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End of slide

Introduction/Motivation

+ Topologically non-trivial field configurations (solitons and instantons) are
interesting because

ó They have less classical and quantum corrections.

ó Often, they are relevant in the non-perturbative regime.

+ Supersymmetric solutions are also interesting (and, often, topologically non-trivial
as well).

+ Many topologically non-trivial Yang-Mills field configurations are realized as
topologically non-trivial gravitational configurations (this is the basis of
Kaluza-Klein theories):

ó The Dirac monopole configuration is realized in the KK monopole.

ó The BPST instanton configuration is realized in solutions with S7 subspaces.
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We are going to classify the
maximally supersymmetric

vacua of SUGRAs with 8 Qs
and find an interesting example
of maximally supersymmetric,
topologically non-trivial field
configuration of SUGRA that
corresponds to a well-known
Abelian Yang-Mills instanton

configuration.
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1 – SUGRA Vacua

The vacuum is the most important state of any QFT:

? Usually defined as the state with lowest energy.

? Usually enjoys a high degree of (residual) symmetry. This symmetry determines all the
kinematical properties of the QFT (conserved charges, spectrum etc.)

? In (Special-Relativistic) QFT it is required that the residual symmetry of the vacuum
includes the Poincaré group.
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April 29th 2004 University of Tel Aviv Page 1-a
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Theories that contain gravity de not have a unique vacuum:

? There is no absolute scale of energy, which has to be measured relative to a vacuum.
There is no absolute lowest energy state.

? Vacua are identified by their high degree of symmetry and absence of singularities which
may be associated to sources.

? The full Poincaré group is not contained in any vacuum symmetry group. Only (when it is
a solution) Minkowski spacetime is invariant under it.

? One can view the less symmetric vacua as spontaneously breaking the symmetry of the
most symmetric vacuum.

? Finally, only subspaces invariant under the corresponding Poincaré (or (anti-) De Sitter)
subgroups are interpreted as spacetime, the rest being interpreted as internal directions
associated to internal symmetries, global or local (of Yang-Mills type). This is the
Kaluza-Klein mechanism.

Clearly, the most important question is

“How should (we or the theory) choose the vacuum?”
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Gödel Spacetimes and Flacuum Solutions

End of slide

Theories that contain gravity de not have a unique vacuum:

? There is no absolute scale of energy, which has to be measured relative to a vacuum.
There is no absolute lowest energy state.

? Vacua are identified by their high degree of symmetry and absence of singularities which
may be associated to sources.
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The problem of choice of vacuum is so difficult that we choose a simpler question:

“Which vacua are there?”

As a first step towards the classification of all vacua, we may start by finding those with
residual supersymmetry i.e. bosonic solutions of SUGRA theories which are invariant
under some supersymmetry transformations.

Generically, the SUSY transformations take the form

δεB ∼ ε̄F , δεF ∼ ∂ε+Bε . (1)

Then, a bosonic configuration (F = 0) will be invariant under the infinitesimal
supersymmetry transformation generated by the parameter εα(x) if it satisfies the
Killing spinor equation

δεF ∼ ∂ε+Bε = 0 . (2)

This is a generalization of the concept of isometry, an infinitesimal general coordinate
transformation generated by ξµ(x) that leaves the metric gµν invariant because it
satisfies the Killing (vector) equation

δξgµν = 2∇(µξν) = 0 . (3)

April 29th 2004 University of Tel Aviv Page 3
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To each bosonic symmetry we associate a generator

ξµ(I)(x)→ PI ,

of a symmetry algebra

[PI , PJ ] = fIJ
KPK .

The supersymmetries are associated to the odd generators

εα(n)(x)→ Qn ,

of a superalgebra

[Qn, PI ] = fnI
JPJ , {Qn,Qm} = fnm

IPI .

These will be the superalgebras of the QFTs constructed on these vacua!
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Gödel Spacetimes and Flacuum Solutions

End of slide

To each bosonic symmetry we associate a generator

ξµ(I)(x)→ PI ,

of a symmetry algebra

[PI , PJ ] = fIJ
KPK .

The supersymmetries are associated to the odd generators

εα(n)(x)→ Qn ,

of a superalgebra

[Qn, PI ] = fnI
JPJ , {Qn,Qm} = fnm

IPI .

These will be the superalgebras of the QFTs constructed on these vacua!

April 29th 2004 University of Tel Aviv Page 4-b
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This suggests that it may suffice to classify all the possible superalgebras, something
done by Kač for the semisimple ones. Of physical interest are only those with bosonic
symmetry aDSn × Sm.

However, some of the most interesting superalgebras are not semisimple. In particular,
the bosonic subalgebra generated by the PIs is not semisimple in the

à Poincaré superalgebras

à Kowalski-Glikman Hpp-wave superalgebras

à Gödel superalgebras

à and in the flacuum superalgebras that we are going to see.

We are bound to find the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6⇒ maximally symmetric

April 29th 2004 University of Tel Aviv Page 5
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Gödel Spacetimes and Flacuum Solutions

End of slide

This suggests that it may suffice to classify all the possible superalgebras, something
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à Gödel superalgebras

à and in the flacuum superalgebras that we are going to see.

We are bound to find the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries. In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6⇒ maximally symmetric

April 29th 2004 University of Tel Aviv Page 5-e
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à Gödel superalgebras

à and in the flacuum superalgebras that we are going to see.

We are bound to find the vacua by other methods. To simplify even more our problem,
we are going to focus on

maximally supersymmetric vacua

which correspond to solutions of SUGRA theories that have the maximal number of
residual supersymmetries.

In this talk we are going to focus on

ungauged SUGRAs with 8 supercharges.

maximally supersymmetric 6⇒ maximally symmetric

April 29th 2004 University of Tel Aviv Page 5-f
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2 – 8Q SUGRA Vacua

The smallest spinor in d ≥ 7 has 16 real components. Then the SUGRAs with 8
supercharges in d > 3 are just

Theory Fields Bosonic Action

d = 6, N = (1, 0)

{eaµ, B−µν , ψ+
µ } S =

∫
d6x
√
|g|
[
R+ 1

24 (H−)2
]
, ?H− = −H−

d = 5, N = 1

{eaµ, Vµ, ψµ} S =
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|g|
FFV
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√
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4F
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Gödel Spacetimes and Flacuum Solutions
Index

Slide 6 / 22
√ • SUGRA Vacua . 1
⇒ • 8Q SUGRA Vacua 6
• Timelike KK . . 10
• The Flacuum . . 13
• Conclusion . . . 21

End of slide

2 – 8Q SUGRA Vacua

The smallest spinor in d ≥ 7 has 16 real components. Then the SUGRAs with 8
supercharges in d > 3 are just

Theory Fields Bosonic Action

d = 6, N = (1, 0) {eaµ, B−µν , ψ+
µ } S =

∫
d6x
√
|g|
[
R+ 1

24 (H−)2
]
, ?H− = −H−

d = 5, N = 1 {eaµ, Vµ, ψµ} S =

∫
d5x
√
|g|
[
R− 1

4F
2 + 1

12
√

3
ε√
|g|
FFV

]

d = 4, N = 2

{eaµ, Vµ, ψµ} S =

∫
d4x
√
|g|
[
R− 1

4F
2
]

April 29th 2004 University of Tel Aviv Page 6-d
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These (Lorentzian) theories are related by dimensional reduction and the relation
between the fields and supermultiplets of these three theories can be described as follows

d = 6, N = (1, 0) {eaµ, B−µν , ψ+
µ }

d = 5, N = 1 {eaµ, Vµ, ψµ} {Aµ, k, λ}

d = 4, N = 2 {eaµ, Vµ, ψµ} {Aµ, k, l λ}

All the solutions of the lower-dimensional theories are also solutions of
the higher-dimensional ones with the same unbroken supersymmetries.

The solutions of the higher-dimensional theories are solutions of the
lower-dimensional ones with the same unbroken supersymmetries if they
give rise to no matter fields.
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The maximally supersymmetric solutions of the three theories are related as follows:

d = 6 aDS3 × S3
KG6

d = 5 aDS2 × S3
aDS2 ? S

2
aDS3 × S2

H2 ? S
2

G5 KG5

d = 4 aDS2 × S2 KG4

Penrose limit

aDS3 × S3 is the NHL of the extreme selfdual string.

KG6 is the PL of aDS3 × S3.

aDS2 × S3 is the NHL of the extreme black hole.

aDS2 ? S
2 is the NHL of the extreme rotating BMPV black

hole.
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Gödel Spacetimes and Flacuum Solutions

End of slide

The maximally supersymmetric solutions of the three theories are related as follows:

d = 6 aDS3 × S3
KG6

d = 5 aDS2 × S3
aDS2 ? S

2
aDS3 × S2

H2 ? S
2

G5 KG5

d = 4 aDS2 × S2 KG4

Penrose limit

aDS3 × S3 is the NHL of the extreme selfdual string.

KG6 is the PL of aDS3 × S3.

aDS2 × S3 is the NHL of the extreme black hole.

aDS2 ? S
2 is the NHL of the extreme rotating BMPV black

hole.

aDS3 × S2 is the NHL of the extreme, critically rotating
BMPV black hole and of the extreme string.

H2 ? S
2 is the NHL of the extreme overrotating BMPV black

hole. (Fiol, Hofman, Lozano-Tellechea, hep-th/0312209)

KG5 is the of the PL of the aDSn × Sm families.

G5 is the of a singular limit of the H2 ? S
2 family.

aDS2 × S2 is the NHL of the extreme RN black hole.

KG4 is the of the PL of aDS2 × S2.

April 29th 2004 University of Tel Aviv Page 8-m
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All the d = 5 vacua metrics are U(1) fibrations over a d = 4 base space(time). For
instance:

aDS2 ? S
2

ds2 = −(dψ + ω)2 + (R3/2)2[dΠ2
(2) − dΩ2

(2)] ,

F = −
√

3
2 R3(cosξωaDS2 − sinξω(2)) .

ω = R3/2(cosξ cos θdϕ+ sinξcoshχdt) .

H2 ? S
2

ds2 = (dt+ ω)2 − (R3/2)2[dH2
(2) + dΩ2

(2)] ,

F = −
√

3
2 R3(sinhξωH2 + coshξω(2)) ,

ω = R3/2(coshξcoshχdφ− sinhξ cos θdϕ) ,

(Gödel) G5

ds2 = (dt+ ω)2 − d~x2
4 ,

V = −
√

3ω ,

ω = λ(x1dx2 − x3dx4) .

The spacelike fibrations over base
spacetimes are used in standard KK
reductions. ω becomes the d = 4
Maxwell field.
Can we exploit timelike fibra-
tions over a Euclidean space
too?

April 29th 2004 University of Tel Aviv Page 9
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3 – Timelike KK

It is possible to perform Kaluza-Klein dimensional reductions on timelike directions. The
original (Lorentzian) theory is reduced to an Euclidean theory and its solutions (with
timelike U(1) fibrations) are reduced to Euclidean solutions that may be interpreted as
instantons.

We are going to timelike-reduce the d = 6, 5 theories and solutions

+ This procedure for obtaining Euclidean theories and solutions is always consistent.

+ Wick rotations give the same results but have ambiguities and problems in presence of
fermions, as in SUGRA.

ó Observe the problems one faces in the Wick rotation of a theory a simple as
N = 1, d = 4 SUGRA whose Euclidean version cannot be found in the literature.

+ We will deal only with Dirac fermions, but it is not always clear if we are dealing with
vector or pseudovector fields, whose Wick rotations require an extra factor of i.
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+ This procedure for obtaining Euclidean theories and solutions is always consistent.

+ Wick rotations give the same results but have ambiguities and problems in presence of
fermions, as in SUGRA.

ó Observe the problems one faces in the Wick rotation of a theory a simple as
N = 1, d = 4 SUGRA whose Euclidean version cannot be found in the literature.

+ We will deal only with Dirac fermions, but it is not always clear if we are dealing with
vector or pseudovector fields, whose Wick rotations require an extra factor of i.

April 29th 2004 University of Tel Aviv Page 10-d
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The timelike (T) and spacelike (S) reduction of the SUGRAS with 8 supercharges goes
as follows:

d = 6, N = (1, 0) (L)

d = 5, N = 1 (L) d = 5, N = 1 (E)

d = 4, N = 2 (L) d = 4, N = 2− (E) d = 4, N = 2− (E)

S T

S T

S

• There is no (known) Euclidean 8Q SUGRA in d = 6 (selfduality can’t be Wick-rotated).

• There is only one way possible Wick rotation of the d = 5 theory if we want a real action.

• These two theories are related by Vµ → iVµ.
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Now we get new Euclidean solutions as well:

aDS3 × S3
KG6

aDS2 × S3
aDS2 ? S

2
aDS3 × S2

H2 ? S
2
− H2 ? S

2
+ eG5 G5 KG5

aDS2 × S2
H2 × S2

− H2 × S2
+ flac. KG4

Penrose limit

H2 ? S
2
+ is a new family of Euclidean solutions, similar to H2 ? S

2
−, but now with a spacelike fibration.

eG5 is a Euclidean version of the Gödel spacetime G5. It can also be obtained by a singular limit procedure from H2 ? S
2
+.

H2 × S2
− H2 × S2

+ are solutions of different theories and are related by analytical continuation.

The flacuum solution is a specially interesting non-trivial solution with flat Euclidean space that can be also be obtained by

a singular limit procedure from the H2 × S2
± vacua.
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eG5 is a Euclidean version of the Gödel spacetime G5. It can also be obtained by a singular limit procedure from H2 ? S
2
+.

H2 × S2
− H2 × S2

+ are solutions of different theories and are related by analytical continuation.

The flacuum solution is a specially interesting non-trivial solution with flat Euclidean space that can be also be obtained by

a singular limit procedure from the H2 × S2
± vacua.

April 29th 2004 University of Tel Aviv Page 12-e
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4 – The Flacuum

As we have seen, the dimensional reduction of the
Gödel solution of d = 5, N = 1 SUGRA given by

(Gödel) G5

ds2 = (dt+ ω)2 − d~x2
4 ,

V = −
√

3ω ,

ω = λ(x1dx2 − x3dx4) .

leads to a non-trivial,maximally su-
persymmetric Euclidean solution of
d = 4, N = 2 SUGRA (i.e. of the
Einstein-Maxwell theory) with flat
space and constant anti-selfdual
field strength ?F = −F (F 12 =
−F 34 = λ/2)

The flacuum solution

−ds2 = d~x2
4 ,

V = 2ω ,

ω = λ(x1dx2 − x3dx4) .

A constant, anti-selfdual U(1) field strength certainly solves the Maxwell equation in flat
space time, but,

how can flat space be a solution in presence of non-trivial matter?
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(Gödel) G5

ds2 = (dt+ ω)2 − d~x2
4 ,

V = −
√

3ω ,

ω = λ(x1dx2 − x3dx4) .

leads to a non-trivial,maximally su-
persymmetric Euclidean solution of
d = 4, N = 2 SUGRA (i.e. of the
Einstein-Maxwell theory) with flat
space and constant anti-selfdual
field strength ?F = −F (F 12 =
−F 34 = λ/2)

The flacuum solution

−ds2 = d~x2
4 ,

V = 2ω ,

ω = λ(x1dx2 − x3dx4) .

A constant, anti-selfdual U(1) field strength certainly solves the Maxwell equation in flat
space time, but,

how can flat space be a solution in presence of non-trivial matter?

April 29th 2004 University of Tel Aviv Page 13-c
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End of slide

The positivity properties of the action and the energy are opposite in Lorentzian and
Euclidean signatures:

Lorentzian Euclidean

Action: −F 2 = E2 −B2 −F 2 = E2 +B2 > 0

Tµν : Fµ
ρF νρ + ?Fµ

ρ?F νρ > 0 Fµ
ρF νρ − ?Fµ

ρ?F νρ

In particular, selfdual and anti-selfdual Maxwell fields (that can only be defined in
Euclidean signature) have a vanishing “energy-momentum” tensor. In general, (anti-)
selfdual (non-) Abelian Yang-Mills configurations have vanishing energy-momentum
tensors and almost decouple from the metric.

The decoupling is not complete because (anti-) selfduality F ρσ = ±?F ρσ has to be
proven w.r.t. to a given metric:

F ρσ = ± 1

2
√
|g|
gρµgσνε

µναβFαβ .

⇒ If F = ±?F and Rµν = Λgµν , then Gµν+Λgµν = 1
2Tµν , and ∇µFµν = 0
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End of slide

Two simple examples:

The BPST SU(2) instanton

F = ±?F with any conformally flat metric. Since F → 0 at ∞ we can take that of
the round S4

ds2 = − d~x 2
4

(1 + (r/2R)2)2
, ⇒ Rµν =

1

R2
gµν .

Then, F satisfies the Yang-Mills equation on S4 and also the Einstein equation with

cosmological constant Λ = 1/R2. (This is the Hopf fibration S7 S3

→ S4)

The flacuum U(1) solution

F = ±?F with any conformally flat metric. However, since F is constant, we have to
stay with R4 which, at most, we can compactify on a torus to have a finite action.
Rµν = 0 and the Einstein equation is satisfied with zero cosmological constant.
Observe that taking the gauge group as U(1) is equivalent to take the time periodic
in the Gödel solution.
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cosmological constant Λ = 1/R2. (This is the Hopf fibration S7 S3

→ S4)

The flacuum U(1) solution

F = ±?F with any conformally flat metric. However, since F is constant, we have to
stay with R4 which, at most, we can compactify on a torus to have a finite action.
Rµν = 0 and the Einstein equation is satisfied with zero cosmological constant.
Observe that taking the gauge group as U(1) is equivalent to take the time periodic
in the Gödel solution.
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One slightly more complicated example:

The Hopf bundle S5 S1

→ CP2

S2n+1 is the complex hypersurface in Cn+1 with equation zαz̄α = 1 , α = 1, · · · , n, ].
It is convenient to change coordinates zα → u, ρ, ξi, i = 1, · · · , n

ρ = |z]| , u = z]/ρ , ξi = zi/z] , (← projective coordinates in CPn)

in which S2n+1 is ρ =
1

1 + ξiξ̄i
.

Now we substitute the S2n+1 equation into the Euclidean metric on Cn+1, ds2 = dzαdz̄α, to
find the metric of the round S2n+1.

It takes the form
ds2
S2n+1 = ds2

CPn + ω2 ,

ó ds2
CPn = gīdξ

i ⊗ dξ̄j + gı̄jdξ̄
i ⊗ dξj is the Hermitean Fubini-Study metric on CPn.

ó ω = u−1du+ A where A is a U(1) connection on CPn such that

dA = igīdξ
i ∧ dξ̄j ≡ K ,

the Kähler 2-form K, which is, therefore, closedL dK = d2A = 0.
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Gödel Spacetimes and Flacuum Solutions

End of slide

One slightly more complicated example:

The Hopf bundle S5 S1

→ CP2

S2n+1 is the complex hypersurface in Cn+1 with equation zαz̄α = 1 , α = 1, · · · , n, ].
It is convenient to change coordinates zα → u, ρ, ξi, i = 1, · · · , n

ρ = |z]| , u = z]/ρ , ξi = zi/z] , (← projective coordinates in CPn)

in which S2n+1 is ρ =
1

1 + ξiξ̄i
.

Now we substitute the S2n+1 equation into the Euclidean metric on Cn+1, ds2 = dzαdz̄α, to
find the metric of the round S2n+1.

It takes the form
ds2
S2n+1 = ds2

CPn + ω2 ,

ó ds2
CPn = gīdξ
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ó K, is also co-closed ?d?K = 0, so CPn is Kähler and K therefore solves the Maxwell
equations on CPn (Trautman, 1977).

ó Do the Fubini-Study metric and the Kähler 2-form solve the Einstein-Maxwell equations
as well?

ó The components Tij and Tı̄̄ trivially vanish:

Tij = Kik̄Kjl̄g
k̄l̄ − gijK2 = 0 ,

and the components Tī and Tı̄j vanish for n = 2:

Tī = Kik̄Kl̄g
k̄l − 1

4
gī(2Kkl̄g

l̄mKmn̄g
n̄k) = −gī + 1

4
gī 2n .

ó Then, since the Fubini-Study metric solves the Einstein equations with cosmological
constant Λ = +6, we have another solution of the Euclidean Einstein-Maxwell equations.
The embedding of this solution and the BPST instanton in supregravity are problematic.

Other solutions with vanishing Euclidean energy-momentum tensor can be obtained by
time-like compactification of other Gödel solutions

.
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Tī = Kik̄Kl̄g
k̄l − 1

4
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Gödel Spacetimes and Flacuum Solutions

End of slide

ó K, is also co-closed ?d?K = 0, so CPn is Kähler and K therefore solves the Maxwell
equations on CPn (Trautman, 1977).

ó Do the Fubini-Study metric and the Kähler 2-form solve the Einstein-Maxwell equations
as well?

ó The components Tij and Tı̄̄ trivially vanish:

Tij = Kik̄Kjl̄g
k̄l̄ − gijK2 = 0 ,
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To compactify the solution on T 4 we take the quotient of R4 by the Z4 Abelian group of
discrete translations along the four coordinates xa with periods la.

The vector field of our solution (in a new gauge)

V = λ(x1dx2 − x2dx1 − x3dx4 + x4dx3) ≡ Fabxadxb ,

is not strictly periodic on T 4: when we move around the a-th period from x to x+ â it changes
by a gauge transformation

V (x+ â) = V (x) + dΛa(x) , Λa(x) = l(a)F (a)bx
b ,

where Λa(x) are the U(1) parameters, defined modulo 2π.

Consistency requires that V (x+ â+ b̂) = V (x+ b̂+ â), that is

Λa(x+ b̂) + Λb(x) = Λb(x+ â) + Λa(x) mod(2π) ,

which in our case implies

λl1l2 = πn , λl3l4 = πm ,

for two integers n,m that label the possible non-trivial bundles.

The Euclidean action of the SUGRA solutions is

S = −4π2|nm| .
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which in our case implies

λl1l2 = πn , λl3l4 = πm ,

for two integers n,m that label the possible non-trivial bundles.

The Euclidean action of the SUGRA solutions is

S = −4π2|nm| .

April 29th 2004 University of Tel Aviv Page 18-a
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Is supersymmetry preseverved by this quotient?

Consistency requires that the Killing spinor can be identified with itself after a translation
around one of the periods:

ε(x+ â) = Oaε(x) ,

where Oa is a holonomy rotation of the spinor which, conventionally, must be contained in
SO(4).

What we actually find is

Oa = exp{− l(a)

8
6Fγ(a)} ,

which is the spinorial representation of the mutually commuting translation operators and are
not contained in SO(4).

Its has been argued that (Duff, Lu, Hull, Papadopoulos, Tsimpis) whant should be considered
is the generalized holonomy of the supergravity theory, which is basically that of the gravitino
supersymmetry transformation rule (the Killing spinor equation).

In this sense, the above transformations belong to the generalized holonomy group of
N = 2, d = 4 SUGRA which is SL(2,H) (Batrachenko, Wen hep-th/0402141).
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The symmetry superalgebra of the flacuum solution is particularly interesting because it is a
deformation of the supertranslation algebra that preserves the commutativity of momenta but
modifies slightly the anticommutator of the supercharges (Berkovits and Seiberg)

n
Q†(α),Q(β)

o
= (γ1γa)αβP (a)

+ (γ1γ5)αβP (0)

− [γ1 1
2
(1− γ5)]αβM ,

ˆ
Q(α), P (a)

˜
= −Q(β)Γs(P (a))

β
α ,

ˆ
Q(α),M

˜
= −Q(β)Γs(M)βα ,

ˆ
P (a),M

˜
= −P (b)Γv(M)ba ,

ˆ
P (a), P (b)

˜
= F abP (0) .

The quantization of the string on this background leads to a non-commutative Field Theory in
which only the fermionic superspace coordinates anticommute anomalously.

This superalgebra can be obtained by dimensional reduction of
the Gödel superalgebra, in which the momenta P(a) do not com-
mute, but give P (0) which should be interpreted as the generator
of U(1) gauge transformations on d = 4. This property is, pre-
cisely, what allowed us to relate the periods of the torii.
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n
Q†(α),Q(β)

o
= (γ1γa)αβP (a) + (γ1γ5)αβP (0) − [γ1 1

2
(1− γ5)]αβM ,

ˆ
Q(α), P (a)

˜
= −Q(β)Γs(P (a))

β
α ,

ˆ
Q(α),M

˜
= −Q(β)Γs(M)βα ,

ˆ
P (a),M

˜
= −P (b)Γv(M)ba ,

ˆ
P (a), P (b)

˜
= F abP (0) .

The quantization of the string on this background leads to a non-commutative Field Theory in
which only the fermionic superspace coordinates anticommute anomalously.

This superalgebra can be obtained by dimensional reduction of
the Gödel superalgebra, in which the momenta P(a) do not com-
mute, but give P (0) which should be interpreted as the generator
of U(1) gauge transformations on d = 4. This property is, pre-
cisely, what allowed us to relate the periods of the torii.
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5 – Conclusion

? We completed the classification of Lorentzian and Euclidean
maximally supersymmetric vacua with 8 supercharges.

? We have found a solution, the flacuum solution with very interesting properties and
that can be generalized to other dimensions (always as a timelike reduction of a
Gödel-type solution).

? We have seen that the flacuum solution can be interpreted as a known instanton
solution over T 4 which here is maximally supersymmetric.

? We have discussed how the compactification affects the residual supersymmetry of the
solution, which is a delicate point because the holonomy of the solution is not
contained in SO(4).

? We have determined the symmetry superalgebra of the flacuum solution. We notice
that the symmetry superalgebras of all the maximally supersymmetric vacua are
always deformations of the supertranslation (superPoincaré) algebra, which may allow
to classify and find all these vacua.
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