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Introduction

Optimal transport: 
best way of moving 
mass distributions

[Monge 1781, Kantorovich 1940…]
review: [Villani ’08]

In curved space, each bit of mass should move along geodesics

the whole motion can also be understood as a geodesic 
in the space of probability distributions



Observation: the tensor RN,f
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• Gravitational equations

Applications in this talk:

concavity of ‘Tsallis entropy’

• Bounds on spin-2 KK masses
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and a challenge for small c.c.



Plan

• Entropy and transport

• Bounds on eigenvalues

• Entropy and (classical) gravity

• Application: spin-2 conjectures



Entropy and transport



• Consider a distribution of particles: 

if particles move, generically it should grow.
What about its second time derivative?

Entropy: S = �
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figure from [Villani ’08]
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Fig. 16.2. The lazy gas experiment: To go from state 0 to state 1, the lazy gas
uses a path of least action. In a nonnegatively curved world, the trajectories of the
particles first diverge, then converge, so that at intermediate times the gas can afford
to have a lower density (higher entropy).

Bibliographical notes

Convexity has been extensively studied in the Euclidean space [705]
and in Banach spaces [172, 324]. I am not aware of textbooks where
the study of convexity in more general geodesic spaces is developed,
although this notion is now quite frequently used (in the context of
optimal transport, see, e.g., [30, p. 50]).

The concept and terminology of displacement convexity were intro-
duced by McCann in the mid-nineties [614]. He identified (16.16) as the
basic criterion for convexity in P2(Rn), and also discussed other formu-
lations of this condition, which will be studied in the next chapter.
Inequality (16.16) was later rediscovered by several authors, in various
contexts.

• •
•

Bochner identity/Raychaudhuri equation=

rmUnrmUn +RmnUmUn

Rmn > 0 ) @2
t S 6 0
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one can even use this to reformulate Einstein’s equations [McCann ’19; Mondino, Suhr ’19]
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• ‘Tsallis entropy’: homogeneous (rather than extensive)

SN = N
⇣
1�

R
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p
gef⇢
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N�1

⌘

[De Luca, De Ponti, 
Mondino, AT  ’22 to appear]

[Havrda, Charvat ’67; Patil, Taillie ’82;  Tsallis ’88]
from axioms in [Suyari ’95, Furuichi ’05]

R1,f
mn ! RN,f

mn

[⇠ log Rényi entropy]

Rmn �rmrnf

=
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• purely internal equation: in terms of first derivative of Shannon entropy
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‘Riemann-Curvature-Dimension’ [RCD] 
condition: concavity of entropy

[Sturm ’06; Lott, Villani ’07; 
Ambrosio, Gigli, Savaré 14]

RN,f
mn � �Kgmn “RCD(�K,N)” space

more generally generalize to 
non-smooth manifolds:

This applies to D-branes [De Luca, De Ponti, 
Mondino, AT ’21;  ’22 to appear]
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• Eigenvalue bounds can be obtained by optimal transport methods

on spaces with bounds for the RN,f
mn tensors.
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Rmn + (D � 2)(�rmrnA+ @mA@nA) = ⇤gmn + 1
2m

2�D
D (Tmn � 1

dgmnT(d))

non-negative

N = 2� d< 0

f = (D � 2)A

actually still good!
RN,f

mn > ⇤gmn

� > (D � 2)|dA|
‘sup of the warping’

K ⌘ |⇤|+ �2

D�2R1,f
mn > �Kgmn

Luckily, the ‘REC’ does imply such Ricci bounds!
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[Calderon ’19;
De Luca, De Ponti, 

Mondino, AT: ’22 to appear]
• m2

1 > c(d)
diam2

so small diameter does imply scale separation
for spin-2. For now, no O-planes

We can now prove some theorems:
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• similar bounds on higher eigenvalues

RCD(K,1) sing.
[recall: includes D-branes]broad class, including O-planes

[De Luca, De Ponti, 
Mondino, AT ’22 to appear]
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Conclusions

• Einstein equations for compactifications equivalent to ‘concavity’ for Tsallis entropy

• Optimal transport in curved space depends on a ‘weighted Ricci tensor’

• Bounds on spin-2 KK masses in terms of diameter or Cheeger constant

proves spin-2 conjectures, in appropriate regime
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If we replace 3 with
 [Suyari ’95, Furuichi ’05]
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Tsallis entropy
[up to constants]



Are string theory singularities RCD?

expected to be resolved in the full quantum theory, but are a general feature of classical
limits. In ten-dimensional supergravities, Dp-branes are identified by a ten-dimensional
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Here dx2

p+1

denotes the p+1 dimensional space parallel to the brane, (i.e. the subspace
along which the object is extended for r ! 0) and r is a radial coordinate in the
transverse directions to the object. The function H is harmonic on the transverse space
and it is responsible for introducing the singularity we are concerned about. In vacuum
compactifications, a Dp-brane has to be extended along all the d vacuum directions in
order to preserve maximal symmetry, but in addition it can also extend among some of
the internal directions. From (2.9), we obtain that the barred metric (2.2) approaches

¯
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Comparing with (2.2), we also read that the Bakry–Émery function f asymptotes to
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7�p/((7�p)Vol(S8�p

)) for p < 7. To analyze how these singularities
affect the general results presented in Section 2.1, we first notice that in some cases the
gradient of the warping factor can be unbounded approaching the brane. Indeed, an
explicit computation in the geometry (2.10) gives
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This vanishes for p = 7 (since the warping approaches a constant) behaving in general
as

| ¯rf |2 ⇠ (7� p)4

4

r5�p . (2.14)

(2.14) is always bounded, except for D6 branes. Thus, the bound on Ricf in (2.4)
becomes then trivial approaching a D6-brane, since a diverging | ¯rf |2 results in an
infinite �2. However, for D6-branes we can check explicitly that RicN,f is still bounded
from below approaching the singularity, for any N > n, arguing as follows.
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RCD(K,N < 0)
[

RCD(K,1)
[

RCD(K,N > 0)

• Op-planes:

R1,f
mn < 0 for p > 5;

R2�d,f
mn < 0 for all p

[De Luca, De Ponti, 
Mondino, AT: WIP]

likely 2 RCD(�K, 2� d)


