Cobordism, K-theory and tadpoles

Part 2

Niccolò Cribiori

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung/Foundation

Back to the Swamp,
Madrid, 28th September 2022
Based on 2112.07678 with R. Blumenhagen and on 2208.01656 with R. Blumenhagen, C. Kneißl, A. Makridou

Introduction and motivation

- Mathematical formulation of quantum gravity?
- Signatures of quantum gravity in low energy EFTs?

These two questions can be addressed together!

Symmetries and currents

Consider a d-dimensional theory on X.
To a continuous ($d-n-1$)-form symmetry is a associated a (magnetic) current J_{n}.

If the symmetry is gauged, the current is exact, $J_{n}=d F_{n-1}$. If the symmetry is broken, the current is not closed

$$
0 \neq d J_{n}=\delta^{(n+1)}(\Sigma)
$$

Typically one uses (co)homology, for example $J_{n} \in H^{n}(X ; \mathbb{Z})$. (Co)homology behaves naturally under dimensional reduction.

Are there more general languages? Are they relevant for physics?

Cobordism as generalized homology

- (Co)Homology groups of point carry no information

$$
H_{n}(\mathrm{pt})=0 \quad(\text { if } n>0)
$$

since every cycle on pt of positive dimension is a boundary.

- Cobordism groups of point do carry information

$$
\Omega_{n}(\mathrm{pt}) \neq 0
$$

since not every compact manifold is a boundary.

- This information is topological and physical.

A (co)homology theory whose groups of pt are generically non-vanishing is called generalized (co)homology. Cobordism and K-theory are examples.

To recap

- Cobordism symmetries are global and must be either broken or gauged in quantum gravity [McNamara, Vafa '19]

$$
\Omega_{n}^{Q G}(\mathrm{pt})=0
$$

- QG-structure is not known a priori. Whitehead tower can be used as organizing principle [Andriot, Carqueville, NC '22].
- When gauging, one can combine cobordism with K-theory. Most natural for Spin/Spin ${ }^{c}$ cobordism and KO/K-theory. No coincidence but deep mathematical structure behind.
- One can recover certain string theory tadpoles (Bianchi identities) without using the effective action.

Gauging cobordism

Tadpole: integrated Bianchi identity

$$
0=\int_{M} d F_{n-1}=\int_{M} J_{n}
$$

Goal: To reconstruct J_{n} without knowing string theory.
(1) Add all bordism invariants (ABS orientation is just one)

$$
0=\int_{M} d F_{n-1}=\sum_{i \in \text { inv }} a_{i} \mu_{n, i}
$$

(2) Include defects classified by $K^{-n}(\mathrm{pt})$.

Thus we get a combination of bordism and K-theory

$$
0=\int_{[M]} d F_{n-1}=\sum_{i \in \operatorname{inv}} a_{i} \mu_{n, i}+\sum_{j \in \operatorname{def}} \int_{[M]} Q_{j} \delta^{n}\left(\Delta_{10-n, j}\right)
$$

From groups of pt to groups of X

[Blumenhagen, NC, Kneißl, Makridou '22]

- The above discussion can be generalised for $\mathrm{pt} \rightarrow X$.
- The groups are enlarged

$$
\Omega(X)=\Omega(\mathrm{pt}) \oplus \tilde{\Omega}(X), \quad K(X)=K(\mathrm{pt}) \oplus \tilde{K}(X)
$$

so potentially more global symmetries.

- What is their interpretation?
- Notice: $X=B G$ used for anomalies of G. Instead, we take X to be a manifold, such as spheres, tori, CY.

Computing groups of X

The groups $\Omega(X), K(X)$ can be computed using a spectral sequence.
It is a tool to calculate generalised (co)homology theories.

- Start from ordinary (co)homology
- Refine the approximation by means of differentials
- Eventually, solve an extension problem (extra information needed)

Certain differentials are physically associated to Freed-Witten anomalies. [Diaconescu, Moore, Witten '00; Bergman, Gimon, Sugimoto '01;
Maldacena, Moore, Seiberg '01]

Spectral sequence

A spectral sequence consists of pages and differentials ($E_{p, q}^{r}, d^{r}$), such that $E^{r+1}=H\left(E^{r}, d^{r}\right)$. Turning the page, $E^{r} \rightarrow E^{r+1}$, means getting closer to the result G_{n}.

However:

- Generically the explicit form of the differentials is not known.

Only their existence is, $d^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}$.

- Without torsion the result is $G_{n}=\oplus_{p=0}^{n} E_{p, n-p}^{\infty}$.

With torsion this is true up to an extension problem.

Atiyah-Hirzebruch spectral sequence:

Given $F \rightarrow E \rightarrow B$ and knowing the generalised (co)homology $G_{n}(F)$, one can use the spectral sequence to compute $G_{n}(E)$

$$
E_{p, q}^{2} \cong H_{p}\left(B ; G_{q}(F)\right) \Rightarrow G_{p+q}(E)
$$

Differentials and extension problem

In this example, the second differential acts as

No other differential can act, thus $E^{3} \cong E^{\infty}$.
Then we can write $G_{0}=E_{0,0}^{3}$, while G_{2} is such that

$$
0 \rightarrow B \rightarrow G_{2} \rightarrow A \rightarrow 0, \quad G_{2}=e(A, B)=?
$$

Without torsion $e(A, B)=A \oplus B$ but otherwise not true in general.
Example: $A=B=\mathbb{Z}_{2}$, then $e(A, B)$ is either $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. The AHSS cannot tell which one to choose.
(The number of extensions is given by $\operatorname{Ext}^{1}(A, B)$)

Freed-Witten anomalies and the AHSS

Type I/II D-branes must wrap Spin/Spin ${ }^{c}$ manifold Y otherwise they are anomalous (assuming $B=0$) [Freed, Witten '99].

This is encoded automatically in the AHSS. For example, for K-theory one has

$$
d_{3}=S q^{3}(Y) \sim W_{3}(Y)
$$

implying $d_{3}=0$ if $W_{3}(Y)=0\left(\right.$ so Y is $\left.\operatorname{Spin}^{c}\right)$.

Non-anomalous branes are in ker d_{3}, but those which are d_{3}-exact are removed from the AHSS when taking d_{3} cohomology. Branes in $\operatorname{Im} d_{3}$ have trivial K-theory charge and are unstable.
[Diaconescu, Moore, Witten '00; Bergman, Gimon, Sugimoto '01; Maldacena,
Moore, Seiberg '01]

Some results

For $X=\left\{S^{k}, T^{k}, K 3, C Y_{3}\right\}$, we find $(k=\operatorname{dim}(X))$

$$
\begin{aligned}
K^{-n}(X) & =\bigoplus_{m=0}^{k} b_{k-m}(X) K^{-n-m}(\mathrm{pt}) \\
\Omega_{n+k}^{\text {Spin }^{\mathrm{c}}}(X) & =\bigoplus_{m=0}^{k} b_{m}(X) \Omega_{n+k-m}^{\text {Spinc }^{\mathrm{c}}}(\mathrm{pt})
\end{aligned}
$$

- We show that they reproduce pattern of global symmetries stemming from dimensional reduction on X.
- They classify $(d-1-k-n)$-form charges in $D=d-k$ dimensions, arising from dimensional reduction of $d-1-n$, $d-2-n, \ldots, d-1-k-n$ form charges along the $k, k-1$, ..., 0 cycles X.

Interpretation: K-theory

$$
K^{-n}(X)=\bigoplus_{m=0}^{k} b_{k-m}(X) K^{-n-m}(\mathrm{pt})
$$

- They classify codimension $(n+m)$-branes wrapping $(k-m)$-cycles of X. Consistent with expectation from dimensional reduction.
- By construction, these branes do not suffer from FW anomalies, otherwise they would not survive the spectral sequence.
- All sites populated. Completeness hypothesis.
- Simlar result for KO-theory, for $X=\left\{S^{k}, T^{k}, K 3\right\}$

Interpretation: Cobordism

$$
\Omega_{n+k}^{\mathrm{Spin}^{\mathrm{c}}}(X)=\bigoplus_{m=0}^{k} b_{m}(X) \Omega_{n+k-m}^{\mathrm{Spin}^{\mathrm{c}}}(\mathrm{pt})
$$

Each non-vanishing term in the RHS means that the
$(n+k)$-manifold M is wrapped around non-trivial m-cycle of X.

Two qualitatively different cases:

- $n \geq 0$: There is associated K-theory group $K_{n+k}(X)=K^{-n}(X)$ with string interpretation.

It reproduces expectation from dimensional reduction.

- $-k \leq n<0$: No K-theory analogue in physics.

Physical interpretation more speculative

Example: $\mathrm{X}=\mathrm{CY}_{3}$

$$
\begin{aligned}
K^{0}\left(C Y_{3}\right) & =K_{6}\left(C Y_{3}\right)
\end{aligned}=b_{6} \underbrace{K^{0}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{4} \underbrace{K^{-2}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{2} \underbrace{K^{-4}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{0} \underbrace{K^{-6}(\mathrm{pt})}_{\mathbb{Z}}
$$

- Combining groups of pt with same $(0,2,4,6)$ index, we can construct tadpoles in 4D.
- They give $b_{6,4,2,0}$ tadpoles of 4D 3-form symmetries.
- In fact, they are the dimensional reduction of tadpoles for the 10D (9,7,5,3)-form symmetries.

What about $-k \leq n<0$?

Interpretation for $-k \leq n<0$ less transparent.
There is no analogous K-theory group and thus not clear if we should gauge or break.

In [Blumenhagen, NC, KneiBl, Makridou '22] we propose that, for $X=C Y_{3}$

- $\Omega_{\mathrm{ODD}}(X)$, broken: there is no appropriate gauge field in the theory to gauge it.
- $\Omega_{\text {EVEN }}(X)$, gauged: contributing to tadpoles of $n \geq 0$ groups.

$\Omega_{6}(X)$	$b_{6} \Omega_{0}(\mathrm{pt})$	$b_{4} \Omega_{2}(\mathrm{pt})$	$b_{2} \Omega_{4}(\mathrm{pt})$	$b_{0} \Omega_{6}(\mathrm{pt})$
	C_{10}	C_{8}	C_{6}	C_{4}
	$O 9$	$\mathrm{~F}\left(C Y_{4}\right)_{c_{1}\left(M_{6}\right)}$	$\operatorname{tr}(R \wedge R)_{\mathrm{D} 9, \mathrm{O} 9}$	$\mathrm{~F}\left(C Y_{4}\right)_{c_{1} c_{2}, c_{1}^{3}\left(M_{6}\right)}$
$\Omega_{4}(X)$	$b_{4} \Omega_{0}(\mathrm{pt})$	$b_{2} \Omega_{2}(\mathrm{pt})$	$b_{0} \Omega_{4}(\mathrm{pt})$	-
	C_{8}	C_{6}	C_{4}	-
	$O 7$	$N 7_{c_{1}\left(M_{4}\right)}$	$\operatorname{tr}(R \wedge R)_{\mathrm{D} 7, \mathrm{O} 7}$	-
$\Omega_{2}(X)$	$b_{2} \Omega_{0}(\mathrm{pt})$	$b_{0} \Omega_{2}(\mathrm{pt})$	-	-
	C_{6}	C_{4}	-	-
	$O 5$	$N 5_{c_{1}\left(M_{2}\right)}$	-	-
$\Omega_{0}(X)$	$b_{0} \Omega_{0}(\mathrm{pt})$	-	-	-
	C_{4}	-	-	-
	$O 3$	-	-	-

- First column: localised O-planes
- $\mathrm{F}\left(C Y_{4}\right)_{x}$: contribution proportional to x arising in F-theory compactified on elliptically fibered $C Y_{4}$ with base M_{6}.
- $\operatorname{tr}\left(R^{2}\right)_{x}$: contribution proportional to $\operatorname{tr}\left(R^{2}\right)$ arising from CS action of x.
- New contributions?

Conclusion

- The absence of global symmetries seems to be a fact of QG. It holds true also when enlarging notion of symmetry, such as to include cobordism [McNamara, Vafa '19]
- This statement has predictive power. [Montero, Vafa '20; Dierigl, Heckmann '20; Hamada, Vafa, '21; McNamara '21; Debray, Dierigl, Heckman, Montero '21; Blumenhagen, NC, Kneißl, Makridou '22, Velàzquez, De biasio, Lüst '22...]
- Cobordism and K-theory can be combined in a mathematical and physical way. Their combination must be either be broken or gauged
- The generalisation $\mathrm{pt} \rightarrow X$ (for some X) can be interpreted in terms of dimensional reduction

Future directions

- Cobordism groups with more structure (gauge fields, compact manifolds, ...)
- Clarify origin of tadpoles from bottom-up
- Is cobordism conjecture combined with K-theory enough to reconstruct tadpoles in string theory (String Lamppost Principle)?
- Are there new objects in string theory detected by cobordism? This can happen when breaking but also when gauging.

Thank you!

Extra slides

Cobordism groups of X

One can define cobordism groups for any topological space X.

$$
\Omega_{n}^{\xi}(X)=\{\text { set of pairs }(M, f)\} / \sim
$$

One generically has the splitting

$$
\Omega_{n}^{\xi}(X)=\Omega_{n}^{\xi}(\mathrm{pt}) \oplus \tilde{\Omega}_{n}^{\xi}(X)
$$

thus when passing from pt to X the group is enlarged. Similarly for K-theory.

An organising principle

In general not clear how to get to QG.
Following the Whitehead tower helps [NC, Andriot, Carqueville '22].
Whitehead tower: it organises topological structures (with their obstructions) according to the degree of "connectedness".

Climbing the tower, bordism groups become smaller.

Atiyah-Bott-Shapiro orientation

Relation between cobordism and K-theory dates back to ABS-orientation [Atiyah, Bott, Shapiro '64]

$$
\begin{array}{ll}
\alpha_{n}: & \Omega_{n}^{\text {Spin }}(\mathrm{pt}) \rightarrow \mathrm{KO}^{-\mathrm{n}}(\mathrm{pt}) \\
\alpha_{n}^{c}: & \Omega_{n}^{\mathrm{Spin}^{c}}(\mathrm{pt}) \rightarrow \mathrm{K}^{-\mathrm{n}}(\mathrm{pt})
\end{array}
$$

explicitly given by the refined A-roof and Todd genus

$$
\alpha_{n}([M])=\left\{\begin{array}{cl}
\hat{A}(M) & n=8 k \\
\frac{1}{2} \hat{A}(M) & n=8 k+4 \\
\operatorname{dim} H \quad \bmod 2 & n=8 k+1 \\
\operatorname{dim} H^{+} \bmod 2 & n=8 k+2 \\
0 & \text { otherwise }
\end{array} \quad \alpha_{n}^{c}([M])=\operatorname{Td}(M)\right.
$$

Starting point to prove theorem by [Hopkins, Hovey '92], see also [Conner, Floyd '66; Landweber '76; Kreck, Stolz '93].

Note: $\alpha_{n}, \alpha_{n}^{c}$ are bordism invariants.

Example: gauging $\Omega_{6}^{\text {Spin }{ }^{c}}$

We have $\Omega_{6}^{\text {Spin }}{ }^{c}=\mathbb{Z} \oplus \mathbb{Z}$ with invariants

$$
\mu_{6}^{1} \equiv \alpha_{6}^{c}=\int t d_{6}=\int \frac{1}{24} c_{1} c_{2}, \quad \mu_{6}^{2}=\int \frac{1}{2} c_{1}^{3}
$$

- (Magnetic) 5 -form global symmetry, gauged by C_{4}
- $K^{-6}(\mathrm{pt})$ classifies D3-branes

Combining we get

$$
\int_{B} \sum_{i} Q_{i} \delta^{(6)}\left(\Delta_{4, i}\right)=\int_{B}\left(\frac{a_{1}}{24} c_{2}(B) c_{1}(B)+\frac{z_{2}}{2} c_{1}^{3}(B)\right) \equiv \frac{\chi(Y)}{24}
$$

Matching with known D3-brane tadpole cancellation in F-theory for $a_{1}=12$ and $a_{2}=30$. [Sethi, Vafa, Witten '96]
Notice that c_{3} cannot appear since it is not bordism invariant.

Example: gauging $\Omega_{1}^{\text {Spin }}$

Torsion charges require care. Consider $\Omega_{1}^{\text {Spin }}=\mathbb{Z}_{2}=K O^{-1}(\mathrm{pt})$ with invariant

$$
\mu_{1} \equiv \alpha_{1}
$$

and $K O^{-1}(\mathrm{pt})$ classifies $\widehat{D 8}$-branes.
We get \mathbb{Z}_{2}-valued charge neutrality condition

$$
\int_{M} \sum_{i} Q_{i} \delta^{(1)}\left(\Delta_{9, i}\right)=\mathbf{a} \alpha_{1} \quad \bmod 2
$$

- a=even: RHS decouples. Even number of $\widehat{D 8}$-branes needed and $K O^{-1}(\mathrm{pt})$ is gauged. New defect needed to break $\Omega_{1}^{\text {Spin }}$.
- a=odd: single $\widehat{D 8}$-brane on S_{p}^{1} (having $\alpha_{1}\left(S_{p}^{1}\right)=1$) allowed since vanishing total charge, $1+1=0 \bmod 2$.
Unlikely: S_{p}^{1} valid background without $\widehat{D 8}$.

Example: $\mathrm{X}=\mathrm{CY}_{3}$ (continued)

The cobordism invariants of each term (recall $M_{6} \neq X$)

$$
\begin{array}{ll}
\operatorname{td}_{0}\left(M_{6}\right)=1, & \\
\operatorname{td}_{2}\left(M_{6}\right)=\frac{1}{2} c_{1}\left(M_{6}\right), & \\
\operatorname{td}_{4}\left(M_{6}\right)=\frac{1}{12}\left(c_{2}\left(M_{6}\right)+c_{1}^{2}\left(M_{6}\right)\right), & c_{1}^{2}\left(M_{6}\right), \\
\operatorname{td}_{6}\left(M_{6}\right)=\frac{1}{24} c_{2}\left(M_{6}\right) c_{1}\left(M_{6}\right), & \frac{1}{2} c_{1}^{3}\left(M_{6}\right)
\end{array}
$$

can be expanded in $H^{6-m}(X ; \mathbb{Z})$ such that their Poincaré duals are in $H_{m}(X ; \mathbb{Z})$ and counted by $b_{m}(X)$.

For each $m=6,4,2,0$ we combine cobordism invariants with K-theory defects and repeat the same logic as for groups of pt.

- $6-m=0$: 9-form symmetry in 10D, 3-form symmetry in 4D. $b_{6}(X)=1$ tadpole

$$
N \delta^{(0)}\left(M_{6}\right)+a^{(0)} \operatorname{td}_{0}\left(M_{6}\right)=0
$$

- $6-m=2$: 7-form symmetry in 10D, 3-form symmetry in 4D. $b^{2}(X)=b_{4}(X)$ tapdoles obtained combining $\left(\omega_{(2)} \in H^{2}(X ; \mathbb{Z})\right)$
$\delta^{(2)}\left(\mathbb{R}^{1,3} \times \Sigma_{4}\right)=\sum_{a=1}^{b_{4}} \delta^{(0)}\left(\mathbb{R}^{1,3}\right)^{(2) a} \wedge \omega_{(2) a} \quad$ and $\quad \operatorname{td}_{2}\left(M_{6}\right)=\sum_{a=1}^{b_{4}} \tilde{j}_{0}^{(2) a} \wedge \omega_{(2) a}$
- $6-m=4$: 5 -form symmetry in 10D, 3-form symmetry in 4D. $b^{4}(X)=b_{2}(X)$ tapdoles after expanding in cohomology

$$
\sum_{j \in \operatorname{def}} N_{j} \delta^{(4)}\left(\mathbb{R}^{1,3} \times \hat{\Sigma}_{2, j}\right)+a_{1}^{(4)}\left(\frac{c_{2}\left(M_{6}\right)+c_{1}^{2}\left(M_{6}\right)}{12}\right)+a_{2}^{(4)} c_{1}^{2}\left(M_{6}\right)=0
$$

- $6-m=6$: 3 -form symmetry in 10D, 3-form symmetry in 4D. $b^{6}(X)=1$ tapdole after expanding in cohomology

$$
\sum_{j \in \operatorname{def}} N_{j} \delta^{(6)}\left(\mathbb{R}^{1,3} \times \mathrm{pt}_{j}\right)+a_{1}^{(6)} \frac{c_{2}\left(M_{6}\right) c_{1}\left(M_{6}\right)}{24}+a_{2}^{(6)} \frac{c_{1}^{3}\left(M_{6}\right)}{2}=0
$$

