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Motivation



Motivation

In recent years, the (in)stability of de Sitter space in quantum gravity has

been widely debated.

Does metastable de Sitter space belong to the landscape or swampland?

[cf. Mariana’s and Severin’s talk]

One angle: start from universal properties that are widely accepted, such

as finiteness of SdS.

The goal of this talk is to explore (some of) the constraints this poses on

physics in de Sitter space.
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Symmetries and Entropy

Consider the static patch of d-dimensional de Sitter space.
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A static observer measure a thermal spectrum of particles with

TdS = 1
2πℓ and associates an entropy to the horizon.

However, the isometries of the static patch are smaller than the whole

maximally symmetric spacetime: SO(d − 1)× R ⊂ SO(d , 1).
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Symmetries of De Sitter Quantum Gravity

• ℓp/ℓ = finite ⇒ Finite entropy leads to a discrete spectrum of

energy eigenstates.

• It has been proven [Goheer, Kleban, Susskind ’02] that this is inconsistent

with having symmetry generators that mix different static patches.

• Thus, de Sitter quantum gravity does not have the symmetries of

classical de Sitter.

De Sitter space is in the swampland?

Depends on the time scale when these effects appear.

E.g. t ∼ ℓeSdS , t ∼ ℓSdS or t ∼ ℓ log SdS.
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JT Gravity in dS2



Two-Dimensional Gravity Models

We will be interested in studying (gravitational) entropy in de Sitter

space. Convenient to work in two dimensions.

I =
1

2κ2

∫
d2x

√
−gΦ(R − 2/ℓ2) + (matter)

Leads to EOM:

−∇a∇bΦ+ gab□Φ+
2Φ

ℓ2
gab − κ2⟨Tab⟩ = 0 ,

R − 2/ℓ2 = 0 .

These (backreacted) equations of motion can be solved analytically.
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Dilaton Solutions

First we consider classical solutions: Tab = 0. Different solutions exist,

given by the Killing vectors manifest in different coordinate systems.

Static coordinates:

ds2 = −(1− r2/ℓ2)dt2 + (1− r2/ℓ2)−1dr2 ,

Φ = ϕ0
r

ℓ
.

Can think of Φ = area such that the entropy is SdS = 2π
κ2 Φ(r = ℓ).

Φ = ∞
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Including Quantum Effects

We can also compute quantum effects by including a coupling to

conformal matter. A choice of quantum state needs to be made.

Useful to consider Kruskal coordinates:

ds2 = − 4ℓ4

(ℓ2 − x+x−)2
dx+dx− Bunch-Davies: ⟨T±±⟩ = 0

⟨T+−⟩ =
c

24πℓ2
g+−

Using coordinates natural for a static observer: σ± = ±ℓ log(±x±/ℓ).

⟨: T±± :⟩ = πc

12β2
dS

, βdS = 2πℓ

Static observers measure a thermal spectrum of particles.

Dilaton solution is:

Φ =
cκ2

24π
+ ϕ0

ℓ2 + x+x−

ℓ2 − x+x−
.
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Central Dogma of Cosmological Horizons

Thermodynamically, it is expected that the entropy of radiation grows

linearly.

Srad ∼ c

ℓ
t .

This can potentially lead to a violation of the “Central Dogma” of

cosmological horizons:

A static patch of de Sitter space can be described by a quantum

system with eSdS states.

When Srad > SdS this is violated. If true, we therefore expect corrections

to semi-classical physics around t ∼ ℓSdS.
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Island Transitions



Generalized Entropy

In semi-classical gravity we are interested in generalized entropy, e.g. for

a black hole.

SBH = A
4GN

+ Smatter

It is this quantity that obeys the usual thermodynamic laws, such as

dSBH ≥ 0 .

The matter entropy is the von Neumann entropy defined on a spatial

slice.
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Generalized Entropy

We now motivate a general expression for the entropy (see [Almheiri,

Hartman, Maldacena, Shaghoulian, Tajdini ’20] for a review).

Σ
i

Sgen(Σ) = min,exti

[
A(i)
4G + SvN(Σ)

]

The entropy of Σ is found by extremizing this formula. Assuming a pure

state (Sgen(Σtot)=0), the region i shrinks to zero size.

Can there be non-trivial quantum extremal surfaces? Let us couple this

system to a non-gravitational bath.
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The Island Formula

If the system is in a pure state Sgen(Σtot) = Sgen(R). This suggests that

the same formula holds for the entropy of R.

Σ
i

R

Sgen(Σ) = min,exti

[
A(i)

4G
+ SvN(Σ)

]
Sgen(R) = min,exti

[
A(i)

4G
+ SvN(Σ)

]

Finally, making use of purity we can rewrite this as the island formula.

Sgen(R) = min,exti

[
A(i)

4G
+ SvN(R ∪ I )

]
.
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Non-Perturbative Transition

The island formula can be derived from the Euclidean gravitational path

integral. [Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini ’19]

There, it arises as a new saddle point that is non-perturbatively

suppressed as ∼ e−S .

• When SvN(R ∪ I ) is small, I = ∅.
• When SvN(R ∪ I ) is large, a non-trivial island gives the dominant

(lowest entropy) contribution.

Around a time t ∼ S/rh this non-perturbative transition takes place.
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Islands in de Sitter Space

Back to de Sitter. Within the static patch, there is no natural

non-gravitational bath region.

Proposal: modify the geometry by glueing Rindler wedges. [LA,

Aguilar-Gutierrez, Sybesma (WIP)]

Φ
=
∞

σ +

=
−∞

σ
− =

+
∞ Φ

=
∞

CRCL RRRL

We now have asymptotic non-gravitational regions, from which the

cosmological horizon can be probed.
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Rindler Solution and Junction Conditions

For this patched spacetime to be a solution to Einstein’s equations, the

Israel junction conditions need to be satisfied. [Engelhardt, Folkestad ’22]

For a junction at location x− = 0:

[Φ]|x−=0 = 0 ,

κ2Tab l
alb + [la∇aΦ]δ(x

−) = 0 .

The dilaton solutions are given by

de Sitter: Φ =
cκ2

24π
+ ϕ0

ℓ2 + x+x−

ℓ2 − x+x−
,

Rindler: Φ =
cκ2

24π
+ ϕ0 − λ2x+x− .

We can now compute the generalized entropy.
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Searching for Islands

The generalized entropy of region R is given by

Sgen(R) =
2π

κ2
Φ(x±i ) +

c

6
log

[
x+ir x

−
ir

ϵ2Ω(x±i )Ω(x±r )

]
+ (i ↔ ĩ , r ↔ r̃)

RR

r

RL

r̃

I

ĩ i

We now need to extremize this to find islands.
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Island Results

At early times, the dominant island is the trivial one.

Sgen(R) = SvN(R) =
c

3ℓ
t .

At late times, a non-trivial island appears that saturates the growth.

x−i = 0 ,

x+i = − cκ2

12πλ2x−r
,

⇒ Sgen(R) =
c
6 + 4πϕ0

2κ2 = 2SdS .

The island therefore shows there is a non-perturbative correction at

t ∼ SdS/ℓ to the entropy.
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Breaking Thermal Equilibrium

We can go one step further and show that information can be recovered.

• In [LA, Sybesma ’21], it was argued that a non-equilibrium state can be

used that removes left-moving radiation.

• In our Rindler setup, this can be done without destroying the

observer. [LA, Aguilar-Gutierrez, Sybesma (WIP)]

Φ
=
∞

Φ
=
∞

CRCL RRRL

x+A

x+B

Information recovery in a controlled setting from the de Sitter horizon.
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Universal Non-Locality of Quantum Gravity

• The main lesson is that the entanglement wedge of Hawking

radiation can include regions behind the horizon.

• This seems to be true irrespective of the precise background under

consideration and constitutes holography beyond AdS/CFT. [Bousso,

Penington ’22]

• Entropy is sensitive to a notion of non-locality present in quantum

gravity.

• Are there low-energy observables that have this property?

Interesting question for the swampland.
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Outlook



Conclusions

• I’ve reviewed a simple argument that de Sitter space is in the

swampland, in the sense that its isometry group cannot be realized.

• This suggests corrections to semiclassical physics in de Sitter space.

• I’ve argued that generalized entropy is a probe that is sensitive to

these corrections in the form of islands.

• Are there other observables sensitive to this effect?

• A relatively unexplored area of the swampland.
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