Exercise sheet for Advanced Mathematics Part-I, Group Theory
 Lecturer: Karl Landsteiner

1. Consider the group S_{3} of permutations of 3 elements, $e:(a b c) \rightarrow(a b c)$, $\pi_{1}:(a b c) \rightarrow(b a c)$, etc \ldots

- What is the order of the group? (more generally what is the order of the group S_{n} ?)
- Write out the multiplication table.
- Find a three dimensional faithful representation.
- Find the conjugacy classes.
- Find the proper subgroup H of order 3. In terms of the matrix representations what distinguishes this subgroup?
- Is H normal in S_{3} ? If yes what is the factor group? If the factor group is F. Does the group S_{3} have the direct product structure $G / H \times H$?

2. Suppose G is a finite group of order $2 N$ and H is a subgroup of order N. Show that H is a normal subgroup.
3. Compute the left- and right- invariant measures for the group $S U(2)$ in the parametrization

$$
U=\left(\begin{array}{cc}
\cos (\alpha) e^{i \beta} & \sin (\alpha) e^{i \gamma} \tag{1}\\
-\sin (\alpha) e^{-i \gamma} & \cos (\alpha) e^{-i \beta}
\end{array}\right)
$$

4. - Show that all irreducible representations of an Abelian group are one-dimensional (use Schur's lemma).

- Show that the defining two-dimensional representation of $S O(2)$ is reducible by explicitly constructing the isomorphism $S O(2) \rightarrow$ $U(1)_{-1} \otimes U(1)_{+1}$, where $U(1)_{m}$ is the group formed by $\exp (i m \phi)$ with $m \in \mathbb{Z}$.
- Extend $S O(2)$ to $O(2)$ (parity!). Show that the two-dimensional representations are irreducible for $m \neq 0$ (hint: conjugation by parity). Discuss the case $m=0$!

5. Show that a rotation around an axis given by a unit vector \hat{n} by an angle φ is

$$
\begin{equation*}
R_{i j}=\delta_{i j} \cos \varphi+\hat{n}_{i} \hat{n}_{j}(1-\cos \varphi)+\sin \varphi \hat{n}_{k} \epsilon_{i k j} \tag{2}
\end{equation*}
$$

by

- using the homomorphism $S U(2) \rightarrow S O(3)$ and first expanding $\exp (\varphi \hat{n} \vec{a})$ where a_{i} are the generators of $s u(2)$.
- exponentiating the defining representation of $S O(3)$ (=adjoint representation of $S U(2))$.

6. Show that the real Lie-algebra so(4) is semi-simple by not simple. What are the representations of $s o(4)$?
7. Take the Dynkin diagrams of $B_{2}(\bullet), C_{2}(\bullet)$ and $G_{2}(\bullet)$. Write down their Cartan matrices and construct the weight diagrams corresponding of the two fundamental and the adjoint representations for each. Draw their root systems. What is the relation between B_{2} and C_{2} ?
