
Prepared for submission to JHEP

Under The Dome

Doped holographic superconductors with broken

translational symmetry

Matteo Baggioli,a,b Mikhail Goykhmanc

aInstitut de F́ısica d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,
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Abstract: We comment on a simple way to accommodate translational symmetry

breaking into the recently proposed holographic model which features a superconduct-

ing dome-shaped region on the temperature-doping phase diagram.
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1 Introduction

The original holographic model of [1, 2] successfully describes the physics of super-

conducting (SC) phase transitions within a strongly coupled regime. This is achieved

by introducing a charged scalar field into the finite-temperature, finite-density AdS-

RN black-brane setting. The charged scalar field is stated to be the bulk dual of the

condensate of the boundary charge carriers and it represents indeed the natural or-

der parameter for the SC phase transition. When the system is in the normal phase,

the bulk scalar is identically trivial; on the contrary in the SC phase, the bulk scalar

develops a non-trivial profile. This model however describes just one face of a vari-

ety of phenomena exhibited by real-world materials. For the AdS/CMT field to be

a practically-oriented endeavor, one should augment the framework of [1, 2] by cou-

pling it to additional sectors, with the intention to account for more of a non-trivial

experimentally observed physics.

The present work is motivated by the recent paper [3], which follows in this direction

by building a model which exhibits a normal, superconducting, anti-ferromagnetic and

striped/checkerboard phases on the doping-temperature plane. It is interesting that

the superconducting phase of [3] appears within a dome-shaped region in the middle of

the phase plane as in actual High-Tc superconductors. However the normal phase of

[3] possesses an infinite DC conductivity, a property which it shares with the original
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holographic superconductor [1, 2] and which does not allow it to be labeled as a proper

metallic phase. Unlike the infinite DC conductivity of the superconducting phase,

which is a result of the condensation of the charge carriers, an infinite DC conductivity

in the normal phase is a straightforward consequence of the translational invariance of

the boundary theory, which needs to be relaxed.

Translational symmetry breaking mechanisms in holographic models have recently

received plenty of attention in the literature, in order to mimic more realistic con-

densed matter situations. Breaking the bulk diffeomorphism invariance via introducing

a graviton mass [4] is an efficient way of achieving it. Massive gravity theories can be

formulated covariantly in terms of the Stuckelberg fields and such a construction results

in a finite DC conductivity [5]. The latter model has been considered in combination

with the holographic superconductor setting in the recent literature, which includes

[6–8].

In this note we point out that the recent model [3], featuring a holographic SC

dome, can be further improved by coupling it to a neutral scalar sector, governed by a

general Lagrangian as in [9] and responsible for the breaking of translational symmetry.

The resulting holographic superconductor can be studied in spirit of [8]. Its normal

phase possesses a finite DC conductivity. Our results prove that the superconducting

dome of [3] continues to exist once the translational symmetry has been broken.

Using the non-linear model proposed in [9] we are able to describe a normal phase

with conductivity decreasing upon lowering of the temperature. The resulting sys-

tem exhibits three phases on the temperature-doping plane: superconducting, normal

metallic and normal pseudo-insulating. The phases are essentially distinguished by the

DC conductivity: infinite in the superconducting phase, decreasing with temperature

in the metallic phase, and growing with temperature in the pseudo-insulating phase.

The rest of this paper is organized as follows. In the next section we set up the

model which we study in this paper. We describe the normal phase in section 3, where

we also construct the metal/pseudo-insulator phase diagram on the temperature-doping

plane, for the model governed by a non-linear Lagrangian for the neutral scalars. In

section 4 we determine the critical temperature and doping for which the normal phase

becomes unstable towards the development of a scalar hair. This signals a supercon-

ducting phase transition, which we confirm in section 5 by solving numerically for the

whole background and calculating the temperature dependence of the charge conden-

sate v.e.v. We discuss our results in 6. In appendix A we collect the equations of

motion for the whole background that used in the paper.
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2 The system

In this section we set up the holographic system which we will be studying in this

paper. We follow closely the conventions of [3]. We consider the following bulk degrees

of freedom: the metric gµν , two U(1) gauge fields Aµ, Bµ, the complex scalar field ψ,

and two neutral scalars φI , I = x, y. Here x, y are spatial coordinates on the boundary.

We will denote the radial bulk coordinate as u. The boundary is located at u = 0, the

horizon is located at u = uh.

We want to describe a system of charge carriers, coexisting with a media of impu-

rities. The density of the charge carriers is denoted by ρA and is dual to the gauge field

Aµ while the density of impurity ρB is dual to the gauge field Bµ. The quantity

x = ρB/ρA (2.1)

is called the doping parameter and represents the amount of charged impurities present

in the system [3].

The boundary system exists in a superconducting phase when the Bose condensate

is formed. The vacuum expectation value of the condensate is the order parameter

for the superconducting phase transition and it is described holographically via the

complex scalar field, ψ. The latter is charged w.r.t. the U(1)A gauge field [1, 2].

We introduce explicit translational symmetry breaking into the system by coupling

it to a sector of neutral and massless scalars φI with spatial dependent sources φI =

αxI , I = x, y [5]. In this paper we will be making use of a generalized action for those

scalars introduced in [9].

The total action of the model is written as:

S =
1

16π

∫
d4x
√
−g
(
R +

6

L2
+ Lc + Ls

)
(2.2)

where we fixed the cosmological constant Λ = −3/L2, and denoted the Lagrangian

densities for the charged sector [3], and the neutral scalar sector [9] as:

Lc = −ZA(χ)

4
AµνA

µν − ZB(χ)

4
BµνB

µν − ZAB(χ)

2
AµνB

µν (2.3)

− 1

2
(∂µχ)2 −H(χ)(∂µθ − qAAµ − qBBµ)2 − Vint(χ) (2.4)

Ln = −2m2V (X) . (2.5)

Here the Aµν and Bµν stand for the field strengths of the gauge fields Aµ and Bµ

respectively. Following [3] we decomposed the charge scalar as ψ = χeiθ. We also

defined:

X =
1

2
gµν∂µφ

I∂νφ
I . (2.6)
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The most general black-brane ansatz we consider is:

ds2 =
L2

u2

(
−f(u)e−τ(u)dt2 + dx2 + dy2 +

du2

f(u)

)
, (2.7)

At = At(u) , Bt = Bt(u) , (2.8)

χ = χ(u) , θ ≡ 0 , (2.9)

φx = αx , φy = α y . (2.10)

The corresponding equations of motion are provided in appendix A. The temperature

of the black brane (2.7) is given by:

T = −e
− τ(uh)

2 f ′(uh)

4π
. (2.11)

In the rest of the paper we will be considering:

Vint(χ) =
M2χ2

2
. (2.12)

Solving the χ e.o.m. near the boundary u = 0 one obtains χ(u) = C− (u/L)3−∆ +

C+ (u/L)∆, where (ML)2 = ∆(∆−3). Here C− is the source term, which one demands

to vanish, and C+ is the v.e.v. of the dual charge condensate operator, C+ = 〈O〉. The

∆ is equal to the scaling dimension of the operator O. Following [3] in this paper we

fix the scaling dimension to be ∆ = 5/2.

3 Normal phase

In the normal phase the charge condensate vanishes, and the charged scalar field is

trivial, χ ≡ 0. Solving the background equations of motion we obtain τ ≡ 0, along

with:

f(u) = u3

∫ u

uh

dy
ρ2
A(1 + x2) y4 + 4 (mL)2 V (α2 y2)− 12

4y4
, (3.1)

At(u) = ρA(uh − u) , Bt(u) = ρB(uh − u) . (3.2)

The temperature in the normal phase is given by:

T =
12− ρ2

A(1 + x2)u4
h − 4 (mL)2 V (α2 u2

h)

16πuh
. (3.3)

Using the membrane paradigm one can calculate analytically the DC conductivity in

the normal phase [10, 11]. Its value for a general neutral scalars Lagrangian V is given

by [9]:

σDC = 1 +
ρ2
Au

2
h

2m2 α2 V̇ (u2
hα

2)
. (3.4)
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In particular for the linear Lagrangian:

V (X) =
1

2m2
X , (3.5)

we recover the set-up of [5]. Choosing a non-trivial V (X) one can incorporate more

interesting physics. As it was pointed out in [9] for certain V (X) one can realize both

a pseudo-insulating1 and a metallic phases, characterized by the following peculiar

temperature dependences of the DC conductivity:

dσDC
dT

> 0 : pseudo− insulating ,
dσDC
dT

< 0 : metallic . (3.6)

A transition between these two states happens at critical temperature T0 which is

determined by:

dσDC
dT

= 0 ⇒ V̇ (u2
h α

2)− u2
h α

2 V̈ (u2
h α

2) = 0 . (3.7)

Solving for the horizon radius uh in terms of the temperature (3.3), and plugging it

into (3.7), we obtain the phase transition line T0(m,α,x). Solution to (3.7) exists for

a non-trivial choice of the Lagrangian V (X). In this paper we will consider:

V (X) = X +X5 . (3.8)

For this V (X), fixing x = 0, α = O(1), one obtains a phase diagram on the (m,T )

plane, with the pseudo-insulating phase occupying a compact corner region around the

origin of the phase plane [9]. This property has been embedded in the holographic

superconductor phase diagram in [8].

In this paper, following [3], we are interested in a phase structure on the (x, T )

doping-temperature plane. Therefore we fix m and α and determine the critical temper-

ature T0(x). For the model (3.8) it is possible to achieve a compact pseudo-insulating

region around the origin of the (x, T ) plane, see figure 1.

4 Instability

To determine whether a boundary system exhibits a superconducting phase one can

consider a normal phase of the bulk system and see whether it becomes unstable towards

developing a non-trivial profile of the scalar χ(u). This approach assumes that the

1A DC conductivity increasing with temperature is reminiscent of an insulating behavior, although

it is ubiquitous in the considered holographic model that the zero-temperature conductivity is always

non-vanishing, as pointed out recently in [12].

– 5 –



PI

metal

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

x

T

Figure 1. Phase diagram of the model (3.8) with m = 1, α = 1, showing the pseudo-

insulating phase, characterized by the DC conductivity behavior σ′DC(T ) > 0, and the metallic

phase, characterized by the DC conductivity behavior σ′DC(T ) < 0.

corresponding superconducting phase transition is of the second order, which should

be checked separately by solving the whole system away from the regime of a small χ,

which we do in section 5. In this section we solve the linearized equation of motion for

χ in the normal phase background. Following [3] we define the following expansion of

the couplings:

H(χ) =
nχ2

2
, ZA(χ) = 1 +

aχ2

2
, ZB(χ) = 1 +

b χ2

2
, ZAB(χ) =

c χ2

2
. (4.1)

and define the U(1)A,B charges to be qA = 1 , qB = 0 . In this section we use scaling

symmetry and set the charge carriers density ρA = 1, and express the impurity density

in terms of the doping parameter ρB = x.

A natural place to start searching for superconductor is at zero temperature. When

the temperature is zero, the infra-red limit of the bulk geometry is AdS2 × R2, where

the scale of the AdS2 is given by:

L2
2 =

2L2

u2
h f
′′(uh)

. (4.2)

The effective mass of the scalar χ can be read off from its linearized equation of motion
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and is given by:

M2
eff =

1

2 f ′′(uh)

[
f ′′(uh)

(
2 (ML)2 − (a+ 2 c x+ b x2)u4

h

)
− 4nu2

h (qA + x qB)2
]
.

(4.3)

The system becomes unstable towards developing a non-trivial χ(u) profile if the BF

bound for the scalar χ is violated in the AdS2, namely M2
effL

2
2 < −1

4
, or more specifi-

cally:

(2M2 − u4
0 (a+ 2 c x+ b x2)) (6 +m2((αu0)2 V̇ − 2V ))− 2nu4

0 (qA + qB x)2 < 0 ,

(4.4)

where dot stands for derivative of V w.r.t. its argument and u0 for the radial position

of the extremal horizon, T (u0)=0. We also set L = 1.

To obtain a superconducting dome on the temperature-doping plane (T,x), one

needs to fix the parameters of the model in such a way that zero-temperature super-

conducting instability appears in an interval [x1,x2], between two positive values x1,2 of

the doping parameter. In the context of instability analyses tuning the model amounts

to a choice of the coefficients a, b, c, n, appearing in the expansion (4.1). In [3] the

specific model determined by the parameters:

a = −10 , b = −4

3
, c =

14

3
, n = 1 . (4.5)

has been extensively studied, and it was pointed out that in the interval x ∈ [x1,x2],

x1 ' 1.25, x2 ' 5.8 at zero temperature the effective mass of the scalar field χ violates

the AdS2 BF bound.

Now let us consider the model (4.5) but with the translational symmetry broken

by the neutral scalars with the linear Lagrangian (3.5). We observe that for α 6= 0 the

instability persists, although the ‘depth’ of the AdS2 BF violation becomes smaller,

and therefore we expect the corresponding critical temperature of the superconducting

phase transition to be lower. This is as to say that the breaking of translational sym-

metry unfavores the SC instability. We plot the α-dependence of the boundary points

of the IR instability region, x1,2(α), in figure 2.

The critical temperature Tc of a second-order phase transition can be determined by

studying the dynamics of the scalar χ(u), considered as a probe in a finite-temperature

normal phase background. We are looking for a maximal value of the temperature for

which the source coefficient C− of the near-boundary expansion of the field χ vanishes.

Consider the model with the linear Lagrangian (3.5). It is interesting to observe how

the critical temperature depends on the magnitude α of the translational symmetry
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Figure 2. The boundaries of the zero-temperature IR instability region on the doping line

for the model (4.5), with the translational symmetry broken by the neutral scalars with the

Lagrangian (3.5).

x = 2.3

1 2 3 4 5
α

0.01

0.02

0.03

0.04

Tc

Figure 3. Critical temperature Tc(α) for the model (4.5), with the translational symmetry

broken by the neutral scalars with the Lagrangian (3.5). Here the doping is fixed to be

x = 2.3.

breaking. In accordance with our expectations from the zero-temperature instability

analyses we observe a decrease of the critical temperature with α, as shown in figure 3.

Now let us fix the value of α and plot the critical temperature as a function of the

doping parameter x, see figure 4. The breaking of translation symmetry preserves the

superconducting dome structure exhibited by the model (4.5), and merely diminishes

a little the critical temperature.

Now let us consider the model with translational symmetry broken by neutral
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metal
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Figure 4. Phase diagram in the (T,x) plane for the model (4.5) coupled to the neutral

scalars with the Lagrangian (3.5). We compare the case α = 0 of [3], and the system with

broken translational symmetry, at α = 1.

SC
PI

metal

0 1 2 3 4 5 6
0.00
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0.06

0.08

x

T

Figure 5. Phase diagram in the (T,x) plane for the model (4.5) coupled to the neutral

scalars with the Lagrangian (3.8). We fixed α = 0.5 and m = 1.

scalars governed by the non-linear Lagrangian (3.8). We fix α = 0.5, m = 1 and deter-

mine the critical temperature Tc(x). In figure 5 we combine this with the temperature

T0(x) of the metal/pseudo-insulator phase transition (MIT), described in section 3, and

obtain the full phase diagram of the system with the superconducting phase enclosed

inside a dome.

This means that even if momentum dissipation unfavores the SC phase it is still
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possible to achieve a SC dome-shaped region as in actual High-Tc superconductors and

having a normal phase with a finite DC conductivity. This is the main result of our

paper.

5 Condensate

In the previous section we studied the instability of the normal phase (3.1)-(3.2) towards

development of a non-trivial profile of the scalar χ(u). Observing an instability at

temperature T = Tc on its own is not sufficient for the conclusion that the system

exhibits a phase transition at this point. Indeed, the instability analyses relies on the

assumption that the phase transition is a continuous second-order phase transition. To

determine whether this is actually the case, one should calculate behavior of the order

parameter as a function of temperature, and make sure the continuous critical point is

not shielded by a first-order phase transition.

In our case we need to solve numerically five background equations of motion for

the model (2.2). These equations are provided in appendix A. The order parameter

〈O〉(T ) is read off as the coefficient of the sub-leading term in the near-boundary

expansion of the χ(u). The methodology of a numerical solution for the background is

practically identical to the one we performed recently in [8], which the interested reader

is encourage to consult for the details. The only new subtlety now is that we need to

keep the doping parameter x fixed. With care this can be achieved, for example, using

the FindRoot function in Mathematica, now applied to solve for the A′t(uh), B
′
t(uh) for

each fixed χ(uh), such that both the source C− of the field χ at the boundary vanishes,

and the x is fixed.

We use scaling symmetry of the background equations of motion to fix uh = 1. We

plot the condensate as a function of temperature in the linear model (3.5), for α = 0

(the case of [3]), and α = 1; and in the non-linear model (3.8), for α = 0.5, m = 1.

We checked numerically the free energy of the system for the cases analyzed and

we found that the SC phase whenever present is favoured. The interested reader can

find details in [3] or [8].

6 Discussion

In this paper we described a straightforward generalization of the holographic super-

conductor model proposed in [3]. An important feature pointed out in [3] reveals

that introducing a non-trivial coupling between the order parameter and the gauge

fields one can achieve an enclosure of the superconducting phase inside a dome-shaped

region on the doping/temperature plane as in actual High-Tc superconductors. We
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Figure 6. Condensate for the model (4.5), with the doping fixed to x = 2, with broken

translational symmetry. Left: The linear model (3.5) with α = 1, plotted next to the

translationally-symmetric system α = 0. Right: The non-linear model (3.8) with α = 0.5,

m = 1. The condensate is measured in units ρ
5/2
A , the temperature is measured in units ρ

1/2
A .

have expanded the model of [3] introducing a simple momentum dissipation mecha-

nism through a sector of neutral and massless scalars, breaking translational symmetry

[5]. The conclusion is that in a generic situation the superconducting dome of [3] sur-

vives the translational symmetry breaking and can be equipped with a normal phase

featuring a finite DC conductivity.

In the case of a non-linear Lagrangian for the neutral scalars [9] the normal phase

can be further split into two phases, distinguished by the sign of the first temperature

derivative of the DC conductivity. When this sign is negative, the system behaves like

a metal, when it is positive, it resembles an insulator. We pointed out that for a generic

choice of translational symmetry breaking parameters an insulator occupies a compact

region in the corner of the (x, T ) plane. The total resulting phase diagram exhibits

three phases: metal, superconductor, and pseudo-insulator.

The main result of this paper is to show that the SC dome-shaped region built in [3]

can be completed with a simple momentum dissipation mechanism and embedded in a

normal phase region featuring a finite DC conductivity. This represents a further step

towards reproducing holographically the phase diagram for High-Tc superconductors.

It would be interesting to incorporate the translational symmetry breaking frame-

work into the whole phase diagram, constructed in [3], which also includes normal

ferromagnetic and stripe/checkerboard phases. It would also be interesting to calcu-

late the AC conductivity and study the collective excitation in the non-linear V model,

pointed out in [9], and further investigated in the holographic superconductor of [8].

Because of the non trivial couplings between the various sectors and the two gauge
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fields we expect interesting features to appear.

Finally it would be great to generalize the model to account for a real insulating normal

state with σDC(T = 0) = 0. In order to do so one has to break the assumptions of [12];

results in this direction are coming soon [13].
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A Background equations of motion

The equations of motion following from the action (2.2) for the ansatz defined in (2.7)

are:(
uχ′2 − 2τ ′

)
f 2 + 2u eτH (qAAt + qB Bt)

2 = 0 ,

4u f ′ − (12 + u2χ′2)f − 2u2eτH
(qAAt + qB Bt)

2

f(u)
+ 12− 2L2 (2m2 V + Vint)

− eτu4
(
ZAB A

′2
t +B′t (2ZAB A

′
t + ZB B

′
t)
)

= 0 ,

ZA (2A′′t + τ ′A′t) + ZAB (2B′′t + τ ′B′t) + 2χ′(ŻAA
′
t + ŻAB B

′
t)− 4 qAH

qAAt + qB Bt

u2 f
= 0 ,

ZB (2B′′t + τ ′B′t) + ZAB (2A′′t + τ ′A′t) + 2χ′(ŻB B
′
t + ŻAB A

′
t)− 4 qBH

qAAt + qB Bt

u2 f
= 0 ,

χ′′+

(
f ′

f
−2

u
−τ
′

2

)
χ′− L2

u2 f
V̇int+

eτ u2

2 f

(
ŻAA

′2
t +ŻB B

′2
t +2 ŻAB A

′
tB
′
t

)
+
eτ Ḣ

f 2
(qAAt+qB Bt)

2 =0 .

Here dot stands for a derivative w.r.t. the scalar χ, and prime stands for a derivative

w.r.t. the radial coordinate u.
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