Exercise sheet for Advanced Mathematics Part-I, Group Theory

Lecturer: Karl Landsteiner

- 1. Consider the group S_3 of permutations of 3 elements, $e:(abc) \to (abc)$, $\pi_1:(abc) \to (bac)$, etc
 - What is the order of the group? (more generally what is the order of the group S_n ?)
 - Write out the multiplication table.
 - Find a three dimensional faithful representation.
 - Find the conjugacy classes.
 - Find the proper subgroup H of order 3. In terms of the matrix representations what distinguishes this subgroup?
 - Is H normal in S_3 ? If yes what is the factor group? If the factor group is F. Does the group S_3 have the direct product structure $G/H \times H$?
- 2. Suppose G is a finite group of order 2N and H is a subgroup of order N. Show that H is a normal subgroup.
- 3. Compute the left- and right- invariant measures for the group SU(2) in the parametrization

$$U = \begin{pmatrix} \cos(\alpha)e^{i\beta} & \sin(\alpha)e^{i\gamma} \\ -\sin(\alpha)e^{-i\gamma} & \cos(\alpha)e^{-i\beta} \end{pmatrix}$$
 (1)

- 4. Show that all irreducible representations of an Abelian group are one-dimensional (use Schur's lemma).
 - Show that the defining two-dimensional representation of SO(2) is reducible by explicitly constructing the isomorphism $SO(2) \to U(1)_{-1} \otimes U(1)_{+1}$, where $U(1)_m$ is the group formed by $\exp(im\phi)$ with $m \in \mathbb{Z}$.
 - Extend SO(2) to O(2) (parity!). Show that the two-dimensional representations are irreducible for $m \neq 0$ (hint: conjugation by parity). Discuss the case m = 0!
- 5. Show that a rotation around an axis given by a unit vector \hat{n} by an angle φ is

$$R_{ij} = \delta_{ij}\cos\varphi + \hat{n}_i\hat{n}_j(1-\cos\varphi) + \sin\varphi\hat{n}_k\epsilon_{ikj}$$
 (2)

by

- using the homomorphism $SU(2) \to SO(3)$ and first expanding $\exp(\varphi \hat{n}\vec{a})$ where a_i are the generators of su(2).
- exponentiating the defining representation of SO(3) (=adjoint representation of SU(2)).
- 6. Show that the real Lie-algebra so(4) is semi-simple by not simple. What are the representations of so(4)?
- 7. Take the Dynkin diagrams of B_2 (\Longrightarrow), C_2 (\Longrightarrow) and G_2 (\Longrightarrow). Write down their Cartan matrices and construct the weight diagrams corresponding of the two fundamental and the adjoint representations for each. Draw their root systems. What is the relation between B_2 and C_2 ?