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Introduction and motivation
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• Mathematical formulation of quantum gravity?

• Signatures of quantum gravity in low energy EFTs?

These two questions can be addressed together!
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Symmetries and currents

Consider a d-dimensional theory on X .
To a continuous (d − n − 1)-form symmetry is a associated a
(magnetic) current Jn.

If the symmetry is gauged, the current is exact, Jn = dFn−1.
If the symmetry is broken, the current is not closed

0 ̸= dJn = δ(n+1)(Σ)

Typically one uses (co)homology, for example Jn ∈ Hn(X ;Z).
(Co)homology behaves naturally under dimensional reduction.

Are there more general languages? Are they relevant for physics?
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Cobordism as generalized homology

• (Co)Homology groups of point carry no information

Hn(pt) = 0 (if n > 0)

since every cycle on pt of positive dimension is a boundary.

• Cobordism groups of point do carry information

Ωn(pt) ̸= 0

since not every compact manifold is a boundary.

• This information is topological and physical.

A (co)homology theory whose groups of pt are generically
non-vanishing is called generalized (co)homology.
Cobordism and K-theory are examples.
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To recap

• Cobordism symmetries are global and must be either broken
or gauged in quantum gravity [McNamara, Vafa ’19]

ΩQG
n (pt) = 0

• QG-structure is not known a priori. Whitehead tower can be
used as organizing principle [Andriot, Carqueville, NC ’22].

• When gauging, one can combine cobordism with K-theory.
Most natural for Spin/Spinc cobordism and KO/K-theory.
No coincidence but deep mathematical structure behind.

• One can recover certain string theory tadpoles (Bianchi
identities) without using the effective action.
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Gauging cobordism

Tadpole: integrated Bianchi identity

0 =

∫
M
dFn−1 =

∫
M
Jn

Goal: To reconstruct Jn without knowing string theory.

1 Add all bordism invariants (ABS orientation is just one)

0 =
∫
M dFn−1 =

∑
i∈inv ai µn,i

2 Include defects classified by K−n(pt).

Thus we get a combination of bordism and K-theory

0 =

∫
[M]

dFn−1 =
∑
i∈inv

ai µn,i +
∑
j∈def

∫
[M]

Qj δ
n(∆10−n,j)

Niccolò Cribiori (MPP Munich) Cobordism, K-theory and tadpoles - Part 2 7 / 22



From groups of pt to groups of X
[Blumenhagen, NC, Kneißl, Makridou ’22]
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• The above discussion can be generalised for pt → X .

• The groups are enlarged

Ω(X ) = Ω(pt)⊕ Ω̃(X ), K (X ) = K (pt)⊕ K̃ (X ),

so potentially more global symmetries.

• What is their interpretation?

• Notice: X = BG used for anomalies of G . Instead, we take X
to be a manifold, such as spheres, tori, CY.
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Computing groups of X

The groups Ω(X ), K (X ) can be computed using a spectral
sequence.
It is a tool to calculate generalised (co)homology theories.

• Start from ordinary (co)homology

• Refine the approximation by means of differentials

• Eventually, solve an extension problem
(extra information needed)

Certain differentials are physically associated to Freed-Witten
anomalies. [Diaconescu, Moore, Witten ’00; Bergman, Gimon, Sugimoto ’01;

Maldacena, Moore, Seiberg ’01]
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Spectral sequence

A spectral sequence consists of pages and differentials (E r
p,q, d

r ),
such that E r+1 = H(E r , d r ). Turning the page, E r → E r+1,
means getting closer to the result Gn.

However:

• Generically the explicit form of the differentials is not known.
Only their existence is, d r : E r

p,q → E r
p−r ,q+r−1.

• Without torsion the result is Gn = ⊕n
p=0E

∞
p,n−p.

With torsion this is true up to an extension problem.

Atiyah-Hirzebruch spectral sequence:
Given F → E → B and knowing the generalised (co)homology
Gn(F ), one can use the spectral sequence to compute Gn(E )

E 2
p,q

∼= Hp(B;Gq(F )) ⇒ Gp+q(E )
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Differentials and extension problem
In this example, the second differential acts as

3 0 0 0
2 E 2

0,2 0 0

1 E 2
0,1 0 0

0 E 2
0,0 0 E 2

2,0

0 1 2

⇒

3 0 0 0
2 E 3

0,2 ≡ B 0 0

1 0 0 0
0 E 3

0,0 0 E 3
2,0 ≡ A

0 1 2

No other differential can act, thus E 3 ∼= E∞.
Then we can write G0 = E 3

0,0, while G2 is such that

0 → B → G2 → A → 0, G2 = e(A,B) =?

Without torsion e(A,B) = A⊕B but otherwise not true in general.

Example: A = B = Z2, then e(A,B) is either Z2 ⊕ Z2 or Z4.
The AHSS cannot tell which one to choose.

(The number of extensions is given by Ext1(A,B))

Niccolò Cribiori (MPP Munich) Cobordism, K-theory and tadpoles - Part 2 12 / 22



Freed-Witten anomalies and the AHSS

Type I/II D-branes must wrap Spin/Spinc manifold Y otherwise
they are anomalous (assuming B = 0) [Freed, Witten ’99].

This is encoded automatically in the AHSS. For example, for
K-theory one has

d3 = Sq3(Y ) ∼ W3(Y )

implying d3 = 0 if W3(Y ) = 0 (so Y is Spinc).

Non-anomalous branes are in ker d3, but those which are d3-exact
are removed from the AHSS when taking d3 cohomology.
Branes in Im d3 have trivial K-theory charge and are unstable.
[Diaconescu, Moore, Witten ’00; Bergman, Gimon, Sugimoto ’01; Maldacena,

Moore, Seiberg ’01]
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Some results

For X = {Sk ,T k ,K3,CY3}, we find (k = dim(X ))

K−n(X ) =
k⊕

m=0

bk−m(X )K−n−m(pt)

ΩSpinc

n+k (X ) =
k⊕

m=0

bm(X )ΩSpinc

n+k−m(pt)

• We show that they reproduce pattern of global symmetries
stemming from dimensional reduction on X .

• They classify (d − 1− k − n)-form charges in D = d − k
dimensions, arising from dimensional reduction of d − 1− n,
d − 2− n, . . . , d − 1− k − n form charges along the k , k − 1,
. . . , 0 cycles X .
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Interpretation: K-theory

K−n(X ) =
k⊕

m=0

bk−m(X )K−n−m(pt)

• They classify codimension (n +m)-branes wrapping
(k −m)-cycles of X . Consistent with expectation from
dimensional reduction.

• By construction, these branes do not suffer from FW
anomalies, otherwise they would not survive the spectral
sequence.

• All sites populated. Completeness hypothesis.

• Simlar result for KO-theory, for X = {Sk ,T k ,K3}
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Interpretation: Cobordism

ΩSpinc

n+k (X ) =
k⊕

m=0

bm(X )ΩSpinc

n+k−m(pt)

Each non-vanishing term in the RHS means that the
(n + k)-manifold M is wrapped around non-trivial m-cycle of X .

Two qualitatively different cases:

• n ≥ 0: There is associated K-theory group
Kn+k(X ) = K−n(X ) with string interpretation.

It reproduces expectation from dimensional reduction.

• −k ≤ n < 0: No K-theory analogue in physics.

Physical interpretation more speculative
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Example: X = CY3

K 0(CY3) = K6(CY3) = b6 K
0(pt)︸ ︷︷ ︸
Z

⊕ b4 K
−2(pt)︸ ︷︷ ︸
Z

⊕ b2 K
−4(pt)︸ ︷︷ ︸
Z

⊕ b0 K
−6(pt)︸ ︷︷ ︸
Z

ΩSpinc

6 (CY3) = b6Ω
Spinc

0 (pt)︸ ︷︷ ︸
Z

⊕ b4Ω
Spinc

2 (pt)︸ ︷︷ ︸
Z

⊕ b2Ω
Spinc

4 (pt)︸ ︷︷ ︸
Z⊕Z

⊕ b0Ω
Spinc

6 (pt)︸ ︷︷ ︸
Z⊕Z

• Combining groups of pt with same (0, 2, 4, 6) index, we can
construct tadpoles in 4D.

• They give b6,4,2,0 tadpoles of 4D 3-form symmetries.

• In fact, they are the dimensional reduction of tadpoles for the
10D (9,7,5,3)-form symmetries.
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What about −k ≤ n < 0?

Interpretation for −k ≤ n < 0 less transparent.
There is no analogous K-theory group and thus not clear if we
should gauge or break.

In [Blumenhagen, NC, Kneißl, Makridou ’22] we propose that, for
X = CY3

• ΩODD(X ), broken: there is no appropriate gauge field in the
theory to gauge it.

• ΩEVEN(X ), gauged: contributing to tadpoles of n ≥ 0 groups.
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Ω6(X ) b6Ω0(pt) b4Ω2(pt) b2Ω4(pt) b0Ω6(pt)

C10 C8 C6 C4

O9 F(CY4)c1(M6) tr(R ∧ R)D9,O9 F(CY4)c1c2,c31 (M6)

Ω4(X ) b4Ω0(pt) b2Ω2(pt) b0Ω4(pt) −

C8 C6 C4 −

O7 N7c1(M4) tr(R ∧ R)D7,O7 −

Ω2(X ) b2Ω0(pt) b0Ω2(pt) − −

C6 C4 − −

O5 N5c1(M2) − −

Ω0(X ) b0Ω0(pt) − − −

C4 − − −

O3 − − −

• First column: localised O-planes

• F(CY4)x : contribution proportional to x arising in F-theory compactified
on elliptically fibered CY4 with base M6.

• tr(R2)x : contribution proportional to tr(R2) arising from CS action of x .

• New contributions?
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Conclusion

• The absence of global symmetries seems to be a fact of QG.
It holds true also when enlarging notion of symmetry, such as
to include cobordism [McNamara, Vafa ’19]

• This statement has predictive power.
[Montero, Vafa ’20; Dierigl, Heckmann ’20; Hamada, Vafa, ’21;

McNamara ’21; Debray, Dierigl, Heckman, Montero ’21;

Blumenhagen, NC, Kneißl, Makridou ’22, Velàzquez, De biasio, Lüst

’22. . . ]

• Cobordism and K-theory can be combined in a mathematical
and physical way. Their combination must be either be broken
or gauged

• The generalisation pt→ X (for some X ) can be interpreted in
terms of dimensional reduction
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Future directions

• Cobordism groups with more structure (gauge fields, compact
manifolds, . . . )

• Clarify origin of tadpoles from bottom-up

• Is cobordism conjecture combined with K-theory enough to
reconstruct tadpoles in string theory (String Lamppost
Principle)?

• Are there new objects in string theory detected by cobordism?
This can happen when breaking but also when gauging.
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Thank you!
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Extra slides
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Cobordism groups of X

One can define cobordism groups for any topological space X .

Ωξ
n(X ) = {set of pairs (M, f )}/ ∼

M N
W

X

hf g

One generically has the splitting

Ωξ
n(X ) = Ωξ

n(pt)⊕ Ω̃ξ
n(X ),

thus when passing from pt to X the group is enlarged.
Similarly for K-theory.
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An organising principle

In general not clear how to get to QG.
Following the Whitehead tower helps [NC, Andriot, Carqueville ’22].

Whitehead tower: it organises topological structures (with their
obstructions) according to the degree of “connectedness”.

Fivebrane

String

Spin

SO

O
w1 = 0

w2 = 0

1
2
p1 = 0

1
6
p2 = 0

Climbing the tower, bordism groups become smaller.
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Atiyah-Bott-Shapiro orientation

Relation between cobordism and K-theory dates back to
ABS-orientation [Atiyah, Bott, Shapiro ’64]

αn : ΩSpin
n (pt) → KO−n(pt)

αc
n : ΩSpinc

n (pt) → K−n(pt)

explicitly given by the refined A-roof and Todd genus

αn([M]) =


Â(M) n = 8k
1
2 Â(M) n = 8k + 4

dimH mod 2 n = 8k + 1
dimH+ mod 2 n = 8k + 2

0 otherwise

αc
n([M]) = Td(M)

Starting point to prove theorem by [Hopkins, Hovey ’92],
see also [Conner, Floyd ’66; Landweber ’76; Kreck, Stolz ’93].

Note: αn, α
c
n are bordism invariants.
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Example: gauging ΩSpinc

6

We have ΩSpinc

6 = Z⊕ Z with invariants

µ1
6 ≡ αc

6 =

∫
td6 =

∫
1

24
c1c2, µ2

6 =

∫
1

2
c31

• (Magnetic) 5-form global symmetry, gauged by C4

• K−6(pt) classifies D3-branes

Combining we get

∫
B

∑
i Qi δ

(6)(∆4,i ) =
∫
B

(
a1
24 c2(B) c1(B) +

a2
2 c31 (B)

)
≡ χ(Y )

24

Matching with known D3-brane tadpole cancellation in F-theory
for a1 = 12 and a2 = 30. [Sethi, Vafa, Witten ’96]

Notice that c3 cannot appear since it is not bordism invariant.

Niccolò Cribiori (MPP Munich) Cobordism, K-theory and tadpoles - Part 2 27 / 22



Example: gauging ΩSpin
1

Torsion charges require care. Consider ΩSpin
1 = Z2 = KO−1(pt)

with invariant
µ1 ≡ α1

and KO−1(pt) classifies D̂8-branes.

We get Z2-valued charge neutrality condition∫
M

∑
i

Qiδ
(1)(∆9,i ) = aα1 mod 2

• a=even: RHS decouples. Even number of D̂8-branes needed
and KO−1(pt) is gauged. New defect needed to break ΩSpin

1 .

• a=odd: single D̂8-brane on S1
p (having α1(S

1
p ) = 1) allowed

since vanishing total charge, 1 + 1 = 0 mod 2.
Unlikely: S1

p valid background without D̂8.
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Example: X = CY3 (continued)

The cobordism invariants of each term (recall M6 ̸= X )

td0(M6) = 1 ,

td2(M6) =
1

2
c1(M6) ,

td4(M6) =
1

12

(
c2(M6) + c21 (M6)

)
, c21 (M6) ,

td6(M6) =
1

24
c2(M6) c1(M6) ,

1

2
c31 (M6)

can be expanded in H6−m(X ;Z) such that their Poincaré duals
are in Hm(X ;Z) and counted by bm(X ).

For each m = 6, 4, 2, 0 we combine cobordism invariants with
K-theory defects and repeat the same logic as for groups of pt.
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• 6−m = 0: 9-form symmetry in 10D, 3-form symmetry in 4D.
b6(X ) = 1 tadpole

N δ(0)(M6) + a(0) td0(M6) = 0

• 6−m = 2: 7-form symmetry in 10D, 3-form symmetry in 4D.
b2(X ) = b4(X ) tapdoles obtained combining (ω(2) ∈ H2(X ;Z))

δ(2)(R1,3×Σ4) =

b4∑
a=1

δ(0)(R1,3)(2)a ∧ω(2)a and td2(M6) =

b4∑
a=1

j̃
(2)a
0 ∧ω(2)a

• 6−m = 4: 5-form symmetry in 10D, 3-form symmetry in 4D.
b4(X ) = b2(X ) tapdoles after expanding in cohomology∑

j∈def

Nj δ
(4)(R1,3 × Σ̂2,j) + a

(4)
1

(
c2(M6) + c21 (M6)

12

)
+ a

(4)
2 c21 (M6) = 0

• 6−m = 6: 3-form symmetry in 10D, 3-form symmetry in 4D.
b6(X ) = 1 tapdole after expanding in cohomology∑

j∈def

Nj δ
(6)(R1,3 × ptj) + a

(6)
1

c2(M6) c1(M6)

24
+ a

(6)
2

c31 (M6)

2
= 0
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