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Good for phenomenological implications and to classify QG resolutions

(inflation, Dark Dimension...)
[Montero,Vafa,|V’'22]



Swampland Program

Universal quantum gravity properties emerge at infinite field distance:

V o~ Voe 789
> ¢
Distance conjecture Asymptotic dS conjecture
[Ooguro,Vafa’05] [Obied et al’ | 8][Ooguri et al’ 18]

We are ready to ask more refined questions and fix all ambiguities
and order one factors

In this talk:  Can we get asymptotic accelerated expansion!?
T ——— T —————————
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Asymptotic Quintessence

Take asymptotic runaway behaviour of potential:

IVV (o)
Vip)

t
> cq as  D(po,p(t)) =/ \/Gabsoa’sob'dt%oo
to

To get accelerated expansion (for gradient flows):

IVV (o) 2
< — +/2 in four dimensions
V(o) vVd—2 V2

’y:

Proposed Swampland bounds:
[Rudelius’21]

2 2 2
C}‘CC _ _ - < Cztrong _ _ \/5

V(d—1)(d—2) & 3 d—zg
[Bedroya,Vafa’ 9] in 4d * in 4d

No accelerated expansion!



Asymptotic Trajectories

Given V = Z V, with V= AZH(si)li

le& 1=1
K = —log(P(s") +...)

How to compute
gamma/!

* Gradient flow trajectory: s'()\) = o'\ ;o a', B >0
as A — o0

* Optimization problem:

min {max {lez}} with S"™ = {B c R™: \3]2 — % — 1}



Convex Hull dS conjecture
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Convex Hull dS conjecture

Given V = Z V; , the asymptotic dS conjecture with HVVVH > ¢4
l
will be satisfied if the convex hull of all the dS ratios [i;

lie outside the ball of radius €d

A ° 0.V
@:ter ratios: ) i} = —6%e ;/l
®
‘scalar chargeto = —2€ T
Y mass ratio’ l
Cd )lul

“Scalar WGC for membranes in which all membranes must satisfy the bound”
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Let us consider 4d N=1 EFTs arising from string theory

Is there in restriction / lower bound on the value

of the dS ratios [i; ?



4d N=1 supergravities

Proposed no-go: [Rudelius21] (based on [Hellerman et al'01])
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4d N=1 supergravities

Proposed no-go: [Rudelius21] (based on [Hellerman et al'01])

A scalar field rolling down a potential that asymptotes to a zero-
energy SUSY minimum cannot yield an accelerating cosmology

Define 7 = /2|
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Not true in Scenario (ll), when several terms dominate asymptotically
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4d N=1 supergravities

Proposed no-go: [Rudelius21] (based on [Hellerman et al'01])

A scalar field rolling down a potential that asymptotes to a zero-
energy SUSY minimum cannot yield an accelerating cosmology

Define 7 = /2|

veLl(jorp_2r) = (2 ?
=5 (ITIE=357") = (5 =3)7T" >0 =iy +>6

4
C —
No accelerated
But... along one-dimensional gradient flow, expansion!

don’t | have V ocexp(—v¢) «=> T x exp(—y¢/2) ? [Rudelius'21]

Not, gradient flows of W (or T) andV are different in Scenario (ll)
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4d N=1 supergravities

Scenario (ll) presents a loophole to the sugra no-go for accelerated expansion.

Interpretation from Convex Hull perspective:

A. Even if each individual term is
% bounded, the CH can still cut the ball
4\ ®
o2
Cd ),LL

No obstruction to get asymptotic accelerated expansion in SUGRA

W—: w

... maybe in Quantum Gravity?
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String Theory Asymptotic Limits

Previous works focused on a concrete asymptotic limit:

Weak string coupling and large volume/large complex structure

[Valeixo et al’20] [Andriot et al’20-22] [Cicoli et al’21-22] ...

... and yet, some concluded than asymptotic acceleration is not possible in string theory...

But there are many more limits!!

Let us study different limits in the complex structure moduli
space of F-theory on ('Y, [Grimm etal'l9]

Kes=—Y Adjlogs’ +.... ii; fixed in terms of (Ali, Ad;)
j=1 that characterizes the asymptotic limit

1 T AL
Var = 353 | 2 A L1
0 \ee =1 Ay = [|pi(Ga, d0) |12
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Potential counterexamples

We find two potential examples of asymptotic accelerated expansion:

) Type |IB at weak coupling / large complex str: 151 — V5 5

A A u S 9
V=""0 4 2 4 A —+ Asp— * y=14/= < ctcC

su3 Us S us

2) F-theory limit (not weakly coupled): 177, ; — V55

AQQ AQQ A42 strong
V = | | - A = E<c
T 24 » Y= Cy

|
S2u?

g2

Both realize Scenario (ll). Smaller v than previous CY bounds

[Bastian,Grimm,van de Heisteeg'20]



Potential counterexamples

We find two potential examples of asymptotic accelerated expansion:

) Type |IB at weak coupling / large complex str: 151 — V5 5

A A u S 9
V=" 5 4 Ay — 4 Ase— » y=14/= < ctcC

su3 US S us

2) F-theory limit (not weakly coupled): 177, ; — V55

AQO AQQ A42 strong
V= | | - A = <¢
3 24 » Y= Cq

|
S2u?

g2

Caveat: One has to stabilize the Kahler moduli, otherwise they also

contribute to 7/
e




Relation to Distance Conjecture

How does the potential compare with the mass scale of the tower of
states becoming light?

At the very least, we will have a tower coming from BPS string:
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Relation to Distance Conjecture

How does the potential compare with the mass scale of the tower of
states becoming light?

At the very least, we will have a tower coming from BPS string:

T()\) ~ T(O) eXp(—OéSD) with o, = 6m_)ax (exponential rate fixed

‘ 5| by geometry!)
- . 2 _ roc
We get V ~ mX with { X =1 for example with 7 = = <6
2 strong

X = 2 for example with ¥ = 7 < ¢

This can be problematic, example cannot be trusted?

...but it is perturbative Type IIB with f2 and hO flux...
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Relation to Distance Conjecture

How does the potential compare with the mass scale of the tower of
states becoming light?

See Tom’s talk!

1

If one assumes the SDC lower bound &« > Jd -2 in [Etheredge et al "22]

and V ~ mX witt)&”f/then v 2 Cztrong (no accelerating)

However, accelerated expansion is still consistent with above SDC
bound if we only require:

V< A2

species

s this enough!?



Summary (before puzzle)

** We have studied whether string theory (asymptotic) runaway potentials
allow for accelerating cosmologies

** This can be reformulated as a convex hull condition that must lie
outside the ball

+** The Strong dS bound can be violated at the level of the flux potential
(in CY compactifications)
It was important:

* To consider examples realizing scenario (ll) (several terms dominating)
* Go to other asymptotic limits in the field space

Caveat: Not the end of the story, until checking full moduli
stabilization inlcuding Kahler moduli
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Asymptotic Puzzle

Everything is starting to come into place in flat space compactifications

(even the numerical factors!)

Very useful organizing principle coming from:

Emergent String Conjecture (all limits are either decompactifications
or string perturbative limits)

But what about in AdS?
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CFT Distance Conjecture

AdSg.1/CFTy with d > 2 [Perimutter,Rastelli,Vafa,IV'20] (see also [Baume,Calderon-Infante’20])

Bulk moduli space <—-> Conformal manifold (space of exactly marginal couplings)

field metric ~ &= Zamolodchikov metric |z — y[?%(0;(2)0;(y)) = gi; (")

tower of light states <——> tower of operators saturating unitarity bound

Our proposal:

[ 3 tower of HS with v, ~ e 477 ag d(7,7") — oo in the conformal manifold]

In other words, every infinite distance point is a free point gyy — 0

By perturbation theory: O, = Tr(F* +...)
dTdT

(Im7)?

as Im7m — oo

ds® = (24 dimGQ)
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CFT Distance Conjecture

If there is a weakly coupled AdSs dual, it implies the existence of a tower
of higher spin fields at infinite field distance with exponential rate:

central charge

r ( ) 1
\ > =
\/ 9 =7 for 4d N=2
o =
. 1

dimG > 5 for 4d N=|

_ ( y

~N

gauge group getting free

We compute the exponential rate for all possible 4d SCFTs
(N=1, N=2 and N=4) with simple gauge groups:
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CFT Distance Conjecture

If there is a weakly coupled AdSs dual, it implies the existence of a tower
of higher spin fields at infinite field distance with exponential rate:

central charge

r ( ) 1
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o =
. 1

dimG > 5 for 4d N=|
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gauge group getting free

We compute the exponential rate for all possible 4d SCFTs
(N=1, N=2 and N=4) with simple gauge groups:
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CFT Distance Conjecture

According to Emergent String Conjecture:

1
* String perturbative limit: o« = —
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We compute the exponential rate for all possible 4d SCFTs
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CFT Distance Conjecture

According to Emergent String Conjecture:

1
e String perturbative limit: @ = —
> V3
D tificati \/3 Tn 2
° m ns: o = = —,
ecompactifications ™ \/§

We compute the exponential rate for all possible 4d SCFTs
(N=1, N=2 and N=4) with simple gauge groups:
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CFT Distance Conjecture

According to Emergent String Conjecture:

1
* String perturbative limit: o« = —

V3

3 2
* Decompactifications: o = \/ no_ 2

3N V3’

We compute the exponential rate for all possible 4d SCFTs
(N=1, N=2 and N=4) with simple gauge groups:

1 7 \F
o= —= — —
V2 V120 Vs

Are we somehow decompactifying in a dual description??
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** We have studied whether string theory (asymptotic) runaway potentials
allow for accelerating cosmologies

** This can be reformulated as a convex hull condition that must lie
outside the ball

+** The Strong dS bound can be violated at the level of the flux potential
(in CY compactifications)
It was important:

* To consider examples realizing scenario (ll) (several terms dominating)
* Go to other asymptotic limits in the field space

Caveat: Not the end of the story, until checking full moduli
stabilization inlcuding Kahler moduli
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Non-SUSY example

SO(16)xSO(16) non-SUSY (tachyon-free) heterotic string theory:
V4 A

Positive runaway on the dilaton
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Non-SUSY example

SO(16)xSO(16) non-SUSY (tachyon-free) heterotic string theory:
V4 A

Positive runaway on the dilaton

)gS%O

Tower of string modes becoming light in the weak coupling limit

[ ds mss V ~m
Vi-loop ~ _Z(_l)FZ/z 56 eXp< 2 ) ->

1 Uv mNMS

10

Contribution of massive string excitations
is cut-off at Ms due to modular invariance
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Relation betweenV and m

V~m®  with 2<a<d

R ———— S
« > 2 Higuchi bound: Mower > H  since it contains higher spin fields

a < d Even if tree level is small, there is a one-loop contribution:

V ~m® (if non-susy)

Consistent with Light Fermion conjecture: [Gonzalo,lbafiez,IV2I]

If VV > (0 thereisasurplus of light fermions with m < yi/d

(to avoid inconsistency of Casimir vacua with AdS swampland conjectures
upon compactification of the theory)



Status report of SDC

Exponential Tower populated
Asymptotically Minkowski compactifications: behaviour of the by infinitely
tower mass many states

Classification of
limits

More than 8 supercharges: coset spaces

Vector
4d N=2 (Type I multiplets

on CY3)
Hypermultiplets

Vector/tensor
5d/6d N=1 multiplets

(M/F-theory on

8 supercharges

4 supercharges: 4d N=1

No supersymmetry

Weak coupling points in d>3 -

Other points
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We compute leading behaviour
of the flux induced scalar
potential for the 46 possible
asymptotic limits

T, p — OO

weak coupling + large volume limit in |[IA

1
VMN)@< Z

p=0,2,4,6
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pp—37-—|— Z 0324 A100>
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What is the value of the exponential rate?

% AdSyi1/CFT; with d > 2 [PerimutterRastelliVafa,V'20]

1
> ——  for 4d N=2
2c —
[
1
2

dimG > for 4d N=|

[Grimm, Palti, IV’ 18] [Gendler,1V’20]
: , , 1
* Lower bound for BPS states in CY compactifications: « >

for CY,,
V2n
2 1 _ K=-nloggp+...
» 4D N=2 theories: o* > — =
Text BPS particles

_, bounded by scalar contribution
to WGC/extremality bound!

% 4D N=| theories: « > % Qoxt

[Lee,Lerche,Weigand’'|9] [Gendler,IV’20]
Text

, [Bastian, Grimm,Van de Heisteeg'20]
BPS string

< TCC a > L [Bedroya,Vafa’| 9] [Andriot et al’20]
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