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1 – Unification & Landscape

or

“How We Got Into This Mess”

Unification has been one of the most fruitful guiding principles in our search for the
fundamental components and forces if the Universe. It is also a logical necessity for
understanding it.

Let’s review first how the pursuit of unification has led to the (key, but yet unsolved)
vacuum selection problem and this to the idea of landscape.
There have been many instances of unification:

1 Electricity
L

Magnetism
Faraday,Maxwell

=⇒ Electromagnetism

~E, ~B −→ (Fµν) ≡

0
@

0 − ~ET

~E ? ~B

1
A

Required by the Special Theory of Relativity just as Newtonian gravity and
gravitomagnetism are combined in General Relativity.
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The Supersymmetric Vistas of the Supergravity Landscape

2 Space
L

Time
Einstein,Minkowski

=⇒ Spacetime

t, ~x −→ (xµ) ≡ (ct, ~x) .

Strongly related to the former, is associated to an enhancement of symmetry from the
Galileo to the Poincaré group which is not apparent at low speeds, but is never broken.

3 Waves
L

Particles
deBroglie

=⇒ Quantum particles

Required by the Quantum Mechanics, it is of a completely different nature. There is
not enhancement of symmetry involved.

4 Gravity (GR)
L

Electromagnetism
Kaluza,Klein,Einstein

=⇒ Gravity in higher dimensions

gµν , Aµ −→ (ĝµ̂ν̂) ≡

0
@

k2 Aν

Aµ gµν

1
A

This unsuccessful attempt has some differences with the electromagnetic unification:
à There is enhancement of local symmetry from g.c.t.’s in d = 4 to g.c.t.’s in d = 5,

but this symmetry is spontaneously broken (in modern parlance) to g.c.t.’s in d = 4
and U(1) due to the (completely arbitrary) choice of vacuum. The rule is always:

global symmetry of the vacuum ∼ local symmetry of the reduced theory.
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The Supersymmetric Vistas of the Supergravity Landscape

à A new massless field is predicted: the Kaluza-Klein scalar k.

à The attempt was unsuccessful (it was perhaps too early) but the ideas involved have
stayed around until now.

5 Quantum Mechanics
L

Relativistic Field Theory
Many people...

=⇒ Quantum Field Theory

A difficult but fruitful marriage.

6 Weak interactions
L

Electromagnetism
Glashow,Salam,Weinberg

=⇒ Electroweak interaction

In this case
Û Unification is achieved by an enhancement of local (Yang-Mills-type) symmetry, from

U(1) to SU(2)× U(1).

Û The symmetry is spontaneously broken by the Higgs mechanism: choice of vacuum by
energetic reasons (minimization of the ad hoc Higgs potential). (This is the main
difference with Kaluza-Klein and other theories including gravity.)

Û The spontaneous breaking of the symmetry renders the model renormalizable.
Û The symmetry is restored at high energies.

Û New massive particles are predicted associated to the enhanced symmetry (gauge
bosons, found) and a new massless spin-0 particle is also predicted (Higgs boson, not
yet found).

The extraordinary success of this model has made of it the paradigm of unification
schemes.
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7 Electroweak interaction
L

Strong interactions
Many people...

=⇒ Grand Unified Theory

An unsuccessful generalization of the electroweak unification scheme based on a semisimple
gauge group (SO(10), SU(5), · · ·) spontaneously broken by a generalized Higgs mechanism
to SU(3)× U(1)

ó New massive and massless particles predicted may mediate proton desintegration (not
observed).

ó Unification of coupling constants should occur at the energy at which the symmetry is
restored, but this does not seems to work.

8 Bosons
L

Fermions
Golfand,Likhtman,Volkov,Akulov,Soroka,Wess and Zumino

=⇒ Superfields

This is a new kind of unification based in an enhancement of (global spacetime) symmetry
to supersymmetry, which should also be spontaneously broken by a yet unknown
super-Higgs mechanism.

à This new symmetry can be combined with Yang-Mills-type symmetries
(super-Yang-Mills theories) and with GUT models in which, in some cases, unification
of coupling constants can be achieved.

à It is the most general extension of the Poincaré and Yang-Mills symmetries of the
S-matrix (Haag-Lopuszanski-Sohnius).

à It can also be combined with g.c.t.’s, making it local (supergravity theories). We can
have supergravity theories with Yang-Mills fields etc. etc. But in most of these theories
gravity is not unified with the other interactions.
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S-matrix (Haag-Lopuszanski-Sohnius).

à It can also be combined with g.c.t.’s, making it local (supergravity theories). We can
have supergravity theories with Yang-Mills fields etc. etc. But in most of these theories
gravity is not unified with the other interactions.

September 7th 2005 Spanish Relativity Meeting ’05 Page 4-d



The Supersymmetric Vistas of the Supergravity Landscape

7 Electroweak interaction
L

Strong interactions
Many people...

=⇒ Grand Unified Theory

An unsuccessful generalization of the electroweak unification scheme based on a semisimple
gauge group (SO(10), SU(5), · · ·) spontaneously broken by a generalized Higgs mechanism
to SU(3)× U(1)

ó New massive and massless particles predicted may mediate proton desintegration (not
observed).

ó Unification of coupling constants should occur at the energy at which the symmetry is
restored, but this does not seems to work.

8 Bosons
L

Fermions
Golfand,Likhtman,Volkov,Akulov,Soroka,Wess and Zumino

=⇒ Superfields

This is a new kind of unification based in an enhancement of (global spacetime) symmetry
to supersymmetry, which should also be spontaneously broken by a yet unknown
super-Higgs mechanism.

à This new symmetry can be combined with Yang-Mills-type symmetries
(super-Yang-Mills theories) and with GUT models in which, in some cases, unification
of coupling constants can be achieved.

à It is the most general extension of the Poincaré and Yang-Mills symmetries of the
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à However, extended (N > 1) supergravities contain in the same supermultiplet of the
graviton additional bosonic fields that may describe the other interactions. In this scheme
all interactions would be described in a unified way.

à These extended supergravities can in general be obtained from compactification of simpler
higher-dimensional supergravities. It was also discovered that many N = 1 supergravities
coupled to Yang-Mills fields could also be obtained in the same way, by a careful choice of
compact manifold (i.e. Kaluza-Klein vacuum). This lead to a new brand of unified theories
which could describe everything: Theories Of Everything.

9 Kaluza-Klein Supergravity

Based in compactifications of N = 1, d = 11 supergravity, the unique supergravity that
can be constructed in the highest dimension in which a supergravity can be constructed.
It can accomodate the bosonic part of the Standard Model.
+ But these theories are anomalous and it is impossible to obtain the chiral structure of

the Standard Model by compactification on smooth manifolds (Witten).

+ These problems and the advent of String Theory, anomaly-free and with chiral
fermions were possible, killed these theories, although they have resurrected again.

+ The vacuum of this theory was arbitrarily chosen to recover the Standard Model.
Conceptually, the arbitrariness in the choice of vacuum replaces that of the choice of
Higgs field and potential (and gauge interactions, dimensionality...).

The rule of this game is:

global supersymmetry of the vacuum ∼ local supersymmetry of the reduced theory.
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10 Superstring Theories

All particles are different vibration states of a single physical entity: the superstring. All
known interactions can be described in this way. At low energies, one recovers an
anomaly-free supergravity theory theory. However

ó They are 10-dimensional, and require compactification. At low energies we are faced
with 10-dimensional Kaluza-Klein supergravity and the vacuum selection problem.

ó There are at least five superstring theories: Types IIA, Type IIB, Heterotic SO(32),
Heterotic E(8)×E(8) and Type I SO(32). Which one to take?

ó The theory seems to contain other extended objects besides strings: D-branes,
NSNS-branes... Why should strings be fundamental?

11
L

Superstring Theories
Witten et al.

=⇒ M theory

All the superstring theories are understood as different duality-related vacua of an
unknown theory, one of whose low-energy limits is N = 1, d = 11 supergravity.
à Now we are back into the old Kaluza-Klein supergravity scenario. The chirality

problem can be solved by considering non-smooth manifolds (orbifolds).

à The vacuum selection problem remains, although with some improvements because
many vacua are related by dualities.

à Strings, D-branes etc. are related by dualities and they are on the same footing.

This theory could satisfy all our desires for unification,
but we have to find in it our Universe’s vacuum and

explain why and how it is selected.
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Since many things seem to work, the vacuum-selection problem (of which the moduli
estabilization problem is just another manifestation) becomes more acute.

Further, nowadays we also ask more from vacua than just the Standard Model:

• They should support INFLATION.

• They should explain in a fundamental way DARK ENERGY.

• ...

Two directions of work:

{ Find phenomenologically viable vacua.

Find a vacuum-selection mechanism.

There has not been real progress in the second direction for many years. This has lead
to an statistical/anthropical approach to the problem which requires the knowledge of
the space of M theory vacua a.k.a. landscape.

In the original proposal, only vacua with 4 noncompact spacetime dimensions and 6
space dimensions compactified in a Calabi-Yau space (which gives N = 1, d = 4
supergravities) were considered.

But this is only a (computationally necessary) simplification of the genuine problem in
which all possible compactifications should be considered.
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The Supersymmetric Vistas of the Supergravity Landscape

One can consider other simplified formulations of the same problem:

• Supergravity landscape (Van Proeyen): the space of all possible supergravities covers all
possible low-energy limits of supersymmetric M theory vacua. It is not known if all
supergravities can be given an M theory origin, but the problem could be treated in a
systematic way.

• Landscape of supersymmetric vacua: the space of all supersymmetric solutions of 11- and
10-dimensional supergravities covers all possible supersymmetric M theory
compactification vacua plus the supersymmetric solutions of the corresponding
lower-dimensional supergravities. It also covers all the supersymmetric objects (black
holes, p-branes...) of M theory.

Finding and classifying all these supersymmetric solutions is a tractable but very complicated
problem, at it is the subject of this talk.

First, we are going to define what we mean by supersymmetric solutions and we are going to
see

• How to characterize them.

• How they lead to lower-dimensional supergravities.

• The relation between the supersymmetries of the solution and those of the supergravities.

• How to find all of them (Tod’s problem).

• Some useful identities that they always satisfy (Killing spinor identities).

• An application to N = 4, d = 4 supergravity.
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2 – Susy Solutions

Supersymmetric solutions (a.k.a. solutions with residual or
unbroken or preserved supersymmetry) are classical bosonic
solutions of supergravity (SUGRA) theories which are in-
variant under some supersymmetry transformations.

Generically, the supersymmetry transformations take the form

δεφ
b ∼ ε̄φf , δεφ

f ∼ ∂ε+ φbε . (1)

Then, a bosonic configuration (φf = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter εα(x) if it satisfies the
Killing spinor equations (one for each f)

δεφ
f ∼ ∂ε+ φbε = 0 . (2)

This is a generalization of the concept of isometry, an infinitesimal general
coordinate transformation generated by ξµ(x) that leaves the metric gµν invariant
because it satisfies the Killing (vector) equation

δξgµν = 2∇(µξν) = 0 . (3)
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The Supersymmetric Vistas of the Supergravity Landscape

To each bosonic symmetry we associate a generator

ξµ(I)(x)→ PI ,

of a symmetry algebra
[PI , PJ ] = fIJ

KPK .

The supersymmetries are associated to the odd generators

εα(n)(x)→ Qn ,
of a superalgebra

[Qn, PI ] = fnI
mQm , {Qn,Qm} = fnm

IPI .

Kaluza-Klein principle:
These global supersymmetries of the vacuum solution become the local

supersymmetries of the supergravity built on it.

When the supersymmetric vacuum solution has a clear (possibly warped) product
structure we distinguish internal and spacetime symmetries
−→ spontaneous compactification.
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3 – Tod’s problem

This is the problem of finding all the bosonic field configu-
rations φb for which a SUGRA’s Killing spinor equations

δεφ
f
∣∣
φf=0

∼ ∂ε+ φbε = 0 ,

have a solution ε, (i.e. all the possible supersymmetric bosonic field configurations
φb), which includes all the possible supersymmetric vacua and compactifications.

N.B. Not all supersymmetric bosonic field configurations satisfy the classical

bosonic equations of motion δS
δφb

∣∣∣
φf=0

≡ S,b|φf=0 ≡ E(φb).

Actually, the bosonic equations of motion of supersymmetric bosonic field
configurations satisfy the so-called Killing spinor identitiesa.

The supersymmetry invariance of the action implies after taking the functional
derivative w.r.t. fermions and setting them to zero

(δεS ),f1

∣∣∣
φf=0

=

{∫
ddx (S,b δεφ

b + S,f δεφ
f )

}

,f1

∣∣∣∣∣
φf=0

= 0 ,

aR. Kallosh & T.O. (1993), J. Belloŕın & T.O. (2005)
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The Supersymmetric Vistas of the Supergravity Landscape

Many terms vanish automatically because they are odd in fermion fields φf

δεφ
b
∣∣
φf=0

= S,f |φf=0 = (δεφ
f ),f1

∣∣
φf=0

= 0 ,

and we get

{
S,b (δεφ

b),f1 + S,ff1 δεφ
f
}∣∣
φf=0

= 0 .

This is valid for any fields φb and any supersymmetry parameter ε. For a
supersymmetric field configuration ε is a Killing spinor δεφ

f
∣∣
φf=0

and we obtain the

Killing spinor identities

E(φb) (δεφ
b),f1

∣∣
φf=0

= 0 .

These non-trivial identities are linear relations between the bosonic equations of
motion and can be used to solve Tod’s problem, obtain BPS bounds etc. Let’s see
some examples.
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The Supersymmetric Vistas of the Supergravity Landscape

N = 1, d = 4 supergravity

Its field content is {eaµ, ψµ}. The bosonic action is just the Einstein-Hilbert action

S|ψµ=0 =

Z
d4x
p
|g|R , ⇒ Eaµ(e) ∼ Gaµ ,

and the supersymmetry transformations are

δεe
a
µ = −iε̄γaψµ , δεψµ = ∇µε = ∂µε− 1

4
ωµ

abγabε .

The K.S.I.s are

−iε̄γaGaµ = 0 , ⇒ R = 0 , −iε̄γaRaµ = 0 .

The integrability conditions of the Killing spinor equation δεψµ = 0 are

[∇µ,∇ν ]ε = − 1
4
Rµν

abγabε = 0 , ⇒ Rµaγ
aε = 0 .

The K.S.I.s are contained in the integrability conditions.
We will see later how to obtain more information from these identities.
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The Supersymmetric Vistas of the Supergravity Landscape

N = 2, d = 4 supergravity

Its field content is {eaµ, Aµ, ψµ}. The bosonic action is just the Einstein-Maxwell
action

S|ψµ=0 =

Z
d4x
p
|g|
ˆ
R− 1

4
F 2˜ , ⇒

8
<
:
Eaµ(e) = −2{Gaµ − 1

2
Ta

µ} ,

Eµ(A) = ∇αFαµ ,

and the supersymmetry transformations are

δεe
a
µ = −iε̄γaψµ+c.c. , δεAµ = −2iε̄ψµ+c.c. . δεψµ = ∇µε− 1

8
F abγabε ≡ D̃µε .

The K.S.I.s are

ε̄{Eaµ(e)γa + 2Eµ(A)} = 0 .

The integrability conditions of the Killing spinor equation δεψµ = D̃µε = 0 are

[D̃µ, D̃ν ]ε = − 1
4

˘ˆ
Rµν

ab − ea[µTν]
b
˜
γab +∇a (Fµν + ?Fµνγ5) γa

¯
ε = 0 ,

⇒ {Eaµ(e)γa + 2[Eµ(A) + Bµ(A)γ5]}ε = 0 .
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4 – Solving it

? (1983) Tod showed in that in N = 2, d = 4 SUGRA the
problem could be completely solved using just integra-
bility and consistency conditions.

However, he used the Newmann-Penrose formalism, unknown to most particle
physicists and suited only for d = 4.

? (1995) Tod solved partialy the problem in N = 4, d = 4 SUGRA.

? (2002) Gauntlett, Gutowski, Hull, Pakis & Reall proposed to translate the
Killing spinor equation to tensor language. They solved N = 1, d = 5 SUGRA.

? (2002) Gauntlett & Gutowski gauged N = 1, d = 5 SUGRA.

? (2003) Gutowski, Martelli & Reall and Chamseddine, J. Figueroa-O’Farrill &
Sabra N = (1, 0), d = 6 SUGRA.

? (2003) Caldarelli & Klemm gauged N = 2, d = 4 SUGRA.

? (2004) Gutowski & Reall and (2005) Gutowski & Sabra gauged N = 1, d = 5
SUGRA coupled to Abelian vector multiplets.

? (2005) Belloŕın & T.O. N = 4, d = 4 SUGRA.
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The Supersymmetric Vistas of the Supergravity Landscape

There is by now a well-defined recipe to attack this problem starting with only one
assumption: the existence of one Killing spinor ε.

I Translate the Killing spinor equations and K.S.I.s into tensorial equations.
With the Killing spinor ε one can construct scalar, vector, and p- form bilinears
M ∼ ε̄ε , Vµ ∼ ε̄γµε , · · · that are related by Fierz identities and satisfy
equivalent equations:

δεψµ = D̃µε = [∇µ + Ωµ]ε = 0 , ⇒ ∇µM + 2ΩµM = 0 , · · ·

II One of the vector bilinears (say Vµ) is always a Killing vector which can be
timelike or null. These two cases are treated separatelly.

III One can get an expression of all the gauge field strengths of the theory (the
main ingredient of Ωµ) in terms of the scalar bilinears M and the Killing vector
Vµ from tensorial equations.

IV The Maxwell equations and Bianchi identities are imposed on those field
strengths, getting equations for the scalar bilinears.

V The Einstein equations are imposed and the K.S.I.s used to find relations
between scalar bilinears and metric components.

Let us see some examples.
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The Supersymmetric Vistas of the Supergravity Landscape

N = 1, d = 4 supergravity

With one (Majorana) Killing spinor ε one can only construct a real vector bilinear
Vµ which is null. Vµ is also covariantly constant:

δεψµ = ∇µε = 0 , ⇒ ∇µVν = 0 , RµνV
ν = 0 , (ε̄Rµaγ

aε = 0) .

All the metrics with covariantly constant null vectors are Brinkmann pp-waves and
have the form

ds2 = 2du(dv +Kdu+Aidx
i) + g̃ijdx

idxj ,

where all the components are independent of v V µ∂µ ≡ ∂/∂v.

These metrics are the supersymmetric field configurations of
N = 1, d = 4 SUGRA, but only those with Rµν = 0 are

supersymmetric solutions.
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The Supersymmetric Vistas of the Supergravity Landscape

N = 2, d = 4 supergravity

With two Weyl spinors εI one can construct the following independent bilinears

• A complex scalar ε̄IεJ ≡MεIJ

• A Hermitean matrix of null vectors (4) V IJ µ ≡ iε̄IγµεJ
The Killing spinor equations imply the following equations for the bilinears:

∇µM ∼ F+
µνV

I
I
ν ,

∇µV IJ ν ∼ δIJ [MF+
µν +M∗F−µν ]− ΦKJ (µ

ρεKIF−ν)ρ − ΦIK (µ|
ρεKJF

+
|ν)ρ ,

so V µ ≡ V II
µ is Killing and the other three are exact forms. V µVµ ∼ |M |2 ≥ 0 can

be timelike or null.
When it is timelike, V µ∂µ ≡

√
2∂/∂t and

F+ ∼ |M |−2{V ∧ dM + i?[V ∧ dM ]} ,

ds2 = |M |2(dt+ ω)2 − |M |−2d~x 2 ,

SUSY ⇒ dω = i|M |−2?[MdM∗ − c.c.] ,

Solutions⇒ ~∇ 2M−1 = 0 . (Israel-Wilson-Perjes)
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5 – N=4, d=4 SUGRA

This theory can be obtained by toroidal compactification on
T 6 of N = 1, d = 10 SUGRA (the effective field theory of the
Heterotic String):

d = 10, N = 1 {eaµ, Bµν , φ, ψµ, χ} {V Rµ, ψR}

d = 4, N = 4 {eaµ, AIJµ, τ , ψI µ, χI} {V Rµ, φRIJ , ψRI}

τ = a+ ie−φ , (axidilaton)

I, J −→ SU(4) ∼ SO(6) indices.
R, S −→ SO(22) indices.

ff
SO(6, 22) invariance (T duality)

There is also a global SL(2,R) invariance τ ′ =
ατ + β

γτ + δ
, (S duality).
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The Supersymmetric Vistas of the Supergravity Landscape

It is convenient to start by studying the pure supergravity theory (without the vector
supermultiplets).

This theory still has interesting SU(4) ∼ SO(6) and SL(2,R) invariances and very
interesting solutions. The N = 2 and N = 1 are included as truncations.

The bosonic action is

S =

Z
d4x
p
|g|
»
R+ 1

2

∂µτ ∂
µτ∗

(=m τ)2
− 1

16
=m τF IJ µνFIJ µν − 1

16
<e τF IJ µν?FIJ µν

–
.

The equations of motion (plus Bianchi identities) are

Eµν = Gµν + 1
2
(=m τ)−2[∂(µτ∂ν)τ

∗ − 1
2
gµν∂ρτ∂

ρτ∗]− 1
4
=m τFIJ

+
µ
ρF IJ−νρ ,

E = Dµ
„
∂µτ∗

=m τ

«
− i

8
=m τF IJ + ρσFIJ

+
ρσ ,

EIJ µ = ∇ν?F̃ IJ νµ ,

BIJ µ = ∇ν?F IJ νµ .

The equations of motion are SL(2,R)-covariant buth the action is not. This symmetry

rotates EIJ µ and BIJ µ and, therefore, F̃ IJ = τFIJ
+ + τ∗FIJ

− and F IJ .
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The Supersymmetric Vistas of the Supergravity Landscape

For vanishing fermions, the supersymmetry transformation rules of the gravitini and
dilatini, generated by 4 spinors εI are

δεψI µ = DµεI − i

2
√

2
(=m τ)1/2FIJ

+
µνγ

νεJ ,

δεχI = 1

2
√

2

6∂τ
=m τ

εI − 1
8
(=m τ)1/2 6FIJ−εJ .

Our goal is to find bosonic field configurations such that a Killing spinor (i.e. a set εI)
satisfying δεψI µ = δεχI = 0 exists.

All the fermions transform with a local U(1) phase under SL(2,R) transformations and,
therefore, the Killing spinor equations are SU(4) and SL(2,R)-covariant.

The general supersymmetric configurations must have the same covariance.

To follow the recipe we first construct the independent bilinears

• An antisymmetric complex matrix of scalars M IJ ≡ ε̄IεJ .

• A Hermitean matrix of null vectors (16) V IJ µ ≡ iε̄IγµεJ .

A technical problem: at each point only two Weyl spinors can be linearly independent, but
we have to work with the 4 εI to keep SU(4) covariance. Then M IJ is singular:

εIJKLMIJMKL = 0 .
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The Supersymmetric Vistas of the Supergravity Landscape

The Killing spinor equations become the following equations for bilinears:

DµMIJ = 1√
2
(=m τ)1/2FK[I|

+
µνV

K
|J]
ν ,

DµV IJ ν = − 1

2
√

2
(=m τ)1/2

h
MKJF

KI −
µν +M IKFJK

+
µν

−ΦKJ (µ
ρFKI −ν)ρ − ΦIK (µ|

ρFKI
+
|ν)ρ

i
,

0 = V KI
µ∂µτ − i

2
√

2
(=m τ)3/2FIJ

−µνΦKJµν ,

0 = FIJ
−
ρσV

J
K
σ + i√

2
(=m τ)−3/2 (MIK∂ρτ − ΦIK ρ

µ∂µτ) .

Our problem consists now in finding a metric gµν , vector field strengths F IJµν and complex
scalar τ such that these equations can be solved for MIJ , V

I
J µ.

We assume that they can indeed be solved and we assume the existence of τ ,MIJ , V
I
J µ

and try to determine gµν and F IJµν using these equations.
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The Supersymmetric Vistas of the Supergravity Landscape

Working with the equations for the bilinears we find immediately

1. Vµ ≡ V II µ is Killing and non-spacelike. Generically, no V IJ µ is exact.

2. V µ∂µτ = 0.

3. Less trivially we find

FIJ
−
µνV

ν = −
√

2i

(=m τ)3/2
MIJ∂µτ −

√
2

(=m τ)1/2
εIJKLDµMKL .

In the timelike case this equation determines completely FIJ :

FIJ
− = − 1√

2|M |2(=m τ)1/2

»
i
MIJ

(=m τ)
dτ + εIJKLDMKL

–
∧ V̂ − i ?[· · ·]

ff
.

and the metric can be written in the form

ds2 = |M |2(dt+ ω)2 − |M |−2γijdx
idxj , i, j = 1, 2, 3 ,

where

dω = i

2
√

2
|M |−4 ?

h
(M IJDMIJ −MIJDM IJ) ∧ V̂

i
.
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The Supersymmetric Vistas of the Supergravity Landscape

We substitute into the equations of motion, not to solve them, but to check the K.S.I.s
which are necessary conditions to solve the Killing spinor equations and have
supersymmetry.

In the timelike case the K.S.I.s imply the following useful relations involving bilinears:

Eab − 1
2
=m EV aV b − 1√

2
(=m τ)1/2=m (M IJBIJa)V b = 0 ,

E∗V a − i√
2(=m τ)1/2

M IJ(EIJa − τBIJa) = 0 ,

=m[M IJ(EIJa − τ∗BIJa)] = 0 .

We find two important results:

1. All the equations of motion are combinations of two simple 3-dimensional equations
involving only τ ,M IJ , γij , namely

nIJ(3) ≡ (∇i + 4iξi)

„
∂iN IJ

|N |2
«
, N IJ ≡ (=mτ)1/2M IJ

e∗(3) ≡ (∇i + 4iξi)

„
∂iτ

|N |2
«
, ξ ≡ i

4
|M |−2(MIJdM

IJ −M IJdMIJ) .

2. These field configurations still have to satisfy two complicated conditions in order to be
supersymmetric.
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∂iN IJ

|N |2
«
, N IJ ≡ (=mτ)1/2M IJ

e∗(3) ≡ (∇i + 4iξi)

„
∂iτ

|N |2
«
, ξ ≡ i

4
|M |−2(MIJdM

IJ −M IJdMIJ) .

2. These field configurations still have to satisfy two complicated conditions in order to be
supersymmetric.
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In the end, in a straightforward way, a complete classification of supersymmetric field
configurations of pure N = 4, d = 4 SUGRA can be achieved a

The supersymmetric solutions include black holes, Brinkmann waves and stringy cosmic
strings of the type found by Greene, Shapere, Vafa & Yau (1989), which can also be seen as
Type IIB 7-branes.

There are also new types of string-like solutions, with metrics of the form

ds2 = |k|2(dt+ ωxdx)− |k|−2dx2 − 2dzdz∗ ,

where |k|2 = kIJ(z)kIJ(z∗) and ωx satisfies

∂zωx = ∂z∗ |k|−2 , ∂z∗ωx = ∂z|k|−2 .

aJ. Belloŕın & T.O., hep-th/0506056.
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6 – Conclusion

? We have shown how Tod’s problem can be solved in a systematic way, at least in
d = 4. (There is a lot of work in d = 10, 11 with only partial results so far which
should be more relevant to the landscape problem).

? We have shown how to obtain and exploit the Killing spinor identities and how they
imply the existence of only a few simple independent equations.

? The results obtained in pure N = 4, d = 4 supergravity can, in principle, be
generalized to include matter. These results could cover all the toroidally
compactified supersymmetric solutions of the Heterotic Superstring.

? Analogous techniques could be used for generic N = 2, d = 4 theories.

Work on the last two topics is in progress.
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