EFT Strings and Quantum Gravity Bounds in F-theory

- 2209.XXXX with Luca Martucci and Nicolo Risso
- Earlier works with Seung-Joo Lee and with Antonella Grassi

Timo Weigand
Cluster of Excellence Quantum Universe
Universität Hamburg

Motivation

Luca's talk: General bounds on rank of gauge algebra in $4 \mathrm{~d} N=1$ supergravity theories from EFT strings

$$
r(\mathbf{e}) \leq 2\langle\tilde{C}, \mathbf{e}\rangle-2
$$

in a theory with axionic couplings $S \supset-\frac{1}{96 \pi} \tilde{C}_{i} \int_{\mathbb{R}^{1,3}} a^{i} \operatorname{tr} R \wedge R$
This talk: Concrete realisation of these bounds in F-theory

- Check of assumptions underlying EFT string spectrum in computable frameworks
- Sharpening of bound based on microscopic realisation of intrinsic interest in F-theory

$$
\text { Novel sharpened bound: } \quad r(\mathbf{e}) \leq \frac{5}{6} \Delta \cdot \Sigma_{\mathbf{e}}-2
$$

for minimally $N=1$ F-theory models on smooth base spaces

E-T strings

[Lanza,Marchesano, Martucci,Valenzuela'20-21], cf talk by L. Martucci
EFT strings: strings charged under the 2-form fields,

$$
S=\int_{\text {string }} e_{i} B_{2}^{i}+\ldots
$$

whose dual saxions become weakly coupled in the limit induced by the string backreaction:

- Backreaction of such strings induces in turn the infinite distance limit

$$
T_{i}(z)=T_{i}^{(0)}-\frac{e_{i}}{2 \pi} \log \left(\frac{z}{z_{0}}\right) \quad z: \text { transverse } \subset \mathbb{R}^{1,3}
$$

$N=1$ chiral multiplets $T_{i}=s_{i}+i a_{i}: T_{i} \sim T_{i}+i c$

$$
a_{i} \Longleftrightarrow B_{2}^{i}
$$

- Those instantons are suppressed which are dual to the EFT string inducing the limit.

EFT strings from $\operatorname{Mov}_{1}\left(B_{3}\right)$

$\mathrm{N}=1$ Kähler moduli space in F-theory: [Lanza,Marchesano,Martucci,Valenzuela'20-21]

- Instantons:

Euclidean D3 on effective divisors
$D \in \operatorname{Eff}^{1}\left(B_{3}\right)$

- EFT Strings:

- Movable curves can probe entire base (live in a family that covers dense open subset of B_{3})
- EFT strings sensitive to gravity - analogous to 5d supergravity strings [Katz,Kim,Tarazi,Vafa,'20]

Characterisation of movable curves on B_{3} and associated EFT string limits in [Cota,Mininno,TW,Wiesner'22] see talk by M. Wiesner see also [Alim,Heidenreich,Rudelius'22] and talk by L. McAllister

EFT strings from $\operatorname{Mov}_{1}\left(B_{3}\right)$

F-theory on elliptic CY_{4} with base B_{3}
D3-brane on $\mathbb{R}^{1,1} \times C$
C a curve in base $C \in \operatorname{Mov}_{1}\left(B_{3}\right)$
2 important properties of movable curves C :

1. Can assume movable C is not contained in discriminant locus

$$
\Delta=12 \bar{K}_{B_{3}}=\text { totality of 7-branes }
$$

- C is transverse to 7-branes on B_{3}
- C intersects 7-branes in isolated points on B_{3} \Longrightarrow charged fermionic modes from 3-7 strings

2. Anti-canonical class $\bar{K}_{B_{3}} \in \operatorname{Eff}^{1}\left(B_{3}\right) \longrightarrow \bar{K}_{B_{3}} \cdot C \geq 0$

Worldsheet Theory

Describe EFT worldsheet theory in F-Theory [Lawrie,Schafer-Nameki,TW'16] via topological duality twist [Martucci'14]

Reduce $N=4$ SYM on single D3-brane with worldvolume

$$
\mathbb{R}^{1,1} \times C
$$

$\Longrightarrow 2 \mathrm{~d} N=(0,2)$ theory on worldsheet
\Longrightarrow Massless multiplets by twisted reduction of

- gauge field A
- 6 adjoint scalars ϕ_{i}
- 16 fermionic partners Ψ

Massless Spectrum

Multiplets	$(0,2)$ Type	Origin	Interpretation	Zero-mode Cohomology
U	Chiral	$\left(\phi_{i}, \Psi\right)$	Universal	$h^{0}(C)=1$
$\Phi^{(1)}$	Chiral	$\left(\phi_{i}, \Psi\right)$	Deformations	$n_{\mathrm{C}}^{(1)}=h^{0}\left(C, N_{\left.C / B_{3}\right)}\right.$
$\Phi^{(2)}$	Chiral	(A, Ψ)	Twisted Wilson lines	$n_{\mathrm{C}}^{(2)}=h^{0}\left(C, K_{C} \otimes \bar{K}_{B_{3}}\right)$ $=g-1+\bar{K}_{B_{3}} \cdot C$
$\Psi^{(1)}$	Fermi	Ψ	Obstructions	$n_{\mathrm{N}}^{(1)}=h^{1}\left(C, N_{\left.C / B_{3}\right)}\right.$ $h^{0}\left(C, N_{C / B_{3}}\right)-\bar{K}_{B_{3}} \cdot C$
$\Psi^{(2)}$	Fermi	Ψ	Obstructions (?)	$n_{\mathrm{N}}^{(2)}=h^{1}(C)=g$
Λ	Fermi	$3-7$ strings	Charged	$n_{\mathrm{F}}=8 \bar{K}_{B_{3}} \cdot C$

- $n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=h^{0}\left(C, N_{C / B_{3}}\right)-h^{1}\left(C, N_{C / B_{3}}\right)=\bar{K}_{B_{3}} \cdot C$
topological index that agrees with number of unobstructed complex geometric deformations of curve C inside B_{3}
- $n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\bar{K}_{B_{3}} \cdot C-1$ topological index - conjectured to agree with number of unobstructed twisted Wilson line moduli

General Bound

General bound on rank of gauge group detected by EFT string of charge e

$$
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff}}=2\langle\tilde{C}(\mathbf{e}), \mathbf{e}\rangle-2
$$

- $n_{\mathrm{F}}(e)$ number of Fermi multiplets charged under 7-brane gauge group
- $n_{\mathrm{C}}^{\text {eff }}=n_{\mathrm{C}}-n_{\mathrm{N}}$ number of unobstructed chiral multiplets which can experience gauged shift symmetry
- \tilde{C} : gravitational higher derivative coupling

Specialisation: [Martucci,Risso,TW'22]
Rank of 7-brane group detected by string from D3 brane on curve Σ_{e} :

- $n_{\mathrm{C}}^{\text {eff }}=\left(n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}\right)+\left(n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}\right)$

$$
r(\mathbf{e}) \leq 12 \Sigma_{\mathbf{e}} \cdot \bar{K}-2=\Sigma_{\mathbf{e}} \cdot \Delta-2
$$

- $n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=\Sigma_{\mathbf{e}} \cdot \bar{K}$
- $n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\Sigma_{\mathbf{e}} \cdot \bar{K}-1$
- $n_{\mathrm{F}}(e)=8 \Sigma_{\mathbf{e}} \cdot \bar{K}$

Consistently:
$\tilde{C}=6 \bar{K}$ from effective action
[Grimm,Taylor'12]

Sharpened Bound

$$
\begin{array}{cc}
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff}} & \bullet n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=\Sigma_{\mathbf{e}} \cdot \bar{K} \\
n_{\mathrm{C}}^{\mathrm{eff}}=\left(n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}\right)+\left(n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}\right) & \bullet n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\Sigma_{\mathbf{e}} \cdot \bar{K}-1
\end{array}
$$

Stronger bound for minimally SUSY F-theory over smooth base B_{3}
[Martucci,Risso,TW'22]

- $\Phi^{(1)}$: geometric moduli of curve $\Sigma_{\mathbf{e}}$ in B_{3} Under above assumptions, $\Phi^{(1)}$ cannot enjoy gauged shift symmetries
- $\Phi^{(2)}$: Of same origin as charged Fermis
\Longrightarrow candidates for gauged shift symmetries

$$
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff},(2)}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}-2=\frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

Massless moduli from M-theory

EFT string from M5-brane on vertical divisor $\hat{\Sigma}_{\mathbf{e}}=\pi^{*}\left(\Sigma_{\mathbf{e}}\right)$:

4d analogue of MSW string

\Longrightarrow Massless spectrum from reduction of

- self-dual 2-form B
- complex scalars Φ
- and fermionic partners

Massless moduli from M-theory

1) Reduction of chiral 2-form B

- $h^{1,1}\left(\hat{\Sigma}_{\mathrm{e}}\right)-1$ LEFT scalars [Lawrie,Schafer-Nameki,TW'16]
- $2 h^{2,0}\left(\hat{\Sigma}_{\mathbf{e}}\right)+1$ RIGHT scalars
- $2 h^{2,0}\left(\hat{\Sigma}_{\mathbf{e}}\right)+1 \Phi^{(2)}$ (and $\left.U\right)$
- $h^{1,1}\left(\hat{\Sigma}_{\mathbf{e}}\right)-1-\left(2 h^{2,0}\left(\hat{\Sigma}_{\mathbf{e}}\right)+1\right)=8 \bar{K}$. Σ_{e} LEFT scalars dualised into Fermis
- LEFT scalars in $\Phi^{(2)}$ and Fermi multiplets $\Longleftrightarrow H^{1,1}\left(\hat{\Sigma}_{\mathbf{e}}\right)$: \Longrightarrow charged under gauge field from $C_{3} \Longleftrightarrow 7$-brane gauge group
- RIGHT scalars in $\Phi^{(2)}$: Of different origin and hence uncharged

2) Reduction of Φ

- gives geometric moduli $\Phi^{(1)} \Longrightarrow$ do not couple to C_{3}
- $\Phi^{(1)}$ might enjoy gauged shift symmetry, but only from metric, i.e. geometric shift symmetries

EFT vs Kodaira bounds

$$
\{\Delta=0\}=n_{I} \mathcal{D}^{I}+\mathcal{D}^{\prime} \simeq 12 \bar{K} \quad \text { with }\left.\quad n_{I} \equiv \operatorname{ord}(\Delta)\right|_{\mathcal{D}^{I}}
$$

Non-abelian gauge group G_{I} on divisor \mathcal{D}^{I} constrained by Kodaira bound cf. [Morrison, Taylor '11]:

$$
\operatorname{rk}\left(G_{I}\right)<\left.n_{I} \equiv \operatorname{ord}(\Delta)\right|_{\mathcal{D}^{I}}
$$

	$\operatorname{ord}_{\mathcal{D}}(f)$	$\operatorname{ord}_{\mathcal{D}}(g)$	$\operatorname{ord}_{\mathcal{D}}(\Delta)$	singularity
I_{0}	≥ 0	≥ 0	0	none
$\mathrm{I}_{n}, n \geq 1$	0	0	n	A_{n-1}
II	1	1	≥ 2	none
III	1	≥ 2	3	A_{1}
IV	≥ 2	2	4	A_{2}
I_{0}^{*}	≥ 2	≥ 3	6	D_{4}
$\mathrm{I}_{n}^{*}, n \geq 1$	2	3	$6+n$	D_{4+n}
IV^{*}	≥ 3	4	8	E_{6}
III^{*}	3	≥ 5	9	E_{7}
II^{*}	≥ 4	5	10	E_{8}

For every curve C in interior of movable cone ($C \cdot D_{\text {eff }} \geq 1 \forall D_{\text {eff }}$)

$$
\operatorname{rk}\left(G_{\mathrm{non}-\mathrm{ab}}\right) \leq \sum_{I} \operatorname{rk}\left(G_{I}\right)\left(C \cdot D_{I}\right) \leq \sum_{I} n_{I}\left(C \cdot D_{I}\right)+C \cdot D^{\prime}=C \cdot \Delta
$$

Compare: For EFT curve $C=\Sigma_{\mathbf{e}}$

$$
\mathrm{rk}(\mathbf{e}) \leq \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

\checkmark Conservative EFT bound slightly stronger than geometric upper bound

EFT vs Kodaira bounds

Geometric Kodaira bound:

$$
\operatorname{rk}\left(G_{\text {non-ab }}\right)=C \cdot \Delta \quad C \text { inside } \operatorname{Mov}_{1}\left(B_{3}\right)
$$

For EFT curve $C=\Sigma_{\mathbf{e}}$:

$$
\operatorname{rk}(\mathbf{e}) \leq \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

What use are the EFT string bounds?

1. Kodaira bound only sensitive to non-abelian gauge algebra, but not to abelian subgroup, i.e. total rank
By contrast, EFT string bound includes non-abelian and abelian rank
2. Proposed stronger bound

$$
\operatorname{rk}(\mathbf{e}) \leq \frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

not obvious from geometry - even for non-abelian groups

Example: \mathbb{P}^{3}

$$
\begin{aligned}
& H^{1,1}\left(B_{3}\right)=\langle H\rangle \quad \Delta=12 \bar{K}=48 H \\
& \Sigma_{\mathrm{e}}=H \cdot H: \quad r_{\mathrm{tot}} \leq \begin{cases}r(\mathbf{e})_{\max } & =12 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=46, \\
r(\mathbf{e})_{\max }^{\text {strict }} & =10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=38, \\
r(\mathbf{e})_{\max }^{\mathrm{F}} & =8 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}, n_{C}^{(1)}, n_{C}^{(2)}, \\
=32, & n_{F}, n_{C}^{(2)}\end{cases}
\end{aligned}
$$

Maximal rank of $S U(N)$ group in Weierstrass model [Morrison,Taylor '11]

$$
S U\left(N_{\max }\right)=S U(32) \quad \text { geometrically }
$$

Incidentally, allowed even by bound $r(\mathbf{e})_{\text {max }}^{\mathrm{F}}$, but more generally, at best $r(\mathbf{e})_{\max }^{\text {strict }}$ can be correct:

Examples:
$G=E_{6} \times E_{7}^{4}$
$\operatorname{rank}(G)=34$
$G=E_{6}^{2} \times E_{7}^{3}$
$\operatorname{rank}(G)=33$

Caveats:
Non-minimal fibers \rightarrow blowups
Flux quantisation \rightarrow non-trivial flux

Example: Rational fibration

Rational fibration $\mathbb{P}^{1} \hookrightarrow B_{3} \rightarrow B_{2}$

- 2 sections S_{-}, S_{+}:

$$
\begin{aligned}
S_{ \pm} \cdot S_{ \pm} & = \pm S_{-} \cdot p^{*} c_{1}(\mathcal{T}) \\
S_{-} \cdot S_{+} & =0
\end{aligned}
$$

- $\bar{K}_{B_{3}}=2 S_{-}+p^{*} c_{1}(\mathcal{T})+p^{*} c_{1}\left(B_{2}\right)$

F-theory base B_{3}

Effective divisor cone Movable curve cone $\operatorname{Mov}_{1}\left(B_{3}\right)$:
Eff $^{1}\left(B_{3}\right)$:
S_{-}
$p^{*}\left(D^{a}\right)$
D^{a} generators of
Eff ${ }^{1}\left(B_{2}\right)$

$$
\Longleftrightarrow \begin{aligned}
& F \quad \text { rational fiber } \\
& S_{+} \cdot p^{*}\left(C_{a}\right) \\
& \\
& C_{a} \text { generators of } \\
& \\
& \operatorname{Mov}_{1}\left(B_{2}\right) \equiv \operatorname{Nef}^{1}\left(B_{2}\right)
\end{aligned}
$$

Example: Rational fibration

Apply bound to EFT string from rational fiber F

D3-brane wrapped on rational fiber F

$$
\text { F-theory base } B_{3}
$$

heterotic string of dual theory on $X_{\text {het }}$

Massless spectrum:
$n_{\mathrm{C}}^{(1)}=\bar{K}_{B_{3}} \cdot F=2$
$n_{\mathrm{C}}^{(2)}=\bar{K}_{B_{3}} \cdot F-1=1$
$n_{\mathrm{N}}^{(1)}=n_{\mathrm{N}}^{(2)}=0$

4 real moduli of het. string along B_{2}
2 real moduli of het. string along T^{2} fiber
No $U(1)_{N}$ charged Fermi multiplets

Example: Rational fibration

Bounds on rank of gauge group detected by EFT heterotic string:

$$
r(\mathbf{e}) \leq\left\{\begin{array}{lll}
r(\mathbf{e})_{\max } & =12 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=22, & \\
r(\mathbf{e})_{\max }^{\operatorname{strict}} & =10 \Sigma_{\mathbf{e}} \cdot n_{C}^{(1)}, \bar{K}_{X}^{(2)}-2=18, & \\
r(\mathbf{e})_{\max }^{\mathrm{F}} & =8 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}, n_{C}^{(2)}, \\
r & =16, & \\
n_{F}
\end{array}\right.
$$

Claim: $r(\mathbf{e})_{\max }^{\text {strict }}$ is indeed correct bound $r(\mathbf{e})_{\text {max }}^{\text {strict }}$ can be saturated:

$$
\text { Example: } \quad B_{3}=\mathbb{P}^{1} \times B_{2} \quad \text { (trivial fibration) }
$$

Various rank 18 non-abelian gauge groups possible

$$
G_{2}=E_{6}^{3}: \quad f \equiv 0, \quad g=p_{1}^{4}(u, v) q_{1}^{4}(u, v) r_{1}^{4}(u, v) s_{6 \bar{K}_{B_{2}}}
$$

Non-minimal fibers at $s \cap s$ on B_{2} avoided for $B_{2}=\mathrm{dP}_{9}$ with $\bar{K}_{\mathrm{dP}_{9}}^{2}=0$

Example: Rational fibration

Interpretation from dual heterotic perspective:

$$
18=16_{\mathrm{E}_{8} \times \mathrm{E}_{8}}+2_{\mathrm{KK}}
$$

Extra contribution from $2 \mathrm{KK} \mathrm{U}(1)$ s along 'torus fiber' of heterotic $X_{\text {het }}$

- Requires $X_{\text {het }}$ to be degenerate and at (partial) orbifold point
- $X_{\text {het }}$ is Schoen manifold and does admit orbifold degenerations [Donagi,Wendland '08]

For B_{2} smooth and minimally supersymmetric, no comparable $\mathrm{KK} \mathrm{U}(1) \mathrm{s}$ from base
\Longrightarrow explains stricter bound

$$
r(\mathbf{e})_{\max }^{\text {strict }}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=18, \quad n_{F}, n_{C}^{(2)}
$$

for F-theory on smooth minimally SUSY setups
Compare: $B_{3}=T^{4} \times \mathbb{P}^{1}: \mathrm{N}=4$ SUSY and $r \leq 22[$ Kim,Tarazi, Vafa'19]

Universal bounds in 6d

Bounds constrain rank of gauge algebra to which give EFT string couples Absolute bounds on (7-brane) group require minimal Σ_{e} in interior of Mov_{1} :

$$
\Sigma_{\mathbf{e}} \cdot D_{\text {eff }} \geq 1 \quad \forall D_{\text {eff }} \text { effective }
$$

Simplification for abelian (non-Cartan) $\mathrm{U}(1) \mathrm{s}$: [Lee,TW'19]
Suffices to find curve $\Sigma_{\mathbf{e}}$ such that $\Sigma_{\mathbf{e}} \cdot \bar{K}_{B} \geq 1$
Can be achieved for F-theory on elliptic 3-folds (6d):
Bases of elliptic 3-folds very constrained
$B_{2}: \mathbb{P}^{2}$ or (blowup of) Hirzebruch: $B_{2}=\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right)$ (or Enriques)
Explicit analysis of spectrum \Longrightarrow bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$
r(\mathbf{e})_{\max }^{\text {strict }}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{B_{2}}-2
$$

Universal bounds in 6d

Bases of elliptic 3-folds very constrained:
$B_{2}: \mathbb{P}^{2}$ or (blowup of) Hirzebruch: $B_{2}=\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right) \quad$ (or Enriques)
Explicit analysis of spectrum \Longrightarrow bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$
r(\mathbf{e})_{\max }^{\text {strict }}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{B_{2}}-2
$$

For (non-Cartan) $\mathrm{U}(1)$ groups in 6d this gives a universal bound [Lee,TW'19]:

- $\mathbb{P}^{2}: n_{U(1)} \leq 28$
bound on rank of Mordell-Weil
- $\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right): n_{U(1)} \leq 18 \quad \Longrightarrow \quad{ }_{\mathrm{CY}}^{3} \mathrm{ap}$

Current Record: Schoen manifold of Namikawa type [Grassi,TW'21]

$$
n_{U(1)} \leq 10
$$

Generic Schoen: $n_{U(1)}=8$ [Schoen'88]
Special Schoen: $n_{U(1)}=9$ [Morrison, Park,Taylor'18] (12 I_{2} fibers in codim-two)
Namikawa type: $n_{U(1)}=10$ [Namikawa'02] [Grassi,TW'21]
(6 Type IV fibers in codim-two: terminal, non- \mathbb{Q}-factorial)

Conclusions

Applied general bottom up bounds on rank of gauge group in $4 \mathrm{~d} N=1$ supergravity theories to F-theory on CY_{4}

$$
\text { Novel sharpened bound: } r(\mathbf{e}) \leq \frac{5}{6} \Delta \cdot \Sigma_{\mathbf{e}}-2
$$

\checkmark Stronger than geometric Kodaira bound
\checkmark Applies to abelian and non-abelian gauge group (from 7-branes)
\checkmark Matches expectations from dual heterotic strings, but more general
Many open questions:

- Prove assumptions on role of uncharged Fermi multiplets or at least argue that generators of movable cone do not give rise to such Fermis
- Goal: Translate this into universal bound for rank of gauge group in all $4 d \mathrm{~N}=1$ theories comparable to bound to bound on abelian rank in 6 d
- What about matter? 6d: cf. [Tazari,Vafa'21]

Appendix: Topological Twist

Describe theory directly in language of F-Theory [Lawrie,Schafer-Nameki,TW'16] via topological duality twist [Martucci'14]

Theory on single D3-brane:
$\mathcal{N}=4 \mathrm{SYM}$

- gauge field A
- 6 adjoint scalars Φ
- 16 fermionic partners Ψ
- $G_{\text {total }}=S O(1,3)_{L} \times S U(4)_{R} \times \mathbf{U}(\mathbf{1})_{\mathrm{D}}$
- $A_{\mu}:(\mathbf{2}, \mathbf{2}, \mathbf{1})_{*} \quad \phi_{i}:(\mathbf{1}, \mathbf{1}, \mathbf{6})_{0} \quad \Psi_{\alpha}^{I}:(\mathbf{2}, \mathbf{1}, \mathbf{4})_{1} \quad \widetilde{\Psi}_{\dot{\alpha} I}:(\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}})_{-1}$
$U(1)_{D}$: Duality symmetry incorporating $S L(2, \mathbb{Z})$ of $\mathcal{N}=4 \mathrm{SYM}$
- Decompose:

$$
\begin{aligned}
S U(4)_{R} & \rightarrow S O(2)_{T} \times S U(2)_{R} \times \underline{U(1)_{R}} \\
S O(1,3)_{L} & \rightarrow S O(1,1) \times \underline{U(1)_{C}}
\end{aligned}
$$

- Perform two topological twists

$$
T_{C}^{\mathrm{twist}}=\frac{1}{2}\left(T_{C}+T_{R}\right), \quad T_{D}^{\mathrm{twist}}=\frac{1}{2}\left(T_{D}+T_{R}\right)
$$

- 2d $N=(0,2)$ supersymmetry and massless matter transforming in various bundle cohomology groups

ADicencix: teterotic duaity

F-theory:
$D_{a}^{\mathrm{F}}=p^{*}\left(C_{a}\right)$
$p_{a}:=\int_{D_{a}^{\mathrm{F}}} c_{1}(\mathcal{T})$

Heterotic:

$$
\begin{aligned}
& D_{a}^{\text {het }}=\pi^{*}\left(C_{a}\right) \\
& p_{a}:=\int_{D_{a}^{\text {het }}} \frac{1}{2} c_{2}\left(X_{\text {het }}\right)-\lambda\left(E_{2}\right) \\
& \lambda(E)=-\frac{1}{16 \pi^{2}} \operatorname{tr} F_{2} \wedge F_{2}
\end{aligned}
$$

Match of EFT strings in Kähler sector $\left(C_{a}\right.$: basis of $\left.\operatorname{Mov}_{1}\left(B_{2}\right)\right)$

$$
\begin{aligned}
\Sigma_{\mathbf{e}}=a_{F} F+e^{a} S_{+} \cdot D_{a}^{\mathrm{F}} & \left(a_{F}+p_{a} e^{a}\right) \times(\text { fundamental }) \\
& +e^{a} \times\left(\mathrm{M} 5 \text { on } D_{a}^{\text {het }}\right)
\end{aligned}
$$

\checkmark Matches direct analysis on heterotic side using curvature corrections

- Strings of charge e^{a} sensitive to non-pert. sectors on heterotic side
- Heterotic M5-brane on B_{2} dual to 7 -brane on B_{3} sensitive to gauge group on D3-branes in F-theory
- Can be extended to F-theory blowups/heterotic 5-branes

