Broken Symmetry Clues for Fundamental Physics Matt Reece, Harvard University IFT Colloquium, September 27, 2022

Overview

- Symmetries are a powerful organizing principle in physics
- Quantum gravitational theories are thought to have no global symmetries
- Many of the most exciting experiments in fundamental physics are searching for small violation of global symmetries
- How good an approximate symmetry can quantum gravity allow?
- Axions as a target for experiment to make contact with these ideas

Conservation Laws and Local Currents

Change in conserved quantity in a region = - flux of quantity escaping the surface of the region,

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\oint \overrightarrow{\Phi} \cdot \mathrm{d}\overrightarrow{S}$$

Local form: *continuity equation* relating density to current:

with $\partial_{\mu} j^{\mu} = 0$

$$-\overrightarrow{\nabla}\cdot\overrightarrow{j}(t,\overrightarrow{x})$$

Package the charge density and current into a 4-vector: $j^{\mu} = (\rho, j)$,

Noether's Theorem

A continuous global symmetry in a field theory gives rise to a *conserved current*.

Consider field variation that would be a symmetry if ϵ is constant: $\phi(x) \mapsto \phi(x) + \epsilon(x)\xi(x)$.

Then the action doesn't change if ϵ constant: $S[\phi] \mapsto S[\phi] + \left[d^D x j_\mu(x) \partial^\mu \epsilon(x), \text{ for some } j_\mu(x). \right]$

Now, impose the equation of motion: $\delta S = 0$ for any variation, including this one $\Rightarrow \partial_{\mu} j^{\mu} = 0$

Emmy Noether

Quantum Symmetry Operators The charge is given by $Q = \int d^3x j^0(x)$. More generally: integral over slice Σ of spacetime, $Q(\Sigma) = \int_{\Sigma} \check{\star} j.$

In the quantum theory, $U(\Sigma, \phi) = \exp(i\phi \int_{\Sigma} \star j)$ is a family of operators.

Generalized global symmetries: Gaiotto, Kapustin, Seiberg, Willett, arXiv:1412.5148

Gauging a Global Charge

In electromagnetism, we gauge a would-be conserved current: $d^4x A_{\mu} j^{\mu}. \qquad A_{\mu} = (\phi, \vec{A}) \qquad F_{\mu}$

We obtain Maxwell's equations: c

Now the charge density is a total derivative, so our charge vanishes and all would-be charge operators are trivial!

$$Q = \int_{\Sigma} \star j = \int_{\Sigma} d(\star F) = 0$$

$$F_{\mu\nu} = \partial_{[\mu}A_{\nu]} \qquad F_{0i} \sim E_i \qquad F_{ij} \sim \epsilon_{ijk}B_k$$

$$\partial^{\nu}F_{\mu\nu}=j_{\mu}.$$

"Gauss Law Constraint"

Global Symmetry vs. Gauge "Symmetry"

Global symmetry:

- States can have net charge.
- Symmetry operators exist.
 Topological: measure charge they link with.
- Symmetry turns one state into a different state.

Gauge "symmetry":

• Gauss law: no net charge.

• Symmetry operators trivialized.

 Different gauges are redundant descriptions of a single state.

Stephen Hawking

Random thermal emission of global charge.

Measurable \overrightarrow{E} field outside **BH: preferential discharge**, if light charged particles exist.

$\mu \propto Q_{\rm BH}$

 \vec{E} field contributes to BH energy: extremality bound

 $M_{\rm BH} \ge \sqrt{2eQ_{\rm BH}M_{\rm Pl}}$

Key Lesson for Quantum Gravitational Theories

There are no global symmetries, only gauge symmetries.

Gauge symmetries are not symmetries.

Proton Decay: An Old "Naturalness" Puzzle Charge, spin, kinematics all allow proton decay: $p \to e^+ \pi^0$, $p \to K^+ \bar{\nu}_e$

Dimensionless interaction strength y_p : $\mathscr{L}_{dec} = y_p p e^- \pi^0 + h.c.$

Proton Decay: A Symmetry? Baryon number: B(p) = B(n) = +1; Lepton number: $L(e^{-}) = -L(e^{+}) = -L(\bar{\nu}_{e}) = +1$

 $\bullet e^+$

Proton decay: forbidden! Symmetry violating

p

Proton Compositeness: No Symmetry? Turns out: We don't need any fundamental symmetry! The proton is not an elementary particle! Actually three quarks. Zoom in to see what the more fundamental interaction looks like: U quark/hadron "matching":

 $y_p \lesssim 10^{-32} \Rightarrow M_{dec} \gtrsim 10^{15} \text{GeV}$

$$\mathscr{L}_{dec} = \frac{1}{M_{dec}^2} uude^- + h.c.$$

$$y_p \sim \frac{\Lambda_{\rm QCD}^2}{M_{\rm dec}^2}, \quad \Lambda_{\rm QCD} \sim 300 \, {\rm M}$$

Accidental symmetry!

Hyper-Kamiokande A Next-Generation Proton Decay Search

~200 kton water, 40k photodetectors

Sensitive to lifetime $\tau(p \rightarrow e^+ \pi^0) \approx 10^{35} \,\mathrm{yrs}$ (~10x Super-K sensitivity)

(after ~10yrs running)

Parity As Accidental Symmetry

At low energies, the laws of nature appear paritysymmetric. Fundamentally, they are not at all!

The particle spectrum of the Standard Model is chiral: particles have an intrinsic handedness.

behind an *accidentally* parity-symmetric theory.

Chien-Shiung Wu

TD Lee, CN Yang

T-Symmetry Violation

operator: it complex conjugates whatever it acts on.

This means that T-violating effects show up whenever there is a redefinition.

CPT is a good symmetry of any relativistic quantum field theory, so T-symmetry \Leftrightarrow CP symmetry.

Will often talk about **CP** symmetry.

- Recall from quantum mechanics that time reversal is an anti-linear
- complex phase in the Lagrangian that can't be eliminated with a field

CP / time reversal **badly broken**: $\delta_{13} \approx 1.2$. But accompanied by small parameters, e.g., $\theta_{13} \approx 3 \times 10^{-3}$.

- 3 generations (families) of up/down quark "flavors":
- up/charm/top and down/strange/bottom

 $s_{13}e^{-i\delta_{13}}$ $s_{23}c_{13}$ $c_{23}c_{13}$

Makoto Kobayashi, Toshihide Maskawa

Electric dipole moments of leptons and hadrons provide a powerful probe of **T-violating** or, equivalently, **CP-violating** fundamental physics.

EDMs from New Physics

Look for terms allowing an invarian the Lagrangian.

Generic expectation for new physics!

Look for terms allowing an invariant, complex coefficient to appear in

Electron Electric Dipole Moment

Recent dramatic progress in AMO physics.

ACME 2 (source: <u>electronedm.org</u>) DeMille, Doyle, Gabrielse and collaborators. New result in 2018:

- $|d_e| < 1.1 \times 10^{-29} e \,\mathrm{cm}$

Interaction Region

Electron EDM versus New Physics

(arXiv:1810.07736: Cari Cesarotti, Qianshu Lu, Yuichiro Nakai, Aditya Parikh, MR)

Assume CP is **not at all** a symmetry: all complex phases O(1).

New physics like supersymmetry excluded to masses $\sim 20 \,\mathrm{TeV!}$

Charged lepton flavor violation: $Br(\mu \rightarrow e\gamma) \lesssim 4 \times 10^{-13}$

(MEG experiment)

Correlating Flavor and CP Symmetries Yossi Nir, Riccardo Rattazzi, 1996

flavor symmetry violation (in the CKM matrix).

way that also breaks flavor?

Prediction:

Suppress EDMs (to a predictable extent), keep CKM phase.

- Idea: the only CP violation we've seen in nature so far is correlated with
- What if: CP is a fundamental symmetry, spontaneously broken in a

CP and flavor violation might always come hand-in-hand.

Gauged Flavor and CP Symmetries

Extend to lepton sector; fit neutrino mixing textures

Correlate, suppress electron EDM and $\mu \rightarrow e\gamma$ signals

(arXiv:2104.02679: Pouya Asadi, Daniel Aloni, Yuichiro Nakai, MR, Motoo Suzuki)

-6

2.0

1.0

0.4

0.3

0.2

Flavor & CP Symmetries and Muon g - 2

 $U(1) \times U(1)$ Flavor Symmetry Model Key: **Muon g-2 preferred** LHC excluded

Dashed Lines: Predict Electron EDM = $10^{-30} e$ cm visible at next-gen experiments! if operator has 0.2, 0.4, 0.6, 1 coefficient

(arXiv:2107.10268: Yuichiro Nakai, MR, Motoo Suzuki)

Time Reversal from the Theta Term in QED

Under time reversal, $\overrightarrow{E} \mapsto \overrightarrow{E}, \overrightarrow{B} \mapsto - \overrightarrow{B}$. (Consider \overrightarrow{E} from static charge, \overrightarrow{B} from circulating current.)

So a term $\overrightarrow{E} \cdot \overrightarrow{B}$ in the Hamiltonian violates time reversal symmetry.

Lagrangian:

$$\frac{\theta}{32\pi^2} \int d^4x \,\epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} = \frac{\theta}{8\pi^2} \int F \wedge F = \frac{\theta}{8\pi^2} \int d(A \wedge dA) \,.$$

Total derivative! No physical effect?

The Witten Effect

Add the time-reversal odd term in the action: $\frac{\theta}{8\pi^2} \left[F \wedge F \right]$

Then, derive the modified Maxwell equations.

Electric Gauss's law: $\nabla \cdot \mathbf{E} + \frac{e^2}{4\pi^2} \theta (\nabla \cdot \mathbf{B}) \neq 0$

Consider a magnetic monopole, which sources $\mathbf{B} \Rightarrow$

Magnetic monopole acquires an electric charge!

Magnetic monopole provides boundary condition allowing effect. We haven't seen one (yet), so no experimental probe of this T-violating effect.

Edward Witten, 1979

QCD and Its Theta Term The structure of the strong interactions in the Standard Model is a **non-abelian gauge theory, QCD.** Field strengths $F^a_{\mu\nu}$, a = 1,...8, where $F^a_{\mu\nu} = \partial_{\mu}A^a_{\nu} - \partial_{\nu}A^a_{\mu} + \sum f^{abc}A^b_{\mu}A^c_{\nu}$. b,cGluons self-interact:

 $\theta \cong \theta + 2\pi$ term can be added. T-violating term, still a total derivative.

$$(\wedge F) = \frac{\theta}{8\pi^2} \int d(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

Instantons

In QCD, don't need a new object to detect the θ term.

It has an effect via *classical Euclidean solutions* called "instantons": localized in spacetime.

Decay as $A \sim 1/r$, slowly enough to have boundary effect.

Strong CP Problem

QCD becomes strongly interacting at low energies, binding quarks and gluons into hadrons.

This gives nonperturbative effects a chance to play a big role. Should be able to measure θ .

Recent ultracold neutron measurement at Paul Scherrer Institute: $|d_n| \le 1.8 \times 10^{-26} e \,\mathrm{cm}$

So: $|\theta| \leq 10^{-10}$. But why!? CP is not a symmetry of nature!

- Can derive: Neutron electric dipole moment: $d_n \sim \theta \times 10^{-16} e \,\mathrm{cm}$

Axions

Promote θ to a dynamical field, $\theta(x)$, interacting with gluons.

Fig. from Anson Hook, TASI

Roberto Peccei, Helen Quinn (photo: Ryan Schude, Quanta Magazine)

The Ubiquitous Axion: Lamppost or Principle?

There is a large Landscape of known, consistent quantum gravity theories containing gauge fields. (String compactifications.)

Almost always couple to axions via θ tr($F \wedge F$) interactions!

Often higher-dimensional gauge fields C_p

current abilities?

with Chern-Simons couplings $C_p \wedge \operatorname{tr}(F \wedge F)$, and $\theta = \int_{\Sigma_p} C_p$.

Is it a generic prediction, or an accident of our

Cobordism Conjecture: No Labels in QG

One way to think about an ordinary symmetry is that there is a **label** we can assign to a *state* — its charge — which cannot be altered by continuous variations of the state.

Extend to labels on regions of different dimension, even all spacetime. In quantum gravity, everything deformable to everything else.

Example: instanton number is a label attached to gauge field configurations in spacetime. Quantum gravity should forbid this, somehow.

arXiv:1909.10355, Jake McNamara, Cumrun Vafa

Axions Remove Instanton Number Label

The axion has a job to do in QG:

$$\frac{1}{2}f_a^2(\partial\theta)^2 + \frac{\theta}{32\pi^2}F_{\mu\nu}^a\tilde{F}^{a\mu\nu}$$

Gauss law constraint! Axion causes would-be invariant in

But this is very qualitative! Can we guide experiments more?

arXiv:2012.00009, Ben Heidenreich, Jake McNamara, Miguel Montero, MR, Tom Rudelius, Irene Valenzuela

instanton number density

spacetime (instanton number) to vanish: integral of total derivative.

Weak Gravity Conjecture (WGC)

Exists electrically charged object with:

 $m < \sqrt{2eqM_{\rm Pl}}$

Electric/Magnetic duality \Rightarrow exists magnetically charged object with:

Necessary condition for discharge of extremal black holes.

Classical vs. Compton Radius of an Object

down to radius R_C , equals the electron mass.

Electron Compton radius $R_Q = \frac{\hbar}{m_Q}$: at this length scale, quantum effects of virtual electron/positron pairs "screen" the charge.

- Electron *classical* radius R_C : integrate energy stored in electric field,
 - Linearly divergent integral:

$$\left(\frac{e}{r^2}\right)^2 = \frac{4\pi e^2}{R_C} = m_e c^2$$
. $R_C = \frac{e^2}{4\pi m_e c^2}$

Classical "self-energy" puzzle.

- $M_{\rho}C$

Electric vs. Magnetic Charged Objects

 $\frac{\kappa_Q}{R_C} = \frac{1}{\alpha} \gg 1$ $R_C = \alpha$

must have new physics at shorter distances.

 $\frac{R_Q}{R_C} = 4\alpha \ll 1$

The classical radius R_C of a magnetic monopole serves as a *cutoff*:

Magnetic WGC: Quantum Gravity Fights Weak Coupling

The WGC applied to a magnetically charged object tells us:

We can rewrite this in terms of the object's classical radius:

Interpreted as an energy cutoff: new physics must appear at $\Lambda = R_{C;\text{mag}}^{-1} \lesssim eM_{\text{Pl}}$

Monopoles That Aren't Black Holes

in quantum gravity is the Schwarzschild radius, $R_S = 2G_N M$.

$$R_C = \frac{\pi}{e^2 m_{\rm M}} > R_S = \frac{m_{\rm N}}{4\pi M}$$

Same conclusion, no explicit appeal to WGC! arXiv:1412.3457, de la Fuente, Saraswat, Sundrum

Aside from the *classical* and *Compton* radii, another important radius

If $R_S > R_C$, then the monopole is a black hole. Suppose that some "elementary" monopole should exist which is not a black hole. Then:

> $\frac{M}{M_{\rm Pl}^2} \quad \Rightarrow \quad m_{\rm M} < \frac{2\pi}{e} M_{\rm Pl}.$ $\Rightarrow \quad \Lambda = R_C^{-1} \lesssim e M_{\rm Pl}.$

Tower Weak Gravity Conjecture $\Lambda \lesssim e M_{\rm P1}$ is our cutoff energy. But what happens there? Internal consistency under dimensional reduction / examples: There is always an infinite *tower* of charged particles of different charge q, each of which obeys the bound $m < \sqrt{2}eqM_{\rm Pl}$.

2015-2017: Ben Heidenreich, MR, Tom Rudelius

(related: Montero, Shiu, Soler '16; Andriolo, Junghans, Noumi, Shiu '18)

Axions and the WGC

The WGC generalizes to p-form gauge fields: tension $T_p \lesssim e_p M_{\rm Pl}$.

Axion as "0-form gauge field": $S_{inst} \lesssim \frac{1}{f} M_{Pl}$.

Given $\theta \operatorname{tr}(F \wedge F)$; S_{inst} from usual QCD instantons: $f_a \lesssim \frac{g^2}{8\pi^2} M_{\operatorname{Pl}}$ Nontrivial phenomenological prediction! QCD axion with $f_a \lesssim 1.5 \times 10^{16} \operatorname{GeV}$.

Axion Strings arXiv:2108.11383 Ben Heidenreich, MR, Tom Rudelius

4d axion has a "magnetic dual" 2-form B-field: $\partial^{\mu}\theta \sim \epsilon^{\mu\nu\rho\sigma}\partial_{[\nu}B_{\rho\sigma]}$

Magnetic axion WGC: string tension $T \lesssim 2\pi f_a M_{\rm Pl} \lesssim \frac{g^2}{4\pi} M_{\rm Pl}^2$

String excitations $M_{\rm string} \lesssim g M_{\rm Pl}$

Consistent with black hole symmetry violation: $\exp(-8\pi^2/g^2) \gtrsim \exp(-8\pi^2 M_{\rm Pl}^2/\Lambda^2)$

 $\Leftrightarrow \Lambda \lesssim g M_{\rm Pl}.$

Tower WGC Modes from Axion Strings arXiv:2108.11383 Ben Heidenreich, MR, Tom Rudelius

closed string with circulating electric charge

- String excitations $M_{\rm string} \lesssim g M_{\rm Pl}$.
- In fact, these can can carry A gauge charge! "Anomaly inflow" (Callan, Harvey 1985)
- $\theta F \wedge F$ interaction \Rightarrow nontrivial gauge invariance, $A \mapsto A + d\lambda, B \mapsto B + \frac{1}{4\pi}\lambda F.$ Charged modes on string cancel the λF .

Tower WGC automatic, via axion physics! What about abelian case? No instantons?

Axions and Magnetic Monopoles Dyons: monopole with *n* units of electric charge, in θ (axion) background

baseline monopole mass

Particles with θ -dependent mass

 θ -dependent vacuum energy ("Coleman-Weinberg potential")

extra energy in electric field

 θ -dependence from Witten effect

arXiv:2105.09950 JiJi Fan, Katie Fraser, MR, John Stout

Axion Potential from Virtual Monopoles

Tower of Dyons Sum vacuum loops over n

 $S \sim 1/e^2$; $S = 8\pi^2/g^2$ for critical 't Hooft-Polyakov monopole!

New source of nonperturbative axion potential, from virtual magnetic monopoles. Any axion interacting with the photon is expected to acquire such a mass! (Subtleties related to charged fermion mass-dependence currently under study.)

Poisson resummation

Winding of zero mode σ Sum over winding ℓ

⁴⁵ arXiv:2105.09950 JiJi Fan, Katie Fraser, MR, John Stout

Conclusions

- instanton number.
- approximate symmetries enforced by underlying gauge constraints.
- like the Weak Gravity Conjecture, might find real-world tests.

Thanks for listening!

• Approximate global symmetries in the world around us: baryon number, lepton number, flavor symmetries, parity.... Even more generalized symmetries, like

• Quantum gravity forbids symmetries. Whatever symmetries we see should be

• Current, important experiments quantifying symmetry breaking: EDMs, $\mu \rightarrow e\gamma$, proton decay, axion searches. They can shed light on fundamental questions.

Axion physics is an arena where quantitative statements about quantum gravity,

backup

Example: Kaluza-Klein Theory

A circular extra dimension gives a classic example of how to obtain a gauge charge within a gravitational theory.

Charge q = number of units of momentum around the circle.

 $m_q = \frac{|q|}{R} = \frac{|q|e_{\rm KK}}{\sqrt{2}}M_{\rm Pl}$

infinite tower of KK mode masses proportional to gauge coupling

 $M_{5d} \sim e_{\rm KK}^{1/3} M_{\rm Pl}$ UV cutoff small as well

