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Goal

Flop curves in Calabi-Yau threefolds
to explore Kahler moduli space.



Based on:

Weak Gravity and Moduli Space Reconstruction
Naomi Gendler, Ben Heidenreich, L.M., Jakob Moritz, Tom Rudelius, 221N.NNNNN

Superpotentials from Singular Divisors
Naomi Gendler, Manki Kim, L.M., Jakob Moritz, Mike Stillman, 2204.06566

building on:

Conifold Vacua with Small Flux Superpotential
Mehmet Demirtas, Manki Kim, L.M., Jakob Moritz, 2009.03312

Computational Mirror Symmetry

Mehmet Demirtas, Manki Kim, L.M., Jakob Moritz, Andres Rios-Tascon, 221N.NNNNN
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Many phenomena of interest — e.g., vacua — only occur,
or are only apparent, in particular phases.

So to explore the landseape complement of the swampland
we need to traverse many phases. No-go results require all phases.

If X is a hypersurface in a toric variety V,
many flops are evident from the toric description.
But many are not!

Task: determine which curves can be flopped.
cf.



Plan

1. Finding flops
2. Application: testing the WGC

3. Application: desingularizing divisors
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What is a flop?

Suppose X and X_ are Calabi-Yau threefolds.

A flop is a birational map X, — X _ that is an isomorphism
away from a codimension-2 subvariety C.

A simple flop is a flop for which C is a smooth P!.

Theorem (Kawamata): all birational maps between CY3 are
compositions of simple flops.

If X is a hypersurface in a toric variety V defined
by a triangulation .7 of a reflexive polytope,
then a bistellar flip .7 — 7 can induce a flop.

Such flops are numerous and easy to find.
But not all flops are of this sort.
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Which curves can be flopped?

At a wall of (X)), one of the following occurs.
1. One or more curves shrink, but divisors do not. flop
2. A divisor shrinks to a curve of genus g. SU(2) enhancement
3. A divisor shrinks to a point. tensionless strings
4. X shrinks.
The prepotential can be smoothly continued past walls of type 1.
We'd like to identify walls of type 1 (‘flop walls’).

Naive idea: exclude (2),(3) by checking that no divisors shrink.
Problem: computing all the effective divisors on X is an open problem.

By identifying flops a different way, we find the extended Kahler cone
and thus all effective divisors, cf.
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Two kinds of curves:

nilpotent: Jkmax s.t. for all & > kpax, GViq = 0.
potent: infinitely many GVyq # 0.

Nilpotent example:

av(c) =1

GV(2C), GV(3C), ... =0
Potent example (At = 113):
GV({C) = 3

GV(20) = —6

GV(3C) = 27

GV(4C) =-192

GV(5C) = 1695

GV (100C) = —914611581237831371226973974768573574187506334613679143
22579026697369512751047337367692277761351484717813209296148360000 .
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Which curves can be flopped?

Two kinds of curves:

nilpotent: Jkmax s.t. for all & > kpax, GViq = 0.
potent: infinitely many GVyq # 0.

If a potent curve q shrinks to zero volume, infinitely many instantons
of charges kq must be resummed.

Cannot continue F without nontrivial resummation.
Potent curves are not flop curves.

If a nilpotent curve q shrinks to zero volume, finitely many instantons
of charges kq must be continued.

Naively, every nilpotent curve seems like a flop curve.

But wait! What if infinitely many instantons of charges # kq
must also be continued?
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Definition:
the infinity cone My, C M(X) is the cone generated by potent curves.

Nilpotent curves may be:
1. strictly outside M
2. in Mo: either strictly inside M., or in OM

HZ(X*Z)

...............

...............

.......
.......

nilpotent curve

nilpotent curve



Which curves can be flopped?

Definition:
the infinity cone My, C M(X) is the cone generated by potent curves.

Nilpotent curves may be:
1. strictly outside M
2. in Mo: either strictly inside M., or in OM

Claim (GV flop criterion):
C is a flop curve < C strictly outside M .
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Definition:
the infinity cone My, C M(X) is the cone generated by potent curves.

Nilpotent curves may be:

1. strictly outside M

2. in Mo: either strictly inside M., or in OM
Claim (GV flop criterion):

C is a flop curve < C strictly outside M .

Proof:
If C is strictly outside M, no potent curves shrink on the wall
where C shrinks.
= continue F by continuing finitely many trilogarithms.
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Proof continued:
If C is strictly inside M., one or more potent curves shrink
on the wall where C shrinks.
= infinitely many instantons must be resummed.

What if C € OM 7
When any C shrinks, terms in F differing by &C, k € Z are summed.

If C € OM ., these sums are infinite (infinite degeneracy).
= cannot simply continue F. [

ooooooo
ooooooo
-------
ooooooo
ooooooo
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n,m>0
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Example.
nilpotent curve C = (1,0).
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n,m>0

The curve C is in OM .. It shrinks at £, = 0.
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Example.
nilpotent curve C = (1,0).
F ~ Z GV(n m) 8—271" (nty+mt,)

n,m>0

The curve C is in OM .. It shrinks at £, = 0.

to=0 " Z ( Z GV(,,L’m)> o 2mmty

m>0 n>0

absolutely convergent
for large enough ¢,,¢,.
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Which curves can be flopped?

Example.
nilpotent curve C = (1,0).
F ~ Z GV(n m) e—27r (nty+mt,)

n,m>0

The curve C is in OM .. It shrinks at £, = 0.

t,.=0 ™~ Z ( Z GV(n‘,m/)> 6—271' mt,

m>0 n>0

absolutely convergent
for large enough ¢,,¢,.

f

For each m > 0, all but finitely many GV, ,,) are nonzero integers.

= sum does not converge.

ooooooo
.......
ooooooo
-------
ooooooo
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Implementing the flop criterion

This criterion is practically usable iff one can compute
enough (genus-zero) GVs to find the infinity cone.

For X a hypersurface in a toric variety, we can compute GVs,
even at hl'! = 491.

Method: extension of approach of

Compute fundamental period, use intersection data of mirror.
We handle general case where M(X) is not simplicial.
Implementation in CYTools involves significant advances:

not computing GV of non-effective curves = massive speedup.
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At large h%!, many possible flops < many nilpotent curves
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Flopping out the extended Kahler cone

By computing GVs and thus detecting flops,

we can map out the extended Kahler cone. toric phases
flop from
bistellar flip
non-toric, but still geometric, phases /

RN

the divisor that shrinks here is necessarily effective
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Application 1: WGC

The tower and sublattice WGC make highly nontrivial predictions
for BPS states.

For M-theory or ITA on CY3, GV invariants are BPS indices.
GVq # 0= 34 > 1 BPS state of electric charge q
Can we use GV invariants to test strong forms of the WGC?

This approach could exclude, but cannot prove, a WGC:
e cancellations possible: GV = 0 % A BPS state

e no information about non-BPS directions in charge space
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Application 1: WGC

What does this have to do with flops?

BPS states come from M2-branes wrapping effective curves.

For each CY phase, certain curves are effective.
= define BPS directions in charge space.
Where does WGC make predictions?



Application 1: WGC

The BPS sublattice WGC

There exists an integer £ > 1 such that for any ¢ in a direction
in which the BPS and black hole extremality bounds coincide,
there is a BPS particle of charge kq.



Application 1: WGC

The BPS sublattice WGC

There exists an integer £ > 1 such that for any ¢ in a direction
in which the BPS and black hole extremality bounds coincide,
there is a BPS particle of charge kq.

directions in which BPS and black hole extremality bounds coincide
— dual of effective cone, £*.



Application 1: WGC

The BPS sublattice WGC

There exists an integer £ > 1 such that for any ¢ in a direction
in which the BPS and black hole extremality bounds coincide,
there is a BPS particle of charge kq.

directions in which BPS and black hole extremality bounds coincide
— dual of effective cone, £*.

The sublattice WGC for holomorphic curves.

For any Calabi-Yau threefold X there exists an integer k£ > 1
such that for any nontrivial class ¢ € Ho(X,Z) N E*,

there is a holomorphic curve in the class kq.



Application 1: WGC

The BPS sublattice WGC

There exists an integer £ > 1 such that for any ¢ in a direction
in which the BPS and black hole extremality bounds coincide,
there is a BPS particle of charge kq.

directions in which BPS and black hole extremality bounds coincide
— dual of effective cone, £*.

The sublattice WGC for holomorphic curves.

For any Calabi-Yau threefold X there exists an integer k£ > 1
such that for any nontrivial class ¢ € Ho(X,Z) N E*,

there is a holomorphic curve in the class kq.

Thus, T/sLWGC predict that £ C M.
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Application 1: WGC

Algorithm to test this:

1. Start with a CYs5.
2. Compute GV, find M.
3. Flop the flop curves, construct K and £.

4. Check all charges in £* up to a cutoff degree.

We have carried out this test in thousands of CY3 hypersurfaces.

We find no violations of the lattice WGC.



Very preliminary results

Bl — 4 B Toric phases
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In type 1IB flux compactifications, Euclidean D3-branes
make crucial contributions to the potential for Kahler moduli.

Which divisors D of a CY3 support ED3-branes?
If D is rigid and orientifold-even,

i.€. h% (D,0Op) = (1,0,0), h® (D,Op) =0
and D is smooth,

then the number of fermion zero-modes is 2,
and ED3s on D contribute

W O A(Z ,/_)6—27TV01(D)—27ri I Ca

with A(z,7) not identically zero.
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But effective divisors D of a CY3 are generically not smooth!

Intuitive argument: let Dy, ... Dj1.1 be a basis of Hy(X,7Z),
corresponding to local coordinates x1,...xp1.1.

Then e.g. D = Dy 4+ Dy = {x125 = 0}
will have a normal crossing singularity. %

Sometimes this can be removed, sometimes not.

We will see that prevalence of a (slightly worse) type of singularity,
which we call a star-crossing singularity,
is linked to the prevalence of flops.

Can we count zero-modes in this case”
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Consider a divisor D that has singularities at codimension 1,
along some locus C C D.

(Codimension-2 singularities are arguably ignorable.)

?

If C is a rational curve, we call the singularity ‘star-crossing’.

Around C, some number k > 2 of local components meet.

k = 2: special case of normal crossing.
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Suppose C is a flop curve with N = O(—1) & O(-1),
i.e. locally a resolved conifold,
and D is a smooth divisor that intersects C in k£ > 2 points.

Then flopping C glues together £ components of D,
creating a level-£ star-crossing singularity.

Such flops are common = so are star-crossing singularities.

Can we learn to count fermion zero-modes in this generic case?’
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Unwinding star-crossing singularities

Idea: given D with star-crossing singularities along C,
carry out flops to ‘undo’ the gluing along C.

flops

D — Dsmooth

The superpotential can be continued through the flops.

So if }L:{_(Dsmooth) — (17 07 O) ’ h._<Dsmooth) — O,

there is a contribution in the smooth configuration,
and so there must be one in the singular configuration!
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Unwinding star-crossing singularities

More generally, the normalization D of D
is defined by separating components that meet over C.

Define  *%(D):=h% (D,0p) which is a birational invariant.
Suppose there exists a phase where D is smooth.

Witten’s sufficient condition applies in the smooth phase:
h:L (Dsmooth> — (17 Oa 0) ; h._ (Dsmooth) =0

But also Dsmooth — Dsmooth — hf;:(Dsmooth) — *;(D)

So $5.(D) = (1,0,0), *°(D)=0

is a sufficient condition for an ED3 contribution.
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Unwinding star-crossing singularities

Recap:
given a D with singularities along rational curves,

if a series of flops unwinds the singularity,

the flops give an incarnation of the normalization.

In this case our claim is proved, by continuing W

and applying Witten’s condition in the smooth phase.

But even without exhibiting a flop series,
our claim is a natural conjecture,
because the zero-mode computation is local.

If D =).D,; has multiple components, *i(D,0p)= Z x1(D;, Op),)

so our formula counts the zero-modes of the various components.
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Conclusions

Used computation of GV invariants to explore moduli space.

GV flop criterion:
C is a flop curve < C strictly outside M .

Used flops to map out extended Kahler cone.

Can similarly compute cone of effective divisors.

Tested predictions of Tower/(sub)Lattice WGC in BPS directions,
in large ensemble of CYs3.

Found no cases violating Lattice WGC.

Used flops to show that one can count fermion zero modes
of divisors with singularities over rational curves
using the normalization of the divisor.

Extension of usual sufficient condition to singular divisors.






