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1. Introduction

Those are lectures on a topic that nobody understands fully. Not only that, but also
it is not the first time I lecture on the failures of the scientific community to come
to terms with the topic. The only exuse I can offer (and a poor one as it stands) is
that T am not the only physicist to be fascinated by the challenge of understanding
quantum mechanics in the presence of gravitation. The practical utility of the answer
to this question will not presumably be great (although how would be know for
sure beforehand?) but it is a matter of principle, and, as such, we hope to better
understand both quantum mechanics and gravitation if we are able to clarify the
issue.
The mass scale associated to this problem just by sheer dimensional analysis is
Planck’s mass,
my ~ G~V ~ 10¥GeV (1.1)

If we remember that 1GeV is the rough scale of hadronic physics (the mass and
Comptom wavelength of a proton, for example), this means that quantum gravity
effects will only be apparent when we are able to explore an energy region roughly
10" times bigger (or an scale distance correspondingly smaller; these two statements
are supposed to be equivalent owing to Heisenberg’s principle).

In a bottom-up approach there is a working low energy effective theory, and
quantum effects in gravity can be reliably computed for energies much smaller than
Planck mass. There are two caveats to this. First of all, we do not understand why
the oberved cosmological constant is so small: the natural value from the low energy
point of view ought to be much bigger. We will have unfortunately nothing new to
add to this problem. The second point is that one has to rethink again the lore of
effective theories in the presence of horizons. We shall comment on that in due time.

There is not a universal consensus even on the most promising avenues of research
from the opposite top-down viewpoint. Many people think that strings [76] are
the best buy (I sort of agree with this); but it is true that after more than two
decades of intense effort nothing substantial has come out of them. Others [61] try
to quantize directly the Einstein-Hilbert lagrangian, something that is at variance
with our experience in effective field theories. But it is also true that as we have
already remarked, the smallish value of the observed cosmological constant also cries
out of the standard effective theories lore.

These lectures are quite idiosyncratic in that I only talk on topics of with I think
I understand something. It is my purpose to keep them quite broad minded and
general, and I do not want to repeat the standard textbook stuff already summarized
in many excellent books and review articles, many of them highly opinionated. It is
hoped that at least some new ideas can be rescued from them.



2. Quantum effects in an external (fixed) gravitational field

2.1 The Unruh effect

Before entering the subject matter as such (of which no much is known) let us dwell

for a while in a quantum effect due to the non-inertial character of the observer. By

the equivalence principle, this ought to be related to a gravitational field. We are
talking of the Unruh effect that although was discovered after Hawking predicted the

black hole thermal emission, is in fact logically simpler and independent.

Let us consider the trajectory of an accelerated observer in two dimensional flat

space

1
t = —sinhar
a

T = —coshart
a

This is such that the four-velocity is given by
u = (cosh at , sinh CLT)

normalized to
u?=1

and the acceleration
U=a (sinhaT , cosh CLT)

obeys

a? = —1

auw =0

In comoving coordinates, id est, adapted to the four-velocity,

_ 9
- 75

u

the worldline of the accelerated observer is

() =7
g(r)=0
In general
agl
t= ¢ sinh a&®
a
ea€!
xr = cosh a&®




so that the value of the coordinate &' tells us which hyperbola we are talking about

) ) 62a§1
" —a"=— e (2.9)
In terms of these coordinates the Minkowski metric reads
ds? = di? — da® = < ((dg”)° - (dg")°) (2.10)
When
—00 < ¢’ <00
—o0 < 51 < 00 (2.11)

only one quarter of the original Minkowski space has been covered, namely the one
corresponding to
It| <z (2.12)

This is called Rindler’s wedge or Rindler space. The lightcone plays the role of the
event horizon.
Let us now consider an scalar field

ot fnan (%)~ (2)) -4 fanae () - (22)

(2.13)
We can use lightcone coordinates
ry=ttux (2.14)
as well as
X+=04¢! (2.15)
The full solution of the classical equations of motion
0? 0?
= =0 2.16
8x+8x*¢ 8)(*6’)(*¢ (2.16)
is a combination of rightmoving, positive frequency modes such as
fh(w) = e W = gmwlt=a) (2.17)

and their complex conjugates, wich are negative energy left movers.
It is worthwile to stop a while to think on the reason why we say that it is
rightmoving. It is because

. 0
kfg = —%fg:wfg



The reason why we say that it also enjoys positive frequency is because

Hf} —z—fR =wfp.
The plane waves
—iwaxt
gi(xt)=e (2.18)
are left-moving, positive energy solutions.
The general classical solution can be expanded in a sum of a Fourier series for

the left movers and a corresponding series for the right movers. We split the series
in fr, fr, 91, 9] considering that

0<w< oo (2.19)
We could as well suppress the complex conjugate basis functions and integrate from

—o0 <w < o0 (2.20)

o= /00 \/Cj% ap(w)e ™ + a;g(w)eiwz_) + (CLE(u))e_i“"’”Jr + az(w)ei”m+>>
(2.21)

We could also say the corresponding solutions
F(Q) = e X (2.22)

are right-moving positive frequency with respect to the new space and time coordi-

nates (£9,&1)

The relationship between the two light cone coordinates is given by:

1 o
T =——e X
a
1
gt = X" (2.23)
a

We then have a different expansion

¢ = /OO \/% _(Q)e—z‘szx* + bE(Q)giQX*> i (bZ(Q)G_iQX+ n bI(Q)em)ﬁ))

(2.24)
We are then tempted to write the field operator
5 < dw - - - -
= ar(w)e W= _|_&+ w)ewr )‘l‘ <& w)e W +d+ w)e®r >> _
¢ o V4rw << R( ) R< ) L( ) L( )
< dQ) )

s ((i)R(Q)e—M* n i);m)em*) + (bL(Q)e—m+ + B;(Q)emx*))(z%)

where the operators obey canonical commutation relations

[a(w)r, & (w)r] = 6 (w — W)
[B(Q) R, b ()] = 6 (2 — Q) (2.26)

and so on.



e We now define the Minkowski vacuum state by the condition
ar(w)|0p) =0 (2.27)

It is clear that this is the vacuum whose excitations would measure an inertial
observer. The Rindler vacuum instead will be defined by

br(w)[0r) =0 (2.28)

and this is the ground state for excitations measured by the accelerated ob-
server.

e Assuming that the Minkowski vacuum is a physical state, the Rindler state re-
quires an infinite energy to be prepared: It can be checked from the expansions
that

99 99 06 99
(0 -2-10) ~ (Onrl 5= 5= 100) = (Orl 55— 5+ —I0r) (2.29)
This yields
0 0o _[(0X~ 0 ¢ 1 0 0o

Onl22 220 = (2 ) onl e i0n) = s 0nl 2 o)
(2.30)

which is expected to diverge at the future horizon = = 0.

In a completely analogous way we would have shown that
(0| T+ .+ |0) (2.31)

are expected to diverge at the past horizon, z+ = 0.

e [t is clear that we can Fourier expand one set of modes in terms of the other:

Fi(Q) = e = / " dwplw)ei = / " o (p() F () + p(—w) F3()

(2.32)
with
dx™ —iQX ™ iwz~ dx” - - %
p(w) :/%e e = %6 T (marT) =
; i2 ) 1 = Q
o (ﬂ) r (1 +i—> = eleetaldiT ( > (2.33)
2w \iw a 2mw a

We also have

) = i _ / a0 = [T 009 Fal) +(-9) F(©) -

/dQ

DIE

Q) Fr — 5" () Fp) (2:34)



where this last notation has been introduced with an eye for the Bogoliubov
transformation that will appear in a moment, and

*dX~ = O Y — O dx— 1 - —iQ
0) = —iwz” iQXT kel —WwTT (e T —
() /OO 27 ¢ ¢ /OO 2m ax*e (—aa”)
Q

dy 1 _ie © dt 1 ta\ e
/ &Y 2 iy (ay) i :/ ——e* (ﬂ) =

0 2may 0o 2mat w

1 i} Ql a Q
— ezt [ —i— 2.35
o C ( la) ( )

This clearly implies that

27

(@) = e |B(Q)[ (2.36)

e There is a Bogolyubov transformation relating both sets of creation and de-
struction operators. Symbolically, the change of basis we have just done yields

¢~ ap(aF — B F*) +af (" F* — BF) + left =
> bpF + bEF* + left (2.37)

In gory detail,
ba(Q2) = / dw (anuin(w) — Bouih(w)) (2.38)
0

The canonical commutation relations do imply that (suppressing carets over
operators from now on)

[ o (0mnnation) = oyt @) [ don 0 alen) = B )| = (52 - ) =
0
/dw (OéQleéBQW — ﬁglwﬁs’;w) (2.39

which is a normalization condition for Bogoliubov’s coefficients. It implies, in
particular, that

/dw (Jagw]* = |Bawl?) = 6(0) = /dw (62’29 — 1) | Baw|? (2.40)

The expectation value of b-particles in the Minkowski vacuum will be
(On] /dw1 W, O 5Qw1%) /dWQ (st — Bow,al) [0a) = /dwlﬁﬂwF =



where V' has to be interpreted as the volume of space. These massless particles
detected by the accelerated oberved in the Minkowski vacuum obey the Bose-
Einstein distribution at a temperature

a

=5 (2.42)
This is the Unruh temperature. In order to get to a temperature of
T=1~10%erg ~ 107" MeV (2.43)
and given the fact that the gravitational acceleration at earth is
g~ 10ms™2 ~ 10" ¥ MeV (2.44)

the corresponding acceleration necessary to raise the temperature a miserable
degree is
a~10%g (2.45)

The possibillity of its detection in storage rings has been advanced by Bell
and Leinaas [?]. More recently, a proposal was put forward by Chen and
Tajima [17] of detecting Unruh radiation with the help of ultra-intense lasers.
It seems however that we have to wait somewhat before getting experimental
confirmation of such an effect.



2.2 The Kawking effect.
2.3 Physics in maximally symmetric spaces.

The (mathematically) simplest non-flat space-times are those of constant curvature,
traditionally knowm as de Sitter or anti de Sitter. It seems that they are in some sense
the most natural candidates for the vacuum of quantum gravity. We will comment
on that in due time. For the time being, we shall explore some aspects of quantum
physics in thsose spaces.

It is of interest to understand their relationship with ordinary spheres. We shall
study for a while flat spaces with arbitrary signature.

Some flat metrics in R will be considered, namely, for arbitrary & signs,
denoted by €, = +1,

n

ds* = ZeAdxi = napdr’dz® (2.46)
A=0
Given a metric, there is a corresponding algebra

(Mag, Mcp| =i (mpeMap — nacMpp — nepMac + napMpe) (2.47)

This algebra is a real form of the complex algebra SO(n), including the de Sitter
group, dS(n) as well as the anti-de Sitter group, AdS(n), and also its euclidean
versions EdS(n) and EAdS(n).The aim of this report is to put together some notes
on it.

These algebras make many appearances in physics. One of the most important
ones is as the conformal group. The conformal group C(m,n) of R,,.,, endowed with
a Minkowski-like metric with m-times and n-spaces is just SO(m+1,n+1) (SO(4,2)
in the four-dimensional case.)

Casimir operators are given by

=trMP =Y Musp, ... Ma,a, (2.48)

of which only those with even p are nonvanishing, owing to antisymmetry.
When n = 2m € 27, there is in addition the Levi-Civita invariant:

Em - 6A1B1...AmBmMA1B1 s MAmBm (249)

which is such that
E? = Cop, (2.50)

and distinguishes both chiralities.

2.3.1 Gamma matrices

Gamma matrices are defined through the Clifford algebra

{vm v} = 20w (2.51)

— 10 —



(which implies 73, = €pr). A particular representation of the group of rota-
tions SO(n) can always be obtained from the representation of the euclidean Clifford
algebra

{Tar,I'n} =20mn (2.52)

by hermitian matrices, for example the tensor product of n sigma matrices:

I'N=0a®03...® 03

Ih=0®03...® 03

an_150'2®0'2...®0'2

Iy,=01®01... R0

F2n+l EO’3®03...®03 (253)
by
v =il (2.54)
whenever ¢, = —1 and by
v =T (2.55)

otherwise. This implies the hermiticity assignment

VA = €M (2.56)
The matrices 1
OMN = 5 [Var, Yw] (2.57)
are such that
[0aB,Yc) = 2ncBYA — 20407 (2.58)
as well as
YAYB =1AB T 0AB (2.59)
and the algebra
[0aB,0cp] =2 (MBDOCA — OcBNAD + NCBOAD — NACTED) (2.60)

This means that %cr Ap 1s a matrix representation of (2.47).

1 7
Dy (Mag) = 5048 =7

Not all generators are hermitic, however (except in the euclidean case). Actually:

[Ya, V8] (2.61)

MXB = EAEBMAB (262)

Non hermitic generators mean that the (finite dimensional) representation is not
unitary, and can be more or less associated to noncompact directions in the group
manifold.

— 11 —



2.4 Constant curvature spaces C’;EM with SO(s,n + 1 — s) isometry.

All the spaces we are going to be interested at can be obtained by analytic continu-
ation from either the sphere S,

D XL = 6apdXAdXE =1 (2.63)
A=0
on a flat space with metric
ds? = §,pdX*dXP (2.64)

or else the real projective space, RP" = S,,/Zs, where the antipodal mapping
Zy: XA — —X4 (2.65)

The sphere is then the universal covering space of the projective plane, and w1 (RP,,) =
Zs Functions on the projective plane are given by even functions on the sphere

FXY) = f(=X1 (2.66)

The projective plane is non-orientable for even values of n; but it is orientable for
odd values of n. For example, RP; ~ 5.
Let us focus on the fundamental hyperquadrics of flat space, which are well
known to be the only hypersurfaces of constant curvature of flat space ([32]).
The metric induced on the surface
> eaXi = napXAXP = £ (2.67)
A=0

by the imbedding on the (n+1)-dimensional flat space M,, 1 with metric

ds’ =) " eadX; = napdX*dX"” (2.68)

A=0

If we group together all minus signs in the metric, then Wolf’s notation is R?*! for
the space whose metric enjoys exactly s minus signs (which Wolf takes as times, but
for us they are spaces).

Furthermore, the pseudoriemannian spheres and hyperbolic spaces are given by

St=XeRIM & napXiXP =17
H'=X eRY] & napX*XP=-17 (2.69)
They are both n-dimensional pseudoriemannian manifolds with signature (n —

s,s). We shall be mainly interested in the Lorentzian case s = n — 1. Useful
diffeomorphisms are

- 12 —



o 57T =R x S"% ie.

X — [ XX (XL X

RS v
o ' — S xR" ™%, ie.

X — ! (X' X)Xt X

VI, X

o SI' — H _jie

n—sgit-C-

X — (Xs“,...,X"H;Xl,...,XS)

The universal (i.e. simply connected) pseudo-riemannian coverings are S , # S”_,
and H? | = H" |.

It is a fact of life that the complete connected manifolds M of constant curvature
are those isometric to a quotient S”/T or else H" /T, where T is a group of isometries
acting freely and properly discontinuously. !

Sometimes the coordinates X“ themselves (obeying (2.67)) will be used; in those
cases they will be referred to as Weierstrass coordinates.

Please note that the situations (e, +) and (—epr, —) are such that spacetime
metric only changes by a global sign, the Christoffels invariant as well as the Riemann
tensor R 4.5 and the Ricci tensor Rgs = R gos. The curvature scalar R = g*° R,z
then changes sign. This spaces will be labeled

o5 (2.71)

€M

LA manifold is homogeneous if the full group of isometries is transitive (that is, that Va,y €
M,3g € G,g(x) = y).

For the manifold to be symmetric the Riemann tensor has got to be covariantly constant.

On the other hand, a group action is free (i.e., without fized points) if Vo € M, the little group
{g € G,g(x) = x} is trivial.

Finally, the action is properly discontinuous if YVx € M there is a neighborhood U such that
{7y €T,7(U) meets U} is finite.

A covering p: S — T is a continous map of connected, locally arcwise connected spaces.

The covering is universal if S is simply connected.

The deck transformations h € T'(S/T') are those homeomorphisms h : S — S such that

poh=p (2.70)

A Clifford translation is an isometry f such that d(z, f (z)) is a constant. The Clifford trans-
lations of Euclidean space R™ are just the ordinary translations. The only Clifford translation of
hyperbolic space R™ is the identity. If p : N — M is a riemannian covering, I is the group of deck
transformations, and M is homogeneous, then every element of I' is a Clifford translation.

— 13 —



The mother of all these spaces is the n-sphere, for which all ¢4 = 1 and the sign in
the second member is plus as well.

One of the purposes of our research is to study the extent to which physical
quantities are determined on the spaces CQ—LM by analytic continuation from the sphere.

2.5 The general complete connected homogeneous Lorentz manifolds of
constant curvature M),

More generally, complete connected homogeneous Lorentz manifolds of constant cur-
vature M, can be fully classified ([93]). In order to understand it we need some
preliminaries.

First of all, recall that every compact subgroup of O(s,n 4+ 1 — s) is conjugate
to a subgroup of O(s) x O(n + 1 —s).2

There is a map between the isometry group of the universal covering of S)'_,,
which we dub gﬁ_l (the isometry group is denoted by [ <~3_1>) and the isome-
try group of S)'_; itself, which we denote by [ (Sg_l), to wit, if we represent the
projection by

then the mapping is defined by:

fi1 <~Z_1> — ]( 7’;_1) =0(n-1,2)
through
f(g)m(z) = 7(92)

The kernel of this map is the group D of deck transformations.
We shall now define some convenient subgroups of isometries.

2Let us remind the reader that the center of a Lie algebra is the set of elements Z such that
[Z,X]=0,VX € G.
We define the lower central series DG inductively by

DlQ = [Q7 Q]
and
DyG = [G, Dy 1G]
We also define the derived series DG inductively by
D'G =[G, G]
and
DkQ _ [Dk_lg, Dk—lQ]

A Lie algebra is called nilpotent if 3k, DG = 0.
A Lie algebra is called solvable if Ik, DG = 0.
A Lie algebra is semisimple if there is no nonzero solvable ideal.
The maximal solvable ideal is called the radical, Rad(G).
A Lie algebra is called reductive if its radical is equal to its center.

— 14 —



As = f7H(Zy) c I(SY.)

e Let us now restrict to the case n odd. we define the matrix

J =iy ® lun = ’ € GL(n+ 1,R) (2.72)
| 109
(this is such that J? = —1) as well as a rotation R(f) € O(n — 1,2) defined by
R(0) = cosO1+ sinbJ

Indeed
—1 10
RT(0)1R(0) = o i
iO'Q 1 iO’Q

They obviously close into a one-dimensional abelian subgroup:

R(01) R(05) = R (61 + 0)

Finally, we define for n odd,
Ay ={R(6) € O(n—1,2)}

and
Az=7" (A2 <1 (S0
e Now we define the parabolic translations 7),(6),

1-— 2.0'29 0 —’iO‘gQ
T,(0) = 0 1,3 0 €O (n—1,2) (2.73)
i02¢9 0 1 + ’iO'Q@

As a matter of fact,

1 + iUQQ 0 —’iggg —12 —1 + iUQQ 0 ’iO’QQ
T (0)nT,(0) = 0 1,3 0 —1,_3 0 ~1,.3 0
iUQ(g 0 1-— i020 12 i029 0 1 + i029

=1

— 15 —



It is also plain that they also close into a one-dimensional abelian subgroup

T, (61) T, (02) = T, (61 + 02)

Then,
Ap ={£T,(0) € O(n —1,2)}

and ~ .
Ap = fH(Ap) C I(S)_y)

e When n = 4 we would like to consider the hyperbolic rotations

cosh 615 sinhf 1,
0) = 2,2
B (6) (sinthg cosh@lg)EO(’ )

Now define
Ag ={£R,(0) € O(2,2)

Ap=fYAg)C I <S§>

Let us now recall that the defining equation for S? | € R"*1 reads

n—1
X2+ X2,=1*+) X7
=1

A generator of the fundamental group (Sg_l) is then given by

0:10,1] = o(t) = (0...0; Lsin27t, L cos 27t)

(2.74)

It is a fact that 5’]{_1/ I' is homogeneous if and only if I' is conjugate to a discrete

subgroup of Ag, Az(for n odd) or Ay (for n = 3).

Let S denote the family of all isometry classes of pseudo-spherical spaceforms

Sr_ T, T C Ag.

Let Z denote the family of all isometry classes of pseudo-spherical spaceforms

Sr_ T, T C Ay

Let P denote the family of all isometry classes of pseudo-spherical spaceforms

Sr_ /T, T C Ap which are not contained in S.

Let ‘H denote the family of all isometry classes of pseudo-spherical spaceforms

S»_ /T, T C Ay which are not contained in S.

To summarize (Wolf)

— 16 —



e The zero curvature manifolds are isometric to R?/T", where I is a discrete group
of translations.
e For positive curvature there are several possibilities:
o M™ € S, which means that it is a covering of S” | /Zs.
o Mt ¢ Z
o M3 P .
o M3 eH .
e For negative curvature, the manifold is isometric to H)'_, or to H}' ,/Zs

3

2.5.1 Stereographic coordinates for the sphere 5,

e Let us perform an stereographic projection of the first n — 1 coordinates from
the south pole, X" = —I[, and represent the projected coordinates in R™ by
small face letters:

21
h= ——Xt=Q X+ 2.76
TS Xt (2.76)
The defining equation
n—1
Z X2 =1 (2.77)
0

3The normalizer of H in G is the set of all g € G such that
gHg ' =H
The centralizer of H in G is the set of all g € G such that
ghg™ ' =h,Yhe H

It is plain then the centralizer is contained in the normalizer.

Let us call T(M) the group of all isometries, and I(M), the subgroup preserving x. There is also
a local construction, starting from isometries of neighborhoods of a given point z € M, leaving x
itself fixed. If we identify two such maps if they agree in a neighborhood of x, we get a group H,
the group of local isometries at x.

M is called isotropic at x if I(M), is transitive on the unit sphere in M,. This can be proved
to be equivalent to the manifold being two-point homogeneous, i.e.,that the isometry group I(M)
is transitive on equidistant pairs of points.

It is a fact that a locally isotropic manifold is locally symmetric.

The signature of the Grassmann manifolds

O(s,t=n—15)/O0(s1,t1 =n1 — 1) X O(s2 =5 — s1,ta =n—n1 — S+ $1) (2.75)

is
s1ta + soty

— 17 —



then implies

1—2Is
Xm=1— (2.78)
1+ 25
so that xn o )
Qg = 21+ - (2.79)
1+ 25
Then
X" = (2Qg — 1)1 (2.80)
and .
ds’ = dX3 = Q6;dada (2.81)
0

That is, they are Riemannian coordinates in the sense of Eisenhart [32]. These
coordinates can be defined for all constant curvature spaces. The Riemann
tensor is given by:

R
R;u/pa - m (g,upgua - g,uagup) (282)
and the Ricci tensor ]
R/W = ﬁRgHV (283)
where ( )
n(n —
R = 5 (2.84)
and the curvature ]
Besides [32]
XA
V.V, X4 =—-"g. (2.86)

These coordinates are singular at the South pole itself. They cover the whole
sphere but for the south pole.

We could have projected from the north pole instead, that is,

2l
Xn—1

X (2.87)

o
TN

Let us call zg and xy the two sets of coordinates. They are enough to cover
the manifold.

In the intersection of the two local systems (that is, the sphere without the two
poles) consistency demand that

X"=020y+ 1)l =(20s— 1)
Xt = Qunaly = Qgrly (2.88)
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so that the change of coordinates is given by an inversion

w
N

aly = —APP=L (2.89)
TN
and ) )
rg 4l
—= = — 2.90
412 2% (2.90)
Besides 1
Qn =— — (2.91)
L+ 3%
and
Oy =Qs—1 (2.92)
It is then plain that
dsy = ds% (2.93)
e The equations of the geodesics in Weierstrass coordinates are [32]:
X4 = X2 cos 2 + N2 sin’ (2.94)

[ l

so that the distance in the enveloping space between two points whose geodesic
distance is s is given by:

DIX. X2 =S (XA~ XN = 42 sin? > 9.
(X, Xo) Z( 3 sin® o (2.95)

The euclidean distance between two points D(X,Y’) translates into

D(z,y)* = (Qx)z" — Qy)y")* + 4% (Qz) — Qy))* (2.96)
It is a fact that ]
o XAYE = -5 (@ - 7)° .9, (2.97)
Thus
DX, Y=Y (XA -y =22+ (7 - 7)° %9, (2.98)
It is also evident that

e The simplest possible example is just the ordinary circle, S!, embedded in
R?, which will be represented by the two coordinates (x,y). The south pole
stereographic projection is defined through

21
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the correspondence with the general notation is then

X' —ux
X" —y
ot — € (2.101)
The metric reads 1
ds® = & d§® = I'db? (2.102)
I+ 35
This means that the stereographic coordinate is related to the polar angle in a
direct way:
0
& =2ltg 3 (2.103)
which means that
_ &
y=1—2 —cosb
L+ ip
Q:y—l—l_ I 1+cost
21 1+ f? 2
x=Q¢ =1sinb (2.104)

The other neighborhood is covered by
21

Clearly,
41> 0
It is plain that we could have written
On
En =21 th (2.107)
with -
Oy =0s + 5 (2.108)

It is useful to remember that

ag_l(Hﬁ)_ 21 z

00 412 ) 1+ cosb B coszg

% - cos® 0

or  lsin26

00  cos*0

90 2.1
dy lsind (2.109)
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It is clear that the angular momentum reads

2ly 2la? [
L =20, —yd, = — 2.11
0y — YOy (y i + o l)2> Of Qaﬁ (2.110)
(remembering that
o€ _ 1
or Q
/3 1
o= "o (2.111)

e The generators of the SO(n + 1) group are in the coordinates of R"™!
Lap = X*0p — XP0, (2.112)

Functions defined on the sphere obey

of o A 0
0= xS (2.113)
This means that p 6 g
X" = _ﬁaX“ (2.114)
oxt _ 1.,
oxe Q°
ox* X+
oxXn 2102 (2.115)

(stereographic projection is defined outside the sphere as well, so that the result
does not fulfill (2.114)) as well as (on the sphere itself)

QQ
0, X" = Qo) — —sata”

2(?
Q2
8pX" = 2l8pQ = —T:Ep (2.116)
(indeed, X*0,X* + X"0,X™ = 0).
We then obtain * 5 .
=——2at0 2.120
oxn 2007 ( )
40ne could have argued otherwise: acting on functions defined on the sphere,
0 oxP 1
axr ~ axnor = g (2.117)
XH o _ Hato) (2.118)
oxw T '
conveying the fact that
0 1
= —— M
o =~ O (2.119)
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We can then write

L, =2"0, —1"0, (2.121)

as well as (remembering that X" = (2Q — 1))

0 0 X" QaH
Loo—xnC _xp 9 A g
" ax" oxr ~ o gl
z 1
ﬁau + ﬂx Lua (2122)

2.5.2 Coordinates for CZ*
e Let us choose coordinates in such a way that in the defining equation

> eaX] = napdXAdXP = £1? (2.123)
A=0

on a flat space with metric
ds? = napdX*dX"? (2.124)
then
€n = %1 (2.125)

This can always be achieved, by reshuffling the coordinates if necessary, because
when the sign in the second member is negative, at least one of the coordinates
has got to be an space.

We then define the south pole stereographic projection for y=0...n —1, as

21 XH
K= Xt =— 2.126
The equation of the surface then leads to
17 3
X, = 1— 1 (2.127)
1+ 55
where
n—1
2= e, (ah)? (2.128)
©n=0
besides,
1
Qs = (2.129)
1+ ITSQ



It is worth noticing that when the sign in the second member is negative, then
vy X, -1
412 X, +1
(The range of X, is now —oo < X,, < o0) but the range covered by the

(2.130)

stereographic projection is — < X,, < oo. In this whole interval ?ﬂ <1 and
X, — oo when 2% — 472

The metric in these coordinates is conformally flat:
ds® = Qim,, datsdr? (2.131)
Please remark that when 22 = 0 then X,, = {

We could have done projection from the North pole (for that we need than
x? # 0; that is X,, # [): Uniqueness of the definition of X,, needs

208y +1=20s—1 (2.132)
and uniqueness of the definition of X*
Q 412
h = ﬁwg = :ngg (2.133)

The antipodal Z; map X* — —X4 is equivalent to a change of the reference
pole in stereographic coordinates
ahy s aht (2.134)

.. Only functions on the sphere which are invariant under the exchange of north
and south pole stereographic coordinates are well defined on the projective

plane, RP,.
Working out the derivatives
ox's _ 1 5
oxr Qg ?
Tl _ Tl
0X, 2[5
0 1
=— .0, 2.135
0X, ~ 2qg % (2.135)
The Lorentz generators read
9 y_0 v
L., = ENX“W —e,X BxE eux’gaf — el,xsﬁ;f
[ g
Lyy=—=07—22L,, 2.136
K QS © 21 H ( )

But this last expression appears to be valid only when the plus sign is chosen
in the second member of the defining equation (2.123).
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Figure 1: A pictorial representation of Anti de Sitter (X2 + X7 = 1> + X2 in R™).

2.5.3 Analytic continuation from the sphere or the projective plane.

The metric on S™ ! is
ds® | =dO> |+ sin?0,_1d0? 5+ ...+ sin*0,_1 8in*0,_o...sin70,d67  (2.137)

This corresponds to the surface

expressed in polar coordinates in R"”

X,, =rcosb,_;

X1 =rsinb,_1cosb, o

Xo=1rsinb,_1sinb,_o...cosb,
X, =rsinb,_1sinb,_5...sinb; (2.139)
The range of the different angles is

Ogen—lgﬂ-
Ogen—QSﬂ-

0<6, <2 (2.140)
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Figure 2: A pictorial representation of Euclidean Anti de Sitter (or Euclidean de Sitter)
(X2 - X? =1+ X?inR").

(This coincides with [69]). The antipodal mapping is given by:

enfl — T = enfl

0n—2 — T = 9n—2

6, — 7+ 6, (2.141)

This restricts in fact the range of the angular variables in the projective space to half
its natural range

0<6,1<m/2
0 S en_g S 7T/2
0<6, <m (2.142)
e S, — EAdS,
We shall continue
Xn — XO
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Figure 3: A pictorial representation of de Sitter (X7 — X7

and

This leads to

e S, — AdS,

Here we have to do

as well as

yielding

ds* =1 (d0>_, — sin® 0,1 (d0>_, + sinh®0,_»dQ _,))

e S, —dS,

N

—

o

gn— 1 7:en—l

Xn — X()
Xn—l - Xn

gn—l - 7:en—l
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ds® = =17 (d6>_, + sinh® 6, 1d22_,)

—I2 + X?) in R").

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)



This is different insofar as it corresponds to FAdS, with imaginary radius.
The changes here are

Xn — XO
X —iX (2.148)
as well as
«9n_1 — 1 (en—l + 7T/2) (2149)
leading to
ds* = 1? (d6>_, — cosh? 6,_1d2.,_,) (2.150)

2.5.4 Poincaré

A generalization of Poincaré’s metric for the half-plane can easily be obtained by
introducing the horospheric coordinates [5]. It will always be assumed that €y = +1,
that is that XV is a time, and also that ¢, = —1, that is X™ is a space, in our
conventions. Otherwise (like in the case of the sphere S,,) it it not possible to
construct these coordinates.

[
-=X"
Z. .
Yy =z2X" (2.151)
where
r=X"-X° (2.152)
1<4,j...<n—1. The promised generalization of the Poincaré metric is:
n—1 2 27,2
dy; Fl12d
ds? = L G T Az (2.153)

»2

where the signs are correlated with the ones defined in (2.67), and the surfaces
z = const are sometimes called horospheres. This form of the metric is conformally
flat in a manifest way.

The curvature scalar is given by:

n(n —1)
R=+ B (2.154)
For any constant curvature space,
R
R,uu = Eg,uu
R
R;wpa = m (gupgua - gupgua) (2'155)

— 27 —



In our case this yields

n—1
R;w - il—29/ux

1
R/JJ/pO’ - j:l_2 (g,upgz/a - g,upgua) (2156)

Please note that the curvature only depends on the sign on the second member,
and not on the signs €4 themselves.

It is clear, on the other hand, that the isometry group of the corresponding
manifold is one of the real forms of the complex algebra SO(n + 1). The Killing
vector fields are explicitly given (no sum in the definition) by

Lap = eax’0p — egxPOs = 405 — 1504 (2.157)
The square of the corresponding Killing vector is
L? = epa? + eary (2.158)
To be specific, when the metric is given by:

e S S dytdyd F 12d2?

»2

(2.159)

i.e., Cf. _y, then the isometry group is SO(n, 1).

e This is the case for what could be called euclidean de Sitter, £dS, = H] =
1n 1, Which in our conventions has got all coordinates timelike, and negative 5
curvature. This is the version of Lobatchevsky upper half plane used by Witten
[?] to analyze the AdS/CFT correspondence. Witten refers to ot as ”euclidean

AdS”.

The metric of EdS,, in Poincar’e coordinates reads:

S S dytdyd + 12d2?

dstas, = > (2.161)
e The related situation where
1 o
— N Gdytdy? F 1Pd2?
g5t = — 2o Oudy'dy’ ¥ I'dz (2.162)

~2

®We use the Landau-Lifshitz Spacelike conventions (LLSC) [50] and we define the Cosmological
Constant in such a way that for a space of constant curvature,

2
R/z,u - —d — 2Ag;w (2160)
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ie., C’f,ln enjoys SO(1,n) as isometry group, and includes de Sitter space,
dS, when z is a timelike coordinate, dS,, = H; | = C] ;.. Its metric reads

— 3" oydytdy’ + 12d2?

22

dsig = (2.163)

In our conventions de Sitter has negative curvature, but positive cosmological
constant. Globally, dS,, is given by:

xh— 2t — .. =2k =17 (2.164)
The square of the Killing vectors M, (candidates to be timelike) are

Mg, =22 —a5=>Y a3 — I (2.165)
b#a
so they are timelike only outside the horizon defined as
Hy, = Zmi =2 (2.166)
b#a

For example, the horizon corresponding to Hy, is

d oy =12 (2.167)

This means that de Sitter space, dS, is not globally static.

e What one would want to call Euclidean anti de Sitter , FAdS, = S =
Cff _1n, has got all its coordinates spacelike, and positive curvature. To be
specific

— S dyidy — 12d2?

22

ds aas, = (2.168)

Pleate note that the metric is just the one corresponding to EdS,, with a
change of sign. This explains the change of sign in the scalar curvature.

Globally,
h -t — . —al =17 (2.169)

(That is, de Sitter with imaginary radius).

e Finally, when the metric is given by

Zn_l nz'jdyidyj T 1’d2?
52

ds® = (2.170)

(where as usual, n;; = diag(1, (—1)""2)), i.e. C55 _ ., then the isometry group
is SO(2,n — 1). This includes the regular Anti de Sitter, AdS, = S | =
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C’; _1n-1 When the 2z coordinate is spacelike. For us AdS,, has positive curvature
and negative cosmological constant.

Z"il nijdy'dy’ — 1*dz?

22

dsas, = (2.171)

Globally, AdS,, is

w4t —ar— . i =17 (2.172)

In this case there is a globally defined timelike Killing vector field, namely My,
Indeed, M3 =z3+23 =12+, 1 22 is everywhere positive. This means that
anti de Sitter space, AdS,, is globally static, as opposed to de Sitter.

2.5.5 Conformal structure
e dS,

The four-dimensional de Sitter space can be globally coordinatized by

X" =lsinht
X'=In"cosht (i=1...n) (2.173)

where Y727 n? = 1 and —oo < 7 < co. This gives

ds* = 1? (d* — cosh® T dS2 ) (2.174)
A further change of coordinates, namely cosT = coslhT where —7/2 <T < 7/2
yields
2 ? 2 2
ds* = dT= — dS2 2.175
5 cos?T ( "71) ( )

which is conformal to a piece of R x S"~!, which is the Einstein static universe,
the template used by Hawking and Ellis [47] to study conformal structure. The
piece is a slab in the timelike direction, but otherwise including the full three-
sphere at each time. The fact that conformal infinity is spacelike means that
there are both particle and event horizons.

e AdS,

The fact that in this case there are two times suggests:

X0 — lCOST
coS p
i lsmr
coS p
X' =In'tgp (i=1...n—1) (2.176)
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where Zzi’f_lnf =land -7 <7 <7, 0 < p < 7/2. The space is again
conformal to a piece of half Einstein’ s static universe:

2 2
(d7'2 —dp?® — sindeQi_2) =

ds® =

= s (dr* —dQ._,)  (2.177)

cos?p

If we want to eliminate the closed timelike lines, one can consider the covering
space —oo < 7 < oo. The slab of R x S"! to which AdS, is conformal
to includes now the full timelike direction, but only an hemisphere at each
particular time. Null and spacelike infinity can be considered as the timelike
surfaces p = 0 and p = w/2. This implies that there are no Cauchy surfaces.

e EAdS,
We write

XH* =In"sinhT

X" =lcosht (2.178)
with Zz;é euni = 1, so that the metric reads

ds* = I (dr* + sinh 7°dQ;,_,) (2.179)

The change of variables
el =tht/2 (2.180)

yields
027

2 12
ds® =1 T

(dT* +dQ2_)) (2.181)
(the other half of the global space would be covered by another copy of the
above metric).

In this metric, X,, > X, always, which means that in Poincaré coordinates
z >0, and z — 0 when 7 — oo, which is equivalent to T" — oo, and represents
the boundary of the space, a S,,_; sphere.

2.5.6 The Poincare patch
e dS,

In this case it is clear that
2z <0 (2.182)

always, and z — —o0 as 7 — 0.
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o AdS,

It is clear that the region z > 0 corresponds to the patch

T/A<T<m (2.183)
and the region 0 > z to
—r <71 < —=31/4 (2.184)
The region
z=0 (2.185)

is dubbed the boundary (of the Poincaré patch) of AdS and corresponds to

p=m/2 (2.186)
Finally

Z =00 (2.187)
is usually called the horizon and corresponds to X" = X°, that is,

T=m/4 (2.188)

or else

T=—-3r/4 (2.189)
(assuming p # 7/2).
When p=7n/2 —eand 7 =7/4 £,

V2e

and the limit depends on how the limit point € = § = 0 is reached.

The same thing happens when p = 7/2 — e and 7 = =37 /4 + 4,

V2 e
e=F5 (2.191)

2.6 The group theoretical approach
2.6.1 Contractions

Consider as given the algebra

[Map, Mcp| =t (neMap — nacMpp — nepMac + napMpc) (2.192)

corresponding to one of the real forms of SO(n + 1), say SO(p,n + 1 — p).
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It is possible to contract in a timelike coordinate, say 2°, in the following manner.
Let the coordinates different from 2° be numbered by a = 1,...,n + 1. The algebra
splits as:

[Maba Mcd] =1 (nbcMad - 7/}ac]\4bd - nbdMac + 77ad]\4bc)

[Ma(b Mcd] =1 (0 - nacMOd -0+ nadMOC)

[Ma07 Mco] - 'L (0 - O - Mac + O) (2193)
The generators are now redefined (and given dimension one)

MaO
R

In the limit R — oo, the algebra contracts Inénii-Wigner to /SO(p — 1,n + 1 — p),

P, (2.194)

where P, play now the role of the translations:

[Maba Mcd] =1 (nbcMad - nachd - nbdMac + nadec)
[Pau Mcd] =1 (nacPd - T]adpc)
[Pa, Pe] =0 (2.195)

Given a set of gamma matrices associated to the metric 74, our previous results
imply that M,, = i0,, and P, = v, yield a representation of the reduced algebra.

An example of this reduction is the one from four-dimensional AdS, SO(2,3) to
the Poincaré group, 1.50(1, 3).

The reduction along an spacelike direction (say z™) is completely analogous:

[Maba Mcd] =1 (nbcMad - 77(11:]\4bcl - nbdMac + nadec)

[Mana Mcd] =1 (0 - 77(10]\47111 -0+ nadMnc>
[Man, Mep] =i (0 — 0+ M, +0) (2.196)

The generators are now redefined

Man

P, = 2.197
L (2,197
resulting in
[Maba Mcd] =1 (nbcMad - naCMbd - nbdMac + 77ad]\/[bc)
[Pau Mcd] =1 (nacPd - nadpc)
[P, Pl =0 (2.198)

In the limit R — oo, the algebra contracts Inénti-Wigner to 1SO(p, n — p), where P,
play again the role of the translations:

An example of this reduction is the one from four-dimensional AdS, SO(1,4) to
the Poincaré group, 150(1, 3).
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2.6.2 Casimirs, laplacians and Green’s functions

The Laplacian (d’ Alembert) operator in R"*! is

A = 20,405 (2.199)

5We include here some curious and potentially useful facts. The flat metric in R™*! can be
written in horospheric coordinates, provided the radius [ is also kept as another coordinate:

_ dy 12 Y7 €Y
2 __ + 2 __ I 2 7 2
ds® = —dx"dx~ + E €dx; = E € :F —dz (:tl — E Ql222> dl* — E 2 12 dy;dl (2.200)

It can be easily computed that

l
-t 2.201
9l = (2.201)

This form of the metric is not convenient however, because the off-diagonal terms cause eventually
problems when reducing it to the surface [ = const. If new coordinates are introduced:

& =log % (2.202)
the metric reads
2 ? 2, 7402 ? o, 2
ds? = Zei;e E7 F —d? F dl (2.203)
The laplacian on scalars is then
1
Apyr = 7ﬁ|g| (aug;w \/mau) (2.204)
yielding
22 . 2—n P n
Apyr = Z €75 C %i (07 - 05) F Tzaz T 1—283 ¥ 7al T 0} (2.205)
which reduces in the old coordinates y; to
0? 2—n P n
Anp1=) ¢ Qa ¥ 5 S 0. F 5 _—r 70 ¥ 0 (2.206)
In the former coordinates the inverse metric reads:
g'=71
i _ Y
g =% ]
22
9T =Fg
97 = €;2%6;; F y;‘% (2.207)
yielding
o 0 2y; 02 2—-n 8 _ 2% 9?
And _ Ei o v Y e < Y
ntl ﬂ R $Z L dlog T R Cos T ros T
YiYj 9?
€2 75 Yj (2.208)
2 e 8y§ 2 B 2 31/ 12 dyidy;

The same operator in CE s
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On the other hand, the quadratic Casimir of the group:
1
Cy = —éMABMAB (2.211)

can be written in the form
Co = =20 (240p — 2504) = (—1 +n)z"04 + (—2°n*" + 2'27) 0405 =
nzd, + ($l277AB — xAxB) 0405 = 2204 (IBOB +n— 1) TPAL (2.212)

The situation can be clarified (following [91]) by normalizing to the space with
unit radius, using

= Iy? (2.213)
where it is understood that
napy’y” = +£1 (2.214)
This gives
dz® = dly™ + ldy” (2.215)
and
ds* = £dI* + I°g,, dx"dz” (2.216)

where the metric in the unit radius space is

gm/ = nABap,yAauyB (2217)

Using the formula for the laplacian on scalars,

|
Aoy = Tl (aAgAB\/EaB> (2.218)

and the fact that \/|g|, ., = 1"\/|g], it is found that

1
Apyr = :l:%@l £ 0+ 50 (2.219)
It is a fact that
10, = 204 (2.220)
yielding
Cy = —120} —nlo; + PA, 41 = £A, (2.221)
2—n 0 2?2 9? 02

There is a simple relationship:

Apy1 = :F%az T +A, (2.210)
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2.6.3 More on the four dimensional Lorentz group

Let us recall the full Poincaré 150(1,3) algebra. It has in it three rotations, J; =
%eijijk, three boosts, K; = M,y as well as four translations, P, = (H, P;), and the
algebra reads

] = ZEijKk
K;, P =iHd;;
K;, H] =iP, (2.222)

The Lorentz subalgebra SO(1,3) is isomorphic to the algebra of SU(2) x SU(2),
since if we define oii = J, +1K;

o), 0] = ienoy (2.223)
[0,07]1=0 (2.224)

Accordingly the finite dimensional, non unitary irreps are labeled by a couple of half
integers, (j1,j2). Unitary representations of non-compact groups are always infinite
dimensional ([94]).

2.6.4 SL(2,C)

0 3 .1 92
~ 0 oo r +x0 x —ix
rT=2+7 :(x1+ix2 ZL‘O—ZE3> (2.225)
Lorentz transformations:
¥r=MiM™T M e SL (2,@) (2.226)
1
O ~
= —t
T 5 X
1
= 5757“ zo' (2.227)

This means that M € SU(2) corresponds to an space rotation, because then MM+ =
1,s0 that 2° is unaffected. It is plain that the two-dimensional matrices corresponding
to finite rotations are:

cos < isin S
U(R(Jp)) = 2 2 2.228
(£ (7)) (zsm% cos 5 ) ( )
This matrix is determined by the condition
trzot = tr UzU " o! (2.229)
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8]

2 Mo ) (2.230)

—sing cos %

() = (

o
L)

U(R(J3) = (60 e_oig) (2.231)

Boosts along the first axis correspond to

tr7o? = tr MaM ™t o>

trio® =tr MaM*o? (2.232)

M (B (K1) =~ \/; E (2.233)

=1 /lty
2 2
where, as usual,
y=(1-0v3)""" (2.234)
Hy o, /2=l
_ 2 2
M (B (K3)) = o i (2.235)
2 2

1\ 1/4
M (B (Ky) = - <(l+> 1 (;/> (2.230

This identification conveys a mapping of generators:

Ji = 0;
In general
o .. Zo
M(z) = "7 = cos z + isin z— (2.238)
z
where

z= Z 22 (2.239)

For an arbitrary Lorentz transformation, the real and imaginary part can be made
explicit:
Z=j+ik (2.240)

It is a fact of life that

) h hrd g ] h = -
M (z) = cosucoshv — (_cosusm Y (uj —l—vk) + Smucosay <uk — vj)) g —

u? 4 v? u? + v?
N . cosu sinhv / - = sinucoshv / - A\ L
i <smusmhv + (W <uk - Uj) T T (uj + vk>> 0) (2.241)
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with

— g 2 - = — —
ux/ﬁz\/\/ j2—k:2 +4(]k) + 52 — k2
—» —;—»2 — -

w2 = J —k: +4<j.k> By (2.242)

2.6.5 Unitary representations of the four dimensional Poincaré group

Massive When the first Casimir operator
P*=m? (2.243)
does not vanish, m # 0, there is a Lorentz transformation so that
p" = L(p)*, (mu”) (2.244)
where the timelike unitary vector w is defined by:
= (1,0) (2.245)

This means that all timelike vectors of the same length are related by a Lorentz
transformation. The transformation L(p) is not defined in an unique manner.
Given one L(p), clearly

L(p)W (u) (2.246)

produces the same effect, as long as
Wu=u (2.247)

i.e., belongs to the little group, or stabilizer of the vector u, which we shall
denote by S,. The fact that the little group is nontrivial is the basis of the
whole construction by Wigner of the induced representations. In the present
case, it is easy to check that the little group is compact, namely the full set of
ordinary three-dimensional rotations,

S, = SO(3) (2.248)

In the Hilbert space of states, on which we want the unitary representation
to act we shall diagonalize the momentum P* as well as the square of the
Pauli-Lubansky vector, W2:

P i) = ()P, 0) (2.249)

Labels will be chosen so that the states transform as unitary irreducible repre-
sentations of the little group:

W)k, a) = ZD )av|k, b) (2.250)
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The labels can then be chosen as —j < a = j3 < j, with 27 € Z

Following Wigner [?], we are going to choose a particular Wigner boost amongst
the whole set that maps mu into p, in some canonical way. This transformation
is named L.(p). Furthermore

-,

P, a) = U(Le(p))|(m,0), a) (2.251)

Where U(g) is the unitary representative of the group element g, and it is an
(as yet unknown) operator acting in the physical Hilbert space (usually a Fock
space). The extra labels on the left are by definition the same as on the right.

It is now the case that under an arbitrary Lorentz transformation, L,
U(L)|p,a) = U(LLe(p))|(m,0),a) (2.252)

Clearly,
LL:(p) = L(9)W(L,p) (2.253)

where the vector ¢ is such that
q=Lp (2.254)

It follows that

U(L)|p,a) = U (Le(9) U (W(L,p)) |(m,0),a) = Y U(Le(a))Day (W (L, ) |(m, 0), b) =

Z Dab (W(Lap)) |Lp7 b>

b
e Massless
The fiducial null momentum will be chosen as
k=(1,0,0,1) (2.256)

Let us begin by considering an abelian subalgebra isomorphic to the two-dimensional
translation algebra:

T(Q) = (Tl = Kl — JQ,TQ = K2 + J1> (2257)

The finite translations will be denoted by Aj 2(a;2). A long time ago, Wigner showed
that by adding J;3 to the above subalgebra, one obtained the algebra of the little
group of a massless particle, which was isomorphic to the algebra of the euclidean
two-dimensional group, E(2) = I50(2):
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the semidirect sum of the translations T4, (A = 1, 2) and the rotations R(f) generated
by Js € SO(2). A simple calculation shows that

R(0)A1(a)R™(0) = A; (aycos 0 + aysin )

R(0)As(a) R71(0) = Ay (—aysin 6 + ascos 6) (2.259)
This means that given eigenstates of the translations, i.e.
Tipl)) = araly) (2.260)
the state
U (R(0)) [¥) (2.261)

is another eigenstate with eigenvalues (ajcos 8 + assin @, —aysin 6 + ascos ). The
only way to avoid this degeneracy (unobserved in the physical world) is to postulate
that

Tialt) =0 (2.262)

Physical states are then characterized by the eigenvalue of J3, which is the helicity
(the projection of the angular momentum in the direction of the motion)

Jslip) = hlv) (2.263)

The helicity has got to satisfy
et =1 (2.264)

States with oposite helicity are related by parity.

2.6.6 dS(4)

Another way of represent the four-dimensional de Sitter group is as follows. Let us
split the generators into four boosts and six rotations:

Mor = Ky
M, (2.265)
where the five-dimensional spatial indices run from I, .J,... = 1,2,3,4. Next define,
for the four-dimensional spatial indices ¢, j,... =1,2,3
Mi; = €L
My = N; (2.266)
The commutators read
(K4, K;] = —iN;
(K, K| = —i€;ji Ly,
(K4, L;]) =0
(K4, Ni| = —iP;
(K, Lj] = i€ Ky,
(K, Nj| =16, K4 (2.267)

— 40 —



as well as
[LZ', LJ] = iGijkLk
[Nz Nj] = ieijkLk
[Li, Nj] = t€ijiNy, (2.268)
so that if we define
JEF=L;+ N; (2.269)

there are two commuting SO(3) algebras:

¢ J

[Ji_’ Jj_] == ZEUka_
i, T =0 (2.270)

(Of course this is a simple consequence of the isomorphism SO(4) ~ SO(3) x SO(3),
and the fact that SO(4) is a subgroup of the de Sitter group).

It is plain to verify that the little group of a null vector is now the euclidean
three-dimensional group E(3), generated by the six elements

[L;, L] = i€, Ly,

13,1731 =0

[Li, Tj] = i€iuTh (2.271)
where

=K+ N, (2272)

and the group that takes a null vector into a multiple of itself is none other than
SIM (3), where the Lie algebra is augmented with the new generator K, and

(K4, Th) = —iT; (2.273)

2.6.7 AdS(4)

Let us call 2° and 2 the two times, so that the metric n = diag (1, -1, —1,—1,1).
We shall define the hamiltonian as the hermitian operator

because it reduces to the minkowskian hamiltonian in an Inoni-Wigner contraction.
We shall also consider the six ladder operators

MZ* = My; +iMy; (2.275)
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that obey (M;")" = M; as well as

[H, M) = +M;
[Mz‘iv M]i] =0
(M, M| =2 (Hdi; — iM;;) (2.276)

It is obvious that they raise and lower the energy of the states.

Together with M;;, that generate SO(3), H (that generates SO(2)) constitute
the maximal compact subgroup, SO(3) x SO(2).

On the other hand, the Casimir reads:

1 1
Cy = =g MY Map = —H* =%+ % (M7 M} = —H (H — (n— 1)=J%+Y MM
(2.277)
h
whnere , 1 .
S = S MYM (2.278)

Let us asume that there is a lowest weight state, in the representation, that is

H|E0,S> = E0|E0,8>
J?|Ey, s) = s(s +1)|Ep, s)
M[|E0,3> =0 (2.279)

Then, on this representation and in four dimensions the Casimir reads (it can be
computed on the lowest weight state)

Cg = —Eo (Eo — 3) — 8(8 + 1) (2280)

This value is constant on all states of a given representation.
Several bounds can be easily extracted, following [91]

e When s > 1 there is in general a state with £ = Ey+ 1 but j = s — 1. Then

CQ = <E0 + 1,8 — 1‘02’E0 +1s — 1> =
—(Eo+1)(Ey—2)—s(s—1)+ Z M |Ey+ 1,5 — 1)]* = —Eo(Ey — 3) — s(s + 1)

This implies that
Ey>s+1 (2.281)

In the limiting case, |M; |Ey+1, s—1) = 0, so that |Ey+1, s—1) is itself a ground
state, which decouples along with its descendants. This is interpreted as due to
a gauge symmetry, corresponding to a massless multiplet. The corresponding
casimir is

Coy=—-2(s"—1) (2.282)

— 492 —



e Let us now consider a state with j = s and some unknown energy E. The
casimir reads

—Cy = Eg(Eg—3)+s(s—1) = E(E—3)+s(s—1) = > |[M;|E,s)|* (2.283)

e For s = 0 the first excited state with s = 0 has got £ = Ey + 2, because
0®l=1land 1®1=260, yielding 4Ey — 2 > 0.

e The limiting case Ey = 1/2 is the famous Dirac’ s singleton, with only one state
for a given value of the spin, and casimir —Cy = —5/4

e For s = 1/2, the first excited state with s = 1/2 has £ = Ey + 1, because
1/2@1=3/2@1/2, yielding By — 1 > 0.

e The limiting case, Ey = 1 is again a singleton, also with —Cy = —5/4

2.6.8 Oscillators

This useful technique yields all unitary irreducible representations in a simple man-
ner. The only drawback is that it cannot be worked out for arbitrary dimension. Each
case has its own specific characteristics. We shall do it here for the four dimensional
case.

We shall assume , following [91] a certain number,p, of mutually commuting
pairs of bosonic creation and annihilation operators, transforming as doublets under
the compact subgroup SO(2) x SO(3) C SO(3,2), (a;i(r),b'(r)), r = 1...p, and i
is the doublet index for SU(2) ~ SO(3). There is another annihilation operator ¢;
when we need an odd number os oscillators. The total number of oscillators will then
be n=2p or n=2p+1. In this paragraph the number of spacetime dimensions is four,

so that no confusion should arise. We define ' = a;, b = b, ¢ = ¢, and a dot
product as a'.a; = > F_ a'(r)a;(r). The basic Commutatlon relations are:
[GZ(T>, a]( )] = 5j5rs
[bl(r)ab]( )} - 5]67"3
c;, ] = 6! (2.284)
Then the four operators
) ) ) 1,. . ) . ) 1 ..
Uj =a'.a; +b;.b" + 3 (cj+¢jc’) = a'.aj + by.b' + ey + 55; =
. . . 1 ..
aZ.CL]’ + bj.bl + CjCl - 5(5; =
a'.a;+bb;+c'e;+ 6 (2.285)
obey (U;)+ = U/ as well as
UL, Uf] = okuj — ;U (2.286)
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and

Q= %U} = % (N +n) (2.287)
as well as
[Q7 Ulk] - 0
Qa) = 5
Q. a;] = —%ai (2.288)

This means that they are generators of SU(2), (which we would like to identify
with M;;). Here N is the total oscillator level corresponding to the a oscillators, the
b oscillators, and, in its case, to the c oscillators. (We will eventually identify ) with
H).

To be specific,

1 1
T1 = 5 (U21 + U12> = §tTO'1U
] 1
Ty=—5 (U3 = UP) = 5trooU
1 1
=5 (U = U3) = SirosU (2.289)
obey the SU(2) algebra
T3, T;] = ieijuTh (2.290)
and, besides,
Q.1 =0 (2.201)
Le us now construct the buiding blocks for M*:
S = (S;)T =d WV +alb+ (2.292)
It is a fact that
Q. 57] = 5
Q. Sij] = — Sy

Sij, Skl] - [Sij7 Skl] - O

[
[
[
1S9, Su) = 6,U} + 6;UL + 61U} + 61U

(2.293)
We can then identify
1
M+ = 3 Sab
1 2./2 ab
1
Mf = ——i§,,S™
SRR
1
M = 55 (—on) S“ (2.294)
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and correspondingly

2¢/2
1
My, = —— (—id™) S,
575 (7i0%) Sa
1
My = —= (=0{") Sa (2.295)
2V2
which obey

In order to construct a representation, we start with a vacuum state such that

The simplest possibility is just to take the Fock vacuum

1) = |0) (2.208)

But it is also possible to take

1Q) = a’(ry)a? (ra)b" (r3)b (14) . . . |0) (2.299)

as long as they do not include a pair a’(r)0’(r) + a’(r)b(r), (which are the building
blocks out of which the operators S;; are constructed).
Let us examine the simplest cases in detail:

e n=1. One oscillator only.

+ +
+cg e+l + .
Then Q = G822 — MdNotl 559 S, = ¢ ¢l. Besides

2 2 J ] )

1
T] = 5 (C;—CQ + Cy Cl)
i
T, = —3 (c¢fer — 5 )
1
T3 = 3 (cfar — cf o) (2.300)
and the Casimir
T = 1 (N1 4+ Na) (N1 + No + 2) (2.301)

There are two possibilities for the vacuum state.

e |Q) = |0) This corresponds to Q@ = % and s = 0.

The states are of the type
cicf|o) (2.302)

with 72 = 2 (j=1) etc. In general there will be an even number of creation
operators. This is then the s = 0 singleton representation.
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e |Q) = ¢]0) This corresponds to @ = 1 and T2 = 3/4, so that s=1/2. This is

the s = 1/2 singleton.

e n=2 (p=1) Two oscillators

In this case,

1
T1 = 5 ((ZTCLQ + a;al + b;er + b;bl)
1
TQ = —5 ( i_ag — CL;CLl + bi_bg - b;bl)
1
T3 = 5 ( fal — a;ag + bfbl — b;bg)

and the Casimir

(2.303)

L1
T? = — ((N{' + Ng) (Nf + N§ 4 2) + (Ny + N3) (N} + Nj 4 2)) +

4

1 1
3 (N} — Ny) (N} — N3) + 3 (af asb3 by + af ar b by)

The are, again, several possibillities for the vacuum:

representation .

representation.
e |Q) = (af)™|0) This has @ =m/2+ 1 and s = m/2.
o |Q) = (afby —ajbf)|0) This has Q =2, and

(N7 + W) [0) = (N3 + I3) 1) = |2)
(N — N3) [©2) = =)
(afagb;bl + a;albfbg) |Q> = —|Q>

(2.304)

|€2) =10). This has @) = 1 and s = 0, and corresponds to the massless s = 0

|©2) = a|0) This has got Q = 3/2 and s = 1/2, and yields the massless s = 1/2

(2.305)

ao that altogether, T2 = 0. This is then the second massless s = 0 representa-

tion.

e Finally n > 3 More than two oscillators

More than two oscillators yield massive representations.
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2.7 oc-models

Let us consider the two-dimensional sigma-model with target space C’jfv. The action
is given by:

S =

Tro / V Iy 0. X 0 X" g (X) (2.306)

The beta function of the coupling is

N2
By = ' Ry + %Rmmfzgﬂv +0((a)?) (2.307)
and using
n—1
R, = il—zgw
1
Rypo = :l:l_g (GupGvo = GupGvo) (2.308)
they reduce to
n—1 n—1
B = 0" =gy + (')’ 9w+ O((e')?) (2.309)

This means that de Sitter space is one loop asymptotically free whereas anti de
Sitter is not.
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3. The linear regime. Fierz-Pauli and beyond.

3.1 The unitarity road to consistent lagrangians

Let us start with the well-known analysis which leads eventually to the Fierz-Pauli
lagrangian for a free massless spin two particle (cf. [87],[69]). A simple road is as
follows: the quadratic part of the lagrangian is the inverse of the propagator, and
the propagator is related to the possible polarizations. There are five of those in the

massive spin two case, which can be represented as eﬁu A=1...5 with

A _ A
€ = Cup

k“eﬁy =0

nWe;‘V =0 (3.1)

We can expand the momentum space  propagator in terms of the basic tensors k*

and the off-shell transverse projection operator 77311 =N — k,i# as

Dyre = eﬁyefa = 017751,77:{0 + cgnl:fyk)\ka + k:uk,,nfa
A
3 (aTee T Mhootlon) + Cal(kukonly + kukan, +

kjukang)\ + kl/k.Ango' + CBkukuk)\kJ (32)

Imposing off-shell transversality and tracelessness we get uniquely

3
Dywsa = e il = 300t + ) (3.3
Acting on conserved currents, we can drop the superscript 7.
In order to find the lagrangian, we have to compute the propagator by impos-
ing transversality on shell only. Otherwise there are unwanted degeneracies. This

amounts to change the projector in (3.3) 7}, for a quantity 1/ 7% = n,, — k;;];” , which

behaves as a projector on shell only:

2 2
108, 4, M —k
M K =k, —

2 2
TOS, jv __ m”—k
77,w 77” _3+ m2
k’2 _ 2

0% (705 = 0% Tk (3.4)

"Both position and momentum space notation will be used for convenience. Although most
formulas will be written in arbitrary dimension, most of the polarization reasoning is implicitly
four-dimensional.
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What remains is

3
Dy, = (nffsnfaos = 5 + nffsnffs)) (3.5)

The lagrangian is then found by computing the inverse.

1
(Km>uuaﬂ(Dm)aﬁ A = 5(%»771/5 + NusTw) (3.6)

The conventional normalization corresponds to

4 1
1 = T3 (3.7)
and yields
. ]{72 _ m2
(K )w/pa = T(nupnl/a + NuoMvp — Qnuunpa)
1
_g(k;#k;pnw + kykonup + kukonup + kukonue — 2k,k0n0 — 2kpkonw)  (3.8)

which corresponds to the Fierz-Pauli lagrangian

1 1 1 1 2
Lrp = Z—lauh”pa“h,,p—Eauh”"ﬁ”hup#—iauh@”hw—é—lauha"h—m?(haﬁhaﬁ—ff) (3.9)
where h = n*h,,,.
It follows that
kYK h?7 = —2m? (kP hy,, — k,h) (3.10)
so that necessarily,
k*h = kykyh*” (3.11)
The trace gives:
K, b7 = —2(1 — n)m’h (3.12)
which in turn implies that
h = k,k,h*" =0 (3.13)
and using (7.43),
Eth,, =0 (3.14)
so that the field obeys the Klein-Gordon equation
(D + mQ)h/w =0 (315)

It can be shown ([?]) that this particular mass term is the only one which is
compatible with unitarity.
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3.2 The massless limit.

The massless limit is singular. Three polarizations can be written as
kuu, + kyuy, (3.16)
with k.u = 0. Namely, in an obvious notation, (e = 0,, etc)

kE®k
k®eq teq®k
k®eg +eq @k (3.17)

The remaining two are

€1 =€) ®e@p) +ep) ®eq)
€2 = €(1) ® €(1) — €(2) & €(2)
(3.18)

and under the little group, they transform into the other three (cf.[?]).

This means that exactly the same type of reasoning that gives rise to the abelian
gauge invariance yields the unimodular theory of Einstein, which is invariant under
area preserving diffs only:

5h/u/ = au&/ + ayfu (319)

with
0,6" =0 (3.20)
Once we implement this symmetry (with or without the unimodularity condition

(3.20)), then there is a gauge in which the massless Fierz-Pauli propagator is defined
up to a constant as:

D%U = co(Mupve + NuoMvp — Nuw o) (3.21)
And then, it is a simple matter to show that, acting on conserved currents,

DGF — pDm _'_ﬂ

uvpo uvpo 2 nMVT]pO'

(3.22)

which means that there is an extra admixture of spin s = 0 in the massless case.
The conventional normalization corresponds to

4
2= 15 (3.23)
and yields
ar _ K
K/wpa = _<77,upn1/cr + NuoMvp — npynpo) (324)

8
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This corresponds to the massless Fierz-Pauli lagrangian with the harmonic gauge
condition

1 1
Lap = 5(Ouhy " = 5auh)2 (3.25)

that is 1 1
Lo = Z(aﬂhagf - g(auh)2 (3.26)

3.3 Unimodular lagrangians

If we implement the restricted gauge symmetry only, a simpler lagrangian exists:
1 2 1 appf
Lu — Z(auhaﬁ) - éﬁﬂha/g@ h“ (327)

although the full Fierz-Pauli lagrangian Lgp is obviously still invariant under the
restricted symmetry. This is exactly the same thing that would have been gotten by
putting A = 0 in the Fierz-Pauli lagrangian, that is

kQ
(Ku)WPU = g(n,upnw + nuonvp) +
1
_g(kukpnua + kpkun;w + kakun,up + kcrk,unup> (3‘28)

Let us now construct a massive unimodular theory. In order to do that, we
postulate the most general mass term, say

2
QR b — rh?) (3.29)
where 7 is an arbitrary constant (which for the full Fierz-Pauli theory happens to
take the value r = 2). The posited full kinetic operator is then

m k* —m?
(Ku )WPU = T(nupnw + nuanup) +
m? 1
r?nuunpo‘ - g(k,ukpnua + kpkun;w + kokun,up + kgku”l/p) (330)

The corresponding equation of motion is:

k2 m?2 2 1
(K ) = 4 = P + %hn/w - Z(kukphv ’+ kykohy”) (3.31)

Computing again the transverse part of the equation of motion:
L2 — 2 2

m m 1
(K,Z”.h)w, = Th“l/ + Tghnw, — L—l(k;#kphl,p + kl,k:ph#p) (3.32)

21.2

KPR (K™ b = —(K2 + m2)k kg h? + 1 h = 0 (3.33)

— 5l —



and the trace:
DY (K™ e b = (K2 — m? + grm2)h — 2 pkigh?” =0 (3.34)

This two conditions enforce
h = k,ksh*" =0 (3.35)

as long as r > 0. Even when r = 0 they do enforce full transversality, although
tracelessness is then only guaranteed off shell

(k> =m*)h =0 (3.36)

The conclusion of this analysis is that the unimodular theory becomes massive with
a mass term of the Fierz-Pauli type.

3.4 Propagators

Logically, our attention should now turn to a discussion of the unimodular massive
propagator. The fact is that, for the minimal model (3.27), supplemented by a mass
term such as the one in [3.29], there is no propagator, because this lagrangian is
singular. This is perhaps somewhat of a surprise, because there is no known gauge
symmetry when the mass is nonvanishing, but it is nevertheless true. Actually, the
situation is as follows: there is a particular mode, proportional to

2 k,k
(1)po = (R +m = 1) mpe — (k2 4 m® = rom?) =15 (3.37)
such that
(K30 v (3.38)
is transverse, i.e.
(K3 )k =0 (3.39)

Although this is not a zero mode sensu stricto, it is enough to make the lagrangian
singular. The situation is somewhat strange. Nevertheless, we already know, because
of the argument of the polarizations at the beginning of the present section, that the
correct lagrangian for massive spin 2 is the Fierz-Pauli one, (3.9). On the other hand,
we know that the model (3.27 3.29) is the minimal one which can be extended to
exactly the Fierz-Pauli one while keeping only the restricted gauge symmetry in the
massless case.

While it would be interesting to further study the minimal theory, we shall
therefore confine our attention from now on to the Fierz-Pauli lagrangian.

Let us begin our discussion with the most general Lorentz invariant local la-

grangian for a free massless symmetric tensor field £,

L=C'+8L +a™ b, (3.40)
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where we have introduced

1
L' =7 0. oth

vps

1
,CII - —5 6Mh’“’auh;7
1 1
EIII = 5 8uhaphup7 £IV = _Z aﬂha“h (341)

The first term is strictly needed for the propagation of spin two particles, and we
give it the conventional normalization. Before proceeding to the dynamical analy-
sis, which will be done in Subsection 2.4, it will be useful to consider the possible
symmetries of (3.40) according to the values of (3, a and b.

3.5 Intermediate states

Let us consider (cf. for example, [?]) the free energy in the presence of arbitrary
conserved sources. This quantity is an exceedingly useful one to consider, because in
summarizes in a very simple way the physical content of the theory. We shall assume
two spatially disconnected sources: Thg = (T1)apd® (T — F1) + (12)apd®(T — Ty),
with

0a(T1)™ = 0,(T5)* =0 (3.42)
Keeping only the term bilinear in the sources, assumed to act for a total time interval
[ dx® =T, one easily gets:

2 1 Tz
W = —gT/dng(?m(xy)Elg (343)
+m

Starting with the massive Fierz-Pauli theory, the answer stemming from (3.5) is
E12 = (t?" TltT' T2 — 3tr T1T2> (344)

In the massless case, the Fierz-Pauli interacion energy in the harmonic gauge is
proportional instead to

1

Eip = 5 (2trTV Ty — (tr T1)(tr T)) (3.45)

Even forgetting about the coefficients, there is a mismatch of 3/2 in the term tr 71 T5;
this is the famous van Dam-Veltman discontinuity ([?]), which indicates that there

1s some sort of non smoothness in the massless limit.
In full ® detail:

1 1
By = ST+ T+ TP+ 1) + SN (00 + I - T2 - T3°) +

1 1
STRIE — T+ T2~ T) 4 ST - T - TP 4 T +

2 (TI2TL2 + TTY + TETE — TOTY — TOTYR — TOTYE)  (3.48)

8t The resulting expression can be further simplified using current conservation:

700 _ Fpo3 _ ’LQT33
w w?

70 = L (3.46)
w
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In order to identify possible off-shell intermediate states in the massless Fierz-
Pauli theory, it is useful to transform the expression (3.48) (that is, before using
current conservation) into the suggestive form proposed by Dicus and Willenbrock

7L
Ba= H(Tl = TR)T - 17) + 211+

(TP + TPTS — TV — TYPTS?) «

D~ NN

2T = T%) + T + TP)A(T3° = T5°) + 1, + 157

IR+ T TR 4 TP 4 T+ 1 4 15

=

(3.49)

This can be easily checked: in order for the coefficient of 77 in (3.49) to be the same
as the one in (3.48) we have to add a term TP°T53, and also if we want the coefficient
of T3 in (3.49) to be the same as in (3.48) we have to add another term TP3T5°.
But in order for the coefficients of T to match, we have to add —2T3T93, which
exactly cancel owing to the conservation of the energy momentum tensor.

This expansion can be spelled down physically as follows. Let us introduce a
real basis of polarizations in the generic case as

€3 = €(0) ® €(0) — €(1) ¥ €()
€4 = €(0) @ e(1) + (1) @ €(o)
€5 = €(0) @ €e(2) + €(2) @ €(0) (350)

Then the second line of (3.49) is proportional to:
T1" (2€4 + €5) (264 + €5) po T3 (3.51)

and the third one to
T{" (€2 + 2e3) (€2 + 2¢3) oo T3 (3.52)

whereas the last one is a spin zero contribution

T (e1 4+ €2 +e3)(€er + €+ €3) 0 T5° (3.53)

getting

1
Bro= (T = TE)(Tf — 1) 4 217

m2 m2
+os (T + T 42— (TP T, + TP TST)
w w
1 4 2
+5 T3 (ZTg?’ - %(Tgl + T222)> (3.47)

This clearly shows that in the massless limit only the two polarizations in (3.18) contribute (cf.
[?][?]) to this physical observable.
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which obviously does not correspond to spin two, but is nevertheless neccessary to
cancel the contribution of the unphysical polarizations in the massless case. So that
not only are off-shell spin zero components allowed by the theory as intermediate
states, but as has been pointed out by Dicus and Willenbrok, they are actually
neccessary for consistency. The appearance of these components was first pointed
out in [?].

Coming back to our main theme, a natural question is how can we experimen-
tally discriminate between both theories? There is an easy answer, namely that
graviton scattering amplitudes are expected to be different in detail. But unfortu-
nately, graviton scattering data do not abound.

A most interesting, and perhaps feasible experiment would be to weigh the vac-
uum energy, i.e. Casimir energy. Indeed, under the restricted variations in (77)
which we have labelled d'g,,,, the vacuum energy does not affect ? the equations of
motion.

A related point is the following. Granting that the two Einstein theories are in-
deed different at the quantum level, the most important physical question is whether
this improves or otherwise reformulates in some way the problem of the cosmological
constant. Interesting suggestions in this direction have been made by [?] and [?],
although no compelling model exists yet.

3.6 TDiff and enhanced symmetries.

Under a general transformation of the fields h,, +— h,, + dh,, and up to total

2
derivatives, we have

oLt = —%5hWDh“”,
OL™ = 6hy,, 070" DY),
sl = —%(M@“@”hw o+ 0hyu 00 h),
oLl = %Mmh. (3.54)
It follows that the combination [6]
Lo=L"+L" (3.55)
is invariant under restricted gauge transformations
0hyu, = 200,50), (3.56)

with
0" = 0. (3.57)

9This point has been developed in discussions with Tomds Ortin.
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Since L1 and LTV are (separately) invariant under this symmetry, the most general
TDiff invariant Lagrangian has § = 1, and arbitrary coefficients a and b:

Lrpig = La+a L +b L™, (3.58)

An enhanced symmetry can be obtained by adjusting a and b appropriately. For
instance, a = b = 1 corresponds to the Fierz-Pauli Lagrangian [?], which is invariant
under full diffecomorphisms (Diff), where the condition (3.57) is dropped. In fact,
a one parameter family of Lagrangians can be obtained from the Fierz-Pauli one
through non-derivative field redefinitions,

hyw — By + A, (A# —1/n) (3.59)

where n is the space-time dimension and the condition A # —1/n is necessary for
the transformation to be invertible. Under this redefinition, the parameters in the
Lagrangian (3.58) change as

ar—a+Aan—2), b—b+2\nb—a—1)+\(n?>—n(2a+1)+2). (3.60)
Starting from a = b = 1, the new parameters are related by

1-2a+ (n—1)a?

’ -2

(3.61)

It follows that Lagrangians where this relation is satisfied are equivalent to Fierz-
Pauli, with the exception of the case a = 2/n, which cannot be reached from a = 1
with A # —1/n.

A second possibility is to enhance TDiff with an additional Weyl symmetry,

2
5h/u/ - Eqbnp,uv (362)

by which the action becomes independent of the trace. In the generic transverse
Lagrangian Lrpig[h,.| of Eq. (3.58), replace h,, with the traceless part

By = Ty = By — (h)0) 1y (3.63)

This is formally analogous to (3.59) with A = —1/n, but cannot be interpreted as
a field redefinition. As such, it would be singular, because the trace h cannot be
recovered from h,,,. The resulting Lagrangian

~

Lwritt[Ppw] = Lroige[Pw], (3.64)

is still invariant under TDiff [the replacement (3.63) does not change the coefficients
in front of the terms £! and £'f]. Moreover, it is invariant under (3.62), since h,,
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is. Using (3.60) with A = —1/n, we immediately find that this “WTDiff” symmetry
corresponds to Lagrangian parameters

2
a=_, (3.65)

This is the exceptional case mentioned at the end of the previous paragraph. Note
that the densitized metric g,, = gV "G R nu,,—i-ﬁw enjoys the property that g = 1.
This is the starting point for the non-linear generalization of the WTDiff invariant
theory, which is discussed in Subsection 2.5.

It is easy to show that Diff and WTDiff exhaust all possible enhancements of
TDiff for a Lagrangian of the form (3.40) (and that, in fact, these are its largest
possible gauge symmetry groups). Note first, that the variation of £! involves a
term OA*. For arbitrary h,,, this will only cancel against other terms in (3.54)
provided that the transformation is of the form

2
5h/w = 28(#61/) + #num (366)

for some £* and ¢. The vector can be decomposed as
§u =N+ O (3.67)
where 0,n* = 0. Using (3.54) we readily find

0L = m,(8 = 1)B(9h")
+ 26~ a)0h + (26— a — 1)D(@,0,0)

+

SIS

[(bn —a —1)Oh + (26 — na)0,0,h"]. (3.68)

TDiff corresponds to taking = 1, with arbitrary transverse n* and with ¢ = ¢ = 0.
This symmetry can be enhanced with nonvanishing ¢ and 1 satisfying the relation

n(a—1)0¢ = 2(2 — an)g, (3.69)
provided that
1—-2a+(n—1)a®
B (n—2)

Eq. (3.69) ensures the cancellation of the terms with 0,0,h*", and Eq. (3.70)
eliminates terms containing the trace h. Eq. (3.70) agrees with (3.61), and therefore

b

(3.70)

the Lagrangian with the enhanced symmetry is equivalent to Fierz-Pauli, unless
a = 2/n, which corresponds to WTDiff'?.

OTncidentally, it may be noted that for n = 2 both possibilities coincide, since in this case the
symmetry of the Fierz-Pauli Lagrangian is full diffeomorphisms plus Weyl transformations.
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3.7 Comparing Diff and WTDiff

Let us briefly consider the differences between the two enhanced symmetry groups.
A first question is whether the Fierz-Pauli theory Lpig is classically equivalent to
Lwrpi- Since Diff includes TDiff, we can use (3.64) to obtain

~

dSwrpis 1] o 0Spig[h] (5# v 1 )
= " :

(3.71)

~

6hp,1/ oh

o) = el
po

Hence, the WTDiff equations of motion are traceless

ISwrpig[h]
5huy N = 0.

In the WTDiff theory, the trace of h can be changed arbitrarily by a Weyl transfor-
mation, and we can always go to the gauge where h = 0. Likewise, in the familiar
Diff theory we can choose a gauge where h = 0. Then, h,, = iLW,, and the WTDiff
equations of motion (e.o.m.) are just the traceless part of the Fierz-Pauli e.o.m.
Differentiating Eq. (3.71) with respect to z# and using the Bianchi identity

0Spilh]\
ap( vl <o,

one easily finds that 0Swrpig|h]/dh,, = 0 implies

58Diﬂ[h] Npe = A.
0hpe
Hence, the trace of the Fierz-Pauli e.o.m. is also recovered from the WTDiff e.o.m.
(in the gauge h = 0), up to an arbitrary integration constant A which plays the role
of a cosmological constant'’ . Thus, the two theories are closely related, but they
are not quite the same.
Let us now consider the relation between the corresponding symmetry groups.
Acting infinitesimally on h,, they give

5Dh,uzx = Qa(uéu) = 2a(unu) + 8u3u¢ (372)
2
8V TP hy = 2007, + ~ M (3.73)
where d,n" = 0,n" = 0. In (3.72) we have decomposed &, = 1, + 0,4 into transverse

and longitudinal part. The intersection of Diff and WTDiff can be found by equating
(3.72) and (3.73)

B 2
28@77”) + aua,,w = 28@77,,) + E(b??w,. (3.74)

HHere we assume A = O(h).
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Taking the trace, we have
Oy = 26. (3.75)

The divergence of (3.74) now yields

n—1

O = 1) = ——00,:¢. (3.76)

Taking the divergence once more, we have
O¢ = 0. (3.77)

Taking the derivative of (3.76) with respect to v, symmetrizing with respect to p and
v, and using (3.74) and (3.75), we have (n — 2)0,0,0¢ = 0. For n # 2 this implies
0,0,0 =0, i.e.

¢ =b.x" +c,

where b, and c are constants. Hence, not every Weyl transformation belongs to Diff,
since only the ¢’s which are linear in x* qualify as such. Conversely, the subset of Diff
which can be expressed as Weyl transformations are the solutions of the conformal
Killing equation for the Minkowski metric [?],

1
0y = — (3.78)

where ¢ = 0’)55’3 (and, as shown above, ¢ has to be a linear function of z#). These
solutions generate the so called conformal group, which we may denote by CDiff. In
conclusion, the enhanced symmetry groups Diff and WTDiff are not subsets of each
other. Rather, their intersection is the set of TDiff plus CDiff.

3.8 Traceless Fierz-Pauli and WTDiff

e An alternative route to the WTDiff invariant theory is to try and construct a
Lagrangian which will yield the traceless part of Einstein’s equations.

It is clear, however, that we can only obtain traceless equations of motion from
a Lagrangian which is invariant under Weyl transformations. If the e.o.m. are
traceless, then 05 = 0 for variations of the form for 65, o 7,,. This symmetry
is not included in Diff, and therefore the traceless part of Einstein’s equations
cannot be recovered from this Lagrangian in every gauge. Rather, we should
look for a Lagrangian which will yield the traceless part of Einstein’s equations
in some gauge.

Let us consider the Diff e.o.m. in momentum space

0Spig|h .
0oull] _ pger,,,. (3.79)
0o
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where

8Dglljfpfm' _ k2 (nupnua + nuonup . 2nuunpa) o

(KPEP" + KV EOn! + EFEOn"P + kY EPnM — 2EME 0?7 — 2kPKTn) (3.80)
We can also define the traces

o Voo n—2
tr D]pDiff = nHVD]'LSif? = (kpka - anpU) 5

4
(n—1)(n—2)

k2. 81
. (3.81)

tr tr Dpig = UuuﬁpnggV -

The traceless part of the DAY
vVpo Vpo 1 g
8 (Dba)™ = (D7 — L0 Df ) =
n
2 up, Vo o,V n—2 v, po
READ"n™ + 0™ + 2| —— = 1) 20" | —
n
-2
(l{:“k”n”” + KYETnM? + EFETTP + KV EPnt — 2kF K0P 4 2 (_n — 1) k:”k:"n“”) :
n
cannot be derived from a Lagrangian for any dimension n # 2 as it is not sym-
metric in the indices (po) vs. (ur). Nevertheless, we can still define traceless
symmetric Lagrangians. One might think of substituting n*” in the previous

expression by tr Dj’;, and dividing by its trace. However, this would be non-
local.

e Some people [69] define
- wrpo vVpo 1 v loa
8 <DDiff> =38 <Dgi§ - mnl tr D]pDiff) =
E? (n"*n"® +nton?) — (kMK 4+ K KO0k + KFEOn"P 4+ K Rt — 2K K0P

e A very important property is the transverse character. Actually, we shall prove
that

1
D, (h) = 1 (k:2 (hyw — h) — (KukP b, + Kk hyy — Kk h — 1,k K ko) ) —
2k)\77uu)\ = 2(9)‘77/“,)\ (382)

The tensor 7 is not uniquely defined [69]. Let us simply show just one possibility
Wi = —0, K" (3.83)

where the superpotential is given by
1

Kuupa = 5 (n,uahyp + anB;LU - nupﬁua - nuahup) -

((MupTve = MopNuo) b+ Nuohup + MupPue — Muphue — Nuoliup)

N | —
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enjoys exactly the same set of symmetries as the Riemann tensor, and is defined
in terms of the convenient variable

=

- 1
Py = hy — §hnw, (3.84)
Indeed
1
kK ypo = 5 ( (Nupky — kunup) h+kuhyp+nypk"hug—nupk:"hw—k;l,hup> (3.85)
and

1
k‘”nﬁ‘ﬁ = k'K K po = 3 ( (/{:QUW — kuk,) b+ kuk by + Kok hye — 0,k K e — thW) =

—2D,h"? (3.86)

e For a local Lagrangian which is still invariant under TDiff, we must restrict to
deformations which correspond to changes in the parameters a and b in (3.40).
The most general symmetric Lagrangian with these properties is of the form

DI = DIs? " D — D, (387)

with D,, a symmetric operator at most quadratic in the momentum. Asking
that the result be traceless leads to:

M — %(tr DI (tr M) . (3.88)
which implies
tr M = %tr tr Dpig. (3.89)
Therefore
M — % (tr Dl — 5 -(ix DDiﬁc)n’“’) , (3.90)

and we can write

SDf]S/f;‘? = k2 (nﬂpnl/tf + nugnyﬂ) - (kﬂkﬁnuo + kykonup + kukanl/p + kl/kpn,ua)
2(n+2) 4
_—2/{2%1/77,00 + E(kukvnpa + kpkouw)- (3.91)
Moving back to the position space, this corresponds to the WTDiff Lagrangian,
ie. the case a = % and b = ”n—’ZQ in (3.58). As shown before, this yields the
traceless part of the Fierz-Pauli e.o.m. in the gauge h = 0.

A similar analysis could be done for the massive case. However, as we shall see in
the next section, the corresponding Lagrangian has a ghost.
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3.9 Dynamical analysis of the general massless Lagrangian.

The little group argument mentioned in the introduction indicates that the quantum
theory is not unitary unless the Lagrangian is invariant under TDiff. In fact, in
the absence of TDiff symmetry the Hamiltonian is unbounded below. This leads to
pathologies such as classical instabilities or the existence of ghosts.

To show this, as well as to analyze the physical degrees of freedom of the general
massless theory (3.40), it is very convenient to use the “cosmological” decomposition
in terms of scalars, vectors, and tensors under spatial rotations SO(3) (see e.g. [?]),

hop = A
hoi = 0;B +V;

where 0'F; = 0'V; = 0't;; = t: = 0. The point of this decomposition is that in the
linearized theory the scalars (A, B, v, E), vectors (V;, F;) and tensors (t;;) decouple
from each other. Also, we can easily identify the physical degrees of freedom without
having to fix a gauge (see Appendix A).

The tensors t;; only contribute to £/, and one readily finds

1 ..
(t)£ - —thmti]’ (393)

The vectors contribute both to £ and £/f. Working in Fourier space for the spatial
coordinates and after some straightforward algebra, we have
1 N2 1 N

L= ok (V’ - F> +508-1) </f2F’ + VZ) . (3.94)

For 3 = 1, corresponding to TDiff symmetry, there are no derivatives of V* in the

Lagrangian. Variation with respect to V? leads to the constraint V? — ¥ = (0, which
upon substitution in (??) shows that there is no vector dynamics.

Other values of 3 lead to pathologies. The Hamiltonian is given by

p +x*V)2 [y + (1 - 3)k*F)> (1 —-p)k'F?  K*V?

gy _ _
1t 22 21-5) 2 2

(3.95)

where the momenta are given by Iy = k2 (F — V) and ITy = (8 — 1) (fsz + V),
and we have suppressed the index 7 in the vectors F' and V. Because of the alternating
signs in Eq. (3.95), the Hamiltonian is not bounded below. Generically this leads to a
classical instability. The momenta satisfy the equations II r = k211 and HV = —Ilp.
These have the general oscillatory solution

||y 4+ 1 I = Cexpi(|k|t + ¢o),
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where C' and ¢ are real integration constants. On the other hand, V' and F' satisfy

—B
(-1
p
(6—1)
For 3 # 0 these are equations for forced oscillators. For large times, the homogeneous

solution becomes irrelevant and we have

. 6Ct
VA inlE ~ ((ﬁ— Dl

whose amplitude grows without bound, linearly with time. This classical instability

is not present for = 0. However, in this case F' and V decouple and we have

v 1 i 1 7
( );C,g:() = 5"12(6!‘}? )2 - 5(@‘/ )2,

V 4+ K2V =

Up, (3.96)

F+r’F =

. (3.97)

)eXPi(’“|t+¢o)a

so V; are ghosts.
Hence, the only case where the vector Lagrangian is not problematic is 8 = 1,
corresponding to invariance under TDiff. The scalar Lagrangian is then given by'?

S — i [ (0,A)* — 26%(0,B)* + N(0,20)? — 260,400 E + 1*(0,E)?]
— % [ (A + k*B)? B? — k2 + 2k*Eyp — kCE? + 2% B(¢) — HQE)]
+ g [ (A — Nop+ K2E)(A + K2B) — k2(A — Nop + 2 )(B—¢+/<;2E)]
— Z [0,(A — Ny + £2E)]*, (3.98)

where N = n — 1 is the dimension of space. It is easy to check that B is a Lagrange
multiplier, leading to the constraint

(N = 1)¢ = (a— 1), (3.99)

where h = A — N1 + x%E is the trace of the metric perturbation. Substituting this
back into the scalar action (3.98) we readily find

©) Lopig = —%(auh)% (3.100)
where
1—2a+(n—1)a®

n—2

Hence, the scalar sector contains a single physical degree of freedom, proportional to
the trace. Whether this scalar is a ghost or not is determined by the parameters a
and b. For b = (1—2a+(n—1)a*)/(n—2), corresponding to the enhanced symmetries
which we studied in the previous subsection, the scalar sector disappears completely,
and we are just left with the tensor modes.

Ab=b—

(3.101)

12The equivalent expression in terms of gauge invariant combinations is given in Appendix A.
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4. Conceptual issues in quantum gravity. The diffeomorphism
group

All theories of gravity we are going to be interested at are invariant under (a subgroup
of) the group of all diffeomorphisms of the spacetime manifold (perhaps keeping
invariant some boundary conditions).

We shall represent diffeomorphisms (diffs) without any loss of generality as a
local translation:

y=x+¢&) =Tz (4.1)
so that
dbr=y—x=¢(x) (4.2)
and the jacobian must enjoy a nonvanishing determinant
det (55 + 956%) # 0 (4.3)
The group law is mapping composition:
noé=x—w+&(x)+nlr+E(x)) (4.4)
The inverse diff
r=y+&(y) (4.5)
(this is just the definition of £7!(y)). In order to compute it, we start from
r+é(x)=y=2-§"(y) (4.6)
so that
EW+E'W) +ETW=T (W) &)+ (y) =0 (4.7)
as well as
(z) +E7 (z+&(x) =0 (4.8)

This means that, at least formally,
€70 (z) = ~THOE = ~E'+ L0 +6205 (€70,6)+ £ 0,0,E"+O(€") (49)

where we 13 define the differential operator that translates the argument of a function
as the corresponding Taylor series:

1
T =) —EM €Dy -, (4.12)
13This fact can be checked in the analytic case by expanding
=D E'a 0,1 2% (4.10)

and assuming all constant coefficients E# ,,. o, to be of the same order e. One finds by equating
the formal power series that

¢ = (=E* + ELE") + (—EY + EYEf + 2E%,E°) 2¥ + O(€?) (4.11)
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In spite of the name of translations, those operators do not commute in general:

(1), T(n)] =T (&n) + - (4.13)

By definition,

TG =T(E) = 1— (€% — €05 da + O(E?) (4.14)

This means that BCH formulas (confer [9]) are in principle not valid for these
generalized exponentials.
Acting now with a second diff

z=y+n(y) (4.15)

the composition of the two is still another diff:

z=x+&@)+n(r+E(x) =x+L=)+T(Enx) (4.16)
Clearly
2% = 2% 4 &%(x) + () + on e’ + O(€2) (4.17)
so that, to linear order
no&=mn+¢+(£.0)n (4.18)
and
,&] = £(&)n (4.19)

The group Dif f(M) is not locally compact for n > 1. We shall call large diffs those
that are not continuously connected to the identity. The set of all small diffs is
denoted as Dif fo(M)

The component group is the mapping class group (MMG).
MCG(M) = Dif f(M)/Dif fo(M) (4.20)
If we call Dif f1(M) the little group (stabilizer) of z, then
M ~ Dif f(M)/Dif fA(M) (4.21)

If the manifold is endowed with a measure, say m(M), than there is a natural sub-
group of Dif f(M), namely the subgroup of all diffs which preserve the given measure,
Diff(M,m).

The linear subgroup of Dif f(M) is GL(n) and the corresponding linear subgroup
of TDif f(M) is SL(n). General mathematical references are [85][54].
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4.1 Coordinates in Dif f(M)

Given a vector field, £(z), there is a one parameter subgroup of diffs generated by it,
i.e., More precisely, a one-parameter subgroup is defined by the system of ordinary
differential equations associated to the vector field £(x):

dz“
—— =& (2P(t 4.22
o = @) (4.22)
The integral curves are
= f*(t,z%) (4.23)
with initial conditions such that
% = f*(0,z%) (4.24)
Then the mapping
fiivo=a0 —a,=a (4.25)

is a local group of diffs.
Expanding in powers of ¢, it is easily discovered that

2 3
% = 2% + €% + %gﬂaﬁga + % (£905€70,£* + £°€71030,£%) + O(t*) (4.26)

Nevertheless it is well-known that there are in general diffs (even arbitrarily close
to the identity) that do not lie on one-parameter subgroups. An explicit example is
the C* diff in C

2o e Nzt aNt (4.27)

The statement is that this diff does not lie on a one-parameter subgroup of diffs
Et):C—C (4.28)

with £(0) = 1. The result is essentially contained in previous work by Sternberg [75].
Freifeld’s proof [40] consists in an explicit analysis of the expansion

[e.e]

§t,2,2)= ) ama(t)z"2" (4.29)

m,n=0

An even simpler example in the circle S*, put forward by Milnor [64] is

7 , s 1 —cos2N¥0
9—>9+N+esm2(l\f9):9+N+E#Eﬁw(9) (4.30)
with 0 < e < %, in such a way that
d
% =1+eNsin2NO # 0. (4.31)
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The claim is that there is no vector £ such that

f(0) = Exp() (4.32)
although there is a representation in terms of several exponentials:
f(0) = Exp(&)o...0 Exp(&) (4.33)

The proof of this statement is really simple. There is always a point with period 2n,
namely the origin 8 = 0. If we iterate fy; we get

0—7/n—2r/n—...2n)7/n (4.34)

On the other hand, no other point 0 < 6y < 7/n is congruent with its iterated image,
because, 01 = fi(6p) satisfies

O +m/n < b <2m/n (4.35)

and
O +m/n < by <2m/n (4.36)

and so on. Now Milnor shows that there is no f such that

fm = f © f (437)

This is stronger than we claimed, because if f; = Exp(v) then of course fy; =
Exp(v/2) o Exp(v/2). Noe a very simple diagrammatic analysis shows that if an
arbitrary function f has orbits of even period, say 2m then f o f gets two orbits of
half-period, m. If f has orbits of odd period, 2p + 1, then there is also an orbit of
f o f with the same odd period. The point is that this shows that the number of
orbits of even period for any function of the type f o f must be even.

Now we just saw that fj; has one orbit of period 2n, namely the one correspond-
ing to § = 0.

It is also curious no remark that there are unimodular diffs such that the gener-
ating vector is not transverse, i.e. in R?

xr — —e¥
y — xe ! (4.38)

and 0, = =2 —ze™V #£ 0.
The reason seems to be that it is not smoothly connected with the identity.
Even for diffs which are connected to the identity, the divergenceless condition
only holds to first order. Let us consider, for example,

z—e—1

Yy — ye_x 439
(
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Then
E=(e"—1—mzyle” —1)) (4.40)

and
0 =e"+e " —2=0+0(z? (4.41)
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4.2 Integration over Dif f}

We can in principle write
=&+ (4.42)

where

g= ¢ — 000

and

¢ =000,

It is plain that
9alr =0

This decomposition is unique to the extent that the inverse of the laplacian is unique.
This will need some boundary conditions in general.

Transverse diffeomorphisms for a subgroup, that leaves invariant the Lebesgue
measure on R".

Some geometric properties, in particular the sectional curvature of the subgroup
TDiff in the case of the torus have been considered by Arnold [9].

— 069 —



4.3 Observables in quantum gravity.

What is the meaning of background independence? Is is the same thing as to say that
quantum gravity is got to be a topological theory, such as Chern-Simons theories?

— 70 —



4.4 Fields

The active interpretation of a diff

y = f(x) (4.43)
leads to
(f o) (x) = ¢* () = ¢(y) (4.44)
This means that
¢t (x) = ¢ (x+ &(x) = T(&)o(x) (4.45)
Lagrangian densities in QFT are usually scalars. In the linear approximation,
56 = 0,0 (4.46)
A vector field obeys
(S V) () =V (2)Ou " (4.47)
and a one-form
(ffw)u(z) = wi(m) = wa(y)0, [ (4.48)
The metric transforms as a covariant tensor:
Of7 0f°
Goplx) = %w%a(y) (4.49)
and the determinant transform as
g*(x) = J(y/z)’g(y) (4.50)
where
af7 1
J(y/x) = det B J(z/y) (4.51)

The jacobian can be expanded:

J(x/y) = det (5f — OpE*) = oirlog(5-0hE") _
L= 08 5 ()~ 52,898+ OE) (4.52)

The subgroup of those diffs that enjoy unit determinant, * dubbed TDiff in a pre-
vious paper of ours, correspond to “transverse vectors”

D, =0 (4.53)

We shall reserve the name unimodular for exactly those diffs, and not for the ones
that leave the metric volume element invariant (cf. later on in this paper).

14This is called by Arnold, SDiff.
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Nevertheless it has already been remarked that there are in general (that is, in
more than one dimension) diffs (even arbitrarily close to the identity) that do not lie
on one-parameter subgroups.

When the manifold is endowed with a metric (which did not play any role until
now), its determinant is usually considered to transform (more on this later) as:

0g = —20,£% (4.54)

so that

6v/ 1916 = =0 (VIglo€") = =Y/l (6€°) (4.55)

which is the origin of the usual recipe to build diff- invariant actions: the lagrangian
1$ a scalar times the square root of the determinant of the metric tensor.

4.5 Fake gauge theories

It is well known (cf [38]) that any theory can be made gauge invariant by means of
a sort of group averaging.
Assume a lagrangian

L(p,00) (4.56)

which includes matter fields that transform under a certain representation of a group
G, ged

¢? = D(g)¢ (4.57)
Let us now perform a local transformation U(z) € G, so that the lagrangian reads
L({U(x)¢(x), 0a (U9)) (4.58)

Now
0.(Up) =0,Up+ U, =U (0, + U'0,U) ¢ =U (0, + AU) ¢ = UDogp  (4.59)
where we have introduced the “fake gauge field”
A, =U'9,U (4.60)
The resulting theory is obviously invariant under

U— UV ()

o — V(x)op (4.61)
which leaves the combination U¢ invariant. The transformation of the “fake” field
U is fixed by this requirement of redundancy. The original theory is then recovered

in the unitary gauge, U = 1.
The construct A, transforms as a true gauge field:

A, =V (A, +0,) V! (4.62)
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4.6 Fake Diff

It is also well known that any theory can be put in a covariant (diff invariant)
language.

For example, if we have a theory invariant under the subgroup of diffs with unit
determinant, namely, TDiff, such as

S = /d4x O(x) (4.63)
We can formally write the transformed lagrangian
L=T(V)d= %V‘“ VIO, 0y, D (4.64)
which is invariant under

d — T(n)d
T(V) —TV)T (n) (4.65)

This yields for the first few terms of the part linear in 7:
1
Kﬁﬂﬂ—m+VﬂW—§WVﬁmW+O®%) (4.66)

An amusing thing is that, contrasting with the compensator mechanism that was
proposed in [5], the equation of motion of the new field V* is

0S 1
:E — V2 V"0,0,,...0, P= 4.
SVa (n—l)!v V" 0aaz - - Oa ! (4.67)
which is verified by
® = constant (4.68)

whereas in the compensator mechanism the analogous equation did imply
d=0 (4.69)

All this is a bit formal. To be specific, let us write

sie.v)= [ dete Vi) = [durtamew = [ty e

(4.70)
where
y=x+V(x) (4.71)
Under a further diff,
z=y+E (4.72)
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S[®, V] = / 127 (y /) (2 /y)D(=) = / 2] (x)2)D(z) =

1
d* )
| s ety
so that the action is invariant if we define
Vo=V

In particular, if we demand that

1 1
d* Pe(x) = / d* )
/ et (05 + 9,V | <) ldet (0F + 0,V @)

led t
we are led to 1 1

—J
det (o + 0,V | ) e GF o, |

that is
|det (65 + 0,VE) | = J(y/x)|det (65 + 0,V*"]) |

whose linear part is

1+ 0,V = (14 0.£%) (14 95V7)

leading again to
Ve=V e
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(4.77)

(4.78)
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5. The effective field theory approach

Let us now summarize the things that can be learned from the bottom-up approach.
This is solid knowledge (with some caveats). What happens is that almost all the
important questions we hope to understand with quantum gravity, such as the reso-
lution of singularities etc, shy away from the region of applicability of the low energy
effective field theory approach. Nevertheless this seems to us the only ladder we can
step on to try and get a higher view of the complications of the subject.

The coupling constant of general relativity, s, has mass dimension [k] = —1.
The Planch mass is defined as 1
M, =— (5.1)
K

If we assume that the fundamental symmetry of gravity is Diff(M) invariance, then
according to the Wilsonian wisdom the most general lagrangian that includes gravi-
tation assuming that new physics appears at a scale A can be written as:

S = /d4x\/§ <60A4 + AR+ o R? + 2R4

A
V,.0V* ¢ + ¢y Rp? + 13 R2¢2 + Rﬂ”vuwygb + .. ) (5.2)

[\Dlr—t

where R" represents some trace of the n-th power of the background Riemann tensor,
and ¢, are dimensionless constants.
Now, experiment tells us that

A% = M? (5.3)

so that, barring very small or else very big values for the constant ¢y, this means
that
A~ M, (5.4)

which in turn make unavoidable the prediction that the cosmological constant should
be of order M;} unless ¢g is finely tuned to 60 decimal places or so.

The experimental fact that the value of the cosmological constant is instead of
the same order of magnitude as the Hubble constant

Aobs ~ Hy ~ 107°M, (5.5)

is probably an indication of some subtleties still to be understood in the Wilsonian
approach in the presence of gravity.

The contribution of an irrelevant operator of dimension N to a process with
characteristic energy scale F is then up to logs, of the order

(5
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Much effort has been devoted, for example, to analyze theories quadratic in the
curvature [?]. If one takes them seriously as fundamental theories, the graviton
propagator is quartic in the momenta, schematically

1
ey (5.7)
p
This generically improves the ultraviolet behavior (as a matter of fact, some of these
theories are renormalizable), but the have problems with unitarity, because the quar-

tic propagator can be written

I 1(1 1 ) 58)
RO MR MZ\K2 K2 — M2

where the residue of the pole of the second term has the wrong sign.
In the static limit this would predict a correction to the Newtonian potential of
the form

V(r) = —Gmum, (% - e_MpT%> (5.9)

7 M%, — 0, the Yukawa piece just has

support on the origin, and all we have the right to claim '° is that

Donoghue [24] claims that or low energies

V) = —Gmymy G + 05<3>(f)> (5.10)

(where C'is a constant which can be determined in a precise manner from the pa-
rameters of the low-energy effective lagrangian).

The effective field theory description is fine as long as the energy involved is much
smaller than the Planck mass. When this is not the case anymore, all operators in
the effective lagrangian are equally important, including the matter content. There
is no high energy limit in which gravity is decoupled from the other interactions.

The opposite point of view, namely that it makes sense to quantize just the
Einstein-Hilbert action, in isolation with the rest of interactions in the Universe,
which is the one held by the Loop Quantum Gravity community is at variance with
all this effective lagrangians experience. This is one of the strongest arguments for
studying supergravity and superstrings.

5.1 Vierbeins

Let us introduce tetrads (that is, orthonormal frames) following Weyl ([90])

5 The identity
lim e~ ¢ = 4me?ré® ()

e—0

is used to that effect.
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Juv = T]abea p,eb v (511)
Let us show, by working out in detail a two dimensional example, that not all

tetrads corresponding to a given metric are related by a Lorentz transformation. The
flat metric will be euclidean, i.e.,

6abea ueb v = Guv (512)
We shall first determine covariant components in terms of contravariant ones.

1 2
€1 6214‘6; 622:0

ez e +ep%e1n =0 (5.13)
This gives
€1 2
€21 = —— €2
€1
2
€2
€11 = —?eg (514)

Let us now impose

1 2
€1 €11 +€l €12 = 1

621621 -+ 622622 =1 (515)
leading to
€12 —6621
€22 = €€ !
€11 = 6622
€21 = —6€l2 (516)
where
el =(er'er? —ex'er?) (5.17)

which is exactly Eisenhart’s result, expressing in a very explicit way covariant com-
ponents in terms of contravariant ones.
Now we impose that

el = ge.” (5.18)

This leaves arbitrary the components e; ! and e; %, whereas:

621—

(9216;1 + 9226;2)

622:

A==

(gnell + 912€l2) (519)
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Finally, we still have to impose:

g1 = (611)2 + (621)2

g12 = €e11€12 + €21€22
gao = (e12)” + (e22)? (5.20)

Perhaps surprisingly, the three conditions above are fulfilled provided
2 2
gn (e1")” +2g10e1 'e1® + g (e2%)" = 1 (5.21)

which in turn is satisfied (provided gi; # 0) as long as

. —gae1 2 £ \/911 —e? (612>2
e ! = (5.22)
B g11

so that we can always choose e; 2 = 0, leading to

6;2 = O
1 1
€1 =

B V911

1 g21
€y = —

B gn
622 = V911
€21 = 0

e
Coy —

= V911

€11 = /911
g21
€12 = (523)

B V911
The general tetrad in its Lorentz orbit is

. coshx — sinhx g2
el =

B V911
e1” = simhxgn
. sinhx — cosh x g1

(& —=
: Vi
ey 2 = cosh x /911 (5.24)

Another possible choice in (5.22) is

) _ O
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In order for this solution to be in the orbit, it is necessary that
1
V9

sinhx =
Then

2 g11
€1 = — 912

S \/§
VItg—gn

V9911

ought to equal

1.e.
911922 = 1+ 9 — g

which can easily be shown to be false, for example, for a diagonal metric

(5.26)

(5.27)

(5.28)

(5.29)

Latin (which we will denote following B. Zumino as flat or Lorentz) indices

are raised and lowered using the Minkowski metric 74, whereas greek (curved or

Einstein) indices are raised and lowered using the spacetime metric g,g. The reason

is that if we define the inverse tetrad through
e JEFy =6y
then by multiplying with e,, = 14.€°,
Ep =gy = ey
Changing indices in (5.30) leads to:

GapCa Oéeb P = Nab

Tetrads are defined up to a local Lorentz transformation L € O(1,3):

(€)= L p(x)e" s
where the defining (fundamental) representation is such that
Neal® a($)Ld b<x) = Tab

This implies that
Lo L” = 6}

that is, defining a matrix L = (L)

(LT)—I _ n—an—l

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

For any field that transforms under any representation D (L) of the Lorentz group
( the tetrad in particular, that transforms as the vector representation, (1/2,1/2))

¢ — ¢ =D(L)¢
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a covariant derwative V,, = 0, + w,, can be defined such that
(Vuo) = D(L)V,9 (5.38)
This condition implies that the Lorentz (or spin) connection transforms as:
w, = Dyw, D' — 8,D Dy (5.39)
The spin conection thus defined is endowed with indices on the representation D:
wy = Wity =wi'D(Ty)" (5.40)

Where T, is a local basis of the Lie algebra of the Lorentz group where we label the six
generators of SO(1,3) by two antisymmetric four-dimensional indices: T% = —T%2,
In this basis the commutators read

(Ted, Tap) = NaaTer — iNacTap — MaTea + MevLda (5.41)
The linearized approximation corresponds to
D(L)", = 68", + il D(Ty)", (5.42)
This yields
(W) D(Tap)" v = D o D(Toy)** D" o — 8, D, . D" 4y =

Wi D(Tw)" v + il D(Teg)" wwit D(Tap)*™ + wid D(Top)"*il D(Tea) e
0,1 D(Ty)" (5.43)

which using the commutator algebra as well as the antisymmetry of [,, and wzb in
the Lorentz indices can be reduced to

Sw® = ()% — wzb = 4, "w? —i0),1" (5.44)

a
Jz Jz Jz

In the fundamental (vector) representation the finite form reads

{(z*) = L%z} = {a" = 2}, 1"} (5.45)
so that, in an obvious notation,

(Wab);L = Lacwﬁdea - a/,LLCLCLbC (546)

In terms of the one-forms
w® = witdat (5.47)

the transformation rule of the Lorentz connection reads

W =LwL™ ' —9§,LL™" (5.48)

— 80 —



Einstein and Lorentz indices convey different symmetries in general. In the particular

case when we demand that Lorentz and Einstein indices are fully equivalent, we are

assuming the tetrad postulate, namely that the doubly covariant derivative of the

tetrad vanishes
dye®  + (wy)” bebu — F;}ue“ Ay=0

(5.49)

This fully determines the Lorentz connection in terms of the Christoffel symbols:

(W) e = —el0,e” , + F,’}“ec Fet \
This connection is torsionless:
T=de+twNhe=0
The field strength (curvature tensor) is a two-form given by
F=dv+wAw

that is
Fab — dwab WA wb
c

It so happens that the Riemann-Christoffel tensor is given by

ab
R,ul/po = Fw/eapeba
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5.2 The background field technique

The usual definition of effective action is

— _log / D =Sl 7o (5.55)
We define ST
Ge = <¢>J = v (5-56)
6J(x)

(please remark that [¢.] = 1 because = 0™ (z — y)) and perform a Legendre

3J(y)
transform in order to reach the efective action

Moy = W) - [ Jo (5.57)
in such a way that
or
J= _5¢c (5.58)

which conveys the fact that the action is stationary in the absence of sources.
In the background field technique we define

Wg(J,$) = —log / D e S10+01-1 79 (5.59)

Following 't Hooft [78] (confer [1]) we only introduce sources for the quantum fields
Shifting integration variables in the functional integral, this means that

The classical field is now 5
B Wg 7

and the effective action
Pa(of.6) = Walh.) ~ [J62 =W~ [Jo~ [J6.~5)=T0)  (62)

To say it otherwise,
Lp(¢r,0) =T(¢c = ¢+ ¢7) (5.63)
or else,

F(¢c) = 1—‘B(qbc - an QB) (564)

That is that we are usually interested in

Tp(¢; =0,0) =T (b = 9) (5.65)



Let us write the scalar euclidean action as

5= / T2 50, (<0 +m?) 6+ V(6) (5.66)
In the one loop approximation,
wi) =3+ %log det 6%5(8) — % / J(625(¢)) " J (5.67)
and
r — gy %log det 525(3) + % / o7 (525(3)) " o7 (5.68)

The equation of motion for the background field is
(~0+m’+V'(9) =0 (5.69)
The one loop operator is given by
§25(¢) = =0+ m* + V"(¢) (5.70)

All this is to be compared with Weinberg’s formula ([89] Vol.II,p.68) for the ordinary
(not background) efective action:

e T = D e 5(0+9) (5.71)
1PI

Another important property of the effctive action is that the full quantum equations
of motion (Schwinger-Dyson) are equivalent to the classical (tree approximation) of
the equations of motion of the effective action, id est

0C(e)
3.

In the one-loop approximation, the effective action is then given by:

—0 (5.72)

TW(¢) = 5(¢) + %log det (—O+m*>+V"(¢)) (5.73)

Our purpose in life is to compute the effective action. The determinant can be

computed with the help of the zeta function, and this in turn in terms of the heat
kernel K (1) =e ™"

1d 1 OO
I'= ————/ dr 5 ttr /d"xK(7‘|x,x)
0

2dsT(s) (5:74)

s=0

The heat kernel itself can be obtained through the Barvinsky-Vilkovisky expansion
which, unlike the Schwinger-de Witt one, is uniform in proper time (confer the book
[65]). We start from the exact solution of the free case in flat space,
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d" 2 X 1 _@-u?_ o
27

m — —7(—=04m?) _ p —7(p?+m?)+ip(z—y) __ m2r
K" (1|x,y) = (z]e ( ly) = / (27r)”d7-6 P p(z—y) _ (47r)"/26
(5.75)
and make the ansatz
K = Ky+ KyQ (5.76)
The heat equation
d _
—K =—(—-0-m*—- M*K (5.77)
dr
(where
=V"(9)) (5.78)
eventually leads to
dQ) — 5
Koy— = —-M*K, (5.79)
dr
whose solution is .
Q(r) = — / dsK () 2Ky (s) (5.80)
0

This means that

K\(1) = —Ky(7) /0 ' dsKy ' (s)M?Ky(s) = — /0 ' dsKo(t — s)M*Ky(s)  (5.81)

Let us be explicit

Ky (1|z,y) /d" / dsKo(t — s|z, u) M?(u) Ko(s|u,y) =
/d”uMQ(u)lCl(ﬂx,y;u) = /d”kM2(k:)lC1(7'|x,y; k) (5.82)
with

mvmwz—/d%urwmwmmmwz
0

_/T ds dnp d"k e—(T—s)(p2+m2)+ip(:v—u)e—s(k2+m2)+ik(u—y) —
o (2m)" (2m)"

drp  d'k 1 — eT@ )

—7(p?+m?)+ip(z—u)+ik(u—y) 5.83
(2m)™ (2m)  p? — k2 ‘ (5.83)
This yields
d"k 1—67((k+q)2_k2) _r 2 2V iz i
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so that

/d”xlCl(T!l",iB; q) =/(§;§n<—

r)e T (g)

Only the constant zero mode of M? contributes to first order.

Putting all this together leads eventually to

- 1 d 1 o d"k
[(M?) = —= ——/ dr ° ' tr /—
2 dsT(s) Jo (2m)"

1 [ dk d 1 -T(s+1)
2/

1 [ dk d = -s
—= — M?*(q=0
2 / @) ds (k2 + mays @ =0)

1 [ dk -1
- M2(g=0)=0
2/(2@ iE g @=0)

3y ds T(3) (2 + myies 1 (4= 0)

(=7)e

s=0

—T(k2+m2)M2(q

~0)

where the last integral has been evaluated in dimensional regularization.

xhe recurrence relationship reads:

K, (1) = Koy(7) /OT dsK

As a matter of fact

logdet (—0 +m* 4+ M?) = trlog (-0 +m?) (1 + (-0 +m*)'M?) =

0 —1)ym+1
trlog (—0O+m?) +tr (=1

m
m=1

)—l

m

1. Tm

1---P2m

2..-P2m

(—O —i—mQ);yl = /(;i%e

_ d”p S
2 ipT N 12
M? _/(%)ne M

The nontrivial piece of the determinant is

— 85 —

C+ Z

o Z —1)m+ / / eipl(xl—:cz)eipzxz
m XT1...Zm Y P1..-P2m

C+ Z

d(p1 + P2m—1 — Pam)0(—p1 + p2 + p3) . ..

\ 72

p2

> EU (o) -

A

d(p2+pa+... +p2m)Mpz

ip(z—y)

M,

s=0

)m+1
(_D+m )m1$2M2( D+m )12$3M2 (_D+m )

72
Mg,

(5.85)

(5.86)

(5.87)

M =

T Tl

| 72

7"p2”m—1(iv'm,7-731) iP2m T1 P2m
. e € S, 5
Pam—1 +m

M2

P2m

P2m

1
p2+m2

D(m) (pg ..

p%—f—mQ'”

p2m)

p2m—1 +m?2

(5.89)

(5.88)



1 1
D™ (p, ... mz/ 5 me1—Dam )0 (—
(P2 P2m) S (P1+P2m—1—P2m )6 (—p1+p2+p3) Zrm P 2
(5.90)

There are m Dirac deltas, of which m — 1 are efficient in killing a momentum
integration. Given the fact that there were previously m of those, there is one
momentum integration left, that is, all those diagrams are one-loop ones.

The final expression for D™ is

dr 1 1 1

2m)rp2+m2 (p—p2)2+m? (P —pa—Dps— ... — Pan—2)? +m?
(5.91)

In d = 4 dimensions, the first two terms are divergent (although the term m = 1

is taken to be zero in dimensional regularization), and the rest are given by finite
integrals.
The effective potential corresponds to the coefficient to the zero mode,i.e.

M2 = (2m)" 6 (p) 31* (9) (5.92)
We have
D n M d"p 1 m_
eff_c+z o)™ ) /(271')" (p2+m2) _
d"p n 1
We have
D™ oy iy [ L\ _
eff_CJrZ )" M) /(27r)n (P2+m2) N
d"p " 1
C+ / W log <1 + (27) ]\/[2p2 n m2) (5.94)

This is similar to the formula by Iliopoulos et al [?]. At any rate, it is much easier
to use the zeta-function approach to get, in four dimensions:

(m?+ M(@)*)" ([, m®+ M(¢)’
(log 2 — 3/2)

Vigs = gm®d +V () + (5.95)

6472

If we follow Coleman and Weinberg and define the coupling constant in the massless
¢} theory as

_ Vs (9)
A= —=——= 5.96
rxra (5.96)
we get [18] 1 (;5 e ¢2
Vaip = 5m*6* + A + 5= (l 9075 - 25/6) (5.97)
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6. The (-function approach

Given an operator M such that

we define by analogy with Riemann’s (-function

Ca(s)=> n~* (6.2)
n=1
(which can be analytically continued so that

rl0) = —

dcg| 1
< = 2[0927r> (6.3)

s=0

the (-function associated with the operator M, namely,

() =D A" (6.4)

so that %
logdet M = — — 6.5
og de i . (6.5)
It is also useful to define the heat kernel operator
K(r)=e ™= "e™7(¢,)(¢n] (6.6)

n

in such a way that

tr K(1) = Z e T (6.7)

It is a fact of life that

[e.9]

1 /°° . B 1o
dr el K () = ST = ((s) = —/ dr vty /\/|g|d"1:K(a:,:c;7')
I'(s) Jo nZ:% I'(s) Jo
(6.8)
On the other hand, it is formally true at the operator level, that
0K
- MK 6.9
= *) (69
which is a heat equation of sorts. This can be written as
0K !
(:g—,x,T) = —/d”z (x|M|z) K(z,2',T) (6.10)
-
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The fact that at the operator level K (7 = 0) = 1 means that

For the Laplace operator in flat space, which is the starting point in all perturbative

n a 2
M ==>" (&Ci) +m? (6.12)

i=1

calculations,

We have introduced an arbitrary mass parameter, u, to make the eigenvalues dimen-
sionless. One finds

_n/2 _ H2(95—y)2 _'m2

K(x,y;7) = p" (dor) e 7 w27 (6.13)

This leads inmediatly to

o m? \"*7* L(s—n/2) m? \"*7 1
o=mv(ga) S () NIRRT

where

V= /dnx (6.15)

and we have assumed that n € 2Z. The corresponding derivative is then

dd(s) _ Vm» m? 1 1
— (47)" /2 —log — — — —_ -
ds (4r) (s—l)(s—2)...(s—n/2)( o9 W s—n/2 s—(n/2-1)
(6.16)
This means that for any even dimension,
llo det M = 1 dc(s) = (47?)_”/2m lo m_2 — {1+ ! +...+ L
9% T T27ds |, (n/2)! "% 12 2 T2
(6.17)
In n = 4 dimensions, in particular, this yields
1 Vm? m?
élog det M = 39, (log E 3/2) (6.18)
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Al desarrollar
W,‘j = AZ + AZ (6.19)

el tensor campo reza:

lf,fy — {?jfy + 8#1_43 — O, A% + Capo(ALAL + ASAY) + geae AL A =
F/jl/ + VMA?/ - VVAZ + gcabcAZAi (620)

con lo que teniendo en cuenta que la integral de una derivada covariante total se
anula, as1t como el uso de la féormula (??) para reducir (bajo la integral) el término

(VAo (VY AN, = (V,A)? — geaeFe AL AS (6.21)

prt

la accién de Yang Mills se puede escribir

1 =a — a — a c 2
S = —4—92 d4l' [F/U’ + VMAV — VVAIJ, + gcabcAZAu] =

[(Flo)* +2(V,uA)* = 2(V,AL)" +

4gcacha Ab Ai + QQ?MAgCabcAbMACV + gzcabccauvAZAzc/AuuAv V] (622)

p

Para calculos a un lazo es suficiente con considerar los términos de segundo orden en
las fluctuaciones cuanticas:

1 =a — a = ra c
S =g [ A [FL) 4 2AVuA)" = 29,40° + dgean FL LA (6.29)

Escogeremos como término que viola la simetr’r a (?77?)

1

Lgf = 2&

(V, AR = —F? (6.24)

a

de forma que
0F, 1

(5wb N g\/§

y el término adicional de los fantasmas reza:

V.V, (6.25)

Ly, = V" Vie, (6.26)

1

VoAl
Hasta orden un lazo, los resultados en CF se pueden expresar en términos de un
determinante que, sin embargo, es dif’1 cil de calcular en general (mds tarde hablare-
mos mas de este tema). La manera de trabajar con CF a mds de un lazo consiste
en completar el desarrollo de la accién, y calcular diagramas 1PI con patas externas
terminando en los CF.Una vez calculadas las funciones de Green para CF general,
se puede escoger un gauge para el CF, que no tiene por qué coincidir con el gauge
usado para la integracion sobre los campos cuanticos. De hecho este tltimo paso

— 89 —



solo es necesario para poder definir propagadores del CF, que a su vez se usan para
conectar los trozos 1PI, y constuir de esta manera las funciones de Green conexas,
que determinan la matriz S usando LSZ. Los detalles de estos calculos se pueden
encontrar en el curso de Abbott en Cracow en 1981 ([?]).

De esta forma el propagador gauge sera en términos del campo de fondo (CF),

AD = ) Ll 2
1% ¢ b[p2+i€ +(Oé )(p2+26)2] (6 7)

Y el propagador de los fantasmas:

Dy = i5abp2 T ic (6.28)
El vértice gauge/dos fantasmas serd
Veed = 9Cane(p + )" (6.29)
cuando el boson gauge sea de fondo, y
Veea = gCapep" (6.30)
cuando el bosén gauge sea cuantico.
El vértice a tres gluones cuanticos:
Vaaa = gCae[min(p = 1)u + 10a(r — @)y + M (g — D)1 (6.31)
Y a dos gluones cuanticos y uno de fondo
Vian = 9Cape[npuA(p — 1 — éq)y + (1 = @)+ (g — P+ ér)x] (6.32)

El vértice con dos fantasmas, un boson gauge de fondo y un boson gauge cuantico
es
‘/;CAA - _iQQCaceCedb’r/m/ (633)

Y si los dos bosones gauge son de fondo:

‘/;CAA = _iQQ[Cacecedb - Oadececb]nuu (634)
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Y finalmente el vértice a cuatro gluones cuanticos, o bien dos cuanticos y dos de
fondo (que son idénticos), sera:

Vaaan = =16 [CareCoeca(Murllvp — Moo
+Cadecebc(77;w77)\p - n,u)\nup>
+Cacecebd(77ul/77)\p - nupnl/)\)] (635)

Mientras que si dos de los bosones gauge son de fonde el resultado es:

1

Viiaa = —19°[CabeCoca(Muntvp — Muplor + amlﬂ?)\p)
+CadeCebe(Muvrp = Nurlup = émpmx)
+ClaceCeva(Muwnp — NupTion)] (6.36)
La accién efectiva CF sera:
Torp(A, < A>cp) = Weop(AA) — / J < A>cp (6.37)
donde Wor
<A>or=—5 (6.38)
y es en general diferente del campo de fondo, A.
e Fjercicio. Demostrar que
Zep(A,J) = Z(J)e 74 (6.39)

e Solucién. Basta con efectuar una traslacion de la variable de integracion en la
integral de camino.

e Demostrar también que

<A>cp=<A>-A (6.40)

Usando los resultados del ejercicio anterior se demustra la relacién basica
Cer(A, < A >cp) =T(A+ < A >cp) (6.41)

de donde se sigue una expresion para la accién efectiva ordeinaria en términos de la
accion efectiva CF:
FCF(A, <A >oF= 0) = F(A) (642)

La contribucién de los campos gauge se puede empaquetar de la forma (5.22)
con
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(Wﬂ)abpcr = _<Au(adj))abnpa (643)

de forma que
¢ = —2FY) (6.44)

y lo que llamabamos

F=—F,n (6.45)
Esto quiere decir que el contratérmino proveniente de los gampos gauge es

1 Co Coo—
(_4TG 1 2—2)ngng (6.46)

AL =

~ 8m2e
donde el factor —1 viene de la tr¢? y el factor 1/24 de la trF?. En total queda

1 o
AL=2L o (6.47)

6 872¢ prea

La contribuciéon de los fantasmas corresponde a campos complejos, con:

Y = Fld) (6.48)
de forma que
1 1 _
ALy, = — CoF2 FH 6.49
9h T 982 Gt (6.49)
te resultado implica que
1 1 11 Cq
= — 6.50
49%  4g% * 12 872 (6.:50)
o lo que es lo mismo,
110Gg%3
=gr(1— 6.51
95 = 9r( 487%€ ) (6:51)
Aparentemente
d 11Cq 4
= (gp— — 1ay = ——< 6.52
B=(9r o Jax 512 IR (6.52)

Sin embargo el valor exacto es exactamente la mitad, ya que la constante de Yang-
Mills

g~ pmI2 = (et (6.53)
de forma que
d du/
7" = 27’“f (6.54)
' 11C,
a
Bl9) = —g=9 (6.55)

— 92 —



Este resultado implica que los gluones se comportan como part”l culas libres a muy
cortas distancias. La contrapartida de este fenémeno es que a largas distancias,
en el 11 mite infrarrojo, la teor'1 a estd fuertemente acoplada, y se cree que los
estados asintéticos no son los que aparecen en el lagrangiano libre, sino estados
ligados de gluones, en combinaciones singletes frente al grupo gauge (que llamaremos
genéricamentegluebolas). Ninguno de estos estados tiene masa cero, ademds. Exiiste
una energ’,l a m'’1 nima necesaria para producir estas bolas.La teor’1 a es dif1 cil de
estudiar anal’1 ticamente en este régimen, al que de momento sélo se tiene acceso
mediante el estudio en el ret’1 culo.
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6.1 Efficient computation of determinants
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Como hemos visto repetidamente, el cdlculo de la accién efectiva a un lazo es
equivalente al computo de un determinante de un cierto operador. Exiisten maneras
eficientes de efectuar esos calculos, utilizando técnicas introducidas por Schwinger y
de Witt ([20]).

Consideremos la integral ordinaria

I\ = /0 AT i (6.56)

xz

Puede parecer a primera vista que la integral es independiente de A, ya que si hacemos
el cambio z = x\ desaparece toda dependencia expl’icita con . Esto es una ilusion,
sin embargo, ya que al ser la integral divergente en el 1’1 mite inferior tenemos que
definirla mediante un proceso 14 mite; por ejemplo

—1: —1: *dx —ixA
I\ = lli% I(e,\) = ir% E —¢ (6.57)
Ahora es facil de ver que
. 0I(e,N) 1
L s W (6.58)
Esto demuestra que
I(A) =—logA+C (6.59)

donde C' es una constante que resulta ser divergente.
Ahora bien, si tuviéramos un operador A diagonalizable con autovalores discre-
tos, {\,} entonces es claro que

logdet A = trlog A = Z log A\, (6.60)

El procedimiento matematico para definir el determinante de un operador consiste
casi siempre en efectuar continuacion anal’1 tica a partir de una situacion donde
el especto es de este estilo (por ejemplo, el espacio eucl’t deo con condiciones de
contorno periédicas).

Nos vemos entonces conducidos a la definicién

d .
logdet A = — / T pre=ita (6.61)
T
Fijémonos en el operador
K(t)=e ™ (6.62)

En la practica trabajaremos con una representacion definida por lo que vulgarmente
se conoce como ecuacion del calor (aunque es realmente una continuaciéon anal’i tica
de ella) y que supondremos definida en dimensién arbitraria, n:

(za%_ —A)K(x,y;7) =0 (6.63)
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ecuacion que resolveremos con la condicion inicial

y a cuya solucién llamaremos por abuso del lenguaje nicleo del calor. Los operadores
que vamos a considerar son todos de la forma (que es mucho més general de lo que
parece)

A=D'D,+Y (6.65)

con

D, =0,+ ¢, (6.66)
En el caso X =Y = 0 la solucién eXpl’,l cita de la ecuacion del calor es:

R
K()(.Z’,y;’?') = W«e ar (667)

donde el cuadrado de la distancia geodésica viene dado por:

o? = (z —y)? (6.68)
Como hemos visto anteriormente, las divergencias ultravioletas vienen dadas por el
Iy mite inferior de la integral, el cual a su vez estd dominado por el desarrollo de (la
parte diagonal del) nicleo del calor para tiempos pequenos, llamado de Schwinger-de
Witt
K(7) = Ko(r) Y ap(w, y)(ir)? (6.69)
p=0
donde por consistencia
ap(z,z) =1 (6.70)

Representaremos con mayusculas a la parte diagonal de los coeficientes integrada a
todo el espacio:

A, = /\/Ed"xan(x,x) (6.71)

donde g es el determinante de la métrica definida en el espacio. de forma que
Ay = vol (6.72)

Podemos entonces definir la integral del determinante de la siguiente manera:

dr , < dr i , o
IOg det A = — 7K(T) = —llmsﬂo/o‘ ?W pZO(Z’]‘)ptT&pe 4t (673)
es decir (1)
—1)PgP™™
logdet A = — Z Wtr a,'(n/2 — p) (6.74)
p
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en n = 4 dimensiones cuando p = 0 hay un término que diverge como ﬁ y €s pro-

porcional a ag y, por consiguiente, independiente del operador concreto que estemos

considerando, A; el siguiente término es independiente de o y viene dado cuando
n =4 — € por .
i

8m2e

ya que solo aparecen coeficientes pares en el desarrollo de Schwinger-de Witt. Todos

s (6.75)

los demas términos desaparecen al tomar el I’ mite cuando o — 0. Desde este punto
de vista, calcular el determinante es equivalente a determinar el coeficiente ay en el
desarrollo.

Para ello, procedamos iterativamente. Substituyendo el desarrollo de Schwinger-
de Witt en la ecuacién del calor, obtenemos al orden més bajo (771)

0.Dag =0 (6.76)

y genéricamente
o0.Dayi + Aay + (p+ 1)ap =0 (6.77)

Derivando la primera ecuacién covariantemente

D)\(O"MDMGO) =0 (6.78)
se deduce
[D,Lao] =0 (6.79)
donde
[A] = lim,_0A (6.80)

Derivando una segunda vez se obtiene

(DD, + D,D,)ap] =0 (6.81)
de donde
[D?a] = 0 (6.82)
y definiendo
W, =[Dy, D] (6.83)
se obtiene 1 1
[DuDyac] = 51D D]+ {DuD}ac] = S Wi (6.84)
donde también se ha utilizado el hecho de que
[ag] =1 (6.85)
Tomando p = 0 en (6.77)
—a) = ACLO +o0 — DCLl (686)
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lo cual inmediatamdente implica que

[a1] = —[Aag] = =Y
Por otra parte, tomando p = 1 en (6.77)

—2a9 = Aay + o0.Day

de donde 1

[az] = —5[Aai]
Es decir, que todo nuestro problema es calcular el segundo miembro.
derivamos otra vez la expresion correspondiente a p = 0:

—D,a1 = D,ag + Dyay + U’\DMD,\al

lo que implica

Ay = [D2ay] + [Vay] = —%[D2D2a0] vy %DQY

Ahora bien, derivando tres veces la expresién (6.76) se obtiene:

(6.87)

(6.88)

(6.89)

Para ello

(6.90)

(6.91)

(DsD,D,D,+ DsD,D,D,+ DsD,D,D, + D,D,D, Ds + s’\D(;DJDpD#D)\)aO] =0

Contrayendo con 7%7nPH
[(D2D2 + DMDQDH)GO] =0
Y contrayendo con n%n7H
[(D*D"D,D,)ag) =0
Ahora bien,

1 1
[(D?D*DyDg)ag] = [(D*D° D, Do + §WouDuDa)ao] - _§W2

es decir, que
1
[D2D2CL0] = §W2

y
1 1 1 1 1 1 1
= ——[Aa{] = =[D?*D? Y24+ -D)Y = —W?+ Y?+-D*Y
(o] = —5lAa] = GID"Dao] + 5V + & 2" T TG
de forma que
2 1

logdet A = - (im)?

1 1
/ d"gtr(S WP W, + 5Y?)
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(6.93)

(6.94)

(6.95)

(6.96)

(6.97)

(6.98)



(el término en D?Y desaparece al integrar siempre que no haya fronteras).

El calculo a un lazo que efectuamos diagraméaticamente en la seccién anterior se
reduce al calculo del determinante del operador que actiia sobre los campos gauge,
ademés del del operador que actiia sobre los fantasmas. El primero es (las constantes
multiplicativas son irrelevantes):

Agsuge;u/ = v26bcn/,w + 2ng,L;1/(ad) (699)
en tanto que el operador que actia sobre los fantasmas es:
Apant =V, 0" =V, N 50 (6.100)

(donde la igualdad es debida precisamente a la condicién gauge de fondo), y

Vaty = Oy + gAY (6.101)
Para el operador gauge tenemos Y = 2¢F, ,Eﬁdj ), en tanto que para el operador de los
fantasmas Y = 0. Para ambos, ¢ = gﬁfﬁ;,lf).

El resultado de utilizar la férmula (6.98) es

1 2205(G) 1
I = —— log det A% 1 log det A/ = LOFT FRY (6102
5 og det + log det D 167T2€/d OF;, F (6.102)

lo cual conduce de nuevo a ] 22045(G) 1
2
| 2205(G) 6.103
g 4872 g° | |
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6.2 The first estimate for the back-reaction

It is often said that the back reaction of quantum fields in a classical spacetime is
given by the effective equations

1 &rG
Rus — 3 Raas = "5 (0/T,5(6)0) (6.104)

The status of this has been somewhat clarified by Barvinsky and Nesterov [11].
Let us elaborate on it from a slightly different viewpoint. We shall start from the
partition function of the world,

Z(J,j) = / DyDipe oV =f J9=iv (6.105)
where ¢ is the gravitational field (forgetting indices for the time being) and ¢ repre-

sents the matter content.
The true equations of motion for the gravitational field are

0= /Dgpdjie—s(gnﬂ)—f Jg=i _ /DgDz/J <5_S - J(@) e S(@)— [ Jg—jy

dg(x) dg(x)
(6.106)
We now expand in Taylor series around a background such that
65(;;&/1) _ (6.107)
R
(it is plain that ¢ = 9(j)).
0S -
0= / DgD ( )+
gD 5902) (9. %)
[ om0 Db+ OW) = (@) ) ST (6108)
Y,z 59(5’7)5¢y5¢z
(The linear term is absent because
528 - 0j
— (g, )===0 6.109
sg@out) Y " g =Y (0109
The equation defining the matter propagator in presence of an arbitrary back-
ground is
/Kry(g) Gy:(9) = 62 (6.110)
y
where
Koyf9) = =5 (0.1) (6.111)
Ty g 5¢x5¢y g, .
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and, besides, at the one-loop approximation,

/Dwm e S(a) W—( ol /G ju/vG&)(g)jv)

=3 oy 2G5 @iy 4 O(2) (6.112)

On the other hand, let us define

o—Sers(9) = / Dipe=5) (6.113)

By expanding again in Taylor series,

Sto.) ~ [ 30 =5.0)+ 5 | Kealo. Gty +06) (6.114)
At one loop
Si})f(g,@@) = —%log det K (g.1) (6.115)

in such a way that

08G9 d) 1 6K(g) 1, 4 6°S(g)

=——tr K  —~=—trG 6.116
3g 2" 39 2 g0y (6.116)
The equations of motion in this approximation then stand as
8% i »
0= /Dg g b) + 08ss9) _ Jog(x) | €S0 =] uvg (6.117)
59046 5904,8

It is somewhat difficult to assess the physical domain of validity of the different
approximations made so far.
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6.3 The lowest order quantum corrections.

Let us consider the perturbative expansion around a background in more detail. For
an arbitrary function (of interest in the TDiff invariant setting), and denoting

gaﬁhaﬁ =h
G°%(h*)ap = tr h? (6.118)

5 (7 (gl Jgl + 7" (g lal?) 2* = 11" (al) tr ?)

(6.119)

f (gl = fgh) + £ (Igl) -lglh +
In particular,
1 1 1 1
Vigl =3 <1 +5rh+ 5/-@2 (Zh2 - 5}#%@5)) (6.120)

The Christoffel symbols expand in the following way:

(n)

r,=> k"T !, (6.121)
that is:
. M NG
Iy, =1,
p o 1 — o
Iy, =-hTy, + 59“ (—O0ahwp + Ovhap + Ophar)
@ 1 _
T, = —§h‘“(—8ehyp + Oyhey + Ophue) + (WAL, (6.122)

Higher order terms can be written in a background-covariant way:

(1) 1 B _ _
[ =5 (=" + Vohy + V1)
(2) 1 B -~ N
r,= —§h‘“(—VEhW + Vihep + Vohue) (6.123)

In particular,

O] 1_
L= §Vph

@) 1 _

L fp = —5h"Vohag (6.124)

In order to expand the Einstein-Hilbert lagrangian we need to consider first the
Ricci tensor:

Ry, = 9,17, — 8,10, + rgurgA — FQMF/;A (6.125)
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To first order in x we find:

To be specific,

o 1, - - - = -
Ruw= 2 (=VoVPhy + NV Vol + Y, Vb = VY ,h)

and the scalar of curvature,
o (1) L =S o S _
R: glw R'u,y + g HVRMV = vpV)\hp - vpvﬂh - h,LLVRHV

The Einstein-Hilbert action then reads to first order

:——/d% |g( (R+2X\) h— R“”h,w)

This term vanishes whenever the background equations of motion hold
_ 2\
R, =-
a n—2
The Ricci tensor to second order in x reads:
(2) C) ) @, @ o, W
Ruw=V, T 2 -V, T 24+T 2T °%=T )

v Pl Vi p

Guv

in gory detail,
@) 1o, = _ _
Ru= =5V " (=Yl + Vohay + Viha) —
1 _ _ _
§hpAVp (_v)\hyu + vyh)\p, + v,uh)\l/)
_ _ 1 .
+=V, bV by + —h’\GV,,VMhE,\ +

~ VA + Vol + V,h) Vah —

A~ =

—— (=Y 4 Vb + Vb)) (=VPhyx + Vb + VARD)

_ _ _ 1_ _
WAV N by — —v RPN, by, — 3V RPN R,

N | —
.—~ <]| .4>|»—/\ O | —

hPAV oV ahy, — —h”AV Vo hyy, — —h AW,V ko

7
+—Vyh*€VuheA + WV, Vb +

— N

_ _ 1_ _ 1_ _
—=V*h,, Vah + L—Lvyhgvm + Zv“hﬁwh

—

_ _ 1. _ 1._ _
VPV s+ SV VRS A TV Ry, VARG +

+=V, i VPhy — —v AV %hﬁ?mg

.-lkll—»lkh—wh

+=V,h)VPhy) — Zv#h;vyhf; — th;%hf;
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(6.129)
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which implies

@ 1o . e o e 1o o
7" Ru— EVPhPAVAh — §vphﬂ*v“hm - évph”’\V“hM

1 e = 1 e = 1o -
+§hpAV,,VAh - §hPAvpv#hM - §h”AVpV“hM
1o, e R
+§v“mfv,m5A + §fﬁfvuvuh6A +
1oy, = 1o, e 1o o
—~V*hVh + ZV“hﬁVAh + ZV“hﬁvAh

4

1oy, o 1o, - 1oy -
—kavahuA + ZvAhp,NW; + ZvAthAW +

o e o e 1o e
JFZV,JWV%M — vahﬁvl‘h’; — ZV,,hﬁVAhP“

o, e 1o e 1o =
+ZV“h2V’)hM — ZvuhQV“h;’ - Zvuh;vw“ (6.133)

The scalar of curvature to second order reads:
(2) (2) (1) (€] 2
R= QW R,ul/ + 9 " R/u/ + g IJVR;AV =
_ _ _ _ 3 _ _ 1.
VWA b — N ,hPAN 5hS + ZvymﬁvyheA — ZVAhVAh
1 - - 1 - - - 1_ _
+§haﬁvavgh + §haﬂv“vuhaﬁ — WV  VF R, — §VphA“V“h”A
1/]' v VAV AV VAR
—h* 5 (—V2h,w +V,V,h + VpV,,hZ — VZ,V,JL)
+ (W)™ Ry (6.134)

The full action to second order (taking into account the product of terms of order in
k (2,0),(0,2) and (1,1)) reads

1 U [ = (R+221 ., _ .
_2_52/613: |g|(R+2)\)|O(K3):—§/d xV\g\( 5 é_l(h — 20 hyp)

_ _ _ _ 3 _ _ 1. _
V, kAN \h — V ,hPAV sk + ZV,,hMV”heA - L—kahwh

S(2)

1 . se = 1 o see _ - 1o -

+§haﬁvav5h + 5hfwv“vuhaﬁ — h*PN VF R, — évphwww
1 _ - - _

—hs (=V2hu + V,V,hi + V,V, 0 =V, V,h)

+ (M) Ry +

h _ _ o _
3 (V, Vb =V, VPh — h“”RW)) (6.135)

Performing now the integrations by parts and substituting the background equations
of motion leads to:
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1 A
(2) _ _ = n — A 2 ) af
S 2/da: |g|<2(n_2) (h hhag)
le PAY le afy7p le KT PA len e
—5 Vol Vah = 2 Vuh N hag + 5V s VAR + VARV ) (6.136)

This action is sometimes referred to as the Fierz-Pauli action in an arbitrary back-
ground. Under an arbitrary variation

1 1 2\
) =—— [ d" g|= —— (hg"" — 2h"”
Ser == [ oIl (25 0~ 204

+VoVh g™ + YV, Voh + Vo Vo — VoV R — NV VAR — VOV 4 hg") 6hy, +
V. (= Vah®Sh — Sh**N oh — V*h*Shag + VWP hag + VR Sheg + VFhh)) =

1 0 _
—= / d"z+/|g| —S(Shw + V. (L"8hag) (6.137)
2 0Ny
Let us denote 59
= DM 6.138
i (6.138)
Particularizing to the gauge symmetry we get
6y =V, + V.6, (6.139)
1 — NUY (O W W o v W
35 =0= = [ o /lgl (D (V. + Vuby) + Vo (18 (Vus + V36a)) =
1 o _ _ _
-5 / d"z+/|g] (=26, V,.D") + V,, (2L"*°V 1&5 + 26, D™ (6.140)

As a consequence, there is the gauge identity
V,.D" =0 (6.141)
and the off-shell conservation of the Noether current
Jt = LFPV &5 + &, DM (6.142)

Let us make this explicit (we follow [69] here) in terms of the superpotential in the
particular case in which the parameter of the transformation is a background Killing
vector

V.6, + V.6, =0 (6.143)

In this particular case

Jt = ¢,D" (6.144)
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and we want to show that
JF =V, K" (6.145)

where K" = (0. To be specific,
K = ?5K“’Wﬂfy — K“ﬁ"o‘?[ﬁ&,] (6.146)
in terms of the background superpotential
1 _ _ _ _
KHevB = 3 (g“ﬂh”a + g’ h — g P — ga[’h“”) (6.147)

To begin with, we shall write, following the classic work by Abbott and Deser,

Dy =X+ Y (6.148)
where
AN - AN - _ _
2 = g+ (Vo9 = V0 o =~ + Ry + By =
2\ - _
P + Rupwoh™ (6.149)

(the background equations (BEM) R,,, = —-22.7,,, have been used in the last step).
Le us now compute

_ 1 _ _ _ _
Ryapo Ky, o7 = ) (Rmﬁ#haﬁ Rughy” = Ryapoh® — Ryghy, ﬁ) =

_ _ 2\ -

Ruapuh™® + P = =2X (6.150)

where BEM have been used again.
We are left with

2V, = — (V,V* = V*V,) by + Vo Vh® g, + Vu Voh + Vo Voh,, —
VaVoh® = VoV ,uh, * = VoV, hgu, =

~V,. Vi + VaVsh* g, + VYV, Voh + VoV, — VoV b, © = VoVahgu
(6.151)

Let us now compute
_ 1, _ _ _ _
V VKb = 3 (Vo VFRY + VNV gh*? — N Vgh*P g — N V*h*+
VoVehg' — V'VHh) = =Y (6.152)
We can now write

Y6, = VK6, = Vo (VE"6,) = VKMV, =
Vo (VaKrBe, — KM 46 ) 4 KHPI0T V46, (6.153)
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Now we use the Ricci identity for Killing vectors
vavﬂgy - _gARﬁua)\
as well as the fact, easily checked by an explicit computation, that

HBvla — lKWw

2

to get
—YME, = Vo (VgKM0¢, — KM 4¢,)) + XME,

This finally shows that

Kha — vﬁKﬂaVﬁé‘y _ K‘u[ﬂy]avﬁ&/
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(6.155)

(6.156)

(6.157)



6.4 Reliable low energy results in quantum gravity

It is clear that whenever there is a divergence, there is loss of predictivity, and the
corresponding coefficient in the effective lagrangian is an arbitrary constant to be
determined by experiment. Finite nonlocal contributions can sometimes, however be
interpreted as genuine predictions of the low-energy theory. Let us briefly point out
some of those.

e The only non vanishing tree contribution to the graviton-graviton scattering
in an helicity basis (neglecting the cosmological constant) has been already
computed by deWitt [?] is

AO (44 4) = s s (6.158)
’ tu MZtu
in terms of the usual Mandelstam variables
s=(;m +p2)2
t=(p1—ps)°
u= (p1 —pa)’ (6.159)

The one-loop contribution has been determined by Dunbar-Norridge [28].

1 24+ t2 +u?

AWM ) —
() = i

1
AW (44 42) = =AY (45— )

?(x=2)r

(L (men b o) 31,
5 <l09 (—u) log (—s) N log (—t)log (—s) N log (—t) log (_S)>)(6.160)

SU tu st

where the dimensionless function is given by

F (_z g) _ (t+2u) (2t +u) (2t4 + 2630 — t2u? + 2tu® + 2u?) (10923 N 7T2> N
Uu

s’s s
(t — u) (341t* + 1609t3u + 2566t%u? + 1609tu® + 341ut) ¢
log— +
3085 U
1922t% 4+ 9143t3u + 14622t2u2 + 9143tu® + 1922u* (6.161)
180s4 ‘

There are several things remarkable about this result.
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First of all it does not depend of the coefficients of the quadratic terms in
the curvature in the effective action. This is due to the combination of the
background equations of motion, which are

R, =0 (6.162)

with the fact that in four dimensions, the Euler characteristic is given by

1 1 1
X =153 / Vgld*z (532 — 2R, R" + 5R,WRWW) (6.163)

which forces the term in Riemann squared also to vanish on shell.

The other thing is that it is divergent. This is to be interpreted as an infrared
divergence, and on general grounds it is to be expected that this divergence
is cancelled against the radiation of soft gravitons off external graviton lines
(bremsstrahlung diagrams ). This expectation has been confirmed in an ex-
plicit calculation by Donoghue and Torma [26]. They found an explicitly finite
expression for the differential cross section

do s° m S ; —tl —u tu —t —u
_— Y — _— oqg—_>0g—— _— _— —
00 ’5)127?275%2]\4;)1 167r2M5 g S g s 252 s’ s

t -t  u, —-u 2 S 2771'773‘«7:(1)(%3')
“log— + —log— log (2 log—
(S 09— + Slog— > (3 og (2m)" + v+ %973 + S 0 FO ()

The objects F are defined implicitly by the integral

2 1.2 .2
4 — (cos7yi; — cos ajcos aj)” — 3sin” a;sin’ a;

]:(0)(7)+T”}—(1)(7)+... = /dQn_l

(1 —cosa;) (1 — cosay)

(6.164)
Here ~;; is the angle between the n — 1 dimensional momenta of the hard
gravitons; «; is the angle between the ith hard and the soft gravitons; and 7,
is +1(—1) for incoming (outgoing) hard gravitons. Finally, A << /s is an

infrared cutoff.

It is remarkable that such a universal result exists in low energy quantum
gravity.

Quantum corrections to the gravitational potential. There are several ways
to define in a precise way the concept of gravitational potential. Twasaki [52]
does this through an analysis of the bound state potential. Other possibility
is to define it directly from the scattering amplitude [24]. At any rate there
are both classical (id est, not involving h) contributions, that go like % and 7%,
and come from the tree diagram (the dominant contribution) as well as from a
piece of the triangle diagrams, and from another piece of the vertex correction;
and fully quantum corrections, that go like 1/r°.
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Figure 4: The set of diagrams contributing to the quantum corrections to the newtonian
potential.

The full result coming from the sum of the non-analytic contributions of all
diagrams in the picture is claimed by Bjerrum-Bohr and Donoghue [24] to be

V(T) _ _Gm1m2 (1 n 3G(m1 —l—mg) 41 Gh)

T r 107TF

(6.165)

There are some possible ambiguities coming from the freedom in defining the
radial coordinate, and even the metric itself (confer [56][14]). It is however
remarkable that the result as quoted does not depend on any of the coefficients
of the terms higher in curvature in the low energy expansion and as such can
be considered as a genuine low energy prediction of quantum gravity.
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7. Transverse gravity: a case study

7.1 Classical equivalence of TDiff and scalar-tensor theories

The simple model with TDiff symmetry considered in [5], i.e.,

1

leads to the following equations of motion

1 2K
R,uzz - §guuR = ﬁa,u(bau(b

8, (9"0,¢) = 0. (7.2)

It can be seen taking the covariant derivative of Einstein’s equations and using the
contracted Bianchi identity (as well as the e.o.m. of the scalar) that in order to
achieve consistency the Lagrangian has to be a constant

9" 0,00,0 = A
9,A =0 (7.3)

The action may also be written with the help of a Lagrange multiplier A(x) as [?]

1 m n _n(n-2) y . n(n-2)
s:_zg/dxﬂm+/ﬁx¢mfa q" m@¢—/dxAQ@X ; _Q

(7.4)

If we postulate that g,, transforms as a true metric and x and A as scalars, then

all the violation of Diff invariance has been transfered to the very last term. The
equation of motion of the multiplier forces

g=x"""? (7.5)

which of course reflects the lack of Diff invariance. The scalar and Einstein’s e.o.m.
read now

o, (\/EXJMQ—?) g“yamﬁ) _

n(n—2)
2

1 1
<(a#¢av¢ - égwgaﬁaaﬁbaﬁﬁb) + 59#1“/67)6)
while variation with respect to the auxiliary field x gives

A = g""0,00,0¢. (7.7)

Substitution into Einstein’s equation along with the constraint (7.5) reproduces Ein-
stein’s equations in the previous form. Notice that also in this case the condition
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Ly = A = const. follows from consistency with the Bianchi identity. One could
think that this result is particular of the case without kinetic energy term for the
auxiliary field. This corresponds to taking the Einstein-Hilbert Lagrangian in the
gravity part. If instead we had started from a Lagrangian with an arbitrary func-
tion of the determinant of the metric in front of the curvature scalar we would have
arrived to

1
where the matter part is

n(n—2)

DGO 9] — X 2 A

(7.9)
Suppose for a moment that Ly, = 0, the multiplier continues to force (7.5) and

" n—1)(n—-2) ., _n(n=2)

varying the action with respect to the auxiliary field gives

(n - 1) v 1 v n _nmn-2)42
@ 9" 0ux0ux + (n —1)0, Fg’* Oux ) —5x = A=0 (7.10)
while Einstein’s equations take the form
1 n—1)(n—2 n—1)(n-2) , a(n—2)
Ruu_§guyR - /€2 |:( >)<(2 >a,uXauX - g,ul/< 2);2 )g Baaxaﬁx + Juwv X 2
(7.11)
Once again the Bianchi identity of the left hand side forces the consistency condition
1 5SM 1 n(n—=2)
0=VH{— ==-x 2z 0,A 7.12
( 7 59‘“’) 5X (7.12)

where we have used the equation of motion (7.10). A basic difference with the
previous case is that now there is not a direct way to relate the constant A with
the matter Lagrangian, instead it is related to the matter and the auxiliary fields
through (7.10). Although we haven’t considered a Lagrangian for matter, it is easy to
convice oneself that nothing should change as long as L, is a scalar. In fact a general
argument can be given for A to be a constant [?]. Let us perform Diffeomorphism
on the matter action, i.e., a change of coordinates in the active sense, keeping the
volume element d"x unchanged. Since by hypothesis Sy, is a scalar

/d” {(5SM SN SN 5SM59W] _

55 00+ 50X+ oA+ 2

_ /d”x\/_ (vv (\}_?jﬁ”) +x A)f (7.13)

from which one reproduces (7.12) under the assumption that the fields verify their
16

0=05v =

equations of motion

6Verificar los calculos, hay algtin problema con la normalizacién y el signo.
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It is in some sense natural to suspect of the hypothesis that our fields are scalars
under general TDiff, since we have started from an action which is not. In fact, this
assumption is inconsistent with the equation of motion of the multiplier (7.5). We
can make all the reasonings automatically consistent using compensators [5]. Let
C(z) be a field (scalar density) such that the combination

g(x)C*(x) (7.14)

is invariant under an arbitrary diffeomorphism. Starting from a metric g,, one can
define another metric

C % =g 7 C gy (7.15)
whose determinant is g = 1. Under TDiff, g,, is a tensor and g a scalar. Therefore,
the most general TDiff action takes the form

1
S=-53 / d"wx? (g, do] R [Gu] + / "L (g, Py Guv] (7.16)

where ¢, denotes a general collection of fields which may have some weight ¢
under an arbitrary Diff (not transverse). If one now performs such a Diff, the previous
action takes the form

1
3 [ @00 (900,07 R [, F |+ [ daCTL [0 0,07 g0
(7.17)
which is invariant by construction. We may go to the Einstein frame
_ 42,
g/u/ = Xn—QC "g;w
j= 0202 (7.18)

This last constraint is implemented through a Lagrange multipler A. Finally the
action reads

S = —2%2 / d"z\/GR + Sy + / " ANC
—1 -2

2x?

F70X0X + X T IL X, uC ", Gun] — X T AN

We have eliminated the combination gC? in favor of y. Notice that this action is
perfectly Diff invariant, so in principle there are no consistency problems. We recover
the usual form of the action in the, so to say, unitary gauge C' = 1. It is clear that
if all ¢ are true scalars, the e.o.m. of the compensator forces the Lagrange multipler
to vanish. In case the matter fields have some weight, there could be terms like for

example

1 — v —w —Ww

59" 0u(0uC7)0,(0.C7) (7.19)
But redefining ¢ = ¢,C ™ we see that the e.o.m. for the compensator remains the

same.
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7.2 Abelian gauge invariance: transverse Fierz-Pauli symmetry.

A sometimes confusing issue is the following. The Fierz-Pauli (FP) symmetry is not
exactly the linearization of full diffeomorphism invariance, which would have been

Shep = 0a&s + Do + E Ophag (7.20)

insofar as the last term is absent. This issue is clearly explained in page 80 of Ortin’s
book [69].

Indeed, gauge fixing with the full FP symmetry is trivial, and e.g. harmonic
gauge can be imposed:

W, = Phy, — %@Lh =0 (7.21)
through a gauge fixing
Ly = B'w, + %B”BM (7.22)
The ghost lagrangian is ,
Ly, =v0Oc, (7.23)

and the BRST transformations can be taken simply as:

Shag = aan + 8gca

sB, =0
sb, = —B,
sc, =0 (7.24)

Were we to implement the transverse part of the symmetry (TFP) only, the param-
eters are not arbitrary but rather

Dul® = 0 (7.25)

This complicates matters in several ways. First of all, we cannot reach the full
harmonic gauge. The best we can do is to impose, for example, the spatial piece, i.e.

or even better, 7 the three independent conditions:

D™ =0 (7.29)

17 Another possibility would be to impose as a gauge condition the self-dual part of dw.i.e. .
w;'ﬁ = P(jﬁ Moww =0 (7.27)

where the projector on the space of self-dual forms, is given by

1

Pyt = 5 (94— ieas ™) (7.28)

This cuts in half the number of independent components, so that it amounts to three independent
conditions only.
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where
W = O (hry — O,hay) (7.30)
Another interesting possibility would be to gauge fix three dimension four scalars.
The problem is that there are only two whose variation is not a total derivative,
namely,
@) = 0,hag0"h”
Dy = 0, hapd™ b’ (7.31)
Independent ghosts are defined through
=0, (7.32)

where we have indicated as a subscript the ghost number. The antighosts will be
treated momentarily
Those objects are transverse:

9pc? = Qb =0 (7.33)

owing to the fact that the two-index ghosts are assumed to be completely antisym-
metric (ghostly forms).
There is the apparent complication that the ghostly forms are only defined mod-
ulo total differentials:
e 0Pyl (7.34)
(this is indeed the correct counting: 6 — (4 — 1) = 3).
The gauge fixing is then

Ly = B9 we, + %Bg (7.35)

The corresponding ghost lagrangian is

Lgp = —ba0%c” (7.36)

which has got the drawback of being of fourth order in derivatives, which is irrelevant
nevertheless, because it is independent of the gauge fields. '® The corresponding
BRST transformations are:

shap = 0a0"c) 3 + 050" cy,,

sB, =0
sb, = —B,
scp, =0 (7.40)

BWere we to impose the self-dual form as a gauge condition, then the gauge fixing piece of the
lagrangian can be taken as

Loy = B*wt, + S B2 7.37

af = Wop t 5 Pap (7.37)

where the fields B, represent the three components of a selfdual form; and the ghost lagrangian
reads
Lgn = blg PP 0 (94c, — 0,cp) (7.38)
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7.3 The non-abelian case

Let us now use the convenient language of differential forms, indicating sometimes
its degree by a subscript (this is trivially related to the ghost number):

c=c = c,dat (7.41)

with the constraint (please refer to the Appendix for our notation on differential
forms)

dc; =0 (7.42)
so that there is locally a ghostly two-form ¢y such that
C1 = 502 (743)

This means that
dsc; =0 (7.44)

Indeed, given that acting on the metric

59as = £(C)gap = Orgap + JapOsc" + g5, 0ac" (7.45)
nilpotency needs
sc; = —%5(0 A c) (7.46)
that is
sct = 0y (") = Ao (7.47)

which means that ghosts act geometrically as scalars from the BRST viewpoint!?. It
is clear that (assuming [s, ] = 0)

1
% = —556 (a1 Ney) = —55 (sc1 ANep — e ANsep) =

1
Z(S (5(01/\01)/\01 —Cl/\5(01/\01)) =0 (749)

It is more or less unavoidable also here that this piece of the lagrangian is of third order in derivatives.
The BRST transformations are then

shag = aaa“c}w + (%8“0}1“1

sB,, =0
sb:,, =-B,,
sch, =0 (7.39)

19Please note that owing to the odd Grassmann parity of the ghosts,

cAc#0 (7.48)
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Consistency of equations (7.43) and (7.46) demands
1
s0cy = 05cy = —55 (cNec) (7.50)

that is,
1
sy = —5¢ Nc—dcs (7.51)

This three form c3 cannot be trivial, because using nilpotency again, this time on
the ghost itself,

1
s’y =0=s (—50 A c) — sdcs (7.52)
whereas 1 1
s(ene) = —55(0/\6) Ac+§c/\5(cAc) =—0(cAchc) (7.53)
conveying the fact that
1
Sc3 = éc/\c/\c— 0cy (7.54)
Once more, using nilpotency, and the fact that
3
s(c/\c/\c):—ﬁ(c/\c/\c/\c) (7.55)
yields
3
s’c3 =0 = —55(0/\0/\0/\0) — 50¢y (7.56)
ao that, finally
3
sc4:§c/\c/\c/\c (7.57)

and s? = 0 because there are no forms of dgree five in four dimensions.

So we need altogether 11 independent ghosts: 6 grassmann odd, ghost number
one ¢y, plus 4 Grasmann even, ghost number two c3 plus one Grassmann odd, ghost
number three, c4.

For the antighosts the story is even simpler.We define the corresponding forms:

and
SbQ = B2
sBy =0 (7.59)

The antighosts b are Grassmann odd, and enjoy ghost number —1, whereas B is
Grassmann even and has vanishing ghost number.

This analysis coincides basically with the one performed earlier by Dragon and
Kreuzer [29][57], which however employ a non covariant, less convenient language.
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7.4 Gauge Fixing

The gauge fixing fermion has got to be a Lorentz scalar of ghost number —1. We
can define the most general operator composed out of fields with zero ghost number:

— [0%:10 %) a30g 304 506
HO¢10¢2 - Aala20/30¢4h + BOZ1042043044B + Ca1a20630<40<5066h h + e (760)

That is, the most general polynomial in the fields B and h. The most general
composite operator with ghost number —1 is of the form:

Ga1a2 = Ka1a2043044ba3a4 + ‘[(0410/20130140(5046baé?)oulboz?)oul0(3[50[6 + o (761)
so that the gauge fixing fermion is given by
v=qG,H 0" (7.62)

where the indices are raised and lowered with Minkowski’s metric. The contribution
to the lagrangian is

sV = (Koé1a2a3a4Ba3a4 + .. ) Ha1a2_Ga1a2 (Aa1a2a3a4 (vagv)\coul)\ + Va4v)\0a3)\) + ...

(7.63)
7.5 Setup
Starting from a TDiff pure gravity term
1 3 a

we can go to the Einstein frame through a conformal change of the metric (under
the assumption a # 1)

G = X199
X2 = g2 (7.65)

In this new frame the action takes the form
1 _
Sy =5 /d”x VG R+ 5, + S (7.66)

where S, is a kinetic term for the scalar

L e [ g
= g3 16(an — 1) " /g 729 190,9
1 ey
— 5z (1= D =2) [ 0 VG 507000 (7.67)
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and we have introduced a Lagrange multipler A to fix the determinant of the metric
_2(an—1)

1o ,
SA:Q—HQ/dxA[\/gX ] (7.68)

Notice that formal Diff invariance is only broken by this last term. If we now include
a matter term

Sur = / &'z g L (g 6] (7.69)

after the conformal redefinition it takes the form

2n(b—a)+2(1—2b)

SM = /dnl‘ \/5 XT LM [X_2§/u/7¢} (770)

One should also include a kinetic term for the determinant of the metric since anyway
it will be generated radiatively

1 mn C 1 4
Sk = 22 /d T g {59“ aug&,g - V(Q)}

2n(e-a)42(1-20) {2(71 —2)? 4m-2)

1

L [ va s CE 0,0, — V)T

(2a —1)
7.6 Background TDiff

We can consider quantum fluctuations around a classical background, g,,. We
parametrize the strength of the perturbation by a field of mass dimension one:

Gy = Guv + /{huu (772)

where k2 = 87, as usual. This expression involving the metric as a covariant tensor
can be considered as an ezxact expansion; or rather as the definition itself of the
perturbation to be considered; all other geometric expansions are then defined as
formal series in the coupling constant k.

If we introduce two other quantities.

Y = GG P hags (7.73)
and
ht = g"“he, (7.74)
then,
g = g — kh" + &2(h2)‘“’ + 0(53) (7.75)

We shall denote for a general quantity:

A=D"k" A (7.76)
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The determinant of the metric expands as

g = det g, = det g (5,’/\ + /{Q’\"hm,) = ge'" log (52+5** hor ) (7.77)
namely,
2
_ —a K ria ~Q
9 = 9{1+ 55" hap + (G hap)” = 5 (h*)as)]} (7.78)
and
— ﬁ—aﬂ ffz _ap 2 —af/1,2
Vgl =\ Igl{1 + 59 hap + S [(5%hap)” = 25°7 (1) as]} (7.79)
Under an arbitrary diffeomorphism,
59#1/ = ’E(g)g;w =& oG T+ auéagcw + &Jgagua (7‘80)

The determinant of the metric transforms as

dlgl = 1919 6gyw (7.81)

This is an exact formula in the linear diffeomorphism regime. The condition for the
metric volume element to remain invariant, that is,

5lgl=0 (7.82)
is
V.4 =0 (7.83)

which is equivalent to our unimodularity condition only in flat space.
The background field ansatz implies a further expansion in the coupling constant

Backgroung gauge transformations correspond to

5guu = £(§)§uu
Sty = £(E)hyu, (7.84)

The quantum gauge transformations read
0Gu =0
1
5hw’ = E‘E(f)gw + £(€)huu (7-85)

Those are the ones that must be gauge fixed.
Under those,

1
§*"0hag = — (€,|9] + 20a£") + O(1) (7.86)

i.e., even if the diffeomorphism is unimodular in our sense, 0,£% = 0, there is a
non-vanishing contribution to the variation of the determinant of the metric.
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Suppose now that we have a TDiff action of the form

S,= 5z [ @' VF Fle) B+ 2000 A (7.87)

where f and fy are arbitrary functions of the determinant of th metric g* = det g},
and the action is in general not Diff invariant. Moreover, under a Diff the action
transforms to

S, = —2%2 /d”m VT [F(gCY) R 12 (¢°C?) Al (7.88)

where C(x) is a compensator field, in particular the determinant of the Jacobian of
the coordenates change, so that we can write in terms of the scalar field p* = ¢*C?
a perfectly invariant action

1

So= =55 | e Vg [f(¢) R +2/(¢") A (7.89)

To perform the computation is convenient to go to the Einstein frame, so we make
a conformal transformation

Juv = QQQZV
g= Q2ng*
o = gC* = O*"g*C? = Q¥ (7.90)

If we choose the conformal factor as

Q"% = f(e") = Q") (7.91)

then in terms of the new metric the action takes the form

Sg:_ﬁ /dx\/g [R+2F,\(Q) Al + 5,2 /da:\/g@gﬂ 0,80,Q
(7.92)
where we have made use of (7.91) in order to express f) in terms of
Q" AH(Q72p(Q)) = FA\(Q) (7.93)
A final redefinition of the scalar
p=+/2(n—1)(n—2) InQ (7.94)
gives us the desired action
1 n 1 n 1 nv
So= 55 [ d'e Vg [R+20NO) A+ 5= [ d"z /g 5 ¢"0.00,6  (7.95)
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Expanding the fields in a background and a fluctuation

Guv = g,uu + /fh,uu
¢ =0+ ko (7.96)

and using

FA(6) = F\(9) + K3 (8) 6+ 'S (9)6° + O(x?) (7.97)

we find up to quadratic order the action
1 _ - 1 -
1 . O _ 7 7 1 o
b (GhRE R HARFL(G) + 2AF}(G)0 ~ 70,60,0 — 1 (19" - 210) 0,30, +

o ((2) 1. O (R4 2AF\(¢) — 13" 0,00,0)

R+5h R+ 3 (h* = 2R W) + ARFY () o+

+AF, (¢)¢? — %g’“’@,@&,gﬁ + % (20" — hg"") 0,00, b + i (Rh*” — 2hPRY) au¢ay¢)1
(7.98)

The term linear in the coupling cancels due to the background equations of motion,
namely

V2p + 20AF}(4) = 0
_ 1~ - lo = - 1 - = -
Ry — §Rguu — AFN(®) G — §Vu¢vu¢ + Zgw,go‘ﬁvagmeb =0 (7.99)

Using the known expansion for the scalar curvature (6.134) the quadratic order op-

erator is
1 _ 1 - =5 1. _ -, 1_ - = 1. - =
Sg = 5 / d"w \/E |:haﬁ (Zgaﬂgm/vz - Zgoz,ug,ﬁlfv2 + §gauvﬁvu - §guuvavﬁ
+lgo¢BRuu - lgauéﬁu - lRauﬁV + lgauaﬁéaqu - lgaﬂg;ﬁgaj&
2 2 2 2 4
_ _ L—pon Ta T
— 2AFA(¢)8_ 29708%0) (5.5, - 29au9ﬁu)> "

1 _ - - 1 @
L hes (ﬁgaﬁgwapqsaa — 00y — AgaﬁFﬁ((b)) ¢+ ¢ (—§V2 — AF)y (¢)> ¢]
(7.100)

At this stage the operator is very cumbersome, but we still have the freedom to fix
the gauge in a way that simplifies the computationa lot. Taking the expresion

_ 1_ _
Xo = Vi = SVuh = ¢0,¢ (7.101)
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we choose as gauge fixing term

1 1
Sor =3 / d"x /g % 9" XuXv (7.102)

which after expanding can be expressed in the following form

1 1 - = - = 1 _
Su = 3 / &'z /G 2 [haﬂ (ngavﬁ — Gap VsV, — ZgaﬁgWW) I
- - - -1 1 = -
+2h°0 (8a¢c9ﬁ +VaVisd = 59059”0005 = 590s9" ,,ngb) ¢
+¢ (57 0.0059) ¢] (7.103)

Let us define the following tensor with the desired symmetry properties, i.e., sym-
metric in (uv), (af) and under the interchange (uv) < (af3)

1, o o
Caﬂuu = Z (gaugﬁu + Gov9pu — gaﬂguu)
2
Caﬁuu — gaugﬂu + gaygﬁp, gaﬁg,uu
n—2
5ol = 567 (7.104)
the full action can be written as

1 1
Sy+Ser =5 / d"z Vg 5 [ Mg b + h*P Doggp + GE b + ¢F¢] (7.105)

where the operators are
. £ _ =) . 26=1) (peee .
Maﬁuu = Caﬁpo (_55Vv2 + TQWV(’)V ) + T5((ZV )V,/) + Plfl’

D, o D, " 1 —a " " o —po D
P = —2R",7), — 25(<ZR,,§ + (R +20F3(6) - 5 ﬁﬁagb@gqb) 07 4 g Ry

2 1 _ -1 o
po =  =po (p o) = YRty
—i—(n — Q)QWR —(n — 2)glwg R+ 25(M8V)¢8 ) 29W8 0100
1 1
- (n _ 2) PO' u¢au¢ + ( 2)guygpaa>\¢a>\¢
2(1 — o o R
Daﬁ = ( 5 f) Cozﬁpa vp¢va + é.T Cozﬁpavpva¢ - AFA(¢)gaﬁ
2 —1 wiPNwid + o
B = % Clvpoe VPOV + f prtfvpv ¢ AFA(@%W
_ wo— 1 - -
F = —V?—2AF,\(¢) + £970,00:¢ (7.106)
in such a way that in terms of the combined field
/,I/V
A = (h¢ ) (7.107)
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and in the minimal gauge, corresponding to & = 1, the operator
1 mn = 1 A B

is minimal, in the sense that it takes a Laplacian form

Aup = —gaV?+ Yun (7.109)
with the metric
9B = <C“§“” ?) (7.110)
the inverse metric
g'’ = <Ca§w/ ?) (7.111)

and the term without derivatives

YAB _ ( ~ Ciaﬂp_crpig B QCaﬂpovﬁpv_U(z - AF){E&)@fﬁ) (7112)
2Cupo VIV = AFX(0) Gy —2MF}(0) + 577 0,005 ¢

On the other hand, once we have an operator in the Laplacian form (7.109), the
one-loop counterterm (supposing that we work in n = 4 dimensions) is given by the
following coefficient in the heat kernel expansion

11 _ _
= ——— [ d"z/g tr (180Y? —60RY + 5R*—
47 (4m)% 360 / Vg +
—2R,u R*™ + 2R, R*P7 + 30W,, WH) (7.113)

and the field strength is defined through

Vi, Vo]t = Wi, 0" (7.114)

- 124 —



Therefore, in order to find the counterterm we will need the following traces

n(n+1)+2
2
trY = g*PYap = 014 P — 20F () + §770,00,¢

_ sapB _
tr]l—5aﬁ+1—

1) /- I T _ o .
= 2B (R 5AR(G) - 970,00,0) — n + (n+ 20,00, — 2AF (9
11 - - - 2
tr Y? = Yap " Yop gP4 = PP 4 2D, E,, O + (2/\FA (@) — gpaapd)aod))
2 _— — — — — — — —_ —_
3Ry R 4 S A w2 o <R L ONFA(B) — 270,80,
n—2 n—2 2
1) (- 1 N\ oy -
+@ (R + 2AF\(9) — Egpaapgbaa(b) +2V?pV2p — 8AF V%o
81 \oivirve 0 e o 2 n(A=n)Bn—=8)—4(n—-2)* _ -
S NFO) + o (70,00,60)° + o R"0,60,
2 44n—16 - . _ 1 o o
R R0,00,6+ 20+ 1) (R4 2AR(0) - 530,00, ) 70,6000
" - - - 2
+ (207 (6) — 970,60,9)
tr W, ,WH = —(n+ 2)R,,,, R (7.11

Using the well known expression (7.113) of the fourth heat kernel coefficient one gets

—1 —1 n qa D, DUV po
= Gy e [ TV (B ) = 3000+ 2)] B P
P—8nt4 o - 2 Sn(n+1) +10] -
+ {180%—7’6(%1) —2} R B + [180—ZJ_F2 +60n + 2 = )+ ]RQ

2
—30n(n + 13)R (R +2AF\(9) — % gmap&a,&) +90n(n + 1) (R + 2AF\(9) — %gp"(?pq_b&,q_b)

(4—n)(3n—8) —4(n—2)
(n —2)?

_ _ 1 - -
+360 (n + 1) (R + 2AF\(¢) — ig’”apgbaﬁ) g”&vqﬁaw -+ 180

n?+4n — 16
(n—2)?
n2+n—7<

n —

+1802

R 8,30,6 — 60 [3 F(n+ 2)] Rg?0,50,0

77 0,00,6)°
+360V2pV2¢ + 120ARF (¢) — 1440AF;($) V2 — T20AF) (477 0,005 )

N80+ 200 ) (7.116)

Remember that we need also the contribution coming from ghost loops. The gauge
fixing term mantains background invariance, under which the background g, trans-
forms as a metric and the fluctuation h,, as a tensor. On the other hand it has to
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break the quatum symmetry

§Gu =0
2 _
Shy, = Ev(,@) + Leh,
§¢p =0
1 _ _
5 = Egﬂvu (¢ + ko) (7.117)

The ghost Lagrangian is obtained performing a variation on the gauge fixing term
1, _ o
oxy = p (VQgW + R, — Vﬂd)vud)) & (7.118)

plus terms that give operators cubic in fluctuations and therefore are irrelevant at one
loop (the ghosts are always quantum fields, they do not appear as external states).
Then, as ghost Lagrangian we will take

Sy = / T'w i Vi (-9 — B £ HVG)V, (7.119)
The relevant traces are
trl=n
trY = —R+ §70,00,¢
tr Y? = R, R" — 2R"0,00,¢ + (gp"apéaaq?)z
tr W, WH = =R, R (7.120)

and the coeflicient

1 1 5 D
' = g g | VA {200 Ry B (180 = 20] B R

+[60 + 5n] B2 — 360R"8,60,6 — 60RG* 9,00, + 180 (gpgapgz‘saggz‘sﬁ%}lzm

Adding the two pieces together and particularizing to the physical dimension n =
4 one gets the one loop counterterm (notice the factor and the sign of the ghost
contribution)

1 1 1 241 15
[ _ gh — prvpo 27 uv D2
AS = - <a4 2af ) T / o { Rypo R oo B R + 2R

2
g (R L OAR(B) — -gwapwm) 5 (R L OAR(G) — %gwapwgd))
—gR §7°0,0,6+ 5 ( 4 OAF (D) — lgma,,wg(b) 50,500 + 1 (570,60,0)°
YT 4 SARES (9) — ANE}(9)9%6 — IAE} (9)5770,60,6 — SA(F}(6))?

+2A2(F;’(<5))2} (7.122)
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In case that the cosmological constant vanishes the final result is

1 1 1
e (4m)2 360

H6OR 57 0,00, + 360 (5°70,60,8)° + 360?%5?2@5}

AS =

/d4 VG {426R,,,0 R*""° — 1446 R,,, R* + 435R*

1 1 o
T e (47)2 / "o Vg { R R + 401%2 + 6Rgp 8,005 + (57 9,00,4)°
+Vioviol (7.123)

which coincides with the result of 't Hooft and Veltman except for the last term.
That term is however irrelevant in this case since it vanishes due to the background
equations of motion. Using them the counterterm can be written in the form

1 1 203
AS=-—+ — R’ 7.124
o [ Vi g (1124)
On the other hand, if we had considered pure gravity in the presence of a Cosmo-
logical Constant that would correspond in our notation to F(¢) = 1 and ¢ = 0.
Nevertheless, in order to compare with the results present in the literature, we have
to subtract from (7.122) the contribution from scalar loops, which is trivially

11 _ _
¢ _ n LV PO nz 2
“ = TF 300 / A"z /G {2R,pe R — 2R, R" + 5R*}
1
. d"z \/g R, UR“VP"——R R™ R*% (7.125
(4n)% / x\@{wo e 180 +72 } (7.125)

in such a way that, after using the equations of motion and neglecting the topo-
logical invariant, the one-loop counterterm coincides with the well known result of
Christensen and Duff [19]

1 1 1

1 6 o gh) _
AS_E(‘“_“‘*_%‘* ) "¢ (4m)? 180

/ d"z /G {212R,,,o R""" — 2088 A*}

(7.126)
It is possible to use the background equations of motion (7.99) to simplify the final
result (7.122). It is convenient to express the final result just in terms of the scalar,
since we are interested in inverting the conformal transformation. The counterterm
is then

[ s {fgiwffm«ﬁ) + 55 AR5 0,0,6
4

T RB@ + 3 A (O + 22 (RO - 5 A 5@ B

47T

If we want to write the counterterm in the original frame we must undo the conformal
tranformation, which is very easy once we have it in terms of the scalar. The scalar
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is related to the conformal factor through (7.94), and the conformal factor and the
original function of the determinant of the metric verify (7.91). With this in mind, we
can express the different contributions to the counterterm in terms of the functions
appearing in (7.87). Taking into account the definition of the potential F)(¢) given
in (7.93) and supposing that f(p*) is not a constant we get

F(¢") = [f(@)]77 fale")
78F)\ % 78F>\ 890* o2
_8_¢(¢)_3g0* 00 %
n—2 2 on ,
VRN TEE N = |

O*F 0 (O0F 0 [(O0F dp* 052
) = 55 @)= 55 (52) ©) =55 (—A (90*)> afm—(b

1—1

26 \ 0¢ (0]
- g [—m T SR PR P
97 0,00:¢ = Q(H—__;) 2 gL Dup Do (7.128)
where the functions f(¢*) and fy(¢*) are given from the begining in terms of ¢* and
we have denoted o 0 (o)
fe") = o (7.129)

and the others in a similar way. Finally, the counterterm of the theory (7.87) is

_ [ 1827 p #1\2
47r /d%\/g_{ﬁf f4(* u‘P)
1—71Af FCEN yw—g/\Qf B g A [ f-2r ]
PN P LB P R P )
[2f B3 P R P R R (7.130)

7.7 A slightly more general transverse action

AS:1

Had we started from an action with a kinetic term for the determinant of the metric

1

S=—55 [z Vg [f(g*)R* +2/(g")A - %f¢(9*)gi‘” g Vg*} (7.131)

so that after an arbitrary change of coordenates

! 1
S=-52 /d”x Vo {f(w*)R* F2A(0)A = 5 fo(97) gl 0" Vgo*} (7.132)

where the scalar field is ¢* = ¢*C?%. We should now go to the Einstein frame through
a conformal transformation

=0%g, (7.133)
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Choosing the conformal factor as*

Q"2 = f(p") (7.134)

the action in the new frame takes the form

S = —2%2 /d% V7 R+ 2F\(Q)A] +2—22 /d% NG, {2("_ Din=2)

02
af )\’ 1
+Q77" fo (fTHOQ?)) DA 9" 0,00, (7.135)
o) 2
Where we have defined
RQ) =07 A (FH(Q"?) (7.136)
A final redefinition of the scalar gives the desired action studied earlier
2n =1 =2 o ooy (AN L y
mo g, () (P ) | o000 = o000
(7.137)
On the other hand one could have included a potential term
Sy = 2 — [ d"z gt M?V(¢") (7.138)
but it can be absorved in the definition of F)(Q), i.e.,
20AF\(Q) = Q7" 2ALSTHOQ?) + MPV(fH(Q" ) (7.139)

so it does not include any interesting new issue and we won’t consider it. In order to
express the known counterterm in terms of these functions and the original variables
we will need:

Fa(p*) = fr(¢") Ar(e")

Fl(@) = (n - 2) f5

1

[2(7} - 1)(” - 2) f_l + (n _ 2)2 f/_2 f¢}_§

/—1 gt

F(e) = (0= 27 1758 [2n = D= 2) 1+ (=27 12 1] |22 o gy
“an = 1) +2) 77— 2= = 2) 7S
b2l =10 —2) f7 ot gy MO e e g
(EnEBD) g g gy o 2 i g
nn =) f P (- >2f’*4 ;’f¢—(”_2) e
7 0,60,6 = =5 |20 D g2 gy o g | g (7.140)

20The following reasoning is not valid in case f(p*) = constant since then (7.134) is not invertible
to give ¢* = f=H(Q"72).
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So that the counterterm reads

as =t M / \/_{160 3772 2 4 £ o) (60,0 D"’

57 N[3F £ Fat 72 fo) o000 — A 72

+§ . PR =2 B B )T B
L S Yl e i A G A FE N Vo s (R (Ve Gl AW
TSR 2 RS = AL ot 2 S = S
< [12/7 =187 F TR = 6T T B 6T P 2
I Gy 420 T gy A E a2 - 5

_g FL g fqg} } (7.141)

There are a couple of things to comment:

e In case A = 0 and the functions in front of the kinetic term and the Einstein—
Hilbert term are f = f, = 1 we recover the result of t’"Hooft and Veltman

A W 2
5= 47r / \/_160 (92" Oup™0u")

11 203 _,
:EW/ e VR (7.142)

e Had we chosen the oposite function f; — —f, (does it correspond to a ghostly
behaviour?) then the diferential equation
3fNfP—f,=0 (7.143)

has a real solution and therefore there is another theory one-loop finite in case
A=0.

SOME INFORMATION ABOUT NONMINIMAL OPERATORS IS TO BE
FOUND IN ANANTHANARAYAN [7].
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8. Speculations on possible Ultraviolet completions of Ein-
stein gravity.
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A. General conventions

e The flat tangent metric is

Ny = diag (1,—1,—1,—1) (A.1)
The Riemann tensor is
R" g = 8QF55 — 0", + FﬁaFgﬁ - FﬁﬂFga (A.2)

and we define the Ricccl tensor as
RMV = R)\ UV (AB)

Our conventions for the cosmological constant are such that for a constant
curvature space

R/u/ = )\gm/ (A4)

d-2
Then the ordinary de Sitter space has negative constant curvature, but enjoys
positive cosmological constant.

The Einstein action is then defined as

C3
S =5z [ VIl (R+20)+ Sy (A5)
with % = 87G.

e Background covariant derivatives can be integrated by parts:

—_ =
/d4x 9|V, LI = /d4x || —=0,L" = /d4x0uL“ (A.6)

Vlal

Some commutators, which constitute the Ricci identities
?ﬁa ?v} Wp = WMRM B
[vﬂa v} VP= VIR 1B
Vs, Vo] h* = =M R* 5+ h* Ry, (A7)
e Killing vector fields obey the Killing equation
Vabs + Vga =0 (A.8)
The Ricci identities boil down in this case to
vuvy&x = _gARVau)\ (Ag)

cf. [32].
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e Let us recall our notation on differential forms. Given a p-form ([68]) written
in a local chart as

1

a= ];O‘m.--updxm A ..o N dzhr (A.10)

The components of the exterior differential are given by:

1
(da) — _EAo)\l...)\Pa/\oa/\lm)\p (All)

HopL . p pl Hoty

where the Kronecker tensor is given by the completely antisymmetric product
pf Kronecker deltas.

AoAAp — s Ap
o = p!é[lfo e 5%} (A.12)
Nilpotency follows easily
d* =0 (A.13)

Given a metric g,,, the Hodge star operator maps p-forms into (n-p)-forms,

with components
1

(*a)ﬂerlm/in - pl

This definition needs the components of the natural volume element n-form:

Mg g Q17 (A.14)

Mo = V191650 (A.15)

The co-differential is then given by:

§= (1P xdx (A.16)
and enjoys local components
1 v
(5a>p1...pp71 = _Heﬁél‘ugp_lv aﬂl...,up <A17)
so that also
=0 (A.18)
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B. Some comments on the unitary gauge

Let us indeed examine the path integral

/ D¢Dg,,e~5*9) (B.1)

which enjoys full Dif f invariance.

We first perform a point transformation, from the field variables (g,., ¢) to the
new variables (g,,, ¢ = gC?).We want to partial gauge fix it Dif f/TDif f, such that
the residual gauge invariance is T'Dif f. Formally we have

D¢Dg,., = Dg,, DC [ [ (29(x)C(x)) (B.2)

Therefore
/Dqﬂ)g#yesw’g) — /DC«DQWGS(¢,g)+fd4x2g(x)0(a:) (B.3)

Anselmi [8] claims that in dimensional regularization all determinant of non-derivativa
operators are regularized to unity. Then we go to the unitary gauge C' = 1. Let
us compute the Faddeev-Popov determinant, A. The gauge variation of the gauge
condition is:

5C = —CO,E" + £'9,C (B.4)

The important point is that this variation is independent of the metric, so that the
determinant will also be independent of the metric, let is call it A(C). The path
integral in the unitary gauge is then

/qunglweiS(%g) = /DOD(S((J — 1)A((j)gwe—s(¢,gw)+fd4a,-zg(x)0(a,-) _
/ Dy A(1) g, e S@om)+] diolog 29@) B.5)

A somewhat similar point has been belavored in a related context by Fiol and Garriga
[36].

Point canonical transformations in the path integral have been studied by Omote
[67]. INFORMATION ON THE EQUIVALENCE THEOREM IS TO BE FOUND
IN [53],[58],[2],[34]-
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C. Spherical harmonics

The simplest way of getting eigenfunctions of the Laplace operator in the sphere
is Helgason’s (confer [?]). Consider the following harmonic polynomial in R™*!

fur = (@.0) (C.1)

with @ € C, @ = 0.

Now we know that the full laplacian in R**! is

#? no 1
Agnt1 = — + —— + A 2
gt 8T2+T87‘+T2 Sn (C2)
This yields
A2+ (n— 1)\ 1
AR”+1fa,)\ =0= %fa,)\ + T_QASnfa,/\ (C3)
so that the eigenvalues of the Laplacian in the sphere S,, are
“AA+n—-1) (C4)

It is more or less equivalent to start from traceless homogeneous polynomials

The number of such animals is the number of symmetric polynomials in n
variables of degree A\ minus the number of symmetric polynomials of degree
A—2

a0\ = <>\+;z—1) B ()\J;ﬁ;?)) _ (n+2)\)\7(i)£)\2—)i—!n—3)! (C.6)

If we represent by p an appropiate collection of indices, then we first build
harmonic polynomials such that

/ dQR}, o = San 0™ (C.7)
Sn

The hyperspherical harmonics are then defined by
h/\,u = T)\Y)\,u (08)

and are normalized in such a way that

/ A5, Vi = Garb (C.9)
Sn
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Gegenbauer polynomials are generalizations of Legendre polynomials, in the
sense that

0 A
1 - 1 1 r< 12
o = — — Z (E) c,\? (z.2))
>

g (1 () o () ea) T S
(C.10)

Let us now prove the sum rule for hyperspherical harmonics. For concreteness,

let us assume that

r

‘_"

<
r' = |7 (C.11)
Then it is a fact of life that
1 - 1 AT (A
Imposing term by term vanishing leads to
1 0 ,,0 1 AT (A Al
(rn_l U T—Asn 1) (7’ C,? (xx)) =0 (C.13)
which conveys the fact that
AgarCy? (2.8)) = XA +n—2)Cy7 (i) (C.14)
Since the hyperspherical harmonics are by assumption a complete set of eigen-
functions,
O (2.4 Za,\u ) Y, () (C.15)
where

n-2 n — 2)x"/?
()= /@CAQ @& ¥, @) = r<n3;) (2/\2 )+ g @) (C10)

This is related to the degeneracy d()) of hyperspherical harmonics in the fol-
lowing way. Choosing & = 2/, the sum rule leads to

Cy7 (1 KAZYM ) Vi (2) (C.17)

Integrating now over the unit sphere

n—2

Cy 7 () V(So1) = Ka ) 1= Kyd()) (C.18)
The result is |
d(A):(n+2)\—2)(A+n—3). (€.19)

Al(n—2)!
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Let us now become more specific and perform some computations in gory detail.
The metric on S™ ! is

ds? | =d0>_ | +sin*0, 1d0> ,+... +sin* 0, 1 5in*0, 5. ..sin*Gd67 (C.20)
id est, in a recurrent form

ds] = db?
ds® = df? + sin*0, ds>_, (C.21)

This corresponds to polar coordinates in R”

X,, =cosb,_

X1 =sinb,_1c0s0,_

Xo=15inb,_1stn6b,_o...cosb
X| =sinb,_1sinb,_o...sinb; (C.22)

Spherical harmonics have been constructed quite explicitly by Higuchi [?], are
such that

0, 00 01) = —lo(ly + 10— 1)Yi 1 (0n...00) (C.23)

They are orhonormal with respect to the induced riemannian measure
6, = /|g|doy A ... dO, = db; ...dO,sin" 10, sin" 20, 1...sin0y (C.24)

which obeys

dQ, = sin™0,d0,dY,_, (C.25)

and
Vs, = [do, = 2" .26
( nfl) - / n—1 — W ( . )

To be specific,

/ QY (O 00)Y (O 00) = G+ Gt (C.27)

’ /
el

It is obvious that any function on the sphere can be expanded

f(Q) = Z CrtyYin1y(0n...01) =

l'n---ll

O RN ARV CORUN RN ORY

ln...l1
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which means

SOV 0,0, 0, (0, 00) = 6(Q— ) (C.28)

ln...lh
where by definition
/dQ'é(Q — () = f(0) (C.29)

whence in a somewhat symbolic form,

5(Q—Q) = 6(0,—6,)...6(0.,—6,)sin" "V sin= "2 ¢ . sin~'6), (C.30)

Now we can expand this function, as any other function, in series of Gegenbauer
polynomials

5(Q— Q) =" diCy(cosb,) (C.31)
l
Let us choose our reference frame in such a way that
0.Q = cosb, (C.32)

id est, ' is pointing towards the North pole.

On functions constant on .S,_1,

2m2

dQ, = @sm"—l 0, do,, (C.33)
and, denoting x = cos 0,
dQ, = Eﬁf (1- ;1:2)%2 dx (C.34)
(5)
as well as
5() = "0, L__ L85 s (C.35)

n
2

o sin» 10, 2

We can now integrate the two sides of the equation (C.31) against C}/(z)(1 —

x)?~1/2. The orthogonality property
! 2172V 7 (1 + 2v)
d v v 1 — 2\v—1/2 — S )
/_1 xC (2)Cy(x)(1 — x*) 1l TOENOE (C.36)

then implies

2172 (1 + 2v) B rz) ) N _—
YT Ore? 20 /_ld“’l ()(1 =)' 25 — 1)(1 - 2%) (c/ 37)

NI
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The member of the right converges when v = ”T_l Given in addition the fact
that I+ o)
+ 2v
(1 .
we can write
L(2)(1+ 4r(2L)? 1 — 142
d, = (2) 2n1 2 ) _ n + (C.39)

~

. : 1 n—1+2] »2t
YoV (0, =0 0)Y 0 (O ) = C,7 (costy)
ln...ll l

(C.41)
If we employ the notation | = [,, and m = (l,,—1...l;), then the preceding
formula presumably means that

. I n—1+20 2
SOl = o TG st (CA)
We begin by defining some eigenfunctions of the differential operator:
0? o I(l+N-2)
D=—+(N-1 T I A4
ggp WV~ Deot b8 = = g (0.43)
such that
DPL ()= —L(L+ N —1) P, (0) (C.44)
namely,
_ _92 _ N-2
PLu(0) = chyy (sin )7 P ) (cos) (C.45)

where PH(z) are Legendre functions , and the normalization is given by

cnp = 5 =) (C.46)

l \/2L+N—1(L+Z+N—2)!
The differential equation that Legendre functions P* (z) are solutions of is
given by

d*w dw 2

Lw(z)z(l_ZQ)ﬁ_QZ%—i_(V<V+1)_1ﬁ,22>w:0 (C.47)
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Changing variables z = cosf this reads

O ot0 2~ Y i (eosO) = —v (w4 Dw(cosd)  (CAS)
002 T8 T sinZ g T oW WS ‘

and using this it is not difficult to actually prove the basic equation (C.44).

The harmonics themselves are given by:
Yieon,(On, ..., 0; HPnﬁnl \/_ Sl (C.49)

We can now employ the expansion (GR, 8.534)
impeos P — Z v+ k)i"(mp) ™",k (mp)CY (cos @) (C.50)
k=0

and using our expansion of the Gegenbauer polynomials in terms of spherical
harmonics,

Y — on/271p (19 — Z n/2 — 1+ k)i*(z)""/?- 1)Jn/2_1+k(2>
k=0
Cin Z Y ()Y () (C.51)

where C},, are apropiate constants.
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