The Asymptotic Weak Gravity Conjecture for Open Strings

Max Wiesner Harvard University

based on:

C. Fierro Cota, A. Mininno, T. Weigand, MW 2208.00009

Back to the Swamp September 27, 2022

Introduction — Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC):

In a U(1) gauge theory coupled to gravity, there must exists a super-extremal state satisfying [Arkani-Hamed, Motl, Nicolis, Vafa '06]

$$\frac{q^2 g_{YM}^2}{m^2}|_{\text{state}} \ge \frac{Q^2 g_{YM}^2}{M^2}|_{\text{black hole}}$$

Motivation: Extremal Black holes should be able to decay.

Alternatively: State with highest charge-to-mass ratio should be self-repulsive in order not to form bound states:

$$|F_{\text{Coulomb}}| \ge |F_{\text{grav}}|$$

$$\frac{q^2 g_{YM}^2}{m^2} \ge \frac{1}{M_P^{d-2}} \frac{d-3}{d-2}.$$

The Asymptotic WGC for Open Strings

Introduction — Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC):

In a U(1) gauge theory coupled to gravity, there must exists a super-extremal state satisfying [Arkani-Hamed, Motl, Nicolis, Vafa '06]

$$\frac{q^2 g_{YM}^2}{m^2}|_{\text{state}} \ge \frac{Q^2 g_{YM}^2}{M^2}|_{\text{black hole}}$$

Motivation: Extremal Black holes should be able to decay.

Alternatively: State with highest charge-to-mass ratio should be self-repulsive in order not to form bound states:

$$|F_{\text{Coulomb}}| \ge |F_{\text{grav}}|$$

$$\frac{q^2 g_{YM}^2}{m^2} \ge \frac{1}{M_P^{d-2}} \frac{d-3}{d-2}.$$

Introduction — Weak Gravity Conjecture

Stronger Version: Tower Weak Gravity Conjecture (tWGC)

[Heidenreich, Reece, Rudelius '16, Montero, Shiu, Soler '16 Andriolo, Junghans, Noumi, Shiu '18]

There exists an infinite tower of states satisfying

$$rac{q_k^2}{M_k^2} \geq rac{1}{\Lambda_{
m WGC}^2}$$
 Magnetic weak gravity conjecture scale $\Lambda_{
m WGC} = g M_{
m pl}^{d-3}$

Motivation: WGC should be consistent under KK reduction

[Heidenreich, Reece, Rudelius '16-'18]

In this talk: consider asymptotic weak gravity conjecture, i.e. WGC in the limit $g_{\rm YM} \to 0$

Swampland Distance Conjecture

 $g_{\rm YM} \rightarrow 0$ infinite distance limit \leftrightarrow tower of superextremal states (?)

In this talk: consider asymptotic weak gravity conjecture, i.e. WGC in the limit $g_{\rm YM} \to 0$

Swampland Distance Conjecture

 $g_{\rm YM} \rightarrow 0$ infinite distance limit \leftrightarrow tower of superextremal states (?)

Evidence for tWGC:

Closed String U(1)'s	Perturbative Heterotic Gauge Theories	Open string gauge theories
e.g. 5d N=1 -or- 4d N=2 e.g. KK-U(1)	e.g. 6d N=(1,0) -or- 4d N=1	e.g. 4d N=1 F-theory
Tower of charged BPS states (e.g. M2-brane/D2/D0-branes)	Tower of super-extremal string excitations due to modularity	Also tower of string excitations (?)
[Grimm, Palti, Valenzuela '18, Gendler, Valenzuela '20 Bastian, Grimm, v.d. Heisteeg '20, Alim, Rudelius, Heidenreich '21	[Arkani-Hamed et al '06, Heidenreich, Reece, Rudelius '16-'18 Montero, Shiu, Soler '16, Lee, Lerche, Weigand '18-'19 Klawer, Lee, Weigand, MW '20]	[Heidenreich, Reece, Rudelius '21] + this talk! [Cota, Mininno, Weigand, MW '22]

In this talk: weak coupling limits in 4d N=1 F-theory compactifications

- F-theory on elliptically fibered CY fourfolds $\pi: Y_4 \to B_3$
- Gauge theory with gauge group G realized on divisors $D \subset B_3$ with gauge coupling $g_{YM}^{-2} \propto \text{vol}(D)$.
- Weak coupling limits: limits in Kähler moduli space such that $vol(D) \to \infty$.

Question: what furnishes the tower of super-extremal states?

- Candidate 1: KK tower \rightarrow no charged states
- Candidate 2: excitation of D3-brane wrapped on curve C s.t. C . $D \neq 0$
 - \rightarrow string worldsheet theory has fermions charged under G.

[Lawrie, Schafer-Nameki, Weigand'16

• If perturbative string weakly-coupled: particle-like excitations are charged under G! cf. [Heidenreich, Reece, Rudelius '21]

In this talk: weak coupling limits in 4d N=1 F-theory compactifications

- F-theory on elliptically fibered CY fourfolds $\pi: Y_4 \to B_3$
- Gauge theory with gauge group G realized on divisors $D \subset B_3$ with gauge coupling $g_{YM}^{-2} \propto \text{vol}(D)$.
- Weak coupling limits: limits in Kähler moduli space such that $vol(D) \to \infty$.

Question: what furnishes the tower of super-extremal states?

- Candidate 1: KK tower → no charged states
- Candidate 2: excitation of D3-brane wrapped on curve C s.t. $C \cdot D \neq 0$
 - \rightarrow string worldsheet theory has fermions charged under G.

Lawrie, Schafer-Nameki, Weigand' 16

• If perturbative string weakly-coupled: particle-like excitations are charged under G! cf. [Heidenreich, Reece, Rudelius '21]

In this talk: weak coupling limits in 4d N=1 F-theory compactifications

- F-theory on elliptically fibered CY fourfolds $\pi: Y_4 \to B_3$
- Gauge theory with gauge group G realized on divisors $D \subset B_3$ with gauge coupling $g_{YM}^{-2} \propto \text{vol}(D)$.
- Weak coupling limits: limits in Kähler moduli space such that $vol(D) \to \infty$.

Question: what furnishes the tower of super-extremal states?

- Candidate 1: KK tower → no charged states
- Candidate 2: excitation of D3-brane wrapped on curve C s.t. $C \cdot D \neq 0$
 - \rightarrow string worldsheet theory has fermions charged under G.

[Lawrie, Schafer-Nameki, Weigand'16

• If perturbative string weakly-coupled: particle-like excitations are charged under G!

cf. [Heidenreich, Reece, Rudelius '21]

In this talk: weak coupling limits in 4d N=1 F-theory compactifications

- F-theory on elliptically fibered CY fourfolds $\pi: Y_4 \to B_3$
- Gauge theory with gauge group G realized on divisors $D \subset B_3$ with gauge coupling $g_{YM}^{-2} \propto \text{vol}(D)$.
- Weak coupling limits: limits in Kähler moduli space such that $vol(D) \to \infty$.

Question: what furnishes the tower of super-extremal states?

- Candidate 1: KK tower → no charged states
- Candidate 2: excitation of D3-brane wrapped on curve C s.t. $C \cdot D \neq 0$
 - \rightarrow string worldsheet theory has fermions charged under G.

[Lawrie, Schafer-Nameki, Weigand'16

ullet If perturbative string weakly-coupled: particle-like excitations are charged under G!

cf. [Heidenreich, Reece, Rudelius '21]

Weak Coupling Limits in F-theory

Can this work? Yes it does (at least) in emergent string limits. [Lee, Lerche, Weigand '18-'20]

- B_3 has itself rational fibration, $\rho: B_3 \to B_2$
- D3-brane on *generic* fiber string gives rise to critical string.
- Consider gauge theory on $D \sim B_2$, weak coupling limit $\hat{=} \operatorname{vol}(B_2) \to \infty$.
- Existence of tower of *marginally* super-extremal states due to modular properties of elliptic genus.
- RFC and WGC relation also work at 1-loop level.

[Kläwer, Lee, Weigand, MW '20]

Need: 1. A classification of weak coupling limits in terms of the strings.

- 2. Identify perturbative, weakly coupled strings that are charged under gauge group.
- 3. Check the WGC relation for the excitations of the string!

Main results

Provide a classification of weak coupling limits in terms of weakly-coupled EFT strings.

In such limits: tWGC is only satisfied by string excitations if species scale is set by tension of weakly-coupled string

tWGC is only satisfied by string excitations for emergent heterotic string limits!

EFT String Limits

At **Infinite Distance Limits** in field space of 4d N=1 or 2 EFT: unbroken axionic shift symmetries

chiral fields in 4d N=1
$$T_i = s_i + ia_i$$
: $T_i \sim T_i + ic_i$ $c_i \in \mathbb{R}$

Shift symmetry \longrightarrow can dualize axion into two-forms: $a_i \leftrightarrow B_2^i$

Strings charged under 2-form

$$S = \int_{\text{string}} e_i B_2^i + \dots$$

- Can associate 1/2-BPS cosmic string solution to string of charge (e_i) cf. [Greene, Shapere, Vafa, Yau '90]
- Backreaction of string induces logarithmic profile for chiral fields

$$T_i(z) = T_i^0 - \frac{e_i}{2\pi} \log \frac{z}{z_0}$$
 z : 4d coordinate transverse to string

- Close to string core: realize infinite distance limit $T_i \to \infty$!
- EFT string = instantons charged under shift symmetry induced by string become suppressed.

EFT String Limits — F-theory Kähler Moduli Space

[Lanza, Marchesano, Martucci, Valenzuela '20,'21]

For the F-theory 4d N=1 Kähler field space we have:

- Chiral fields: $T_i = \frac{1}{2} \int_D J \wedge J + i \int_D C_4$ D_a : Generators of Eff¹(B_3)
- J: Kähler form on B_3

 - C_4 : Type IIB RR four-form
- Instantons: Euclidean D3-branes on effective divisors $D \in \mathrm{Eff}^1(B_3)$.
- Strings: D3-branes on curves C in movable cone $Mov_1(B_3)$.

EFT string limits:

For a subset $\mathcal{I} \subset \mathrm{Eff}^1(B_3)$ of generators of effective cone:

$$\mathcal{V}_D \sim \lambda \to \infty \qquad \forall D \in \mathcal{I}$$

$$\mathcal{V}_{D'} \sim \text{ finite } \forall D' \notin \mathcal{I}$$

Primitive EFT string with $\underline{e} = (0,...,0,e_i,0,...,0)$: $|\mathcal{I}| = 1$

Distant Axionic String Conjecture:

Primitive large volume limit for generator $D_i \in \mathrm{Eff}^1(B_3)$

EFT string on dual generator $C^i \in \text{Mov}_1(B_3)$

Classifying Weak Coupling Limits

For gauge theory on effective divisor $D \in \mathrm{Eff}^1(B_3)$:

- $D = \sum_{a} \kappa_a D_a$ with D_a generators of $\mathrm{Eff}^1(B_3)$ and $\kappa_a \ge 0$.
- Can take primitive EFT string limit for one $D_a \subset D$.
- D3-brane on dual curve $C^a \in \text{Mov}_1(B_3)$ becomes weakly-coupled string.
- Can check Repulsive Force Condition for excitations of string!

Caveat

- Primitive EFT string limit does not exist in every chamber of extended Kähler cone!
 - Reaching limit, $\mathcal{V}_{D_a} \to \infty$ $\mathcal{V}_{D_a'} \sim$ finite, might require passing through flop transition.
 - \rightarrow what happens at flop transition in N=1 theory?
 - EFT string spectrum differs depending on chamber of classical Kähler cone.

Classifying Weak Coupling Limits

For gauge theory on effective divisor $D \in \mathrm{Eff}^1(B_3)$:

- $D = \sum_{a} \kappa_a D_a$ with D_a generators of $\mathrm{Eff}^1(B_3)$ and $\kappa_a \ge 0$.
- Can take primitive EFT string limit for one $D_a \subset D$.
- D3-brane on dual curve $C^a \in \text{Mov}_1(B_3)$ becomes weakly-coupled string.
- Can check Repulsive Force Condition for excitations of string!

Caveat:

- Primitive EFT string limit does not exist in every chamber of extended Kähler cone!
 - Reaching limit, $\mathcal{V}_{D_a} \to \infty$ $\mathcal{V}_{D_a'} \sim$ finite, might require passing through flop transition.
 - \rightarrow what happens at flop transition in N=1 theory?
 - EFT string spectrum differs depending on chamber of classical Kähler cone.

Classifying EFT strings

To avoid floppy problems: stay within fixed Kähler cone chamber!

Question: How can we classify EFT strings and their corresponding limits?

- Problem: Volume of divisors cannot be scaled independently.
- But: volume v^i of Mori cone generators \mathscr{C}^a can be scaled independently!

$$J = v^i J_i \qquad v^i = \int_{\mathcal{C}^a} J$$

For (quasi-)primitive EFT string limits:

- Fix Mori cone generator \mathscr{C}^0 .
- Consider the limit: $v^0 = \mathcal{V}_{\mathscr{C}^0} \sim \lambda \to \infty$.
- Co-scale other $v^a \sim \lambda^{-1}$ or $\sim \lambda$ such that $|\mathcal{F}|$ of homogeneously expanding divisors is minimized.
- Check that no effective divisor vanishes asymptotically due to co-scaling.

If this leads to a homogeneous limit for divisor volumes \Rightarrow quasi-primitive EFT string limit!

Simple Classification

Resulting classification: [Cota, Mininno, Weigand, MW '22]

For (quasi-)primitive EFT string limit associated to Mori cone generator \mathscr{C}^0 dual to Kähler cone generator J_0 the associated EFT string is obtained from a D3-brane wrapped on

1.
$$C = \alpha J_0^2$$
 if $J_0^2 \neq 0$

2.
$$C = \alpha J_0 \cdot J_i$$
 if $J_0^2 = 0$ for suitable Kähler cone generator $J_i \neq J_0$

For curve of the form $C = D_1 \cdot D_2$ with $D_{1,2}$ effective divisors define

$$q = \Theta(D_1^2 \cdot D_2) + \Theta(D_1 \cdot D_2^2)$$

⇒ quasi primitive EFT string limits thus come in three classes:

$$q = 0,1,2$$

Crucial result: for primitive EFT strings the qualitative behavior in the weak coupling behavior only depends on value of q!

q - Dependence

Importance of q manifests itself in following result: [Cota, Mininno, Weigand, MW '22]

In the limit induced by a primitive EFT string, the volume of B_3 factorizes asymptotically as:

$$\mathcal{V}_{B_3}^2 \to (\operatorname{Re} T_0)^{1+q} P_{2-q}(\operatorname{Re} T_{i\neq 0})$$

where $\operatorname{Re} T_0 \to \infty$ and $\operatorname{Re} T_{i\neq 0}$ finite in the asymptotic limit.

The Kähler potential is asymptotically of the form:

$$K = -(1+q) \log(T_0 + \bar{T}_0)$$

Consider gauge theory on divisor $S = \kappa D_0 + \dots$

In the primitive EFT string limit for \mathscr{C}^0 (dual to D_0), the gauge coupling behaves as

$$\frac{2\pi}{g_{\rm YM}^2} = \kappa \text{Re}\, T_0 + \dots \to \infty$$

Perturbative String Excitations (?)

In EFT string limit (Re $T_0 \to \infty$) the effective action reduces to

$$S_{4d} = \frac{M_{\text{Pl}}^2}{2} \int \left(R \star 1 - (1 + q) \frac{dT_0 \wedge \star d\bar{T}_0}{(T_0 + \bar{T}_0)^2} \right) - \frac{\kappa M_{\text{Pl}}^2}{8} \int \left(\text{Re} \, T_0 \, \operatorname{tr} |F|^2 - i \text{Im} T_0 \, \operatorname{tr} (F \wedge F) \right) + \dots$$

- Weak coupling limit for gauge theory.
- Weak coupling limit for EFT string on curve $C = J_0^2$ or $J_0 \cdot J_1$.
- Action very reminiscent of heterotic string at weak coupling (q=0) $T_0 \triangleq \text{heterotic axio-dilaton}$

Question: Can excitations of string furnish the superextremal tower?

Rough parametric dependence:

String tension

$$\frac{T_{
m EFT}}{M_{
m Pl}^2} \sim \frac{1}{{
m Re}\,T_0}$$
 Correct

Correct behavior for expected tower of super-extremal states

WGC scale

$$\frac{\Lambda_{\rm WGC}^2}{M_{\rm Pl}^2} \sim g_{\rm YM}^2 \sim \frac{1}{{\rm Re}\,T_0}$$

cf. [Heidenreich, Reece, Rudelius '21; Kaya, Rudelius '22]

Weak Gravity Conjecture

String tension

 $\frac{\Lambda_{\rm WGC}^2}{M_{\rm Pl}^2} \sim g_{\rm YM}^2 \sim \frac{1}{{\rm Re}\,T_0}$

WGC scale

$$\frac{T_{\rm EFT}}{M_{\rm Pl}^2} \sim \frac{1}{{\rm Re}\,T_0}$$

Correct behavior for expected

tower of super-extremal states cf. [Heidenreich, Reece, Rudelius '21]

But what about the $\mathcal{O}(1)$ factors?

Assume EFT string has particle like excitations

'Heterotic-like' quantization: $M_k^2 = 8\pi T_{\text{EFT}}(n_k - E_0)$

$$M_k^2 = 8\pi T_{\rm EFT}(n_k - E_0)$$

Modularity of elliptic genus \rightarrow maximal charge at excitation level n:

$$q^2 \ge 4mn$$

$$q^2 \ge 4mn \qquad m = \frac{1}{2}C \cdot \mathbf{S}$$

$$\frac{g_{\text{YM}}^2 q_k^2}{M_k^2} \ge \frac{1}{M_{\text{Pl}}^2} \left[\left. \frac{d-3}{d-2} \right|_{d=4} + \frac{1}{4} \frac{M_{\text{Pl}}^4}{M_k^4} g^{rs} \partial_r \left(\frac{M_k^2}{M_{\text{Pl}}^2} \right) \partial_s \left(\frac{M_k^2}{M_{\text{Pl}}^2} \right) \right]$$

$$\frac{1}{1+q} \ge \frac{1+\frac{q}{2}}{1+q}$$

Weak Gravity Conjecture

String tension

$$\frac{T_{\rm EFT}}{M_{\rm Pl}^2} \sim \frac{1}{{\rm Re}\,T_0}$$

$$\frac{\Lambda_{\rm WGC}^2}{M_{\rm Pl}^2} \sim g_{\rm YM}^2 \sim \frac{1}{{\rm Re}\, T_0}$$

tower of super-extremal states cf. [Heidenreich, Reece, Rudelius '21]

But what about the $\mathcal{O}(1)$ factors?

Assume EFT string has particle like excitations

'Heterotic-like' quantization: $M_k^2 = 8\pi T_{\text{EFT}}(n_k - E_0)$

Modularity of elliptic genus \rightarrow maximal charge at excitation level n: $q^2 \ge 4mn$ $m = \frac{1}{2}C \cdot S$

Repulsive Force Condition:

$$\frac{g_{\text{YM}}^2 q_k^2}{M_k^2} \ge \frac{1}{M_{\text{Pl}}^2} \left[\frac{d-3}{d-2} \bigg|_{d=4} + \frac{1}{4} \frac{M_{\text{Pl}}^4}{M_k^4} g^{rs} \partial_r \left(\frac{M_k^2}{M_{\text{Pl}}^2} \right) \partial_s \left(\frac{M_k^2}{M_{\text{Pl}}^2} \right) \right]$$

Explicit evaluation for primitive q-EFT string:

$$\frac{1}{1+q} \ge \frac{1+\frac{q}{2}}{1+q}$$

 $\frac{1}{1+a} \ge \frac{1+\frac{q}{2}}{1+a}$ Satisfied only for q=0 EFT string \leftrightarrow critical heterotic string!

How to explain this mismatch?

- \rightarrow assumption of particle-like excitations not valid for $q \neq 0$
- \rightarrow compare string tension to quantum gravity cut-off, i.e. species scale $\Lambda_{\rm sp}!$

Species scale for different towers of light states: [Dvali '07], see also Dieter's talk!

$$\Lambda_{\rm sp,str}^2 \sim T_{\rm EFT}$$

KK tower for
$$n$$
 compact dimensions:

$$rac{\Lambda_{
m sp,KK}^2}{M_{
m Pl}^2} = \left(rac{M_{
m KK}^2}{M_{
m Pl}^2}
ight)^{rac{n}{2+n}}$$

How to explain this mismatch?

- \rightarrow assumption of particle-like excitations not valid for $q \neq 0$
- \rightarrow compare string tension to quantum gravity cut-off, i.e. species scale $\Lambda_{\rm sp}!$

Species scale for different towers of light states: [Dvali '07], see also Dieter's talk!

 $\Lambda_{\mathrm{sp,str}}^2 \sim T_{\mathrm{EFT}}$ KK tower for n compact dimensions: $\frac{\Lambda_{\mathrm{sp,KK}}^2}{M_{\mathrm{Dl}}^2} = \left(\frac{M_{\mathrm{KK}}^2}{M_{\mathrm{Dl}}^2}\right)^{\frac{n}{2+n}}$ Light string excitations:

$$rac{\Lambda_{
m sp,KK}^2}{M_{
m pl}^2} = \left(rac{M_{
m KK}^2}{M_{
m pl}^2}
ight)^{rac{n}{2+n}}$$

How to explain this mismatch?

- \rightarrow assumption of particle-like excitations not valid for $q \neq 0$
- \rightarrow compare string tension to quantum gravity cut-off, i.e. species scale $\Lambda_{\rm sp}!$

Species scale for different towers of light states: [Dvali '07], see also Dieter's and Alvaro's talk!

Light string excitations: $\Lambda_{\rm sp,str}^2 \sim T_1$

 $\Lambda_{\rm sp,str}^2 \sim T_{\rm EFT}$ KK tower for *n* compact dimensions:

$$rac{\Lambda_{
m sp,KK}^2}{M_{
m Pl}^2} = \left(rac{M_{
m KK}^2}{M_{
m Pl}^2}
ight)^{rac{n}{2+n}}$$

q=0	q=1	q=2
$B_3 \left\{ \begin{array}{c} C^0 \\ C^0 \\ S \end{array} \right.$	$B_3 \left\{ \begin{array}{c} J_0 \\ C^0 \\ \end{array} \right\} \mathbb{P}^1$	$C_{ m EFT}$ Is general curve in B_3
KK tower for $n=4$	KK tower for $n=2$	KK tower for n=6
$rac{\Lambda_{ m sp,KK}^2}{M_{ m Pl}^2} \sim \left(rac{\Lambda_{ m sp,str}^2}{M_{ m Pl}^2} ight)^{2/3}$	$rac{\Lambda_{ m sp,KK}^2}{M_{ m Pl}^2} \sim \left(rac{\Lambda_{ m sp,str}^2}{M_{ m Pl}^2} ight)$	$rac{\Lambda_{ m sp,KK}^2}{M_{ m Pl}^2} \sim \left(rac{\Lambda_{ m sp,str}^2}{M_{ m Pl}^2} ight)^{3/2}$

Only for q = 0 the species scale is set by the string!

[Cota, Mininno, Weigand, MW '22]

For q = 0:

- • Genuine 4d weakly-coupled gauge theory: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \ll \Lambda_{\rm sp,KK}$

For q = 1:

- Gauge theory effectively 6d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \sim \Lambda_{\rm sp,KK}$
- 6d string and gauge theory *not* weakly-coupled, string does not yield particle-like excitations for the EFT
- Need to evaluate WGC for strongly-coupled theory
 - \rightarrow used form of RFC not valid

"Decompactification Limit to 6d"

For q = 2:

- Gauge theory becomes 8d defect theory in 10d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \gg \Lambda_{\rm sp,KK}$
- No string in higher dimension (resolve the entire D3-brane)
- Gauge theory and gravity decouple entirely: WGC condition should become trivial!
- Indeed: (p,q)-string excitation super-super-extremal: $\frac{g_{\rm YM}^2q^2}{M_k^2/M_{\rm Pl}^2} \to \infty$ "Decompactification Limit to 10d"

"Decompactification Limit to 10d"

[Cota, Mininno, Weigand, MW '22]

For q = 0:

- Genuine 4d weakly-coupled gauge theory: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \ll \Lambda_{\rm sp,KK}$
- $tWGC \triangleq RFC$ and is satisfied by string excitations "Emergent string limit"

For q = 1:

- Gauge theory effectively 6d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \sim \Lambda_{\rm sp,KK}$
- 6d string and gauge theory not weakly-coupled, string does not yield particle-like excitations for the EFT
- Need to evaluate WGC for strongly-coupled theory
 - → used form of RFC not valid

"Decompactification Limit to 6d"

For *q*= 2:

- Gauge theory becomes 8d defect theory in 10d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \gg \Lambda_{\rm sp,KK}$
- No string in higher dimension (resolve the entire D3-brane)
- Gauge theory and gravity decouple entirely: WGC condition should
- Indeed: (p,q)-string excitation super-super-extremal:

[Cota, Mininno, Weigand, MW '22]

For q = 0:

- Genuine 4d weakly-coupled gauge theory: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \ll \Lambda_{\rm sp,KK}$

For q = 1:

- Gauge theory effectively 6d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \sim \Lambda_{\rm sp,KK}$
- 6d string and gauge theory *not* weakly-coupled, string does not yield particle-like excitations for the EFT
- Need to evaluate WGC for strongly-coupled theory
 - → used form of RFC not valid

"Decompactification Limit to 6d"

For q = 2:

- Gauge theory becomes 8d defect theory in 10d: $T_{\rm EFT} \sim \Lambda_{\rm WGC} \gg \Lambda_{\rm sp,KK}$
- No string in higher dimension (resolve the entire D3-brane)
- Gauge theory and gravity decouple entirely: WGC condition should become trivial!
- Indeed: (p,q)-string excitation super-super-extremal: $\frac{g_{\rm YM}^2q^2}{M_k^2/M_{\rm Pl}^2}\to\infty$ "Decompactification Limit to 10d"

Other limits

[Cota, Mininno, Weigand, MW '22]

What about non-EFT string limits?

Gauge theory on $S = \kappa D_0$ but we take a weak coupling limit that is not a (quasi)-primitive EFT string limit

Two possibilities:

1. In weak coupling limit gauge theory becomes defect theory in 10d or 8d.

similar to q=2 EFT string limits.

2. In weak coupling limit gauge theory becomes strongly coupled theory in 8d.

similar to q=1 EFT string limit

Summary: EFT string excitations only satisfy the tWGC if

- 1. the solitonic EFT string with $T_{\text{eft}} = \Lambda_{\text{WGC}}$ is a heterotic string and
- 2. the gauge theory can be identified with a *perturbative* gauge theory in the dual heterotic string duality frame associated with the EFT string.

Conclusions

Considered weak coupling limits for open string gauge theories in F-theory compactifications to 4d N=1.

- Classified weak coupling limits in terms of EFT strings $\hat{}$ D3-branes wrapped on curves $C \subset B_3$
 - \rightarrow 3 types of curves depending on value of q = 0.1.2
- Three types have different behavior for species scale relative to WGC scale:

$$q=0: \ \Lambda_{\rm WGC} \lesssim \Lambda_{\rm sp} \qquad q=1: \ \Lambda_{\rm WGC} \sim \Lambda_{\rm sp} \qquad \qquad q=2: \ \Lambda_{\rm WGC} \gg \Lambda_{\rm sp}$$

- **3** tWGC satisfied by string excitations only for q=0, i.e. heterotic string
 - \rightarrow all other limits are: *i*) non-weakly coupled higher dimensional theories *ii*) higher-dimensional defect theories

Thank you!!