EFT Strings and Quantum Gravity Bounds in F-theory

- 2209.XXXX with Luca Martucci and Nicolo Risso
- Earlier works with Seung-Joo Lee and with Antonella Grassi

Timo Weigand

Cluster of Excellence Quantum Universe Universität Hamburg

Motivation

Luca's talk: General bounds on rank of gauge algebra in 4d N = 1 supergravity theories from EFT strings

$$r(\mathbf{e}) \le 2\langle \tilde{C}, \mathbf{e} \rangle - 2$$

in a theory with axionic couplings $S \supset -\frac{1}{96\pi} \tilde{C}_i \int_{\mathbb{R}^{1,3}} a^i \operatorname{tr} R \wedge R$

This talk: Concrete realisation of these bounds in F-theory

- Check of assumptions underlying EFT string spectrum in computable frameworks
- Sharpening of bound based on microscopic realisation of intrinsic interest in F-theory

Novel sharpened bound:
$$r(\mathbf{e}) \leq \frac{5}{6}\Delta \cdot \Sigma_{\mathbf{e}} - 2$$

for minimally ${\cal N}=1$ F-theory models on smooth base spaces

EFT strings

[Lanza, Marchesano, Martucci, Valenzuela'20-21], cf talk by L. Martucci

EFT strings: strings charged under the 2-form fields,

$$S = \int_{\text{string}} e_i \, B_2^i + \dots \, ,$$

whose dual saxions become weakly coupled in the limit induced by the string backreaction:

• Backreaction of such strings induces in turn the infinite distance limit

$$T_i(z) = T_i^{(0)} - \frac{e_i}{2\pi} \log\left(\frac{z}{z_0}\right) \qquad z : \text{transverse} \subset \mathbb{R}^{1,3}$$

N = 1 chiral multiplets $T_i = s_i + i a_i$: $T_i \sim T_i + i c$

$$a_i \Longleftrightarrow B_2^i$$

• Those instantons are suppressed which are dual to the EFT string inducing the limit.

EFT strings from $Mov_1(B_3)$

N=1 Kähler moduli space in F-theory: [Lanza,Marchesano,Martucci,Valenzuela'20-21]

• Instantons:

Euclidean D3 on effective divisors $D \in \operatorname{Eff}^1(B_3)$

• EFT Strings:

D3 on curves C in dual cone of movable curves $Mov_1(B_3)$

- Movable curves can probe entire base (live in a family that covers dense open subset of B_3)
- EFT strings sensitive to gravity analogous to 5d supergravity strings [Katz,Kim,Tarazi,Vafa,'20]

Characterisation of movable curves on B_3 and associated EFT string limits in [Cota,Mininno,TW,Wiesner'22] see talk by M. Wiesner see also [Alim,Heidenreich,Rudelius'22] and talk by L. McAllister

EFT strings from $Mov_1(B_3)$

- F-theory on elliptic CY_4 with base B_3
- **D3-brane on** $\mathbb{R}^{1,1} \times C$
- C a curve in base $C \in Mov_1(B_3)$

2 important properties of movable curves C:

1. Can assume movable C is not contained in discriminant locus

 $\Delta = 12\bar{K}_{B_3} = \text{totality of 7-branes}$

- C is transverse to 7-branes on B_3
- C intersects 7-branes in isolated points on B_3
 - \implies charged fermionic modes from 3-7 strings
- 2. Anti-canonical class $\bar{K}_{B_3} \in \operatorname{Eff}^1(B_3) \longrightarrow \bar{K}_{B_3} \cdot C \geq 0$

Worldsheet Theory

Describe EFT worldsheet theory in F-Theory [Lawrie, Schafer-Nameki, TW'16] via topological duality twist [Martucci'14]

Reduce N = 4 SYM on single D3-brane with worldvolume

 $\mathbb{R}^{1,1} \times C$

 \implies 2d N=(0,2) theory on worldsheet

 \implies Massless multiplets by twisted reduction of

- gauge field \boldsymbol{A}
- 6 adjoint scalars ϕ_i
- 16 fermionic partners Ψ

Massless Spectrum

Multiplets	(0,2) Туре	Origin	Interpretation	Zero-mode Cohomology
U	Chiral	(ϕ_i,Ψ)	Universal	$h^0(C) = 1$
$\Phi^{(1)}$	Chiral	(ϕ_i,Ψ)	Deformations	$n_{\rm C}^{(1)} = h^0(C, N_{C/B_3})$
$\Phi^{(2)}$	Chiral	(A,Ψ)	Twisted Wilson lines	$n_{\mathrm{C}}^{(2)} = h^0(C, K_C \otimes \bar{K}_{B_3})$
				$= g - 1 + \bar{K}_{B_3} \cdot C$
$\Psi^{(1)}$	Fermi	Ψ	Obstructions	$n_{\rm N}^{(1)} = h^1(C, N_{C/B_3})$
				$= h^0(C, N_{C/B_3}) - \bar{K}_{B_3} \cdot C$
$\Psi^{(2)}$	Fermi	Ψ	Obstructions (?)	$n_{\rm N}^{(2)} = h^1(C) = g$
Λ	Fermi	3-7 strings	Charged	$n_{\rm F} = 8 \bar{K}_{B_3} \cdot C$

- n⁽¹⁾_C − n⁽¹⁾_N = h⁰(C, N_{C/B₃}) − h¹(C, N_{C/B₃}) = K
 _{B₃} · C topological index that agrees with number of unobstructed complex geometric deformations of curve C inside B₃
- $n_{\rm C}^{(2)} n_{\rm N}^{(2)} = \bar{K}_{B_3} \cdot C 1$ topological index conjectured to agree with number of unobstructed twisted Wilson line moduli

General Bound

General bound on rank of gauge group detected by EFT string of charge ${\bf e}$

$$r(\mathbf{e}) \le n_{\mathrm{F}}(\mathbf{e}) + 2n_{\mathrm{C}}^{\mathrm{eff}} = 2\langle \tilde{C}(\mathbf{e}), \mathbf{e} \rangle - 2$$

- $n_{\rm F}(e)$ number of Fermi multiplets charged under 7-brane gauge group
- $n_{\rm C}^{\rm eff} = n_{\rm C} n_{\rm N}$ number of unobstructed chiral multiplets which can experience gauged shift symmetry
- \tilde{C} : gravitational higher derivative coupling

Specialisation: [Martucci, Risso, TW'22]

Rank of 7-brane group detected by string from D3 brane on curve Σ_{e} :

•
$$n_{\rm C}^{\rm eff} = (n_{\rm C}^{(1)} - n_{\rm N}^{(1)}) + (n_{\rm C}^{(2)} - n_{\rm N}^{(2)})$$

• $n_{\rm C}^{(1)} - n_{\rm N}^{(1)} = \Sigma_{\rm e} \cdot \bar{K}$
• $n_{\rm C}^{(2)} - n_{\rm N}^{(2)} = \Sigma_{\rm e} \cdot \bar{K} - 1$

• $n_{\rm F}(e) = 8\Sigma_{\rm e} \cdot \bar{K}$

$$r(\mathbf{e}) \le 12\Sigma_{\mathbf{e}} \cdot \bar{K} - 2 = \Sigma_{\mathbf{e}} \cdot \Delta - 2$$

Consistently: $\tilde{C} = 6\bar{K}$ from effective action [Grimm, Taylor'12]

Sharpened Bound

 $r(\mathbf{e}) \le n_{\rm F}(\mathbf{e}) + 2n_{\rm C}^{\rm eff} \qquad \bullet \ n_{\rm C}^{(1)} - n_{\rm N}^{(1)} = \Sigma_{\mathbf{e}} \cdot \bar{K}$ $n_{\rm C}^{\rm eff} = (n_{\rm C}^{(1)} - n_{\rm N}^{(1)}) + (n_{\rm C}^{(2)} - n_{\rm N}^{(2)}) \qquad \bullet \ n_{\rm C}^{(2)} - n_{\rm N}^{(2)} = \Sigma_{\mathbf{e}} \cdot \bar{K} - 1$

Stronger bound for minimally SUSY F-theory over smooth base B_3

[Martucci, Risso, TW'22]

- $\Phi^{(1)}$: geometric moduli of curve $\Sigma_{\mathbf{e}}$ in B_3 Under above assumptions, $\Phi^{(1)}$ <u>cannot</u> enjoy gauged shift symmetries
- $\Phi^{(2)}$: Of same origin as charged Fermis \implies candidates for gauged shift symmetries

$$r(\mathbf{e}) \le n_{\mathrm{F}}(\mathbf{e}) + 2n_{\mathrm{C}}^{\mathrm{eff},(2)} = 10\Sigma_{\mathbf{e}} \cdot \bar{K} - 2 = \frac{5}{6}\Sigma_{\mathbf{e}} \cdot \Delta - 2$$

Massless moduli from M-theory

EFT string from M5-brane on vertical divisor $\hat{\Sigma}_{\mathbf{e}} = \pi^*(\Sigma_{\mathbf{e}})$:

4d analogue of MSW string [Maldacena,Strominger,Witten'96]

 \implies Massless spectrum from reduction of

- self-dual 2-form ${\cal B}$
- complex scalars Φ
- and fermionic partners

Massless moduli from M-theory

1) Reduction of chiral 2-form B

[Lawrie, Schafer-Nameki, TW'16]

- $h^{1,1}(\hat{\Sigma}_{\mathbf{e}}) 1$ LEFT scalars

- $2h^{2,0}(\hat{\Sigma}_{\mathbf{e}}) + 1 \Phi^{(2)}$ (and U)
- $2h^{2,0}(\hat{\Sigma}_{\mathbf{e}}) + 1 \text{ RIGHT scalars} \implies h^{1,1}(\hat{\Sigma}_{\mathbf{e}}) 1 (2h^{2,0}(\hat{\Sigma}_{\mathbf{e}}) + 1) = 8\bar{K} \cdot h^{1,1}(\hat{\Sigma}_{\mathbf{e}}) 1 (2h^{2,0}(\hat{\Sigma}_{\mathbf{e$ $\Sigma_{\mathbf{e}}$ LEFT scalars dualised into Fermis
- LEFT scalars in $\Phi^{(2)}$ and Fermi multiplets $\iff H^{1,1}(\hat{\Sigma}_{\mathbf{e}})$: \implies charged under gauge field from $C_3 \iff$ 7-brane gauge group
- RIGHT scalars in $\Phi^{(2)}$: Of different origin and hence uncharged

2) Reduction of Φ

- gives geometric moduli $\Phi^{(1)} \Longrightarrow$ do not couple to C_3
- $\Phi^{(1)}$ might enjoy gauged shift symmetry, but only from metric, i.e. geometric shift symmetries

EFT vs Kodaira bounds

$$\{\Delta = 0\} = n_I \mathcal{D}^I + \mathcal{D}' \simeq 12\overline{K}$$

with $n_I \equiv \operatorname{ord}(\Delta)|_{\mathcal{D}^I}$

Non-abelian gauge group G_I on divisor \mathcal{D}^I constrained by Kodaira bound cf. [Morrison, Taylor '11]:

$$\operatorname{rk}(G_I) < n_I \equiv \operatorname{ord}(\Delta)|_{\mathcal{D}^I}$$
.

	$\operatorname{ord}_{\mathcal{D}}(f)$	$\operatorname{ord}_{\mathcal{D}}(g)$	$\operatorname{ord}_{\mathcal{D}}(\Delta)$	singularity
I ₀	≥ 0	≥ 0	0	none
$I_n, n \ge 1$	0	0	$\frac{n}{n}$	A_{n-1}
II	1	1	≥ 2	none
III	1	≥ 2	3	A_1
IV	≥ 2	2	4	A_2
I_0^*	≥ 2	≥ 3	6	D_4
$I_n^*, n \ge 1$	2	3	6+n	D_{4+n}
IV^*	≥ 3	4	8	E_6
III^*	3	≥ 5	9	E_7
Π^*	≥ 4	5	10	E_8

For every curve C in interior of movable cone $(C \cdot D_{\text{eff}} \ge 1 \forall D_{\text{eff}})$

$$\operatorname{rk}(G_{\operatorname{non-ab}}) \leq \sum_{I} \operatorname{rk}(G_{I})(C \cdot D_{I}) \leq \sum_{I} n_{I}(C \cdot D_{I}) + C \cdot D' = C \cdot \Delta$$

Compare: For EFT curve $C=\Sigma_{\mathbf{e}}$

$$\operatorname{rk}(\mathbf{e}) \leq \Sigma_{\mathbf{e}} \cdot \Delta - 2$$

 \checkmark Conservative EFT bound slightly stronger than geometric upper bound

EFT vs Kodaira bounds

Geometric Kodaira bound:

$$\operatorname{rk}(G_{\operatorname{non-ab}}) = C \cdot \Delta$$
 C inside $\operatorname{Mov}_1(B_3)$

For EFT curve $C = \Sigma_{\mathbf{e}}$:

$$\operatorname{rk}(\mathbf{e}) \leq \Sigma_{\mathbf{e}} \cdot \Delta - 2$$

What use are the EFT string bounds?

- Kodaira bound only sensitive to non-abelian gauge algebra, but not to abelian subgroup, i.e. total rank
 By contrast, EFT string bound includes non-abelian and abelian rank
- 2. Proposed stronger bound

$$\operatorname{rk}(\mathbf{e}) \leq \frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta - 2$$

not obvious from geometry - even for non-abelian groups

Example: \mathbb{P}^3

 $H^{1,1}(B_3) = \langle H \rangle$ $\bar{K} = 4H$ $\Delta = 12\bar{K} = 48H$

$$\Sigma_{\mathbf{e}} = H \cdot H : \quad r_{\text{tot}} \leq \begin{cases} r(\mathbf{e})_{\max} &= 12 \Sigma_{\mathbf{e}} \cdot \overline{K}_X - 2 = 46, \qquad n_F, n_C^{(1)}, n_C^{(2)}, \\ r(\mathbf{e})_{\max}^{\text{strict}} &= 10 \Sigma_{\mathbf{e}} \cdot \overline{K}_X - 2 = 38, \qquad n_F, n_C^{(2)}, \\ r(\mathbf{e})_{\max}^{\text{F}} &= 8 \Sigma_{\mathbf{e}} \cdot \overline{K}_X = 32, \qquad n_F \end{cases}$$

Maximal rank of SU(N) group in Weierstrass model [Morrison, Taylor '11]

 $SU(N_{\max}) = SU(32)$ geometrically

Incidentally, allowed even by bound $r(\mathbf{e})_{\max}^{\mathrm{F}}$, but more generally, at best $r(\mathbf{e})_{\max}^{\mathrm{strict}}$ can be correct:

Examples:

Caveats:

$G = E_6 \times E_7^4$	$\operatorname{rank}(G) = 34$	Non-minimal fibers $ ightarrow$ blowups
$G = E_6^2 \times E_7^3$	$\operatorname{rank}(G) = 33$	Flux quantisation $ ightarrow$ non-trivial flux

Rational fibration $\mathbb{P}^1 \hookrightarrow B_3 \to B_2$

• 2 sections S_- , S_+ :

$$S_{\pm} \cdot S_{\pm} = \pm S_{-} \cdot p^* c_1(\mathcal{T})$$
$$S_{-} \cdot S_{+} = 0$$

•
$$\overline{K}_{B_3} = 2S_- + p^*c_1(\mathcal{T}) + p^*c_1(B_2)$$

F-theory base B_3

EffectivedivisorconeMovable curve cone $Mov_1(B_3)$: $Eff^1(B_3)$: $S_ \leftarrow$ F rational fiber $p^*(D^a)$ \leftarrow F rational fiber D^a generators of C_a generators of $Eff^1(B_2)$ $Mov_1(B_2) \equiv Nef^1(B_2)$

Apply bound to EFT string from rational fiber ${\cal F}$

D3-brane wrapped on rational fiber F

heterotic string of dual theory on $X_{\rm het}$

F-theory base B_3 heterotic $CY_3 X_{het}$ S_+ x x $S_ \downarrow \pi$ p $\downarrow \pi$ C_a B_2 C_a B_2

Massless spectrum:

 $n_{\rm C}^{(1)} = \bar{K}_{B_3} \cdot F = 2$ $n_{\rm C}^{(2)} = \bar{K}_{B_3} \cdot F - 1 = 1$ $n_{\rm N}^{(1)} = n_{\rm N}^{(2)} = 0$

4 real moduli of het. string along B_2 2 real moduli of het. string along T^2 fiber No $U(1)_N$ charged Fermi multiplets

Bounds on rank of gauge group detected by EFT heterotic string:

$$r(\mathbf{e}) \leq \begin{cases} r(\mathbf{e})_{\max} &= 12 \Sigma_{\mathbf{e}} \cdot \overline{K}_X - 2 = 22, \qquad n_F, n_C^{(1)}, n_C^{(2)}, \\ r(\mathbf{e})_{\max}^{\text{strict}} &= 10 \Sigma_{\mathbf{e}} \cdot \overline{K}_X - 2 = 18, \qquad n_F, n_C^{(2)}, \\ r(\mathbf{e})_{\max}^{\text{F}} &= 8 \Sigma_{\mathbf{e}} \cdot \overline{K}_X &= 16, \qquad n_F \end{cases}$$

Claim: $r(\mathbf{e})_{\max}^{\text{strict}}$ is indeed correct bound $r(\mathbf{e})_{\max}^{\text{strict}}$ can be saturated:

Example: $B_3 = \mathbb{P}^1 \times B_2$ (trivial fibration)

Various rank 18 non-abelian gauge groups possible

$$G_2 = E_6^3: \qquad f \equiv 0, \qquad g = p_1^4(u, v) \, q_1^4(u, v) \, r_1^4(u, v) \, s_{6\bar{K}_{B_2}}$$

Non-minimal fibers at $s \cap s$ on B_2 avoided for $B_2 = dP_9$ with $\bar{K}^2_{dP_9} = 0$

Interpretation from dual heterotic perspective:

 $18 = 16_{E_8 \times E_8} + 2_{KK}$

Extra contribution from 2 KK U(1)s along 'torus fiber' of heterotic X_{het}

- Requires X_{het} to be degenerate and at (partial) orbifold point
- $X_{\rm het}$ is Schoen manifold and does admit orbifold degenerations [Donagi,Wendland '08]

For B_2 smooth and minimally supersymmetric, no comparable KK U(1)s from base

 \implies explains stricter bound

$$r(\mathbf{e})_{\max}^{\text{strict}} = 10 \,\Sigma_{\mathbf{e}} \cdot \overline{K}_X - 2 = 18 \,, \qquad n_F, n_C^{(2)}$$

for F-theory on smooth minimally SUSY setups

Compare: $B_3 = T^4 \times \mathbb{P}^1$: N=4 SUSY and $r \leq 22$ [Kim, Tarazi, Vafa'19]

IFT Madrid, 2022 – p.18

Universal bounds in 6d

Bounds constrain rank of gauge algebra to which give EFT string couples Absolute bounds on (7-brane) group require minimal Σ_{e} in interior of Mov₁:

 $\Sigma_{\mathbf{e}} \cdot D_{\text{eff}} \ge 1 \quad \forall D_{\text{eff}} \text{ effective}$

Simplification for abelian (non-Cartan) U(1)s: [Lee,TW'19] Suffices to find curve Σ_{e} such that $\Sigma_{e} \cdot \bar{K}_{B} \geq 1$

Can be achieved for F-theory on elliptic 3-folds (6d): Bases of elliptic 3-folds very constrained

 B_2 : \mathbb{P}^2 or (blowup of) Hirzebruch: $B_2 = \mathrm{Bl}^k(\mathbb{F}_n)$ (or Enriques)

Explicit analysis of spectrum \implies bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$r(\mathbf{e})_{\max}^{\text{strict}} = 10 \Sigma_{\mathbf{e}} \cdot \overline{K}_{B_2} - 2$$

Universal bounds in 6d

Bases of elliptic 3-folds very constrained:

 B_2 : \mathbb{P}^2 or (blowup of) Hirzebruch: $B_2 = \mathrm{Bl}^k(\mathbb{F}_n)$ (or Enriques)

Explicit analysis of spectrum \implies bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$r(\mathbf{e})_{\max}^{\text{strict}} = 10 \Sigma_{\mathbf{e}} \cdot \overline{K}_{B_2} - 2$$

For (non-Cartan) U(1) groups in 6d this gives a universal bound [Lee, TW'19]:

• $\mathbb{P}^2 : n_{U(1)} \le 28$ • $\mathrm{Bl}^k(\mathbb{F}_n) : n_{U(1)} \le 18$ bound on rank of Mordell-Weil group of rational sections on ell. CY_3

Current Record: Schoen manifold of Namikawa type [Grassi, TW'21]

$$n_{U(1)} \le 10$$

Generic Schoen: $n_{U(1)} = 8$ [Schoen'88] Special Schoen: $n_{U(1)} = 9$ [Morrison,Park,Taylor'18] (12 I_2 fibers in codim-two) Namikawa type: $n_{U(1)} = 10$ [Namikawa'02] [Grassi,TW'21]

(6 Type IV fibers in codim-two: terminal, non-Q-factorial) IFT Madrid, 2022 - p.20

Conclusions

Applied general bottom up bounds on rank of gauge group in 4d N=1 supergravity theories to F-theory on CY_4

Novel sharpened bound: r

$$r(\mathbf{e}) \le \frac{5}{6} \Delta \cdot \Sigma_{\mathbf{e}} - 2$$

 $\checkmark\,$ Stronger than geometric Kodaira bound

- \checkmark Applies to abelian and non-abelian gauge group (from 7-branes)
- \checkmark Matches expectations from dual heterotic strings, but more general

Many open questions:

- Prove assumptions on role of uncharged Fermi multiplets or at least argue that generators of movable cone do not give rise to such Fermis
- Goal: Translate this into universal bound for rank of gauge group in all 4d N=1 theories comparable to bound to bound on abelian rank in 6d
- What about matter? 6d: cf. [Tazari, Vafa'21]

Appendix: Topological Twist

Describe theory directly in language of F-Theory [Lawrie,Schafer-Nameki,TW'16] via topological duality twist [Martucci'14]

• gauge field A

Theory on single D3-brane: $\mathcal{N} = 4$ SYM

- 6 adjoint scalars Φ
- 16 fermionic partners Ψ
- $G_{\text{total}} = SO(1,3)_L \times SU(4)_R \times \mathbf{U}(1)_{\mathbf{D}}$
- A_{μ} : $(\mathbf{2}, \mathbf{2}, \mathbf{1})_{*} \quad \phi_{i}$: $(\mathbf{1}, \mathbf{1}, \mathbf{6})_{\mathbf{0}} \quad \Psi_{\alpha}^{I}$: $(\mathbf{2}, \mathbf{1}, \mathbf{4})_{\mathbf{1}} \quad \widetilde{\Psi}_{\dot{\alpha}I}$: $(\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}})_{-\mathbf{1}}$

 $U(1)_D$: Duality symmetry incorporating $SL(2,\mathbb{Z})$ of $\mathcal{N}=4$ SYM

• Decompose:

$$\begin{array}{rccc} SU(4)_R & \to & SO(2)_T \times SU(2)_R \times \underline{U(1)_R} \\ SO(1,3)_L & \to & SO(1,1) \times U(1)_C \end{array}$$

Perform two topological twists

$$T_C^{\text{twist}} = \frac{1}{2}(T_C + T_R), \qquad T_D^{\text{twist}} = \frac{1}{2}(T_D + T_R)$$

 2d N=(0,2) supersymmetry and massless matter transforming in various bundle cohomology groups

IFT Madrid, 2022 - p.22

Appendix: Heterotic duality

F-theory: $D_{a}^{F} = p^{*}(C_{a})$ $p_{a} := \int_{D_{a}^{F}} c_{1}(\mathcal{T})$ Heterotic: $D_{a}^{het} = \pi^{*}(C_{a})$ $p_{a} := \int_{D_{a}^{het}} \frac{1}{2}c_{2}(X_{het}) - \lambda(E_{2})$ $\lambda(E) = -\frac{1}{16\pi^{2}} \text{tr}F_{2} \wedge F_{2}$

Match of EFT strings in Kähler sector $(C_a: basis of Mov_1(B_2))$

$$\Sigma_{\mathbf{e}} = a_F F + e^a S_+ \cdot D_a^{\mathrm{F}} \qquad (a_F + p_a e^a) \times (\text{fundamental}) \\ + e^a \times (\mathsf{M5 on} D_a^{\mathrm{het}})$$

 \checkmark Matches direct analysis on heterotic side using curvature corrections

- Strings of charge e^a sensitive to non-pert. sectors on heterotic side
- Heterotic M5-brane on B_2 dual to 7-brane on B_3 sensitive to gauge group on D3-branes in F-theory
- Can be extended to F-theory blowups/heterotic 5-branes