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Abstract

This is a simple conceptual introduction to some basic facts about string theory.
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Prefacio

Las presentes notas se basan en el curso impartido con el titulo “String Basics” en el primer
Taller de Altas Energias, celebrado en Peniscola durante la primera mitad de Abril del ano 2002.
Aunque la versién preliminar existia con anterioridad al curso, esta versién para difusién piblica
contiene anadidos y mejoras puntuales como resultado de la interacciéon con los estudiantes
durante el curso.

La presentacion, un tanto atipica para un curso de supercuerdas, responde a la necesidad de
hacer accesibles los resultados més importantes a una audiencia muy heterogénea, compuesta
de doctorandos en temas tedricos y experimentales. Por esa razén he tratado de enfatizar
los aspectos conceptuales sobre las aplicaciones, siempre sacrificando el formalismo a un estilo
heuristico.

Los expertos saben bien que esta elecciéon conlleva peligros considerables. Dado el caracter
intrinsecamente técnico de la teoria de cuerdas, la linea que separa la pedagogia de la vulgar-
izacién no estd siempre bien definida. Concretamente, uno de los resultados clave del curso; la
deduccién del espectro libre de cuerdas relativistas abiertas y cerradas (Lecture 2), se obtiene
mediante un atajo que involucra la cuantizacion de cuerdas en la aproximacién no relativista.
Si bien trato de justificar el procedimiento mediante consideraciones de dualidad, el lector debe
hacerse cargo de que una justificacon rigurosa de las férmulas requiere un tratamiento comple-
tamente relativista e invariante gauge.

Dado que estos tratamientos son estandar y se pueden encontrar en numerosos libros de texto,
he optado por sacrificar el rigor en aras de la brevedad. Al fin y al cabo, una cierta provisiéon
de “trucos” es lo que caracteriza un curso oral como complemento al necesario aprendizaje
autodidacta en un buen libro.

La organizacién de las charlas es la siguiente. En la primera se introduce un punto de vista
heterodoxo sobre la teoria de perturbaciones covariante en teoria cudntica de campos. Se trata
esencialmente del viejo punto de vista espacio-temporal de Feynman, clarificado mediante la
representacion de tiempo propio de Schwinger. Una buena parte de las peculiaridades técnicas
de la teoria de cuerdas a nivel perturbativo se ven aqui en estado embrionario. Esto convierte
en “natural” la generalizacién de teoria cudntica de campos a una teoria de objetos extensos.
Cerramos la primera charla con el conjunto de “predicciones” genéricas de la teoria de cuerdas:
gravitacion, simetria gauge, dimensiones extra y supersimetria, cuyo desarrollo constituye el
resto de las tres charlas, y una discusién de la principal motivacién teérica de las teorias de
cuerdas como un modelo de gravitacién cuantica.

En la segunda charla obtenemos el espectro de cuerdas libres abiertas y cerradas. El objetivo
principal es mostrar que las cuerdas requieren una dimensién espacio-temporal critica superior
a cuatro, que son genéricamente intestables en su versiéon mas simple (bosénica) y que contienen
bosones gauge (cuerda abierta) y gravitones (cuerda cerrada) de forma universal.

En la tercera y cuarta charlas introducimos un conjunto de resultados de caracter mas
concreto y que tienen que ver con propiedades dindmicas de las teorias de cuerdas. El mayor
problema en la elaboracién de los temas es la importancia del formalismo supersimétrico, un
requisito no asumible en la cultura previa de los estudiantes para este curso. En este asunto
hemos optado por introducir la idea bésica de supersimetria para espacios de Fock libres, que
es el andamiaje minimo para construir el espectro libre de las teorias de supercuerdas, y hemos
suprimido todos los detalles de las construcciones especificas de teorias de cuerdas de tipo II,
tipo I y cuerdas heteréticas. A cambio, hay una discusién elemental del papel de supersimetria



en modelos fenomenoldgicos a la escala del modelo estandar (problema de las jerarquias).

A continuacién hay una discusién mé&s bien descriptiva del impacto de supersimetria y
simetrias de dualidad en la estructura no perturbativa de las teorias de cuerdas y una pre-
sentacién de los principales prejuicios sobre la escala dindmica a la que aparecerian las cuerdas,
basado en el comportamiento de los acoplamientos gauge (escenarios tipo GUT o tipo “dimen-
siones extra grandes”).

Por 1ltimo presentamos un argumento fisico que explica la finitud de las teorias de cuerdas
basado en el estado tipico de una cuerda a muy alta energia. Utilizamos este resultado para
introducir algunas ideas recientes sobre la relacion entre teorias de cuerdas y agujeros negros
cudnticos, asi como el “principio holografico”.

Las notas se complementan con una lista de siete problemas resueltos que han sido selecciona-
dos con el objetivo de ilustrar ciertos conceptos bésicos, pero también como remedio improvisado
a la incompletitud manifiesta de las notas en ciertos puntos. No se adjunta una coleccién de ref-
erencias, si bien recomendamos al lector interesado el estudio cuidadoso de los tratados clésicos:
Green—Schwarz—Witten y Polchinski.
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Lecture 1

From Point Particles to Strings

In the first lecture we recall the unconventional (original) formulation of covariant pertur-
bation theory due to Feynman. The basic physical interpretation of relativistic Quantum Field
Theory (QFT) is in terms of a many-particle system. In perturbation theory, the interactions
really correspond to creation and annihilation of particles so that the number of particles is not
conserved. In cases where a classical conservation law exists, it is realized quantum mechanically
as the conserved number of particles minus the number of antiparticles. Although the existence
of antimatter is the one generic prediction of QFT, it appears in the usual formalism in a rather
technical way. The purpose of the next section is to introduce Feynman’s picture based on the
quantization of relativistic single particles. The inevitability of antimatter acquires then a nice
geometric interpretation.

Feynman’s point of view is the best technical way of introducing the string generalization of
QFT. The result of this generalization is a remarkable list of generic predictions, much in parallel
with the generic prediction of QFT (antimatter). The most surprising of these predictions is
the dynamical emergence of gravity.

Feynman Diagrams and Particle Paths

In perturbation theory in powers of the coupling A, the physics of a QFT with a simple
Lagrangian such as

Ly = —% (0¢)* — % ¢

reduces to the computation of Feynman diagrams.! Each diagram is a code for the mathematical

expression
> II =N I G

q. numbers vertices links

where the sum over quantum numbers of intermediate particles includes momenta (or positions),
spin, charge, etc. The hart of perturbation theory is the propagator function G associated to
each link of the diagram. For the propagation between two points z — 2’ in the scalar model
above we have

G(a', ) = (0| T [¢() ¢(x)] |0), (1)

i.e. the vacuum expectation value of the time-ordered product of two field operators. Upon
calculation, this is
d4p i / —1
G(z',z) = lim —ip-(z—a') .
(@) e—0 ) (2m)* p? — e

In a somewhat more symbolic form:

G2, z) = <x'

where the pole at p? = 0 is resolved by giving p? a small negative imaginary part.

'We use the “gravitational” metric convention 7, = diag (—1,1,1,1), and V? = V*V,, = n,, V*V".



Feynman’s original derivation of his rules was in terms of path integrals for single-particle
trajectories (rather than path integrals for fields like in modern textbooks). We can derive his
starting point by working backwards from the expression of the propagator. Let us use the
so-called Schwinger parametrization:

0 C 2
G(x',x) :/ ds (z'|e™"*P" | z)
0
Defining the “Hamiltonian”

H:p2:—2 y

N[

the matrix element _
<$I|6715’H|$>

looks like the propagation of a non-relativistic particle of mass 1/2 between points z and z’ in

time s. We can now write this in Lagrangian form by using Feynman’s path integral formula:

(o | z) = [ Dab(r) exp (z /0 dr c[x(f)]> @)

r—x’

as a formal sum over paths z#(7) that connect 2 and z’ in “time” s, i.e. 2(0) = z, and z(s) = z'.
The Lagrangian is that of a non-relativistic particle of mass 1/2, thus

. 1 dx* dx
)it =g )

L=d-p-H= 4 dr dr

(

NO[—=

1
2
The “time” variable 7 parametrizes the quantum trajectory x#(7) of the relativistic particle.
Notice that 7 is a proper time along the trajectory and is fundamentally different from the
external physical time 20 = ¢.

Since 7 simply parametrizes the curve z#(7), the particular choice of path parametrization
should not be important. Under a reparametrization 7 — 7’ we have

dr dat  dt dr'!

— P - _
dr =dr dr"’ dr dr' dr

Therefore, in order to make the action invariant under reparametrizations we can introduce a
“one-dimensional” metric h,r < 0 with the property that

ds®> = —h,.drdr

is invariant under reparametrizations. This means that
2
dr’
hTT = hT’T’ <_ 3
dr

so that the combination
™" Orzt Orxy

is invariant, where A" = 1/h,,. Also

dt \/—h;; = invariant,



and s is interpreted as the “proper length” of the trajectory:

5= /dT V—=hrr

As a result, we have that the action

1
Sp=—7 / dr /T W77 O Dy, (4)
is invariant under reparametrizations and reduces to (3) for a choice of “gauge” h,; = —1. In
this general view, the propagator is obtained as the path integral:

DhTT
Diff

; 7
, eZSP [hrr,wh(T)] ,

[Dz(T)] 50
i.e. “quantum gravity” in one (time) dimension. The integral over world-line metrics h,,
modulo reparametrizations, or “diffeomorphisms”, of the line is just a redundant way of writ-
ing the original path integral and should reduce to it upon fixing the gauge of the group of
reparametrizations: Diff. In particular, since the metric h,- determines the proper length along
the path, s = [ d7v/—h;., and this is the only reparametrization-invariant property of the path,
any functional F[h,,] of the metric should actually be a function of s only and we should have

/dT\/TTT] N/Ooods F[s],

Dh,,

F
Diff

so that the Schwinger-parameter integral is just the result of gauge-fixing the integral over
one-dimensional metrics.

Back to QFT

We can also approach the problem with the method of canonical quantization. On quantizing
(4) we may choose the standard gauge h,, = —1 provided we impose its equation of motion as

a constraint: 59 )
P = _5\/ _hTT T = 03

5hTT

where 1
TTT = Z (9T$“ 8Tl'u

In the quantum theory, we must impose this (analogous to Gauss’s law in electrodynamics) by
declaring that the quantum operator has vanishing matrix elements on physical states:

<¢ | Trr | ¢> =0
Now, canonical quantization of the gauge-fixed action with h,; = —1 gives
[p;u "] = —i 5;/7
with
oL 1
PH= w3



Thus, we can realize the momentum as the quantum operator

Pu = —10y

and
T, = pM P = H

is nothing but the world-line Hamiltonian. Now the quantum constraint (1| T7~ |¢) = 0 imposes
the vanishing of the matrix elements of H on physical states. The vanishing of the Hamiltonian
is natural for a theory that is invariant under time reparametrizations. A suggestive presentation
of this property is

(2] p"pu| @) = 0", (] §) = =% $(r) = 0,

the Klein—Gordon equation!

This is rather remarkable. By quantization of a single free relativistic scalar particle we have
obtained the free field equation. It remains to see how the multiparticle interpretation of QFT
comes out. It turns out that this fact can be traced to simple geometrical facts in Feynman’s
formalism, even at the level of the free particle’s propagation.

To see this, notice that in computing the Feynman propagator out of the path integral (2)
one must specify boundary conditions. In other words, what kind of paths are to be included in
the path integral?

A first guess would be that, in order to respect causality, one should restrict to the quantum
trajectories that lie inside the relative future light-cone of z' — z, that is we would require that
the trajectories are “causal” in that the tangent vector to the curves is never spacelike:

N (1) ¥ (1) <0

However, if we do this we do not obtain the right answer. The correct propagator in QFT is (1),
where the instruction of time ordering is essential. This is related to Feynman’s e prescription
which adds a small negative imaginary part to p. The poles are shifted as

p° = +ie ¥ |p],

so that one may as well compute the propagator by analytic continuation through the Wick
rotation p® — ip?, or £° — —iz". This sends us to Euclidean space where there is no light cone
and no notion of causality, so that the natural class of paths to be included has no constraints
on the tangent vectors. After analytic continuation back to Minkowski space on finds that the
class of paths that must be considered do not lie inside the relative light-cone of the initial and
final point, i.e. the quantum particle wanders off to space-like regions with

N & (1) (1) > 0
In particular, the quantum trajectory may cut back and forth the surface of constant time zV.
This is interpreted as pair creation of particle-antiparticle pairs, an idea that Feynman credits
to a night phone call by Wheeler!
In fact, antimatter is the one generic prediction when one marries quantum mechanics and
special relativity or, what is the same, QFT.



The String Generalization

This construction of perturbative QFT makes the transition to string theory rather natu-
ral. If we replace the point-particle trajectories by extended string trajectories (world-lines by
world-tubes or world-sheets) most of the previous construction generalizes by simply adding the
dependence on the extension of the string.

The most evident improvement is in the description of the interactions. The splitting of a
string into two or more becomes a smooth process, topological in nature. The entire amplitude
can be smoothly represented by a sum over all possible surfaces with a given topology, weighted
by the same action that applies to the free propagation.

The coupling constant of three closed strings, gs, or three open strings, g,, determines the
coupling weight of any diagram because it must be a topological invariant of the surface. Let
us consider for simplicity oriented strings which only produce oriented two-dimensional surfaces
in their motion.

For a surface with the topology of a sphere with n handles and m holes, the handles represent
closed-string loops, whereas the holes represent external string states. The Euler number

X=2—-2n—m

is a topological invariant that can be computed by use of the Gauss—Bonnet theorem:

1 1
- (2) . — (1)
X 47TAR +27r/32’c :

where ¥ is the world-sheet, R(?) is the two-dimensional curvature scalar and K1) is the extrinsic
curvature on the boundary of the world-sheet.

Since each handle is a closed-string loop, it must be weighted by a factor of g2. Thus, the
complete surface with n handles and m holes has a weight proportional to

(gs) ™

This implies that, if external states are normalized with one power of g, the classical normal-
ization of the effective action generating all connected tree-level diagrams is

1

[(closed)tree —

S

For open oriented strings, vacuum diagrams with no external states are necessarily equal to
some closed-string diagrams, i.e. spheres with handles and holes. Each hole is one extra open
string loop, thus it is suppressed by one power of g2. This means that

gg:gs

The lowest-order open-string diagram has topology of a disk, or a sphere with one boundary
and is weighted by g,2 = g, !. This is the normalization of the generator functional of tree
open-string diagrams:

1 1
I'(open)iree X — = —
( ) ree gg gs



Hence, canonical normalization of the propagator of open string states, g0 = 1, requires that
external open strings be weighted by a power of

gozx/ﬁ

The most general amplitude with N, external open strings, N, external closed strings, L, open-
string loops and L. closed string loops is a sphere with L. handles and L, + 1 + N, holes. The

coupling dependence is
(gs)*1+Lc+Lo+Nc+% No

In this formula, the case with no open strings is interpreted as L, = —1. We learn that there
is only one fundamental coupling, the closed string coupling g;. This gives string interactions
a universality that is not shared by point-particle theories. In the space-time construction
of point-particle perturbation theory the splitting of particles at interaction points must be
specified in a somewhat arbitrary fashion. For strings, on the other hand, the path integral for
a given perturbative contribution is a sum over smooth surfaces 3 of a given topology with an
appropriate generalization of (4).

We can say that, in string theory, knowing the free propagation (free spectrum) of the string
determines univocally all perturbative interactions.

The spectrum is determined by the world-sheet action. The covariant and reparametrization-
invariant action (4) generalizes to the so-called Polyakov action

1
4o

Sp =

/ &0 V/=h h® 9, X" 9, X" 1, (5)
where a,b = 0,1 runs over the world-sheet coordinates and
h = det (hgp)-

As in the point-particle case, the metric hgy is also redundant and can be gauge-fixed to hgp = ngp
in conventional cartesian coordinates for the world-sheet (7,0), for which the Polyakov action
reads,

1

4ol

Splhap = 1ap] = / dr do (0, X" 9, X, — 0, X" 0,X,.) . (6)

This redundancy of the two-dimensional metric is crucial to the theory and requires the extra
symmetry of (5) of local Weyl rescalings (see Problem 1):

hab(U) — 62w(0) hab(a)'
The constant 1
m2

/ 2
o =0

©w N

is called the Regge slope and has been introduced for dimensional reasons. Its physical inter-

pretation is that
1

2ma!

measures the tension (mass per unit length) of the string. To see this, we use the equation of
motion of the metric

0hap

8



It is proven in Problem 1 that the Polyakov action (5) evaluated on the solutions of T,, = 0
gives the so-called Nambu-Goto action

1

2ma!

Sng = — /d2(7 \/—det ((9aX” Op Xﬂ) (7)
The integral in this action is the area of the world-sheet embedded in space-time by the string
coordinates X* (o). To see this, consider a straight string at rest along the coordinate axis X .
Choosing the world-sheet coordinates as 7 = X, 0 = X! we find

1 L
SNag = oo /dT do = o /dT,

where L is the length of the string. Therefore, we recover the interpretation of o/ as an inverse
tension parameter.

The quantization program for the Polyakov action follows step by step the analogous pro-
gram for the path integral over particle paths. One can either compute the path integral over
surfaces by appropriately fixing the gauge (introducing ghosts for the reparametrization group)
or quantize the action (6) in the canonical formalism. Since (6) is the action of d free scalar
fiels in two dimensions, one can quantize the string coordinates directly in terms of d chains of
harmonic oscillators. The analogue of the constraint equation

(¥ Trr|$) =0

in the particle case is now
<¢|Tab|¢> = 07

where Ty, is the two-dimensional energy-momentum tensor:
1 L 1
Top = o 0u X 8{,Xﬂ — 5 Nab (trace).

The zero-mode of this constraint equation still corresponds to the vanishing of the world-sheet
Hamiltonian and yields the free spectrum of the theory:

PP+ M*=0

with M? given symbolically by
1
M? x ~ (Osc+C) (8)

in terms of the total excitation number of the oscillators and a constant contribution C' coming
from zero-point Casimir fluctuations. The scale of the mass spectrum is set by the Regge slope
o/ and the rest of the constraint equations decouple negative-norm states much like in the
Gupta—Bleuler formalism for gauge theory. The result is that we can just consider transverse
oscillations after gauge-fixing.

The derivation of (8) is the subject of many textbook treatments. In these notes we will
obtain the basic formula (8) from a non-rigorous short-cut.

The result of carrying out this program is rather impressive. If this line of reasoning gave
for QFT its one generic prediction, namely the inevitability of antimatter, for strings we have,
at the same level of inevitability, the following list:



e Closed strings always contain gravity. This is the single most remarkable property of
string theory. It always contains a graviton excitation whose perturbative interactions are
consistent and finite.

e Open strings always contain gauge fields. This is similar to the former but regarding the
origin of gauge symmetry.

e For consistency, always more than four dimensions are required. This means that relation
to the real world must proceed by choosing ground states where d —4 spacetime dimensions
are small. This is the old Kaluza—Klein idea, that takes a new look in string theory. In
particular, this gives another universal mechanism to generate gauge symmetries.

e Since the coupling of open and closed strings is related by gs = g2 and closed strings
generate gauge symmetry out of the (stringy) Kaluza—Klein mechanism, it turs out that
gauge interactions are naturally unified at the string mass scale and, at the same time, are
also unified with gravity (there is a natural connection with the GUT idea).

e Generic string models based on bosonic strings are unstable. The only known stabilization
mechanism is supersymmetry. Thus, supersymmetry at stringy energy scales is another
(perhaps more technical) generic prediction of string theory.

The fact that this list includes most of the popular ideas about what may lie beyond the
Standard Model has turned string theory into a major fashion and, in a sense, a general scenario
for theoretical thinking about the relation between gauge symmetry, gravity and supersymmetry.

Since the most remarkable item is the first one in the list (from a strictly theoretical point
of view), we pause to review what is the most immediate problem posed by the quantization of
gravity.

Interlude: The Problem of Gravity

Einstein gravity in d space-time dimensions is based on the so-called Einstein-Hilbert La-

grangian
1 d
g | dev=aR, )

where R = ¢g"” R, and R, is the Ricci tensor containing up to two derivatives of the metric
guv- That (9) is non-renormalizable in perturbation theory around flat space can be understood
by simple considerations of power-counting in Feynman diagrams. Writing

Skn =

Guv = M + th;w

with s
k= V8mGN = EPT V8

we have canonical normalization for h,,, i.e. a kinetic term of the symbolic form

1
SFP = —5 /dd.’L‘ h DFP h,

with Dpp a second-order differential operator and h,, of mass dimension (d — 2)/2. This so-
called Fierz—Pauli Lagrangian describes free gravitons and will be studied in Problem 2. Then

10



the three-point couplings are proportional to x and thus must have two derivatives by elementary

dimensional analysis:
/%Nﬁ/hmﬂh

In fact, since the Ricci scalar itself contains only up to second derivatives of the metric, all
vertices of the theory in perturbation theory have two derivatives.

A diagram with N, external lines would formally come from a contact term in the Lagrangian
of the form

Lecontact ~ n (8)NB (h)NE

Therefore, by counting dimensions, the mass dimensionality of an amputated amplitude with
N, external lines is

-2
dim(n):d—Na—NedT

At the same time, if the diagram contains N, three-point vertices, its generic behaviour as the
external momenta |p| vanish in comparision with all internal momenta is

HN” |p|N5 Adiv’

where A is an ultraviolet cutoff. Combining the two previous equations we obtain

d—2
diV:d—NeT—Nvdim(n)

and we see that any amplitude can become divergent at a sufficiently large order of perturbation
theory (large N,) provided the coupling has negative mass dimension. This is the standard cri-
terion for renormalizability. Symmetries can reduce the order of divergence of various diagrams,
but a finite symmetry (such as gauge symmetry, general covariance, supersymmetry, etc) is not
expected to be able to cancel all possible divergent diagrams that arise with an arbitrarily large
number of external legs.

Since the gravitational coupling has mass dimension

2-d

dim (k) 5

gravity is non-renormalizable above d = 2. In particular it is non-renormalizable in any d > 4.
This means that to get finite physical amplitudes we have to add counterterms with an arbitarily
large number of graviton fields. Since the couplings of these operators are not predicted, the
theory is strictly-speaking, not predictive at all.

As any non-renormalizable theory, it is still useful provided we use it as an effective low-
energy action at energies £ < Mp. If we expand any physical quantity in powers of E/Mp, at
a given order n in this expansion, we just need O(n) counterterms. Of course, this means that
predictability is lost as the typical energy approaches the Planck scale. In fact, perturbation
theory simply breaks down at these energies.

Consider the tree-level scattering of gravitons in four dimensions. It is of order

1
(kp?) - ol (kp?) ~ K> p* ~ ag(p)

11



So, the effective dimensionless expansion parameter is just

i = ()

This is of O(1) at E ~ Mp and thus perturbation theory breaks down there.

There are, generally speaking, two schools of thought about what this might mean. One
of them assumes that the basic Einstein Lagrangian and metric degrees of freedom are to be
kept at £ > Mp, but they are simply strongly coupled and the theory must be studied with
non-perturbative methods. In particular, one may imagine that the non-renormalizability is
an artifact of perturbation theory. This is a logical possibility, albeit one that has led to little
progress in practice, mostly because it is difficult to do any calculation if one gives up the
possibility of having some weakly-coupled dynamics.

The second school of thought is that of string theory, that interprets the threshold at Mp as
a signature of the breaking of the metric as a good description of the degrees of freedom. The
idea is that one may find a weakly coupled description based on entirely new degrees of freedom
that become apparent at the Planck scale.

This is exactly parallel to the situation in Fermi’s theory of weak interactions. The analogue
of Newton’s constant is Fermi’s constant Gg ~ 107° GeV~2. Therefore, the dimensionless
expansion parameter ar(E) ~ Gr E? = O(1) at about F ~ GEI/Q ~ 300 GeV, which is exactly
analogous to the Planck mass in this context. However, before that, at £ ~ 100 GeV, we know
that the four-fermion vertex responsible for muon decay gets smeared out by the exchange of
W-bosons with mass My ~ 80 GeV. In fact, we have

2

G ~ D
Mz’

where gy is the appropriate gauge coupling constant of the Standard Model. Therefore, at
E > 100 GeV, the effective dimensionless coupling is

_ i

aw A )

which is only renormalized logarithmically, and in particular decreases towards the ultraviolet.
This means that we solve the problem of the non-renormalizability of Fermi’s theory by postu-
lating new degrees of freedom at a scale below (but close) to G /2 and we can make sense of
the dynamics at all energies without ever having to give up the weakly coupled description.
String theory does exactly this for the case of gravity, and it is the only known way of doing
so. The local graviton-graviton vertex is smeared out by the exchange of strings, i.e. extended
objects, with characteristic mass scale ms; < Mp. The analogue of the W boson is the string,
the analogue of My is mg, the string mass scale, and the analogue of gy is the dimensionless
coupling of three strings that we denote by g;. Thus we have, just on dimensional grounds:

2 92 2 92
S

GNNK ~ 2295857
mS

where £s = 1/my is the string length. In higher dimensions this generalizes to

2 2 pd—2
Kq ~ Gs es .

12



Hence, to the extent that g; < 1, we would have achieved a fully perturbative regularization of
gravity that exactly mimics that of the electroweak model.

The most notorious property of strings is that they are not simply ultraviolet gadgets that
are used in a more-or-less ad hoc manner to regularize quantum gravity. It turns out that the
strings have massless excitations (in spite of the characteristic mass mg being close the Planck
scale) and in particular gravitons themselves are one of these excitations that appear universally
for all closed-string theories.

Lecture 2

Quantization

In a rigorous treatment one would quantize the covariant Polyakov action (5). In canonical
quantization, one deals with the gauge-fixed action (6):

1

4ol

Sp = / dr do (8, X" 0, X, — 0,X" 8,X,,)

It is convenient to define light-cone coordinates:

ot =r+o0.

In these coordinates we have equations of motion
8+ 8_ X“ = 0, (10)

and constraints
(] 0+ XH 0L X |¢) =0 = (| Tex |¢). (11)

The constraint (¢ |7y |1 ) = 0 is automatic provided conformal invariance holds at the quan-
tum level.

This procedure is reviewed in many textbooks. Here we will follow a heuristic short-cut that
has some interest in itself.

Physically, the vibrational modes of the string should be classified by representations of the
Poincare group, i.e. they must come with a given mass and spin. Thus, our first objective is the
calculation of the spectrum of the operator M? in the relativistic dispersion relation

p? + M?* =0.

A hint at this spectrum can be obtained by considering the infinite-momentum frame. Let
us look at the string from a highly boosted frame, say in the X I direction. Then the energy

takes the form ”
pozw/pﬁeriJrM?:|p‘||+ﬁﬁ|+... (12)

as |p| — oo. H, gives the contribution to the energy squared from transverse degrees of
freedom:

Hy =pl + M (13)
We obtain a non-relativistic dispersion relation with |pH| playing the role of the rest mass. On the
other hand, the infinite boost causes an infinite Lorentz contraction of the string configurations
in the X! direction. Hence, we can neglect longitudinal fluctuations of the string in this frame
and concentrate on the purely transverse ones.
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T-Duality and the Nonrelativistic Dispersion Relation

The general solution (before imposing boundary conditions) of the field equation is
XH(1,0) = X[ (0F) + Xp(07),

where X7, represents left-moving traveling waves and Xp gives the right-moving ones. Both the
equations of motion (10) and the constraints (11) are symmetric under a change of sign of the
right-movers: 04 X* — 0, X*, but 0_X* — —0_X*. In terms of the original coordinates:

0r XH +— 0, X* (14)

This innocent-looking field redefinition acquires a deep significance when we compactify the
space where the string moves. Suppose we compactify the X I direction on a circle of radius R.
Then the momentum becomes discrete with values
n
p| = Ra

and the infinite boost limit corresponds either to n — oo or R — 0. Let us separate the oscillator
part and the zero-mode part of the solutions of the equation of motion (10) and write

0; X* = a* + Oscillations, 0y, X* = b* 4+ Oscillations,

where o, b* are constant vectors. Hence the symmetry (14) acts on the zero modes as at «» b*.
The interpretation of a* is the following; the momentum of the centre of mass is given as
the standard conjugate variable to 0, X*, that is

¢ 0 Sp 1 ¢ /
= d = do0.X, = —
Pu /0 7 00 XH 21l /0 TR T ot M
so that oo
w_ AT
a E p ?

where ¢ is a conventional normalization for the o coordinate. On the other hand, for a static
string that is stretched and winds w times in the X!l direction we have

w
0o Xs|.|tretch = b” =2mR z

Hence, the symmetry (14) acts on the quantized momentum and winding numbers as the com-

bined operation

C\f,

— R<+— —
n w, R

This symmetry is called T-duality and it is of the utmost importance. It simply means that the
physics of quantized momentum modes on a circle of radius R is equivalent to the physics of
quantized winding modes on a circle of radius o/ /R.

The T-duality symmetry is deeply rooted in the extended character of the string and we
will return to it later on. For now we will use it to point out that a large boost in a compact
direction is equivalent to a large stretching in the dual circle. In the infinite boost limit, R — 0,
the dual system is that of an infinitely long string. In this case we can perform a non-relativistic
quantization of the oscillation modes.

14



According to T-duality, the rest mass of a long winding string equals the large compact
momentum of a boosted string in the dual circle. Hence, we shall quantize the relativistic string
by computing the non-relativistic spectrum of transverse fluctuations for a heavy macroscopic
string of rest mass Mj:

b
and afterwards reinterpreting M, — |pH| and H, = p%_ + M?. We insist on the heuristic
character of this procedure. Strictly speaking, it is no more than a useful mnemonic to obtain
the right formulas. We have decided to derive the spectrum in this form because the non-
relativistic quantization is interesing in itself and illustrates most of the physics issues in the
general relativistic case.

Quantizing Transverse Fluctuations

Let us consider a macroscopic string of length L and rest mass

L
2ma

My =

It is easy to quantize the small oscillations about this equilibrium configuration. We can choose
the world-sheet parameters so that

X0 =1, Xl =o.

This is the so-called static gauge. It is just incorporating the fact that longitudinal oscillations
(in the parallel direction X!l) can be absorbed in a reparametrization, and that we can choose
the world-sheet time equal to the physical time X°. The induced metric is

(h )_ _1+(87XJ_)2 OTXJ_'OJXJ_
W0, XL 0,X1 1+ (0,X1)% )7

Thus, expanding the determinant to quadratic order in derivatives gives

1
V—det (hay) = /14 (9, X 1)? — (O X1P 4. =143 [~(0,X0)% + (0, X )% +..] -
The Nambu-Goto action in the same approximation is
SnG N - — /dd @Ox )2 = -2 x0_L [94,)
NG Tordd T dmar | T o (0X1)" = 2ol 2 Lo

where ¢, = X /v2na/. Therefore, we find that the small transverse oscillations are given by
d — 2 massless fields in 141 dimensions. In momentum space, this is just a set of free oscillators
with Hamiltonian

H~M0+§/0 dUI:(aTQZSJ_) +(80¢L)]—%+;w (nw+§>
In this formula, n,, is the occupation number of each independent oscillator whereas
1
2 2
w
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is the energy of zero-point fluctuations. This is infinite as usual and must be renormalized.
However, the string has a finite length L, so that a part of this energy is physical and must be
kept, i.e. the Casimir energy:

CZE Zw(L)—%Zw(L:oo)

We use the normal prescription of subtracting the infinite Casimir energy at infinite volume. In
this way, we renormalize away only the short-distance part of the divergence.

The ¢ are massless fields in 1 4+ 1 dimensions. Thus, their normal excitations are naturally
divided in right-movers with dispersion relation:

WR = +k7
and left-movers:
wy, = —k,

whith % the momentum carried by the oscillation in the X! direction. In order to find the
allowed values of the momentum we consider the case of open and closed strings separately.

Open Strings — Gauge Fields

For open strings, right- and left-movers are reflected into one another at the end-points.
Thus, the stationary states are standing waves on the open string. The allowed momenta are
|k| = 2m /A, with X the allowed values of the wave-length. The nodes of the standing waves are
separated by half a wave-length. Hence, this distance must be an integral fraction of the total

length:
1 N n it it
—A= = = iti in T
5 A n = positive eger,
and we have found that
™
w=—
L

for each of the d — 2 transverse directions.
JFrom here we may calculate the Casimir energy of the d — 2 massless scalar fields with the
following regularization:
d—2

c=""°.

™ m(d — 2)
2 L

o0
—en/VL _ ith L =o0] = —
21: ne [same wi 0] 5AL

In this calculation, we have used the identity

—enVE _ g7 4 —enivE 7 4 <;>
Sne VLY VIS (—)-

This regularization has been chosen so that the divergent term is independent of L and scales
with €72,
Adding a boost of momentum p | in the transverse directions and putting all pieces together

we find )
Hi pT d—2
H=My+2= —pmy+ 2L 4T N, %"=
YR oy T I %:0"” 24 |
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where

Ny =Y Ny,
el

is the occupation number of the i-th transverse mode with frequency w,, = 7n;/L. Using now
My = L/27a’ we finally obtain the mass spectrum of a relativistic open string.

1 d—2
2—_ P
M_a,(N 24), (15)

where we denote the total oscillator level by
N =>"nN,
n

Then, at N = 0 we have states labelled by the momentum |p) with no transverse oscillations,
i.e. scalars with respect to the transverse SO(d — 2) rotation group. These states have mass
squared

d—2
24
They are tachyonic for d > 2. Consider now the first excitation level of the transverse oscillators,
N =1, i.e. states of the form

M? |p) =

)

Ip.i) = (a))" |p).

They transform as a vector of SO(d —2) with d — 2 degrees of freedom. If the spectrum is to be
Lorentz-invariant, they must fit in representations of the full Lorentz group SO(1,d — 1). This
would be the case if the states |p,i) were the physical polarizations of a massless vector field.

To see this, recall that the number of physical polarizations of a massive particle in d space-
time dimensions corresponds to a representation of the Little Group, i.e. the symmetry that
remains when we look at a particle at rest. This is the SO(d — 1) group of rotations in spatial
directions. Hence, a massive particle is in a representation of SO(d — 1). For massless particles
however, we cannot sit on top of them to have them at rest. The best we can do is to choose a
special frame with all transverse momenta vanishing:

(pu) = (17 170L)

In this frame, we still have the SO(d — 2) group of transverse rotations. Thus, it is natural to
classify massless particles by representations of this transverse group. Since SO(d —2) is smaller
than SO(d — 1), massless particles usually have less degrees of freedom than massive particles.
For example, a massive vector in four spacetime dimensions has 3 polarizations from the SO(3)
group. However, a massless vector (a photon) has only 2 polarizations (of course, related by
CPT).
Since the mass from (15) is
26 —d

M? |p,i) = Sy Ip, i),

we find that Lorentz invariance of the spectrum requires a critical dimension
d =26

in which the states |p, ) represent the physical polarizations of a massless photon field.
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The great significance of this result is that open strings generate gauge symmetry dynam-
ically, even if such a symmetry was not postulated in the first place. At a very fundamental
level, interacting theories of massless vectors always include a gauge symmetry. This is a con-
sequence of the tension between Lorentz covariance and the small number of polarizations of
massless particles. From this point of view, gauge symmetries are just useful redundancies that
constraint the possible interactions of massless vectors.

This is easily seen by noticing that a vector field in a fully Lorentz-invariant description
must involve a vector potential A, with d components, while we know that there are only d — 2
physical polarizations of the photon. Hence, we need a prescription to project out the physical
polarizations in a Lorentz-invariant way and conserve this projection through interactions. The
standard solution of this problem is to impose a gauge symmetry, i.e. an equivalence of vector
potentials under A, — A, + 9, A\. In momentum space:

Aulp) = Au(p) + Apy

We can fix the gauge symmetry by imposing the Lorentz gauge d, A" = 0, which means that
the polarization must be transverse:

pt Au(p) =0

This condition removes one polarization degree of freedom. Notice however that the transver-
sality condition does not fix shifts by longitudinal polarizations of the form 0A, o p,, provided
the particle is massless and on shell: p?> = 0.

Hence, one can reduce the physical components of massless vectors to the two polarizations
orthogonal to the direction of motion. Since the gauge condition and the gauge transformation
are Lorentz-covariant, we can be sure that unphysical polarizations are not generated in inter-
actions provided the Lagrangian is gauge-invariant at the quantum level and the gauge-fixing
procedure is Lorentz-invariant.

It is interesting in this respect that Maxwell’s action can be “deconstructed” from the perhaps
more obvious Klein—Gordon action if one is careful about gauge symmetry. An immediate guess
for the action of a vector potential describing particles with massless dispersion relation w = |p|
is the Klein—Gordon action for each component:

|
Suaive = 5 / A, 0% A,

This action is Lorentz-invariant and and has massless dispersion relations. However, since
noo = —1, the action of the Ay component has an overall minus sign which leads to negative-
norm states in the Hilbert space. We can circunvent this problem by enforcing the transversality
conditions above. In order to maintain Lorentz-covariance we can work in terms of projected
vectors:

Al = Pt AY
where the projector is given by
L u_ 90
Pz/ = 51/ - o2

We can deal with this non-local projector by working in momentum space. The important
property of the projector is that A% is gauge-invariant and transverse. It is then a simple
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exercise to show that the projected Klein—-Gordon action is nothing but the ordinary Maxwell
action:

1 1
SMaxwe11:§/A,]jaQA%:_Z/F;wF“V

with F,, = 0,4, — 0, A,.
In summary, we have found that open strings naturally lead to massless gauge fields in extra
(d = 4 + 22) dimensions. In addition, they tend to have tachyonic ground states.

Boundary Conditions and D-branes

In our derivation of the open-string spectrum we have concentrated on the oscillation degrees
of freedom and have been careless about the boundary conditions at the endpoints of the open
string. The simplest assumption about the physical properties of the endpoints is that they have
no mechanical degrees of freedom on their own (for example no rest mass). This means that
we have to choose boundary conditions at o = 0, £ that are compatible with stationarity of the
action for arbitrary variations of the field X#. From the basic action we have

1
58 =5 / dr do (9, X" 0,(6X,,) — 8, X" 9,(0X,,)) .

Integrating by parts and dropping total time derivatives we obtain

1

2ma

§Sp=—

1 o=
/dT do 6XH" (82 — 92) X, — ol /dT [6X* aaXu]a:g

The first term yields the usual equation of motion (10) and the second term yields the so-called
Neumann boundary conditions:

Oy XM | =0

endpoints

However, there is another natural boundary condition that also makes the action stationary. We
can declare that the endpoints, rather than moving freely, are confined to a fixed position (in a
given direction). This corresponds to

5X | —0,

endpoints
i.e. X (endpoints) is constant in time (Dirichlet boundary condition). We can in fact combine
both and consider some directions with Neumann boundary conditions and the others with
Dirichlet boundary conditions:
Dy XN |

=0, 0,XP| = 0. (16)

endpoints endpoints

The result is a defect in space-time, a hyperplane defined by X” = constant on which open
strings have confined endpoints and otherwise move freely in the Neumann directions. If we
have p spatial Neumann directions, we say that we have a Dp-brane.

The oscillation spectrum (15) is insensitive to the boundary conditions on the endpoints.
On the other hand, the distinguished hyperplane breaks the full Lorentz symmetry SO(1,d — 1)
to the Lorentz group in the Neumann directions SO(1,p) times the transverse Lorentz group
SO(d — 1 — p). Therefore, the d-dimensional vector field A, splits into a (p + 1)-dimensional
vector Ap, plus a set of d — 1 — p scalars Ap = ®p. All fields are built from open-strings and
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therefore are confined to the D-brane. This means that they are functions of " only and the
d-dimensional field strength F), = d, A, — 0,A, decomposes as

Fyyr = ONANnt — Oni AN, Fnp = 0y ®p, Fpp =0,

and the Maxwell action:

/d% Fy M —s /dP“x (Fab F® =23 (0, <I>D)2> , (17)

D

where a,b =0,1...,p. The presence of massless scalars could have been foreseen from the fact
that the D-brane breaks translational invariance along all the transverse directions, so that we
expect the corresponding Goldstone bosons. The gauge coupling of the gauge fields on a D-brane
gpp comes from open-string diagrams, so that g%p ~ g2 ~ gs, and must have mass dimension
4 — (p+1) =3 —p. Hence, on dimensional grounds

ghy ~ gs LP 7

D-branes give a novel mechanism to generate non-abelian gauge symmetry. If we consider N
parallel Dp-branes on top of each other one can have strings that strecth between different D-
branes as well as strings with both endpoints on a given D-brane, for a total of N? species.
Therefore we have N2 massless vectors. Since these vectors interact nontrivially through higher
order string diagrams, they must furnish a non-abelian gauge theory. The simplest setting
generates U(N) gauge symmetry, although SO(N) and Sp(N) are not difficult to generate as
well.

In this case, the non-abelian Yang—Mills action on the world-volume descends from the d-
dimensional Yang-Mills action in terms of F,, = 9,4, — 0,A, + [A,, A)] via

Fnp =Dy ®p, Fpp =[®p,®p],

with Dy = On +[An, | the covariant derivative in the adjoint representation. We end up with
a Yang-Mills theory in p + 1 space-time dimensions with d — p — 1 scalar fields in the adjoint
representation with a potential proportional to [®, ®]2.

D-brane Mass and Size

A further important property of D-branes is that they have a finite mass. If we consider
the gravitational interaction between two identical heavy branes at some transverse distance of
each other, the gravitational force is proportional to Gx M?2. On the other hand, the leading
gravitational interaction comes from the exchange of a single graviton, i.e. a single closed string.
This is a diagram with the topology of a cylinder whose boundaries are mapped to the D-branes.
The power of the string coupling is thus g2 = 1. Since Gx ~ g2 we learn that the mass per unit
volume, or tension of the Dp-brane scales like

p+1
s

Ty, ~
P g

Incidentaly, notice that the region of spacetime where the gravitational field of such an object
is significative is the scale of the Schwarzschild radius

Rgrav ~ (GN TDp)d_g_p ~ Gs £
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Therefore, in the g; — 0 limit, the perturbative realm, the gravitational radius goes to zero in
string units. This is the reason why a very heavy object such a D-brane manages to appear as
a sharp defect of zero thickness in string perturbation theory.

The D-brane tension decouples in the perturbative limit g; — 0. This implies that they are
nonperturbative states in the Hilbert space of the closed string theory. Unlike other solitonic
objects in QFT, such as ’t Hooft-Polyakov monopoles whose mass scales like ¢g~2, D-branes
are comparatively lighter at weak coupling. If D-branes were to mediate some semiclassical
tunneling process, the WKB amplitude would be proportional to exp(—C/gs) for some constant
C. These are stronger than typical nonperturbative effects in QFT. In Problem 6 we argue that
this is related to a stronger growth of perturbative amplitudes at high orders.

D-branes and T-duality

Finally, we comment on the interplay between D-branes and T-duality. Since D-branes
are defined in terms of boundary conditions for open strings, it is easy to track the action of
T-duality for a compactification on a circle of radius R.

If the compact direction is of Neumann type, i.e. the D-brane is wrapped on the circle,
T-duality converts momentum modes into winding modes of the dual circle of radius ¢/ /R. In
order for an open string to have winding modes its endpoints must be fixed. Therefore we find
that T-duality maps Neumann directions into Dirichlet directions and viceversa. In view of (16),
this is also obvious from the action of T-duality on the world-sheet fields (14).

Hence, a Dp-brane wrapped on a circle of radius R is T-dual to a D(p — 1)-brane localized on
the dual circle of radius o/ /R. Since we have realized T-duality as a symmetry of the D-brane
spectrum, it must be true that the tension of the localized D(p — 1)-brane is equal to the tension
of the wrapped Dp-brane times the wrapping length 27 R. This gives a relation

p+1 7P

my my

2rR —= = N—S,
Js gs

where the tilded mass and coupling correspond to the theory after T-duality. Under T-duality
o = 1/m? is invariant. Therefore, we find that the string coupling constant does transform
under T-duality as

gs — gsls/R

T-duality can also be used to obtain a considerable improvement over the low-energy Maxwell
Lagrangian for the U(1) gauge field (17). The minimal coupling of a gauge field is described by
the covariant derivative or —id, + A,. In momentum space

Py — Pu+ Ay
Therefore, a constant vector potential induces a shift of the momentum given by

n n
=——=>—=+4+A
P=R7RT

Under T-duality,

n wR 1
R - o 21!
Therefore, 2ra’ A is a fractional shift of the total winding length 2w Rw. This corresponds to
the endpoints of the open string being separated a distance 2wa’ A on the circle.

2nRw
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The natural interpretation of this is that the zero-mode of the gauge field A maps under
T-duality to the transverse position of the D-brane. Hence, the scalars that result from the
d-dimensional gauge field are

XD

b =
D= orad

Consider now a heavy D-brane that moves slowly. The relativistic action of such heavy object

contains the usual term:
S = —TDp/dtm —(9XD)?,

where 9;XP is nothing but the transverse velocity in the Dirichlet directions. Now, under
T-duality the tensions of the different Dp-branes map into each other and X” = 27a/ &p —
21/ Ay. In particular this means that the velocity 9, X” — 27/ 9;Ay and is interpreted as
the N-th component of the electric field on the D(p + 1)-brane.

Hence, from the non-linear action above we can find the non-linear completion of the Maxwell
action that is compatible with T-duality and Lorentz invariance. It is the so-called Dirac—-Born—
Infeld action:

Sper = —Tby / Pt \/ —det (ngp + 2w (Fyp + 0,229, ®p))

This action is good provided we neglect the space-time variation of the field strength (see Prob-
lem 7).

Closed Strings — Gravity

After doing the hard work for the open-string case, closed strings are an easier matter.
The closed string is like an open string for which the end-points have been joined together.
This means that vibrational modes are no longer reflected and travel independently. There are
however two subtleties that have to be dealt with.

First, the allowed frequencies are still

w = [k,

with |k| the allowed momenta. But these are determined now by the condition that the oscil-
lations are periodic on the closed string, i.e. on the size of the closed string L we must fit an
integer number of wavelengths and we have

n = positive integer

This gives an overall factor of 2 in the spectrum with respect to the open-string case.

There is also a constraint on the total oscillation number of left- versus right-movers, coming
from the fact that the soldering point is arbitrary. This means that the states must be invariant
under a translation of the origin of the string coordinate

o — o + constant

Notice that we require invariance rather than covariance of the states under o-translations,
because this is just a reparametrization of the world-sheet, and these were gauge symmetries in
the Polyakov action.
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The Noether charge for o-translations is the two-dimensional momentum in the o direction:

P(,:Zka};-ak:ZZ%" (N,f—N,f):%W(NL—NR),
k n>0

where we have only summed the contribution of oscillations. We assume that the centre of mass
of the string has no momentum in the longitudinal direction, since this can be added at the end
by a Lorentz boost.

On physical states we thus require that the total oscillation number from right- and left-
movers is equilibrated:

(NF — NB®) o) = 0.

This is called the level matching constraint. Therefore, the Hilbert space of a closed string is
just the direct product of two separate open-string Hilbert-spaces divided by the level matching

constraint: . R
Hopen ® 7_Lopen

Hetosed = Level Matching
The formula for the spectrum is:
2 d—2
M2:—<NL+NR——>, (18)
o 12

supplemented by the level matching constraint. Hence, we can also write it as

4 d—2
m2=2(nN_2"%
a’( 24)’

with N the total left-mowving oscillator level.
We now study the low-lying levels of this spectrum. The ground state with no oscillation is

again tachyonic for d > 2:
d—2
o P

The first oscillation level corresponding to states of the form

M? Jp) = —

Ip,t) = 19 |p,ig) =t (a})} ()] Ip),

are characterized by an arbitrary rank-two polarization tensor ¢;;. They are massless at the
critical dimension d = 26:
M= 1p,t) = ——— Ip,t)
o

Under the transverse rotation group SO(d — 2), the general rank-two tensor decomposes into a
symmetric-traceless part, an antisymmetric part, and a pure trace describing a scalar degree of

freedom: ) 5 . )
e C A 7 L ——" R L YA | m— L
2( * d—2z>+2( )er—2Z

We call the symmetric-traceless part h;;, the antisymmetric part b;; and the scalar ¢. Thus we
have symbolically:

1 =

[ti;] = [hij] ® [bij] & [¢]
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This is the universal massless spectrum of closed-string theories. The scalar is called the dilaton
and plays an special role in the quantum expansion of string theory. The antisymmetric tensor
field descends from a full antisymmetric tensor field in d dimensions b,,, with gauge invariance:

by = by + Ay — O,
This gauge symmetry can be partially fixed by a transversality condition:
0" by, = 0.

One can still shift the polarization on-shell (at p?> = 0) so that only the transverse components
b;; remain. This is entirely analogous to the discussion of the massless vector in the open-string
sector.
The symmetric traceless tensor h;; descends from a symmetric tensor in d dimensions hy,,.
Now the gauge invariance is
hyw = by + 0y Xy + 0 Ay

There is a subtlety in that the dilaton mixes with the trace of the symmetric tensor field. This
is studied in Problem 2.

The result is that h,, represents quantized perturbations of the space-time metric (quantized
gravitational waves) and thus corresponds to the graviton. Just as we pointed out before in the
case of open strings, this fact is rather remarkable. The string is quantized as an elementary
object with an intrinsic mass scale, and one obtains, among other things, an interacting theory
of gravitons (general relativity) modified at short distances in a consistent way.

To be precise, one does not get exactly general relativity, but a close cousin of it. In Problem
2 we argue that the tree-level low-energy effective Lagrangian of massless closed-string modes is
proportional to exp(—2¢) where ¢ is the dilaton:

Seﬁz/ e (R+4(09) +...) (19)

Since we already knew that the effective action was proportional to 1/g2, we learn that the
expectation value of the dilaton controls the string coupling constant:

gs = exp(((ﬁ))-

This is a very important result. It implies that there are no adjustable parameters in string
theory. The strength of the interactions is determined by the dynamics via the vacuum value of
a scalar field in the string spectrum.

Notice that (19) gives a low-energy modification of Einstein’s gravitational theory with an
effective Newton’s constant depending on the expectation value of a massless field (this is one
of the Brans—Dicke type of theories). Such modification of gravity is severely constrained ex-
perimentally. Hence, the dilaton should become massive by quantum corrections of appropriate
size. In supersymmetric string theories the dilaton is usually massless to all orders in perturba-
tion theory, but can obtain a potential at a nonperturbative level. In fact, the generation of a
potential for the dilaton is a generic consequence of supersymmetry breaking.

Since the dilaton determines Newton’s constant together with all other gauge couplings
of the low-energy physics, the calculation of the effective dilaton potential is of the utmost
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importance. Unfortunately, no systematic method exists to compute this effective potential
after supersymmetry breaking.

Even if the dilaton should obtain a mass at low energy, the Lagrangian (19) does describe the
dilaton-graviton sector of supergravity models that serve as low-energy limits of string theories
with unbroken supersymmetry. As such, it has applications to very early universe cosmology or
to the study of nonperturbative duality symmetries.

Lectures 3 & 4

Dynamical Aspects of String Theory

In the remainder of these notes we discuss a number of separate topics related to dynamical
questions. Most of the issues we touch upon are related to fundamental open problems in string
theory.

We start by introducing supersymmetry on the basis of the consistency of string models at
tree level. We remain very qualitative at this point because the machinery of supersymmetry was
not part of the knowledge assumed for these lectures. We finish by drawing some general patterns
on the energy scales that are expected to be relevant in the structure of gauge interactions in
superstring models and we introduce the connection between strings and black holes on the basis
of the high-energy behaviour of perturbative string states.

The Problem of the Tachyon

One generic feature of the open and closed string spectra found before is the negative mass-
squared of the ground states. This means that the lowest mass field, T'(z), is a tachyon in either
string spectrum. Its low-energy effective Lagrangian has the form

1
ETachyon = _5 (8T)2 - V(T) + ...

with o
|4
That is, the perturbative classical vacuum state with vanishing expectation value (T') = 0

corresponds to a local maximum of the potential and therefore it is unstable. While we may
suspect that V(T') has a stable local minimum at some (") # 0, our ability to calculate non-linear
terms to V(T) is limited by our perturbative methods. In general, the dynamical relaxation of
tachyonic instabilities is an open problem in string theory.

Another possible strategy is to look for stable ground states of string theory by adding extra
degrees of freedom to the string world-sheet beyond the minimal bosonic complement. In this
context, an interesting question is the following: what is the minimal modification of the bosonic
string that achieves stability with the same “good” features of the massless spectrum (namely
gravity and gauge fields)?

The standard answer to this question is based on making strings supersymmetric. We must
emphasize that a satisfactory solution of this problem is not guaranteed to exist a priori. Recall
that both gauge fields and gravitons arise from the first oscillation level of the open and closed
strings respectively. Therefore, these excitations have positive oscillation energy. What makes
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them massless is the cancellation of this oscillation energy against the ground-state Casimir
energy. This means that the negative-definite Casimir energy is responsible for both the good
and the bad properties of the bosonic string.

Unfortunately, the construction of supersymmetric string theories is still a rather techni-
cal matter. Here we will content ourselves with the introduction of the main ideas and their
implications.

Susy in One Page

The essential idea of supersymmetry is that there is a conserved charge @), i.e. it commutes
with the Hamiltonian:

[QaH]:[QTaH]:Oa

such that its action, if non-vanishing, converts bosonic states into fermionic states:
Q@ |Bose) = | Fermi),

and viceversa for Qf. For free field theories, such as the ones that arise in the free approximation
to string theory, the implementation of supersymmetry is rather trivial. Since a free field theory
is an assembly of free harmonic oscillators with frequency w = \/p2 + m?, the supersymmetric
generalization simply involves adding one fermionic oscillator for each bosonic oscillator. In
terms of two pairs of creation and annihilation operators:

[a,a'] =1, [a,a] = [af,al] =0,

for the bosons and
{b,b' =1, {b,b} ={ol,b'} =0

for the fermions, the Hamiltonian is
_1 T T 1 T T
H_§ wp(a'a+aa )—1—5 wr (b'b+bb")

Therefore, the spectrum is given by

1 1
E=wp (NB+§>+WF <N —§>

for Ng, N the occupation numbers for bosons and fermions respectively. Clearly, in order to
have a symmetry between bosons and fermions we need

Wp = Wp = w,

which leads to a cancellation of zero-point fluctuations of the oscillators and
E =w(Np + Np)

The supersymmetry charge operators are

Q=+vwa'b, Q'=Vwbla,
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and their algebra is given by
{Q,Q"}=H. (20)

This anticommutator is the essence of supersymmetry. It means that supersymmetry transfor-
mations square to time translations. In a Lorentz-invariant theory there must be other super-
charges so that the anticommutator is Lorentz-covariant. Also, because of the spin-statistics
connection the supercharges must have half-integer spin. This leads to the usual algebras

{Qow QI}}:'YZﬁpu‘i‘---a

with @, in a spinor representation of the Lorentz group. The constants 756 appear here as
Clebsch—Gordan coefficients for the decomposition of a product of two spinorial representations.
They are of course the Dirac matrices. In four dimensions, since the minimal spinor (Weyl
or Majorana) has four real components, there are at least four independent supercharges in a
Lorentz-invariant four-dimensional model. This is the so-called N’ = 1 or minimal supersymme-
try.

One essential property of the basic commutator (20) is that its expectation value on any
state is necessarily positive if the Hilbert space only admits positive-norm states:

0 < (Y {Q, QM) =1Q¥)* + QT [¥)* = (¢ | H ) (21)

Therefore, we find that in a supersymmetric system of the type constructed here (in terms
of free Fock spaces) the energy is positive definite and it vanishes if and only if the state is
supersymmetric, i.e. it is invariant under the action of (). For the oscillator system this is the
oscillator vacuum. Notice that given a generic state of positive energy |w), it is paired with
Q|w) at the same energy, this is called a supermultiplet. This is true for all states except for the
ground states: since Q|w = 0) = 0, vacua do not need to be paired since they are supersymmetric
singlets.

Equation (21) also shows that supersymmetry is spontaneously broken if and only if the
ground state (vacuum) has strictly positive energy.

Susy and Particle Phenomenology

Supersymmetry is attractive for particle phenomenology because it reconciles the use of
weakly-coupled scalars (Higgs) in the mechanism of electroweak symmetry breaking, with the
generic quadratic renormalization of these scalars. This is the so-called hierachy problem.

For the fermions of the Standard Model, masses are only logarithmically renormalized, so
that the contribution to the physical mass coming from vacuum fluctuations is of order

dmys~amy log(Mx/my),

where o = g2 /47 is a typical fine-structure constant and My is some high-energy scale at which
the point-like description of the fermion breaks down. The logarithmic renormalization is a con-
sequence of the chiral symmetry at m; = 0 that forbids any perturbative mass renormalization
at the massless limit. Given the actual masses of quarks and leptons and the value of the gauge
couplings, we have dmy ~ m; with Mx in the vicinity of the Planck scale. If we come up
with some way of breaking chiral symmetry weakly, with m;/Mx < 1, then we have a very
satisfactory resolution of the XIX century crisis of the self-energy of the electron!
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In the Standard Model, the electroweak gauge symmetry is chiral, so that the mass of the
fermions is naturally associated to the scale of gauge symmetry breaking. Our comment here is
that the vacuum fluctuations do not upset this picture and we can actually think of the fermion
masses in a rather physical way.

On the other hand, if we have point-like scalars such as Higgs fields, the typical contribution
of vacuum fluctuations to their mass depends quadratically on the cutoff:

dmi ~a (M% —m3).

If we want the Higgs fields to effect the electroweak symmetry breaking within weak coupling
then mj cannot be much larger than My, and we have 5m}2Z ~ aM)Q( > m,ZL Hence, the
vacuum-fluctuations contribution to the Higgs mass is huge and must be cancelled with extreme
precission by the bare mass at the high scale.

Supersymmetry solves this problem by restoring the logarithmic running for the scalar mass.
The quadratic contribution is cancelled by bosons and fermions running in the virtual loops.
Since supersymmetry must be broken, with splittings of O(M;,) between superpartners, the
contribution to the mass of the Higgs after supersymmetry breaking is of order

2 2
6mh NaMss

Hence, if we do not want the fine-tunning problem back, we need Mg to be not too much larger
than my, and we expect that if supersymmetry has anything to do with the ratio My /Mp ~
10716, then superpartners should appear below O(TeV) energies.

Besides stabilizing the hierarchy My /Mp under quantum corrections, supersymmetry is also
attractive in generating the hierarchy dynamically. The most natural method known to generate
mass hierarchies is based on the logarithmic running of four-dimensional gauge couplings. With
logarithmic accuracy, the relation between fine-structure constants at different energy scales is

L S
a(u)‘a(MX>+znlg(MX>’ (22)

where fj is a numerical coefficient that depends on the gauge group and the matter content. If
1 < Mx, models with 8y > 0 are asymptotically free, i.e. the effective coupling grows towards
low energies. If the theory develops strong coupling at ji ~ Mirong < Mx we have

27
Mstrong ~ Mx exp <—m> .
This formula is just a rough estimate obtained by putting o(Msirong) = 00 in (22). It shows that
the low-energy scale My ong depends on the high-energy data Mx and o(Mx ) non-perturbatively
on the coupling. This means that a moderately small high-energy coupling can induce huge
hierarchies of masses.

In fact, this is the most natural explanation of the ratio between the proton mass and the
Planck mass. The 1 GeV mass of the proton is mostly due to the highly relativistic binding
energy of the quarks and gluons, rather than to the bare masses. Hence the mass of the proton
is tied to the non-perturbative effects associated to strong SU(3) gauge coupling (confinement
and chiral symmetry breaking).

This leads to the natural idea that My should be associated to some strong-coupling phe-
nomena, i.e. the mass of Standard Model particles would be zero in perturbation theory, and
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the small ratio My /Mp would be a consequence of these masses being generated by small non-
perturbative effects. While it is technically easy to have massless vectors and fermions (via gauge
and chiral symmetry constraints, such as those arising in the Standard Model), it is much more
difficult to have naturally massless charged scalars, such as Higgs bosons. By relating scalars
to chiral fermions, supersymmetry explains the lightness of charged scalars, either at tree level
or under perturbative corrections. Hence, in the context of low-energy supersymmetry, one
tries to relate My, /Mp to the dynamics of supersymmetry breaking, something that involves
nonperturbative physics at some (perhaps intermediate) stage.

The major dilemma that will be (hopefully) resolved by LHC is whether the breaking of
SU(2) x U(1) in the Standard Model is associated to a weakly-coupled scalar (a Higgs field),
a situation that would “naturally” call for supersymmetry, or there are no light scalars at all
and the symmetry breaking is entirely due to strong-coupling phenomena. This “minimalistic”
alternative is very attractive theoretically, although no compelling models could be constructed
to date (the technicolor saga).

This means that of all the phenomena that are associated with strings, supersymmetry is the
one that could be tested experimentally in the near future. In fact, low-energy supersymmetry is
independent of whether supersymmetry plays a role at very high energies in the stringy domain.
But the story as presented here is certainly suggestive.

This scenario has important theoretical problems though. They are all related to the fact
that, while supersymmetry is attractive in generating the small My, /Mp ratio, we already
know that the supersymmetry-breaking dynamics cannot be completely generic. This is true
even when we explicitly arrange for exotic processes such as proton decay to be suppressed.
The reason is that the Standard Model has other unnaturally small parameters (not explained
by renormalization-group arguments) whose values can be upset by a generic supersymmetry
breaking dynamics at the TeV scale. There are unnaturally small ratios of masses of quarks and
leptons. Consider for example m,/m; or even better m, /m; (this is the most naive formulation
of the so-called flavour problem). There is also a very small contribution of strong interactions
to CP violation (the so-called strong CP problem |#] < 107%). Even more striking is the
mysteriously small value of the cosmological constant.

A consequence of (21) is that generation of positive vacuum energy is always associated to
spontaneous supersymmetry breaking. Since the vacuum energy density (cosmological constant)
is observed to be almost zero:

Prac & (10*15)4 (TeV)%,

while the scale of supersymmetry breaking should be about 1 TeV, this looks like a huge problem.
Fortunately, in the presence of gravity, the left hand side of (21) gets corrections of O(x?).
These corrections are negative definite, so that one can cancel both effects and be left with a
small energy density after supersymmetry breaking. The problem remains, though, that this
cancellation is another fine-tunning for which we have no explanation. Supersymmetry does not
help because this is happening after supersymmetry breaking.

In fact, in a typical model of supersymmetry breaking, the ad hoc adjustement needed to fit
Pvac Will also affect the predictions for the spectrum of massess and mixings at the supersymmetry
breaking scale Mg, as well as the strength of CP violation from different sectors.

There is no single model of low-energy supersymmetry breaking that meets all phenomenol-
gical constraints in an “elegant” way, especially after large portions of the parameter space of
the simplest models are already excluded experimentally.
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This means that if supersymmetry is found at the TeV scale, the study of supersymmetry-
breaking dynamics will be a fascinating journey in which experiment will be considerably ahead
of theory.

Superstrings

Coming back to the string scale, at the level of the free approximation (g; = 0) in flat
Minkowski space, a supersymmetric string spectrum must have H real and positive, and negative
mass-squared states are excluded. Also, notice that the origin of the tachyon in bosonic string
theories was the negative Casimir energy of the finite-size string. In a supersymmetric model this
Casimir energy vanishes by cancellation of bosonic and fermionic zero-point energies. Therefore,
the spectrum reads

M2:5(NB+NF)20,

where Np and N are the total transverse oscillator level
N = Z Ty
w

in bosonic and fermionic oscillators of the open string or the total oscillator level of left-moving
oscillators of the closed string. Then ¢ = 1 for open strings and ¢ = 4 for closed strings.

The massless spectrum corresponds now to vanishing oscillator levels Ng = Np = 0. If
we want the massless spectrum to be supersymmetric and contain the massless vector in the
open-string case and the massless graviton in the closed-string case, we need to build the states
from the zero-modes of the fermionic oscillators.

Consider the open-string case for definiteness. The ordinary fermionic oscillators of non-zero
frequency have the property
bl, = b,

w

where b, comes from a Fourier mode of negative frequency of the fermionic world-sheet fields.
Canonical anticommutation relations then yield the usual relation

{by, b} =1

The zero-frequency oscillators are hermitian by = b;r) and the same canonical commutation rela-
tions imply:
{05, b } =67 (23)

This is a Clifford algebra, and therefore the by can be represented as Dirac matrices. Supersym-
metry demands that the index o must take d — 2 values, because these oscillators must be in
one-to-one correspondence with the d — 2 bosonic oscillators that describe transverse vibrations
of the string. Hence, the dimension of the representation is

d—

dim (Dirac) = 2[F°],

where the brackets denote the integer part. These states must contain the d — 2 polarizations
of the massless vector field plus the same number of fermionic superpartners. So we have

d—2 == 2ld=2/2]

N | —
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which is solved for
d=10

This is the critical dimension of supersymmetric string theories.

Another argument for d = 10 can be given based on the spin-statistics connection. The
fermionic oscillators create fermionic states and these must be in spinor representations of the
transverse group of rotations SO(d — 2). This implies that the index « in (23) is a spinor index.
On the other hand the same fermionic oscillators are related by supersymmetry to the d — 2
bosonic oscillators a; with a vector index. This means that, in order to have supersymmetry
acting consistently both on the space-time and on the world-sheet, we need some special sym-
metry between spinor and vector representations of SO(d — 2). The “magical” case is SO(8)
that has 3 fundamental representations related by a “triality” symmetry (a symmetry of the
Dynkin diagram that permutes the representations). These representations are the vector and
the two chiral spinor representations, all of dimension eight.

The massless spectrum of the open-string theory contains a massless vector A, and a spinor
with the same number of on-shell degrees of freedom, namely 8. A Majorana spinor in d = 10
has 32 real components. In ten dimensions it is possible to enforce a Weyl projection on top of
the Majorana reality condition. This yields 16 components. Furthermore, the Dirac equation
relates half of them to the other half and this finally gives 8 components. So we have a massless
vector and a Majorana—Weyl spinor. The number of supercharges is the number of components
of the Majorana—Weyl spinor, i.e. 16, or N’ = 4 in four-dimensional terms.

For closed strings we have the same structure with the product of left- and right-movers.
The result are the multiplets of ten-dimensional supergravity.

There are 32 supercharges from

QL 2] QRa

where ()1, and Qi are the respective supercharges carried by left- and right-moving excitations.
Depending on whether these supercharges are chosen with opposite or the same Weyl handedness
we have the two ten-dimensional closed superstring theories with maximal supersymmetry, the
so-called type ITA and type IIB theories.

Ten-dimensional string theories with 16 supercharges are considerably more complicated,
partially as a result of various anomalies that require special constructions, such as multi-D-
branes and non-orientable (orientifolds) open strings and closed-strings where right- and left-
movers live in different spaces (heterotic strings). These special mechanisms induce large non-
abelian gauge groups with chiral representations, a fact that makes them ideal starting points
for phenomenological models.

D-branes as Partially Supersymmetric States

Remember that open strings were equivalent to D-branes, which in turn were to be inter-
preted as topological defects in the theory of closed strings. From this point of view the existence
of half as many supersymmetries in the theory of open strings as there are in the theories of
closed strings can be interpreted by saying that the D-brane ground states are annihilated by
half of the supercharges of the closed string theory.

The unbroken supercharges that act on open-string excitations are a linear combination of
those carried by left- and right-movers

Qopen = QL + FDp QRa
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where I'p, is an appropriate matrix with £1 eigenvalues that depends on the dimension of the
Dp-brane. They annihilate the open-string vacuum:

Qopen |VaC >0pen =0

The orthogonal linear combination are the so-called broken supercharges that generate a multi-
plet of
216/2 = 28 = 256

D-brane states. This is the size of the massless multiplet of d = 10 supergravity. The fact
that a multiplet of massive states has the same size as a massless multiplet is a consequence
of the preservation of supersymmetries by the massive state. This phenomenon is called BPS
saturation and it is responsible for most of what is known about dualities in string theory.

The phenomenon is very general. Suppose that we have two supercharges @)1, @ that close
a supersymmetry algebra with the Hamiltonian H and some U(1) charge Z, given by

and all other (anti-) commutators trivial. Then, positivity of the anticommutator of supercharges
implies the so-called BPS bound
E =17,

with saturation iff some supercharge annihilates a state of charge £|Z|. Since one linear com-
bination of the supercharges acts trivially on the BPS-saturated state, the supermultiplet has
only two states, as opposed to the generic supermultiplet for £ > |Z| that has four states.

D-branes are characteristic BPS-saturated states in string theory. In that case the U(1)
charge Z is provided by the so-called Ramond-Ramond charge of the D-brane.

The discrete difference between saturated and generic states should be preserved by contin-
uous variations of parameters, such as the coupling. Therefore, properties of BPS states such
as their mass formulas and degeneracies can be followed into strong coupling and they serve as
tests of the various duality conjectures.

Duality

As stated above, systems with sufficient supersymmetry are amenable at extrapolations from
weak coupling to strong coupling. In string models, the massless spectrum is normally protected
by gauge symmetries and supersymmetry and therefore remains invariant under a variation of
the coupling. Massive modes with mass of O(1) in string units typically increase their mass
and nonperturbative states such as D-branes decrease their mass. In the limit of g, — oo we
can have D-branes becoming light and fundamental string states becoming non-perturbative
states. Normally, this is an indication of a duality, i.e. a symmetry that relates strong and
weak-coupling.

The template for all these dualities is the electric-magnetic duality of Maxwell’s electromag-
netism. Under this duality, the electromagnetic tensor transforms into its dual:

Fu = Fu = = €upe F*°

2
Therefore, the source-free Maxwell equation and the Bianchi identity are exchanged:

8“FW:0, — 3[MF,,}:0.
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Electric and magnetic fields are also exchanged. Hence, if we wish to generalize it to the theory
with charged sources, we just consider both an electric current j# and a magnetic current jk .
As shown by Dirac, the quantum mechanical consistency of such spectrum requires that the
fundamental quanta of electric and magnetic charge satisfy:

e dm
2

To see this, consider the Dirac-Aharonov—Bohm effect for an electron of charge ¢, in the back-
ground of a monopole field of charge ¢,,,. Under a closed loop v of the electron, the wave function
picks up the Dirac-Aharonov—Bohm phase

exp (7, e 7{/_( da'c')
v

We want to write the circulation of the vector potential in terms of the magnetic flux using
Stokes’s theorem:

= integer

fﬂz.df:: B-ds
v Dy

We have two choices for the surface that is bounded by v, D, and Diy, depending on whether
we enclose the monopole or not. The difference between the two choices gives the total flux
of the magnetic field on D, U Diy, which is simply a two-sphere around the monople. Hence it
measures the total magnetic flux of the monopole:

B.dS = m
S2
On the other hand, this ambiguity should not have physical effects, so that the net phase is
trivial:

e’ = 1 = exp <iqe/ §d§> = ¢l dm
S2

which proves the Dirac quantization condition. This means that the natural couplings of elec-
trons and monopoles are reciprocal. Therefore the duality is nonperturbative, inverting the
coupling constant g — 1/g. This is called an S-duality.

It is one thing to prove that a duality must map states in a certain fashion, but it is quite
a different matter to actually prove that such states exist in the model under consideration. It
has been possible to argue in favour of various versions of S-duality in theories with enough
supersymmetry, including string theory. In this case, D-branes play an instrumental role in the
discussion.

Another example of duality that can be discussed with more detail, being perturbative in
the coupling constant, is T-duality. We have argued that this is a duality between momentum
modes and winding modes of strings compactified on a circle. The perturbative spectrum must
be invariant. To find the spectrum, consider a closed-string winding w times a circle of radius
R. Tts rest mass is given by the tension times the length
2tRw  Rw

/ !

M, rest —

2T «

Boosting to a finite momentum in the compact dimension p = n/R we obtain an energy

n? R2w?
E=\mt on
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Finally, adding the oscillator mass (18) and boosting in an arbitrary non-compact direction we
obtain the energy spectrum

. n?  RZw?
B= g T

Hence, upon compactification on a circle, the spectrum of closed-string states on the non-
compact 25-dimensional space-time gets an effective mass squared:

2 2
AL wR 2
Meff_<E> +<Ot'> +J(NL+NR_2) (24)
The level-matching condition gets modified in an interesting way. Recall that level-matching
was a result of projecting on states with vanishing momentum in the longitudinal o-direction. If
the string winds once around the longitudinal direction, and we add a contribution to P, from
the momentum of the centre of mass, we have

2mn 27
P,=—+— (N, — N,
o L + L ( L R) )
so that the constraint is modified to
Nr—Np=n

with n the units of centre-of-mass momentum in the compact direction. If the string has w
units of winding number in the longitudinal direction, the frequency of oscillations of the string
is fractionalized by a factor of w, since the string is actually w times longer. In this case the
level matching condition becomes

Nrp — N, =nw.

Considering permutations of the axis and Lorentz-covariance we have the general constraint
Nr— Np=7-4 (25)

for general quantized momenta and windings in different directions.

We see that the spectrum is invariant, so that we can simply consider radii R > v/o/, the
rest being obtained by the action of T-duality. This is an indication of string theory possessing
a minimum length!

Physically, what happens is that at large R > /; the light spectrum is given by momentum
modes. At R ~ /5 momentum modes and winding modes are of the same mass and they can
convert into each other. As R{; < 1 the winding modes become the lightest states and any
momentum mode will tend to decay into them. Thus at R — 0 we obtain a theory dominated
by winding modes. This is actually the same theory as before but written in different variables.
In fact, there is a practical difference. Because of the transformation of the string coupling

gs — gs ES/R,

the R — 0 limit at fixed £, and fixed g, takes us to a dual theory with R — oo but also strongly
coupled g; — oo. Therefore, a further S-duality will be needed in order to understand such
theory.

Although bosonic closed strings as presented here are self-dual under T-duality, this is not
a general rule. For example, for supersymmetric strings we have that ITA goes to IIB under
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T-duality. Hence T-duality reverses the relative chirality of the supercharges. This is easily
understood because T-duality acts with a relative sign between right-movers and left-movers.

Using T-dualities and S-dualities that are suggested by considerations of BPS-saturation,
one can draw an impressive web of relationships between string theories in various vacua with
different couplings. The whole picture indicates that string theory is unique (so-called M-
theory) and that the different string perturbation theories that we construct ab initio are useful
expansions around particular vacua of the unique M-theory.

The simplest, and in many ways the most fundamental subweb of dualities is that of the
models with 32 supercharges and SO(1,9) Lorentz symmetry. This includes the two closed
superstrings ITA and IIB in d = 10, that are related by T-duality, as well as a compactification
on a circle of an eleven-dimensional vacuum of M-theory. This vacuum is rather mysterious. It
is characterized by a dimensionful Planck length £, and no adjustable moduli (no analogue of
the dilaton). It’s low-energy dynamics is described by eleven-dimensional supergravity (a rather
unique theory) and has solitonic two-branes and five-branes that are BPS states. A first view
of this duality and its power is offered through Problem 6.

In situations where there is a duality one can answer an interesting question of principle.
We motivated strings in the first lecture by analogy with the electroweak solution to the Fermi’s
theory problems. Namely, even if gravity becomes strong at the Planck mass m,,, the threshold
of weakly-coupled strings lies at parametrically lower energies (in ten dimensions):

1/4
mg = (g? mf,) <my

What happens for strong coupling, gs > 17 In all examples of nonperturbative dualities between
two different weakly-coupled string theories, it turns out that the Planck mass is invariant,
whereas g; — 1/gs and m; transforms accordingly. Hence, after the duality the string mass of
the dual string theory ,

1
still remains below the Planck scale. This means that in such systems m, < m, always, with
mg ~ m, at the self-dual point g5 ~ 1.

Considerations of non-perturbative dualities and D-branes have enlarged considerably the
types of models that one can use for phenomenological applications. This gives a richer set of
possibilities for the connection between string theories and the low-energy world, at the price
of losing some of the previously considered qualitative “model-independent” predictions of the
theory. A prime example of this is explained in the next sections.

The Origin of Gauge Symmetry in String Theory

String theory has natural mechanisms to produce gauge interactions. Given that this is the
main dynamical feature of the Standard Model, this is an interesting subject to discuss.

We have seen that a simple and very fundamental origin for gauge fields arises from the
quantization of open strings or, what is the same, D-branes. In particular, non-abelian gauge
theories arise as low-energy limits of systems with coincident D-branes. In these systems, the
gauge coupling in p + 1 dimensions is given by

Gt ~ gs P73
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The other generic gauge symmetries that arise are ten-dimensional gravity, with coupling

K%O = gg eia
and a U(1) symmetry of the antisymmetric tensor field with coupling of gravitational strength.
There are also higher-rank antisymmetric tensors supporting U(1) symmetries with couplings
that given just by the string scale (independent of g,) that we will not discuss further.

In closed-string theories (the gravitational sector) one can generate gauge symmetries using
the old mechanism of Kaluza-Klein (see Problem 4). One assumes that spacetime is compactified
as R* x K where Kg is some compact six-manifold. If K¢ has some rigid isometries (a global
symmetry group G), then at energy scales F < 1/Rk with Ry the typical size of K¢, we cannot
detect the dependence of the fields on the details of Kg. Hence we have a symmetry under G-
transformations of K¢ at any point on R?, i.e. we have a gauge symmetry in R* with gauge
group G. The components of the metric tensor g, with one index in Kg and one index in R4
give the required gauge fields.

Unfortunately, together with the gauge fields, it is often the case that other massless scalar
fields appear, associated to the fact that spaces of the form R* x K that satisfy the Einstein’s
equations come in continuous families, depending on the size and shape of K. These continuous
parameters translate into massless scalar fields (analogous to Goldstone bosons) in the low-
energy effective theory. These extra scalar fields (so-called “radions” or “moduli” in general)
are always problematic for phenomenology and we will return to them later.

There is a general rule to derive the matching of coupling constants under the Kaluza—Klein
reduction. Suppose we have a general Lagrangian defined on a space of the form R* x K:

1
S[®]| == / L[®(z,y)],
(@)= 5 [, Lo@y)
where € R* and y € K are coordinates in the macroscopic Minkowski space and the compact
manifold respectively. The fields ® stand for matter, gauge or gravitational fields on the higher-
dimensional theory and g is a gauge or gravitational coupling. Now, on energy-momentum scales
E < 1/Rk we can approximate ®(z,y) by the averaged fields

since we cannot distinguish the details of the variations of the fields on the compact manifold.
In a first approximation at large distances we can just substitue the fields by their averages over
K and write an effective Lagrangian of the form

S[®leg = | L[T(x)]+...,

where the dots stand for derivative terms that come from integrating-out the higher modes and

1 Vol(K)
5 = (26)
geﬁ' g

The volume factor arises because the Lagrangian density is independent of the y coordinate
once it is evaluated on the averaged fields. This formula is the basic rule of the Kaluza—Klein
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reduction of couplings in the tree level approximation. If the coupling g% has length dimension
a, so that the effective expansion parameter is

ag(E) = 92Ea’

then the effective coupling after compactification has length dimension a — dg, with dg =
dim (K). Then the effective expansion parameter at £ < 1/Rg is

ay(E)

e (B) = go B = o S

Therefore, both dimensionless couplings match at E ~ 1/Rk. Notice that the higher-dimensional
theory has always a stronger ultraviolet behaviour. This means that Kaluza—Klein thresholds
are always close to nonperturbative physics, unless the low-energy QFT is substituted by some
ultraviolet completion, such as string theory.

In string theory, once the compactification manifold is of stringy size Rx ~ ¥4, the Kaluza—
Klein (KK) reduction gets modified by subtle stringy effects. First, the compact geometry is not
describable in classical terms (it becomes “fuzzy”). Second, there are new long-distance effects.
For example, winding modes can become massless and enhance the gauge symmetry from U (1)
to SU(2) or larger groups. We can illustrate the basic phenomenon from the formulas (24) and
(25) for the effective mass after compactification on a circle in the X! direction. At a generic
value of the radius R, the low energy spectrum has two gauge fields. One coming from the
KK reduction of the metric A, ~ g,1, and the other coming from the KK reduction of the
antisymmetric tensor Aj, ~ b, 1. Thus the generic gauge group is U(1) x U(1)".

In the basic construction of the graviton multiplet in terms of oscillators, g, and b, differ
by the relative sign of left- versus right-moving oscillations. This means that they are exchanged
by T-duality. Since momentum modes are charged with respect to the first U(1) we conclude
that winding modes are charged with respect the second U(1)’. Now, the mass formula at the
self-dual radius under T-duality, R = v/, becomes:

(n—w)? 4 (n+w)? 4

2 —

al
Hence, with one oscillator mode excited in either left- or right-movers, by adjusting at the same
time n, w = £1 we have four extra massless vectors with non-vanishing values of winding and/or
momentum. This means that each U(1) gets extended to an SU(2) and the total gauge group
at the self-dual radius is SU(2) x SU(2)'.

The extreme example of this is the heterotic string. In this model the left-movers are like
in a standard superstring in ten dimensions, but the right-movers are purely bosonic and are
compactified from d = 26 to d = 10 in a 16-dimensional torus of stringy size (in fact self-dual
under T-duality just like in the previous example). The result is a huge enhancement of gauge
symmetry to a group SO(32) or Fg x Eg that is present in the ten-dimensional theory. This
models are particularly nice for phenomenology.

Not surprisingly, the two general methods to generate gauge symmetry (ordinary or stringy
Kaluza—Klein and D-branes) are related by nonperturbative dualities.

In general, gauge groups that exist in d = 10 and come from the closed-string sector (the
heterotic construction) will have a coupling of same order as the gravitational coupling, in string
units:

2 2 )6
gym ~ 9s s
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Couplings and Scales in String Theory

The previous relations can be used to obtain a generic feature of string compactifications.
If the gauge symmetry originates from the closed-string sector in ten dimensions then the ratio
between the gauge coupling and the gravitational coupling stays fixed under compactification.
This means that the ratio of the four-dimensional gauge couplings to the gravitational coupling
is of order one in string units, so that the unification of gauge and gravitational couplings should
occur at around the string scale. We have

Gx ~ 2 ~ 9243 _ 998

o= JIs”s
RS’ 4 RS
Then, we can eliminate the internal KK volume and obtain

Gn =lE ~al?

This means that, since & = agur ~ 1/25 in supersymmetric unification, the Planck length and
the string length are not too far away. On the other hand, if the string is weakly coupled, so
that we can believe the calculation of the spectrum, then g; < 1 implies

RS < 18/

and the compactification radius is also in the order of magnitude of the string scale. Putting
RI_(1 ~ Mgyt ~ 10' GeV as suggested by LEP fits to supersymmetric models, one obtains
(keeping the factors of 2 and 7):
Gy > aggT
N My
which is too large by a factor of O(400).

Hence, the hierarchy between the GUT unification scale, the string scale and the Planck
scale comes out roughly right in order of magnitude but not quite exactly so. Since the GUT
extrapolation is so bold, this could be interpreted as a big success, and one could imagine many
complications, such as threshold effects or extra low-energy matter, that would bring a better
agreement.

A more radical alternative to evade this problem is to detach the evolution of the gravitational
coupling under compactification from that of the gauge coupling. This is easily achieved through
the use of D-branes. In that case, the gauge and gravitational couplings scale with different
powers of the string coupling and we can adjust independently all parameters to fit Gx to the
experimental value, while keeping Mgyt ~ 10'® GeV and aguT ~ 1/25.

Since D-branes can have various dimensionalities, the power of Rx in the effective four-
dimensional couplings is also a matter of model-choice. For example, on a D3-brane, gauge
couplings are given by a ~ gs with no leading dependence on Rg or ¢,. This idea of using D-
branes to localize gauge fields can be pushed to the extreme, to actually lower the Planck scale to
the TeV range. This sounds impossible, but in fact it isn’t. What is lowered is the fundamental
Planck scale in the string theory, i.e. the ten-dimensional Planck scale. The apparent Planck
scale is given by Gn which is

1 R%

Gn g8
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as before. We can set ms; = O(TeV) with gs < 1 by taking Rx sufficiently large, say R}_(l of the
order of a fraction of a Fermi! This looks crazy because the extra dimensions are so large that
they should have been detected at LEP. However, if we confine the whole of the non-gravitational
Standard Model to a D3-brane, its threshold for new physics on the brane is set by ms; ~ TeV
and not by Rl_(l. The situation is even more strange in models (the Randall-Sundrum type)
where the extra dimensions are non-compact and remain unseen because of strong curvature
effects, i.e. the role of Rk is played by the curvature radius in the direction of the large extra
dimensions.

Direct detection of the large extra dimensions must proceed by purely gravitational effects,
such as tests of Newton’s gravitational law. The experimental bounds on this are rather weak,
since they tolerate Rk in the submilimiter range! Effects from the light KK states will however
appear in virtual processes and this can be used to put (not very stringent) bounds on R and
ms.

Hence, we see that the scale at which strings appear could be anywhere between a few
TeV and 10" GeV. If strings or whatever physics is associated to quantum gravity shows up
at low energies, then we will be able to explore quantum gravity in the laboratory, opening a
revolutionary period of the same depth as the elaboration of quantum mechanics out of atomic
physics. If, on the other hand, the string scale is close to the effective four-dimensional Planck
scale, then we will need to rely on indirect evidence and hard calculation to test our ideas about
quantum gravity.

Strings and Predictability

The idea that the string scale could be within experimental reach around the TeV range is
psychologically irresistible, even if it comes at the high price of rendering irrelevant all the hints
at a gauge unification around Mgyt ~ 10'® GeV. A different matter is whether a given model
with low string scale is viable when it comes to the details (recall that the “details” are the killer
for technicolor-type models). We will not enter this discussion here, partly because low-scale
models are comparatively less surveyed.

However, it is striking that a theory without adjustable free parameters gives no clue as to
where the scale of fundamental physics lies. In string theory, this is equivalent to the problem
of fixing the values of the string coupling g; and the size and shape of the compactification
space Kg. These parameters are associated to scalar fields in four dimensions whose effective
potential is generically flat before supersymmetry breaking. The general problem of fixing the
expectation values of dilaton and “radions” is called the vacuum stabilization problem.

After supersymmetry breaking, a potential V(¢) will be generated for the dilaton. This
occurs via some nonperturbative dynamics and hence it depends on the string coupling as
V ~ exp(—C/g¢?%) with a > 1. Typically a = 2 or perhaps a = 1 (see Problem 5). This means
that the leading scaling with the dilaton is

V(g) ~ exp (—Ce_“‘z’) , as ¢ — —oo,

and we learn that in the weak-coupling regime ¢ — —oo the potential slopes to zero with
restoration of supersymmetry at ¢ = —oo, which corresponds to the free, gs = 0, theory. Hence,
there are no natural vacuum states that can be studied with weak-coupling methods. This is a
generic problem that occurs for most of the scalar fields that are massless in the supersymmetric
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approximation. This difficulty of fixing their expectation values is called the moduli problem (or
Dine—Seiberg problem for the specific case of the dilaton).

This problem is the main reason why string models of low-energy physics remain non-
predictive, i.e. they do not actually determine the low-energy spectrum, much less the numerical
values of the parameters of the Standard Model Lagrangian. One must rely on special mecha-
nisms with some degree of fine-tunning to achieve a “technical” vacuum at weak coupling, or
assume that a vacuum at strong coupling gs = O(1) exists with the right properties. In this
case one must explain why the gauge couplings are relatively small with a strong fundamental
string coupling. However, the main problem of this alternative is that one loses computability
in practice (notice that dualities do not help here, since de region gs = O(1) is self-dual).

To the extent that the problem of moduli stabilization is related to supersymmetry breaking,
it is afflicted by all the low-energy constraints discussed before, most notably by the flavour,
CP, and cosmological constant problems. There are other problems that are specific and have
to do with the presence of scalars with couplings of gravitational strength. While these fields
might be useful for various cosmological duties, such as inflation, they also tend to destroy the
succesful predictions of nucleosyntesis.

The pattern of constraints to be satisfied is so intrincate that being numerically predictive
in string theory might require a rather complete control of the nonperturbative dynamics at the
non-supersymmetric level. Despite the revolutionary progress of the last years by mapping-out
the duality web, much of what has been learned concerns vacua with lots of supersymmetry.

The fact that consistent vacua exist in which supersymmetry is ezact brings the question of
the vacuum selection to a rather unconfortable neighbourhood from the epistemological point of
view. Since the theory contains solutions that are consistent and are manifestly different from our
universe, it seems that there is a certain degree of “historical contingency”, in the cosmological
sense. This is usually referred to as the “anthropic principle”. It simply means that perhaps
some parameters of the low energy Lagrangian are cosmological accidents and therefore cannot
be predicted from fundamental physics. In this respect, the fact that the cosmological constant
can be nailed to within one order of magnitude on the basis of very weak anthropic arguments
is rather remarkable!

The problem with this is that, once the cosmological constant is fixed anthropically, it is pos-
sible that other constants are anthropic too, especially within a typical scenario of low-energy
supersymmetry breaking. Of course, this would be a rather unhappy state of affairs because it
would put some limits to our ability of inferring short-distance physics from low-energy infor-
mation (the parameters of the Standard Model). This limitation would be there independently
of the amount of computational power. One possibility is that non-supersymmetric vacua of
string theory with the right properties turn out to be scarce and easily identifiable. Of course,
we could also be very lucky and find strings at low energy, so that experient will guide us in the
unraveling of the quantum gravity realm!

There is also the exciting possibility that our poor understanding of vacuum-selection issues
is a symptom of a new theoretical crisis, i.e. the need for completely new ideas. In the next
sections we will describe how string theory hints at such a change of paradigm, regarding non-
perturbative questions in quantum gravity.

High Energy Behaviour

After the long discussion of vacuum properties of string theory we now return to the basic
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question of why strings manage to quantize gravity in a consistent way.

Strings succesfully smear the gravitational interaction on length scales of the order of the
string length /;. From the point of view of the free spectrum, we found that a string theory
looks like an infinite tower of massive fields, plus a rather universal massless spectrum. Much of
what we like about strings has to do with the massless spectrum, namely the presence of gravity
and gauge symmetry as well as supersymmetry.

If string theory was simply a tower of massive fields it is not obvious how this is enough to
regularize consistently the gravitational interaction, that has resisted all previous attemps at a
quantum treatment based on QFT ideas.

Although more sophisticated answers exist, there is a simple physical argument that explains
the success of strings on this account. The idea is to look at the typical state of string theory
at very high energy. The spectrum at very high mass has the distinctive property of having
exponential degeneracy of states. From Problem 3 we know that the density of closed-string
mass levels in d dimensions grows as

efBs M

p(M) ~ £ Wa

where 85 ~ ;. From here, using the normal dispersion relation

E=/p2+ M2

one can compute the complete density of single-string states:
ePs B

w(E) ~mé 2V
(¢ E

)5

The physical interpretation of these formulas is that for typical energies E¢; > 1 it is entropically
favourable for the string to distribute the total energy E on oscillation degrees of freedom rather
than on the boost of the centre of mass.

A model that represents the typical oscillation state at very high energy is a random-walk
representation of the string. Let us build a string configuration from n steps of a random walk
in d dimensions, each of string-length stretch. The total energy is then

Il E ~n

in string units. The size of the random walk can be estimated by the mean square distance to
the centre of mass that we suppose at the origin:

d—1 n
(Size)” ~ < T3y > ,
=1 s=1

where s is an index for the steps. We assume that at each step the path makes a random choice
among nearest neighbour lattice sites. Then the random variables X! are independent and

(Size)? ~ dn ((X1)?) ~ dn (2
Therefore, the volume W of the random walk scales like

W~ pld=1)/2,
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The number of configurations with a fixed initial point and an arbitrary final point are of order
exp(C'n)

for some positive constant C'. This is because the probability of any given configuration is
P~y

with p = e~¢ < 1 the probability of one single step in a certain direction.

Now, the random walk must close on itself because the string was closed. That means that
our first estimate with free endpoint overcounts by a factor of the order of the volume of the
random walk. We have an extra overcounting by a factor of n from the fact that the random
walk can start at any point in the string. Finally we have the possibility of translating the centre
of mass of the random walk, giving a factor of the volume V. All in all we have

1 1 4, ec'n

Wy ¢~V @

w(n) ~

Putting now E ~ nm, we get the previous result that was found explicitly in Problem 3. This
means that the random walk model is a good model of the typical configuration of strings at
very high energy.

The important lesson from this model is that the typical high-energy string has a size that
grows with the energy. Thus, high-energy strings are soft rather than hard probes of space-time.
There is a minimal length that can be probed by perturbative string scattering and this is the
string length scale. This modified “uncertainty principle” is one of the landmarks of the physics
of strings and is ultimately responsible for the succesful smearing of the gravitational interaction.

Into the Black Hole

The exponential degeneracy of states of strings is so large that one wonders whether it might
be related to the degeneracy of black hole states that follow from the Bekenstein-Hawking
formula for the entropy of a black hole (in four dimensions)

Ag

-2 2

SBH

where Apg is the area of the event horizon
Ay = 4 R = 167 (Gx M)?

We see that the asymptotic growth of the black hole entropy Sgp ~ (£pM)? is stronger than
that of strings S; ~ £; M. However, notice that the black hole entropy scales like the inverse
Newton constant. Therefore, there is a value of the coupling at which highly excited strings and
black holes of the same mass have the same entropy:

by M ~ 02 g> M>

This gives the scale of “correspondence” between strings and black holes
ms
93

M, corr ™
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The Schwarzschild radius of such a black hole is
Reorr = 2GN Meorr ~ E? 93 Meorr ~ £

This is the scale at which the curvature at the horizon becomes of order one in string units
and the low-energy gravity used to derive the Bekenstein—-Hawking formula breaks down. This
coincidence gives support to the idea that excited string states really become black holes for
M > Mo This has been checked to O(1) accuracy for all known black holes with arbitrary
charges in arbitrary dimensions.

For black holes with sufficient supersymmetry, the entropy is protected by algebraic con-
straints (the BPS-saturation to be discussed below) and the matching between the Bekenstein—
Hawking and the string determination should be exact. Indeed, it has been possible to match
exactly the factor of 1/4 in (27) for such black holes. This is arguably the most significative
quantitative success of string theory.

The fundamental importance of these results cannot be over-emphasized. If we were to
interpret (27) a la Boltzmann, i.e. microscopically, we would write something like:

S(M)pn =log dim Hp—ps

This is the standard definition of the microcanonical entropy in statistical mechanics, as a
measure of the dimension of the Hilbert space of states with a given total energy. In this case,
the Hilbert space of microstates with a given black hole mass. However, a look at (27) reveals
that the value of the entropy is about one bit of information per unit Planck area of the horizon.
Hence, the Hilbert space needed is neccessarily a Hilbert space of quantum gravity!

This simple argument shows that the Bekenstein—-Hawking entropy formula is one of the
most important pieces of information that we have in developing a theory of quantum gravity.
The fact that string theory deals succesfully with this fundamentally non-perturbative quantity
lends strong support to the view that string theory is the correct way of quantizing gravity.

Holography

The so-called “holographic principle” of 't Hooft and Susskind builds upon these considera-
tions the key to the dynamics of quantum gravity.

The basic idea is very simple. In a local description based on QFT the dimension of the
Hilbert space (with Planck-scale regularization) grows exponentially with the volume. If we look
at a QFT on a box of size L and consider states of total energy E much larger than any mass
scale in the theory, including the box mass-gap 1/L, the density of states can be estimated by
computing the entropy of thermal radiation at temperature 7"

S~VT?
On dimensional grounds it also follows that the energy is
E~VT!
i From here we can eliminate the temperature and write:

S(B) ~ (L B)**
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This density of states is smaller than the Hagedorn law S ~ E or the black-hole law S ~ E2.
At any rate, the typical states will be extensive on the box and the entropy grows linearly with
the volume. However, we know that for a fixed volume, there is a maximal energy density such
that the radiation is stable towards collapse into a black hole.

To see this, consider a system of a black hole of mass M in the box together with thermal
radiation of energy £ — M. The total entropy is approximated by the sum of radiation and
black-hole entropy:

S =C, (LE — LM)3* + Cy Gy M2

‘r 1/5

it becomes entropically favourable to nucleate a stable black hole in equilibrium with the radi-
ation. As the total energy continues to raise the size of the black hole Ry ~ Gx M becomes of
the order of the size of the box. At this point we have reached the maximum “capacity” of the
box for physical states.

The holographic principle states that, since the maximal capacity of information is reached
with a black hole of the size of the system, and this only uses a finite number of degrees of
freedom per Planck area, the rest of the Hilbert-space of the local QFT must be redundant. So
one conjectures that in quantum gravity nonperturbative effects are characterized by degrees of
freedom residing on the boundary of space rather than the bulk. According to this idea, locality
in QFT is a “holographic” illusion of working with “diluted” states.

This very radical proposal has been put on a firm ground through string-theory models
that realize it, notably the Matrix Model but especially the AdS/CFT correspondence. The
ideas around the holographic principle are operating a significative change of paradigm in our
thinking about quantum gravity at the nonperturbative level. In particular, very fundamental
issues such as the precise relation between short-distance physics and long-distance physics in
quantum gravity (basic to the cosmological-constant problem) could take an entirely new shape.

One can see that at energies of order

Concluding Remarks

We conclude with a positive message. The evidence for the deep connection between string
theory and quantum gravity is by now quite significative. It is also clear that deep physical
principles of an entirely different nature are being uncovered. The fact that the simplest classical
solutions of string theory give good qualitative models of the low-energy world, including many
of the ingredients of the Standard Model and beyond, lends support to the idea that strings
could realize the unification paradigm. Unfortunately, our present techniques do not cover the
most interesting calculations. On the positive side, we also see that some significant pieces of
low-energy physics, such as the black hole entropy formula, can guide us in the search for the
fundamental dynamical rules of the theory.
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Notation and Conventions
In the lectures and problems, I try to use consistently the metric signature
N = diag (—=1,1,1,...,1),

where p,v =0,1,...,d — 1 and the minus sign corresponds to the time coordinate.
The volume measure in integrals is frequently omitted when clear from the context:

[-fe
-]
f=fe

d, .
i) = [ iz )

For integrals in flat space I also use

or, in momentum space

Fourier transforms are defined as

Other notational devices: we use x? for the gravitational coupling, i.e. the Einstein-Hilbert
action is written as

1
—Q/ddx\/—gR-i—...
2Ky
The Newton constant is defined in any dimension by
167Gy =2 ﬁﬁ
Historically, the Planck mass and length in four dimensions are defined as

Mp =1/lp = (Gx)"/2 ~ 10" GeV

However, it is more convenient for the discussion of string dualities to adopt another definition
with slightly different factors of 27:

2k = 167Gy = (2m)2 0072, my, =1/4,

The fundamental string length and mass scales and the string tension are given by

1
Ly =V, mg = 1/4s, Tr = Y=
T

The relation between the string scale, the string coupling constant and the Planck length in the
d = 10 uncompactified string theories (type I, ITA, IIB and heterotic) is

by =gsls
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Problems

Problem 1
In this problem we elaborate on the Polyakov action

1

4o

Sp =

/ o/~ h® 8, X 9y X 0. (28)

and its relation to the Nambu-Goto action

1

2ma!

Sng = — / @0\ =det(9,XH 9,XY) 1. (29)
The main purpose of the problem is to introduce the extra symmetry of the Polyakov action
and the emergence of a conformal symmetry after gauge-fixing.
Prove that both actions are on-shell equivalent by evaluating the Polyakov action
at the solution of the h,, equation of motion.

The variation of the Polyakov action with respect to the two-dimensional metric hgy is:
1
6Sp = ——— [ V=h6h™ (8,X - 0pX — L hop h°40.X - 94X,
4ol 2

where we have used the general formula for the variation of the determinant:

6h:6det(hab) :6H>\nzz)\i6>\n:_2h>\n5<%>,

where we have diagonalized the metric in eigenvalues A,,. The two last equalities give
§h=hh"§hey = —hhay 6 ™

and

1
dvV—h=———(Gh=—1 \/—hhudh®.
2—h 2 b

Now setting dSp = 0 yields
0.X -0 X =L hap h* 0. X - 04X (30)

Taking determinants
det (9,X - 9X) = h (§ b1 0,X - 94X)" (31)

L V=hh"9,X 0,X = \/—det (0X - 0X),

Equivalently

which proves the statement.

Generalize the Polyakov action Sp to a (p + 1)-dimensional world-volume and
show that the symmetry under local Weyl rescalings h,, — ¢?*“hy;, is only present for

p=1.
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The appropriate generalization of the Polyakov action from the (1 + 1)-dimensional world-sheet of a
string to a (p + 1)-dimensional world-volume of a p-brane is

T
S, = _EP/ VIR 9, X 8y X
Ypt1

where p,v =0,1,...d — 1 as before, but now a,b =0,1,...p. Under a Weyl rescaling
h = det (hq) — (e*)PT b

Since the inverse matrix
ab —2w 1,ab
h® — e h®,

the Weyl rescaling amounts to

V—=hh?® — (e*)P71 /=R hat.

Hence, it is precisely Weyl-invariant for p = 1, strings. This extra symmetry of the string theory as
opposed to the more general p-branes is of fundamental importance in the development of the theory.
It means that, ultimately, the worldsheet metric was a redundant device. In fact, there is no known
consistent quantization of relativistic p-branes for p > 1. Perhaps this is not a coincidence, and Weyl
symmetry is actually a absolute condition for consistence.

We can use the Diffx Weyl symmetry to set hqp, = 7745. The following identity gives the Weyl
transformation of the curvature scalar R(?) in two dimensions. If

li 2w
hab = e hab,

the following is true

VR RO =v=h (R<2>(h) —2D? w) : (32)

where D, is the covariant derivative.
Use this identity to argue (which is different from prove) that locally the metric
can be brought to standard form h,, — 74, by a combined Diff x Weyl transformation.

Equation (32) can be solved for w, at least locally. It has the form
D*w=p
for some function p. This is the Poisson equation in two dimensions, so it has the solution
1
wlo) = [ o' plo") (| 35 o)
in terms of the Green’s function of the two-dimensional Laplacian. This is true for any pair of Weyl-

related metrics, so it is true for h’, such that R(® (k') = 0. Such a metric is locally flat, and thus in
cartesian coordinates it is just 7.

After Diff x Weyl gauge-fixing, there is still a lot of gauge freedom, at least locally. These
are transformations in Diffx Weyl that still leave h,, = 745 unchanged, and therefore are not
fixed by the choice of flat metric.
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Introduce locally a pair of light-cone coordinates 0™ = 7 £ o, so that the flat metric reads:

ds®> = —dr? + do® = —dot do™.

Find the residual group.

Consider reparametrizations of the form
ot = fH(o"),
with f* arbitrary. They serve as new coordinates in which the metric reads
ds’> = —dot do™ = — (O, fH o) dftdf~ = gpep- dftdfT,
with g¢+ g+ = gy- - = 0. This reparametrization conserves the conformal gauge but it is equivalent to a
Weyl transformation with
e =, ft O f
An additional Weyl transformation by a factor of e 2% leaves the metric invariant in the new coordinates:
ds®> = e7 2% ds® = —df * df~

This is a conformal transformation. Notice that it changes the physical distances (rescales ds?).

Find the infinitesimal generators of the conformal transformations and the alge-
bra that they satisfy.
To do this, write
F(0*) = 0* +v¥(0)
and drop all terms of higher than linear order in v*. In addition, assume that the world-sheet
is locally a cylinder with periodic o with period 27. Then one can Fourier-analyze v* in:
,Ui(o_i) — Z vrf ein(ri
nez

The generators can be found by their action on a scalar field.

A scalar field satisfies ¢(c®) = ¢'(f®). The variation of the field at a fixed coordinate point is
39(0") = ¢'(0%)=¢(0%) = &' (f*~v") =(0") = ¢'(f*)~v"p ¢' (f*) = (o) +... = v D4 p—v D _d+...

The differential operators generating the conformal transformations are
. . ino* .
—viai:zvafzem" Bi:zvaZf
n n

The operators .
= jeinr* o,
satisfy the so-called Virasoro algebra:
[E0E] = (n—m) €

ntm n+m

Thus, the gauge-fixed theory on the world-sheet of a string is a conformal field theory, locally invariant
under two copies of the Virasoro algebra.
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Problem 2

In this problem we discuss the relation between the graviton and the dilaton at the level of
the linearized theory. The purpose is to derive the low-energy effective action of massless modes
of closed string theory in the linearized approximation. In the process, it will become clear that
the expectation value of the dilaton is related to the string coupling constant by

gs = '?

The physical transverse polarizations of massless closed strings were found to be given by
a general tensor ¢;; with indices in the transverse spatial space, transforming with respect to
the group of transverse rotations SO(d — 2). This tensor splits in irreducible representations of
SO(d —2) as a symmetric traceless tensor (the graviton), an antisymmetric tensor and the pure
trace (the dilaton).

tij — hij © bij © ¢

Show that these degrees of freedom result from a d-dimensional general tensor

t,, with gauge invariance

tur — tuw + O AL + 0y AT,
and subject to transversality conditions:
Mty = 0"t =0
Hint: go to the special frame (p#) = (1,1,0,...,0) and use the gauge symmetry plus the

transversality conditions to cancel all components except the transverse ones ¢;;, with 7,5 =
2,...,d—1.

For massless fields p? = 0 we may go to the special frame
p= (]-7 ]-7 OJ-)
In momentum space, the gauge symmetry and transversality conditions are
L R I _ vo_
tu,,—>tu,,+pu/\,,+p,,)\u, Pty =1, p" =0.
The gauge variation of the time-time component is
90 — 0 XY p° + A% % =0+ A +0Y,

We can set t°° — 0 by choosing
A) + Ay =%

With the same argument, we see that choosing
AL+ AR =" AL A=t AL+ A=t
eliminates all t*¥ with p,v = 0,1. By the same trick, we can also make t** and #*° vanish by choosing

N = —t%, A =
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At this point, we have used all 2d components of the gauge functions A7 and A5. The remaining non-
zero components of t*¥ are t'%, ¢! ¥ with i, running in the d — 2 transverse directions. However, the
transversality conditions in this frame read

put" =pit” =t =0,  t"p, =t"p =" =0

Therefore, we have cancelled all t°#, t'# t#9 t#1 components and we are left only with transverse compo-
nents.

In order to derive an action for the massless fields, we work in covariant notation, with all
components of ¢,,. We will enforce the transversality conditions by a projector. Let

_ Pubv
P;w = Nuv — p—2
Then the projected tensor

(tp)l“, = P“ptpg PUV

is transverse and gauge-invariant.
Verify that P, is a projector and that (¢p),, is fully transverse and gauge-
invariant

For P,, to be a projector it must square to itself:

Dubp p’'p’ oD’
PuVPVp:<77uV_ ;;) <77up_ P2 >:(SZ_ ;2 =P/

Transversality is immediate:
puP;u/ =DPv —Pv= 0= Puupu;

and from this it follows that ¢p is gauge invariant, since the gauge variation of t,, involves terms pro-
portional to p, and p,.

With these ingredients we can construct a gauge-invariant free action for all the degrees of
freedom contained in ¢p by writing:

1 1
Siwe =7 [t 0 (te)s = = [ 4/ (=p) 2 11 0) (33)
4 /g 4 Jp
We can now decompose the complete tensor into symmetric and antisymmetric parts:

t/u/ = h;w + buua

with b,, = —by,, and hy, = h,,. Therefore, h,, should contain the graviton and the dilaton
degrees of freedom. First we handle the antisymmetric part.

Extract from (33) the action of the antisymmetric field b,,. Show that it can be
written as

1 v
S[bu] = -3 /HWPH“ L,
where

Hywp = 0 bup + 0y bpy + 0p by
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It is convenient to manipulate (33) a bit further in the general case. Let us obviate the p? term and
concentrate on the contraction of Lorentz indices. We can write

(tp)uw (tp)" = tr tp (tp)'
in matrix notation, where (tp)! denotes the transposed matrix. Then we can put tp = Pt P and
(tp)uy (tp)" =tr PtP(PtP)' =tr t P (Pt)' = (t P),, (Pt)".
Hence we find the structure

1 1 P p" p*p°
—11F (=p) P’ t,,(p) = —7 |t PP = 20" b ()77 P + tua 2 tay| - (34)
We see that, unlike the case of the electromagnetic field in the notes, there is a surviving non-local term
(non-analytic in momenta).

We can now project onto the antisymmetric part ¢,, — b,,. Using the antisymmetry of b,, we find
that all non-local terms cancel and we are left with

1

1
4 [0 p* by + 20" by 7 o] = =5 Hyuwp(—p) H" (p), (35)

12

where
Hyyp(p) = ippbuy(p) +ipy by (p) +ipp by (p)

Using the linearized approximation of the Ricci tensor:
1
Rl =n+hl = 5 (& b = 0 duhay = 8 0, hyx + 9,0, 1) + O(h?) (36)
and the Einstein—Hilbert Lagrangian

SEH = /dd.’L‘ vV =g R,

with R = ¢*"R,,, find the free Lagrangian of a graviton, the so-called Fierz—Pauli
action:

1
Srp = _Z / ht" (_nua v 0? +2 Nua Oy 8,8 -2 ULYe; au 0, + Nuv Nap 82) heP (37)

Hint: the first variation of the EH Lagrangian under

Juv = N + 59;“/

is given by
0SEH = /\/ -9 (RW — 2w R) d g"” + total derivatives
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At the level of the linearized theory, we simply need to evaluate the equation of motion to linear
order in h,,. The Ricci scalar to linear order is given by

R =y R = 0% hy — 0" 0" hywy

Thus, the quadratic Lagrangian from which these equations of motion derive is

1 1
See = 5 [ 10 (RE0D = S ROD) = = [ 050 b = 2017 B+ 208 b = B )
p

which is the momentum space version of (37).

Show that the local part of (33) projected on the graviton degrees of freedom coin-
cides with the Fierz—Pauli Lagrangian. Write the nonlocal part as a term quadratic
in the linearized Ricci scalar.

The answer is )

= RO,

1
Snonlocal = Z/ R(l)

Manipulating the action of the symmetric part just like before for the case of b,, we obtain

1 LA oV 0O
_Z h‘wp2 h;w _2p,u h hu)\px"'huu%h)\a

The main difference with (35) is that now the nonlocal terms do not cancel out of the symmetry of the
field. Adding and subtracting the term

1 1
—5 A pup, B + 2 AP R,
2 4
we recover the total symmetric Lagrangian as
S[h] = SFP + Snonlocala
where Sgp is the Fierz—Pauli action and

1

1
Snonlocal = Z/x (a,u 0" hp,u - 82 hf\\) 5

(00 by — 07 1Y) = | / R 2 RO (38)

Starting from the action
Seff = /ddx vV—9gR+ / diz /=g (XR + (8x)2)

with an extra scalar field y, expand it in the linearized approximation and integrate-
out x in the tree-level approximation. The result should be (38).

Expanding to second order in any combination of h,g or x one finds

Ser = Srp +/ (X RW 4 (aX)Q)
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Now the equations of motion of x are:

M _282y=0
We can formally solve them as
_ 1
Xel = 2—62 R,
so that, plugging them back into the effective action one obtains
m L 1 o (1)
S(Xcl)e SFP + R - — 0 SFP + R R

We conclude that, at the level of the linearized approximation, the non-local term in the
effective Lagrangian for the graviton is due to having integrated out a massless scalar field with
linear coupling to the curvature. This is the dilaton field. We can now put

X = _2¢a

and write a non-linear extension of the action:

S = / iz /=g e 2 (R + 4(0¢)? — 11—2H2> (39)

where
H = gua gyﬁ gpfy H;wp Haﬁfya (8¢)2 = glw 8u¢ 81/¢

This is the classical effective action of the massless fields in the closed-string sector. According
to this, the gravitational constant is proportional to the exponential of the dilaton expectation
value:

K o el®

This means that we can define the string coupling constant as

R—C

The kinetic term of the dilaton in (39) has the “wrong” sign. This is because it mixes with
the trace of the metric. We can disentangle it by going to the so-called Einstein frame. This is
just a Weyl rescaling of the metric of the form

Juv — e 9uv,
under which the Ricci scalar transforms as
R — e (R —2(d - 1) D*w — (d — 1)(d — 2)(8w)2)

The function w is chosen so that the resulting Newton’s constant is field-independent.
Express the string effective action in the Einstein frame. Check that the dilaton’s
kinetic term comes out with the right sign.

Answer:
/ddx\/— (R— —(8(;5) o 80/(d-2) H2>
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Let us write ¢ — (@) + ¢, so that the effective action after the Weyl rescaling will start with the term
1
55 [ V-9R+...
2K
In order to cancel the dilaton dependence in this term we need to choose the rescaling function in

2
Juv — € ¢ Guv,

so that
V—ge R —eWe e (/—gR+..)=v/—gR+...
This fixes
2¢
Y2
Then, the full curvature term scales:
VEre R o v (R - 0 D2 - M0 Do)

We will neglect in the sequel the total covariant derivative that only leads to boundary terms. Thus we
get the standard Einstein—Hilbert Lagrangian plus a contribution to the dilaton Lagrangian equal to

d—-1

45V (00

The antisymmetric tensor term yields
J=ge 20 H? s (2d9/(1-2) =20 —60/(d=2) /o 2 _ o—80/(d-2) /g
Finally, the scalar term in the original action gives

+4y/—ge 2 g oup 0y — 4 e2d¢/(d=2) o=2¢ o—4¢/(d—2) V=9 (06)* = 4+/—g (0¢)*

Adding this contribution to the dilaton’s kinetic term to the one coming from the transformation of the
curvature we find the total action in the Einstein frame:

1 diz /=g (R— % (9¢)% — 1 o—80/(d=2) H2>

Set = 5,3 12

On dimensional grounds x?> ~ (a')*g2. The standard normalization of gs is such that, for the
maximally supersymmetric string theories in d = 10 one has:

267 = (2m)" ()" g2

Problem 3

In this problem we count the asymptotic density of mass levels of a string theory. We consider
first the case bosonic closed strings. The mass formula is

2 d—2
M? == (N, +Ngp— —=
a’<L+ 12)’
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with N7, g the total oscillation numbers for left and right oscillators. The level matching con-
straint implies N;, = Np. Otherwise the oscillators are independent. Therefore, the number
of states with total oscillator number Nj, + Np = 2N is given by p(N)? where p(N) is the
degeneracy due to purely left- or right-moving oscillators.

We start by counting oscillator states built from a single left-moving oscillator of a given
frequency n and a given transverse direction. These are states of the form

(af)* [0)
for any positive k. The total oscillator level is
N=n-k

Obviously, there is only one such state up to bosonic symmetry. However, we will write this
number in a barroque way:

1 L1 dr 1
1=P(N)=Z5(nk,1v)=%7{xzv+1z " ﬁf—xml T
k

i.e. we obtain a formula for p(N) in terms of a generating functional.
Complete the calculation of the full generating functional by including all d — 2
transverse oscillators of a given frequency, for all possible frequencies.

Answer: o
1 dz <1 B
N)= — .
p(N) 27ri%xN+1 <nHl1—xn>

Suppose now that we include all d — 2 transverse oscillators of a given frequency n. Then the total
oscillator level is

N=n)kj j=23...,d-1
The same as before applies with the replacement of a single sum by d — 2 sums:

NP

ko k3 ka—1

Accordingly

ot S S Lt T - ()

k {ks} {k;} g

Finally, we allow the frequency n to vary as well. This gives the same effect as before, except that the
range of n goes up to infinity. Therefore we find

d—2
1 dx 1
pN) = %%mN‘H (H 1—:6")

n=1
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The infinite product blows up near z = 1. To see this, write

1;[1_1$ —exp< Zlog 1—2z" )zexp(z ir:;n):exp(zm(%%) (40)

m,n=1 m=1

Now, close to z = 1 the last exponent may be approximated by

1 i 1
l—z =~ m? 6(1-2)
Therefore, since the infinite product blows-up very fast when close to z = 1, and £V is very

small for large N and z < 1, there should be a sharp saddle point for the contour integral near
z=1.

Localize the saddle point and calculate the asymptotic form of p(N) at large N.
In order to get the subleading terms all right you will need the Hardy—Ramanujan
formula:

o2t —1/2 3
@ = (o) R ),
where 9
1 2T
f(x)zl;[m’ y=exp <log x>
Answer:

As y = 0, or z — 1, the function f(y?) obviously tends to unity. On the other hand:

logz >z —1

y_1/12—>exp< >
11—z

_1/2 l—a:
(5es)

]2 ~ (1 )2 (d 2)

The exponent in the contour integral is then

72(d — 2)
exp (-W — (N + ].) IOg .’L') y

and therefore

Finally

All in all we get

where we have replaced again 1 — x — —log z. It is convenient to change variables to x = e* and write

p(N) 7{ AW ) d=2/2 gatw)

21
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where

There are saddle-points at the solutions of ¢'(w.) = 0:

w—:i:ﬂ- [d—2
VY 6 ’
[d—2
g(’LUC)::F27T TVN

Thus, only the one at negative w, gives a dominant contribution at large N. The saddle point approxi-
mation to the integral around this gives

with classical action

a 1

LA L m—— O}
97 (wo)]

where
N3/2[d—2
m 24
Since ¢g"(w.) is positive, we have to rotate the contour so that w — w. becomes pure imaginary near the
saddle, thus cancelling the factor of 7 in the integral measure. The final result is

9" (we) =

d—2
p(N) x ~NiE exp (471' 7”)

Use the value found for p(N) to compute the density of states as a function of
the mass p(M). This means that p(M)dM gives the number of states with masses
between M and M + dM.

The result is:
, 663 M
p(M) o Vel e

where 5 = 1/T; is the inverse of the so-called Hagedorn temperature:

-2
55:471' %H

We use the mass formula of the closed bosonic string

4 d—2
2—_ _
M_a'<N 24)

and the definition of the density of states:

N

p(M)sz:ﬂMf—M):Zp(N)ZtS(M— \/% N—%»
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where the index f runs over the infinite set of particle states of the string. Since N > 1 we can
approximate the sum by an integral and write

o) Vel [ 8”“¥W6<M—\/t:],v>

Vol s
(a' M2)d/2 € ’

The final result is
p(M) o

with 5 as above.

Calculate the full asymptotic density of energy levels, i.e. the number w(FE)dFE
of states with energy in the interval [E, E + dE] at Evo' > 1.
Answer:

We have

We can now write

2 2
M = ﬁ‘w d\/F? + M?

and solve the delta function to get
/dp d+1 exp (Bs V E2 _52)

Now, most of the contribution comes from the exponential degeneracy of mass levels p(M) ~ exp(8:M)
at M > mg,. Therefore we shall assume

EQ—;E’Q = M? >>m§,
and expand in powers of j2?/E?:

—'2
A/ FE _ﬁQNE__+

so that the leading contribution to the density is

B.E )
UJ(E) ~VE /dﬁ2d+1 6_65P2/2E ~V d"2'1 eBsE

Restoring dimensional analysis we find the final result
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Prove that open strings and closed strings of the same type have the same Hage-
dorn temperature.

The Hagedorn temperature is determined by the exponetial growth of mass levels, which in turn is
determined by the growth of oscillator states with oscillator number N. For open strings, there is only
one set of oscillators of total level N (a combination of left- and right-moving oscillators). In closed
strings, we had both left- and right-moving oscillators, each at the same total level N, because of the
level matching condition. Therefore, for open strings we have a single factor of p(IN) instead of p(N)2.
This means that the exponential growth of mass levels

p(M)open ~ p(N) ~ eC\/N’
whereas we had for closed strings
,o(M)closed ~ p(N)2 ~ 620\/ﬁ-

This seems to imply that the Hagedorn temperatures differ by a factor of two. However, the relation
between M and N is now s Mgpen ~ VN instead of £sMciosea ~ V4N = 2/ N. Therefore, the two effects
cancel one another and

Bs(open) = Bs(closed)

What is the Hagedorn temperature of a string theory with supersymmetric
spectrum?

Hint: Find the generating functional that counts both bosonic and fermionic oscillators and
then reason like in (40). You will need the sum

e 1 2

> ey
= (2k+1) 8
The answer for the generating functional is

d—2
1 dx Sy R
N=— ¢ -2 p
p(N) QWi%xNH 0<H1—x”> ’

n=1

where Dy is the (finite) degeneracy of the oscillator ground state. The inverse Hagedorn tem-

perature turns out to be
Bs(susy) = mvd -2V

With a supersymmetric spectrum most of the previous results go through with little difference, since
we are just counting states. In the supersymmetric case the mass formula is
9 1
Mopen = o (NB +NF) >

where Ng and Np denote the total oscillator numbers of bosonic and fermionic states respectively. For
closed strings

4
Mc?losed = J (NB +NF)7
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where Np, Nr correspond now to the purely left oscillator levels. As before, the important quantity is
the exponential growth of p(N) with N = Np + Np. Since we have now fermionic oscillators, the total
level for a single frequency n and a single spin degree of freedom is

N=k-n+s-n

from
k
(al)* (0)* [0),
where k is a positive integer giving the bosonic occupation number of the oscillator with frequency n,
but s = 0,1 depending on whether the fermionic oscillator is (singly) occuppied or not. Therefore, in the

generating functional
1+ 2"
kn knJrsn _
" —
Z DI T
k=0 s=0,1

i From here we get the basic modification:

1 dz =14 2 -2
N=—¢ -2 p
p(N) 271'1'?{3:1\’“ °<H 1—37”) :

n=1

where Dy is the (finite) degeneracy of the ground states. To get the leading exponential asymptotics of
p(IN) we estimate the infinite product near z = 1, just as before.

1+2" 1+zx 2 (2k+1) 92+l
g(l_wn>—exp [Zlog( n) —exp<222 2k+1> eXP(;(Qk—l—l)(l—ka"'l))

k=0n=1
Expanding the exponent close to x = 1 we get

0 2

2 1 T
-z §(2k+1)2 41 —2)

d—2
H 14 2™ . (d — 2)n?
~ ex _—
1—2an P 4(1 — z)
n
This is exactly the same result of the bosonic string up to a factor of /3/2. Therefore, this factor
propagates down to the calculation of the Hagedorn temperature and we have

Bs(susy) = mvVd — 2 Vo'

Thus

Problem 4

In this problem we develop the basic facts about the Kaluza—Klein models. One starts by
assuming that a (d 4+ 1)-dimensional space-time M, has the structure

My =R4 xS,
M

where the circle has radius R. We split the coordinates =™ as

(=) = (a",y), =z e€RY  ye[0,2rR]

60



We assume that the circle is ssometric, which means that translations along it are “rigid”:
Oy gun =0
The most general (d + 1)-dimensional metric with this property can be conveniently written as
dsg_H = gy de™ dz¥ = Guv () dt dz” + e20(@) (dy + RA,(x) d:zc”)2 , (41)

where the factor of R in front of A, is a conventional normalization. Thus, a (d+ 1)-dimensional
metric (a symmetric tensor) splits into a d-dimensional metric, plus a d-dimensional vector and
a d-dimensional scalar. The scalar o(z) is called radion and measures the physical size of S! at

a given point z € R%:
2R
E(Sglﬂ) = /0 dy\/gyy(x) = e’@) . onR

If o has a constant expectation value (o), we can absorb it into the definition of the radius
R, so that we can set (o) = 0. If (o(x)) is z-dependent, we have what is called “warped
compactification” in modern parlance.

The main fact about the Kaluza—Klein set-up that makes it interesting is that general covari-
ance of My, descends to general covariance of R? plus ordinary gauge symmetry. To see this,
notice that since S! is invariant under translations y, we can actually do this at each z € RY
independently:

y — y+ RA(x), dy — dy + RO, Adz".

Therefore
dy+ RA,dz" — dy + R(A, + O, ) dx

So, the whole effect of the local S'-translation on the fields defined on R is just a gauge
transformation of the vector field:
Ay — A+ 0y,

which becomes a U(1) (Maxwell) gauge field. This can be generalized to any compact manifold
with isometry group G. Thus, we have a geometrical origin of the gauge symmetry.

The most characteristic prediction of KK models is the existence of an infinite tower of
massive “KK resonances”. Let ¢ be a bosonic scalar field defined on R¢ x S!. It is periodic on
the circle, so that we can do Fourier analysis and write:

$(x,y) = D ulx) ™"

nez

If the field is massless in the higher-dimensional space:
oM ¢ =0,

then we have
n? ;
0=0m0" ¢ =0,0"p+0 =" (aﬂaﬂ b — 7 n) e/ R

Hence, the massless field in d 4+ 1 dimensions decomposes into an infinite set of “normal modes”
on the circle, giving massive fields ¢,, on R? with mass

n

1
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Prove that ¢, is charged with respect to A, and find the charge

Under y = y' = y + R A(z) the higher-dimensional field ¢(z,y) is a scalar:
¢(z,y) = ¢'(z,y) = ¢(z,y' — RA(2))
and, to linear order in A\(x):
0 ¢(x,y) = ¢'(x,y) — d(z,y) = —RA(x) 0 ¢(x,y).

Now write

do(@,y) =D "R @O)(x),  dla,y) =D e o (n).
Combining both equations we obtain
(00)n(z) = —in A(z) dn(2),
which is nothing but the infinitesimal version of
() = e7 "N 6, (@),
a U(1) gauge transformation with charge @), = n. The covariant derivative transforms as
(Ou +iQn Ay) ¢n = (O +1Qn Ay,) ¢,
where
(O +iQn AL u)gl, = e (9, — in O\ +iQn Ay +iQn 0uN) ¢n = e M0, +iQn Ay)Pn

precisely if

Qn:n

This construction generalizes to all higher-dimensional fields, including the graviton. In
particular, the zero-modes of the graviton (corresponding to n = 0) yield the previously studied
A, and o.

There is an interesting interplay with supersymmetry, namely the KK reduction of massless
states gives the simplest example of BPS-saturated states. Assume that the (d+ 1)-dimensional
theory has a Majorana spinor-valued conserved charge ), satisfying a standard supersymmetry
algebra

{Qou Qﬁ} =C (IYA)aﬁ pa,
where p4 are the momentum components in the (d+1)-dimensional space, y* are Dirac matrices:
(v, 2"} =297,

and C' is a charge-conjugation matrix. We assume that the Dirac matrices can be chosen real
(Majorana representation) and C' = 0.
Consider a massive state in d + 1 dimensions, satisfying the dispersion relation

pApA + Md2_|_1 = 0
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For a state with momentum
(pA) = (puapd) = (pu,’I’L/R)

we have )

n

R2
so that there is an effective d-dimensional mass given by

pupt+ — +Mi, =0,

n2

R2
Thus, we find a relation with the structure of a BPS bound:

M? = Mg, +

]
M>=2
~ R

Prove that positivity of {Q, @} implies this BPS bound for all states with charge
n. The bound is saturated by massless states in d+ 1 dimensions, if and only if some
supersymmetry is unbroken. Find the broken and unbroken supercharges.

Answer: the unbroken supercharges satisfy

'70 7d Qu = 5(n) Qu,

with s(n) = sign (n). The broken supercharges, @, are the complement:

Y y4Qp = —s(n) Q.

In the rest frame in R¢, the momentum of the massive particle can be chosen as
PA = (M,0,0,...,n/R)

The Susy algebra on this frame reduces to

_ 0.4
{Q, Q=M+~ 7

(From the Dirac algebra we have

1
Tryy? =5 Tr{y’, 9" =0, (") =-(")"(r")* =1

Therefore, the matrix v° v? has an equal number of £1 eigenvalues. Positivity of {Q, Q} on the eigenvalue
basis then implies

n
M+—=2>0
R_a

which proves the BPS bound. The bound is saturated for massless fields in (d + 1)-dimensions, so that

where s(n) = £1 is the sign of n. In this case the algebra is

{Q, QY =M [1+s(n)y" ]
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The matrix in brackets is now proportional to a projector, with half of the eigenvalues vanishing. Let us
write

Qu:PuQ

for the unbroken supercharges, with P, a projector. For the unbroken supercharges, the matrix

vanishes over the BPS state. Therefore, P, must be the complement of the projector appearing in {Q, Q},
i.e.

P, =5 (1~-s(n)y"y%)
Thus, the unbroken supercharges satisfy

'70 'Yd Qu= S(n) Qu,

whereas the broken supercharges, @y, are the complement:

Yyt Qp = —s(n) Qp

With fermions there is more freedom in the KK reduction. A massless Dirac fermion in
(d + 1) dimensions has equation:

i =0= ()" =-0"y
If the action is invariant under a “lepton number” symmetry:
) = ey

(this is always true at least for & = 7), then more general boundary conditions (other than
periodic) are possible, and we can have a tower of fermions in R? with a-dependent masses.

Find the generalized boundary conditions and the KK spectrum for arbitrary
a € [0,27].

Answer:
1 + «
—lp =
R

M. —
" 2

The phase symmetry of the action means that we can identify the fermion after a circulation of S!
up to a phase transformation:

U(z,y + 27R) = " (z,y)

Notice, incidentally, that we still keep a an z-independent constant. The normal mode decomposition
compatible with this boundary conditions is

U(z,y) =Y Ya(z) eltnre/2mu/R

neZ

Hence, the field equation becomes
92 = iny/R 1 a2 o " —
¢—§ne —75 (n+32) +0.0"| va=0,
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which leads to the mass spectrum:

In particular, & = 0 is the supersymmetric case. Thus, turning on « is a way of enforcing a “soft breaking”
of supersymmetry. This is called the Scherk—-Schwarz mechanism.

Since the (d + 1)-dimensional metric induces d-dimensional metric, gauge field and scalar
degrees of freedom, we expect that the Einstein—Hilbert action on the whole space will generate
the corresponding Maxwell term in the d-dimensional action.

Find the action for g,,,A,,0 that is induced on R?. Present the result in the
Einstein frame, where the Newton’s constant is really constant.

In order to prove this, use the following identities for the Ricci scalar. For the Kaluza-Klein
metric decomposition (41) one has

RZ
Ras1) =R —2e77 D?e” — — ¢ F?,

where
F? =g F.F,5  Fu =3d,A, —8,A,

Second, under a Weyl rescaling of the d-dimensional metric,

2w
Guv — €7 Guu,
the d-dimensional Ricci scalar transforms as

R —e 2 (R —2(d— 1) D*w — (d — 1)(d — 2)(3W)2)

_ 2mR d—1 2 R? 2(d—1)c/(d—2) 2
Sd_Ql‘iﬁ_i_l/Rd(R (d—2> (00) 46 F

Answer:

Taking the determinant of the higher-dimensional metric:

det (gun) = €27 det (guw) =9 o

Thus, one finds

1 27 R IR R2
5 / dy [ dz\/—det (garn) Ras1) = QFT diz\/=ge” <R —2e77D%° — 7 e F2>
Ka+1 Jo Ka+1

Neglecting total derivatives on R? of the form

[ vEanacor= [ oy
Rd

Rd

R R?
7;—/ (e”R——e3UF2>
K31 4
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Even if we assume (o) = 0, the effective gravitational constant in R? still depends on the o field. In
order to remove it we perform a Weyl rescaling

2
Guv — € wguy

in such a way that
e"/—gR = e’ (e“)e " /—gR+...=+v/—gR+...

Therefore, we need
o

d-2
and the full transformation of the Einstein—Hilbert term is

e”vV—gR — /—g <R+%D2U—%(3o)2>.

w =

The Maxwell term transforms as

—2
37 \/_—gguugangFyﬁ _y 030 p—od/(d-2) (6—20/@1—2)) J=gF? = p2(d=1)o/(d~2) V=g F?

So, neglecting total derivatives we finally get

2R d—1 , R 2d—1)o/(d—2) 12
= — R - g F
o 2671 JRa (R <d_ 2) 09) 1"

Now the gauge fields have a field-dependent coupling. If the radion was to obtain an effective mass
by some quantum corrections, so that we can replace o by its expectation value, then we would have
standard electromagnetism below the energy scale of the mass of o.

Use the previous action to find a relation between the effective Planck mass in
d dimensions and the gauge coupling. By comparing the mass and the charge of
KK resonances, show that a realization of electromagnetism a o Kaluza—Klein is
too naive an idea.

The previous effective action is valid at energy scales
E < min (Mp,1/R),

with Mp the Planck mass of the effective theory on R?. The Mp threshold is from the non-renormalizability
of gravity, and the threshold 1/R is from our neglect of the higher KK resonances. We define the Planck

mass as . .
1 1) 2 8r\ -2

M = — = _— frd P

Pl (G) (n)

The parameters of the KK model are the (d 4 1)-dimensional gravitational coupling k441 and the radius
of the extra dimension R (assuming (o) = 0). The predictions for the d-dimensional gravitational and
gauge couplings are:

2 2
2 _ Kap 2_ K

K2 = - 42

2rr’ 7 T R (42)

We can eliminate the higher-dimensional gravitational constant and derive a relation between the

KK radius, the Newton constant and the fine structure constant a = g?/4w. Using 167Gx = 22 in four

dimensions we obtain from (42):

4Gn
a = R2
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Plugging the four-dimensional values we obtain a formula for any KK radius that would be related to
the electromagnetic coupling:

1
E~2\/a-1019(;ev

Since aep, (E) > 1072 for E > 1TeV we find that

1
7> 10'7 GeV

Therefore, the mass of electrically charged particles cannot be of KK origin.

What is the “unification” scale between electromagnetism and gravity in the
KK scenario?

It should be Mx ~ 1/R since above this scale we only have (d 4+ 1)-dimensional gravity. To see this

explicitly, consider d = 4 and the relation
§* ~ K2/ R?

The dimensionless effective gravitational coupling ag(FE) ~ k2 E? becomes of the order of the dimension-
less electromagnetic coupling ae,, = g?/47 at energies of order

Mx ~1/R

The condition for this to occur within the weak-coupling regime of the U(1) theory is that R > {p.

Problem 5

The purpose of this problem is to give very general arguments on the expected size of
nonperturbative effects in string theory. It is a general fact of perturbation theory in field
theory that the set of diagrams with n vertices is of order n!. This gives the dominant growth
of perturbative amplitudes:

A=S"hn, Ay~ g™nl

In general, such series are neither convergent nor Borel summable. At best, they are asymptotic.
We can obtain this estimate by counting the number of Feynman diagrams of a given order. For
the purposes of counting diagrams we can just set all propagators to unity, i.e. we can consider
a field theory in zero dimensions. For such a theory, the path integral is just an ordinary
finite-dimensional integral. Let us take a cubic interaction for definiteness:

2 3
x T
dz e -—— =g
/ P ( 2 93 )
The integral only makes sense as a formal expansion in powers of g, but this is enough.

Find the asymptotics of the coefficients of the perturbative expansion of the
previous integral. You will need the formula for Euler’s Gamma:

F(z):/ due " u”!,
0
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and you also need to derive Stirling’s approximation for large n!.

Rescaling © — gx we get

1/dglre 1 a:_2+a:_3
g P g2\ 2 3/

which shows that g2 is the loop-counting parameter. Since the one-loop term corresponding to the
gaussian approximation is of order ¢° = 1, we see that the term with power ¢* is from k& 4 1 loops.
Expanding in powers of the interaction:

= = 283k + §)
3n e~ 2 2k
S iy [ deatne = S

We can now use Stirling’s approximation n! &~ n™ e~ to obtain
292143 Cr El ~ Zng Cr kk,
k k

where ¢, ~ k% bF for bounded a, b.
To get Stirling’s, take logarithms

n
logn!:ZIOgnm/ dr logx =nlogn—n
0
n

Asymptotic expansions have a limited accuracy for a given value of the coupling. One sees
that higher-order terms give succesive better approximations up to a critical order beyond which
the series gets out of control, in the sense that the terms A, grow without bound. Therefore,
the size of |A,| at the critical order at which the series gets “crazy” provides an estimate of
the maximum perturbative accuracy that can be achieved with a given value of the coupling
constant. Hence this is also a bound on the size of possible nonperturbative effects.

Find the size of nonperturbative ambiguities at weak coupling for a series whose
leading growth is

A, ~ ¢*" (qn)!,

with ¢ a positive integer.

To do this, we determine the order in perturbation theory at which two succesive terms are of the
same order of magnitude. Given

An ~ (qn)! g*",
the required condition is
Ansr 2n42
Ay

_lam+ 'y

g~ @+ lanta=1- (1) - ~ () g,

1~

thus, the critical n. is given by



This illustrates a typical property of asymptotic expansions. In order to increase the precision we must
lower the size of the coupling.
The nonperturbative ambiguity is determined by the size of the amplitude at the critical order

| An,

C
2ne 21N —qne —qne q
~ (qne)! g°" ~ [(qnc)qg ] e e ~ eI ~ exp <_W>

In field theory ¢ = 1, but in string theory ¢ = 2. The argument for this is roughly the
following.

In string theory, the field-theoretical estimate based on three-point vertices is accurate for
the case of open-string perturbation theory, because there is an open-string field theory with a
cubic vertex. So, open-string nonperturbative amplitudes are of order

exp(—C’/gg),

where g, is the open-string coupling. It is related to the closed string coupling by gs = ¢2.
Therefore, the size of nonperturbative effects in closed-string theory is at least

exp(—C/gs)

In turn, this means that the growth of perturbation theory in closed-string theory is of the order

of
> (g9s)7"(2n)!,

n
i.e. much harder than in field theory. If we were to realize these effects semiclassically via some
tunneling event, the action of the nonperturbative object that dominates the tunneling is of
order 1/gs. This is precisely the action of D-branes.

Problem 6

In this problem we study the basic example of string duality: the duality relations between
the maximally supersymmetric string theories in d = 10, that is the so-called type ITA and type
IIB string theories, and M-theory in d = 11.

The basic assumption for this problem is the equivalence of M-theory on S}% x R0 and ITA
string theory on R!?. The eleven-dimensional theory is only parametrized by the Planck length
¢,. The ten-dimensional type IIA string theory is parametrized by the string length /¢ and the
string coupling gs. The relations that embody the duality are

R = g, {,, 0 =g, 03 (43)

We can motivate this as follows. From the basic rule of Kaluza—Klein reduction on a circle, the
Newton constants in eleven and ten dimensions are related by

2rR 1

Neglecting numerical factors, using that

Gy ~ 0

s Gioy ~ 93 45
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we derive one relation:
9 2 48
t,~ Rgg b

Now, eleven-dimensional supergravity has a solitonic membrane excitation whose tension is
governed by the only dimensionfull parameter of the theory:

Tuiz ~ (£p) "

by dimensional analysis. If the M2 wraps the compact circle of radius R, in the low-energy
ten-dimensional description it looks like a string. If we identify this with the ITA string, the
tensions are related by
TM2 =2nR TFI == EE;

S
This gives the second relation between the parameters of the dual theories. By choosing a
normalization convention we obtain the relations (43).

The second assumption for the problem is that IIA and IIB theories in ten dimensions are

related by T-duality. The rules for T-duality are
bs—ts, R—0/R,  gs— gsls/R,

and were derived in the notes.

By iterating these two basic duality transformations, derive a self-duality trans-
formation (S-duality) of IIB strings in d = 10. What is the geometrical interpre-
tation of the IIB S-duality in terms of the eleven-dimensional M-theory? What
is the physical length scale of type IIB string theory that is left invariant by this
S-duality?

We start with M-theory compactified on two circles of radii R and R', i.e. a background Sk xSkL, xR?.
Going down to ten dimensions through S, gives a IIA string theory on Sk x R? with parameters

ls =1, (Zp/Rl)l/Za gs = (Rl/ép)3/2
Now we can do T-duality to get a type 1B theory on S}% with

Rzéz/R, Zszésy gSZZSgS/R

On the other hand, descending through the circle of radius R we land in ITA’ theory on Sk, x R? with
primed parameters
by =L (L/R)'?, gy = (R/6,)*

e
Under further T-duality we arrive at a type IIB string theory on St x R? with parameters

R =()’/R, l,=¢t, §,=0g,/R
Now, from these relations we obtain
_ ls R » , L R
QSZQSEZE, gszgsﬁzﬁ,
from which we derive the first duality transformation between the two IIB theories:
1

~/
9s = =
o gs
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Thus, it is clearly a nonperturbative (S) duality. The other relation can be obtained form the calculation
of the Newton constant in the IIB models:

~ 5 - R [g R"? 76 2
Guo ~ " = iy 80t 7 = 67 = ()

Since the result is invariant under permutation of the primes, we find that the physical scale left invariant
by the S-duality is the ten-dimensional Planck length, or

(0)" g5 = (£5)* g
This, together with the duality of the couplings, gives the other duality relation:
gls =V gs gs
The interpretation in the eleven-dimensional M-theory is just as a permutation of the two circles

of the compactification. Therefore, the nonperturbative S-duality of type IIB is a completely obvious
symmetry in eleven dimensions. This is a general rule of duality symmetries in string theory.

Use the results of this problem to “define” type IIB string theory in R'? in terms
of a degenerate limit of a compactification in M-theory.

To define both dual IIB theories in R!? we require taking R, R — oo at fixed values of the string
length and string coupling of both dual IIB theories. From the previous relations we learn that this
requires R, R’ — 0 with a fixed ratio R/R'. Therefore type IIB string theory emerges from M-theory by
compactification on a torus of zero size and fixed complex structure.

From the knowledge that type IIB F1l-strings and D1-strings are S-dual of one
another, calculate the tension of the Dirichlet string in type IIB theory.

The just found IIB S-duality is given by
gs = 1/9s, 0= g5 3

Under this mapping, the tension of a fundamental string

Te1 =
i (2
maps to the tension of a D1-string:
1
T =
Pt 2m gs 02

From the knowledge that type IIA D2-branes and DO-branes are T-dual to type
ITB D1-branes, calculate the tensions of all D-branes in either ITA or IIB theory.
Check that DO-branes of ITA theory are the KK modes of M-theory on S' x R'°,
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Let us wrap a D1-brane on a circle of radius R. Its mass is given by

R

M =2rRTp = —
D1 gsgg

Under T-duality ¢5 — £s, R = (2/R, gs — gs{s/R it must map to the mass of a DO-brane:

Mpo = =2mls Ty

1
gsls
Now, from the basic M-theory—ITA duality relation R = gs¢s we find that

1
Mpo = 5
and indeed the DO-brane is viewed as a KK resonance from the point of view of the eleven-dimensional
M-theory.
Now, whenever we T-dualize a wrapped brane we find, by exactly the same manipulation as in the
D1-DO0 case here, the invariant ratio
Tp, 1
TD(p—l) 27T£s

(remember that ¢ is invariant under T-duality). Therefore, applying this relation iteratively we can get
the tension of all even (ITA) and odd (IIB) Dp-branes:

2w

Top = —————
Pr g (2ml,)P

Problem 7

In this problem we practice with the non-linear effects of the gauge theory that appears on
the world-volume of Dp-branes. For a single Dp-brane we have a photon with an effective action
of the Dirac—-Born—Infeld type:

SDBI = _TDp / \/—det (nab + 27 Fab)

pt1

There are also other important terms, of Chern—Simons type, that we neglect here. This effective
action is valid for constant field strengths. For space-time varying field strengths there are
corrections in powers of derivatives of F,.

Calculate the coupling constant of the world-volume photon field as a function
of the fundamental parameters of the string theory m; and g;. Compute also the
coefficient of the effective higher-dimensional operators with four powers of the field
strength.

We simply have to expand the DBI action in powers of the field strength and isolate the Maxwell
term

1
LiMaxwell = — 17 Fop o0
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that determines the coupling constant. In order to make things easier, we make a Wick rotation to
Euclidean signature and rotate back to Minkowski signature after the expansion has been completed.
Under the rotation we have the usual rule

1 SpRI — —TD,,/\/det(l + 27ra’F),

where now the integral is over a positive-signature Euclidean world-volume, 74, — 045, and Fjp is an
antisymmetric matrix. We write

Vdet(dqp 4 270’ Fop) = exp (% tr log (dap + 27ra'Fab)) ,

where the trace is over space-time indices. Now it is a simple matter to do a Taylor expansion in powers
of F,;, noticing that, because of antisymmetry tr F?"+! = 0 and we only have even powers. We find

1 1 1
1+ Z(2m')2 FF — g(2m')4 <FabF”CFCdFd“ - Z(FabF“”)2> + O(F®)

Now we can rotate back to Minkowski signature by raising and lowering indices in the Minkowski metric
Nap- The result is

1 1
SDBI:_/ |:TDp+—2FabFab+C <F4——(F2)2>:| +O(F6)
Ypt1 4g 4

The first term is just the action of a Dp-brane at rest:
—Tpp Vol (Ept1) = — /dt Mpp
The second term is the Maxwell action for the gauge field with coupling
9° = gs (2m)P72 (my)* 7P

The third term indicates that the operators with four powers of the field strength combine into a single
linear combination with the global coefficient

¢= _8(27T)P*4 Js

Consider a static D1-string which is wrapped on a circle of radius R. Show that
the DBI action in the temporal gauge Ay =0 has the form (in units 27o¢/ = 1):

1 "
SpBI = —— /dtdl‘\/ 1-— A%,
gs

where A, is the spatial component of the gauge field.

In the temporal gauge Ag = 0 the only nontrivial component of the field strength is the electric field
Fyy = —Fy1 = A,. The matrix in the DBI action is

. -1 Fn
(77+F)ab—<_F01 1 >
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so that )
~det(n+F)=1- A2

Show that A, can be taken independent of r and the constant mode of A, is
valued in a finite interval A, € [0,1/R)].

Even if we can set Ap = 0 as a gauge choice, we should not forget to enforce its equation of motion,
i.e. the Gauss constraint on the electric field:

O Foy =0, A, =0

This proves the first part of the statement.
The remaining gauge transformations that are not fixed by Ay = 0 are

Ay — Ay + 0, Mx)

The gauge transformation A(z) is a function of the spatial circle parametrized by the coordinate = to the
U(1) group. Since U(1) is the group of phases, the gauge transformation is globally

1 .
Ax—>Ax+?U_18xU, U=e?

Therefore, A is only defined up to a shift by an integer multiple of 27. The gauge transformations are
classified topologically by the quasiperiodicity of A(x):
A(27R) = A\(0) + 27n

On a given topologial sector we can write

where X' (z) is strictly periodic and A, is linear:

An(z) = % x

Hence, the constant mode of A, transforms under a linear gauge transformation as

n
Ay — Ay + =
— Ay +

The primitive identification is then up to constant shifts by 1/R.

Use this result to prove that the electric field is quantized. Find the quantization
rule. Is there a maximum value of the electric field?

The previous result means that we may consider a one-dimensional particle Lagrangian with coordi-
nate X (t) = A,(¢) that is identified by
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Therefore, we have a particle effectively living on a circle of radius 1/2rR. The conjugate momentum
to this particle Px is the generator of translations, and thus must be quantized in units of the inverse
effective radius. Thus, physical states must have

Px |¥) =27 Rn |U)

for integer n. We can find Px in terms of the gauge field by returning to the Lagrangian:

L:_27TR /]_—X2
s

g

So that )
dL  27R X

NER T iw
Since the electric field € = A, = X, we have the quantization condition
ngs
where we have restored arbitrary units. The magnitude of the electric field is bounded by

1
€] <

- 2w

2ra' € =

This is interesting. In string theory we cannot support arbitrarily large electric fields!

Find the tension of the D-string excited to the sector with n units of quantized
electric field. Show that IIB S-duality suggests an interpretation in terms of a bound
state of a D1-string and n Fl-strings. In this case, what is the binding energy to
the leading order in the string coupling?

To compute the mass, we calculate the Hamiltonian

‘ 2 2
M=H=PyX-L= R _ 2R e
271'0/93 1— X2 2 gs

We can write this as M = 2rRT{; ) where

T =V (0 Te1)? + (To1)?

Since the tensions of fundamental and D-strings are mapped into one another by the S-duality, the energy
of our excited D-string is S-duality invariant. The form of the energy suggests that the result can be
interpreted as a bound state of one D-string and n F1-strings.

The binding energy per unit length is given by the difference between the tension of the bound state
and the sum of the tensions of separated components:

Toinding = T(1,n) — Tor —nTe1 = —nTr1 (1 — $n.gs) + O(g),

where we have kept the leading terms in the weak coupling expansion (by expanding the square root to
leading order in the ratio Tr1/Tp1)-

This result is interesting. It means that at very weak coupling almost all the rest mass of the
fundamental strings is lost in the binding to the D1-string. This is similar to the interpretation of dyons
as bound states of electrons and 't Hooft—Polyakov monopoles.
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