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Chapter 1

Introduction and preliminaries

We assume prior knowledge of mechanics and electrodynamics at the level of Landau–
Lifschitz vols I and II (the chapters on fundamentals). In particular, we require certain fa-
miliarity with Lagrangian mechanics, Maxwell’s equations and Special Relativity (SR). There
are many books which can be used as a complement to these notes. A biased list is the following.

• Elementary level: Schutz (Cambridge 1980, Cambridge 1985), Hartle (Benjamin 2003).

• Comprehensive: Weinberg (Wiley 1972), Misner-Thorne-Wheeler (Freeman 1973), Landau-
Lifshitz (Reverte 1981). Carroll (Benjamin 2003).

• Advanced level: Wald (Chicago 1984), Hawking-Ellis (Cambridge 1973). Chandrasekhar
(Oxford 1992).

• Web: ’t Hooft, http://www.phys.uu.nl/ thooft/. Carroll, gr-qc/9712019. Townsend, gr-
qc/9707012.

Conventions

The metric signature convention is (−+ ++). Four-dimensional indices transforming in the
Lorentz group are labeled with latin letters: a, b, c, . . .. Four-dimensional indices transforming
in the group of diffeomorphisms are labeled with greek letters: α, β, . . . , µ, ν, . . .. Einstein’s
summation convention is used in these cases. Three-dimensional spatial indices are labeled with
latin letters: i, j, k, . . ., and Einstein’s convention is not used.

Riemann’s tensor is defined with the appropriate sign so that the gravitational Lagrangian
takes the form Lg =

√−g R, where R = gµνRµν is the Ricci scalar and g ≡ det(gµν).
The following set of conventions is adopted when writing the norm of a general four-vector

Uµ = (U0, ~U):
U2 = gµν U

µUν = gµν UµUν = UµU
µ .

For a Lorentz four-vector we have similar expressions in terms of Lorentz indices and the Lorentz
metric ηab. In addition, we also have U2 = UaU

a = −(U0)2 + ~U 2 = −(U0)2 +
∑3
i=1(U i)2. These

conventions are also used for differential operators, such as the Laplacian ∇2 ≡ gµν∇µ∇ν .
A dot superscript denotes derivation with respect to proper time: ẋµ ≡ dxµ/dτ , whereas

derivation with respect to coordinate time is written explicitly.
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Prelude

The first comprehensive treatment of gravitational phenomena goes back to Newton in the
XVII century, with his famous force law

|FG| = G
m1m2

r2
(1.1)

for the gravitational attraction between two masses separated a distance r. The potential energy
at height r in the field of a mass M is given by −GM/r per unit of test mass, up to an
additive normalization constant. In orbital motion we have a kinetic energy of the same order
of magnitude. The characteristic velocity of an orbit at height r is then v(r) ∼

√
GM/r, so that

the relativistic character of this motion is measured by the ratio

v2

c2
∼ GM

c2r
∼ Rs

r
,

where c is the speed of light and we have defined a characteristic gravitational (so-called
Schwarzschild) radius for the gravitational field of a mass M :

Rs(M) ≡ 2GM
c2

.

The gravitational interaction becomes relativistic, i.e. non-Newtonian, for φ(r) ≡ Rs/r ∼ 1.
The dimensionless potential φ also measures the order of magnitude of relativistic effects arising
as corrections to the Newtonian theory.

For localized systems, the value of φ on Earth is of order φ⊕ ∼ 10−9. In the vicinity of the
sun, φ� ∼ 10−6. On the surface of a white dwarf star we have φwds ∼ 10−4, the same order of
magnitude of relativistic effects as the hydrogen atom. Finally, relativistic stars such as neutron
stars reach φns ∼ 0.1 and black holes always have φbh ∼ 1.

For non-localized systems, such a uniform-density distribution, we have M(r) ∼ ρ · r3 for
the mass enclosed by a sphere of size r. Then, we have φ ∼ (H r)2, with H defining the Hubble
parameter 1

H2(ρ) ≡ 8πGρ
3c2

.

Therefore, a cosmological model becomes relativistic at distances of order H−1. This happens
in our Universe for H−1 ∼ Gpc.

In these notes we develop the current theory of the gravitational interaction in relativistic
regimes where φ = O(1), essentially developed by Einstein in the decade prior to 1916. As
indicated above, this theory can be tested to order 10−6 in solar system experiments, and it
is essential to understand the dynamics of relativistic stars and the global properties of the
universe on distance scales beyond gigaparsecs. On the other hand, the effects of gravity are
largely irrelevant at the scale of elementary particles. The reason is the extreme weakness of the
gravitational interaction between subatomic particles.

Despite the intuitive idea that subatomic particles are essentially ‘point-like’ and thus should
behave as tiny black holes, quantum effects prevent any physical localization of a particle below

1The precise numerical factors in the definitions of Rs and H are irrelevant for our present discussion of
order-of-magnitude estimates, but they conform to the more precise definitions to come.
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its Compton wavelength, which sets its minimum ‘quantum size’. For a particle of mass m we
have a Compton length scale

λC ∼
h̄

mc
,

where h̄ is the reduced Planck constant. The value of the gravitational potential at the Compton
scale is

φCompton ∼
Rs(m)
λC(m)

∼
(
m

MPl

)2

∼
(
`Pl

λC

)2

,

where MPl =
√
h̄c/G ∼ 1019mproton is the Planck mass and `Pl =

√
G/h̄c3 ∼ 10−19λproton is

the Planck length. We see that gravitational effects in the behavior of known quantum particles
are utterly negligible, of O(10−40). Significant quantum gravitational effects would require
Planck-mass elementary quantum objects or Planck lengths in the quantum resolution of scales
implied by Heisenberg’s principle. This means in practice that quantum gravitational effects are
irrelevant from the point of view of feasible experiments.

It is possible to imagine situations where this conclusion is significantly modified. For ex-
ample, it could be that the world is 4 + n dimensional below some length scale `c. In this case
Newton’s force could actually scale like 1/r2+n for r � `c, which means a stronger growth at
short distances. In practice this would imply a lower effective Planck mass and thus room for ex-
perimental hope. Currently there is no evidence for such scenarios, but they serve as indications
that other possibilities exist.

More generally, the greatest revolutions in theoretical physics are associated to conceptual
synthesis between seemingly incompatible theories, in a tight and essentially unique solution.
Famous examples of this trend are the theory of quantum fields, the essentially unique unification
of special relativity and quantum mechanics. Another example is Einstein’s theory of gravitation,
again the essentially unique theory of relativistic classical gravity. Many physicists hope that the
final synthesis involving the three basic constants, h̄, c and G, will be born out in a conceptually
‘tight’ fashion, so that we may hope to ‘corner’ the answer even in the absence of crucial
experimental input.

While we wait for the fully fledged development of such a theory, we shall set h̄ = 0 for most
of these lecture notes.
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1.1 Lagrangians

Dynamical systems can be described classically by equations of motion or by specifying
action functionals. Let the pair (Q(t), dQ(t)/dt) denote the state of a mechanical system (the
data necessary to determine its future, usually initial positions and first time derivatives)2.

Given initial and final values of the configuration variables, Q(ti) = Qi,Q(tf ) = Qf , we
construct the action functional

S[γ] =
∫
γ
dtL(Q, dQ/dt) , (1.2)

where γ denotes a given trajectory, i.e. the function γ : t→ Q(t), and L is called the Lagrangian.
Then, the equations of motion follow from the extrema of the action functional, δS = 0, for all
variations Q → Q+ δQ with fixed initial and final values.

By direct calculation we have

0 = δS =
∫
γ
dt

(
∂L

∂QδQ+
∂L

∂Qt
δQt

)
,

where we set Qt ≡ dQ/dt. Using that δQt = (δQ)t and integrating by parts we find

0 =
∫
γ
dt δQ

(
∂L

∂Q −
d

dt

∂L

∂Qt

)
+ 0 , (1.3)

where the last vanishing term corresponds to the contribution of total derivatives in time, van-
ishing because of the boundary conditions δQ(ti) = δQ(tf ) = 0. The extremal trajectory must
satisfy (1.3) for all values of δQ, implying the vanishing of the term in parenthesis. Therefore
we arrive at the the so-called Euler–Lagrange equations of motion,

d

dt

∂L

∂Qt
− ∂L

∂Q = 0 . (1.4)

Lagrangians are defined up to a total derivative in time. Given L, then L + df/dt leads to the
same equations of motion.

The elementary example is that of an isolated system of Newtonian particles with generalized
coordinates Q(t)→ qp(t). The Lagrangian reads

L =
∑
p

1
2 mp

(
dqp
dt

)2

− U(q1, . . . , qp, . . .) , (1.5)

which induces the well-known Newtonian system of equations

mp
d2qp
dt2

= −∂U
∂qp

.

2Here Q is an abstract notation for a set of position coordinates, particle number or local excitation of a field.
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Fields

We may take a formal continuum limit for systems of the form (1.5) with degrees of freedom
pinned to points of space, leading to the notion of field theories. Here, the role of the particle
index p is played by an ‘approximately’ continuous label corresponding to the point of space
Q(t) → q~x(t), where we continue using a condensed notation, suppressing the extra degrees of
freedom of q~x at each point.

Expanding the interaction potential energy U around a stable equilibrium configuration
and defining the local displacement variable φ(~x, t) =

√
m~x

(
q~x(t)− q(0)

~x

)
, the assumption of

equilibrium means that U [φ(~x, t)] is a functional with a local minimum at φ = 0. The assumption
of locality of the interactions means that we can organize the expansion in powers of derivatives
of φ(~x, t), so that the potential energy can be formally written as

U [φ ] =
∫
d3x

(
V (φ) + 1

2 c
2
s(~∂φ)2 + higher derivatives

)
,

where we have further assumed translational and rotational invariance. Local stability of the
equilibrium point requires that the so-called ‘squared speed of sound’, c2

s, and ‘field mass
squared’, m2 = d2V (φ)/dφ2|φ=0, be positive.

Notice that long distance physics is controlled by the terms with the smallest number of
spatial derivatives. Consider for example two contributions with two and four derivatives re-
spectively, (~∂φ)2 + λ2(~∂ 2φ)2. By dimensional analysis, λ must necessarily be a length scale,
so that a field configuration with scale of variation of order L contributes an amount of or-
der L−2(1 + C(λ/L)2) for some constant C. Hence, at long distances L � λ the higher-
derivative terms give a subleading contribution and in any case their effects can be gradually
introduced by perturbation theory in the corresponding dimensionless effective couplings, such
as λeff(L) = λ/L. This type of “short-distance” expansion is called effective field theory and
permeates all modern approaches to fundamental physics.

Collecting all terms together we are led to a field theory Lagrangian

L =
∫
d3xL[φ ] , (1.6)

where the Lagrangian density has the following structure

L[φ ] = 1
2 (∂tφ)2 − 1

2 c
2
s(~∂φ)2 − V (φ) + higher derivatives + boundary terms . (1.7)

In most applications, boundary terms are neglected assuming appropriate boundary conditions
for the fields, so that we can integrate by parts at will. The function V (φ) stands for the non-
derivative part of the potential energy, and takes a polynomial form in an expansion around the
equilibrium configuration at φ = 0. A linear term of the form Jφ, called a ‘source term’, is often
considered as a way of ‘driving’ the system, to study perturbative response of the equilibrium
state. The Euler–Lagrange equations stemming from the long-distance approximation (1.7) are(

−∂2
t + c2

s
~∂ 2
)
φ = V ′(φ) = J +m2 φ+ nonlinear terms . (1.8)

The elementary solution of the homogeneous equation for zero mass,

(−∂2
t + c2

s
~∂ 2)φ = 0 (1.9)
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are waves φ(t, ~x ) propagating at speed cs. The elementary solution for a static (time-independent)
field created by a source J is the solution of Poisson’s equation,

φ(~x )static =
1
~∂ 2
J = −

∫
d3y J(~y )

∫
d3k

(2π)3

ei
~k(~x−~y )

~k 2
= −

∫
d3y

4π
J(~y )
|~x− ~y | . (1.10)

Time-dependent disturbances created by a time-dependent source J(~x, t) are obtained from the
static ones by simply recalling that these disturbances travel at speed cs. Hence the solution
is formally the same as (1.10) with the source replaced by its value at the ‘retarded time’
t− |~x− ~y |/cs,

φ(~x, t) = φ(~x, t)wave −
∫
d3y

4π

J
(
t− |~x−~y |cs

, ~y
)

|~x− ~y | , (1.11)

where φwave is a general solution of the homogeneous equation (1.9). We can use the same
argument to write a formal solution of the general non-linear equation with arbitrary potential:

φ(~x, t) = φwave +
1
∂2
V ′(φ) = φwave −

∫
d3y

4π

V ′
[
φ
(
t− |~x−~y |cs

, ~y
)]

|~x− ~y | . (1.12)

Rather than an explicit solution, this is an integral equation for any potential with quadratic
terms or higher non-linearities. This equation may be solved iteratively in the powers of the
function V ′[φ]. For example, for a mass term we have V ′(φ) = m2φ. The term of order m2n

in the iterative solution represents a wave sourced by J and averaged over 2n ‘kicks’ at which
the wave is regenerated. This construction is analogous to Huygens’ method of wave dispersion,
so that one says that the mass term causes ‘wave dispersion’, as a result of which the effective
propagation velocity over distances larger than cs/m is smaller than cs.

1.1.1 Symmetries

A classical system is said to enjoy a symmetry action when some group of transformations
G acts on the space of solutions of the equations of motion, i.e. given one solution Q, the
transformed g(Q) under G is also a solution of the equations of motion. One way to ensure this
is to demand that the action functional be invariant under the action of G:

S[γ] = S[g(γ)] , (1.13)

for any trajectory γ and any group element g ∈ G. This is slightly more than strictly necessary
in the classical realm, because one could do with an action of G just on the space of extrema of
S, rather than the whole domain of definition of S. However, in quantum mechanics one really
explores all possible trajectories and symmetries have to respect them all.

Invariance of the action is not always born out by invariance of the Lagrangian. Because of
the ambiguity in Lagrangians by a total derivative, it is enough to demand that a Lagrangian
is invariant up to a total time derivative,

L(g(Q)) = L(Q) +
dfg
dt

. (1.14)

For field theories, and under the technical assumption that boundary terms integrate to zero,
the Lagrangian density may be invariant up to a total derivative in time and space:

L[φ ]→ L[ g(φ) ] = L[φ ] + ∂tf
t + ~∂ ~f , (1.15)
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for some functions f t and ~f .
The main use of Lagrangian methods is to implement economically the requirements of

symmetry. At the same time, this formalism provides a very general link between symmetries
and conservation laws, via a theorem by Noether.

Noether’s theorem

Let G act on the space of trajectories Q(t) as a continuous group and work near the identity,

g(Q) = Q+ δεQ = Q+ εξ(Q) +O(ε2) . (1.16)

Since Lagrangians are defined up to a total time derivative, an invariant action is compatible
with a variation of the Lagrangian

δεL = ε
dfξ
dt

, (1.17)

for some fξ. Rewriting this in differential form,

δεL =
∂L

∂QδεQ+
∂L

∂Qt
δεQt =

(
∂L

∂Q −
d

dt

∂L

∂Qt

)
δεQ+

d

dt

(
∂L

∂Qt
δεQ

)
. (1.18)

Using the equations of motion we find the conservation of the Noether charge Qξ,

dQξ
dt

= 0 , Qξ = ξ(Q)
∂L

∂Qt
− fξ . (1.19)

Some examples of importance include the usual definitions of energy and momentum for a free
Newtonian particle with Lagrangian L = 1

2 m~v
2, associated to translation symmetry in time

and space, respectively

~p =
∂L

∂~v
= m~v E = ~v · ∂L

∂~v
− L = 1

2 m~v
2 =

~p 2

2m
. (1.20)

For field theories with Lagrangians of functional form L(∂tφ, ~∂φ, φ), the statement of a continu-
ous symmetry is that δε L = ε ∂tf

t
ξ + ε ~∂ ~fξ under a field transformation δεφ = ε ξ(φ). Repeating

the previous derivation (1.18), neglecting total spatial derivatives, one finds a local ‘continuity
equation’

∂tJ
t
ξ + ~∂ ~Jξ = 0 (1.21)

for the Noether current defined by

J tξ = ξ(φ) · ∂L
∂(∂tφ)

− f tξ , ~Jξ = ξ(φ) · ∂L
∂(~∂φ)

− ~fξ . (1.22)

To interpret (1.21) as a conservation equation we define the Noether charge inside a three-
dimensional region V3,

Qξ(V3) =
∫
V3

J tξ , (1.23)

and the flux across the boundary ∂V3

Φξ(∂V3) =
∮
∂V3

(Jξ)n , (1.24)
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where (Jξ)n denotes the component of ~Jξ along the outward pointing normal to ∂V3. Then
(1.21) is equivalent to

d

dt
Qξ(V3) = −Φξ(∂V3) , (1.25)

i.e. the variation of charge equals the flux through the boundary ∂V3, without any creation or
destruction of charge inside V3.
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1.2 Crisis ‘fin de siecle’

Circa 1900 one could summarize the Lagrangian of the world in terms of two components

S1900 ∼ SNewton + SMaxwell−Lorentz , (1.26)

where SNewton stands for the model of pointlike masses interacting by instantaneous gravitational
forces. The Maxwell–Lorentz sector concerns the electromagnetic phenomena and their coupling
to charged massive particles. A mechanical interpretation was missing in this sector, although
drawing inspiration from the theory of optics, it was natural to postulate a material medium,
called ether, that would support the electromagnetic waves. This prompted an active search for
mechanical models of the ‘ethereal’ substance. The continued failure of such models lead to a
conceptual crisis at the turn of the century.

1.2.1 Newton

A model of matter in terms of pointlike objects characterized by positions ~xp and velocities
~vp = d~xp/dt, interacting by a Newtonian gravitational force is described by the Lagrangian

LNewton =
∑
p

1
2 mp ~v

2
p +G

∑
p<q

µpµq
|~xp − ~xq|

. (1.27)

The most salient features of this Lagrangian are the instantaneous nature of gravitational forces
(the potential energy only depends on positions of particles) and the equality of inertial and
gravitational masses, µp = mp, the so-called “equivalence principle”. It also satisfies the Galilean
principle of relativity, being invariant under a ten-parameter group of transformations

xi →
∑
j

Ri
j (xj + aj + Vjt) , t→ t+ c , (1.28)

including boosts by a velocity ~V as well as R3-rotations and translations in space and time. 3

The equality of gravitational and inertial masses is famously exemplified by the (surely false)
story of Galileo throwing objects from the top of Pisa’s tower. In fact, if we denote m the inertial
mass and µ the ‘gravitational charge’, it is enough to ensure that the ratio m/µ is a universal
constant, equal for all possible bodies, since then this ratio can be set to unity by a rescaling of
Newton’s constant.

In the nineteen century, Eötvös was able to check this universality with great accuracy in
a series of experiments comparing the balance of a gravitational force (responding to µ) and
a purely inertial force (responding to m). A good example is a body at rest on the surface of
the Earth, subject to gravitational and centrifugal forces. Tiny differences of the ratio m/µ
between two objects would result in a slight misalignment of the net force acting on them. For
the latitude of Budapest, home of Eötvös, one finds

∆m/µ ≈ 600 | sinα | , (1.29)

where α is the misalignment angle. Eötvös was able to bound ∆m/µ to less than one part in 107.
The bound was later improved by Dicke in the 60’s to one part in 1011 and the satellite STEP

3Exercise: Prove that the Newtonian Lagrangian (1.27) transforms under (1.28) into itself plus a total time
derivative.
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is expected to improve it to 1017. The conclusion is, therefore, that such a precision test should
not be based upon a simple coincidence, but some deep symmetry principle. The interpretation
of the equivalence principle in terms of symmetry will be pivotal in the theory of gravitation.

Problem: Eötvös experiment

Verify expression (1.29) by computing the misalignment of the total gravitational+centrifugal force for
two objects of gravitational masses µ1, µ2 and inertial masses m1,m2. Give an expression for | sinα| in
terms of the surface gravity g⊕ = GM⊕/R2

⊕, the Earth radius R⊕ and the Earth rotation angular velocity
Ω⊕.

Anticipating its use in the following, we note that Newton’s gravitational law can be formally
written as a field theory coupled to the mass density of matter. The equations of motion following
from (1.27) are

mp
d~vp
dt

= ~FN = −Gmp

∑
q 6=p

mq(~xp − ~xq)
|~xp − ~xq|3

, (1.30)

where we have already implemented the equality of gravitational and inertial masses, so that
mp drops from this equation. The force term on the right hand side can be written in terms of
a gravitational potential, ~FN = −mp

~∂φN, where

φN(t, ~x) = −
∑
q

Gmq

|~x− ~xq(t)|
. (1.31)

This form of the potential, defined up to a additive constant, is the solution of the so-called
Poisson equation sourced by the mass density

~∂ 2φN(~x, t) = 4πG
∑
q

mq δ
(3)(~x− ~xq(t)) ≡ 4πGρm(~x, t) . (1.32)

We see that Newtonian theory can be recast in the form of a field theory with a gravitational
potential φN interacting with mass density through the equations

d~vp
dt

= −~∂ φN , ~∂ 2 φN = 4πGρm , (1.33)

which are equivalent to the Lagrangian

LNewton =
∑
p

1
2 mp~v

2
p −

1
8πG

∫
d3x(~∂φN)2 −

∫
d3x ρmφN . (1.34)

Solving for the potential φN using Poisson’s equation yields precisely (1.31), and substitut-
ing back into (1.34) produces the ‘action-at-a-distance’ form of the Newtonian system (1.27).
Notice that the absence of time derivatives from Poisson’s equation is directly related to the
instantaneous nature of the interactions in (1.27). In principle, a finite speed of propagation for
the gravitational interaction can be introduced into this formalism by a simple replacement of
Poisson’s equation by a more conventional wave equation such as(

− 1
c2

G

∂2
t + ~∂ 2

)
φN = 4πGρm ,

the standard Newtonian theory thus arising in the limit cG →∞.
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1.2.2 Maxwell–Lorentz

Electrostatic phenomena can be described by a system of equations entirely analogous to
(1.33) and (1.34), with the replacement of the Newtonian potential by the Coulomb potential
produced by an electric charge Qe,

φC(~x, t) =
Qe

4π|~x | .

Magnetic phenomena may be incorporated by the introduction of velocity-dependent forces.
However, it was found experimentally by Faraday and others that electrodynamics was very
efficiently represented by the notion of ‘electromagnetic fields’ interacting with charged matter
particles.

Maxwell found the set of local equations that explained all electromagnetic phenomena in
terms of electric ~E and magnetic ~B fields in the presence of charges and currents,

~∂ ~E = ρe, c ~∂ × ~B − ∂t ~E = ~Je ,

~∂ ~B = 0 , c ~∂ × ~E + ∂t ~B = 0 . (1.35)

The charge density and current are defined by

ρe(~x, t) =
∑
p

ep δ
(3)(~x− ~xp(t)) , ~Je(~x, t) =

∑
p

ep ~vp(t) δ(3)(~x− ~xp(t)) (1.36)

and satisfy the conservation law
∂tρe + ~∂ ~Je = 0 . (1.37)

The coupling constant, c, can be given a physical interpretation by solving the second pair of
equations in terms of potentials,

~B = ~∂ × ~A , ~E = −1
c
∂t ~A− ~∂φ , (1.38)

defined up to the gauge ambiguity,

φ→ φ− 1
c
∂tf , ~A→ ~A+ ~∂f , (1.39)

with f(t, ~x) an arbitrary smooth function. Fixing this ambiguity (partially) by imposing the
Lorenz condition 4

1
c
∂t φ+ ~∂ ~A = 0 , (1.40)

the first pair of Maxwell equations can be rewritten as wave equations(
~∂ 2 − 1

c2
∂ 2
t

)
φ = −ρe ,(

~∂ 2 − 1
c2
∂ 2
t

)
~A = −

~Je
c
, (1.41)

4Lorenz the danish instead of Lorentz the dutch.
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which reveals the interpretation of c as the speed of electromagnetic waves. These waves also pro-
vide an electromagnetic theory of optics, since oscillating solutions of the electric and magnetic
fields exist even outside charged matter.

The interaction between electromagnetic fields and charged particles is determined by the
Lorentz force law

mp
d~vp
dt

= ep

(
~E +

~vp
c
× ~B

)
. (1.42)

which in turn derives from the Lagrangian

∑
p

1
2 mp ~v

2
p −

∑
p

ep

(
φ(t, ~xp)−

~vp
c
~A(t, ~xp)

)
, (1.43)

The second term may be rewritten in terms of currents and charge densities to obtain the action
principle behind Maxwell’s equations (1.35),

SMaxwell−Lorentz = 1
2

∫
dt d3x

(
~E 2 − ~B 2

)
− 1
c

∫
dt d3x

(
c ρe φ− ~Je · ~A

)
, (1.44)

with ~E and ~B implicitly written in terms of the potentials φ, ~A via eq. (1.38). Notice that the
potential formalism is very useful in writing the interactions with charges, and essential in the
Lagrangian formalism.

The main problem of principle with this theory is the interpretation of the coupling constant
c as a velocity of propagation of electromagnetic waves. Immediately the question arises: velocity
with respect to what particular frame? Indeed, a Galilean transformation ~x → ~x + ~v t cannot
possibly be a symmetry of the Maxwell equations, because such a transformation would change
the velocity of light to ~c − ~v. Hence, if we insist in adhering to a mechanical interpretation of
electromagnetism (ether), it seems that Maxwell equations are only valid in the particular frame
that sits at rest with respect to the ether.

In this situation, it becomes interesting to measure the velocity of the Earth with respect to
the ether. The famous experiments of Michelson–Morley failed to reveal any such drift velocity.
At the same time, stelar aberration and other optical data disfavored the possibility that the
Earth could be dragging the ether along with its motion. So, there was a real problem that was
tackled by Lorentz and others, with a number of ad hoc hypotheses.

Despite the fact that Lorentz had developed most of the right formulas of special relativity, it
is notable that he was unable to interpret them correctly. Poincaré was also close to the solution,
as he proposed that the Galilean group of transformations should be replaced by a different
group and, in doing so, giving privilege to the electromagnetic part of the total Lagrangian.
One would need to replace SNewton with something different that would be compatible with the
strange behavior of light. One could say that the Lorentz–Poincaré combination was bound to
find the right answer sooner or later... but the first complete solution was given by Einstein in
his famous 1905 work.

1.2.3 Einstein

Einstein’s starting point was to take for granted the Galilean principle of relativity, i.e. that
motion at constant velocity could not have absolute meaning, and at the same time assume as a
feature of nature that the velocity of light is a constant, independent of the frame of reference.

14



Heuristically, one could argue that one simply needs the existence of a maximum velocity
of propagation of signals. If one assumes the existence of this limiting velocity, the principle of
relativity requires it to be the same in all frames in relative uniform motion, because otherwise
one could assign an intrinsic velocity to a frame of reference by quoting the maximal velocity
of signals in that frame. From this point of view, one could have special relativity even if light
was not propagating right at the limiting velocity. For simplicity, let us assume in any case that
c, the light’s velocity in vacuo, is the maximal one. Then, the principle of relativity says that
there must exist a group of transformations that leaves the physics invariant and that preserves
the condition of uniform rectilinear motion. Such a transformation,

(t, ~x )→ (t′, ~x ′ ) = L̃ (t, ~x ) (1.45)

must send straight trajectories ~x(t) into straight trajectories ~x′ (t′), and so it must be a linear
map. Furthermore, the invariance of light’s velocity means that

~x 2 − c2t2 = 0 = ~x ′ 2 − c2t ′ 2 . (1.46)

This equation, together with the linearity property, implies that ~x 2 − c2t2 is invariant up to a
constant factor,

~x 2 − c2t2 → f(~V ) (~x 2 − c2t 2) , (1.47)

where f(~V ) can only depend on the relative velocity of the frame. Spatial isotropy further
imposes the condition that f must be a function of the modulus |~V | = V . Introducing now
two boosts with velocities ~V1 and ~V2, and relative velocity ~V12, we find, upon performing two
iterated transformations,

f(V2) = f(V1)f(V12) , equivalently f(V12) =
f(V2)
f(V1)

, (1.48)

but V12 depends on the relative angle between ~V1 and ~V2, unlike the right hand side of the
previous equation. Hence, we conclude that f does not depend on ~V and in fact f = 1. We thus
define the Lorentz group as those linear transformations that leave the quadratic form

c2t2 − ~x 2 = invariant . (1.49)

This group is called O(1, 3). When supplemented by the spacetime translations it becomes
the Poincaré group, a ten-parameter group which contracts to the Galilean group in the limit
V/c → 0. Factoring out the subgroup of SO(3) rotations, we can align the boost velocity in a
given direction, say x, and we are left with a two-dimensional problem of linear transformations
leaving the so-called interval

c2t2 − x2 = I = invariant . (1.50)

From now on, we choose units so that c = 1. Then, −I = x2 − t2 is the analytic continuation,
under t→ it, of the standard Euclidean interval IE = x2 + t2, invariant under rotations on the
(t, x) plane by angle θ, and space or time inversions. The corresponding transformations for the
quadratic form at hand can be obtained by rotating θ → iψ. Leading to(

t′

x′

)
=

(
coshψ sinhψ
sinhψ coshψ

)(
t
x

)
. (1.51)
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The relative velocity is obtained by monitoring the transformation of the point x = 0, leading
to tanhψ = x′/t′ = V . Hence, we have the usual transformations(

t′

x′

)
=

(
γ γV
γV γ

)(
t
x

)
, (1.52)

with γ = (1− V 2)−1/2.

x

t

g < 0

g < 0

g > 0g > 0

g
=

0 g
=

0

Figure 1.1: The orbits of the Lorentz group in the (t, x) plane form a set of hyperbolae, defined by
g = −I = −t2 + x2 = constant. Orbits in the spacelike region g > 0 intersect the t = 0 axis, whereas
orbits in the timelike region, g < 0 intersect the x = 0 axis and preserve the sign of the times. The
hyperbolae degenerate to straight lines in the light-like region, g = 0 given by all the points connected
by light rays from the origin.

The geometrical interpretation of special relativity was given by Minkowski in 1908. We can
think of R1+3 ≡ R×R3 as the space-time, where the first factor is ‘time’ and the second factor
is ‘space’. We have the set of ‘events’ (t, ~x ) ∈ R1+3, equipped with a metric

g(∆t,∆~x) = ∆~x 2 −∆t 2 (1.53)

between pairs of events.5 This generalizes the standard Euclidean metric of R3, which computes
the rotationally invariant length-squared of the vector ∆~x, by the addition of the term −∆t2

which makes the Minkowski metric non-positive definite. Lorentz transformations introduce
motions on R1+3 that preserve this metric, inducing a causal structure. To explain the physical
meaning of the metric, we notice that any point in R1+3 must fall into one of three Lorentz-
invariant sets, depending on the sign of g.

If g < 0, there exists a frame in which ∆~x 2 = 0 and the events ‘occur’ at the same point in
space. In this case we say that the interval between such events is ‘timelike’ because in this rest
frame, the interval can be written as g = −∆τ2, where τ is the time as measured by a clock in
that rest frame, called ‘proper time’.

On the other hand, for g > 0 there is a frame where ∆t2 = 0, and the events can be
considered as ‘simultaneous’. In this situation we speak of ‘spacelike’ separated events. In the
special frame of simultaneity the metric equals the standard Euclidean metric g = ∆~x 2.

5A common notation for infinitesimal intervals is g(dt, d~x ) ≡ ds2 = −dt2 + d~x 2.
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Finally, the events with g = 0 are said to be ‘lightlike’ separated and correspond to those
that can be connected by light rays. Generally speaking, the physical content of the metric is
that

√±g can be interpreted as either a standard time lapse or a standard spatial distance.

Problem: Twin paradox

Given two timelike separated events, A and B, prove that any traveler making the journey from A to B
will maximize her/his travel time by going at constant speed. Show that the subjective travel time can
be made arbitrarily short if we tolerate arbitrary accelerations (Langevin’s twin paradox).

It turns out that the sign of ∆t is Lorentz invariant for timelike intervals, making it possible
to establish causal relationships between such events. In particular, the velocity of any inertial
motion between timelike events, ~v = ∆~x/∆t, is subluminal, |~v | < 1. On the other hand, the
ordering of times for spacelike events is not Lorentz invariant, so that in that case we cannot
agree to a Lorentz-invariant notion of causal influence. Effective velocities in that case would
be superluminal. Hence, we conclude that only sub-luminal velocities can correspond to causal
processes.

Free particle dynamics

With the simple elements introduced so far we are ready to study the relativistic dynamics of
free particles. Let us consider a causal trajectory of a particle of mass m, specified as a function
~x(t) in such a way that the velocity ~v = d~x/dt is sub-luminal at all times, |~v | < 1. Following
the general rules of Lagrangian dynamics, we define an action

SP =
∫
dtLP(~x(t), ~v(t))

with the sole requirement that it gives the correct equations of motion for a free particle, i.e.
~v = constant, and that it be Lorentz invariant. To find the right action, let us imagine that we
jump on the particle itself, parametrizing the trajectory in the rest frame of the particle. The
time variable on this frame is, by definition, the proper time τ , and the state of the particle is
that of ‘rest’ at all proper times. Using the general policy of defining the Lagrangian as ‘kinetic
energy minus potential energy’ from elementary mechanics, we can write

SP = −C
∫
dτ , (1.54)

where C is a constant specifying the ‘potential energy’ of the particle at rest. From the definition
of proper time we have dτ2 = dt2 − d~x 2, where (t, ~x) are coordinates in another arbitrary
Lorentz frame, and we learn that (1.54) is invariant under Lorentz transformations. Written in
an arbitrary frame we thus have

SP = −C
∫
dt
√

1− ~v 2 , (1.55)

and the value of the constant C can be obtained by expanding the Lagrangian at low velocities
and matching to the Newtonian form: −C

√
1− ~v 2 ≈ −C + 1

2 C ~v
2 ≈ −C + 1

2 m~v 2, which
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determines C = m and the final form

SP = −m
∫
dτ = −m

∫
dt
√

1− ~v 2 , (1.56)

of the free particle action in Special Relativity. From here, we get the free equation of motion,
d~v/dt = 0 and the relativistic versions of the conserved quantities in the motion, the momentum
and the energy

~p =
∂LP

∂~v
= m~v γ , E = ~v · ~p− LP = mγ =

√
~p 2 +m2 , (1.57)

where γ = (1− ~v 2)−1/2. Notice that Lorentz invariance of the dynamics leads naturally to the
notion of a potential energy at zero velocity, given by the rest mass, or the famous E = mc2 if
the conventional units were restored. Writing the last of (1.57) equations in the form E2− ~p 2 =
m2, we notice that the four-vector (E, ~p ) behaves under Lorentz transformations just as the
coordinates (t, ~x ).
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1.3 Relativistic dynamics

The procedure outlined in the previous section can be repeated for more complicated sys-
tems. In postulating dynamical principles based on Lorentz symmetry, we must always start by
guessing a Lorentz-invariant action. Further constraints are brought by the principles of locality
and the matching to known limits, such as the Newtonian approximation.

1.3.1 The Lorentz group

In order to proceed with this program, it is useful to introduce some powerful notation to
help in the search of Lorentz-invariant combinations of physical quantities.

The Lorentz group O(1, 3) was defined as the set of linear maps of R1+3 onto itself with the
condition of keeping the Minkowski interval invariant. Working in differential notation

ds2 = −dτ2 = −dt2 + d~x 2 (1.58)

is left invariant. In the notation (t, ~x ) = (x0, ~x ) = (xa), with a = 0, 1, 2, 3, we have

xa → x′ a =
∑
b

La b x
b ≡ La b xb , (1.59)

where we have used Einstein’s convention of implicit summation of repeated indices in top-down
pairs. 6 Then, the Minkowski metric ηab,

ds2 = ηab dx
a dxb , (ηab) = diag (−1, 1, 1, 1) (1.60)

is left invariant by the Lorentz matrices,

ηab L
a
c L

b
d = ηcd (1.61)

or, in matrix notation η = Lt η L. Inverting this relation and noting that η = η−1 we have
η = L−1η(L−1)t or, in index notation

ηab (L−1)c a (L−1)d b = ηcd . (1.62)

Setting a = b = 0 in (1.61) we have

−1 = η00 = La 0 L
b

0 ηab = −(L0
0)2 +

∑
i

(Li 0)2 , (1.63)

so that (L0
0)2 ≥ 1 and one cannot change continuously the sign of L0

0. Similarly, from
det η = det η (detL)2 we find that detL = ±1 and we cannot smoothly change the sign of
the determinant either. This divides the set of L matrices into four connected components
according to the signs of L0

0 and detL. Proper Lorentz transformations have both positive and
are continuously connected to the identity. We can reach the other components by the action
of P and T on the proper transformations, where P stands for parity, (t, ~x)→ (t,−~x), and T is
time reversal, (t, ~x)→ (−t, ~x).

6In the following, we will use Einstein’s summation convention for any set of four-dimensional indices, keeping
the explicit sum notation for vector-like three-dimensional indices.
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Upon analytic continuation (t, x) → (it, x) the Lorentzian metric becomes Euclidean ds2 =
d(it)2 +d~x 2. The resulting connected group is SO(4), which is isomorphic to SU(2)L×SU(2)R.
The operation of analytic continuation, being continuous, should not change the discrete struc-
ture of group representations. This means that all representations of the Lorentz group can be
constructed as the pairs (jL, jR), with jL,R the standard spins of SU(2) irreducible represen-
tations. This form is very useful to describe spinor degrees of freedom, although most of the
applications in classical physics can be exhausted by the so-called tensor representations, which
appear in the tensor products of vector representations.

We thus conclude that a relativistic model is given by a Lorentz-invariant Lagrangian defined
over Minkowski spacetime, i.e. the pair (R3+1, η), with dynamical variables in some represen-
tations of O(3, 1).

Tensor representations

The defining (vector) representation of the Lorentz group corresponds to any quantity that
transforms as the coordinates:

Ua → La b U
b . (1.64)

Any such quantity is called a ‘contravariant’ vector. Given two contravariant vectors, U, V , we
can form a two-index object T ab = UaV b by ‘tensor’ product. It transforms as

T ab → La cL
b
c T

cd .

Other combinations with the same transformation law are linear combinations of tensor products,
UaV b + XaY b + . . .. Hence, any set of quantities transforming as above may be defined as a
second-rank contravariant tensor, and the generalization to arbitrary rank is obvious.

A different transformation law is followed by the differential operators

∂a ≡
∂

∂xa
.

If we view x′ a as functions of xa, we have

∂x′ a

∂xb
= La b ,

∂xa

∂x′ b
= (L−1)b a . (1.65)

Using the chain rule,

∂′ a =
∂xb

∂x′ a
∂b = (L−1)a b ∂b . (1.66)

Such transformation law, with the inverse Lorentz matrix L−1, is conventionally called ‘covari-
ant’. General covariant tensors can be defined following the previous steps of their contravariant
cousins, by tensor product and addition. For example, a rank-two covariant tensor transforms
as

Aab → (L−1)a c (L−1)b d Acd (1.67)

and so on. Mixed tensors with p contravariant and q covariant indices can be constructed in
straightforward fashion. They can be given an intrinsic definition by regarding the collections
of indexed numbers as components in an abstract basis formed by the contravariant differentials
dxa and the covariant derivative operators ∂b, i.e. we require the formal expression

T =
∑

a1,...,b1,...

T a1...ap
b1...bq dx

b1 ⊗ · · · ⊗ dxbq ⊗ ∂a1 ⊗ · · · ⊗ ∂ap (1.68)
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to be invariant under a change of basis

dxa → La b dx
b , ∂a → (L−1)a b ∂b . (1.69)

The transformation laws of the components follow suit.
This construction also shows that any pair of indices that are identified and summed up with

Einstein’s convention become irrelevant as far as the transformation rules is concerned. That is,
the ‘contracted’ product UaVa of a contravariant and a covariant vector is a Lorentz invariant,
whereas the contraction VaT ab transforms as a contravariant vector, according to the free index
b. We can also construct invariant differential operators, such as

∂2 ≡ ∂a∂a = ηab∂a∂b = −∂2
t + ~∂ 2 , (1.70)

usually called Laplacian or d’Alembertian.

Invariant tensors

The task of constructing Lorentz invariants is greatly aided by the definition of invariant
tensors. These are tensors that retain their form under Lorentz transformations. The most
obvious case is the Kronecker delta δab with upper-and-lower indices. It transforms as an invariant
mixed tensor of rank two:

δab = La c (L−1)b d δcd . (1.71)

Another important invariant tensor is the metric itself. According to (1.62) we have

ηab(L−1)c a (L−1)d b = ηcd , (1.72)

as corresponds to the transformation law of a rank-two covariant tensor. It is convenient to
define the inverse metric (equal to itself) with upper indices

(ηab) = diag (−1, 1, 1, 1) . (1.73)

Hence, ηabηbc = δac , and given the tensor character of ηab and δab , it follows that ηab is an invariant
contravariant tensor of rank two.

The invariant tensors constructed from the metric are especially useful because they can be
used to construct covariant tensors out of contravariant tensors and viceversa. By the rules
already stated it is very easy to check that, given a contravariant tensor, the contraction

ηab T
bc ... = Ta

c ... (1.74)

transforms as a mixed tensor with the indices as indicated. We say that the metric can be used
to ‘lower’ an index. Analogously, we can use the upper-index version to ‘raise’ covariant indices
into contravariant ones.

A final interesting object is the completely antisymmetric Levi–Civita symbol. We define it
as the signature of the permutation σ : (0, 1, 2, 3) → (a = σ(0), b = σ(1), c = σ(2), d = σ(3)),
i.e.

ε0123 = 1 , εσ(0)σ(1)σ(2)σ(3) = sign (σ) . (1.75)

The identity
εefgh La

eLb
fLc

gLd
h = det(L) εabcd (1.76)
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implies that the Levi–Civita symbol is a true invariant tensor for proper Lorentz transformations,
and flips its sign under parity or time reversal. We can also define associated objects by raising
indices with the inverse metric ηab. In particular, the completely contravariant version is also
completely antisymmetric with

ε0123 = η0aη1bη2cη3d εabcd = det (η−1) ε0123 = −1 . (1.77)

A useful formula for contractions of arbitrary d-dimensional Levi–Civita tensors is

εc1···cnan+1···ad εc1···cnbn+1···bd = (−1)sig n! det (δaj bk) = (−1)sig n!(d− n)! δan+1

[bn+1
· · · δadbd] , (1.78)

where (−1)sig is the signature, +1 for Euclidean metrics and −1 for Lorentzian ones, and the
square brackets stand for the complete anti-symmetrization of indices.

Spinors

In known examples in nature, spinor representations are associated to fermionic fields. These
are fundamentally more ‘quantum’ that their bosonic counterparts. By the spin-statistics theo-
rem of quantum field theory, we know that the bosonic fields come in representations of integer
Lorentz spin, i.e of tensor type. For this reason we will not dwell on spinor representations in
these notes, except for a quick review of standard notation.

The simplest spinor representation is carried by the so-called Dirac spinor, ψ, which trans-
forms in the representation (1/2, 0) ⊕ (0, 1/2), of complex dimension four. To construct the
Lorentz action in this representation, one usually starts from the four-dimensional Dirac matri-
ces γa, satisfying the Clifford algebra,

{γa, γb} = −2ηab ,

so that
σab =

i

4
[γa, γb]

generate the SO(1, 3) Lie algebra. Then, the spinor representation is given by ψ → D(L)ψ,
where D(L) is the four-dimensional matrix

D(L) = exp

 i
2

∑
a,b

θabσ
ab

 ,

and the antisymmetric matrix of parameters θab is defined in terms of the Lorentz transformation
matrix L, by the relation L = exp(θ). The irreducible components are reached acting with
the projectors P± = 1

2 (1 ± γ5), with γ5 = iγ0γ1γ2γ3. The resulting two-component spinors
ψ± = P±ψ are called left- and right-handed Weyl spinors. The two projectors are mapped into
one another by parity. Hence, insisting on parity as a good symmetry forces the use of the
four-component Dirac spinors.

1.3.2 Relativistic particles revisited

We can now recast the particle dynamics in a more covariant language. Let xa(τ) be the
trajectory of a particle in proper-time parametrization. The four-velocity defined as

ua =
dxa

dτ
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is a contravariant four-vector under the Lorentz group, and the free equation of motion may be
written as

d2xa

dτ2
=
dua

dτ
= 0 .

Conserved energy and momentum can also be assembled into a contravariant four-vector, called
the four-momentum pa = mua, where (p0, ~p ) = (E, ~p ). The so-called ‘dispersion’ or ‘mass-shell’
relation E2 − ~p 2 = m2 may be written in condensed form as p2 + m2 = 0. 7 Equivalently, the
four-velocity is constrained to satisfy u2 = uau

a = −1.
The free particle action over a trajectory γ can be written in the following variety of equiv-

alent forms:

SP = −m
∫
γ
dτ = −m

∫
γ
dt
dτ

dt
= −m

∫
γ
dt
√

1− ~v 2 = −m
∫
γ
dt

√
−ηab

dxa

dt

dxb

dt
. (1.79)

In particular, the second form shows that the coordinate time t is just an integration parameter
which might be redefined at will. In many situations, the freedom to reparametrize the time
variable does offer some rewards. So we consider the action in arbitrary parametrization

SP = −m
∫
dτ = −m

∫
dσ

dτ

dσ
= −m

∫
dσ

√
−ηab

dxa

dσ

dxb

dσ
. (1.80)

There is a useful trick that simplifies the action by linearizing it and, at the same time, permitting
a smooth massless limit, a convenient fact for the discussion of light propagation.

Let us consider the action

SP[xa, e] = 1
2

∫
dσ

(
1

e(σ)
ηab

dxa

dσ

dxb

dσ
−m2 e(σ)

)
, (1.81)

where the function e(σ) is considered as an independent variable. Its equation of motion
δSP /δe = 0 leads to

dxa

dσ

dxa
dσ

= −m2 e(σ)2 . (1.82)

Form this equation we can solve for e(σ) and substitute back into (1.81), obtaining the original
action (1.80). In this way, we show that both actions are physically equivalent.

The action (1.81) is invariant under reparametrizations of the path (just as (1.80) was)
provided we let e(σ) transform in such a way that e(σ)dσ is left invariant. Worldline parameters
for which e(σ) = constant are called affine. Choosing e(σ) = 1 and taking the limit m → 0
produces the equations of motion of a massless particle,

d2xa

dσ2
= 0 ,

dxa

dσ

dxa
dσ

= 0 .

The first equation says that the trajectory is ‘straight’ in the σ parametrization, and the second
equation says that it lies on the light cone.

7Experimental measurements of dispersion relations, p2 +m2 = 0, provide the most stringent tests of Lorentz
symmetry, down to the 10−20 level.
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For massive particles, it is convenient to chose the proper time as the path parameter, σ = τ ,
so that (1.82) sets e(τ) = 1/m. This means that we can simply use the linearized version of the
action

SP = 1
2 m

∫
dτ

(
ηab

dxa

dτ

dxb

dτ
− 1

)
, (1.83)

which is actually the most naive generalization of the Newtonian action. The resulting equations
of motion, d2xa/dτ2 = 0, must be supplemented by the field equation of e(τ), which was lost
when setting it to a constant in the action. This equation of motion is simply the mass-shell
condition u2 = −1, or equivalently p2 + m2 = 0. The energy of the particle in a ‘laboratory’
frame is E = p0 = −η00 p

0, so that the Lorentz-invariant expression for the energy measured by
an observer at four-velocity ua is

Eu(p) = −ηab paub = −paua . (1.84)

Relativistic forces on particles

Introducing interactions in a relativistic theory of particles is a rather non-trivial issue, given
the fact that a limit to the speed of information transfer is built into the very fabric of special
relativity. This means that standard generalizations of many-particle interaction Lagrangians
from Newtonian mechanics are bound to be problematic, since specifying potentials involving
particles located at different points in spacetime is a sort of ‘action at a distance’.

There are two basic solutions to this problem. The first solution is to take a phenomenological
attitude and consider contact interactions in spacetime. In this view, particles are free except
for sharply defined collisions at spacetime points, whose physical effect is to change the energy-
momentum of each particle pain → paout at the collision point. The physical requirement that a
system of self-interacting particles still behaves like an effective isolated system when discussed
globally (Newton’s third law) implies that energy-momentum should be conserved locally at
every collision event: ∑

colliding particles

pain =
∑

colliding particles

paout . (1.85)

A clear shortcoming of this prescription is the arbitrariness of the detailed interaction law,
since (1.85) does not determine the precise values of outgoing momenta, given the incoming
ones. A rather more satisfactory solution to the interaction problem is to follow the blueprint
of Maxwell’s theory and prescribe the particle interactions to be mediated by fields. Fields are
assumed to satisfy local relativistic equations, ensuring that the solutions are waves traveling
at most at the speed of light, thus automatically incorporating the required retardation effects
between particles. Since the interaction of a fixed background field configuration with a given
particle must be locally specified at the particle trajectory, we can make contact with the formal
Lagrangian framework by describing such interaction with a generalized relativistic potential.
Thus, we generalize the free particle action as

SP = −m
∫
dτ −

∫
dτ V (x(τ), ẋ(τ)) , (1.86)

where we have allowed for the potential to depend on the particle’s four velocity as well as the
particle coordinate. In order to find the equations of motion implied by this action we must be

24



careful to use a general parametrization of the path, i.e. we write (1.86) in the form

SP = −m
∫
dσ
dτ

dσ

[
1 + V

(
x(σ),

dσ

dτ

dx

dσ

)]
, (1.87)

with dτ/dσ =
√
−ηab dxadσ dxb

dσ .
Varying this action under fluctuations of the trajectory function xa(σ) → xa(σ) + δxa(σ)

and requiring it to be stationary we obtain the equations of motion in the form of a relativistic
Newton’s law

m
d2xa

dτ2
= F a . (1.88)

where the generalized force four-vector F a depends on the potential V in a very complicated
and non-linear way. Even for the case of a potential without dependence on four-velocities,
V0 = q0φ(x), we find the non-trivial velocity-dependent force

Fa = −m∂aΦ−mẋa ẋ
b ∂bΦ , (1.89)

with
Φ = log

(
1 +

q0

m
φ

)
. (1.90)

The result is very different from the naive guess for the relativistic generalization of the Newto-
nian force, which would be −q0∂aφ.

We can generalize such purely scalar coupling by expanding the general potential V(x, ẋ) in
powers of four-velocities, obtaining a set of couplings of the particle’s worldline to generalized
fields transforming in symmetric tensor representations of the Lorentz group:

SP = −m
∫
dτ − q0

∫
dτ φ(x(τ))− q1

∫
dτ ẋaφa(x(τ))− 1

2 q2

∫
dτ ẋaẋb φab(x(τ)) + . . . (1.91)

where we have separated conventional numerical coefficients, qi, called ‘charges’ according to
qnφa1...an = ∂̇a1 . . . ∂̇anV, and we use the notation ∂̇a ≡ ∂

∂ẋa . . These terms can be interpreted
as the interaction of the particle with an external scalar field φ, a vector field φa, a symmetric
tensor field φab, etc. In general, only symmetric tensors can be coupled in this way, unless the
particle is decorated with some other degrees of freedom (such as for example a spin four-vector
Sa).

The generic relativistic force obtained in this way is extremely non-linear in the external
potentials, except for the case of a world-line potential linear in the four-velocities, i.e. V(x, ẋ) =
q1 ẋ

a φa. In this case, the interaction potential has an intrinsic meaning as a purely geometrical
line integral over the trajectory: ∫

γ
dτ ẋaφa =

∫
γ
dxaφa ,

and the relativistic force is linear in velocities,

Fa = −q1 Φab ẋ
b , (1.92)

and also linear in potentials Φab ≡ ∂aφb − ∂bφa. In fact, it is only for the coupling to vector
fields that we find such simple force laws. The general case is similar to the situation with scalar
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fields (1.89) in the sense that we are led to extremely non-linear force laws. We shall see later
that the vector-field force corresponds to the special case of electromagnetic theory.

The coupling of a system of particles to external fields can be summarized in field-theory
Lagrangians by defining appropriate currents. For scalar couplings we have a scalar ‘density’

JS(x) =
∑
p

∫
dτp qp δ

(4)(x− x(τp)) , (1.93)

which is defined so that 8 ∫
d4xJS(x)φ(x) =

∑
p

qp

∫
dτp φ(x(τp)) .

Vector fields are always coupled via standard vector currents

JaV(x) =
∑
p

∫
dτp qp ẋ

a δ(4)(x− x(τp)). (1.94)

Vector currents are always associated to conservation laws. To see this, we pass to the non-
covariant representation by performing the substitution dτp = dt dτp/dt in the proper time
integrals and using the temporal component of the delta function δ(t − t(τp)) to compute the
integral over t. The result is the usual expression for the currents

J0(t, ~x ) =
∑
p

qp δ
(3)(~x− ~xp(t)) , ~J(t, ~x ) =

∑
p

qp~vp δ
(3)(~x− ~xp(t)) . (1.95)

The covariant conservation law ∂aJ
a = 0 translates then into the usual ∂tJ0 + ~∂ ~J = 0.

In an analogous fashion, we may consider higher tensorial generalizations. The most inter-
esting one is the two-index symmetric object

JabT (x) =
∑
p

∫
dτp qp ẋ

a ẋb δ(4)(x− x(τp)) , (1.96)

which actually contains the scalar density above in the trace component, since ẋaẋa = −1 implies
ηabJ

ab
T = −JS. The symmetric tensor (1.96) acquires an important physical interpretation when

qp = mp, the rest mass of the particles.

The local energy-momentum tensor

The second order tensor

T ab(x) =
∑
p

∫
dτp mp ẋ

a
p ẋ

b
p δ

(4)(x− x(τp)) (1.97)

is called the energy-momentum tensor. According to the previous subsection, it measures the
response of the system of particles to the introduction of an external field transforming as a

8The four-dimensional delta function δ(4)(x−x(τ)) = δ(t− t(τ))δ(3)(~x−~x(τ)) is Lorentz-invariant up to a sign
of the transformation’s determinant.

26



symmetric tensor of rank two, and coupling proportionally to the mass of the particles. Using
repeatedly the relation∫

dτF (x(τ), ẋ(τ))
dt

dτ
δ(4)(x− x(τ)) = F (x(t), ẋ(t)) δ(3)(~x− ~xp) (1.98)

we find that
T 00 =

∑
p

Ep δ
(3)(~x− ~xp) (1.99)

is the energy density of the particle system. In turn,

T i0 =
∑
p

Ep v
i
p δ

(3)(~x− ~xp) =
∑
p

pip δ
(3)(~x− ~xp) , (1.100)

which we can interpret either as the energy current, or as the momentum density. On the other
hand

T ij =
∑
p

pip v
j
p δ

(3)(~x− ~xp) =
∑
p

pjp v
i
p δ

(3)(~x− ~xp) (1.101)

is either the flux of i-th momentum in the j-the direction, or viceversa.
Since T ab characterizes the density and flow of energy, it should be associated to a local

conservation law, i.e. to a current that satisfies a ‘continuity’ equation ∂aJ
a = 0, just like

the electromagnetic current. The natural current to be associated with the energy-momentum
tensor is the four-momentum flux as measured by a local observer with four-velocity ua,

Pau = −ub T ab . (1.102)

To justify this expression, notice that it reduces to the correct T 0a for an observer at rest and,
being a tensor equation, it is valid in all Lorentz frames. We define the local current at all
points by giving a family of fiducial observers with four-velocity field ua. If these observers are
stationary with respect to one another, all ua are parallel, and ∂aub = 0. Under these conditions,
we obtain conservation of the local energy-momentum flux, ∂aPau = 0, if the energy-momentum
tensor satisfies ∂aT ab = 0.

A direct computation for the particle system yields

∂aT
ab =

∑
p

mp

∫
dτp ẋ

a
p ẋ

b
p ∂aδ

(4)(x− x(τp)) . (1.103)

Acting on the delta function ẋa∂a δ(4)(x− x(τ)) = −ẋa∂/∂xa(τ) δ4)(x− x(τ)) = −d/dτ δ(4)(x−
x(τ)). Hence

∂aT
ab = −

∑
p

mp

∫
dτp

d

dτp

(
ẋbp δ

(4)(x− x(τp))
)

+
∑
p

mp

∫
dτp ẍ

b
p δ

(4)(x− x(τp)) . (1.104)

The first term is supported on the endpoints and thus vanishes, whereas the last term can be
written

∂aT
ab =

∑
p

∫
dτp

dpbp
dτp

δ(4)(x− x(τp)) =
∑
p

dpbp
dt

δ(3)(~x− ~xp) (1.105)

as the density of momentum non-conservation. Hence, the local energy-momentum conserva-
tion requires that particles are free ẍa = 0, or perhaps that their interactions are localized in
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spacetime (in this case,
∑

in p =
∑

out p at each interaction point). We conclude that, up to
regions of measure zero in spacetime, the local conservation of the energy momentum tensor is
equivalent to the equation of motion in a system of free particles. This property will be recurrent
in all well-defined matter systems. The local conservation of the energy-momentum tensor is
of paramount importance in relativistic theories, since it embodies the basic requirements of
locality and Lorentz symmetry.

Angular momentum and spin

The local conservation of the energy-momentum tensor allows us to define the conserved
four-momentum of a system

P a =
∫
R3
T 0a , (1.106)

which behaves as the conserved four-momentum of a particle. In particular, we can define the
total mass M =

√
−P 2 and the global four-velocity Ua = P a/M . Analogously, we can define

the total orbital angular momentum with respect to the origin as

Lab = XaP b −XbP a , (1.107)

where Xa = (t, ~X) is the “center of mass” trajectory, where

~X =
1
M

∫
R3
~x T 00 .

The intrinsic angular momentum, or spin, is defined as the angular momentum with respect to
the center of mass

Sij =
∫
R3

(
(xi −Xi)T 0j − (xj −Xj)T 0i

)
, (1.108)

which differs from the total angular momentum with respec to the origin

J ij =
∫
R3

(
xiT 0j − xjT 0i

)
,

by
J ij = Lij + Sij .

In vector notation, Si = 1
2

∑
jk ε

ijkSjk, i.e. Sjk =
∑
i S

iεijk. We can generalize this to a four-
vector by stating that S0 = 0 in the rest frame of the centre of mass. Hence, a Lorentz-invariant
equation that reduces to these in the rest frame is

Sa = 1
2 εabcdS

bcUd . (1.109)

The vanishing of the temporal component in the rest frame translates into UaSa = 0.
The local tensor object

Mabc ≡ xaT bc − xbT ac (1.110)

is conserved provided the energy-momentum tensor is symmetric, ∂aMabc = T bc − T cb = 0,
and defines an angular momentum density J abu = −ucM cab associated to a spacelike surface
orthogonal to the field of four-velocities ua. On a t = constant surface it defines the conserved
angular-momentum tensor

Jab = −Jba =
∫
R3
M0ab =

∫
R3

(xaT b0 − xbT a0) , (1.111)
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whose spatial components give J ij above. We can project the spin four-vector out of Jab by the
formula (Pauli–Lubanski)

Sa = 1
2 εabcdJ

bcUd , (1.112)

since the orbital part Lab drops out from this expression.
Conservation of P a, Ja and Sa implies that

dUa

dτCM
=

dSa

dτCM
= 0 , (1.113)

where τCM is the proper time associated to the trajectory of the center of mass.

Fluids

It is interesting for applications to take the fluid limit. This is a particle system with very
short-ranged collisions, so that a comoving observer sees the system as characterized by an
energy density, a pressure, and perhaps gradients of the net velocity field, after one averages
over the short-distance and short-time collisions. The fluid is called perfect if the comoving
observer sees the fluid as isotropic, characterized solely by the density and the pressure:

ρ =

〈∑
p

Ep δ
(3)(~x− ~xp)

〉
fluid

, p =
1
3

∑
i

〈∑
p

pip v
i
p δ

(3)(~x− ~xp)
〉

fluid

. (1.114)

Hence, in the fluid limit, we have T 00 = ρ and T ij = p δij in the comoving frame. 9 This
determines the compact expression

T ab(x)|fluid = p(x) ηab + (p(x) + ρ(x)) Ua(x)U b(x) (1.115)

in a general inertial frame. Here, Ua is the (spacetime dependent) field of four-velocities of
the fluid. The conservation equation ∂aT

ab = 0 implies, in the non-relativistic limit, p � ρ,
|~v |dp/dt� |~∂ p|, the two Euler equations for the dynamics of a perfect fluid 10

∂tρ+ ~∂(ρ~v ) = 0 , ρ
(
∂t~v + (~v · ~∂ )~v

)
= −~∂ p . (1.116)

1.3.3 Relativistic fields

Field theory model building is a highly nontrivial endeavor, plagued with subtleties already
at the level of classical physics. A local Lagrangian of fields Ψ in arbitrary representations of the
Lorentz group may be organized by its dependence on derivatives L(Ψ, ∂aΨ, ∂a∂bΨ, . . .). The
corresponding equations of motion are obtained by requiring the action to be stationary under
the variations Ψ → Ψ + δΨ. After repeated application of integration by parts and neglecting
boundary terms one finds

0 = −∂L
∂Ψ

+ ∂a
∂L

∂(∂aΨ)
− ∂a∂b

∂L
∂(∂a∂bΨ)

+ . . . , (1.117)

9The fluid averages are defined as 〈A〉fluid = ∆V −1
∫

∆V
A for a small volume element ∆V , still large enough

to contain a macroscopic number of particles. Using kinetic theory, one can argue that pipv
i
p is the momentum

transfer per unit area and time (i.e. the contribution to pressure) exerted by a particle over a surface orthogonal
to the ith direction.

10Exercise: Check it.
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where the signs alternate according to the number of derivatives acting on Ψ. In most applica-
tions, one can restrict to Lagrangians depending polynomially upon one single derivative of the
field, ∂aΨ (perhaps after repeated application of partial integrations). In this case we obtain the
more standard form of the Euler–Lagrange equations, which reduces to the first two terms in
(1.117). Terms in the Lagrangian with more than two derivatives must be safely considered as
perturbative corrections in the sense of the local expansion, and their effect is only to be trusted
when they are not dominant.

A better Noether

We now pause to introduce a new derivation of Noether’s theorem for the case of field theories,
which stands out for its generality. Let L[Ψ] be a general functional of Ψ(x) with polynomial
dependence on ∂a, but otherwise generic. We assume that, under a transformation δεΨ = ε ξ[Ψ]
with a constant ε, the Lagrangian density transforms as a total derivative δεL = ε∂af

a
ξ [Ψ].

Consider now a more general transformation where the symmetry parameter is given a func-
tional dependence on spacetime coordinates, i.e. δΨ = ε(x)ξ[Ψ]. The variation of the Lagrangian
density can be expanded in derivatives of ε(x) as

δL = εK[Ψ] + ∂aεK
a[Ψ] + ∂a∂bεK

ab[Ψ] + · · ·

Restricting to a constant ε(x), we know that only the first term survives, and the symmetry
condition implies then that K[Ψ] = ∂af

a
ξ [Ψ] is a total derivative. In any case, inserting this

expansion into the variation of the action S =
∫ L[Ψ] we obtain, after integrating by parts

δS = −
∫
ε ∂aJ

a
ξ

where
Jaξ = −faξ [Ψ] +Ka[Ψ]− ∂bKab[Ψ] + · · · (1.118)

Since the variation δΨ = ε(x)ξ[Ψ] is a particular case of a general variation of the fields, on a
configuration that extremizes the action we conclude that this current is conserved, ∂aJaξ = 0.
Hence, in (1.118) we have a constructive definition of the Noether current, valid in an arbitrary
derivative expansion. Should it be possible to write the dependence on derivatives in L[Ψ] as
some function of ∂aΨ (perhaps up to total derivatives), we would obtain the previous result,
since Ka = ∂L/∂(∂aΨ) in this case.

In what follows, we list the most common types of field theories, as established by their
pedagogical features or their importance in the actual description of nature.

Scalars

The prototype relativistic field theory with minimal derivative content is the scalar model

L = −1
2 η

ab∂aφ∂bφ− V (φ) . (1.119)

The first term is the only Lorentz-invariant combination of two derivatives of the field, whose
detailed structure

−1
2 (∂φ)2 = 1

2 (∂tφ)2 − 1
2 (~∂φ)2 , (1.120)
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shows that the time derivative is the strict ‘kinetic’ term and the spatial derivative is really part
of the ‘potential energy’. Up to a total derivative, we also have

L = 1
2 φ∂

2 φ− V (φ) + ∂(. . .) , (1.121)

which leads to the field equation:
∂2 φ− V ′(φ) = 0 . (1.122)

One usually separates the linear and quadratic parts of the potential V (φ) = Jφ+ 1
2 m

2φ2+. . . to
interpret them as the coupling to a scalar ‘source’ and a ‘mass’ term. A nonlinear generalization
of (1.119) involving several scalar fields φI is the so-called nonlinear sigma-model, with many
applications in particle physics and condensed matter physics

L = −1
2

∑
IJ

GIJ(φ) ∂aφI ∂aφJ − V (φ) . (1.123)

We return now to the basic Klein–Gordon model (1.119) and investigate its solutions. Start
with the massless free field, V (φ) = 0. The solution of the field equation ∂2φ = 0 is given by a
linear superposition of plane waves φk(x) = φ̃k exp(−ikx) + c.c. of wave vector ~k and frequency
ω = k0 = |~k |. These waves are defined on all of R1+3, traveling at the speed of light from the
infinite past to the infinite future.

The wave vector ka is orthogonal to the constant-phase surfaces kaxa = constant. Consider
the integral curves xa(σ) that solve the linear differential equation dxa/dσ = ka and have, by
definition, tangent vector ka. These curves are orthogonal to the constant-phase surfaces and can
be interpreted as trajectories of zero-mass particles, by the condition k2 = (dxa/dσ)(dxa/dσ) =
0. The frequency measured in a rest frame is ω = k0, so that the frequency measured by an
observer with four-velocity ua is

ω = −uaka . (1.124)

We notice the analogy with the formula for the energy of a particle, E = −paua. In the quantum
theory, E = h̄ω and ~p = h̄~k for a photon, so that the particle ‘model’ for light propagation is
no longer an analogy but a strict fact. 11 For the purposes of special and general relativity, we
can formally treat the propagation of localized, massless wave packets as the zero-mass limit of
particle propagation with the operator replacement

m
d

dτ
→ d

dσ
,

where σ is an affine parameter along the ‘light’ ray.
The next level of complication is the case of an external ‘source’ V (φ) = J , with field equation

∂2φ = J , solved formally as

φ = φwave +
1
∂2
J ,

where the first term is a solution of the massless wave equation in vacuo, ∂2φwave = 0, and
the second term is a formal representation of a particular solution with structure similar to
the Newtonian potential, except for the replacement of the operator ~∂ 2 by the operator ∂2 =

11Although we coach this discussion for the case of scalar fields and scalar particles, the propagation properties
of massless scalar waves generalize readily to higher spin cases, including electromagnetic waves and the ‘photon’
particles.
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−∂2
t + ~∂ 2, which takes the Poisson equation into the Klein–Gordon equation. Given a purely

static solution of the Poisson equation ~∂ 2φ = J ,

φstatic(~x ) =
1
~∂ 2
J = −

∫
d3y

4π
J(~y )
|~x− ~y | ,

with no time dependence, we can obtain a solution of the relativistic equation by introducing
time-dependence through the trick of the retarded potential, i.e. evaluating the source at the
retarded time t − |~x − ~y |, to represent the fact that disturbances on the field φ travel at the
speed of light, as vacuum waves.

φ(t, ~x )retarded = −
∫
d3y

4π
J(t− |~x− ~y |, ~y )

|~x− ~y | . (1.125)

We can now use this same intuition to interpret the general solution. For an arbitrary potential
we may rewrite (1.122) as

φ(t, ~x )retarded =
1
∂2
V ′(φ) = −

∫
d3y

4π
V ′[φ(t− |~x− ~y |, ~y )]

|~x− ~y | . (1.126)

Rather than a general solution, this is an integral equation which we may solve iteratively by
redefining the source order by order as a function of the approximate solution at lower orders. In
particular, each insertion of a term in V ′(φ) represents a ‘kick’ of the free waves that transport
the interaction at the speed of light. In this way, we can understand how successive kicks due to
a mass term V ′(φ) ∼ m2φ have the collective effect of reducing the speed of propagation from
that of light to a superposition of various speeds below light, as if the waves were a superposition
of particles with dispersion E =

√
~p 2 +m2.

Spinors

Fields in spinor representations of the Lorentz group are also very important in nature (all
fermions) but the appropriate Lagrangians require the Dirac formalism and are, strictly speaking,
part of the quantum version of the theory. Here, we shall simply quote for completeness the
case of the basic free Dirac field. A correct relativistic propagation is ensured if we write

(∂2 −m2)ψ = 0

as the field equation. However, using the properties of Dirac matrices, one can see that ∂2−m2 =
(iγa∂a + m)(iγa∂a −m). Hence, the relativistic equation on spinors with the most general set
of solutions is the so-called Dirac equation

(iγa∂a −m)ψ = 0,

which follows from the Lagrangian

LDirac = ψ̄(iγa∂a −m)ψ ,

where ψ̄ = ψ†γ0 is the Lorentz-conjugated representation. The most salient feature of this
Lagrangian is its first order character in derivatives, as opposed to the bosonic counterparts.
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Vector fields and gauge redundancy

Higher-spin tensor fields always lead to subtleties. Consider, for example, a free vector field
φa of mass m, with equation of motion

(∂2 −m2)φa = 0 , (1.127)

consisting of four copies of the Klein–Gordon equation. A candidate Lorentz-invariant La-
grangian with the correct equations of motion would be

L[φa ]KG = 1
2 ηab φ

a ∂2 φb − 1
2 m

2 ηab φ
aφb (1.128)

as a direct generalization of the scalar Klein–Gordon Lagrangian. However, the fact that ηab
is not positive definite leads to problems, since the whole Lagrangian of the φ0 field has the
wrong sign. This field may then store arbitrarily large amounts of negative energy, and any
interaction term would render the dynamics unstable. So, we face an interesting dilemma: the
field equation following from this Lagrangian seems to be correct and yet the energy density
appears to be ill-defined.

We cannot simply drop the offending component φ0, because that would spoil the Lorentz
symmetry. However, for a plane-wave solution in momentum space, φa = φ̃ aeipx,

(p2 +m2)φ̃a = 0 ,

we may impose the Lorentz-invariant condition of transversality between the polarization vector
φ̃a and the propagation vector pa, i.e.

pa φ̃
a = 0 . (1.129)

This condition brings φ̃0 to vanish in the rest frame (pa) = (m, 0, 0, 0). Therefore, we conclude
that such ‘transverse waves’ satisfying (1.129) will not have energy stability problems.

This suggests that we add the transversality condition ∂aφ
a = 0 as an extra equation,

together with the Klein–Gordon equation (1.127). In fact, in this case we may redefine (1.127)
by any multiple of ∂b ∂aφa, and the particular choice(

ηab(∂2 −m2)− ∂a∂b
)
φb = 0 (1.130)

does enforce the transversality condition automatically, provided m 6= 0. To see this, we take its
divergence to find m2∂aφ

a = 0. The Lagrangian associated to the equation of motion (1.130) is

L = −1
4Φab Φab − 1

2 m
2 φa φ

a , (1.131)

where we have defined Φab = ∂aφa−∂bφa. We conclude that (1.131) is the consistent Lagrangian
of a free vector field, describing the propagation of three polarization degrees of freedom.

More subtleties lurk in the zero-mass limit m → 0. In this case, the ‘rest frame’ of a plane
wave does not exist, as it propagates at the speed of light. It is possible to reach the standard
null frame (pa) = (ω, 0, 0, ω), but then the transversality condition only enforces φ̃0 = φ̃3, which
is not enough to cancel out the offending time-like component φ0. On the other hand, if (1.131)
has no energy balance problems, the same should be true of the m2 → 0 limit.

There is an interesting escape out of this paradox. Suppose we declare by hand that φ̃ 0 = 0
on the standard null frame. This means that, because of the transversality constraint, we are
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actually demanding the wave polarization to be transverse in the spatial sense,
∑
i φ̃ip

i = φ̃0 = 0,
with only two polarization degrees of freedom remaining. The problem with this prescription is
of course the violence to Lorentz invariance, since the Lorentz transformation of such a polariza-
tion vector will in general produce longitudinal and time-like components. However, whatever
the Lorentz transformation does, it must preserve the transversality constraint paφ̃a = 0, which
precisely for p2 = 0 has a redundancy: if φ̃ a is transverse, so is φ̃ a + f̃ pa, with f̃ an arbitrary
constant. This means that φ̃a will shift by a term proportional to pa under Lorentz transforma-
tions.

The way to remove the offending degree of freedom in a Lorentz-invariant fashion is simply
to declare all configurations related by such shifts as physically equivalent, in the sense that all
physical observables should be exactly invariant under φ̃ a → φ̃ a + f̃ pa, or its position-space
counterpart

φa −→ φa + ∂af . (1.132)

We may then use the degree of freedom in f̃ to remove φ̃0 in the standard null frame. In doing
so, we remove φ̃3 too, as they are linked by the transversality constraint. Therefore, we end
up with a consistent Lorentz-invariant theory of massless vector fields with only two physical
degrees of freedom. We can find the Lagrangian of this theory by working with the explicitly
transverse fields obtained by the linear projection

φ̃ aT = P̃ a b φ̃
b ≡

(
δa b −

pa pb
p2

)
φ̃ b , (1.133)

which translates into a non-local projector in position space,

φ aT = P a
b φ

b ≡
(
δab −

∂a ∂b
∂2

)
φ b. (1.134)

Notice that such transverse fields are automatically gauge-invariant since

P a b φ
b = P a b(φb + ∂bf) . (1.135)

Evaluating then the massless Klein–Gordon Lagrangian on transverse gauge-invariant fields we
find the Lagrangian

1
2 ηab φ

a
T ∂

2 φbT = −1
4 Φab Φab , (1.136)

corresponding to the massless limit of (1.131). It is important to keep in mind, however, that
the massless vector model is assumed to be defined with the built-in redundancy under φa →
φa+∂af , for an arbitrary function f(x), and in particular it has one less degree of freedom than
the naive massless limit of the massive model. So, even if (1.136) is the smooth m2 → 0 limit
of (1.131) at the level of Lagrangians, there is a discontinuous jump in degrees of freedom as we
go to the massless limit.

The gauge redundancy is very useful in constructing dynamical laws for massless vector
fields. For example, a linear coupling of the form

LJ = φa J
a

is bound to break gauge invariance unless we demand the conservation of the ‘current’: ∂aJa = 0.
Should the current not be conserved, so that gauge invariance is broken, then the theory with
this coupling would simply describe three degrees of freedom instead of two.
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The gauge redundancy is often called a ‘local symmetry’, a rather misleading name, since its
real role is to ensure that the theory describes the minimal number of degrees of freedom (two
for a vector field) even after Lorentz-invariant couplings are specified.

Problem: Gauge is not a symmetry

Consider the massive vector field model with Lagrangian

Lmassive = − 1
4 Φab Φab − 1

2 m
2 φa φ

a . (1.137)

Show that it is not gauge invariant. Define the so-called Stueckelberg model, which couples a massless
vector field and a massless scalar field ϕ with Lagrangian

L[φa, ϕ ] = − 1
4Φab Φab − 1

2 η
ab(mφa + ∂aϕ)(mφb + ∂bϕ) . (1.138)

Show that the Stueckelberg model is gauge-invariant under the transformations

φa(x)→ φa(x) + ∂af(x) , ϕ(x)→ ϕ(x)− f(x)/m .

Show that the Stueckelberg model is equivalent to (1.137) by an appropriate fixing of the gauge redun-
dancy.

Hence, we find that a model with three degrees of freedom and no gauge invariance is equivalent
to a gauge-invariant model with two degrees of freedom, plus one explicit degree of freedom, so that
gauge ‘symmetry’ is not real... just a matter of bookkeeping conventions in describing the true degrees
of freedom.

‘Integrate out’ the scalar field ϕ in (1.138), by solving its equation of motion and substituting back
into the action. Show that the resulting equivalent Lagrangian is

Lnon local = − 1
4 Φab Φab + 1

4 m
2 Φab

1
∂2

Φab . (1.139)

That is, a massless vector gauge theory, corrected by a non-local term proportional to the mass squared.
Notice that it is gauge invariant. The non-local term is the result of the existence of more degrees of
freedom than just the two massless polarizations. This non-local model is actually the result of imposing
the gauge invariance ‘by hand’ in the naive Klein–Gordon Lagrangian, i.e. show that

Lnon local = L[φa ]TKG = 1
2 ηab φ

a
T ∂

2 φbT − 1
2 m

2 ηab φ
a
Tφ

b
T .

Hence, insisting on gauge invariance for a massive vector theory requires either a non-local model
or a local model with an extra degree of freedom. This is natural, since we know that a massive vector
field must have three polarization degrees of freedom, forcing a gauge-invariant description with two
polarizations requires the introduction of the third polarization as an explicit field degree of freedom, the
so-called Stueckelberg field, a precursor of the Higgs field.

Maxwell, the Lorentz-invariant way

We now reproduce the Lagrangian structure of massless vector fields from the direct physical
construction of Maxwell’s theory. One can exhibit the Lorentz covariance of Maxwell’s equations
by defining the electromagnetic tensor Fab, via

F 0i = Ei , Fij =
∑
k

εijkBk
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in terms of the electric and magnetic field vectors ~E, ~B. Defining also the current four-vector
Ja = (ρe, ~Je), the equations can be cast into the system

∂aF
ab = −Jb , εabcd∂bFcd = 0 , (1.140)

which are manifestly Lorentz-covariant. Thus, we confirm Poincaré’s dictum that the Maxwell
system remains untouched in the new relativistic formalism, whereas the Newtonian particle
dynamics had to yield. Curiously, it was Maxwell the first to write down a relativistic equation
in the mid XIX century!

In order to derive these equations from a Lagrangian, we introduce the potential Aa by
solving the second Maxwell equation via the Poincaré lemma: locally, an antisymmetric tensor
with vanishing antisymmetrized divergence can always be written as 12

Fab = ∂aAb − ∂bAa (1.141)

in terms of some vector field Aa, which always comes with a built-in redundancy, i.e. a gauge
ambiguity by the redefinition Aa → Aa + ∂af . The rest of Maxwell’s equations then follow
upon varying the Maxwell Lagrangian

LMaxwell = −1
4FabF

ab + JaA
a (1.142)

with respect to Aa. As explained before, the coupling to the electric current does not spoil gauge
invariance (up to total derivatives) provided the current is indeed conserved, ∂aJa = 0.

A convenient Lorentz-invariant convention to fix partially the gauge redundancy is the Lorenz
condition ∂aA

a = 0, whose main virtue is the simplification of the Maxwell equations, simply
collapsing them to four Klein–Gordon equations

∂2Aa = −Ja , (1.143)

whose standard solution was discussed before

Aa(t, ~x) = − 1
∂2
Ja =

∫
d3y

4π
Ja(t− |~x− ~y |, ~y )

|~x− ~y | , (1.144)

for fields that vanish at infinity and with causal (retarded) boundary conditions. This relation
accounts for most of classical electrodynamics.

Free electromagnetic waves can be added to Aa as solutions of the homogeneous equation with
Ja = 0. By the linearity property of Maxwell’s equations, any such solution is a superposition
of plane waves of the form

Aa(x) = Ãa(k) eikx + c.c. ,

where Ãa(k) is now a constant vector and k x = ηabk
axb = −ω t + ~k · ~x. The four-vector ka

includes the wave vector and the frequency. Maxwell equations and the gauge condition impose
kaÃa(k) = 0 and k2 = 0. By further use of the gauge redundancy one can set Ã0(k) = 0 =∑
i k

iÃi(k), leaving fully transverse waves with two polarization degrees of freedom.
The coupling to charges, given by the linear term in the field-theory action

∫
d4xJaA

a, with
the conserved electromagnetic current

Ja(x) =
∑
p

ep
dxa

dτ
δ(4)(x− xp) ,

12An explicit proof is obtained by the following ansatz: Aa(x) = −
∫ 1

0
dλλF ab(λx)xb.
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produces a correction to the free particle Lagrangian of the form

SP = −
∑
p

mp

∫
dτp +

∑
p

ep

∫
dτpAa

dxa

dτp
, (1.145)

which in turn leads to the so-called Lorentz force in its fully relativistic incarnation

mp
d2xa

dτ2
= ep F

a
b

dxb

dτ
. (1.146)

Problem: Parity violating photons?

Consider adding a Lorentz-invariant term to the Lagrangian of the Maxwell theory of the form

Lϑ = ϑ F̃abF
ab

where
F̃ab = 1

2 εabcdF
cd

is the dual tensor. Check that the dual tensor has the roles of electric and magnetic fields reversed. Write
the Lagrangian Lϑ in terms of electric and magnetic fields and study its behavior under parity and time
reversal. Why is this Lagrangian not usually considered as a correction to Maxwell theory?

Higher spin generalizations

The construction of field theories in higher tensor representations reproduces some of the
problems already present in the vector case. For example, a naive action for a massless two-index
tensor field φab of the form

L[φab ]KG = 1
2 φab ∂

2 φab

has stability issues of similar nature, and may be solved in a similar fashion by introducing
gauge redundancies. In particular, for the antisymmetric case, bcd = −bdc, we introduce a gauge
symmetry bcd → bcd + ∂[cfd], whereas the symmetric case, hab = h(ab), requires a corresponding
‘symmetric’ symmetry hab → hab + ∂(afb).

The resulting gauge-invariant action for the antisymmetric case is a simple generalization of
the Maxwell construction:

L[ bcd ] = − 1
12
HabcH

abc , Habc ≡ 6 ∂[abbc] .

which gives a theory with a single degree of polarization (equivalent to a pseudoscalar, also
called axion).

The symmetric case is more complicated, and more interesting for the theory of gravity.
There are four independent Lorentz-invariant structures at the quadratic, two-derivative level:

∂ahbc ∂
ahbc , ∂ah

ab ∂chcb , ∂ah
b
b ∂

ahcc , ∂ah
c
c ∂bh

ab ,

up to total derivatives. Imposing now gauge invariance one finds a unique answer up to overall
normalization, the so-called Fierz–Pauli Lagrangian

L[hab ]FP = −1
4∂ahbc ∂

ahbc + 1
4∂ah

c
c ∂

ahcc − 1
2 ∂ah

c
c ∂bh

ab + 1
2 ∂ah

ab ∂chbc , (1.147)

which will turn out to be the linearized approximation to Einstein’s theory!
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1.3.4 Energy-momentum tensor in field theories

Having defined the energy-momentum tensor of a particle system with contact interactions,
we can also monitor the local exchanges of energy and momentum in the more physical case
where the interactions are mediated by fields. Consider for example a system of charged particles
whose electromagnetic interactions are governed by Lorentz forces

mp ẍ
a
p = ep F

a
b ẋ

b
p . (1.148)

Then, the energy-momentum tensor of the particle system is not conserved alone,

∂bT
ab
particles = F a b J

b . (1.149)

as some energy flows into the field degrees of freedom. Thus, local energy conservation requires
that we add the intrinsic energy-momentum tensor of the electromagnetic field, canceling the
source term in (1.149). We know from elementary discussions of electrodynamics that the energy
density of the electromagnetic field is given by 1

2 ( ~E 2 + ~B 2), whereas the momentum density
(the Poynting vector) is ~E × ~B. These two quantities fix the values of T 00 and T 0i. Hence we
may try an ansatz

c1 F
acF b

c + c2 η
ab FcdF

cd

depending on the two independent quadratic combinations of Fab which are allowed by Lorentz
symmetry and the antisymmetry of the electromagnetic tensor. Imposing now the condition

∂bT
ab
Maxwell = −F ab Jb

given the equations of motion ∂aF
ab = −Jb we fix the constants c1 = −1 and cs = −1/4 to

obtain the Maxwell energy-momentum tensor

T abMaxwell = −F acFc b − 1
4η

ab FcdF
cd . (1.150)

Alternatively, we can derive (1.150) from Noether’s theorem, by recalling that energy and
momentum are ultimately defined as Noether charges for the symmetry under Minkowski space-
time translations. Applying the field-theoretical version of Noether’s theorem to a translational
symmetry in Minkowski space: xa → xa + εa we find

L[Ψ(x+ a)]− L[Ψ(x)] = δL+O(ε2) = εa∂aL+O(ε2) ,

so that the Lagrangian is only invariant up to a total derivative. For a translation in the a-
th direction we have ∂aL[Ψ] = ∂bf

b
ξa

, with f bξa = δbaL. The operator ξa[Ψ] that generates the
translation on the fields is found from

δΨ = εa∂aΨ ≡ εaξa[Ψ] ,

and the resulting Noether current for a Lagrangian with at most quadratic dependence on
derivatives is

(Ja)b = ξa[Ψ]
∂L

∂(∂bΨ)
− f bξa = ∂aΨ

∂L
∂(∂bΨ)

− δbaL . (1.151)

We thus define the energy-momentum tensor as

T ab = −ηac
[
(Jc)b + ∂e ∆be

c

]
, (1.152)
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where ∆[Ψ] is assumed to be a tensor local in the fields and antisymmetric in the upper indices:
∆be
c = −∆eb

c . It is called the ‘Noether ambiguity’, and it is related to the fact that, just as
Lagrangians are not completely determined by the equations of motion, local currents are not
completely determined by the requirements of symmetry and conservation. Indeed, the Noether
ambiguity does not change the local conservation of the current or the global charge obtained by
integrating the time-like component over all space. The main use of the Noether ambiguity is its
role in restoring the symmetry of the energy-momentum tensor Tab, even if the set of currents
(Ja)b as defined by (1.151) may exhibit no particular symmetry properties in the indices a and
b.

The simplest example is the case of a scalar field with Lagrangian

Lφ = −1
2 (∂φ)2 − V (φ) ,

whose energy-momentum tensor is given by

Tab = ∂aφ∂bφ+ ηab Lφ , (1.153)

coming out symmetric without any need for an improvement term. The situation is slightly
different for the case of the Maxwell field, with Lagrangian

LMaxwell = −1
4 FabF

ab .

The naive energy-momentum tensor for δaAb = ∂aAb turns out to be given by

−∂aAc F c b + ηab LMaxwell ,

which is neither symmetric nor gauge-invariant. We can fix this by adding the improvement
term ∂c(AaF c b), which is a Noether ambiguity. Using then the equations of motion, ∂cF ca = 0,
one obtains the final form of the energy momentum tensor

T abMaxwell = −F acFc b + ηab LMaxwell . (1.154)

The improvement term is equivalent to the removal of the gauge ambiguity by the definition of
an appropriate gauge-invariant translation of the Maxwell field. Since δaAb = ∂aAb is not gauge
invariant, we can ‘improve’ it by a simultaneous gauge transformation

δ̄aAb ≡ δaAb + δ′aAb

with δ′Ab ≡ εaδ′aAb = ∂b(−εaAa) an appropriate field-dependent gauge transformation. The
new gauge-invariant translation is δ̄aAb = Fab which, if used in the Noether definition (1.152)
without improvement term, yields the right gauge-invariant energy-momentum tensor (1.154).

The energy-momentum tensor of the Maxwell field has the important property of being
traceless, T a a = 0. For the massive vector theory this trace is instead proportional to the
photon mass:

T abmassive = T abMaxwell − 1
2 m

2 ηabAcA
c , ηcd T

cd
massive = −2m2AaA

a .

The trace of the energy-momentum tensor is in general sensitive to the mass terms in the
problem. For example, for a system of particles, we already noticed that the trace of the energy-
momentum tensor is controlled by the scalar density of ‘rest mass’:

T a a
∣∣∣
particles

= −Jm = −
∑
p

∫
dτpmp δ

(4)(x− x(τp)) .
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More generally, the trace of the energy-momentum tensor controls the behavior of the theory
under scale transformations of the form x → λx. The associated Noether current is Jascale =
xb T

ab, so that its local conservation follows from that of the energy-momentum tensor, plus the
traceless condition T a a = 0. This means that a massless scalar field theory is not scale invariant
except in two dimensions. 13

Problem: Energy-momentum conservation and equations of motion

Show that the local conservation of the energy-momentum tensor, ∂aT ab = 0, implies the equations of
motion for both scalar and electromagnetic fields, provided certain genericity conditions are met. Namely
the equations of motion are satisfied except at points where ∂aφ = 0 in the scalar field case. For Maxwell
fields one must require that the matrix F ab be invertible.

13Exercise: Prove the statements in this paragraph.
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Chapter 2

The Principle of Equivalence

It is certainly tempting to apply the previous machinery of relativistic field theory to the
problem of gravitation. That is, to postulate some tensorial potential that generalizes the
Newtonian gravitational potential.

It looks natural to follow the blueprint of Maxwell’s theory by postulating a vector-like
‘gravitational potential’ ga with field strength Gab = ∂agb − ∂bga and a time-like component
proportional to the Newtonian potential g0 ∼ φN. A Lagrangian for such a theory would read

LG−vector = − 1
16πG

GabG
ab − ga Jam ,

where Jam is the current of mass. In particular, its time component is exactly the rest-mass
density,

J0
m =

∑
p

mp δ
(3)(~x− ~xp(t))

for a system of free particles. So this theory has the peculiarity that gravity only couples
universally to rest masses, rather than energies. This would imply, for example, that a Helium
atom would gravitate considerably less than a Bottom quark, since very little of the He mass
comes from quark ‘rest’ mass. In any case, a more urgent problem of the vector theory is the fact
that equal-sign masses should repel one another. This can be momentarily fixed by changing
the sign of the Newton constant, G→ −G, but then one finds the gravitational energy density
to be negative definite 1

T 00
grav = − 1

8π|G|
(
~E2
G + ~B2

G

)
< 0 .

A much better attempt at a relativistic generalization of Newton’s theory would promote φN

to a fully fledged Lorentz scalar field g(x) with Lagrangian

LG−scalar = − 1
8πG

(∂g)2 − g Jm ,

where now Jm is the Lorentz-invariant mass ‘density’. For a system of free particles we have

Jm =
∑
p

∫
dτpmp δ

(4)(x− xp(τp)) .

1These problems were known to Maxwell himself, who tried to construct such a theory of gravitation.
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In fact, as shown in the discussion after (1.96), such density is essentially the trace of the
energy-momentum tensor: Jm = −T aa . This means that such scalar gravity field, while leading
to attractive forces, fails to couple to electromagnetic fields and for a fluid of density ρ and
pressure p, it couples to the net combination ρ − 3p, which vanishes for ultrarelativistic fluids
(radiation). Therefore, while the scalar gravity theory is logically consistent, and was indeed
seriously considered by many authors, including the likes of Poincaré, Abraham, Nördstrom and
Einstein, it actually fails to incorporate the gravitation of ‘internal energies’ in a satisfactory
way.

If we insist that gravity should couple to total energy, rather than rest mass or a combination
of energy and pressure, we are naturally led to use the energy-momentum tensor in the role of
‘matter current’, since it is Tab the object that encapsulates the local conservation of energy in
SR. In this way, one is naturally led to a gravitational potential of tensor nature, i.e. a minimal
coupling of the form

Sint ∼
∫
d4x hab T

ab , (2.1)

between Tab and a symmetry rank-two gravitational potential hab. The local conservation of
the energy-momentum tensor, ∂aT ab = 0, implies that this Lagrangian interaction is ‘gauge
invariant’ under the transformations

hab → hab + ∂afb + ∂bfa , (2.2)

with fa(x) an arbitrary four-vector function. Hence, we are led to the development of a sym-
metric two-index generalization of Maxwell’s theory, the Fierz–Pauli theory, coupled to the
energy-momentum tensor through (2.1).

However, such a program quickly becomes treacherous. The reason is that any field coupling
to energy must necessarily couple to itself, resulting in a nonlinear theory. The gist of the
argument is as follows. The Fierz–Pauli Lagrangian contributes a term to the total energy-
momentum tensor quadratic in the h-field, i.e. T(h) ∼ (∂h)(∂h), suppressing the detailed index
structure. Since hab must couple to all forms of energy, including the energy contained in the
h-field itself, we are led to write (2.1) in the ‘improved’ form

Sint ∼
∫
hab(T abmatter + T ab(h)) ,

which includes a cubic interaction term in the hab field. In turn, taking this term into account
in the computation of the h-field energy momentum tensor, we will obtain a similar cubic term
in T ab(h), which induces a quartic term when fed into the interaction term, and so on... Hence, we
are led to an iterative construction of a full non-linear theory. Feynman and others were able to
show that this iterative construction indeed converges to Einstein’s theory of general relativity.
We shall return to this issue later on, but for the time being we will be following another route.

2.1 From Galileo to Einstein

Einstein chose to develop the theory of gravity on top of the Equivalence Principle (EP)
between gravitation and inertia. A principle (going back to the tales of Galileo at the Pisa
tower) stating, in its weakest version, that the gravitational ‘charge’ of particles is universally
proportional to its inertial mass.
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When a Lagrangian shows some constraint in its couplings to a great accuracy (recall Eötvös
measurements), it is natural to try representing this constraint as the result of some symmetry.
In the case at hand, this is possible in a rather interesting way. The Newtonian equation of
motion for a particle of mass m on some gravitational potential is

m
d~v

dt
= −m ~∂ φN , (2.3)

and the EP simply means that m drops from this equation, so that trajectories are intrinsically
determined by initial conditions, independently of the particular mass considered. This suggest
that these trajectories have an intrinsic geometrical meaning. Consider, for example, a constant
field with uniform gravity acceleration ~g,

d2~x

dt2
= ~g . (2.4)

Now, in a reference frame in free fall,

~ξ = ~x− 1
2 ~g t

2 (2.5)

we have d2~ξ/dt2 = 0, recovering the familiar feature that the gravitational field disappears in free
fall. However, this was ultimately possible due to the particle mass dropping from the equations.
Hence, we can represent the equivalence principle as a symmetry statement by saying that all
systems in free fall are inertial, in the sense that they feel no gravitational forces.

Conversely, a constant acceleration of magnitude ~g is indistinguishable from a constant grav-
itational field of the same intensity. In general, this simulation of gravitational fields by accel-
erations is only possible locally. We shall refer to such gravitational fields that can disappear
globally by entering free fall as ‘fictitious’ gravitational fields. In ‘true’ ones, one can still elim-
inate the gravitational field, but only locally. If the gravitational acceleration at the spacetime
point P is given by ~gP = −~∂φN(P ), the frame transformation ~ξ = ~x− 1

2 ~gP t
2 gives

d2~ξ

dt2
= ~g(~x, t)− ~gP , (2.6)

so that the acceleration vanishes at the point P . Away from the free-fall point P , there is a
residual ‘tidal’ acceleration, proportional to the first derivatives of the gravitational force, i.e.
the second derivative of the potential. We can define the ‘tidal tensor’ for static fields as

Rij ≡ ∂i∂jφN , (2.7)

which provides a local diagnostic of whether a gravitational field is ‘true’ or ‘fictitious’, namely
the tidal tensor of a static field vanishes in a region of space if and only if the field is fictitious.
to see this, notice that Rij = 0 on a finite domain implies that φN is linear in the spatial
coordinates, φN(~x) = a+~b · ~x. In this case the gravitational force is ~g(~x) = −~b, a uniform field,
which may be removed by the free-fall frame ~ξ = ~x+ 1

2
~b t2.

In the relativistic theory, the EP admits the same formulation: gravitational fields can be
locally eliminated by entering free fall, except that this time it is Special Relativity (SR), rather
than Newtonian particle mechanics, what is assumed to be valid at the freely falling frames.
There are at least two novel relativistic effects with far-reaching consequences in relation to the
EP. The first is the existence of a novel kind of time dilation effects, associated to gravitational
fields, and second is the occurrence of non-euclidean geometry. Both effects can be illustrated
in a simple heuristic way by studying appropriate ‘fictitious’ gravitational fields.
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The relativistic elevator and Rindler space

We saw that, according to the EP, uniform and constant gravitational fields can be manufac-
tured by constructing an elevator undergoing constant acceleration. In the relativistic theory,
such an elevator would reach eventually the speed of light, so it is not obvious what is the
relativistic concept associated to ‘constant acceleration’. Given a timelike trajectory x(τ), with
four-velocity

ua =
dxa

dτ
, u2 = −1 , (2.8)

we define the acceleration four-vector by

ab =
dub

dτ
, a2 = ab a

b . (2.9)

Taking the derivative of u2 = −1 we find that acceleration and velocity are orthogonal ab ub = 0.
In an inertial frame x′a momentarily at rest with respect to the accelerated trajectory we have
u = (1,~0) and the orthogonality implies a = (0,~a′) ,~a′ ·~a′ = a2. Hence, we shall define constant
acceleration as a2 = g2 with g a pure number, constant in time.

t

η = const

ξ = const
H

+

H
−

z

1/g

Figure 2.1: The so-called Rindler wedge is the region 0 < |t| < z. Uniformly accelerated observers follow
the ξ = constant hyperbolic trajectories, which degenerate into the past and future particle horizons H±.
We also show the timelike trajectory of another observer. The part of her history to the future of H+ is
completely inaccesible to the accelerated observer, whereas her crossing of the horizon takes an infinite
subjective time for him.

Now we go back to the ‘laboratory’ frame and take an accelerated rectilinear motion in the
z-direction, ~a = d2~x/dτ2 = (0, 0, az). We take az > 0 by convention. From the three algebraic
equations

u2 = −1 , u · a = 0 , a2 = g2

we derive

a0 =
du0

dτ
= g uz , az =

duz

dτ
= g u0 . (2.10)

The solution of these ordinary differential equations is

(u0 ± uz) = (u0 ± uz)(0) e±gτ .
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Choosing now u0(0) = 1 and uz(0) = 0 (zero velocity at τ = 0) we obtain the parametric form
of the trajectory,

t− t(0) =
1
g

sinh (gτ) , z − z(0) =
1
g

(cosh (gτ)− 1) , (2.11)

and choosing the origin or coordinates so that t(0) = 0, z(0) = 1/g we see that ‘constantly
accelerated’ trajectories lie on the hyperbolae

z2 − t2 =
1
g2

. (2.12)

Now consider a family of accelerated observers running on hyperbolae ξ = constant, accord-
ing to the change of coordinates

z ± t =
1
g
egξ e±gη . (2.13)

Each such observer feels a constant acceleration gξ = ge−gξ. If we arrange all of them to pass
through t = 0 simultaneously in the local frame of any one of them, then they will always stay
on the lines η = constant. Any such line is related to the t = 0 line by a Lorentz transformation,
so that the relative rest condition of the accelerated observers is maintained in time. Hence, the
constructed family of accelerated observers furnishes a ‘relativistic elevator’.

The proper time of each observer can be computed from the relation

t(τξ) =
1
g
egξ sinh (gη(τξ)) =

1
gξ

sinh (gξ τξ)

which results in gη(τξ) = gξ τξ, or
τξ = η egξ . (2.14)

Using this result, we find the ratio of proper times at different local accelerations given by

∆τ(ξ)
∆τ(ξ′)

= eg(ξ−ξ
′) =

gξ′

gξ
. (2.15)

According to the EP, this means that clocks run slower the more intense the gravitational field.
This effect is one of the classic predictions of GR, called ‘gravitational red shift’.

The space (η, ξ) with arbitrary real values of the coordinates is called Rindler space. It covers
the wedge 0 < |t| < z of Minkowski space, and represents the part of it accesible to accelerated
observers moving with positive uniform acceleration in the z-direction. Locally, Rindler space
has identical geometry to Minkowski space, although the metric in Rindler coordinates reads

ds2 = −dt2 + dz2 + . . . = e2gξ(−dη2 + dξ2) + . . . (2.16)

where the dots stand for the spectator directions. We see that the two-dimensional section
where the accelerations take place amounts to a local conformal transformation of lenght and
time standards.

The future boundary of the Rindler wedge H+ is called the future horizon. Beyond this
horizon, we find all the events that are causally disconnected from any accelerated observer in
Rindler space. An observer at rest at z > 1/g will eventually be passed by our accelerated
elevator and by the time her worldline passes through the curve z = t, any subsequent signal
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that might emit will never reach the elevator. At the same time, the observer on the elevator will
never see her cross the horizon, her motions being constantly elongated in time by an infinite
time dilation factor.

There is an analogous notion of ‘past horizon’, H−, which is defined by the time-reversal of
the future horizon. Such notions of causal horizons feature prominently in the theory of black
holes and also on the global properties of cosmological spacetimes.

Rotation and non-euclidean geometry

Consider two frames of reference in SR. K is inertial and K ′ rotates at angular velocity
Ω. Imagine setting up an operational measure of π, i.e. we draw a circumference of radius
R and measure its length. The ratio being 2π in the inertial system K. An observer on K ′

would use measuring rods that, according to K, suffer Lorentz contraction when laid along
the circumference, but remain intact when measuring the radius. Hence, the observer on K ′

will measure a larger ratio of circumference to radius, by a factor of the Lorentz contraction√
1− v2 =

√
1− Ω2R2. This leads to a ‘measurement’ of π as

πK′ =
π√

1− Ω2R2
> π . (2.17)

This is characteristic of spaces of negative curvature. According to the EP, there is no local
difference between accelerated frames and true gravitational fields, the two differing only at
the level of global properties. Hence we should expect non-euclidean geometry to arise in true
gravitational fields as a general rule. This simple gedanken experiment was pivotal in Einstein’s
own heuristic path to GR.
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2.2 Riemannian geometry and the Equivalence Principle

We are now ready to use the EP as a guiding principle in our construction of the relativistic
theory of gravitation. Let us consider a spacetime X3+1 with a gravitational field (G-field),
and send a local probe in the form of a particle of mass m, moving under the sole influence of
gravity. We shall assume the ‘probe’ approximation, consisting in neglecting the back-reaction
of the probe particle on the background G-field. Denoting MG−field the effective mass generating
the gravitational field, the probe approximation is expected to hold in the limit m�MG−field.

We characterize the equivalence principle in a pragmatic way as follows: Around any point
P ∈ X3+1, we can erect a free-fall frame through P , denoted ξaP , with the property that special
relativity is locally valid in a small neighborhood of P . The whole spacetime X3+1 can be
covered by local free-fall frames, which we denote as frefos, to indicate that they are associated
to freely falling observers. We can also refer all phenomena to an external frame, xα, which we
denote as fido, to signify the fact that it may be associated to a single fiducial observer. Notice
that no restrictions are placed on the properties of the fido, and no canonical choice of frefos
throughout spacetime exists in general, if only because any frefo can be rotated by a Lorentz
transformation and remain a valid frefo, and this can be done independently at each point in
spacetime.

2.2.1 Particle probes

Let us consider a freely-falling particle with trajectory γ, parametrized in the fido frame as
the functions xα(σ). We can partition the path as γ = ∪PγP , with γP small ‘pieces’ around
points P in the path, each of them parametrized in the frefos by the functions ξaP (σ). We then
use the EP to define the particle action applying SR on each piece, and subsequently taking the
limit of a fine partition:

S[γ] = lim
{P}→γ

∑
P

∆S[γP ] , (2.18)

where

∆S[γP ] ≈ −m∆τP = −m∆σP

√
−ηab

dξaP
dσ

dξbP
dσ

, (2.19)

which gives in the limit

S[γ] = −m
∫
γ
dτ = −m

∫
γ
dσ

√
−ηab

dξaP (σ)

dσ

dξbP (σ)

dσ
. (2.20)

The metric

Hence the EP establishes the particle action as proportional to the elapsed proper time,
just as in ordinary SR, and provides a way to compute it, given a family of frefos along γ.
This parametrization serves the purpose of defining the action through the EP, but it is not
particularly ‘user-frendly’, since it contains a large amount of redundant information, related to
the arbitrary choice of frefos at each point in γ. A more convenient procedure is to relate the
action to the fido parametrization in terms of the functions xα(σ). We can do this by using the
chain rule to obtain

dξaP
dσ

=
∂ξaP
∂xα

dxα

dσ
. (2.21)
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P

Q

xα

γ

ξa
P

ξa
Q

Figure 2.2: A particle path γ with two frefos at points P and Q and an external fido frame xα.

Defining the tetrads as the matrix of partial derivatives

eaα(P ) ≡ ∂ξaP
∂xα

∣∣∣
P
, (2.22)

we may write

ηab
dξaP (σ)

dσ

dξbP (σ)

dσ
= gαβ(x(σ))

dxα

dσ

dxβ

dσ

with the so-called metric defined point by point as a sort of ‘Lorentz square’ of the tetrads:

gαβ(P ) = ηab e
a
α(P ) ebβ(P ) . (2.23)

Hence, we finally obtain the particle action in fido parametrization:

S[γ] = −m
∫
γ
dτ = −m

∫
γ
dσ

√
−gαβ(x(σ))

dxα

dσ

dxβ

dσ
. (2.24)

We conclude that all the information about the gravitational field, as far as particle probes is
concerned, is encoded in the ten metric functions gαβ, and the G-field can be given a geomet-
rical interpretation as determining proper times and proper distances according to the formal
expression

ds2 = −dτ2 = gαβ dx
αdxβ ,

which characterizes the notion of a Riemannian manifold in the mathematical literature. The
‘manifold’ character is ensured by the fact that we did not specify any particular fido frame, so
if we change to a new frame yµ = yµ(x), the metric changes according to the map

g(y)
µν (y) =

∂xα

∂yµ
∂xβ

∂yν
g

(x)
αβ (x) , (2.25)

i.e. as a generalized second-rank tensor.
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The connection

We can actually go further and derive the equation of motion stemming from (2.24) by
demanding the action to be a local minimum with respect to variations of the trajectory xα(σ)→
xα(σ) + δxα(σ). We find

0 = δSP =
∫

dσ

2
√
−gαβ dxα

dσ
dxβ

dσ

δ

(
gαβ

dxα

dσ

dxβ

dσ

)
.

We may now take advantage of the reparametrization invariance to restore the proper time
parameter σ → τ to remove the square root in the denominator and write

0 =
∫
dτ

(
1
2 ∂µgαβ ẋ

αẋβ δxµ + gαβ ẋ
α d

dτ
δxβ

)
.

Reshuffling the indices, integrating by parts and multiplying the resulting equation of motion
by the inverse of the metric matrix we obtain the final equation of motion

0 =
d2xα

dτ2
+ Γαµν

dxµ

dτ

dxν

dτ
, (2.26)

where the Γ coefficients are called the Christoffel symbols and determined in terms of first
derivatives of the metric:

Γαµν = 1
2 g

αβ (∂µgβν + ∂νgβµ − ∂βgµν) , (2.27)

with gαβ = (g−1)αβ a standard notation for the inverse matrix of metric functions.
Equation (2.27) allows us to give a more precise specification of the EP, in terms of the

Riemannian metric. Since this equation is valid in any frame, it is in particular valid in the frefo
frame around P , given by the coordinates ξaP . However, the EP implies that such a equation
should be given by the SR one, i.e.

d2ξaP
dτ2

∣∣∣
P

= 0 , (2.28)

and we conclude that the frefo at P is defined as such coordinate system on which the metric,
transformed according to (2.25), satisfies

g
(ξ)
ab (P ) = ηab , ∂c g

(ξ)
ab (P ) = 0 , (2.29)

the second condition being equivalent to Γ(ξ) a
bc (P ) = 0.

It is interesting to rederive (2.26) directly from (2.28) since it gives an alternative perspective
on the Christoffel symbols. Using

dξaP
dτ

=
∂ξaP
∂xα

dxα

dτ
,

d

dτ
=
dxµ

dτ

∂

∂xµ
(2.30)

we can rewrite (2.28) as

0 =
∂ξaP
∂xα

(
d2xα

dτ2
+
∂xα

∂ξcP

∂2ξcP
∂xµ∂xν

dxµ

dτ

dxν

dτ

)
,
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implying that the Christoffel symbols can be written alternatively in terms of the frefo data at
P as determined by the second derivatives of the free-fall coordinates:

Γαµν(P ) =

(
∂xα

∂ξaP

∂2ξaP
∂xµ∂xν

) ∣∣∣
P

= eαa (P )
∂2ξaP
∂xµ∂xν

∣∣∣
P
. (2.31)

Written in this form, the ‘force’ coefficients are known as the affine connection, and the above
expression in terms of the metric derivatives is also referred to as the Levi–Civita connection.2

Both notions of connection are equivalent in our presentation of the gravitational theory, al-
though they may be different in more general gravitational theories.

Local versus global flatness

The condition (2.29) gives a mathematically precise statement of the EP. It is interesting to
ask whether the required frefo can always be introduced at an arbitrary point, for a generic gαβ,
or some restriction must be put on the metric of spacetime. To settle this question, consider
constructing the frame ξaP in a Taylor expansion in terms of the fido frame xα. Without loss of
generality we may define the additive normalization of the coordinates so that xα(P ) = ξaP (P ) =
0. Then we can expand the function xα(ξaP ) as

xα = Aαa ξ
a +

1
2
Bα
ab ξ

a ξb +
1
6
Cαabc ξ

a ξb ξc +O(ξ4) ,

where the A,B,C are collections of constant coefficients arising from the Taylor expansion.
Using now (2.25) we find for the metric in the frefo frame

gab(P ) = Aαa A
β
b gαβ(P ) ,

so that gab(P ) = ηab by simply choosing the Aαa to diagonalize and rescale appropriately the
original metric matrix at point P . There is in fact an ambiguity by multiplication of Aαa by
a Lorentz transformation, since ηab is invariant under those. Computing now the Christoffel
symbols in the ξ-frame, using for example (2.31), we find

Γabc(P ) = (A−1)aαA
β
b A

γ
c Γαβγ(P ) + (A−1)aαB

α
bc ,

so that Γabc(P ) = 0 can be readily arranged by setting

Bα
bc = −Aβb Aγc Γαβγ(P ) .

Hence, we conclude that the EP, as given by (2.29), can always be reached in an appropriate
frefo. On the other hand, the second derivatives of the metric at P , or equivalently the first
derivatives of the connection, will be determined by the 80 independent coefficients Cαabc. All in
all there are 100 independent components in the second derivatives of the metric ∂α∂βgµν(P ), so
that we cannot remove them by a clever choice of frefo. The offset of 20 components gives the
degrees of freedom of the curvature in a four-dimensional spacetime. The argument just given
here is known in the mathematical literature as the ‘local flatness theorem’, since it specifies
that any Riemannian space is ‘flat’ to first order in a local expansion, with ‘intrinsic’ curvature
effects arising only in second order in this local expansion.

2Notice that, in (2.31) we evaluate the right-hand side at P only after the second derivative has been taken.
In particular, the second derivative term is not equal to the first derivative of the tetrad field.
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yµ

ξa

Figure 2.3: A general gravitational field is characterized by a general metric, reducing to Minkowski
space only locally around a point, parametrized by a frame ξa. This is the geometrical set up for a space
with Riemannian geometry.

Fictitious gravitational fields are precisely those for which the second derivatives of the metric
vanish identically in a finite region, once an appropriate frefo has ben chosen. It follows that
for these fields there is a frefo for which the metric equals the Minkowski metric in the whole
region. In other words, fictitious fields are nothing but Minkowski space, perhaps parametrized
in a general fido frame.

xa yα

Figure 2.4: An arbitrary ‘fictitious’ field is just Minkowski spacetime (left) disguised in a general system
of curvilinear and/or accelerated coordinates (right).

2.2.2 Gravitational forces

The structure of the particle equation of motion (2.26) presents gravitational forces as pro-
portional to Γ, which appear unified with ‘inertial’ forces, in agreement with the spirit of the
EP:

d2xµ

dτ2
= Fµg = −Γµρσ

dxρ

dτ

dxσ

dτ
; .

Furthermore, the metric functions acquire the interpretation of ‘gravitational potentials’, since
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their first derivatives determine the ‘forces’. We can make these intuitions more precise by taking
the weak-field limit and further the Newtonian limit.

Weak fields

In keeping with the idea that gravitational physics amounts to replacing the Minkowski
metric ηab by a general Riemannian metric gαβ we may study the case where gravitational
effects are small, so that we write gαβ = ηαβ + hαβ, with |hαβ| � 1, a condition that requires
restricting the reference frames, since we may induce large components of the metric by simply
using a frame with large accelerations. Hence, we assume that an ‘almost’ frefo frame extends
over the region of interest and we only allow further coordinate transformations that maintain
the ‘small field’ property. Writing those transformations as xα → x′α = xα − εα(x), the metric
transformations (2.25) imply

ηαβ + hαβ(x)→ ηαβ + h′αβ(x′) =
∂xγ

∂x′α
∂xδ

∂x′β
(ηγδ + hγδ(x)) .

Upon explicit computation to leading order in εα one finds that the functional shift in hαβ is
given by

h′αβ(x)− hαβ(x) = ∂αεβ(x) + ∂βεα(x) +O(ε2) . (2.32)

Therefore, the condition on the allowed ‘weak-diffeomorphisms’ is |∂αεβ| � 1. Incidentally,
the weak-diffeormorphisms act on the weak gravitational field hαβ as a gauge symmetry for a
Lorentz-covariant symmetric tensor field. Expanding now the particle action to leading order in
hαβ one finds

−m
∫
γ
dσ

√
−(ηαβ + hαβ)

dxα

dσ

dxβ

dσ
= S[γ]Minkowski + 1

2 m

∫
dτ hαβ

dxα

dτ

dxβ

dτ
+O(h2) , (2.33)

where τ in the last term is defined as the proper time with respect to the Minkowski metric.
The term linear in hαβ can be rewritten as

1
2

∫
d4xhαβ T

αβ ,

where Tαβ = m
∫
dτẋα ẋβ δ(4)(x − x(τ)) is the standard definition of the particle’s energy mo-

mentum tensor in SR (cf. (2.1)). Hence, we conclude that the leading perturbative coupling of
gravity, as dictated by the EP, conforms to the general arguments based on SR. However, the
EP is much more powerful, giving a precise resummation of powers of hαβ in the matter-gravity
coupling.

Newtonian limit

We now sharpen the interpretation of Γ as gravitational forces by taking the non-relativistic
limit of the equation of motion (2.26). It is useful to transform it from the proper-time
parametrization to coordinate time parametrization. Using the chain rule one finds

d2xα

dt2
+ Γαµν

dxµ

dt

dxν

dt
= h(t)

dxα

dt
, (2.34)
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with

h(t) = − d
2t/dτ2

(dt/dτ)2
.

We may consider now the spatial components of (2.34) in the weak-field regime, for stationary
fields, ∂thαβ � ∂ihαβ, and in the non-relativistic limit, vi = dxi/dt � 1. Keeping terms up to
first order in velocities we obtain

dvi
dt
≈ 1

2 ∂i h00 −
∑
j

vj(∂jh0i − ∂ih0j) . (2.35)

The first term is the standard gradient gravitational force for a field with potential

φN ≈ −1
2 h00 , (2.36)

whereas the second term has the form of a Coriolis force. To see this, notice that we may define
the effective ‘angular velocity’ vector

~Ω = 1
2
~∂ × ~h , (2.37)

where ~h = (h0i). The effective Newton equation takes then the form

d~v

dt
≈ −~∂ φN + 2~v × ~Ω , (2.38)

which contains the potential and Coriolis terms. Hence, we confirm that the equivalence principle
unifies what in Newtonian theory is regarded as separate ‘inertial’ and ‘gravitational’ forces.

2.2.3 Diff tensor calculus

As stated above, the present construction of the metric field, based on the EP, produces in a
natural way a redundant description with respect to arbitrary fido reparametrizations, x→ y(x),
i.e. the so-called diffeomorphisms of the spacetime onto itself, Diff(X3+1). The action on the
metric is such that it is formally a tensor in the sense

gαβ dx
α ⊗ dxβ = Diff invariant , (2.39)

where
dxα =

∂xα

∂yµ
dyµ ,

and the matrix of partial derivatives is a general invertible real matrix, i.e. a member of the
GL(4,R) group, specified independently point by point on the manifold X3+1. These properties
of the metric are actually inherited from similar properties of the tetrads eaα, which behave as
mixed tensors with respect to the Lorentz group (latin index) and the Diff group (greek index).
It follows that the obvious operations of raising and lowering indices can be defined in terms of
the respective metrics, maintaining the corresponding tensorial properties:

eaα ≡ ηab ebα , eaα ≡ gαβeaβ , eαa ≡ ηab gαβ ebβ ,

where gαβgβγ = δαγ and the ‘inverse tetrad’ satisfies eαae
a
β = δαβ and eαae

b
α = δba.
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The notion of Diff tensor introduced for the metric in (2.39) can be generalized to any Lorentz
tensor, T a...b... , defined point by point through a family of frefos covering the spacetime manifold.
Namely, the object

Tα1...αp
β1...βq ≡ eα1

a1
· · · eαpap e

b1
β1
· · · ebqβq T

a1...ap
b1...bq , (2.40)

behaves as a Diff tensor according to the positions of the respective indices:

T = Tα1...αp
β1...βq dx

β1 ⊗ . . .⊗ dxβq ⊗ ∂α1 ⊗ . . .⊗ ∂αp = Diff invariant . (2.41)

The metric itself is a particular example of this rule, as well as the particle four-velocity in the
fido frame

uα ≡ dxα

dτ
= eαa u

a
P = eαa

dξaP
dτ

. (2.42)

Covariant derivatives

Using the second identity in (2.30) and this definition of the four-velocity we may rewrite
the particle equation of motion (2.26) as

∇u uα = 0 , (2.43)

where we define the covariant derivative in the direction uα by the relation

∇uV µ ≡ uα∇αV µ ≡ uα
(
∂αV

µ + ΓµαβV
β
)
. (2.44)

The so-defined covariant derivative behaves as a Diff vector, when acting on Diff vectors. In
fact, it conforms to the general definition of Diff tensors (2.40) since

∇µV ν = eaµ e
ν
b ∂a V

b , (2.45)

as can be easily concluded by explicit computation, using the affine form of the connection
coefficients (2.31). With the same effort, one can define the covariant derivative acting on a
‘covariant’ vector field:

∇µUν ≡ eaµ ebν ∂a Ub ,
which becomes, upon explicit computation, equal to

∇µUν = ∂µUν − ΓαµνUα . (2.46)

Entirely analogous manipulations show that the covariant derivative acting on a general tensor
takes the explicit form

∇µTα... β... = ∂µT
α...

β... + Γαµρ T
ρ...

β... + . . .− Γρµβ T
α...

ρ... − . . . . (2.47)

Hence, ‘contravariant’ indices involve a positive Γ-correction to the ordinary derivative, whereas
‘covariant’ indices involve a negative Γ-correction.

A further crucial property of the covariant derivative is the so-called metric compatibility,
again obtained by explicit calculation from (2.47):

∇µ gαβ = 0 , (2.48)

which ensures that the operation of raising and lowering indices with the Riemannian metric
commutes with the covariant derivative operator.
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Densities

An interesting variation of the Diff-tensor construction above occurs when considering the
behavior of the Levi–Civita ‘almost tensor” εabcd under the map from frefos to fidos. In partic-
ular,

εabcd e
a
α e

b
β e

c
γ e

d
δ (2.49)

is completely antisymmetric in the indices α, β, γ, δ. Defining εαβγδ as the completely antisym-
metric object with ε0123 = 1, we have

εabcd e
a
α e

b
β e

c
γ e

d
δ = εαβγδ εabcd e

a
0 e

b
1 e

c
2 e

d
3 = εαβγδ det(e) .

Since g ≡ det(g) = det(e)2 det(η) = −|det(e)|2 we can write det(e) = (−g)1/2 and
√−g εαβγδ = εabcd e

a
α e

b
β e

c
γ e

d
δ

defines a rank-four covariant tensor,
√−g εαβγδ dxα ⊗ dxβ ⊗ dxγ ⊗ dxδ = Diff invariant . (2.50)

Analogously, we can define the contravariant object εαβγδ by the usual raising of indices with
the inverse metric gαβ, and obtain an associated tensor

εαβγδ√−g ∂α ⊗ ∂β ⊗ ∂γ ⊗ ∂δ = Diff invariant . (2.51)

In some references, collections of quantities that behave as tensors up to a power of
√−g are

called tensor densities. One notable example is the delta function δ(4)(x−x0), which transforms
as a scalar density. In particular (−g)−1/2δ(4)(x− x0) is a true scalar.

2.2.4 Minimal coupling

We are ready to use the formal machinery introduced so far to couple a generic Lorentz-
invariant Lagrangian L(Ψa...

b..., ∂a, . . .) to an external gravitational field characterized by a met-
ric field gαβ. The strategy is identical to the one that worked before for free particles. We start
by covering the spacetime X3+1 with frefos and specify the action in terms of the limit of a fine
partition:

S = lim
{P}→X3+1

∑
P

∆PS , (2.52)

with
∆PS ≈ (∆4ξP )L( Ψa...

b..., ∂/∂ξ
a
P , ...) |P (2.53)

the element of action in a frefo. We now convert to the reference fido with the translation of
Lorentz tensorial structures to Diff tensorial structures. As for the volume measure we have

(∆4ξP ) ≈ (∆4x)
∣∣∣∣det

(
∂ξP
∂x

)∣∣∣∣ = ∆4x |det(e)| = ∆4x
√
−det(gαβ) ,

or, in the more familiar differential form d4ξ = d4x
√−g. Hence, the coupling to gravity is

reduced to a mere exercise in notation:

S[Ψ, gαβ ] =
∫
X3+1

d4x
√−g L(Ψα...

β...,∇α, . . .) . (2.54)
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Namely, we replace Lorentz tensors by their Diff-tensor forms using the map in (2.40), we
replace the ordinary derivatives by the covariant derivatives, and we integrate the Lagrangian
over spacetime with a Diff-invariant measure.

Examples of the procedure include the Lagrangian of a scalar field,

Sφ = −
∫
d4x
√−g

(
1
2 g

µν∇µφ∇νφ+ V (φ)
)
, (2.55)

with field equation
∇2φ = V ′(φ) ,

or the Maxwell theory in a gravitational field,

SMaxwell = −
∫
d4x
√−g

(
1
4FµνF

µν − JµAµ
)
, (2.56)

where Aµ = eaµAa, Fµν = ∇µAν −∇νAµ = ∂µAν −∂νAµ, Fµν = gµαgνβFαβ. The field equations

∇µFµν = −Jν

may also be written as 3

∂µ(
√−gFµν) = −√−g Jν .

We have already seen the minimal coupling algorithm in action in deriving the point particle
dynamics, which we quote here again in its more general version, as a covariant form of (1.81):

SP(xa, e) =
1
2

∫
dσ

(
1

e(σ)
gαβ

dxα

dσ

dxβ

dσ
−m2 e(σ)

)
(2.57)

with the Minkowski equation of motion dua/dτ = 0 transformed into uβ∇β uα = 0. In an
analogous fashion, the free equation for the spin degree of freedom of a particle, dSa/dτ = 0,
generalizes to uα∇αSβ = 0 in a general gravitational field. In components, we have

dSα

dτ
+ Γαβγu

βSγ = 0 , (2.58)

an equation describing the precession of gyroscopes in a gravitational field.

Energy-momentum tensor

We can now repeat the weak-gravity analysis which was already done for the case of point
particles. Setting gαβ = ηαβ + hαβ and keeping the linear term in hαβ one finds

S[Ψ, η + h] = S[Ψ, η] +
1
2

∫
d4xhαβ

(
2
∂L
∂hαβ

+ ηαβL
) ∣∣∣∣∣

h=0

+O(h2) , (2.59)

where we have used
√
−det(η + h) = 1+ 1

2 η
αβhαβ+O(h2), easily proved in the eigenvalue basis.

The quantity in parenthesis in (2.59) measures the linear response of the matter system to the
3Exercise: show that for an antisymmetric tensor field Aµν... = A[µν...] we have ∇[αAµν...] = ∂[αAµν...],

and furthermore ∇αAαµ... = 1√
−g∂α (

√
−g Aαµ...). Show that the useful expression for the scalar Laplacian

∇2φ = 1√
−g∂α

(√
−ggαβ∂β φ

)
follows as a corollary.
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perturbation by a gravitational field. By explicit computation we see that it coincides with the
energy-momentum tensor of the matter system in all the usual cases involving point particles,
scalars and electromagnetic fields. Rather than quoting these results for the case of weak fields,
we can actually generalize the result for the case of linear response in an arbitrary gravitational
field, i.e. the behavior under a perturbation gαβ → gαβ + δgαβ. In this case we have

S[Ψ, g + δg] = S[Ψ, g] +
1
2

∫
d4x
√−g δgαβ Tαβ +O(δg2) , (2.60)

where the symmetric tensor Tαβ is given by

Tαβ = 2
∂L
∂gαβ

+ gαβL . (2.61)

In obtaining this equation we used
√
−(g + δg) =

√−g + δ
√−g =

√−g + 1
2

√−ggαβδgαβ +
O(δg2), which is again easily proved in the eigenvalue basis. Another useful identity which is
proved in a similar way is δgαβ = −gαµgβνδgµν . Using all these results, it is easy to show
that, for a system of particles, scalars and electromagnetic fields, we get a total linear-response
function

Tαβ = Tαβparticles + Tαβscalar + TαβMaxwell ,

where

Tαβparticles =
∑
p

mp
dxα

dτp

dxβ

dτp

δ(4)(x− xp)√−g

Tαβscalar = ∂αφ∂βφ− gαβ
(

1
2 (∂φ)2 + V (φ)

)
TαβMaxwell = −FαγF β

γ − 1
4g
αβFµνFµν . (2.62)

The answer is just the Diff-tensor forms of the Noetherian energy-momentum tensors for each
of these systems. Hence, we conclude that the energy-momentum tensor measures the response
of the matter system to a general gravitational perturbation in an arbitrary gravitational field.

Limitations of minimal coupling. General covariance

The minimal coupling algorithm described in the previous sections follows from the EP and
allows us to write down the effects of gravitation for an arbitrary system. The question thus
arises, why is it called minimal?.

The reason is that there could be higher order terms in the Lagrangian, depending on second
derivatives of the metric tensor or higher, that vanish in Minkowski space (hence are invisible in
SR) but do not vanish locally in a frefo (recall that the EP only requires the first derivatives of
the metric to vanish in free fall). In other words, there could be different scalar Lagrangians with
the same Minkowskian limit. This phenomenon occurs for example when considering powers of
covariant derivatives of tensors.

Let Vρ by a covariant tensor field and consider the double covariant derivative ∇µ∇νVρ. This
is rank-three covariant tensor by construction. Its flat-space limit, obtained setting g = η, is the
Lorentz tensor ∂a∂bVc. This Lorentz tensor is obviously symmetric in the indices a, b. However,
the original general tensor is not always symmetric in the indices µ, ν. Noting that ∇ ∼ ∂ + Γ,
we see that this tensor contains terms of the form ∂2V that are indeed symmetric in µ, ν, and
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terms of the form Γ∂V and ΓΓV , that vanish in a local free fall frame, but there are also terms
of the form (∂Γ)V that do not vanish in a free fall frame, and are not necessarily symmetric in
µ, ν. These terms do vanish in a free fall frame for a fictitious gravitational field, but not in a
general one.

Hence, any term in the Lagrangian involving higher than two covariant derivatives of tensors,
with some antisymmetry property, will not be generated by the minimal coupling algorithm.
Such terms are perfectly possible and do not violate the strictly formulated EP, because the
latter specifies that free fall removes gravitational effects up to second derivatives of the metric
(except in fictitious fields, where we remove the gravitational effects to all orders). All these
terms involve higher powers of derivatives in the Lagrangian, and thus are suppressed by inverse
powers of the spatial range of variation of the gravitational field.

In order to cope with these subtleties, one usually extends the method of minimal coupling
to the so-called ‘principle of general covariance’, which states that one should write down all
possible terms in the Lagrangian that are scalars under general coordinate transformations and
that reduce to Lorentz invariant terms in the flat space limit g → η. This may include terms
that effectively reduce to vanishing Lorentz tensors, such as the antisymmetric second covariant
derivative of tensor fields. In keeping with the strategy of the ‘locality principle’, all such terms
should be organized in a long-distance expansion and their effects only show up at sufficiently
small scales.

Spin connection

We have left out of the minimal coupling rules the case of spinors. This was deliberate, as
coupling spinor fields to gravity requires special work. The simplicity of the minimal coupling
prescription is based on the deceptively ‘trivial’ replacement of latin (Lorentz) indices by greek
(Diff) indices. This is ultimately possible because the point-by-point transformation matrices
of Diff tensors belong to the GL(4,R) group and, the Lorentz group being a subgroup, we can
always get a representation of the Lorentz group by restricting a representation of the general
linear group. Alas, the converse is not true, as there are representations of O(3, 1) that cannot
be extended into representations of GL(4,R). These are precisely the spinorial representations,
used to describe fermions in nature.

Even if the simple minimal coupling algorithm does not work in an obvious way, there is no
problem of principle with applying the EP to say, the Dirac Lagrangian. In fact, the solution
requires focusing not on the metric field, but rather on the seemingly more cumbersome tetrad
fields, defined at each point as a ‘Lorentzian square root’ of the metric:

gµν(P ) = eaµ(P ) ebν(P ) ηab .

According to this definition, the tetrads are four four-vectors that vary continuously through
the spacetime manifold. However, given one particular choice of tetrads eaµ, the Lorentz-rotated
one, Labe

b
µ, is equally good, so that we have an ambiguity by a Lorentz transformation at each

point in spacetime. Since the free fall frames do not extend globally, there is no canonical way
of choosing a set of Lorentz transformations, i.e. we have a true redundancy, a gauge symmetry.
4

4In fact, the same ambiguity is present in Minkowski spacetime, i.e. for fictitious gravitational fields. The
difference is that in Minkowski space there is a special choice of tetrads where a single Minkowskian frame covers
all spacetime.
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In order to ensure invariance under this redundancy, we introduce a gauge field in the usual
fashion, called the spin connection. Given a vector field V a = eaµV

µ, its derivative ∂µV a is not
Lorentz-covariant, but the combination

DµV
a = ∂µV

a + ω a
µ b V

b (2.63)

is Lorentz-covariant, DµV
a → LabDµV

b, provided the gauge field transforms as

ωµ → L (ωµ + ∂µ)L−1 , (2.64)

in matrix notation. The spin connection is the price we pay for our insistence on using the
local Lorentz frames at each point, and it should not introduce any new independent degrees of
freedom. The explicit choice

ω a
µ b ≡ eνb ∇µ eaν ≡ eνb

(
∂µe

a
ν − Γαµνe

a
α

)
(2.65)

satisfies all the transformation rules. Conversely this definition implies that the Christoffel
symbols can be calculated in terms of the tetrad derivatives as 5

Γαµν = eαa Dµ e
a
ν ≡ eαa

(
∂µ e

a
ν + ω b

µ a e
b
ν

)
(2.66)

in a general gravitational field. In this way, the two representations of a tensor in terms of
‘curved’ or ‘flat’ indices have ∇µ and Dµ as the respective covariant derivative operators:

DµV
a = eaα∇µV α . (2.67)

This relation expresses the fact that the spin connection does not introduce new degrees of
freedom and could be used to ‘define’ ωµ.

The utility of the spin connection is that it can be used to define covariant derivatives for any
fields specified in terms of Lorentz components. In particular, spinor fields. The Dirac operator
in the presence of gravitation is defined as

/D ≡ γµDµ = γµ
(
∂µ + 1

2 ω
ab
µ σab

)
, (2.68)

where γµ = eµaγ
a is a basis of curved-space Dirac matrices satisfying the generalized Clifford

algebra {γµ, γν} = −2gµν .

5Notice the subtle difference between this formula and (2.31). Actually, the spin connection measures precisely
to what extent the second derivative in (2.31) fails to be the first derivative of the tetrad.
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2.3 An interlude: Riemannian geometry

We have argued that the equivalence principle, together with some locality assumptions, sets
the mathematical arena of a gravitational theory to be given by Riemannian geometry. In the
mathematical literature, spaces with a positive-definite metric determining local distances

d`2 =
d∑

ij=1

gij dy
i dyj (2.69)

are called d-dimensional Riemannian manifolds. The meaning of this expression is that any
curve γ, parametrized by yi(σ), has length

`(γ) =
∫
γ
dσ

√√√√∑
ij

gij
dyi

dσ

dyj

dσ
. (2.70)

An intuitive interpretation of a Riemannian metric can be given by visualizing the manifoldM
as a curved submanifold embedded in a higher-dimensional flat space RD, with a sufficiently
large D > d. Let XI denote cartesian coordinates on RD and let the submanifoldM of interest
be parametrized by functions XJ(yj). At a given point on M we can consider the tangent
hyperplane, generated by the vectors of components

EIi =
∂XI

∂yi
,

with scalar product

Ei · Ej =
D∑
I=1

EIi E
I
j .

The length of a curve XI(σ) in RD is given by

`(γ) =
∫
γ
dσ

√√√√∑
I

dXI

dσ

dXI

dσ
. (2.71)

However, when the curve lies inside M we can also describe it by functions yi(σ), then

dXI

dσ
=
∑
j

dyj

dσ

∂XI

∂yj
=
∑
j

EIj
dyj

dσ

and the formula (2.70) follows with the metric “induced” from the embedding:

g
(induced)
ij =

D∑
I=1

EIi E
I
j . (2.72)

The starting point of Riemannian geometry is the abstraction of the embedding space. Once
the intrinsic metric gij is defined, Riemann concentrates on those properties that follow from
the metric alone. 6

6Incidentally, a famous theorem by the even more famous John Nash shows that any given Riemannian metric
gij can be induced by embedding the manifold M in RD, for a sufficiently large dimension D.
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Figure 2.5: A two-dimensional surface embedded in R3. The vectors E1 and E2 give a basis of a local
tangent space. The induced metric is given by gij = Ei · Ej .

The appropriate generalization for GR is that of a Riemannian space with Lorentzian sig-
nature, meaning that the eigenvalues of the metric in a special (free fall) frame, have signs
(− + ++). Hence, we see explicitly how the EP embodies the geometrical interpretation of
GR. From this standpoint, we could derive GR by simply providing a physical interpretation
of each element of Riemannian geometry, such as the notions of connection, torsion, curvature,
isometries, etc.

In the mathematical literature, the free-fall equation of motion goes under the name of
‘geodesic equation’. This refers to the related problem of finding ‘smallest length’ paths between
two points in a curved manifold. If our manifold is equipped with a metric d`2 =

∑
ij gij dy

idyj ,
the length along a given path can be obtained by (2.70). Minima of this functional define the
locally shortest paths, i.e. the geodesics. But we see that the mathematical problem is identical
to ours, except for the use of positive definite metrics, rather than Lorentzian ones. Accordingly,
the local geodesic equation has the form∑

i

T i∇iT j = 0 , (2.73)

where ∇ ∼ ∂ + Γ in a completely analogous fashion and T i = dyi/d` is the tangent vector to
the geodesic curve, parametrized by the proper length `. In particular, the explicit formula for
the Christoffel symbols in terms of the first derivatives of the metric is exactly the same. So, we
can adopt the geometry language and say that the motion in a gravitational field is equivalent
to the motion along geodesics of a curved spacetime manifold. In our case, the geodesics are not
‘minimal length’ paths, but rather ‘maximum proper-time’ ones.

This construction can be further generalized to define an induced metric for any submanifold
Σ of M, which of course will also be a submanifold of RD. Iterating the procedure gives the
induced metric on Σ

g(Σ)
uv =

∑
I

∂XI

∂σu
∂XI

∂σv
=
∑
ij

gij
∂yi

∂σu
∂yj

∂σv
, (2.74)

where σu label coordinates on Σ which can be specified by embedding functions yj(σ) into M
or XI(x(σ)) into RD.
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It is very important that no confusion arises between the four-dimensional spacetime geom-
etry, characterized by the Lorentzian metric gµν , and the metric on spatial submanifolds. In
our previous example of relatively rotating frames, a non-Euclidean spatial geometry was opera-
tionally demonstrated in the rotating frame. However, the four-dimensional spacetime geometry
remains just Minkowski space expressed in a rotating frame.

Parallel transport, holonomy and curvature

In general, if a vector V i is defined at each point of a curve xj(σ) with tangent vector
T i = dxi/dσ, we can define the covariant derivative along the curve as

∇V j

dσ
≡ ∇TV i ≡

∑
j

T j∇jV i . (2.75)

If this covariant derivative vanishes, one says that the vector V is being defined by parallel
transport along the curve xi(σ). The justification for this name comes from the fact that any
two vectors V and W , carried by parallel transport along the curve, ∇TV = ∇TW = 0, satisfy

d

dσ

∑
ij

gijV
iW j

 =
∑
ijk

T k∇k(gijV iW j) = 0 ,

as a consequence of the metric compatibility property, ∇kgij = 0. Hence, the local metric
definition of angles and norms is preserved under parallel transport. 7 We can write more
explicitly the parallel-transport equation as

dV i

dσ
+
∑
j

(ΓT )ijV
j = 0 ,

where we define the matrix (ΓT )ij ≡
∑
k T

kΓijk. This equation can be solved to give the vector
at some point Q, parallel-transported from some other point P , along the curve γPQ, in terms
of a formal path-ordered product

V (Q) = P exp

(
−
∫
γPQ

ΓT

)
V (P ) . (2.76)

For an infinitesimal displacement we have V (Q) = (1 −∆σΓT )V (P ), so that the path-ordered
product can be defined as the formal limiting product over an infinitesimal partition of the path

P exp

(
−
∫
γPQ

ΓT

)
= lim

∆σs→0

∏
s

e−∆σsΓT (s) .

The concept of parallel transport can be used to define a notion of curvature. Consider a closed
curve γP , based at P , given by the function xi(σ) that starts and returns to a point P , i.e.
xi(0) = xi(2π), with σ an angular variable. The corresponding closed-path parallel transporter

U [γP ] = P exp
(
−
∮
γP

ΓT
)

7Notice that a geodesic is defined as a proper-length parametrized curve whose tangent vector is ‘carried
forward’ by parallel transport along itself, ∇TT = 0.
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depends both on the curve and the point P , and is called holonomy. Since parallel transport
preserves norms and angles, U(γP ) is some matrix in the SO(d) group, where d is the dimension
of the Riemannian manifold. 8 In Minkowski space, or a ‘flat’ space in general, the holonomy
of any curve is the identity matrix. In this case, the parallel transport of vectors between two
arbitrary points is independent of the path joining them. A local measure of the deviation from
flatness, i.e. a mathematical definition of ‘curvature’, is obtained by considering the limit of
very small closed curves.

Let us make one little ‘square’ composed of four curves intersecting in pairs, using the
parameters of these curves as coordinates (x, y) of a two-dimensional submanifold with size of
order ε. We consider tangent vector fields X and Y whose only nonvanishing components are
Xx = Y y = 1 respectively. Denoting Xi = ∂zi/∂x and Y i = ∂zi/∂y the components in an
arbitrary coordinate system, we have the following identity

[X,Y ]i ≡
∑
j

(Xj∂jY
i − Y j∂jX

i) = 0 , (2.77)

where the so-defined vector field [X,Y ] is known as the Lie bracket of X and Y . Hence, when two
vector fields are used to coordinate a two-dimensional submanifold, their Lie bracket vanishes.9

x

y

P
X

Y

Figure 2.6: A quadrilateral round-trip at P with direction vectors X,Y and holonomy U(γP ) =
U−εY U ′−εXU

′
εY UεX .

The holonomy around this quadrilateral round trip is given by

U(γP ) = U−εY U
′
−εXU

′
εY UεX

where we have, with quadratic precision in ε,

UεX = e−εΓX = 1− εΓX + 1
2 ε

2 (ΓX)2 +O(ε3)

with a similar definition for UεY . The primed transporters are computed from the displaced
versions of the connection

Γ′Y = ΓY + ε ∂XΓY +O(ε2) , Γ′X = ΓX + ε ∂Y ΓX +O(ε2) ,
8In four-dimensional Lorentzian signature the holonomy is a matrix in the Lorentz group O(3, 1).
9The converse statement is also true and it is a particular case of a theorem by Frobenius.
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with the notation ∂X =
∑
iX

i∂i and analogously for Y . Upon explicit evaluation of the holon-
omy we find the first non-trivial term occurring at order ε2 and given by

U(γP ) = 1− ε2 (∂XΓY − ∂Y ΓX − ΓXΓY + ΓY ΓX) +O(ε3) .

Evaluating now the derivatives in index notation and using [X,Y ] = 0 one finds

U(γP )ij = δij − ε2
∑
k,l

Xk Y lRklj
i +O(ε3) , (2.78)

where the coefficients

Rklj
i = −∂kΓilj −

∑
n

ΓiknΓnlj − (k ↔ l) (2.79)

define the Riemann tensor. Despite its explicit definition in terms of non-tensor objects, it is a
Diff tensor with 20 independent components in four dimensions. 10 Equivalently, it can be repre-
sented in terms of the spin connection via the mixed Diff-Lorentz tensor R ab

kl =
∑
ij e

a
i e
bj Rklj

i,

R ab
kl = −∂kωabl + ∂lω

ab
k − [ωk, ωl]ab , (2.80)

thus taking the form of a standard non-abelian field strength of Yang–Mills type, associated to
the local O(1, 3) gauge group.

The Riemann tensor has the purely geometrical interpretation of characterizing completely
the local curvature: a Riemannian space is flat, i.e. metrically Rd, if and only if the Riemann
tensor vanishes identically.

For submanifolds Σ there is an important distinction between intrinsic and extrinsic curva-
ture. The intrinsic curvature is the Riemannian curvature of the induced metric g(Σ)

uv , whereas
the extrinsic curvature defines how the submanifold is ‘twisted’ inside the ambient manifold.
When Σ is a codimension-one submanifold the ‘twisting’ is determined by the normal unit vec-
tor to Σ, which we denote by ni. The bending of Σ is then related to the failure of ni to
follow parallel transport when moved around Σ. Hence we define the extrinsic curvature as the
symmetric covariant derivative

Kij ≡ ∇(inj) = 1
2 (∇inj +∇jni) . (2.81)

The symmetrization of the covariant derivative can be obviated in the definition of the extrinsic
curvature provided ∇inj is computed by extending ni away from Σ as a geodesic normal vector,
i.e. satisfying ni∇inj = 0.

Non-null codimension-one submanifolds (also called hypersurfaces) admit some useful specific
formulae. In particular, the two-index object Πij = gij − ninj is a projector that gives the
induced metric when restricted to the tangent space of Σ, i.e. in intrinsic coordinates for Σ one
has g(Σ)

uv = Π(Σ)
uv . For spacelike hypersurfaces in Lorentzian signature, one has nµnµ = −1, and

the projector reads Πµν = gµν + nµnν .

10An equivalent, if more elegant expression with manifest tensorial form is
(
[∇X ,∇Y ]−∇[X,Y ]

)
V i =

−
∑

klj
XkY lRklj

i V j , valid even for the case that [X,Y ] 6= 0.
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Non-metrical connections and derivatives

The concept of connection (covariant derivative) is actually more primitive than the notion
of metric. One can define ∇µ axiomatically and from there one can reach the concepts of
parallel transport, holonomy and curvature. The general covariant derivatives are still of the
form ∇ ∼ ∂ + Γ, but now the connection coefficients Γαµν need not be symmetric in the lower
indices, with the antisymmetric part Tαµν = Γαµν − Γανµ defining the torsion. One can check
explicitly that this is always a tensor.

Even in the presence of a metric, it is possible to have non-standard connections, in the sense
that they might not be metric compatible, i.e. ∇g 6= 0, and/or they might have torsion. However,
demanding the connection to be symmetric (torsion free) and metric compatible, ∇g = 0, fixes
it completely to be the so-called Levi–Civita connection, defined by the Christoffel symbols. In
practice, one can always write an arbitrary connection as the sum of the Levi–Civita connection
and a remainder. This remainder may depend on torsion terms and/or contain the degrees of
freedom that violate the metric compatibility, and it can be regarded as a non-minimal coupling
in covariant derivatives. The important fact about this remainder is that it is always a tensor.
In this way, we may still use the standard Riemannian language for physics applications, with
the non-standard connection degrees of freedom interpreted as a type of exotic tensor ‘matter’
that does not follow the minimal coupling prescription.

This freedom in the use of non-standard connections shows up in modern generalizations of
GR, in the context of supergravity theories. Historically, this was also the arena for various for-
gotten alternative theories, tried by the ‘founding fathers’. In particular, Einstein contemplated
connections with torsion in some of his attempts at constructing a ‘unified theory’ of gravity
and electromagnetism. Even earlier, Weyl considered connections satisfying

∇igjk = Ai gjk

for some vector field Ai. In general these connections do not preserve the length of a vector
under parallel transport, although they do preserve the locally measured angles:

cos (V,W ) ≡ V ·W√
|V |2|W |2 ,

where V ·W ≡∑ij gijV
iW j , and |V |2 = V · V . In Weyl’s theory, the vector field Ai was again

related to electromagnetism. 11

11Exercise: Check that the Weyl connection preserves angles.
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Chapter 3

Dynamics of the gravitational field

With the formal machinery introduced so far, we are able to solve for the dynamics of
arbitrary matter systems in a prescribed gravitational field, as specified by some metric tensor
gαβ. In this so-called probe approximation, the spacetime metric is considered as a fixed external
background, and the back-reaction of the energy-momentum of matter fields on the metric is
assumed to be small on the length scales of interest. In particular, the classic experimental tests
of GR are analyzed within this approximation, once the metric outside a poin-tlike source is
given. The remaining part of the problem is the specification of the dynamics of the gravitational
field itself, i.e. the Lagrangian of the metric tensor.

3.1 Einstein’s law

Since gαβ plays the role of a gravitational potential, we seek the relativistic analog of the
Newtonian action

SNewton =
1

8πG

∫
dt d3x φN

~∂ 2 φN

in a scalar Lagrangian linear in second derivatives of the metric, i.e.

S =
∫
d4x
√−g (Lg(gαβ) + Lm(Ψ,∇α)) , (3.1)

with Lm the Lagrangian of generic matter degrees of freedom Ψ, minimally coupled to gµν as
in the previous sections, and Lg ∼ ∂2g is the purely gravitational Lagrangian, a Diff scalar.
The obvious choice ∇2g vanishes because of the metric compatibility of the affine connection.
A hint at the solution is provided by the previous discussion on the limits of minimal coupling,
where it was argued that the commutator of covariant derivatives can be used to diagnose the
non-triviality of the gravitational field. Here, we shall argue this point on physical grounds.

3.1.1 Tidal forces

The basic property of a fictitious gravitational field is the existence of a global free-fall frame
that ‘transforms away’ gravity globally. In the free-fall frame, initially parallel trajectories stay
so in time, with vanishing relative acceleration. On the other hand, in a real gravitational field,
the EP only removes the gravitational field at a point, leaving a residual relative acceleration
between nearby particle trajectories. The corresponding residual forces are called ‘tidal forces’.
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Figure 3.1: Family of free-fall trajectories parametrized by global time and fiducial parameter s. The
relative separation of the falling points is given by ∆s d~x/ds.

We can easily discuss tidal forces in the Newtonian theory by considering a family of free-
falling particles along a curve ~x(s) at time t = 0. We also assume that the initial velocities of
these particles varies continuously along the family, i.e. the function

~v(s, 0) =
d~x

dt
(s, 0)

is a continuous vector function of s. Now, we let them develop in time, so that the set of
trajectories span a two-dimensional surface coordinated by (s, t). The relative separation at
time t of two particles with parametric distance ∆s is

∆~x = ∆s
d~x

ds
(s, t) ,

to first order in ∆s. Denoting the transverse separation vector ~̀= d~x/ds, the rate of separation
of the falling trajectories is ∆s d~̀/dt and the relative acceleration ∆s d2~̀/dt2. Using now the
equation of motion

d2~x

dt2
(s, t) = −~∂ φN(~x(s, t))

we obtain the final expression for the tidal accelerations,

aitidal =
d2`i
dt2

= −(~̀ · ~∂) ∂iφN = −
∑
j

Rij`j , (3.2)

which indeed depend on the second derivatives of the gravitational potential and reproduces our
previously introduced tidal tensor Rij = ∂i∂jφN.
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In the relativistic case, we consider an entirely analogous situation, i.e. a family of free-falling
geodesics xµ(τ, s), parametrized by the geodesic label, s, and proper time τ . The separation
and velocity four-vectors are defined by

`µ =
dxµ

ds
, uν =

dxν

dτ
. (3.3)

We can now define covariant derivatives along parametrized curves as

∇
ds
≡ ∇` ≡ `µ∇µ ,

∇
dτ
≡ ∇u ≡ uµ∇µ . (3.4)

With this definition, the free-fall equation of motion may be rewritten as

duµ

dτ
+ Γµαβu

αuβ = ∇u uµ = uα∇αuµ = 0 . (3.5)

Using these formulas, one can explicitly write

∇u `α = uµ∇µ`α =
d`α

dτ
+ Γαµνu

µ`ν =
d2xα

dτds
+ Γαµν

dxµ

dτ

dxν

ds
.

Since this expression is symmetric in s, τ , it is actually equal to

d2xα

dsdτ
+ Γαµν

dxµ

ds

dxν

dτ
= `µ∇µuα .

Hence, we have proven
∇u `α = uµ∇µ`α = `µ∇µuα = ∇` uα (3.6)

With these preliminaries, we are ready to define the relative acceleration of neighbouring
geodesics as

aµtidal = (∇u)2 `µ = uα∇α(uβ∇β `µ) = uα∇α(`β∇β uµ) , (3.7)

where we have used (3.6) in the last equality. Manipulating this expression we find

aαtidal = uµ(∇µ`ν)∇νuα + uµ`ν∇ν∇µuα + uµ`ν [∇µ,∇ν ]uα . (3.8)

Using again (3.6) in the first term and the geodesic condition uα∇αuβ = 0 we finally obtain

aαtidal = uµ`ν [∇µ,∇ν ]uα . (3.9)

Thus, we have proven that the physical distinction between real and fictitious gravitational fields
can be locally parametrized by the commutator of covariant derivatives acting on vector fields.
Such an object defines the relativistic version of the tidal tensor, i.e. the so-called Riemann
tensor.

3.1.2 The Riemann tensor

The commutator [∇µ,∇ν ]V α defines a tensor object that vanishes in a fictitious gravitational
field (i.e. a reparametrized Minkowski space) because its flat-space version satisfies [∂a, ∂b ]V c =
0 indentically. Upon direct evaluation, we find

[∇µ,∇ν ]V α = −Rµνρ α V ρ , (3.10)
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where
Rµνρ

α = −∂µ Γανρ − Γαµσ Γσνρ + (µ↔ ν) (3.11)

is the Riemann tensor. As expected, it contains second derivatives of the metric that need not
vanish anywhere in a real gravitational field, even in a free-fall frame. The explicit calculation
above can be repeated for the case of a covariant vector field,

[∇µ,∇ν ]Vα = Rµνα
ρ Vρ , (3.12)

and for a general tensor

[∇µ,∇ν ]Tα... β... = −Rµνρ α T ρ... β... − . . .+Rµνβ
ρ Tα... ρ... + . . . . (3.13)

This means that an arbitrary power of covariant derivatives can be reduced to symmetrized
covariant derivatives (which disappear in a free-fall frame) plus terms involving powers of the
Riemann tensor.

Mathematically, we say that a manifold is curved when the Riemann tensor does not vanish.
Conversely, if the Riemann tensor vanishes identically inside a finite region of spacetime, there
exists a frame in which the metric is exactly Minkowskian, g = η, throughout that region.

The Riemann tensor has in principle 256 components, which are reduced to 20 independent
ones due to a large set of symmetry properties: 1

R(µν)ρ
α = 0 , R[µνρ]

α = 0 . (3.14)

(we denote [. . .] the antisymmetrization operation and (. . .) the symmetrization operation). For
the completely covariant form Rµνρσ = gσαRµνρ

α, we have

Rµν(ρσ) = 0 . (3.15)

It follows from these three identities that Rµνρσ = Rρσµν . Finally, the Riemann tensor satisfies
a set of differential relations, called the Bianchi indentities.

∇[µRνρ]σ
α = 0 . (3.16)

To prove these, we start from

[∇µ,∇ν ]∇ρwσ = Rµνρ
α∇αwσ +Rµνρ

α∇σwα . (3.17)

On the other hand

∇µ [∇ν ,∇ρ ]wσ = ∇µ(Rµνρ αwα) = wα∇µRνρσ α +Rνρσ
α∇µwα .

Antisymmetrizing in µ, ν, ρ in both equations, the left hand side becomes the same. Equality of
the right hand sides implies

R[µνρ]
α∇αwσ +R[µν(σ)

α∇ρ]wα = wα∇[µRνρ]σ
α +R[νρ(σ)

α∇µ]wα ,

where the inserted parenthesis indicate that the index in question is not antisymmetrized. The
first term on the left hand side of this equation vanishes by the symmetry properties of the

1Exercise: Prove all these.
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Riemann tensor, whereas the second terms on both sides cancel one another, and we obtain, for
all wα,

wα∇[µRνρ]σ
α = 0 , (3.18)

which yields the Bianchi identities. 2

The symmetry properties imply that the Riemann tensor produces only one independent
second rank tensor under contraction, the so called Ricci tensor

Rµν = Rαµαν = Rνµ , (3.19)

and a unique scalar, the Ricci scalar
R = gµνRµν . (3.20)

Contracting the Bianchi identities we obtain their projection over the Ricci tensors, 3

∇µGµν = 0 , (3.21)

where we have defined the Einstein tensor as

Gµν = Rµν − 1
2 gµνR . (3.22)

Another interesting object is the Weyl tensor, defined by

Cµν
ρσ ≡ Rµν ρσ − 2R[µ

[ρδν]
σ] + 1

3 Rδ[µ
ρδν]

σ . (3.23)

It can be interpreted as the part of the Riemann tensor that is not controlled by the Ricci
component. Its main application is as a criterion for conformal equivalence of metrics, namely
two metrics related by a local rescaling gµν(x)→ Ω2(x)gµν(x) have the same Weyl tensor.

3.1.3 The Hilbert Lagrangian

Comparing the Newtonian and relativistic equations for the tidal forces, we see that we can
make a correspondence inspired in the non-relativistic limit,

Rµjν
i uµuν ≈ R0j0

i ≈ ∂j∂iφN , (3.24)

so that we are essentially forced to choose as the Lagrangian for the gravitational field the
unique scalar constructed from the Riemann tensor, i.e. the Ricci scalar. This leads to the
Hilbert action 4

SH =
1

2κ2

∫
d4x
√−g R , (3.25)

where κ2 is proportional to G, the precise constant of proportionality to be determined below.
In fact, there is a superficially more important term that can be added to the purely gravita-

tional Lagrangian: an additive renormalization of R by a constant. It is more important because
it does not contain derivatives and thus dominates the long distance physics. This is the famous

2In more mathematical terms, the Bianchi identities are nothing but the Jacobi identity for the covariant
derivative operator: 0 = [∇µ, [∇ν ,∇ρ]] + cyclic permutations.

3Exercise: Prove it.
4In fact, Hilbert obtained the correct field equations from this action at the same time, if not before, Einstein

himself.
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cosmological constant, Einstein’s ‘biggest blunder’, by his own admission and, in hindsight, one
of his major discoveries!

The complete Lagrangian of gravity and matter then reads,

S[g,Ψ] =
∫
d4x
√−g

(
1

2κ2
(R− 2Λ) + Lm(Ψ,∇)

)
. (3.26)

3.1.4 Einstein’s equations

We are now ready to derive Einstein’s equations for the gravitational field, by simply sta-
bilizing the variation of the Lagrangian with respect to the metric gµν . We first consider the
variation of the gravitational Lagrangian. It contains three terms,

δ(
√−g (R− 2Λ)) = δ(

√−g)(R− 2Λ) +
√−g δgµνRµν +

√−g gµνδRµν .

Using the relations δ
√−g = 1

2

√−ggµνδgµν and δgµν = −gµαgνβδgαβ we can evaluate the first
two terms. As for the last one we have

δRµν = −∂µδΓααν + ∂αδΓαµν +O(ΓδΓ) .

The terms proportional to ΓδΓ vanish on a free fall frame at a given point. Now, although
the connection Γ is not a tensor, the differece between two connections is a tensor, since the
offending inhomogeous terms vanish. So we can find the complete expression by covariantizing
the previous one,

δRµν = −∇µδΓααν +∇αδΓαµν . (3.27)

The same type of reasoning shows that

δΓαµν = 1
2 g

ασ (∇µδgσν +∇νδgσµ −∇σδgµν) . (3.28)

So, the final result is that gµνδRµν = ∇µKµ with Kµ a four-vector field linear in covariant
derivatives of δgµν . Since this variation contributes a total derivative, it is tempting to neglect
it on the grounds that the metric is fixed on the boundary of spacetime, in accord with common
practice in the Lagrangian formalism. There is a subtlety though, in that Kµ depends on δgµν
through its covariant derivative, and the condition that these vanish is not quite the same as
the vanishing of δgαβ. In fact, as remarked by Hawking and Gibbons, one can add a boundary
term to Hilbert’s action in such a way that those terms are cancelled out, and one is left with
a standard variational principle. 5 The resulting equations are identical to those obtained by a
naive procedure in which one simply neglects the Kµ term, so that we will not worry about this
issue at this point.

Collecting all terms, the variation of the gravitational action is

δSH =
1

2κ2

∫
d4x
√−g

(
−Rµν + 1

2 g
µν(R− 2Λ)

)
δgµν . (3.29)

Next we turn to the matter sector. Here, the first order variation defines the energy-
momentum tensor, according to (2.60) and (2.61), through

δSm =
∫
d4x
√−g 1

2 T
µνδgµν . (3.30)

5The Gibbons–Hawking term is given by SGH = 1
κ2

∮
K, where the integral is defined over the boundary, and

K is the trace of the extrinsic curvature associated to the induced metric.
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In terms of the Lagrangian,

Tµν = 2
∂Lm
∂gµν

+ gµν Lm . (3.31)

Finally, we can put all the terms together and write down Einstein’s equations as

Gµν + Λgµν = Rµν − 1
2 gµν(R− 2Λ) = κ2Tµν , (3.32)

a set of ten non-linear second-order partial differential equations. The non-linearity, which
persists even for vacuum solutions, makes it highly non-trivial to find exact solutions. Flat
Minkowski space gαβ = ηαβ is of course a solution with Tµν = Λ = 0. The vacuum equations are
obtained by setting to zero the matter sector and tracing the equation to obtain R−2(R−2Λ) =
−R+ 4Λ = 0. Hence,

Rµν = Λgµν (3.33)

gives the vacuum equations. Manifolds solving the vacuum Einstein equations are called Einstein
manifolds. For Λ = 0 we have the so-called Ricci-flat manifolds.

The cosmological constant term is equivalent to a vacuum energy on the matter energy-
momentum tensor. For example, if the matter sector contains a scalar field with energy-
momentum tensor

T (φ)
µν = ∂µφ∂νφ− gµν

(
1
2 (∂φ)2 + V (φ)

)
,

we see that the shift V (φ) → V (φ) + Λ/κ2 in the origin of potential energies introduces the
cosmological constant if it was zero on the left hand side of Einstein’s equations. Alternatively,
for a perfect fluid ansatz,

T (fluid)
µν = (p+ ρ)UµUν + p gµν ,

the cosmological constant is equivalent to a matter component with the equation of state p =
−ρ = −Λ, so that we may fold Λ into the non-gravitational Lagrangian as a matter of convention
and write the equations as 6

Gµν = κ2 Tµν . (3.34)

It remains to determine the absolute normalization of the action, i.e. the relation between κ
and ordinary Newton’s constant G. One way of fixing this normalization will be explained in the
next section, using the matching of the Newtonian potential to the leading linearized solution
of (3.34). Here we will offer an alternative argument which refers directly to the physical
interpretation of the Riemann tensor as the relativistic version of the tidal force tensor. We
begin by rewriting (3.34) in the equivalent form

Rµν = κ2 (Tµν − 1
2 gµνT ) , (3.35)

where T = gαβTαβ is the trace of the energy-momentum tensor. From the non-relativistic limit
of the tidal equation (3.24) we learn that

~∂ 2φN ≈ R00 = κ2(T00 + 1
2 T ) , (3.36)

6This innocent-looking statement causes the so-called ‘cosmological constant problem’; the astonishing fact
that the measured value of Λ, given by GΛ ∼ 10−120, is so incredibly small, despite the multitude of independent
contributions to Λ from the matter sector, each of them potentially much larger than the experimental bound.
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where we have used gµν ≈ ηµν . Assuming that the source is given by a non-relativistic system
of slow particles, we have T00 ≈ ρm and T = −T00 +

∑
i Tii ≈ −T00, so that the right-hand side

of (3.36) is κ2

2 ρm, which agrees with the Poisson equation for

κ2 = 8πG . (3.37)

Einstein’s equations can be viewed as a set of partial differential equations determining the
metric gµν on a spatial surface at time t, given initial data on a spatial surface at time t = t0.
The initial data are ‘positions’ gµν(t0), and ‘velocities’ ∂tgµν(t0). Apparently, the system of ten
equations just determines the ten components of the metric, but this is actually deceptive, since
there are four degrees of freedom not determined by the equations, related to Diff covariance.
Indeed, only the six spatial equations

Gij = 8πGTij

contain second derivatives in time and are true ‘dynamical equations’. The remaining four,

G0µ = 8πGT 0µ (3.38)

only contain up to first derivatives in time of gµν . This follows from the Bianchi identities,
∇µGµν = 0, which can be written as

∇0G
0µ = −

∑
i

∇iGµi .

The right hand side contains derivatives up to second order in time, thus G0µ can only contain
up to first time derivatives of the metric. The conclusion is that the four equations (3.38) must
be imposed as constraints on initial data. This remark is very useful in practice, when faced
with the task of solving Einstein’s equations. In many situations with high symmetry, it is useful
to evaluate the G00 = 8πGT00 equation first, since it often expresses “constants of the motion”
in the combined gravity/matter system.

Energy-momentum ‘local’ conservation

The Bianchi identity on the Einstein tensor ∇µGµν = 0 implies, via the Einstein equations,
a covariant conservation law for the energy-momentum tensor of all non-gravitational degrees
of freedom,

∇µ Tµν = 0 . (3.39)

We can derive this relation, as well as the Bianchi identity, from the invariance of the action
under reparametrizations. Since Sm is manifestly invariant under coordinate transformations:
x→ x′(x), we have for infinitesimal ones x′ = x− ξ(x) +O(ξ2),

δξSm =
∫
d4x
√−g 1

2 T
µν δξgµν = 0 , (3.40)

with δξgµν the variation of the metric functions under the reparametrization, i.e.

g′µν(x)− gµν(x) ≡ δξgµν(x) +O(ξ2) . (3.41)
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Using
g′µν(x) = g′µν(x′ + ξ) = g′µν(x′) + ξα∂αg

′
µν(x′) +O(ξ2)

and the tensor law

g′µν(x′) =
∂xα

∂x′ µ
∂xβ

∂x′ ν
gαβ(x)

to linear order in ξ, we find

δξgµν ≡ £ξgµν = ξα∂αgµν + gµα∂νξ
α + gνα∂µξ

α = ∇µξν +∇νξµ . (3.42)

This is referred to as the Lie derivative of the metric in the mathematical literature. 7 Intro-
ducing this back into the variation of the action we obtain, upon integration by parts,

0 =
∫
d4x
√−g∇µTµνξν (3.43)

for all ξν , which leads to the covariant conservation relation. Expanding the covariant derivative,

∂µT
µν = −2ΓµµαT

αν (3.44)

we see that local conservation of matter energy-momentum is spoiled by the ‘gravitational forces’
proportional to the connection coefficients. We can say that energy and momentum is transferred
back and forth between matter and the gravitational field. This looks similar to analogous
situations in SR where one has to include energy densities for all fields in the problem in order
to gain strict conservation. In this case, it would be natural to search for a local energy-
momentum tensor for the gravitational field alone, so that, when added to Tµν the sum would
be locally conserved. In fact, it turns out that such an object exists, but it cannot be defined
as a tensor, i.e. it does not have ‘intrinsic’ properties. A particularly striking manifestation
of this is the fact that, on a freely falling frame through a point P , the gravitational field and
whatever its energy density might be, dissapears locally. All we are left with on this frame is
the SR equation

∂aT
ab
∣∣∣
P

= 0 .

Hence, purely gravitational energy density is a fundamentally global construct. It cannot be
localized in the usual sense.

It remains the interesting question of what conditions must be imposed on a spacetime so
that it supports local conservation of the matter energy-momentum alone, i.e. which spacetimes
behave in this respect like Minkowski space? Recall that any conservation law must be phrased
in terms of a locally conserved current. In SR, one defines the local density of four-momentum as
Jau = −ubT ab for a field of local observers with four-velocity ua. If all four-velocities are parallel,
so that the test observes are at relative rest, we have ∂aub = 0 and the so-defined current is
conserved ∂aJ

a
u = 0. The analog in curved spacetime is the covariant conservation ∇µJµξ = 0

for
Jµξ = −Tµνξν , (3.45)

7Repeating this for a general tensor, we obtain the tensorial generalization of Lie derivatives along the four-
vector ξ as

£ξT
µ···

ν··· = ξα∂αT
µ···

ν··· + ∂νξ
α Tµ··· α··· + · · · − ∂αξµ Tα··· ν··· − · · ·

When the torsion vanishes, we can replace all ordinary derivatives by covariant derivatives.
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defined in terms of some some vector field ξµ of local observer four-velocities. Now, given
∇µTµν = 0, the current Jµξ is conserved if and only if the vector field satisfies ∇µξν +∇νξµ = 0,
i.e. the metric has vanishing Lie derivative in the ξ direction. In this case, we say that the integral
curves of ξ define an isometry of the metric. Hence, for spacetimes with special symmetries,
local conservation of matter energy-momentum still holds.
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3.2 Weak gravitational fields

We consider now the linearized approximation of Einstein’s equations with Λ = 0, valid for
the physical situation of weak gravitational fields in a Minkowski background or more generally
for weak gravitational fields in any space-time whose radius of curvature is much larger than the
length scales of interest. In the course of this analysis, we will make contact with the Newtonian
theory, define global notions of mass and angular momentum in asymptotically flat spaces, and
obtain an elementary discussion of gravitational radiation.

The basic situation under consideration is that of metrics of the form

gαβ = ηαβ + hαβ , (3.46)

with hαβ ‘small’. The appropriate notion of ‘smallness’ must be qualified because of the basic
ambiguity by reparametrizations. Even flat Minkowski space can show a metric tensor that has
‘large’ components, simply because it was written in a frame with large accelerations. Hence,
we shall split the metric as above, as a Minkowskian part plus a perturbation, adopting a
preferred Minkowskian frame in which the flat part of the metric is the standard Minkowski
one ηab. After this preferred frame xa has been chosen, only Lorentz transformations on the xa

are allowed, leaving the background metric ηab invariant. The action of a general infinitesimal
reparametrization on this preferred Minkowskian frame, xa → xa − ξa(x), induces a change of
the metric functions

gab(x)→ gab(x) + ∂aξb(x) + ∂bξa(x) +O(ξ2) , (3.47)

which can be reinterpreted as a redefinition of hab, rather than a reparametrization of the
Minkowskian coordinates xa. Therefore, the linearized gravitational field tensor hab inherits a
gauge redundancy

hab → hab + ∂aξb + ∂bξa (3.48)

as the linearized approximation of the general coordinate invariance of the underlying theory.
We can now linearize Einstein’s equations, starting from

Γcab = Γcab
(1) +O(h2) = 1

2 η
cd (∂ahbd + ∂bhad − ∂dhab) +O(h2) . (3.49)

In the following, it will be convenient to raise and lower Lorentz indices with the Lorentz metric
ηab. The Ricci tensor linearizes as

Rab = R
(1)
ab +O(h2) = −∂aΓcbc (1) + ∂cΓcab

(1) +O(h2) , (3.50)

and the Einstein tensor is given by 8

Gab = G
(1)
ab +O(h2) = 1

2

(
−∂2γab + ∂a∂

cγcb + ∂b∂
cγca − ηab∂c∂dγcd

)
+O(h2) (3.51)

in terms of the related field

γab ≡ hab − 1
2 ηabh , h ≡ ηabhab . (3.52)

The Einstein tensor simplifies considerably by choosing an analog of the Lorentz gauge in elec-
trodynamics, i.e.

∂aγab = 0 . (3.53)
8Exercise: Verify this form.
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Under these conditions, Einstein’s equations boil down to

−∂2γab = 16πGTab , (3.54)

which takes the form of a standard wave equation, with an equally standard solution in terms
of retarded potentials

γab(x) = 4G
∫
Tab(t− |~x− ~y |, ~y )

|~x− ~y | d3y (3.55)

for fields that vanish at infinity. Fields that do not vanish at infinity can be incorporated by
adding solutions of the homogeneous vacuum equation, ∂2γab = 0, i.e. gravitational waves
propagating in vacuo at the speed of light.

Assuming that the energy-momentum of the sources is time-independent and non-relativistic,
i.e. velocities of massive objects are small: |T 00| � |T 0i| � |T ij |, we approximate the solution
of (3.55) by γij ≈ 0 ≈ γ0i, and the dominant component is

γ00(~x) ≈ 4G
∫
d3y

T00(~y )
|~y − ~x | . (3.56)

Since T00 ≈ ρm for non-relativistic sources, the matter mass density, we have a direct relation
to the Newtonian potential φN,

γ00 ≈ −4φN . (3.57)

Using now γ = −h = −γ00 and hab = γab− 1
2 ηabγ we obtain for the original metric perturbation

h00 ≈ 1
2 γ00 , h0i ≈ 0 , hij ≈ δijh00 ,

which gives back the known asymptotic form of the metric perturbation,

h00 ≈ −2φN =
2GM
|~x | , M ≡

∫
d3x ρm(~x ) ,

previously derived from the non-relativistic limit of the geodesic equation. Hence, we have found
the following asymptotic form of the metric as sourced by a non-relativistic system of mass M :

ds2 = −
(

1− 2GM
r

+ . . .

)
dt2 +

(
1 +

2GM
r

+ . . .

)
d~x 2 , (3.58)

valid for r = |~x | � 2GM .

3.2.1 Systematic weak-field expansion

In a strict sense, equation (3.55) is inconsistent with any non-trivial self-gravity effects. The
linearized theory coupled to the matter energy-momentum tensor satisfies ∂aγab = 0 = ∂aTab.
But this implies that particles contributing to Tab necessarily follow geodesics of the zeroth-order
metric ηab, instead of the perturbed one ηab + hab. We can remedy this problem by a suitable
generalization of (3.55) to an exact equation equivalent to Einstein’s equations.

Under the basic decomposition g = η + h, we write the full Einstein tensor as

Gab(η + h) = G
(1)
ab (h) +G′ab(η + h) , (3.59)
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where G′ab is simply the deviation of the exact Einstein tensor from the linear approximation.
By definition, the small field expansion of G′ab starts at quadratic order in hab. Defining now

tab(h) ≡ − 1
8πG

G′ab(η + h) (3.60)

we see that Einstein’s equations can be exactly rewritten as

G
(1)
ab = 8πG Tab , (3.61)

where
Tab ≡ Tab + tab (3.62)

is a sort of total energy momentum tensor of matter and gravitation. This definition has tab
obviously playing the role of the energy-momentum ‘tensor’ of the gravitational field, and is
completely tied to the particular background flat spacetime and the family of coordinate systems
in which its metric takes the Minkowskian simple form. The quotations here refer to the fact
that tab is not a true tensor with respect to general diffeomorphisms of the full spacetime. It is
only a Lorentz tensor with respect to the flat background spacetime. One should not become
mystified about this fact, since the whole perturbative construction singles out the Minkowski
metric ηab as special, and the equations are written in manifestly non-covariant form.

Now, in the situation in which the complete solution for γab vanishes at infinity, the equation
(3.55) still holds exactly with the replacement of Tab everywhere by Tab

γab(x) = 4G
∫
d3y
Tab(t− |~y − ~x |, t)

|~x− ~y | . (3.63)

Notice that now Tab depends on γab, so that this is an integral equation for γab, containing
exactly the same information as Einstein’s equations (plus the condition that γab vanishes at
infinity, preserving the asymptotic flatness). The systematics of the weak-field expansion can
be obtained from the iterative solution of this integral equation. Namely, the n-th order term
in the evaluation of hab via eq. (3.63) uses the (n − 1)-th order evaluation of the gravitational
stress-energy tensor tab, plus the matter energy-momentum tensor calculated in the (n − 1)-th
order background metric, after solving the matter equations. In particular, this construction
only requires that γab is a weak field at large distances, since (3.63) is valid for arbitrarily strong
fields which still preserve the condition of asymptotic flatness. Hence, the iterative weak-field
solution of (3.63) can be understood as a gradual reconstruction of the field ‘from outside in’.

The standard local conservation law in Minkowski space also holds exactly in terms of the
complete tensor:

∂aT ab = 0 , (3.64)

as a result of the exact transversality of the linearized Einstein tensor, ∂aG(1)
ab = 0.

This iterative scheme shows precisely how the Lorentz-invariant theory of a symmetric tensor
field (the Fierz–Pauli scheme) must be corrected by nonlinear terms in order to achieve con-
sistency with energy-momentum conservation (3.64). Hence, in hindsight we have found that
Einstein’s theory is the minimal consistent theory of a symmetric tensor field.

Sometimes the statement is made that this formalism has problems with gauge invariance,
since the leading order (quadratic in γab) gravitational tensor t(2)

ab , as well as its higher-order
cousins, are not gauge invariant under the linearized transformation hab → hab + ∂aξb + ∂bξa.
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In fact, it turns out that the complete exact Tab must be gauge-invariant under linearized gauge
transformations when evaluated on a solution of Einstein’s equations (off shell, the gauge group
is the full non-linear Diff group).

For sufficiently localized systems, with Tab of compact support, and in the absence of radi-
ation, one finds that γab = O(1/r) at spatial infinity. Then Tab = O(1/r4) and its integral over
a spatial section converges. In this situation, we can derive a useful formula (due to Arnowitt,
Deser and Misner) for the total energy in asymptotically flat spacetimes. In the conformal gauge
∂aγab = 0, the exact Einstein equations (3.61) can be written as −∂2γab = 16πG Tab, so that

EADM =
∫
R3
T00 = − 1

16πG

∫
R3
∂2γ00 . (3.65)

By repeated use of the transvesality condition, ∂aγab = 0, we can eliminate the time derivatives
to obtain 9

EADM =
1

16πG

∑
i,j

∮
S2
∞

dSi (∂jγij − ∂iγ00) =
1

16πG

∑
i,j

∮
S2
∞

dSi (∂jhij − ∂ihjj) . (3.66)

This formula shows that the total energy in stationary, asymptotically flat spacetimes only
depends on the asymptotic properties of the metric.10 This result can be generalized to obtain
similar expressions for the total momentum and angular momentum of localized self-gravitating
systems. These results are presented in the next section using a different method.

Long-distance metric components for isolated sources

We have seen that the leading Newtonian approximation to (3.55) yields a long-distance
metric field h00 ∼ 2GM/r. The long-distance expansion can be systematized by performing a
multipole expansion of the integral, i.e. we consider sources with effectively ‘compact’ support
over a region of average size `� |~x | and expand

1
|~x− ~y | =

1
r

+
~x · ~y
r3

+ . . . ,

with r ≡ |~x |. Monopole terms are of O(1/r), dipole terms of O(1/r2) and so on. This expansion
can be applied to all components on the metric field γab. For simplicity, we shall continue with
our assumption that Tab is time-independent, although this hypothesis can be lifted by a more
detailed treatment of the multipole expansion.

For time-independent Tab, the conservation equation ∂aT
ab = 0 implies

∑
k ∂kTak = 0.

This leads to some useful indentities for the spatial integrals of the energy-momentum tensor.
Denoting

∫
d3y ≡ ∫R3 , we have∫

R3
Taj =

∫
R3

∑
k

∂k (Tkaxj) = 0 , (3.67)

where we have neglected the boundary terms in the last step, under the assumption that Tab
has compact support. Setting a = 0 in this equation we obtain that the total momentum

9Exercise: Complete the calculations.
10An important theorem by Shoen and Yau establishes that EADM ≥ 0 for any smooth, asymptotically flat,

solution of Einstein’s equations, provided Tµν satisfies appropriate positivity conditions.
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vanishes Pi =
∫
R3 T0i = 0. With a = i, we see that the volume average of the stresses Tij also

vanishes. This implies that the monopole approximations to γ0i and γij both vanish, and these
terms are dominated by the dipole contribution. Since h0i = γ0i and hij = γij − 1

2 δijγ, with
γ = −γ00 + dipole terms, we see that hij is dominated by the monopole contribution to γ00.

Hence, in order to capture the leading behaviour of the metric perturbation, it suffices to
consider the monopole approximation to γ00 and the dipole approximation to γ0i. In these
conditions, the monopole and dipole approximations to γ0i:

h0i(~x ) = γ0i(~x ) =
4G
r

∫
R3
T0i +

4G
r3

∑
j

xj

∫
R3
yj T0i + . . . .

The first monopole term, proportional to the total momentum of the system, vanishes for time-
independent sources. More generally, it can be eliminated by adjusting the frame to be at rest
with respect to the sources. Then, as already stated above, the leading contribution to h0i is
the dipole term. We can simplify it by using again the time-independence condition to write

0 =
∫
R3
yiyj

∑
k

∂kT0k = −
∫
R3

(yj T0i + yi T0j) ,

so that the dipole term is purely antisymmetric in the indices i, j. Finally, using that the angular
momentum is defined as

Jk ≡ 1
2

∑
ij

εijkJij ≡ −1
2

∑
ij

εijk

∫
R3

(yiT0j − yjT0i) , (3.68)

(the minus sign is there because we have lowered the time component of the energy-momentum
tensor) we see that we can read off the angular momentum of the source system from the O(1/r2)
tail of the off-diagonal metric components,

h0i(~x ) =
2G
r3

∑
j,k

εijkxjJk . (3.69)

Hence, in stationary situations, the long-distance behaviour of the asymptotically flat spacetime
is controlled by the total mass and angular momentum of the sources ‘inside’ by the following
r →∞ asymptotics:

ds2 → −
(

1− 2GM
r

+ . . .

)
dt2 +

(
4G
r3

(~x× ~J ) + . . .

)
· d~x dt+

(
1 +

2GM
r

+ . . .

)
d~x 2 . (3.70)

Following our general discussion above, these formulas still hold in the presence of strong self-
gravity effects, with M and ~J calculated in terms of the total energy-momentum pseudotensor
Tab.

The asymptotic form (3.70) gives the leading deviation from SR in computing the effects
of weak gravitational fields on test particle probes, such as the case of GR effects on the solar
system. The particular forms of the metric functions are universal predictions of Einstein’s
theory which control the leading effects of gravitational time delays and gravitational bending
of light. It is interesting, however, that the classic test of Mercury’s perihelion advance requires
going to order (GM/r)2 in the weak-field expansion for g00, which will be determined in the
following chapter to be

g00 = −1 +
2GM
r
− 2G2M2

r2
+ . . .
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To see this, consider a metric of the form

ds2 = −(1 + 2φ+ αφ2)dt2 + 2~g · d~x dt+ (1− 2φ) d~x 2 , (3.71)

with α some constant, and expand the particle Lagrangian up to next-to-leading order in the
non-relativistic approximation, and to leading order in ~g. Since φ is, to leading order, the
Newtonian potential φ ≈ −GM/r, we have v2 ∼ φ in typical bound orbital motions. Therefore,
keeping terms to O(v4) requires that we also keep the O(φ2) and O(v2φ) terms:

L = −m
√
−gab

dxa

dt

dxb

dt
≈ −m+ 1

2 m~v 2+ 1
8m~v 4−mφ+ 1

2 m (1−2α)φ2− 3
2 mφ~v 2+m~g ·~v+. . . ,

(3.72)
so that the O(φ2) term in the time-time component g00 of the metric (3.71) does contribute to
next-to-leading order to the relativistic corrections. Notice, however, that a similar term in the
spatial components of the metric only contributes to order φ2~v 2.

The O(~v 4) and O(φ2) terms are respectively the leading relativistic corrections to the kinetic
and potential energy of the particle. On the other hand, the O(φ~v 2) and O(~g ·~v ) terms represent
qualitatively new forces that depend on velocities. The first of these is responsible for the so-
called ‘geodetic’ precession of gyros (see the problem below) in orbit, whereas the second one is
a genuine ‘magnetic’ coupling, to be discussed in the next section.

In the analysis of precision experimental tests, one usually parametrizes the deviation from
Einstein’s theory by the so-called post-Newtonian parameters which represent the metric ansatz

ds2 → −
(

1− 2GM
r

+ (1 + β̄ )
2G2M2

r2
+ . . .

)
dt2 +

(
1 + (1 + γ̄)

2GM
r

+ . . .

)
d~x 2 + . . . ,

(3.73)
where we neglect the usually very small off-diagonal term at this level and have reverted to more
standard notation in which α = 1 + β̄. Solar-system precision tests currently bound γ̄, β̄ to be
at most of order 10−5.

Gravitomagnetism

The off-diagonal terms in (3.70) and (3.71) have a characteristic effect on test particles.
As we have seen in (2.38), its effect can always be reinterpreted as inducing a ‘Coriolis-like’
force with effective angular velocity 1

2
~∂ × ~g . More precisely, we have ‘Coriolis field’, since the

effective angular velocity has a non-trivial space dependence. In another suggestive analogy, a
term δL = m~g · ~v in the effective particle Lagrangian has the same form as a coupling of a
charged particle to an electromagnetic vector potential. Hence, we may regard such coupling as
‘gravitomagnetic’. Using the explicit form of ~g we can write the effective interaction in the form
of a ‘magnetic moment’ correction:

δL = m~g · ~v = −~µJ · ~L , ~µJ ≡ −
2G
r3

~J . (3.74)

As a result, we find the so-called Lense–Thirring precession effect on the orbital momentum, as a
direct analog of the Larmor precession in a magnetic field. To derive it, notice that a correction
δL = m~g · ~v to the Lagrangian produces, to leading order in ~g, a correction δH = −~p · ~g to the
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Hamiltonian. Using then the Hamilton equations one obtains

d~L

dt
=
∂H

∂~p
× ~p− ~x× ∂H

∂~x
=

2G
r3

(
−(~x× ~J )× ~p+ ~x× ( ~J × ~p )

)
,

which further reduces to
d~L

dt
= ~µJ × ~L . (3.75)

We find that orbital planes undergo a precession induced by a spin-orbit coupling which is
entirely analogous to the one operating between the nuclear spin and the electron’s orbital
motion in atoms. This effect is also responsible for a small precession of perihelia of the same
order of magnitude. When applied to the motion of gyroscopes, we obtain the same physics
described by the spin free-fall equation (2.58).

Problem: Orbital precession

Consider the secular effect of the sun’s spin on the orbit of a planet. In addition to the Larmor-like
precession of the orbital plane obtained in (3.75), one can derive a precession of perihelia within the
plane of the orbit, by studying the evolution of the Runge–Lenz vector

~A =
1
m
~p× ~L− GMm

r
~x ,

which is accidentally conserved under the purely newtonian Kepler motion, staying constant in the orbital
plane and directed towards the perihelion. Therefore, the two vectors ~L and ~A together determine the
overall orientation of the orbit.

Compute the time derivative of the Runge–Lenz vector to obtain

d ~A
dt

=
2G
r3

~J × ~A+
6G
mr5

( ~J · ~L)(~x× ~L) .

The first term gives the Larmor-like precession. Upon further averaging over a full revolution, show that〈
d~V

dt

〉
secular

= ~ΩLT × ~V ,

where ~V is either ~L or ~A, and the Lense–Thirring angular velocity is given by

~ΩLT =
2G| ~J |

a3(1− e2)3/2
(~nJ − 3~nL(~nJ · ~nL)) ,

where a is the semimajor axis of the ellipse and e its eccentricity, while ~nJ and ~nL are unit vectors in the
~J and ~L directions, respectively.

We find that the full orbit as a whole precesses around the Lense–Thirring vector ~ΩLT.

Problem: Precession of orbiting gyroscopes

Consider a spherical gyroscope in orbit. Starting from the term − 3
2mφ~v

2 in (3.72), integrate it over the
particles forming the gyroscope to obtain an effective Lagrangian

δLeff ≈
3GM

2

∫
d3z ρ(~z )

(~v0 + ~ω × ~z )2

|~r0 + ~z | .
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where ~v0 and ~r0 are the velocity and position of the gyro’s centre of mass, with mass density ρ(~z ), and ~ω
is its angular velocity. We further consider the cross-term proportional to ~v0 · (~ω× ~z ) and use the dipole
approximation

1
|~r0 + ~z | ≈

1
r0
− ~z · ~r0

r3
0

+ . . . .

Calculate the integral using ∫
d3z ρ(~z ) zizj = 1

2 I δij ,

with I the gyro’s moment of inertia, so that its spin is ~S = I ~ω. Then, prove that the effective Lagrangian
reduces to

δLgeo ≈ −~Ωgeo · ~S ,
where the geodetic frequency is given by

~Ωgeo ≈
3GM
2r3

0

(~r0 × ~v0 ) ,

and induces the so-called geodetic precession of the top’s spin

d~S

dt
= ~Ωgeo × ~S .

There is also a hyperfine effect (also referred to as Lense–Thirring effect), coupling directly the gyro’s
spin ~S to the spin of the gravitational field, ~J , induced by the “magnetic” term 2G~v · (~x× ~J)/r3, i.e.

δL = 2G
∫
d3z ρ(~z )

~J · ((~v0 + ~ω × ~z )× ~r )
r3

,

with ~r = ~r0 + ~z. Perform this integral in the dipole approximation to obtain

δLhyper ≈ −~Ωhyper · ~S ,

where
~Ωhyper =

3G~r0(~r0 · ~J )
r5
0

− G~J

r3
0

.

The geodetic precession for the case of satelites around Earth is in the ball park of 10 seconds of arc per
year. The hyperfine precession is smaller by a factor

|~Ωhyper|
|~Ωgeo|

∼ 6.5× 10−3 .

3.2.2 Gravitational radiation

We consider now situations where the sources have a non-trivial time dependence, leading
to radiation-type gravitational fields. We first assume that the energy-momentum distribution
of the sources has compact support, and the radiation is analyzed in vacuo, far away from such
sources. This means that the radiation field γab solves the free wave equation far away from the
sources, together with the transversality condition:

∂2γ
(w)
ab = ∂aγ

(w)
ab = 0 . (3.76)
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The gauge symmetry (3.48) acts on γab as

γab → γab + ∂aξb + ∂bξa − ηab ∂cξc , (3.77)

and the transversality condition ∂aγab = 0 is preserved by all transformations of the form (3.77)
with harmonic vector fields ∂2ξa = 0. Hence, out of the six degrees of freedom left by (3.76) we
may still eliminate four, leaving just two non-redundant degrees of freedom in γab. We can easily
demonstrate this in momentum space, since an arbitrary solution to (3.76) is a superposition of
plane waves γab(p) ∝ exp(ipx) + c.c. with p2 = 0. Choosing the frame so that p = (ω, 0, 0, ω)
the transversality conditions reduce to

paγab = 0 = ω(γ0b + γ3b) . (3.78)

The four components ξb can be used to set h0a = 0 which, together with (3.78) may be used to
enforce the vanishing of all components of γab and hab except for the two-dimensional submatrix
with components along the (12)-plane, subject to the extra condition of vanishing trace. We
refer to such a standard form of the fluctuating metric tensor as the ‘transverse-traceless gauge,
hTT
ab = γTT

ab .
Defining ε± = h̃11 ∓ ih̃12, a rotation of angle θ on the (12) plane transforms them as

ε± → e±2iθε± . (3.79)

In this situation, we say that the plane waves have helicity ±2. This is what is meant by referring
to gravitational waves as spin-two excitations.

Gravitational waves are truly physical, capable of transferring energy to any detector sen-
sitive to gravitational fields. For example, the nonrelativistic limit of the geodesic deviation
equation yields 11

d2`j
dt2
≈
∑
k

`kRk00j ≈
∑
k

1
2

d2hTT
jk

dt2
`k , (3.80)

so that gravitational waves induce non-zero curvature and produce accelerations on the relative
positions `j of test particles. Since metric perturbation is transverse and traceless in this gauge,
the matrix hjk can be written as a linear combination of the Pauli matrices σ3 and σ1. The
component proportional to σ3 is called the (+) wave polarization, whereas the component pro-
portional to σ1 is usually denoted (×) and corresponds to the same polarization after a 45-degree
rotation.

Luminosity in gravitational radiation

We can estimate the energetics of radiation emission in terms of some generic properties of
the radiating system. We begin by noticing that the purely spatial components (those remaining
in the TT gauge) are given in terms of the source’s energy-momentum tensor by the leading-order
expression 12

γij(t, ~x) = 4G
∫
d3y

Tij(t− |~x− ~y|, ~y )
|~x− ~y | . (3.81)

11Exercise: Check this formula.
12Exercise: Show that the Fourier components of non-zero frequency with at least one time index, γ̃0b(ω) ≡∫
dt eiωtγ0b(t), are determined in terms of the purely spatial ones, γ̃ij(ω), as a consequence of the transversality

constraint ∂aγab = 0.
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Evaluating this integral in the monopole approximation we find

γij(x) ≈ 4G
r

∫
R3
Tij
∣∣∣
retarded

(3.82)

with r ≡ |~x | and the retarded time given by tr = t− r. In this expression, we are neglecting the
effects of the dipole corrections to the retarded time in (3.81), i.e. the terms linear in ~y in

t− |~x− ~y| = t− r +
~x · ~y
r

+O(~y 2 )

These terms arise in the Taylor expansion of the energy-momentum tensor as

Tij(t− |~x− ~y |, ~y ) = Tij(tr, ~y) +
~x · ~y
r

∂t Tij(tr, ~y ) + . . .

The time derivative of Tij determines the frequency of the radiation, so that this term is negligible
in the ‘small emitter limit’, `/λ� 1, namely the radiation has long wavelength compared to the
size ` of the source.

Using now the conservation equation ∂bTba = −∂tT0a +
∑
k ∂kTka = 0 and repeated integra-

tion by parts we can obtain the identity∫
R3
Tij = 1

2 ∂
2
t

∫
R3
T00 yi yj ,

where we neglect all surface integrals on account of the compact support of the sources’ energy-
momentum. Hence we finally obtain

γij(t, ~x ) =
2G
r

d2Qij
dt2

∣∣∣
retarded

, (3.83)

where the derivatives are evaluated at the ‘point-like’ retarded time tr = t − r and we have
defined

Qij ≡
∫
R3
T00 yi yj , (3.84)

the quadrupole moment of the source’s energy density. We thus conclude that gravitational
waves in the low-frequency approximation, ω` � 1, are generated by the quadrupole mass
distribution, unlike electromagnetic waves, which are generated by charge dipole moments. This
fact is largely responsible for the smallness of gravitational radiation. Since the quadrupole
moment is of order Q ∼ M`2 for a system of mass M and size `, the metric perturbation at
large distances is of order

γ ∼ GMv2

r
, (3.85)

so that we have the usual relativistic suppression of order v2 with respect to the static Newtonian
term.

The energy carried out by such gravitational waves can be captured by measuring the flux
through a large sphere at large distances from the source. In particular, the rate of energy loss
is given by the luminosity

LG =
dErad

dt
=
∫
S2
r

∑
i

nit
0i , (3.86)
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where ni = xi/r is the unit radial vector on the large sphere of radius r.
To estimate (3.86) we consider first a TT wave traveling in the x3 direction, i.e. depending

on just two functions γ+(t− x3) and γ×(t− x3). By direct calculation one finds that the flux in
the 3-direction is given by 13

t03 =
1

16πG

(
(∂tγ+)2 + (∂tγ×)2

)
. (3.87)

For the particular wave we are considering, we can write the same expression in the more
symmetric fashion

t03 =
1

32πG

∑
ij

∂tγ
TT
ij ∂tγ

TT
ij . (3.88)

In taking the average over all directions it is useful to remove the transversality constraint,
since this obviously depends on the direction. The no-trace condition can still be enforced in
a rotationally-invariant way by considering the trace-free matrix γ

(s)
ij ≡ γij − 1

3δijδ
klγ̃kl with

five degrees of freedom. Hence, by substituting γ(s) in place of γTT in (3.88) we implement the
averaging, up to a factor of 2/5, i.e.〈∑

i

nit
0i

〉
directions

≈ 2
5
· 1

32πG

∑
ij

∂tγ
(s)
ij ∂tγ

(s)
ij . (3.89)

Finally, using the long-distance expression for the radiation field (3.83) and integrating over
the S2

r sphere we find for the luminosity

LG =
G

5

∑
i,j

〈
d3Q(s)

ij

dt3

〉2

retarded

, (3.90)

where Q(s)
ij = Qij − 1

3δijδ
klQkl is the traceless quadrupole moment of the matter distribution.

The order of magnitude of this for power radiated at a typical frequency ω ∼ v/` by a system
of typical masses M is

LG ∼ GM2`4
v6

`6
∼ G4M5

`5
∼M v8

`
, (3.91)

A useful characterization of amount of energy loss in gravitational waves is the following. Given
the luminosity power LG = dErad/dt, we can consider the amount of energy lost in the time
that a single wave crest is emitted, ω−1 ∼ `/v, i.e. LG `/v and compare it with the gravitational
self-energy, which is of order |EG| ∼ GM2/`. Then, we find

ω−1 · LG
|EG|

∼ v5 ∼ φ5/2 , (3.92)

where φ is the average value of the gravitational potential. If the system is not too relativistic,
most of the self-energy loss can be interpreted as the ‘decay’ of typical orbits,

LG =
dErad

dt
= −dEG

dt
≈ −GM

2

`2
d`

dt
.

13Exercise: Check this formula.
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So the system ‘shrinks’ by gravitational wave emission at a rate

d`

dt
≈ LG · `

EG
∼ −v6 . (3.93)

Equivalently, the rate of period decay for internal motions is dT/dt ∼ −v5. The hierarchy of
gravitational field intensities in nature ranges from φbh ∼ GM/` ∼ 1 in the case of black holes,
to φpulsar ∼ 10−1, or φwhite dwarf ∼ 10−4. In the solar system, φ� ∼ 10−6 and φ⊕ ∼ 10−9. Hence,
we really need highly relativistic systems and intrinsically strong gravitational fields in order to
have significant energy loss by gravitational radiation. The famous binary pulsar PSR1913+16
studied by Hulse and Taylor has provided such a system for decades now, fulfilling the most
impressive test of Einstein’s theory so far (down to the 10−3 level in a strong field regime). In
the near future, optical interferometers on Earth and space such as LIGO and LISA should be
able to detect gravitational radiation outbursts from violent, yet very remote phenomena, such
as neutron star and/or black hole collisions.

Problem: Gravitational radiation from a binary pulsar

Compute the power emitted in gravitational radiation by a binary system formed by stars of equal
mass M orbiting at relative distance R apart. Use this result to determine the rate at which the orbit
shrinks by emission of gravitational radiation.
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Chapter 4

Exact solutions

Exact solutions of Einstein’s equations with a definite physical interpretation are hard to
come by. In a sense, any metric can be regarded as a solution, provided we ‘invent’ an exotic
energy-momentum tensor that fulfills the right hand side of the equations. In fact, the Bianchi
identity ensures that such energy-momentum tensor is at least conserved. However, it will have
unphysical features, such as locally measurable negative energy density. If one postulates that
Tµν is computed from some standard matter model of particles, fluids or field theories, then no
general methods exist to find exact solutions of the gravitational equations.

One can simplify matters by looking for solutions with some prescribed symmetry that is
interesting for physical reasons. For example, in the context of cosmological models, we seek
metrics with the properties of homogeneity and isotropy which appear to be satisfied by the
large-scale structure of the observable universe. For problems involving motion in the solar
system, we are interested in metrics with axial and/or spherical symmetry.

In general, the diagnosis of special symmetries of the spacetime geometry is a non-trivial
issue, because the metric tensor contains a lot of redundant information, changing its form under
reparametrizations. Hence, we first discuss isometries in general, and then we concentrate on
particular cases of physical interest either in cosmology or in the physics of the solar system.

Isometries

We use again the action functional of pointlike particles as a physical probe of the spacetime
structure. Let us consider the linearized version of the action

SP = 1
2 m

∫
dτ (gµν ẋµ ẋν − 1) . (4.1)

We identify symmetries of the geometry as symmetries of the particle action for arbitrary tra-
jectories. Hence, let us consider a motion in the spacetime manifold specified by a set of curves
generated by a vector field ξ. As a function of the parameter λ, we have

dxµ

dλ
= ξµ(x) , (4.2)

as the equation determining the integral curves. Infinitesimally, we induce a motion by xµ →
xµ+λ ξµ(x). What is the condition for these curves to be orbits of the action of some symmetry
group? We give a physical definition of an isometry as those vector-field flows that leave the

89



particle action invariant, i.e. these transformations leave the metric ‘rigid’ as far as particle
propagation concerns. Since the action itself in invariant under reparametrizations, this criterion
is independent of any coordinate system that we might use.

The variation of the particle action under the transformation δλx
µ = λξµ is

δλSP = λ

∫
dτ (£ξ gµν) ẋµ ẋν , (4.3)

where the integrand is controlled by the Lie derivative of the metric

£ξ gµν ≡ ξα∂αgµν + ∂µξ
αgαν + ∂νξ

αgαµ = ∇µξν +∇νξµ . (4.4)

Hence, the condition on the metric for the action to be invariant if that ξα is a Killing vector:

∇µξν +∇νξµ = 0 . (4.5)

In this case, we can define a conserved quantity along physical trajectories using the standard
formula for the Noether charge,

Qξ = −∂LP

∂ẋµ
ξµ = −mgµν ẋ

µ ξν = −pµξµ . (4.6)

The constancy of Qξ = −pµξµ along timelike geodesics generalizes to the case of null geodesics,
where Qξ = −k · ξ and kµ is the vector tangent to the light ray trajectory. It fact, it generalizes
to any geodesic with tangent Tµ, even spacelike ones, for Qξ = Tµξ

µ is covariantly constant,

∇T (ξ · T ) = Tα∇α(ξµTµ) = TαTµ∇αξµ + ξµT
α∇αTµ = 0 , (4.7)

the first term vanishing because of the Killing condition and the second because of the geodesic
condition.

If we adapt our coordinate system to lie along the integral curves of some Killing vector,
then we can choose ξα = δαλ as the components of the Killing vector. In this case, the Killing
equation for the metric reduces to

∂gµν
∂λ

= 0 . (4.8)

In other words, in adapted coordinates, the metric is independent of the symmetric coordinate.
For example, a metric is called stationary if it has a timelike Killing vector. Choosing the time
coordinate adapted to this Killing vector, we have ξ = (1, 0, 0, 0) in this frame, and ∂tgµν = 0,
hence

ds2
stationary = g00(~x ) dt2 + 2

∑
i

g0i(~x ) dxi dt+
∑
ij

gij(~x ) dxi dxj . (4.9)

Furthermore, a stationary metric is called static if it is invariant under time reversal t → −t.
This leads to

ds2
static = g00(~x ) dt2 +

∑
ij

gij(~x ) dxi dxj . (4.10)

If a metric has more than one Killing vector, one can consider the algebra of transformations
that they form under commutation, where

[δξ , δη ] = δ[ξ,η ] [ξ , η ]µ = ξα∂αη
µ − ηα∂αξµ . (4.11)
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This commutator algebra is very transparent if we adopt the notation favoured by mathemati-
cians, i.e. vector fields in general can be regarded as differential operators acting on arbitrary
functions,

ξ ≡ ξα ∂

∂xα
.

In this notation, a coordinate λ adapted to the Killing ξ corresponds to ξ = ∂/∂λ. Hence, if a
coordinate system can be defined as adapted to two Killing vectors simultaneously, it is clear that
their commutator vanishes. The converse is also true, i.e. the necessary and sufficient condition
for the integral curves of two vector fields to coordinate a two-dimensional submanifold is that
they commute.1 In our case, this means that non-abelian isometry groups do not give such
simple rules as abelian ones for the metric components. In general, for non-abelian isometries,
one must list all possible invariants of the coordinates and the differentials dxa and restrict the
metric accordingly. For example, for our static spatial sections, if we let the rotation group
SO(3) act on ~x ∈ R3 in the standard fashion, the basic invariants are ~x 2, d~x 2 and ~x · d~x. So
the general ansatz for a static, spherically symmetric metric is

ds2 = −F (ρ)dt2 +D(ρ) (~x · d~x )2 + C(ρ) d~x 2 , (4.12)

where ρ2 = ~x 2 and F (ρ), D(ρ), C(ρ) are general functions. Picking spherical coordinates on R3

we have d~x 2 = dρ2 + ρ2 dΩ2 and (~x · d~x )2 = ρ2dρ2, so that combining all terms we end up with
a form

ds2 = −F (ρ)dt2 +G(ρ)dρ2 +H(ρ) dΩ2 , (4.13)

where dΩ2 = d`2S2 = dθ2 + sin2 θ dφ2. We may now change coordinates to r2 = H(ρ) so that
the area of fixed radius S2 spheres is 4πr2. So the final form of the static and SO(3)-symmetric
ansatz is

ds2 = −A(r) dt2 +B(r) dr2 + r2 dΩ2 . (4.14)

Upon direct calculation, the components of the Ricci tensor for this metric read

Rtt =
A′′

2B
− A′

4B

(
A′

A
+
B′

B

)
+
A′

rB

Rrr = −A
′′

2A
+
A′

4A

(
A′

A
+
B′

B

)
+
B′

rB

Rθθ = 1− r

2B

(
A′

A
− B′

B

)
− 1
B

Rφφ = sin2 θ Rθθ , (4.15)

where the primes denote derivative with respect to r.
The fastest way of obtaining this result is to compute the Christoffel symbols by variation

of the particle action in the metric ansatz:

SP = 1
2 m

∫
dτ (gµν ẋµẋν−1) = 1

2 m

∫
dτ
(
−A(r) ṫ2 +B(r) ṙ2 + r2(θ̇2 + sin2 θ φ̇2)− 1

)
, (4.16)

and match to the geodesic equation. This produces naturally all the non-vanishing Christof-
fel components. Then, one must compute explicitly the Ricci tensor from these connection
coefficients.

1A theorem by Frobenius states that the integral curves of set of vector fields ξ(a) belong to a submanifold if
and only if their Lie algebra closes on themselves [ξ(a), ξ(b)] =

∑
c
fabc ξ(c). Moreover, these integral curves are

good coordinates when they form an abelian subalgebra.
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Spherically symmetric vacuum solutions

The ansatz (4.14) obtains the Minkowski metric in polar coordinates

ds2 = −dt2 + dr2 + r2 dΩ2

for A = B = 1. This is the trivial vacuum solution with vanishing cosmological constant Λ = 0.
It is not too difficult to generalize the Minkowski solution to vacuum spacetimes with positive or
negative cosmological constant. Since Λ defines a length scale, let us denote |Λ| = 3/R2, where
R is the radius at which the effects of the cosmological constant are felt.

Inserting the ansatz (4.14) in the vacuum Einstein equations, Rµν = Λ gµν , we find

Rrr
B

+
Rtt
A

=
1
rB

(
A′

A
+
B′

B

)
= 0 ,

which implies A(r)B(r) = constant. Since A(0) = B(0) = 1 to get back Minkowski spacetime
at short distances, we find A(r) = 1/B(r). Inserting this result now into Rθθ = Λgθθ = r2Λ we
obtain

(rA)′ = 1− Λr2 ,

which, together with the boundary condition at r = 0, is solved by A(r) = 1 − Λr2/3. These
metrics

ds2
Λ = −dt2

(
1− 1

3Λr2
)

+
dr2

1− 1
3Λr2

+ r2 dΩ2 (4.17)

are known as de Sitter spacetime (dS) for Λ > 0 and Anti de Sitter spacetime (AdS) for Λ < 0.
AdS is a smooth non-compact spacetime of constant negative curvature. Defining a new

radial variable ρ as r = R sinh(ρ/R), we learn that the spatial sections at constant t have
3-metric

ds2
H3 = dρ2 +R2 sinh2(ρ/R) dΩ2 ,

which is the three-dimensional generalization of the famous Lobachewski pseudosphere, a space
in which volumes enclosed by large spheres scale like the surface area.

The dS metric is singular at rs = R =
√

3/Λ, but this is only a singularity of the particular
frame used to write down the metric. Clearly, the curvature stays constant throughout all dS
spacetime, and one can explicitly show that the dS metric can be analytically extended beyond
r = R. To see this, define

z0 =
√
R2 − r2 sinh(t/R) , z1 =

√
R2 − r2 cosh(t/R) ,

and let z2
2 + z2

3 + z2
4 = r2 parametrize an S2 of radius r embedded in R3. Then, it is easy to see

that dS spacetime is the hyperboloid

−z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = R2

embedded in five-dimensional R5 with Minkowski metric

ds2
R5 = −dz2

0 + dz2
1 + dz2

2 + dz2
3 + dz2

4 .

Hence, we see that dS is a homogenous spacetime without singularities. There is another intrinsic
representation of the dS metric that covers the entire manifold. Setting

z0 = R sinh(t′/R) , zk = R cosh(t′/R)Nk , k = 1, 2, 3, 4 ,
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where Nk is a unit vector in R4, parametrizing an S3 of unit radius, we have

ds2
dS = −dt′ 2 +R2 cosh2(t′/R) d`2S3 . (4.18)

In this form, the dS metric looks very different from (4.17). It consists of a 3-sphere that
contracts from the infinite past to a radius R and then re-expands again into the future with an
asymptotically exponential rate. Hence, dS space is a cosmological spacetime, something clearly
surprising if given only the (4.17) static form. 2

Problem: May “The Force” be with you

Study the radial geodesics of massive test particles in the vacua with nonvanishing cosmological
constant. Show that Λ behaves as a repulsive cosmic potential for dS and as a “confining” cosmic
potential for AdS.

2Exercise: Verify the changes of variables leading to the different forms of the dS metric outlined in this
section.
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4.1 Cosmological solutions

Let us reconsider the de Sitter spacetime in global coordinates

ds2
dS = −dt2 +R2 cosh2(t/R) d`2S3 . (4.19)

this is a prototype of a spacetime whose spatial sections are homogeneous and isotropic. Homo-
geneity means that the spatial sections (here 3-spheres of radius R cosh(t/R)) have an isometry
relating any two points, i.e. that no point has a special character. Isotropy means that around
any point, there is no preferred direction. Since these are the two properties that characterize
the observable universe on a very large scale, one usually discusses cosmological models assum-
ing these restrictions from the outset. Thus, one considers the natural generalization of (4.19)
that retains the homogeneity and isotropy properties, resulting in the so-called Friedmann–
Robertson–Walker (FRW) spacetimes,

ds2 = −dt2 +R(t)2 d` 2
K , (4.20)

where d` 2
K stands for the spatial metric of a three-manifold that satisfies the criteria of homo-

geneity and isotropy. The overall size of this manifold is controlled by the function R(t) which
is to be determined by Einstein’s equations. It can be shown that the spatial section of constant
curvature and homogeneity can only be one of three options: a 3-sphere in the case of positive
curvature, a 3-hyperboloid in the case of negative curvature, and flat R3 for zero curvature. We
can write the three types of metric at once by the following polar parametrization

d` 2
K =

dr2

1−K r2
+ r2 dΩ2 , (4.21)

where K = 1 for the positive curvature S3, K = 0 for flat R3, and K = −1 for the 3-hyperboloid
H3 of negative curvature. Homogeneity and isotropy of R3 is obvious. The other two 3-manifolds
of constant curvature can be obtained by the equations for the 3-surface

Kx2
1 + x2

2 + x2
3 + x2

4 = K , (4.22)

embedded in R4 with metric ds2
R4 = Kdx2

1 + dx2
2 + dx2

3 + dx2
4. This confirms the homogeneity

of S3 and H3.
The case K = 1 yields model universes like dS, in that the spatial sections are compact,

whereas the models K = 0,−1 correspond to non-compact (so-called open) universes. What
particular model is realized in nature, as well as the precise features of the ‘size’ function R(t)
depends on the Einstein equations.

It is important to notice that our ‘FRW parametrization’, given by the metrics (4.20) and
(4.21), may suffer from some ambiguities when it comes to global issues. A famous example is
that of the ‘steady state metric’, 3 one of the presentations of de Sitter spacetime:

ds2 = −dt̄ 2 + e2t̄/Rd~y 2 , (4.23)

where ~y ∈ R3. This is a particular case of FRW with K = 0. However, there is change of
variables revealing that it is identical to the z0 + z4 ≥ 0 domain of the complete dS manifold.
Hence, a FRW manifold with K = 0 can be a ‘patch’ of another FRW manifold with K = 1.

3The steady state universe of Gold, Hoyle and Bondi was once a fashionable model of cosmology, now long
forgotten since the discovery of the cosmic microwave background radiation.
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Problem: The many faces of de Sitter

Find proper domains of the global de Sitter manifold and appropriate coordinate systems that make
them into FRW cosmologies with K = 0 (flat de Sitter or ‘steady-state’ metric) and K = −1 (open de
Sitter).

4.1.1 The standard cosmological model

A good physical model of the universe in different epochs of its history is given in terms of
three components: pressureless matter, or ‘dust’, and a cosmological constant as a dominant
component today, and radiation as a dominant component in the past. All situations can be
modeled as a perfect fluid with energy momentum tensor T00 = ρ and Tij = pgij , with p = 0
for matter, p = ρ/3 for radiation, and p = −ρ for vacuum energy (cosmological constant). We
can summarize the three components by the equation of state p = wρ, with three values of w.
If the components or ‘species’ are approximately non-interacting, we can write ρ =

∑
s ρs and

ps = wsρs for each component.
Then, the Einstein’s equations can be reduced to the time-time component (so-called Fried-

mann equation) (
dR

dt

)2

+K =
8πG

3
ρR2 , (4.24)

and the space-space components

d2R

dt2
= −4πG

3
(ρ+ 3p)R . (4.25)

The second equation can be traded by that of local energy conservation, also equivalent to the
Bianchi identities ∇µTµν = 0, or

d

dt
(ρR3) = −p d

dt
(R3) . (4.26)

This equation is valid for each component separately, provided they are non-interacting. Using
ps = wsρs we can solve it as ρs ∝ R−3(1+ws). The Friedmann equation is usually written in
terms of the Hubble parameter H ≡ R−1 dR/dt, as

H2 = −K
R2

+
8πG

3
ρ . (4.27)

Another useful definition is the so-called density parameter

Ωs =
8πGρs
3H2

, Ω =
∑
s

Ωs , (4.28)

so that Ω > 1 corresponds to K = +1, Ω < 1 corresponds to K = −1, whereas Ω = 1 deals a
flat universe with K = 0. At present, Ω is believed to be well approximated by the sum of three
components:

Ω0 = Ωb + Ωdm + Ωde , (4.29)
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where Ωb ≈ 0.04 is the component in baryonic matter, Ωdm ≈ 0.24 is the dark matter component
and Ωde ≈ 0.73 is the ‘cosmological constant’ component. The big surprise of the last decade
is the fact that Ωde is actually dominant. Hence, Ω0 ≈ 1 within experimental errors, and the
universe appears to have flat, K = 0 spatial sections.

Inserting the solution of the energy conservation equation ρs = ρs,0(R0/R)3(1+ws) into the
Friedmann equation, we may recast it in the form

1
2

(
da

dt

)2

+ Veff(a) = 0 . (4.30)

where a = R/R0, the quantities with zero subscript denoting the “present” values. The Fried-
mann equation is thus formally equivalent to a mechanical zero-energy motion of a particle in a
potential

Veff(a) =
K

2R2
0

−
∑
s

4πGρs,0
3

1
a1+3ws

=
H2

0

2

(
Ω0 − 1−

∑
s

Ωs,0

a1+3ws

)
. (4.31)

The regions where Veff < 0 determine the range of R(t). In general, if one considers all three
types of ‘species’ to be present with non-zero values (positive energy density of nonrelativistic
matter and radiation and positive or negative vacuum energy), one sees that radiation always
dominates near R = 0, whereas the cosmological constant controls the large R behaviour, the
‘dust’ and ‘curvature’ components only shaping the transient effects at intermediate sizes. For
Λ < 0, the effective potential Veff is monotonically increasing and the universe always bounces
between a bang and a crunch, quite independently of the sign of K and the ordinary matter
content. For Λ > 0, the potential Veff has always a “Λ” shape (a single local maximum) and
the qualitative behaviour depends on whether the potential is positive, zero or negative at the
maximum. This is controled by the actual values of the relative energy densities, as well as
the sign of K. If max (Veff) > 0, one possibility is that the universe expands to a maximum
size and bounces back to a crunch, but another possibility is that it starts contracting from
R = ∞ in the infinite past down to a minimum size and then reexpands again, a deformation
of the dS solution. The famous static Einstein universe that started modern cosmology in 1917
corresponds to max (Veff) = 0 and it is clearly unstable. Finally, if K ≤ 0 (and still Λ > 0)
then max (Veff) < 0 and the universe expands forever from zero size to infinite size. This picture
may have some important variations if we remove (with fine tunning) the two asymptotically
dominating species (radiation at small R and/or vacuum energy at large R). 4

A useful physical parameter that can be directly related to observations is the deceleration
parameter

q ≡ −Rd
2R/dt2

(dR/dt)2
=

1 + 3w̄
2

Ω , (4.32)

where we have used (4.25) and defined the average ‘speed of sound’ w̄ = p/ρ. For positive values
of Ω, the expansion of the universe will accelerate if w̄ < −1/3, and will decelerate otherwise.
Splitting in terms of species, we have

q =
∑
s

1 + 3ws
2

Ωs . (4.33)

4Exercise: Study the details of the qualitative motion in the effective potential (4.31) for various combinations
of matter, radiation and vacuum domination, and interpret the resulting cosmological models.
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At present, q0 ≈ 1
2 Ωmatter −Ωde, and the measurement of q0 supports our determination of Ωde

as a dominant component.
The connection with observation depends on the phenomenon of cosmological red shift. There

are many ways of obtaining this very basic relation. Here we just give a shorcut based on the
observation that (4.20) is conformally related to a static spacetime, i.e. defining a new time
variable η =

∫ t dt′/R(t′) we can write any Robertson–Walker spacetime as

ds2 = R(η)2
(
−dη2 + d`2K

)
.

Hence, frequencies ω ∼ d/dt are related to frequencies measured in the static spacetime d/dη by
a factor of R(t), which is the only overall time-dependent scale of the spacetime. An equivalent
argument in terms of particle paths is the following: if two photons are sent from point P1 to
point P2 with a conformal time separation ∆η1 at emission, they arrive at P2 with the same
conformal time separation, ∆η2 = ∆η1, since the null geodesics can be computed in the static
metric ds̃2 = −dη2 + d`2K. Then the corresponding proper times are related by

∆τ1

∆τ2
=
R(η1)
R(η2)

.

Thus, we have the homogeneity property λ(t) ∼ R(t) for the wavelength of any electromagnetic
wave that solves Maxwell’s equations in the Robertson–Walker metric. Defining the redshift
coefficient z in terms of the relative wavelenght increase between emission and reception:

z ≡ λ0 − λe
λe

=
λ0

λe
− 1 =

R0

Re
− 1 . (4.34)

Furthermore, using the linear approximation of R(t) for nearby galaxies, R(t0) ≈ Re+ dR
dt (t0−te).

Since the proper distance to nearby galaxies is given by D ≈ t0 − te, we find the approximate
law

z ≈ H0D , H0 ≈ 0.24 Gpc−1 , (4.35)

originally tested by Hubble when the expansion of the universe was discovered back in 1929 (in
the units used commonly by astronomers, H0 ≈ 73 Km s−1 Mpc−1). A more careful measurement
of z for far away galaxies allows us to determine H0 (to linear order) and q0 (to first order in
deceleration), determining the type of FRW model that describes our universe.

Problem: Hubble’s law

Derive a more precise version of Hubble’s law that is sensitive to the deceleration parameter, q0, in
terms of the luminosity distance D2

L = L/4πF , where L is the absolute luminosity of a source and F is
the flux of light at reception. Using the definition of luminosity distance and the geodesic equation for
photons in a FRW model, obtain the relation

DL = H−1
0

(
z + 1

2 (1− q0)z2 + . . .
)
,

which determines H0 and q0 from the directly measurable z and DL.
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Horizon and flatness problems

FRW models starting with a bang at t = 0 pose the following question: is it possible that not
all of K comes into causal contact in the time lapsed since the bang? This of course depends
on the time passed since t = 0, the rate of expansion and the geometry of K. The trajectories
of light rays satisfy d`/dη = ±1, where ` is a proper distance in K and η is the conformal time
defined in the previous subsection. Hence, the causal structure is essentially determined by that
of an effective two-dimensional Minkowski spacetime parametrized by (η, `). There are horizons
if the past-directed light cones from a point P do not cover the entire K before the ‘initial’ time
η∗ is reached.

Since

η − η∗ =
∫ t

0

dt′

R(t′)
, (4.36)

such ‘particle horizons’ will never occur if η∗ = −∞, i.e. if this integral diverges at the lower
limit. Conversely, if η∗ > −∞ (such as all FRW models that are dominated by radiation or dust
near t = 0), then there is a horizon if ηP −η∗ < `max(K), where `max(K) is the maximum proper
length covered by a light ray in K (this is only relevant for compact K). There is a global notion
of horizon, associated to the whole history of a particle worldline, called ‘event horizon’, defined
as the particle horizon corresponding to the asymptotically large time limit.

�

η

η∗

P Q

Figure 4.1: Local conditions at points P and Q could not be causally connected in the time elapsed
since the big bang.

The behavior of (4.36) at the lower limit can be elucidated by rewriting it in the form

η − η∗ =
1
R0

∫ a

0

da′

a′ da′/dt
=

1
R0

∫ a

0

da′

a′
√
−2Veff(a′)

.

Hence, η∗ converges if |Veff(a)| decreases as a → 0 (recall that Veff is always negative for the
actual solutions). Examining the dependence of Veff on a we see that horizons will be present
for w̄ > −1/3, i.e. for any cosmology that starts decelerating right from the bang. On the other
hand, for cosmologies that start out (marginally) accelerating, w̄ ≤ −1/3, the bang occurs at
minus infinity in conformal time, and there are no horizons.
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Our model universe as we have described it so far, with radiation domination at early times,
does have horizons. This poses the question of why we see an homogeneous universe after all,
since no causal processes could achieve this homogeneity by standard local interactions. An
interesting way out of this conundrum is the idea of inflation, consisting on the possibility that
a phase of large accelerated expansion exists for a finite amount of time after the bang. Such
a phase gives a large contribution to (4.36) and thus pushes η∗ to more negative values. This
means that a phase of inflation can be used to remove horizons.

FRW models with flat spatial sections correspond to Ω = 1 at all times. We can ask how
natural is this condition as an asymptotic behavior as t → 0 or t → ∞ in expanding models
with a bang. From the previous equations we have

Ω = 1 +
K

H2R2
. (4.37)

Using the definition of H we have H2R2 = (dR/dt)2 = R2
0(da/dt)2 = −2R2

0Veff(a). Hence we
find

Ω− 1 =
K

2R2
0|Veff(a)| . (4.38)

Since the monotonicity of Veff is associated with the accelerating/decelerating character of the
universe, we see that accelerating phases (w̄ < −1/3 or increasing |Veff |) drive Ω to unity, whereas
decelerating phases (w̄ > −1/3 or decreasing |Veff |) drive Ω away from unity.

Our universe has been dominated by radiation and dust till relatively recently, i.e. it has
been decelerating for most of its history. Hence, the fact that Ω0 is so close to unity implies
that it was much closer at early times. In the radiation era, the value of Ω was thus extremely
fine-tuned, an initial condition without a clear explanation within the standard cosmological
model. Inflation provides an interesting perspective on this so called flatness problem. Since
accelerated universes have Ω = 1 as a future attractor, an early phase of inflation is also able to
dynamically tune Ω ≈ 1, setting the initial conditions of the radiation era.
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4.2 The Schwarzschild solution

The Schwarzschild metric is the unique asymptotically flat vacuum solution with SO(3)
symmetry and static. It is therefore the appropriate metric for the exterior of a spherically
symmetric and time independent matter distribution. In fact, it turns out that the static
condition is redundant, as proved by Birkhoff, all vacuum solutions of SO(3) isometry group are
static (there is no purely monopole gravitational radiation). This result is entirely analogous to
its electromagnetic cousin.

Plugging the ansatz (4.14) into the vacuum Einstein equation Rµν = 0 one finds

Rrr
B

+
Rtt
A

=
1
rB

(
A′

A
+
B′

B

)
= 0 , (4.39)

where primes stand for radial derivatives. From here, we obtain A(r)B(r) = constant, and
requiring that the metric approaches Minkowski at infinity, we get A(r)B(r) = 1. Now, it is
enough to concentrate on the Rθθ equation, that reads

Rθθ = 1−A′(r)r −A(r) = 0 ,

with solution rA(r) = r + constant. Since we must approach gtt → −1 + 2GM/r + . . . at large
radius, this is enough to fix the complete metric as

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2 dΩ2 , (4.40)

where M accounts for the total energy contained in the spacetime. 5

Problem: Birkhoff Theorem

Show that the time-independence of the metric ansatz for the Schwarzschild solution is redundant,
namely vacuum solutions with SO(3) symmetry are necessarily static.

The metric components are singular at the so-called Schwarzschild radius Rs = 2GM . For
standard astrophysical bodies, such as stars and planets, one has Rs ≈ 3(M/M�) Km, so that
this singularity is irrelevant in many applications, since the Schwarzschild solution must be
matched to some ‘interior’ solution at the surface of the body. Any object for which the vacuum
Schwarschild solution would apply down to r = Rs is called a black hole.

The behavior of the r = Rs surface is similar to the analogous surface in de Sitter space, the
singularity being just an artifact of the particular coordinate system. A freely falling observer
is only sensitive to the tidal forces, which are controlled by the Riemann tensor. By direct
calculation, it is possible to check that all the non-vanishing components of the Riemann tensor
in the vicinity of r = Rs are of order 1/R2

s. Therefore, tidal accelerations have the expected
value inferred by extrapolation from Newtonian scaling: for an object of length `, a(`)tidal ∼
GM`/R3

s ∼ `/R2
s. This shows that an infalling observer will not notice any singular behavior

5It is also possible to generalize the asyptotically flat Schwarschild solution to analogous solutions with dS or
AdS asymptotics. The naive answer obtained in the limit (GM)2Λ � 1 turns out to be exact, i.e. A = B−1 =
1− 1

3
Λr2 − 2GM

r
.
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upon crossing the surface r = Rs. This crossing occurs in finite proper time. The proper time
to radially fall from some initial radius r0 > Rs down to Rs is

∆τ =
∫ r0

Rs

dr√
Rs
r − Rs

r0

<∞ .

Hence, the proper time for radial fall is finite, as well as the tidal forces at r = Rs, and there is
no physical singularity.

The singularity of the metric is a just a pathology of the specific coordinate system used.
This frame is adapted to observers at fixed radial position, that see the metric as static and
spherically symmetric. However, the physical status of these observers is increasingly singular
as we approach the Schwarzschild radius Rs. To see this, let us change coordinates to a radial
variable that measures proper distance from Rs, i.e.

ρ =
∫ r

Rs
dr′
√
grr(r′) .

In these coordinates, the Schwarzschild metric takes the form

ds2 = − (1−Rs/r(ρ)) dt2 + dρ2 + r(ρ)2 dΩ2 .

Near the critical sphere, r ∼ Rs we have ρ ≈ 2
√
Rs(r −Rs) and the metric

ds2 ≈ −ρ2
(
dt

2Rs

)2

+ dρ2 + r(ρ)2 dΩ2 .

Hence, static observers at fixed Ω, or radially infalling observers, are only sensitive to the two
dimensional section

ds2
2 = −ρ2dt2/4R2

s + dρ2 .

If we further transform to ρ = 2Rs exp(ξ/2Rs) we end up with

ds2
2 = eξ/Rs

(
−dt2 + dξ2

)
,

which is nothing but the metric of Rindler space. Hence, observers at fixed r coordinate, or fixed
ξ coordinate, are locally accelerated with respect to freely falling ones with a proper acceleration
equal to

gξ =
e−ξ/2Rs

2Rs
, (4.41)

which diverges in the ξ → −∞ limit or, equivalently r → Rs. It takes infinite forces to stay put
at fixed r position just on top of the critical surface. This shows that it is the static coordinate
system that becomes unphysical, rather than the spacetime itself. From the appearance of
Rindler space in our treatment, we see that the critical surface r = Rs is entirely analogous to
the ξ = −∞ surface of Rindler space, namely the event horizon.

4.2.1 The classic tests

We now discuss the three classic tests of general relativity. We demonstrate the gravitational
red shift effect, the advance of perihelia and the bending of light in the background of the
Schwarzschild solution. Today, the precision measurements based on these effects confirm the
theory down to the 10−5 level.
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Gravitational redshift

In a general spacetime with metric gαβ the locally measured frequency of light depends on
the point of measurement, as well as the state of motion of the observer. An invariant definition
is given by the expression (1.124)

ω = −kµuµ , (4.42)

where kµ is the wave vector of the light ray and uµ is the four-velocity of the observer. Hence,
in order to relate the measured frequency at two events, one typically needs to solve for the
null geodesic of the light path between them. Things are greatly simplified if the observers’s
trajectories are tangent to a Killing vector. In general, given a Killing vector ξ and a tangent
vector T a to some geodesic curve, the contraction ξµT

µ is constant along the geodesic (c.f.
(4.7)). Applying this lemma to a pair of static observers with four-velocity parallel to the
temporal Killing vector of Schwarzschild, ξ = ∂/∂t, we find that ξαkα = constant along the light
path and therefore is the same at emission and reception. The four-velocity of static observers
is normalized by defintion uαuα = −1, so

uα =
ξα√−ξµξµ . (4.43)

From (ξ · k)emission = (ξ · k)reception we deduce

ω1

ω2
=

(−ξ2)1/2
2

(−ξ2)1/2
1

=

√
1− 2GM/r2

1− 2GM/r1
. (4.44)

Hence, light redshifts as it climbs through the gravitational field.

Problem: Feynman’s clock

Feynman shows up in your office playing with his clock, repeatedly throwing it upwards into the air.
Then, he asks you if the clock is running faster or slower than it should (according to the apocryphal
Feynman gospels, a true story).

More specifically, consider two identical clocks A and B. Clock A remains at rest at the top of a
building, while B is taken on a variety of round trips, after both clocks have been synchronized. When
B returns, we compare the clocks again. Decide whether B comes retarded or advanced with respect to
A, in the following cases (you must argue your answer, of course):

(1) We tie B to a balloon and lift it at some fixed height. After a while we bring it back.
(2) B goes down to the first floor and, after some time, returns to the top.
(3) B is thrown up into the air and compared to A when it falls back (Feynman’s question).
(4) B is lowered to the bottom of a deep mine, and taken back up after some time.
(5) We drill a tunnel across the whole planet, going through the centre of the Earth. We drop B and

compare it with A when it comes back.
(6) B is taken on board of a plane and compared to A after a round trip around the globe in eastward

direction.
(7) Same as before, but now the plane goes westward.
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Planetary motion

Planets will be approximated as pointlike particles of mass m following free-fall geodesics in
the Schwarzschild metric. In strict analogy with Kepler’s problem, this system can be completely
integrated once the symmetries are taken into account. As a consequence of the spherical
symmetry, particle orbits lie on a plane, which can be regarded as equatorial. Restricted to this
plane, the spacetime enjoys two commuting Killing vectors: the temporal one ξ = ∂/∂t and the
polar one η = ∂/∂φ. The associated Noether charges are the energy and angular momentum

E = −pαξα = m(1− 2GM/r) ṫ , L = pαη
α = mr2 φ̇ . (4.45)

Defining the energy and angular momentum per unit mass ε ≡ E/m, ` = L/m, we have, from
the dispersion relation pαp

α +m2 = 0, or u2 = −1,

−1 = − ε2

1− 2GM/r
+

ṙ2

1− 2GM/r
+
`2

r2
. (4.46)

This equation is equivalent to the classical one-dimensional motion of a unit-mass particle of
energy per unit mass equal to εeff = (ε2 − 1)/2, subject to the effective potential

Veff = −GM
r

+
`2

2r2
− GM`2

r3
. (4.47)

So that ṙ can be solved from
1
2
ṙ 2 + Veff(r) = εeff . (4.48)

Compared to the Newtonian problem, the crucial new feature of this potential is the last term
−GM`2/r3 which dominates over the Newtonian one at small enough radii, and is negative
definite, representing a clear tendency for the orbits to be destabilized towards small radius.
The centrifugal barrier is no longer infinite. In fact, it is not present at all if `2 < 12(GM)2. In
this case, any particle on a trapped orbit, ε2 < 1 will fall to the Schwarzschild radius.6

For `2 > 12(GM)2 the potential has a stable minimum at R+ and an ustable maximum at
R−, with

R± =
`2 ±

√
`4 − 12(`GM)2

2GM
. (4.49)

Thus, stable circular orbits exist at R+, which is restricted to be greater than 6GM . Unstable
circular orbits exist at R− which is restricted to 3GM < R− < 6GM . Any particle in a circular
orbit has angular momentum per unit mass

` =

√
GMR2

±
R± − 3GM

, (4.50)

and energy per unit mass equal to (obtained setting ṙ = 0),

ε =
R± − 2GM√
R±(R± − 3GM)

. (4.51)

6Notice that the effective energy εeff is nothing but the Newtonian energy per unit mass in the nonrelativistic
limit.
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Figure 4.2: Effective potential for massive particles with `2 > 12(GM)2. For `2 < 12(GM)2 the
centrifugal barrier is gone.

For 3GM < R− < 4GM , ε ranges between∞ and unity, so that any particle in unstable circular
orbits with R− < 4GM will escape to infinity if perturbed outwards.

Regarding the stable circular orbits, the lowest possible one sits at R+ = 6GM , and its
binding energy per unit mass is

εb = 1− ε = 1−
√

8/9 ≈ 0.06 . (4.52)

Hence, particles in circular orbits at very large radius, with ε ≈ 1, will steadily lose energy and
angular momentum by gravitational radiation emission. Gradually, they will spiral down to the
last possible circular orbit at R+ = 6GM , and then fall rapidly to the Schwarzschild radius. In
the quasistatic process of gravitational radiation emission, up to six per cent of the initial energy
is radiated, a quantity which is not negligible. So, we see that gravitational radiation, being
cummulative, can have significant effects over time, even if the radiation power is so small.

The parametric equation for the orbits can be obtained by writing ṙ =
√

2(εeff − Veff) and
dividing by φ̇ = L/mr2 to obtain

∆φ =
∫ rf

ri

dφ

dr
dr =

∫ rf

ri

Ldr√
2m2r4(εeff − Veff)

. (4.53)

Setting ri and rf at the turning points, which solve Veff(r±) = εeff , computes the perihelion
advance for closed orbits. We can derive a simple approximation to the orbital precession in the
case of nearly circular orbits (small eccentricity). For a nearly circular orbit, we can study the
harmonic approximation to the potential near R+, and we find a characteristic frequency

ω2
r = V ′′eff(R+) =

GM(R+ − 6GM)
R3

+(R+ − 3GM)
. (4.54)

On the other hand, the angular frequency per revolution in the polar angle φ is

ω2
φ =

`2

R4
+

=
GM

R2
+(R+ − 3GM)

. (4.55)
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The inequality of these two frequencies translates in a precession of the orbit. The precession
frequency being simply the difference

ωp = ωφ − ωr = ωφ

(
1−

√
1− 6GM/R+

)
. (4.56)

To lowest non-vanishing order for large R+, we find

ωp ≈
3(GM)3/2

R
5/2
+

, (4.57)

or, in terms of the angular advance per period Torb ≈ 2πR+

√
R+/GM :

∆φp ≈
6πGM
R+

. (4.58)

A direct evaluation of (4.53) for arbitrary orbits yields the general result

∆φp ≈
6πGM

(1− e2)a
, (4.59)

in terms of the eccentricity e and the semimajor axis of the ellipse a. This gives the famous
43 seconds of arc per century for Mercury. For the equally famous binary pulsar of Hulse and
Taylor, the precession is about 4 degrees per year!

It is interesting to notice that, despite being a leading correction of order O(φ) = O(GM/r)
to the Newtonian theory, it is only visible if terms of O(φ2) are kept in the weak-field expansion
of the Schwarzschild metric. In this sense, the orbital precession gives a more crucial test of
the Einstein theory than the gravitational redshift and the bending of light rays, despite being
effects of the same ‘size’.

Gravitational lensing

We discuss light (photon) propagation taking the m→ 0 limit of the particle propagation. In
this limit the proper time becomes a bad parameter and we need to re-parametrize the trajectory
in terms of an affine parameter or in terms of coordinate time. For the purposes of describing
photon orbits we can avoid such choices by focusing on the parametric equation (4.53)

dφ

dr
=

[
2m2r4

L2
(εeff − Veff)

]−1/2

which does admit a non-singular m → 0 limit. In this limit the photon angular momentum
is given by Lγ = |~pγ | b = Eγ b, where b is the impact parameter for unbounded orbits. The
resulting photon parametric equation is

dφ

dr
=

[
r4

b2
− r(r − 2GM)

]−1/2

. (4.60)

The expression in brackets vanishes at the turning points r0 of the orbit, which are then localized
at the largest positive root of the equation

r3
0 − b2(r0 − 2GM) = 0 . (4.61)
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Figure 4.3: Gravitational bending of a light ray grazing at a distance r0 from a central field.

Such a root only exists for b ≥ bc = 33/2GM , which corresponds to the smallest possible impact
parameter such that the photon is not captured, giving the capture cross section

σcapture = πb2c = 27π(GM)2 . (4.62)

It is interesting that the critical value of the impact parameter corresponds to a turning point
r0 = 3GM , which happens to be degenerate, in the sense that the photon admits a circular
(albeit unstable) orbit at this radius.

The light that is not captured will scatter off the gravitational field. The deflection of the
light ray is defined by

δφ = ∆φ− π , (4.63)

with ∆φ = φ(σ = +∞)− φ(σ = −∞).
So, the total ∆φ is twice the amount from the turning point r0 out to infinity:

∆φ = 2
∫ ∞
r0

dr√
r4b−2 − r(r − 2GM)

. (4.64)

To estimate this, we change variables to u = r0/r and eliminate b via (4.61) to obtain

∆φ = 2
∫ 1

0

du√
1− u2 − 2GM

r0
(1− u3)

. (4.65)

Expanding to leading order in GM/r0 we finally obtain

∆φ = π +
4GM
r0

+ . . . = π +
4GM
b

+ . . . , (4.66)

since the difference between r0 and b is already of order GM/r0. Hence, the deflection of light
is, to leading order

δφ ≈ 4GM
b

. (4.67)

For starlight grazing the Sun, one obtains the famous 1.75 seconds of arc that were measured
by Eddington in 1919 and that started Einstein’s life as a public figure.
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Problem: Dragging Langevin

Planet X is bound to an extremal Kerr black hole of mass M in a circular orbit, lying at the
equatorial edge of the Ergosphere. Two twin inhabitants of this Planet are separated by sending
one of them into a forward-oriented circular trajectory along the equator of the Ergosphere’s
edge. The runaway twin rides a fast spaceship capable of thrusting to a relativistic factor
γ = (1 − v2)−1/2 = 1/ε. The second twin only parts on an interception course ‘one year’ later,
using an entirely identical ship and following also a circular trajectory along the equatorial edge
of the Ergosphere.

Find the fastest interception trajectory, the location of the meeting point (where and when)
and the age difference of the twins after their reunion.

Hints:

• The maximal velocity of the ship, or equivalently the maximal relativistic gamma factor
γ = 1/ε, is the manufacturer’s specification, measured with respect to an idealized inertial
frame in Minkowski space-time.

• Above, ‘one year’ means of course one revolution of Planet X around the extremal Kerr
black hole.

• It is suggested to first find the angular velocity of any circular orbit around a Kerr black
hole, and then particularize the result to the concrete case of this problem.

• Solve the problem first for the idealized case of a light-fast ship with ε = 0, and later
perturb this result for finite ε (leading approximation for small ε is enough). Approximate
all trajectories as constant-velocity motions, neglecting the sharp periods of acceleration
of the spaceships.
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