to focus on this case.
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Supersymmetric non-Abelian monopoles and black holes

Our results for the timelike case can be

summarized in the following
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Supersymmetric non-Abelian monopoles and black holes

RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions.
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Supersymmetric non-Abelian monopoles and black holes

RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions.

☞ Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone.
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[
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which is a linear equation for the IΛs alone. For compact gauge groups a
possible solution is always

IΛ ∝ IΛ .
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RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

1
2 ǫxyz F̃

Λ
xy = − 1√

2
D̃zIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions.

☞ Use the above solution to find a solution of

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

which is a linear equation for the IΛs alone. For compact gauge groups a
possible solution is always

IΛ ∝ IΛ .

The real symplectic vector I = (IΛ, IΛ) determines completely the solution. The
physical fields gµν , A

Λ
µ, Z

i are derived from them as follows:
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Supersymmetric non-Abelian monopoles and black holes

☞ Solve the stabilization equations to find RΛ and RΛ. N.B.:

IΛ ≡ ℑm(LΛ/X) , IΛ ≡ ℑm(MΛ/X) ,

RΛ ≡ ℜe(LΛ/X) , RΛ ≡ ℜe(MΛ/X) .

These equations are strongly model-dependent and can be derived from the
prepotential.
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RΛ ≡ ℜe(LΛ/X) , RΛ ≡ ℜe(MΛ/X) .

These equations are strongly model-dependent and can be derived from the
prepotential.

☞ The scalars are, then, given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

October 21st 2008 University of Groningen Page 17-b



Supersymmetric non-Abelian monopoles and black holes

☞ Solve the stabilization equations to find RΛ and RΛ. N.B.:

IΛ ≡ ℑm(LΛ/X) , IΛ ≡ ℑm(MΛ/X) ,

RΛ ≡ ℜe(LΛ/X) , RΛ ≡ ℜe(MΛ/X) .

These equations are strongly model-dependent and can be derived from the
prepotential.

☞ The scalars are, then, given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

☞ We find the 1-form on R
3 ω̂ by solving the equation

(dω̂)xy = 2ǫxyz〈 I | D̃zI〉 = IΛD̃zIΛ − IΛ
D̃zIΛ ,

(if IΛ ∝ IΛ then ω̂ = 0)
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☞ Solve the stabilization equations to find RΛ and RΛ. N.B.:

IΛ ≡ ℑm(LΛ/X) , IΛ ≡ ℑm(MΛ/X) ,

RΛ ≡ ℜe(LΛ/X) , RΛ ≡ ℜe(MΛ/X) .

These equations are strongly model-dependent and can be derived from the
prepotential.

☞ The scalars are, then, given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

☞ We find the 1-form on R
3 ω̂ by solving the equation

(dω̂)xy = 2ǫxyz〈 I | D̃zI〉 = IΛD̃zIΛ − IΛ
D̃zIΛ ,

(if IΛ ∝ IΛ then ω̂ = 0)

☞ and compute
2|X|2 = 〈R | I 〉−1 .
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Supersymmetric non-Abelian monopoles and black holes

☞ The physical gauge field is given by

AΛ
µdx

µ = −
√

2|X|2RΛ(dt+ ω̂) + ÃΛ
xdx

x ,
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Supersymmetric non-Abelian monopoles and black holes

☞ The physical gauge field is given by

AΛ
µdx

µ = −
√

2|X|2RΛ(dt+ ω̂) + ÃΛ
xdx

x ,

☞ and the spacetime metric is

ds2 = 2|X|2(dt+ ω̂)2 − 1

2|X|2 dx
xdxx .
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
a = 1, 2, 3.
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Supersymmetric non-Abelian monopoles and black holes

SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
a = 1, 2, 3. We make the “hedgehog” Ansatz

Ia = I na , Aa
m = Φ εmb

a nb , na ≡ xa/r , r ≡
√
xbxb .
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SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
a = 1, 2, 3. We make the “hedgehog” Ansatz

Ia = I na , Aa
m = Φ εmb

a nb , na ≡ xa/r , r ≡
√
xbxb .

A 2-parameter (µ and ρ) family of solutions is given by

I(r) =

√
2µ

g
Hρ(µr) , Hρ(r) = coth (r + ρ) − 1

r
,

Φ(r) =
µ

g
Gρ(µr) , Gρ(r) =

1

r
− 1

sinh (r + ρ)
.
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SO(3) Examples:

Let us consider N = 2 EYM systems containing an SO(3) gauge group, with indices
a = 1, 2, 3. We make the “hedgehog” Ansatz

Ia = I na , Aa
m = Φ εmb

a nb , na ≡ xa/r , r ≡
√
xbxb .

A 2-parameter (µ and ρ) family of solutions is given by

I(r) =

√
2µ

g
Hρ(µr) , Hρ(r) = coth (r + ρ) − 1

r
,

Φ(r) =
µ

g
Gρ(µr) , Gρ(r) =

1

r
− 1

sinh (r + ρ)
.

The two most interesting cases are ρ = 0,∞.
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Supersymmetric non-Abelian monopoles and black holes

6 – ’t Hooft-Polyakov Monopoles

The ρ = 0 solution can be written in the form

Aa
m = εmb

a nb µ

g
G0(µr) , G0(r) =

1

r
− 1

sinh r
,

Ia =

√
2µ

g
H0(µr) n

a , H0(r) = coth r − 1

r
.

The profiles of the functions G and H are

300 20 4010

1

50

0.4

0.2

r

0

0.8

0.6

Ia is regular at r = 0 for ρ = 0, and describes the ’t Hooft-Polyakov monopole.
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Supersymmetric non-Abelian monopoles and black holes

7 – Black Hedgehogs

In the limit ρ→ ∞ we find the “black hedgehog” solution

Ia = −
√

2

(

I∞ +
1

gr

)

na ,

Aa
m = εmb

a nb

gr
.

October 21st 2008 University of Groningen Page 21



Supersymmetric non-Abelian monopoles and black holes

7 – Black Hedgehogs

In the limit ρ→ ∞ we find the “black hedgehog” solution

Ia = −
√

2

(

I∞ +
1

gr

)

na ,

Aa
m = εmb

a nb

gr
.

The YM field is singular at r = 0 but in EYM theory the coupling to gravity may
cover it by an event horizon.
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Supersymmetric non-Abelian monopoles and black holes

7 – Black Hedgehogs

In the limit ρ→ ∞ we find the “black hedgehog” solution

Ia = −
√

2

(

I∞ +
1

gr

)

na ,

Aa
m = εmb

a nb

gr
.

The YM field is singular at r = 0 but in EYM theory the coupling to gravity may
cover it by an event horizon.

The possible existence of an event horizon covering the singularity at r = 0 has to be
studied in specific models.
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Supersymmetric non-Abelian monopoles and black holes

Before finding R and |X| we have to find the Ias solving

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

and solve the staticity constraint

〈 I | DmI〉 = 0 .
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Before finding R and |X| we have to find the Ias solving

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

and solve the staticity constraint

〈 I | DmI〉 = 0 .

In this simple case

Ia =
g

2
J Ia ,

where J is an arbitrary constant.
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Before finding R and |X| we have to find the Ias solving

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

and solve the staticity constraint

〈 I | DmI〉 = 0 .

In this simple case

Ia =
g

2
J Ia ,

where J is an arbitrary constant.

If we split the index Λ into an a-index and an u-index labeling the ungauged
directions, the staticity constraint only acts non-trivially on the ungauged part:

Iu dIu − Iu dIu + Ia DIa − Ia
DIa = Iu dIu − Iu dIu = 0 ,

which we can solve as in the Abelian case or just set to zero.
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Before finding R and |X| we have to find the Ias solving

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,

and solve the staticity constraint

〈 I | DmI〉 = 0 .

In this simple case

Ia =
g

2
J Ia ,

where J is an arbitrary constant.

If we split the index Λ into an a-index and an u-index labeling the ungauged
directions, the staticity constraint only acts non-trivially on the ungauged part:

Iu dIu − Iu dIu + Ia DIa − Ia
DIa = Iu dIu − Iu dIu = 0 ,

which we can solve as in the Abelian case or just set to zero.

This determines completely the family of solutions but, in order to find explicit
expressions for R and |X| and the spacetime metric we must solve the stabilization
equations which depend on the specific model considered.
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Supersymmetric non-Abelian monopoles and black holes

Metrics

For simplicity let us consider a CP
3

model whose prepotential reads

F = i
4 ηΛΣ XΛ XΣ , η = diag ( − , [+]n ) .

The Kähler potential is

e−K = 1 − |Z|2 ,⇒ |Z|2 < 1 .
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The stabilization equations are solved by

RΛ = − 1
2ηΛΣ IΣ , RΛ = 2ηΛΣ IΣ ,
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Metrics

For simplicity let us consider a CP
3

model whose prepotential reads

F = i
4 ηΛΣ XΛ XΣ , η = diag ( − , [+]n ) .

The Kähler potential is

e−K = 1 − |Z|2 ,⇒ |Z|2 < 1 .

The stabilization equations are solved by

RΛ = − 1
2ηΛΣ IΣ , RΛ = 2ηΛΣ IΣ ,

and the metric function is given by

−grr =
1

2|X|2 = − 1
2 IΛηΛΣIΣ − 2 IΛη

ΛΣIΣ = 1
2

[

I02 − Ia2 + 4I0
2 − 4Ia

2
]

.
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The Kähler potential is

e−K = 1 − |Z|2 ,⇒ |Z|2 < 1 .

The stabilization equations are solved by
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2|X|2 = − 1
2 IΛηΛΣIΣ − 2 IΛη

ΛΣIΣ = 1
2

[

I02 − Ia2 + 4I0
2 − 4Ia

2
]

.

With the hedgehog Ansatz Ia2 = I2 and SU(2) effectively reduces to a U(1) in the
metric!
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Metrics

For simplicity let us consider a CP
3

model whose prepotential reads

F = i
4 ηΛΣ XΛ XΣ , η = diag ( − , [+]n ) .

The Kähler potential is

e−K = 1 − |Z|2 ,⇒ |Z|2 < 1 .

The stabilization equations are solved by

RΛ = − 1
2ηΛΣ IΣ , RΛ = 2ηΛΣ IΣ ,

and the metric function is given by

−grr =
1

2|X|2 = − 1
2 IΛηΛΣIΣ − 2 IΛη

ΛΣIΣ = 1
2

[

I02 − Ia2 + 4I0
2 − 4Ia

2
]

.

With the hedgehog Ansatz Ia2 = I2 and SU(2) effectively reduces to a U(1) in the
metric! For black holes with finite entropy (attractor) we need at least two U(1)s.
However, since Ia is bound in the monopole, we do not need I0, I0 and we can set
them to constants.
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Supersymmetric non-Abelian monopoles and black holes

Normalizing to have asymptotic flatness, we get, for the monopole

−grr = 1 + µ2

[

1

g2
+ J 2

]

[

1 − H
2(µr)

]

,

which is completely regular and describes an object of mass

M = µ
[

1/g2 + J 2
]

.

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)
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Normalizing to have asymptotic flatness, we get, for the monopole

−grr = 1 + µ2

[

1

g2
+ J 2

]

[

1 − H
2(µr)

]

,

which is completely regular and describes an object of mass

M = µ
[

1/g2 + J 2
]

.

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)

To embed the black hedgehog into this model and get a regular solution (|Z|2 < 1)
we need non-trivial I0 or I0. The conditions for regularity are the same as in an
standard, Abelian U(1) × U(1) black hole of this model:

M = I0
∞p

0 + I0∞q0 − 2µ
[

1/g2 + J 2
]

> 0 ,

A

4π
= 1

2 [(p0)2 + 4(q0)
2] − 2

µ2

g2

[

1/g2 + J 2
]

> 0 ,

and can always be satisfied.
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Normalizing to have asymptotic flatness, we get, for the monopole

−grr = 1 + µ2

[

1

g2
+ J 2

]

[

1 − H
2(µr)

]

,

which is completely regular and describes an object of mass

M = µ
[

1/g2 + J 2
]

.

(related to Harvey & Liu (1991) and Chamseddine & Volkov (1997) monopole
solutions.)

To embed the black hedgehog into this model and get a regular solution (|Z|2 < 1)
we need non-trivial I0 or I0. The conditions for regularity are the same as in an
standard, Abelian U(1) × U(1) black hole of this model:

M = I0
∞p

0 + I0∞q0 − 2µ
[

1/g2 + J 2
]

> 0 ,

A

4π
= 1

2 [(p0)2 + 4(q0)
2] − 2

µ2

g2

[

1/g2 + J 2
]

> 0 ,

and can always be satisfied.

How does the attractor mechanism work in this solution?
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