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1. Introduction

Those are lectures on a topic that nobody understands fully. Not only that, but also

it is not the first time I lecture on the failures of the scientific community to come

to terms with the topic. The only exuse I can offer (and a poor one as it stands) is

that I am not the only physicist to be fascinated by the challenge of understanding

quantum mechanics in the presence of gravitation. The practical utility of the answer

to this question will not presumably be great (although how would be know for

sure beforehand?) but it is a matter of principle, and, as such, we hope to better

understand both quantum mechanics and gravitation if we are able to clarify the

issue.

The mass scale associated to this problem just by sheer dimensional analysis is

Planck’s mass,

mp ∼ G−1/2 ∼ 1019GeV (1.1)

If we remember that 1GeV is the rough scale of hadronic physics (the mass and

Comptom wavelength of a proton, for example), this means that quantum gravity

effects will only be apparent when we are able to explore an energy region roughly

1019 times bigger (or an scale distance correspondingly smaller; these two statements

are supposed to be equivalent owing to Heisenberg’s principle).

In a bottom-up approach there is a working low energy effective theory, and

quantum effects in gravity can be reliably computed for energies much smaller than

Planck mass. There are two caveats to this. First of all, we do not understand why

the oberved cosmological constant is so small: the natural value from the low energy

point of view ought to be much bigger. We will have unfortunately nothing new to

add to this problem. The second point is that one has to rethink again the lore of

effective theories in the presence of horizons. We shall comment on that in due time.

There is not a universal consensus even on the most promising avenues of research

from the opposite top-down viewpoint. Many people think that strings [76] are

the best buy (I sort of agree with this); but it is true that after more than two

decades of intense effort nothing substantial has come out of them. Others [61] try

to quantize directly the Einstein-Hilbert lagrangian, something that is at variance

with our experience in effective field theories. But it is also true that as we have

already remarked, the smallish value of the observed cosmological constant also cries

out of the standard effective theories lore.

These lectures are quite idiosyncratic in that I only talk on topics of with I think

I understand something. It is my purpose to keep them quite broad minded and

general, and I do not want to repeat the standard textbook stuff already summarized

in many excellent books and review articles, many of them highly opinionated. It is

hoped that at least some new ideas can be rescued from them.

– 3 –



2. Quantum effects in an external (fixed) gravitational field

2.1 The Unruh effect

Before entering the subject matter as such (of which no much is known) let us dwell

for a while in a quantum effect due to the non-inertial character of the observer. By

the equivalence principle, this ought to be related to a gravitational field. We are

talking of the Unruh effect that although was discovered after Hawking predicted the

black hole thermal emission, is in fact logically simpler and independent.

Let us consider the trajectory of an accelerated observer in two dimensional flat

space

t =
1

a
sinh aτ

x =
1

a
cosh aτ (2.1)

This is such that the four-velocity is given by

u =
(
cosh aτ , sinh aτ

)
(2.2)

normalized to

u2 = 1 (2.3)

and the acceleration

u̇ ≡ a
(
sinh a τ , cosh aτ

)
(2.4)

obeys

a2 = −1

a.u = 0 (2.5)

In comoving coordinates, id est, adapted to the four-velocity,

u =
∂

∂ξ0
(2.6)

the worldline of the accelerated observer is

ξ0(τ) = τ

ξ1(τ) = 0 (2.7)

In general

t =
eaξ

1

a
sinh aξ0

x =
eaξ

1

a
cosh aξ0 (2.8)
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so that the value of the coordinate ξ1 tells us which hyperbola we are talking about

t2 − x2 = −e
2aξ1

a2
(2.9)

In terms of these coordinates the Minkowski metric reads

ds2 = dt2 − dx2 = e2aξ1
((
dξ0
)2 −

(
dξ1
)2
)

(2.10)

When

−∞ ≤ ξ0 ≤ ∞
−∞ ≤ ξ1 ≤ ∞ (2.11)

only one quarter of the original Minkowski space has been covered, namely the one

corresponding to

|t| ≤ x (2.12)

This is called Rindler’s wedge or Rindler space. The lightcone plays the role of the

event horizon.

Let us now consider an scalar field

S =
1

2

∫
dt ∧ dx

((
∂φ

∂t

)2

−
(
∂φ

∂x

)2
)

=
1

2

∫
dξ0 ∧ dξ1

((
∂φ

∂ξ0

)2

−
(
∂φ

∂ξ1

)2
)

(2.13)

We can use lightcone coordinates

x± ≡ t± x (2.14)

as well as

X± ≡ ξ0 ± ξ1 (2.15)

The full solution of the classical equations of motion

∂2

∂x+∂x−
φ =

∂2

∂X+∂X−
φ = 0 (2.16)

is a combination of rightmoving, positive frequency modes such as

f+
R (ω) ≡ e−iωx

−
= e−iω(t−x) (2.17)

and their complex conjugates, wich are negative energy left movers.

It is worthwile to stop a while to think on the reason why we say that it is

rightmoving. It is because

k̂f+
R = −i ∂

∂x
f+
R = ωf+

R
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The reason why we say that it also enjoys positive frequency is because

Ĥf+
R = i

∂

∂t
f+
R = ωf+

R .

The plane waves

g+
L (x+) ≡ e−iωx

+

(2.18)

are left-moving, positive energy solutions.

The general classical solution can be expanded in a sum of a Fourier series for

the left movers and a corresponding series for the right movers. We split the series

in fR, f
∗
R, gL, g

∗
L considering that

0 ≤ ω ≤ ∞ (2.19)

We could as well suppress the complex conjugate basis functions and integrate from

−∞ ≤ ω ≤ ∞ (2.20)

φ =

∫ ∞
0

dω√
4πω

((
a−R(ω)e−iωx

−
+ a+

R(ω)eiωx
−
)

+
(
a−L(ω)e−iωx

+

+ a+
L(ω)eiωx

+
))
(2.21)

We could also say the corresponding solutions

F+
R (Ω) ≡ e−iΩX

−
(2.22)

are right-moving positive frequency with respect to the new space and time coordi-

nates (ξ0, ξ1)

The relationship between the two light cone coordinates is given by:

x− = −1

a
e−aX

−

x+ =
1

a
eaX

+

(2.23)

We then have a different expansion

φ =

∫ ∞
0

dΩ√
4πΩ

((
b−R(Ω)e−iΩX

−
+ b+

R(Ω)eiΩX
−
)

+
(
b−L(Ω)e−iΩX

+

+ b+
L(Ω)eiΩX

+
))

(2.24)

We are then tempted to write the field operator

φ̂ =

∫ ∞
0

dω√
4πω

((
âR(ω)e−iωx

−
+ â+

R(ω)eiωx
−
)

+
(
âL(ω)e−iωx

+

+ â+
L(ω)eiωx

+
))

=∫ ∞
0

dΩ√
4πΩ

((
b̂R(Ω)e−iΩX

−
+ b̂+

R(Ω)eiΩX
−
)

+
(
b̂L(Ω)e−iΩX

+

+ b̂+
L(Ω)eiΩX

+
))

(2.25)

where the operators obey canonical commutation relations

[â(ω)R, â
+(ω′)R] = δ (ω − ω′)

[b̂(Ω)R, b̂
+(Ω′)R] = δ (Ω− Ω′) (2.26)

and so on.
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• We now define the Minkowski vacuum state by the condition

âR(ω)|0M〉 = 0 (2.27)

It is clear that this is the vacuum whose excitations would measure an inertial

observer. The Rindler vacuum instead will be defined by

b̂R(ω)|0R〉 = 0 (2.28)

and this is the ground state for excitations measured by the accelerated ob-

server.

• Assuming that the Minkowski vacuum is a physical state, the Rindler state re-

quires an infinite energy to be prepared: It can be checked from the expansions

that

〈0|Tx−x−|0〉 ∼ 〈0M |
∂φ̂

∂x−
∂φ̂

∂x−
|0M〉 = 〈0R|

∂φ̂

∂X−
∂φ̂

∂X−
|0R〉 (2.29)

This yields

〈0R|
∂φ̂

∂x−
∂φ̂

∂x−
|0R〉 =

(
∂X−

∂x−

)2

〈0R|
∂φ̂

∂X−
∂φ̂

∂X−
|0R〉 =

1

a2 (x−)2 〈0R|
∂φ̂

∂X−
∂φ̂

∂X−
|0R〉

(2.30)

which is expected to diverge at the future horizon x− = 0.

In a completely analogous way we would have shown that

〈0|Tx+x+|0〉 (2.31)

are expected to diverge at the past horizon, x+ = 0.

• It is clear that we can Fourier expand one set of modes in terms of the other:

F+
R (Ω) = e−iΩX

−
=

∫ ∞
−∞

dωρ(ω)e−iωx
−

=

∫ ∞
0

dω
(
ρ(ω)f+

R (ω) + ρ(−ω)f ∗R(ω)
)

(2.32)

with

ρ(ω) =

∫
dx−

2π
e−iΩX

−
eiωx

−
=

∫
dx−

2π
eiωx

− (−ax−) iΩa =

i

2πω

( a
iω

)iΩ
a

Γ

(
1 + i

Ω

a

)
= − 1

2πω
e
πΩ
2a ei

Ω
a
log a

ωΓ

(
i
Ω

a

)
(2.33)

We also have

fR(ω) = e−iωx
−

=

∫ ∞
−∞

dΩ γ(Ω)e−iΩX
−

=

∫ ∞
0

dΩ (γ(Ω)FR(Ω) + γ(−Ω)F ∗R(Ω)) =∫ ∞
0

dΩ

√
ω

Ω
(α(Ω)FR − β∗(Ω)F ∗R) (2.34)
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where this last notation has been introduced with an eye for the Bogoliubov

transformation that will appear in a moment, and

γ(Ω) =

∫ ∞
−∞

dX−

2π
e−iωx

−
eiΩX

−
= −

∫ 0

−∞

dx−

2π

1

ax−
e−iωx

−
(−ax−)

−iΩ
a =∫ ∞

0

dy

2π

1

ay
eiωy (ay)−i

Ω
a =

∫ ∞
0

dt

2πa

1

t
e−t

(
ita

ω

)−iΩ
a

=

1

2πa
e
πΩ
2a e−i

Ω
a
log a

ωΓ

(
−iΩ

a

)
(2.35)

This clearly implies that

|α(Ω)|2 = e
2πΩ
a |β(Ω)|2 (2.36)

• There is a Bogolyubov transformation relating both sets of creation and de-

struction operators. Symbolically, the change of basis we have just done yields

φ ∼
∑

âR (αF − β∗F ∗) + â+
R (α∗F ∗ − βF ) + left =∑

b̂RF + b̂+
RF
∗ + left (2.37)

In gory detail,

b̂R(Ω) =

∫ ∞
0

dω
(
αΩωâR(ω)− βΩωâ

+
R(ω)

)
(2.38)

The canonical commutation relations do imply that (suppressing carets over

operators from now on)[∫ ∞
0

dω1

(
αΩ1,ω1a(ω1)− βΩ1,ω1a

+(ω1)
)
,

∫
dω2

(
α∗Ω2,ω2

a(ω2)− β∗Ω2,ω2
a+(ω2)

)]
= δ (Ω1 − Ω2) =∫

dω
(
αΩ1ωα

∗
Ω2ω
− βΩ1ωβ

∗
Ω2ω

)
(2.39)

which is a normalization condition for Bogoliubov’s coefficients. It implies, in

particular, that∫
dω
(
|αΩω|2 − |βΩω|2

)
= δ(0) =

∫
dω
(
e

2πΩ
a − 1

)
|βΩω|2 (2.40)

The expectation value of b-particles in the Minkowski vacuum will be

〈0M |NΩ ≡ b+
ΩbΩ|0M〉 =

〈0M |
∫
dω1

(
α∗Ωω1

a+
ω − βΩω1aω

) ∫
dω2

(
αΩω2aω − βΩω2a

+
ω

)
|0M〉 =

∫
dω|βΩω|2 =

1

e
2πΩ
a − 1

δ(0) ∼ 1

e
2πΩ
a − 1

V (2.41)
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where V has to be interpreted as the volume of space. These massless particles

detected by the accelerated oberved in the Minkowski vacuum obey the Bose-

Einstein distribution at a temperature

T =
a

2π
(2.42)

This is the Unruh temperature. In order to get to a temperature of

T = 1 ∼ 10−16erg ∼ 10−10MeV (2.43)

and given the fact that the gravitational acceleration at earth is

g ∼ 10ms−2 ∼ 10−29MeV (2.44)

the corresponding acceleration necessary to raise the temperature a miserable

degree is

a ∼ 1019g (2.45)

The possibillity of its detection in storage rings has been advanced by Bell

and Leinaas [?]. More recently, a proposal was put forward by Chen and

Tajima [17] of detecting Unruh radiation with the help of ultra-intense lasers.

It seems however that we have to wait somewhat before getting experimental

confirmation of such an effect.
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2.2 The Kawking effect.

2.3 Physics in maximally symmetric spaces.

The (mathematically) simplest non-flat space-times are those of constant curvature,

traditionally knowm as de Sitter or anti de Sitter. It seems that they are in some sense

the most natural candidates for the vacuum of quantum gravity. We will comment

on that in due time. For the time being, we shall explore some aspects of quantum

physics in thsose spaces.

It is of interest to understand their relationship with ordinary spheres. We shall

study for a while flat spaces with arbitrary signature.

Some flat metrics in Rn+1 will be considered, namely, for arbitrary ± signs,

denoted by εM = ±1,

ds2 =
n∑

A=0

εAdx
2
A ≡ ηABdx

AdxB (2.46)

Given a metric, there is a corresponding algebra

[MAB,MCD] = i (ηBCMAD − ηACMBD − ηBDMAC + ηADMBC) (2.47)

This algebra is a real form of the complex algebra SO(n), including the de Sitter

group, dS(n) as well as the anti-de Sitter group, AdS(n), and also its euclidean

versions EdS(n) and EAdS(n).The aim of this report is to put together some notes

on it.

These algebras make many appearances in physics. One of the most important

ones is as the conformal group. The conformal group C(m,n) of Rm+n endowed with

a Minkowski-like metric with m-times and n-spaces is just SO(m+1, n+1) (SO(4, 2)

in the four-dimensional case.)

Casimir operators are given by

Cp ≡ trMp =
∑

MA1B1 . . .MApA1 (2.48)

of which only those with even p are nonvanishing, owing to antisymmetry.

When n = 2m ∈ 2Z, there is in addition the Levi-Civita invariant:

Em = εA1B1...AmBmMA1B1 . . .MAmBm (2.49)

which is such that

E2
m = C2m (2.50)

and distinguishes both chiralities.

2.3.1 Gamma matrices

Gamma matrices are defined through the Clifford algebra

{γM , γN} = 2ηMN (2.51)
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(which implies γ2
M = εM). A particular representation of the group of rota-

tions SO(n) can always be obtained from the representation of the euclidean Clifford

algebra

{ΓM ,ΓN} = 2δMN (2.52)

by hermitian matrices, for example the tensor product of n sigma matrices:

Γ1 ≡ σ2 ⊗ σ3 . . .⊗ σ3

Γ2 ≡ σ1 ⊗ σ3 . . .⊗ σ3

. . .

Γ2n−1 ≡ σ2 ⊗ σ2 . . .⊗ σ2

Γ2n ≡ σ1 ⊗ σ1 . . .⊗ σ1

Γ2n+1 ≡ σ3 ⊗ σ3 . . .⊗ σ3 (2.53)

by

γM = iΓM (2.54)

whenever εM = −1 and by

γM = ΓM (2.55)

otherwise. This implies the hermiticity assignment

γ+
M = εMγM (2.56)

The matrices

σMN ≡
1

2
[γM , γN ] (2.57)

are such that

[σAB, γC ] = 2ηCBγA − 2ηACγB (2.58)

as well as

γAγB = ηAB + σAB (2.59)

and the algebra

[σAB, σCD] = 2 (ηBDσCA − σCBηAD + ηCBσAD − ηACσBD) (2.60)

This means that i
2
σAB is a matrix representation of (2.47).

Ds (MAB) =
1

2
σAB =

i

4
[γA, γB] (2.61)

Not all generators are hermitic, however (except in the euclidean case). Actually:

M+
AB = εAεBMAB (2.62)

Non hermitic generators mean that the (finite dimensional) representation is not

unitary, and can be more or less associated to noncompact directions in the group

manifold.
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2.4 Constant curvature spaces C±εM with SO(s, n+ 1− s) isometry.

All the spaces we are going to be interested at can be obtained by analytic continu-

ation from either the sphere Sn,

n∑
A=0

X2
A ≡ δABdX

AdXB = l2 (2.63)

on a flat space with metric

ds2 = δABdX
AdXB (2.64)

or else the real projective space, RPn = Sn/Z2, where the antipodal mapping

Z2 : XA → −XA (2.65)

The sphere is then the universal covering space of the projective plane, and π1(RPn) =

Z2 Functions on the projective plane are given by even functions on the sphere

f(XA) = f(−XA) (2.66)

The projective plane is non-orientable for even values of n; but it is orientable for

odd values of n. For example, RP1 ∼ S1.

Let us focus on the fundamental hyperquadrics of flat space, which are well

known to be the only hypersurfaces of constant curvature of flat space ([32]).

The metric induced on the surface

n∑
A=0

εAX
2
A ≡ ηABX

AXB = ±L2 (2.67)

by the imbedding on the (n+1)-dimensional flat space Mn+1 with metric

ds2 =
n∑

A=0

εAdX
2
A ≡ ηABdX

AdXB (2.68)

If we group together all minus signs in the metric, then Wolf’s notation is Rn+1
s for

the space whose metric enjoys exactly s minus signs (which Wolf takes as times, but

for us they are spaces).

Furthermore, the pseudoriemannian spheres and hyperbolic spaces are given by

Sns ≡ X ∈ Rn+1
s & ηABX

AXB = L2

Hn
s ≡ X ∈ Rn+1

s+1 & ηABX
AXB = −L2 (2.69)

They are both n-dimensional pseudoriemannian manifolds with signature (n −
s, s). We shall be mainly interested in the Lorentzian case s = n − 1. Useful

diffeomorphisms are
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• Sns → Rs × Sn−s, i.e.

X →

(
X1, . . . , Xs;

1√
L2 +

∑s
i=1X

2
i

(
Xs+1, . . . , Xn+1

))

• Hn
s → Ss × Rn−s, i.e.

X →

 1√
L2 +

∑n+1
i=s+2X

2
i

(
X1, . . . , Xs+1

)
;Xs+2, . . . , Xn+1


• Sns → Hn

n−s,i.e.

X →
(
Xs+1, . . . , Xn+1;X1, . . . , Xs

)
The universal (i.e. simply connected) pseudo-riemannian coverings are S̃nn−1 6= Snn−1

and H̃n
n−1 = Hn

n−1.

It is a fact of life that the complete connected manifolds Mn
s of constant curvature

are those isometric to a quotient S̃ns /Γ or else H̃n
s /Γ, where Γ is a group of isometries

acting freely and properly discontinuously. 1

Sometimes the coordinates XA themselves (obeying (2.67)) will be used; in those

cases they will be referred to as Weierstrass coordinates.

Please note that the situations (εM ,+) and (−εM ,−) are such that spacetime

metric only changes by a global sign, the Christoffels invariant as well as the Riemann

tensor Rα
βγδ and the Ricci tensor Rβδ ≡ Rα

βαδ. The curvature scalar R ≡ gαβRαβ

then changes sign. This spaces will be labeled

C±εM (2.71)

1A manifold is homogeneous if the full group of isometries is transitive (that is, that ∀x, y ∈
M,∃g ∈ G, g(x) = y).

For the manifold to be symmetric the Riemann tensor has got to be covariantly constant.
On the other hand, a group action is free (i.e., without fixed points) if ∀x ∈ M , the little group

{g ∈ G, g(x) = x} is trivial.
Finally, the action is properly discontinuous if ∀x ∈ M there is a neighborhood U such that

{γ ∈ Γ, γ(U) meets U} is finite.
A covering p : S → T is a continous map of connected, locally arcwise connected spaces.
The covering is universal if S is simply connected.
The deck transformations h ∈ Γ(S/T ) are those homeomorphisms h : S → S such that

p ◦ h = p (2.70)

A Clifford translation is an isometry f such that d (x, f (x)) is a constant. The Clifford trans-
lations of Euclidean space Rn are just the ordinary translations. The only Clifford translation of
hyperbolic space Rn is the identity. If p : N →M is a riemannian covering, Γ is the group of deck
transformations, and M is homogeneous, then every element of Γ is a Clifford translation.
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The mother of all these spaces is the n-sphere, for which all εA = 1 and the sign in

the second member is plus as well.

One of the purposes of our research is to study the extent to which physical

quantities are determined on the spaces C±εM by analytic continuation from the sphere.

2.5 The general complete connected homogeneous Lorentz manifolds of

constant curvature Mn
n−1

More generally, complete connected homogeneous Lorentz manifolds of constant cur-

vature Mn
s=n−1 can be fully classified ([93]). In order to understand it we need some

preliminaries.

First of all, recall that every compact subgroup of O(s, n + 1 − s) is conjugate

to a subgroup of O(s)×O(n+ 1− s).2
There is a map between the isometry group of the universal covering of Snn−1,

which we dub S̃nn−1 (the isometry group is denoted by I
(
S̃nn−1

)
) and the isome-

try group of Snn−1 itself, which we denote by I
(
Snn−1

)
, to wit, if we represent the

projection by

π : S̃nn−1 → Snn−1

then the mapping is defined by:

f : I
(
S̃nn−1

)
→ I

(
Snn−1

)
≡ O(n− 1, 2)

through

f(g)π(x̃) = π(gx̃)

The kernel of this map is the group D of deck transformations.

We shall now define some convenient subgroups of isometries.

2Let us remind the reader that the center of a Lie algebra is the set of elements Z such that
[Z,X] = 0,∀X ∈ G.

We define the lower central series DkG inductively by

D1G = [G,G]

and
DkG = [G,Dk−1G]

We also define the derived series DkG inductively by

D1G = [G,G]

and
DkG = [Dk−1G,Dk−1G]

A Lie algebra is called nilpotent if ∃k,DkG = 0.
A Lie algebra is called solvable if ∃k,DkG = 0.
A Lie algebra is semisimple if there is no nonzero solvable ideal.
The maximal solvable ideal is called the radical, Rad(G).
A Lie algebra is called reductive if its radical is equal to its center.
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•
ÃS ≡ f−1(Z2) ⊂ I(S̃Nn−1)

• Let us now restrict to the case n odd. we define the matrix

J ≡ iσ2 ⊗ 1n+1
2

=


iσ2

.

.

iσ2

 ∈ GL(n+ 1,R) (2.72)

(this is such that J2 = −1) as well as a rotation R(θ) ∈ O(n− 1, 2) defined by

R(θ) ≡ cos θ 1 + sin θ J

Indeed

RT (θ)ηR(θ) =


−iσ2

.

−iσ2

iσ2



−1

−1

.

1



iσ2

iσ2

.

iσ2

 = η

They obviously close into a one-dimensional abelian subgroup:

R (θ1)R (θ2) = R (θ1 + θ2)

Finally, we define for n odd,

AZ = {R (θ) ∈ O (n− 1, 2)}

and

ÃZ ≡ f−1 (AZ) ⊂ I
(
S̃nn−1

)
• Now we define the parabolic translations Tp(θ),

Tp (θ) ≡

 1− iσ2θ 0 −iσ2θ

0 1n−3 0

iσ2θ 0 1 + iσ2θ

 ∈ O (n− 1, 2) (2.73)

As a matter of fact,

T Tp (θ)ηTp(θ) =

 1 + iσ2θ 0 −iσ2θ

0 1n−3 0

iσ2θ 0 1− iσ2θ

−12

−1n−3

12

−1 + iσ2θ 0 iσ2θ

0 −1n−3 0

iσ2θ 0 1 + iσ2θ


= η
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It is also plain that they also close into a one-dimensional abelian subgroup

Tp (θ1)Tp (θ2) = Tp (θ1 + θ2)

Then,

AP ≡ {±Tp(θ) ∈ O(n− 1, 2)}

and

ÃP = f−1(AP ) ⊂ I(S̃nn−1)

• When n = 4 we would like to consider the hyperbolic rotations

Rh (θ) ≡
(

cosh θ 12 sinh θ 12

sinh θ 12 cosh θ 12

)
∈ O (2, 2) (2.74)

Now define

AH ≡ {±Rh (θ) ∈ O(2, 2)

ÃH ≡ f−1(AH) ⊂ I
(
S̃3

2

)
Let us now recall that the defining equation for Snn−1 ⊂ Rn+1

n−1 reads

X2
n +X2

n−1 = L2 +
n−1∑
i=1

X2
i .

A generator of the fundamental group π1

(
Snn−1

)
is then given by

σ : [0, 1]→ σ(t) ≡ (0 . . . 0;L sin 2πt, L cos 2πt)

It is a fact that S̃nn−1/Γ is homogeneous if and only if Γ is conjugate to a discrete

subgroup of ÃS, ÃZ(for n odd) or ÃH (for n = 3).

Let S̃ denote the family of all isometry classes of pseudo-spherical spaceforms

S̃nn−1/Γ , Γ ⊂ ÃS.

Let Z̃ denote the family of all isometry classes of pseudo-spherical spaceforms

S̃nn−1/Γ , Γ ⊂ ÃZ .

Let P̃ denote the family of all isometry classes of pseudo-spherical spaceforms

S̃nn−1/Γ , Γ ⊂ ÃP which are not contained in S̃.

Let H̃ denote the family of all isometry classes of pseudo-spherical spaceforms

S̃nn−1/Γ , Γ ⊂ ÃH which are not contained in S̃.

To summarize (Wolf)
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• The zero curvature manifolds are isometric to Rn
s/Γ, where Γ is a discrete group

of translations.

• For positive curvature there are several possibilities:

� Mn
s ∈ S̃, which means that it is a covering of Snn−1/Z2.

� M2p+1
s ∈ Z̃ .

� Mn≥3
s ∈ P̃ .

� M3
s ∈ H̃ .

• For negative curvature, the manifold is isometric to Hn
n−1 or to Hn

n−1/Z2

3

2.5.1 Stereographic coordinates for the sphere Sn

• Let us perform an stereographic projection of the first n− 1 coordinates from

the south pole, Xn = −l, and represent the projected coordinates in Rn by

small face letters:

xµS ≡
2l

Xn + l
Xµ ≡ Ω−1Xµ (2.76)

The defining equation
n−1∑

0

X2
A = l2 (2.77)

3The normalizer of H in G is the set of all g ∈ G such that

gHg−1 = H

The centralizer of H in G is the set of all g ∈ G such that

ghg−1 = h,∀h ∈ H

It is plain then the centralizer is contained in the normalizer.
Let us call I(M) the group of all isometries, and I(M)x the subgroup preserving x. There is also

a local construction, starting from isometries of neighborhoods of a given point x ∈ M , leaving x
itself fixed. If we identify two such maps if they agree in a neighborhood of x, we get a group Hx,
the group of local isometries at x.

M is called isotropic at x if I(M)x is transitive on the unit sphere in Mx. This can be proved
to be equivalent to the manifold being two-point homogeneous, i.e.,that the isometry group I(M)
is transitive on equidistant pairs of points.

It is a fact that a locally isotropic manifold is locally symmetric.
The signature of the Grassmann manifolds

O(s, t ≡ n− s)/O(s1, t1 = n1 − s1)×O(s2 = s− s1, t2 = n− n1 − s+ s1) (2.75)

is
s1t2 + s2t1
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then implies

Xn = l
1− x2

S

4l2

1 +
x2
S

4l2

(2.78)

so that

ΩS ≡
Xn + l

2l
=

1

1 +
x2
S

4l2

(2.79)

Then

Xn = (2ΩS − 1)l (2.80)

and

ds2 =
n∑
0

dX2
A = Ω2

Sδijdx
i
Sdx

j
S (2.81)

That is, they are Riemannian coordinates in the sense of Eisenhart [32]. These

coordinates can be defined for all constant curvature spaces. The Riemann

tensor is given by:

Rµνρσ =
R

n(n− 1)
(gµρgνσ − gµσgνρ) (2.82)

and the Ricci tensor

Rµν =
1

n
Rgµν (2.83)

where

R =
n(n− 1)

l2
(2.84)

and the curvature

K0 =
1

l2
(2.85)

Besides [32]

∇µ∇νX
A = −X

A

l2
gµν (2.86)

These coordinates are singular at the South pole itself. They cover the whole

sphere but for the south pole.

We could have projected from the north pole instead, that is,

xµN ≡
2l

Xn − l
Xµ (2.87)

Let us call xS and xN the two sets of coordinates. They are enough to cover

the manifold.

In the intersection of the two local systems (that is, the sphere without the two

poles) consistency demand that

Xn = (2ΩN + 1)l = (2ΩS − 1)

Xµ = ΩNx
µ
N = ΩSx

µ
S (2.88)
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so that the change of coordinates is given by an inversion

xµS = −4l2
xµN
x2
N

(2.89)

and
x2
S

4l2
=

4l2

x2
N

(2.90)

Besides

ΩN = − 1

1 +
x2
N

4l2

(2.91)

and

ΩN = ΩS − 1 (2.92)

It is then plain that

ds2
N = ds2

S (2.93)

• The equations of the geodesics in Weierstrass coordinates are [32]:

XA = XA
0 cos

s

l
+NA

0 l sin
s

l
(2.94)

so that the distance in the enveloping space between two points whose geodesic

distance is s is given by:

D(X,X0)2 ≡
∑(

XA −XA
0

)2
= 4l2 sin2 s

2l
(2.95)

The euclidean distance between two points D(X, Y ) translates into

D(x, y)2 =
∑

(Ω(x)xµ − Ω(y)yµ)2 + 4l2 (Ω(x)− Ω(y))2 (2.96)

It is a fact that

δABX
AY B = −1

2
(~x− ~y)2 ΩxΩy (2.97)

Thus

D(X, Y )2 ≡
∑(

XA − Y A
)2

= 2l2 + (~x− ~y)2 ΩxΩy (2.98)

It is also evident that

D(xN , yN) = D(xS, yS) (2.99)

• The simplest possible example is just the ordinary circle, S1, embedded in

R2, which will be represented by the two coordinates (x, y). The south pole

stereographic projection is defined through

ξS ≡
2l

y + l
x (2.100)
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the correspondence with the general notation is then

Xµ → x

Xn → y

xµ → ξ (2.101)

The metric reads

ds2 =
1

1 + ξ2

4l2

dξ2 = l2dθ2 (2.102)

This means that the stereographic coordinate is related to the polar angle in a

direct way:

ξ = 2l tg
θ

2
(2.103)

which means that

y = l
1− ξ2

4l2

1 + ξ2

4l2

= l cos θ

Ω ≡ y + l

2l
=

1

1 + ξ2

4l2

=
1 + cos θ

2

x = Ωξ = l sin θ (2.104)

The other neighborhood is covered by

ξN ≡
2l

y − l
x (2.105)

Clearly,

ξN = −4l2

ξS
= −2l cot

θ

2
(2.106)

It is plain that we could have written

ξN = 2l tg
θN
2

(2.107)

with

θN = θS +
π

2
(2.108)

It is useful to remember that

∂ξ

∂θ
= l

(
1 +

ξ2

4l2

)
=

2l

1 + cos θ
=

l

cos2 θ
2

∂θ

∂x
= − cos3 θ

l sin2 θ
∂θ

∂y
=
cos2 θ

l sin θ
(2.109)
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It is clear that the angular momentum reads

L ≡ x∂y − y∂x =

(
2ly

y + l
+

2lx2

(y + l)2

)
∂ξ =

l

Ω
∂ξ (2.110)

(remembering that

∂ξ

∂x
=

1

Ω
∂ξ

∂y
= − 1

2lΩ2
x (2.111)

• The generators of the SO(n+ 1) group are in the coordinates of Rn+1

LAB ≡ XA∂B −XB∂A (2.112)

Functions defined on the sphere obey

∂f

∂r
= 0 = XA ∂

∂XA
f (2.113)

This means that
∂

∂Xn
= −X

µ

Xn

∂

∂Xµ
(2.114)

∂xµ

∂Xρ
=

1

Ω
δµρ

∂xµ

∂Xn
= − Xµ

2lΩ2
(2.115)

(stereographic projection is defined outside the sphere as well, so that the result

does not fulfill (2.114)) as well as (on the sphere itself)

∂ρX
µ = Ωδµρ −

Ω2

2l2
xµxρ

∂ρX
n = 2l∂ρΩ = −Ω2

l
xρ (2.116)

(indeed, Xµ∂ρX
µ +Xn∂ρX

n = 0).

We then obtain 4

∂

∂Xn
= − 1

2lΩ
xµ∂µ (2.120)

4One could have argued otherwise: acting on functions defined on the sphere,

∂

∂Xµ
=

∂xρ

∂Xµ
∂ρ =

1
Ω
∂µ (2.117)

∴

Xµ ∂

∂Xµ
= xµ∂µ (2.118)

conveying the fact that
∂

∂Xn
= − 1

Xn
xµ∂µ (2.119)
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We can then write

Lµν = xµ∂ν − xν∂µ (2.121)

as well as (remembering that Xn = (2Ω− 1) l)

Lnµ = Xn ∂

∂Xµ
−Xµ ∂

∂Xn
=
Xn

Ω
∂µ +

Ωxµ

2lΩ
x.∂ =

l

Ω
∂µ +

1

2l
xσLµσ (2.122)

2.5.2 Coordinates for C±εM

• Let us choose coordinates in such a way that in the defining equation

n∑
A=0

εAX
2
A ≡ ηABdX

AdXB = ±l2 (2.123)

on a flat space with metric

ds2 = ηABdX
AdXB (2.124)

then

εn = ±1 (2.125)

This can always be achieved, by reshuffling the coordinates if necessary, because

when the sign in the second member is negative, at least one of the coordinates

has got to be an space.

We then define the south pole stereographic projection for µ = 0 . . . n− 1, as

xµS ≡
2l

Xn + l
Xµ ≡ Xµ

Ω
(2.126)

The equation of the surface then leads to

Xn = l
1∓ x2

S

4l2

1± x2
S

4l2

(2.127)

where

x2
S ≡

n−1∑
µ=0

εµ (xµS)2 (2.128)

besides,

ΩS =
1

1± x2
S

4l2

(2.129)
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It is worth noticing that when the sign in the second member is negative, then

x2
S

4l2
=
Xn − l
Xn + l

(2.130)

(The range of Xn is now −∞ ≤ Xn ≤ ∞) but the range covered by the

stereographic projection is −l ≤ Xn ≤ ∞. In this whole interval Xn−l
Xn+l

≤ 1 and

Xn →∞ when x2
S → 4l2.

The metric in these coordinates is conformally flat:

ds2 = Ω2
Sηµνdx

µ
Sdx

ν
S (2.131)

Please remark that when x2 = 0 then Xn = l

We could have done projection from the North pole (for that we need than

x2 6= 0; that is Xn 6= l): Uniqueness of the definition of Xn needs

2ΩN + 1 = 2ΩS − 1 (2.132)

and uniqueness of the definition of Xµ

xµN =
ΩS

ΩN

xµS = ∓4l2

x2
S

xµS (2.133)

The antipodal Z2 map XA → −XA is equivalent to a change of the reference

pole in stereographic coordinates

xµN ↔ xµS (2.134)

∴ Only functions on the sphere which are invariant under the exchange of north

and south pole stereographic coordinates are well defined on the projective

plane, RPn.

• Working out the derivatives

∂xµS
∂Xρ

=
1

ΩS

δµρ

xµS
∂Xn

= − xµS
2lΩS

∂

∂Xn

= − 1

2lΩS

xS.∂S (2.135)

The Lorentz generators read

Lµν ≡ εµX
µ ∂

∂Xν
− ενXν ∂

∂Xµ
= εµx

µ
S∂

S
ν − ενxνS∂Sµ

Lnµ = − l

ΩS

∂Sµ −
xσS
2l
Lµσ (2.136)

But this last expression appears to be valid only when the plus sign is chosen

in the second member of the defining equation (2.123).
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Figure 1: A pictorial representation of Anti de Sitter (X2
0 +X2

1 = l2 + ~X2 in Rn).

2.5.3 Analytic continuation from the sphere or the projective plane.

The metric on Sn−1 is

ds2
n−1 = dθ2

n−1 + sin2 θn−1dθ
2
n−2 + . . .+ sin2 θn−1 sin

2 θn−2 . . . sin
2 θ2dθ

2
1 (2.137)

This corresponds to the surface

r = 1 (2.138)

expressed in polar coordinates in Rn

Xn = rcos θn−1

Xn−1 = rsin θn−1 cos θn−2

. . .

X2 = rsin θn−1 sin θn−2 . . . cos θ1

X1 = rsin θn−1 sin θn−2 . . . sin θ1 (2.139)

The range of the different angles is

0 ≤ θn−1 ≤ π

0 ≤ θn−2 ≤ π

. . .

0 ≤ θ1 ≤ 2π (2.140)
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Figure 2: A pictorial representation of Euclidean Anti de Sitter (or Euclidean de Sitter)
(X2

0 −X2
1 = l2 + ~X2 in Rn).

(This coincides with [69]). The antipodal mapping is given by:

θn−1 → π − θn−1

θn−2 → π − θn−2

. . .

θ1 → π + θ1 (2.141)

This restricts in fact the range of the angular variables in the projective space to half

its natural range

0 ≤ θn−1 ≤ π/2

0 ≤ θn−2 ≤ π/2

. . .

0 ≤ θ1 ≤ π (2.142)

• Sn → EAdSn

We shall continue

Xn → X0

~X → i ~X
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Figure 3: A pictorial representation of de Sitter (X2
0 −X2

1 = −l2 + ~X2) in Rn).

and

θn−1 → iθn−1 (2.143)

This leads to

ds2 = −l2
(
dθ2

n−1 + sinh2 θn−1dΩ2
n−2

)
(2.144)

• Sn → AdSn

Here we have to do

Xn → X0

Xn−1 → Xn

~X → i ~X (2.145)

as well as

θn−1 → iθn−1 (2.146)

yielding

ds2 = l2
(
dθ2

n−1 − sin2 θn−1

(
dθ2

n−2 + sinh2 θn−2dΩ2
n−3

))
(2.147)

• Sn → dSn
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This is different insofar as it corresponds to EAdSn with imaginary radius.

The changes here are

Xn → X0

~X → i ~X (2.148)

as well as

θn−1 → i (θn−1 + π/2) (2.149)

leading to

ds2 = l2
(
dθ2

n−1 − cosh2 θn−1dΩ2
n−2

)
(2.150)

2.5.4 Poincaré

A generalization of Poincaré’s metric for the half-plane can easily be obtained by

introducing the horospheric coordinates [5]. It will always be assumed that ε0 = +1,

that is that X0 is a time, and also that εn = −1, that is Xn is a space, in our

conventions. Otherwise (like in the case of the sphere Sn) it it not possible to

construct these coordinates.

l

z
≡ X−

yi ≡ zX i (2.151)

where

x− ≡ Xn −X0 (2.152)

1 ≤ i, j . . . ≤ n− 1. The promised generalization of the Poincaré metric is:

ds2 =

∑n−1
1 εidy

2
i ∓ l2dz2

z2
(2.153)

where the signs are correlated with the ones defined in (2.67), and the surfaces

z = const are sometimes called horospheres. This form of the metric is conformally

flat in a manifest way.

The curvature scalar is given by:

R = ±n(n− 1)

l2
(2.154)

For any constant curvature space,

Rµν =
R

n
gµν

Rµνρσ =
R

n(n− 1)
(gµρgνσ − gµρgνσ) (2.155)
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In our case this yields

Rµν = ±n− 1

l2
gµν

Rµνρσ = ± 1

l2
(gµρgνσ − gµρgνσ) (2.156)

Please note that the curvature only depends on the sign on the second member,

and not on the signs εA themselves.

It is clear, on the other hand, that the isometry group of the corresponding

manifold is one of the real forms of the complex algebra SO(n + 1). The Killing

vector fields are explicitly given (no sum in the definition) by

LAB ≡ εAx
A∂B − εBxB∂A ≡ xA∂B − xB∂A (2.157)

The square of the corresponding Killing vector is

L2 = εBx
2
A + εAx

2
B (2.158)

To be specific, when the metric is given by:

ds2 =

∑n−1 δijdy
idyj ∓ l2dz2

z2
(2.159)

i.,e., C∓1n,−1, then the isometry group is SO(n, 1).

• This is the case for what could be called euclidean de Sitter, EdSn = Hn
0 ≡

C−1n,−1, which in our conventions has got all coordinates timelike, and negative 5

curvature. This is the version of Lobatchevsky upper half plane used by Witten

[?] to analyze the AdS/CFT correspondence. Witten refers to ot as ”euclidean

AdS”.

The metric of EdSn in Poincar’e coordinates reads:

ds2
EdSn =

∑n−1 δijdy
idyj + l2dz2

z2
(2.161)

• The related situation where

ds2 =
−
∑n−1 δijdy

idyj ∓ l2dz2

z2
(2.162)

5We use the Landau-Lifshitz Spacelike conventions (LLSC) [50] and we define the Cosmological
Constant in such a way that for a space of constant curvature,

Rµν = − 2
d− 2

λgµν (2.160)
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i.e., C±1,−1n enjoys SO(1, n) as isometry group, and includes de Sitter space,

dSn when z is a timelike coordinate, dSn = Hn
n−1 ≡ C−1,−1n . Its metric reads

ds2
dSn =

−
∑n−1 δijdy

idyj + l2dz2

z2
(2.163)

In our conventions de Sitter has negative curvature, but positive cosmological

constant. Globally, dSn is given by:

x2
0 − x2

1 − . . .− x2
n = −l2 (2.164)

The square of the Killing vectors M0a (candidates to be timelike) are

M2
0a = x2

a − x2
0 =

∑
b 6=a

x2
b − l2 (2.165)

so they are timelike only outside the horizon defined as

H0a ≡
∑
b6=a

x2
b = l2 (2.166)

For example, the horizon corresponding to H0n is∑
y2
i = l2z2 (2.167)

This means that de Sitter space, dSn is not globally static.

• What one would want to call Euclidean anti de Sitter , EAdSn = Snn ≡
C+

1,−1n , has got all its coordinates spacelike, and positive curvature. To be

specific

ds2
EAdSn =

−
∑n−1 δijdy

idyj − l2dz2

z2
(2.168)

Pleate note that the metric is just the one corresponding to EdSn, with a

change of sign. This explains the change of sign in the scalar curvature.

Globally,

x2
0 − x2

1 − . . .− x2
n = l2 (2.169)

(That is, de Sitter with imaginary radius).

• Finally, when the metric is given by

ds2 =

∑n−1 ηijdy
idyj ∓ l2dz2

z2
(2.170)

(where as usual, ηij ≡ diag(1, (−1)n−2)), i.e. C±12,−1n−1 then the isometry group

is SO(2, n − 1). This includes the regular Anti de Sitter, AdSn = Snn−1 ≡
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C+
12,−1n−1 when the z coordinate is spacelike. For us AdSn has positive curvature

and negative cosmological constant.

ds2
AdSn =

∑n−1 ηijdy
idyj − l2dz2

z2
(2.171)

Globally, AdSn is

x2
0 + x2

1 − x2
2 − . . .− x2

n = l2 (2.172)

In this case there is a globally defined timelike Killing vector field, namely M01

Indeed, M2
01 = x2

0 + x2
1 = l2 +

∑
a6=1 x

2
a is everywhere positive. This means that

anti de Sitter space, AdSn is globally static, as opposed to de Sitter.

2.5.5 Conformal structure

• dSn

The four-dimensional de Sitter space can be globally coordinatized by

X0 = l sinh τ

X i = l ni cosh τ (i = 1 . . . n) (2.173)

where
∑i=n

i=1 n
2
i = 1 and −∞ ≤ τ ≤ ∞. This gives

ds2 = l2
(
dτ 2 − cosh2 τ dΩ2

n−1

)
(2.174)

A further change of coordinates, namely cos T = 1
cosh τ

where −π/2 ≤ T ≤ π/2

yields

ds2 =
l2

cos2 T

(
dT 2 − dΩ2

n−1

)
(2.175)

which is conformal to a piece of R×Sn−1, which is the Einstein static universe,

the template used by Hawking and Ellis [47] to study conformal structure. The

piece is a slab in the timelike direction, but otherwise including the full three-

sphere at each time. The fact that conformal infinity is spacelike means that

there are both particle and event horizons.

• AdSn

The fact that in this case there are two times suggests:

X0 = l
cos τ

cos ρ

X4 = l
sin τ

cos ρ

X i = l ni tg ρ (i = 1 . . . n− 1) (2.176)
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where
∑i=n−1

i=1 n2
i = 1 and −π ≤ τ ≤ π, 0 ≤ ρ ≤ π/2. The space is again

conformal to a piece of half Einstein’ s static universe:

ds2 =
l2

cos2ρ

(
dτ 2 − dρ2 − sin2ρdΩ2

n−2

)
=

l2

cos2ρ

(
dτ 2 − dΩ2

n−1

)
(2.177)

If we want to eliminate the closed timelike lines, one can consider the covering

space −∞ ≤ τ ≤ ∞. The slab of R × Sn−1 to which AdSn is conformal

to includes now the full timelike direction, but only an hemisphere at each

particular time. Null and spacelike infinity can be considered as the timelike

surfaces ρ = 0 and ρ = π/2. This implies that there are no Cauchy surfaces.

• EAdSn

We write

Xµ = lnµ sinh τ

Xn = lcosh τ (2.178)

with
∑n−1

µ=0 εµn
2
µ = 1, so that the metric reads

ds2 = l2
(
dτ 2 + sinh τ 2dΩ2

n−1

)
(2.179)

The change of variables

eT = th τ/2 (2.180)

yields

ds2 = l2
e2T

1− e2T

(
dT 2 + dΩ2

n−1

)
(2.181)

(the other half of the global space would be covered by another copy of the

above metric).

In this metric, Xn ≥ X0 always, which means that in Poincaré coordinates

z ≥ 0, and z → 0 when τ →∞, which is equivalent to T →∞, and represents

the boundary of the space, a Sn−1 sphere.

2.5.6 The Poincare patch

• dSn

In this case it is clear that

z ≤ 0 (2.182)

always, and z → −∞ as τ →∞.
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• AdSn

It is clear that the region z ≥ 0 corresponds to the patch

π/4 ≤ τ ≤ π (2.183)

and the region 0 ≥ z to

−π ≤ τ ≤ −3π/4 (2.184)

The region

z = 0 (2.185)

is dubbed the boundary (of the Poincaré patch) of AdS and corresponds to

ρ = π/2 (2.186)

Finally

z =∞ (2.187)

is usually called the horizon and corresponds to Xn = X0, that is,

τ = π/4 (2.188)

or else

τ = −3π/4 (2.189)

(assuming ρ 6= π/2).

When ρ = π/2− ε and τ = π/4± δ,

z = ±
√

2

2

ε

δ
(2.190)

and the limit depends on how the limit point ε = δ = 0 is reached.

The same thing happens when ρ = π/2− ε and τ = −3π/4± δ,

z = ∓
√

2

2

ε

δ
(2.191)

2.6 The group theoretical approach

2.6.1 Contractions

Consider as given the algebra

[MAB,MCD] = i (ηBCMAD − ηACMBD − ηBDMAC + ηADMBC) (2.192)

corresponding to one of the real forms of SO(n+ 1), say SO(p, n+ 1− p).
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It is possible to contract in a timelike coordinate, say x0, in the following manner.

Let the coordinates different from x0 be numbered by a = 1, . . . , n+ 1. The algebra

splits as:

[Mab,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc)

[Ma0,Mcd] = i (0− ηacM0d − 0 + ηadM0c)

[Ma0,Mc0] = i (0− 0−Mac + 0) (2.193)

The generators are now redefined (and given dimension one)

Pa ≡
Ma0

R
(2.194)

In the limit R → ∞, the algebra contracts Inönü-Wigner to ISO(p − 1, n + 1 − p),
where Pa play now the rôle of the translations:

[Mab,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc)

[Pa,Mcd] = i (ηacPd − ηadPc)
[Pa, Pc] = 0 (2.195)

Given a set of gamma matrices associated to the metric ηab, our previous results

imply that Mab ≡ iσab and Pa ≡ γa yield a representation of the reduced algebra.

An example of this reduction is the one from four-dimensional AdS, SO(2, 3) to

the Poincaré group, ISO(1, 3).

The reduction along an spacelike direction (say xn) is completely analogous:

[Mab,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc)

[Man,Mcd] = i (0− ηacMnd − 0 + ηadMnc)

[Man,Mcn] = i (0− 0 +Mac + 0) (2.196)

The generators are now redefined

Pa ≡
Man

R
(2.197)

resulting in

[Mab,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc)

[Pa,Mcd] = i (ηacPd − ηadPc)
[Pa, Pc] = 0 (2.198)

In the limit R→∞, the algebra contracts Inönü-Wigner to ISO(p, n− p), where Pa
play again the rôle of the translations:

An example of this reduction is the one from four-dimensional AdS, SO(1, 4) to

the Poincaré group, ISO(1, 3).
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2.6.2 Casimirs, laplacians and Green’s functions

The Laplacian (d’ Alembert) operator in Rn+1 is

∆n+1 ≡ ηAB∂A∂B (2.199)

6

6We include here some curious and potentially useful facts. The flat metric in Rn+1 can be
written in horospheric coordinates, provided the radius l is also kept as another coordinate:

ds2 = −dx+dx−+
∑

εidx
2
i =

∑
εi
dy2
i

z2
∓ l2

z2
dz2−

(
±1−

∑
εi
y2
i

l2z2

)
dl2−

∑
2
εiyi
lz2

dyidl (2.200)

It can be easily computed that √
|g| = l

zn
(2.201)

This form of the metric is not convenient however, because the off-diagonal terms cause eventually
problems when reducing it to the surface l = const. If new coordinates are introduced:

ξi ≡ log
yi
l

(2.202)

the metric reads

ds2 =
∑

εi
l2

z2
e2ξidξ2i ∓

l2

z2
dz2 ∓ dl2 (2.203)

The laplacian on scalars is then

∆n+1 =
1√
|g|

(
∂µg

µν
√
|g|∂ν

)
(2.204)

yielding

∆n+1 =
∑

εi
z2

l2
e−2ξi

(
∂2
i − ∂i

)
∓ 2− n

l2
z∂z ∓

z2

l2
∂2
z ∓

n

l
∂l ∓ ∂2

l (2.205)

which reduces in the old coordinates yi to

∆n+1 =
∑

εiz
2 ∂

2

∂y2
i

∓ 2− n
l2

z∂z ∓
z2

l2
∂2
z ∓

n

l
∂l ∓ ∂2

l (2.206)

In the former coordinates the inverse metric reads:

gll = ∓1

gli = ∓yi
l

gzz = ∓z
2

l2

gij = εiz
2δij ∓

yiyj
l2

(2.207)

yielding

∆nd
n+1 = ∓n

l

∂

∂l
∓ ∂2

∂l2
∓
∑ 2yi

l

∂2

∂l∂yi
∓ 2− n

l2
z
∂

∂z
∓ z2

l2
∂2

∂z2
+∑

εiz
2 ∂

2

∂y2
i

− n

l2

∑
yj

∂

∂yj
−
∑ yiyj

l2
∂2

∂yi∂yj
(2.208)

The same operator in C±εM is
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On the other hand, the quadratic Casimir of the group:

C2 ≡ −
1

2
MABMAB (2.211)

can be written in the form

C2 = −xA∂B (xA∂B − xB∂A) = (−1 + n)xA∂A +
(
−x2ηAB + xAxB

)
∂A∂B =

nxA∂A +
(
∓l2ηAB − xAxB

)
∂A∂B = xA∂A

(
xB∂B + n− 1

)
∓ l2∆n+1 (2.212)

The situation can be clarified (following [91]) by normalizing to the space with

unit radius, using

xA = lyA (2.213)

where it is understood that

ηABy
AyB = ±1 (2.214)

This gives

dxA = dlyA + ldyA (2.215)

and

ds2 = ±dl2 + l2gµνdx
µdxν (2.216)

where the metric in the unit radius space is

gµν ≡ ηAB∂µy
A∂νy

B (2.217)

Using the formula for the laplacian on scalars,

∆n+1 =
1√
|g|

(
∂Ag

AB
√
|g|∂B

)
(2.218)

and the fact that
√
|g|

n+1
= ln

√
|g|

n
it is found that

∆n+1 = ±n
l
∂l ± ∂2

l +
1

l2
∆n (2.219)

It is a fact that

l∂l = xA∂A (2.220)

yielding

C2 = −l2∂2
l − nl∂l ± l2∆n+1 = ±∆n (2.221)

∆n ≡ −
2− n
l2

z
∂

∂z
− z2

l2
∂2

∂z2
+ z2

∑
i

εi
∂2

∂y2
i

(2.209)

There is a simple relationship:

∆n+1 = ∓n
l
∂l ∓ ∂2

l + ∆n (2.210)
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2.6.3 More on the four dimensional Lorentz group

Let us recall the full Poincaré ISO(1, 3) algebra. It has in it three rotations, Ji ≡
1
2
εijkMjk, three boosts, Ki ≡Mi0 as well as four translations, Pµ ≡ (H,Pi), and the

algebra reads

[Ji, Jj] = iεijkJk

[Ki, Kj] = −iεijkJk
[Ji, Kj] = iεijkKk

[Ki, Pj] = iHδij

[Ki, H] = iPi (2.222)

The Lorentz subalgebra SO(1, 3) is isomorphic to the algebra of SU(2) × SU(2),

since if we define σ±i ≡ Ji ± iKi

[σ±i , σ
±
j ] = iεijkσ

±
k (2.223)

[σ+
i , σ

−
j ] = 0 (2.224)

Accordingly the finite dimensional, non unitary irreps are labeled by a couple of half

integers, (j1, j2). Unitary representations of non-compact groups are always infinite

dimensional ([94]).

2.6.4 SL (2,C)

x̃ ≡ x0 + ~x~σ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(2.225)

Lorentz transformations:

x̃′ ≡Mx̃M+ ,M ∈ SL (2,C) (2.226)

x0 =
1

2
tr x̃

xi =
1

2
tr x̃σi (2.227)

This means that M ∈ SU(2) corresponds to an space rotation, because then MM+ =

1,so that x0 is unaffected. It is plain that the two-dimensional matrices corresponding

to finite rotations are:

U (R (J1)) =

(
cos α

2
isin α

2

isinα
2
cos α

2

)
(2.228)

This matrix is determined by the condition

tr x̃σ1 = tr Ux̃U+σ1 (2.229)
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U (R (J2)) =

(
cos α

2
sin α

2

−sinα
2
cos α

2

)
(2.230)

U (R (J3)) =

(
ei
α
2 0

0 e−i
α
2

)
(2.231)

Boosts along the first axis correspond to

tr x̃σ2 = trMx̃M+σ2

tr x̃σ3 = trMx̃M+σ3 (2.232)

M (B (K1)) = −

√1+γ
2

√
γ−1

2√
γ−1

2

√
1+γ

2

 (2.233)

where, as usual,

γ ≡
(
1− v2

)−1/2
(2.234)

M (B (K2)) =

 √
1+γ

2
i
√

γ−1
2

−i
√

γ−1
2

√
1+γ

2

 (2.235)

M (B (K3)) = −

((
1−v
1+v

)1/4
0

0
(

1−v
1+v

)−1/4

)
(2.236)

This identification conveys a mapping of generators:

Ji = σi

Ki = iσi (2.237)

In general

M(z) ≡ eiziσi = cos z + isin z
~z~σ

z
(2.238)

where

z ≡
√∑

z2
i (2.239)

For an arbitrary Lorentz transformation, the real and imaginary part can be made

explicit:

~z = ~j + i~k (2.240)

It is a fact of life that

M(z) = cos u cosh v −
(
cos u sinh v

u2 + v2

(
u~j + v~k

)
+
sin u cosh v

u2 + v2

(
u~k − v~j

))
~σ −

i

(
sin u sinh v +

(
cos u sinh v

u2 + v2

(
u~k − v~j

)
− sin u cosh v

u2 + v2

(
u~j + v~k

))
~σ

)
(2.241)
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with

u
√

2 ≡

√√(
~j2 − ~k2

)2

+ 4
(
~j.~k
)2

+~j2 − ~k2

v
√

2 ≡

√√(
~j2 − ~k2

)2

+ 4
(
~j.~k
)2

−~j2 + ~k2 (2.242)

2.6.5 Unitary representations of the four dimensional Poincaré group

• Massive When the first Casimir operator

P 2 ≡ m2 (2.243)

does not vanish, m 6= 0, there is a Lorentz transformation so that

pµ = L(p)µ ν (muν) (2.244)

where the timelike unitary vector u is defined by:

uν ≡ (1,~0) (2.245)

This means that all timelike vectors of the same length are related by a Lorentz

transformation. The transformation L(p) is not defined in an unique manner.

Given one L(p), clearly

L(p)W (u) (2.246)

produces the same effect, as long as

Wu = u (2.247)

i.e., belongs to the little group, or stabilizer of the vector u, which we shall

denote by Su. The fact that the little group is nontrivial is the basis of the

whole construction by Wigner of the induced representations. In the present

case, it is easy to check that the little group is compact, namely the full set of

ordinary three-dimensional rotations,

Su = SO(3) (2.248)

In the Hilbert space of states, on which we want the unitary representation

to act we shall diagonalize the momentum P µ as well as the square of the

Pauli-Lubansky vector, W 2:

P µ|p′, i〉 = (p′)µ|p′, i〉 (2.249)

Labels will be chosen so that the states transform as unitary irreducible repre-

sentations of the little group:

U(W )|k, a〉 =
∑
b

D(W )ab|k, b〉 (2.250)
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The labels can then be chosen as −j ≤ a ≡ j3 ≤ j, with 2j ∈ Z

Following Wigner [?], we are going to choose a particular Wigner boost amongst

the whole set that maps mu into p, in some canonical way. This transformation

is named Lc(p). Furthermore

|p, a〉 ≡ U(Lc(p))|(m,~0), a〉 (2.251)

Where U(g) is the unitary representative of the group element g, and it is an

(as yet unknown) operator acting in the physical Hilbert space (usually a Fock

space). The extra labels on the left are by definition the same as on the right.

It is now the case that under an arbitrary Lorentz transformation, L,

U(L)|p, a〉 = U(LLc(p))|(m,~0), a〉 (2.252)

Clearly,

LLc(p) = Lc(q)W (L, p) (2.253)

where the vector q is such that

q ≡ Lp (2.254)

It follows that

U(L)|p, a〉 = U (Lc(q))U (W (L, p)) |(m,~0), a〉 =
∑
b

U(Lc(q))Dab (W (L, p)) |(m,~0), b〉 =∑
b

Dab (W (L, p)) |Lp, b〉 (2.255)

• Massless

The fiducial null momentum will be chosen as

k = (1, 0, 0, 1) (2.256)

Let us begin by considering an abelian subalgebra isomorphic to the two-dimensional

translation algebra:

T (2) = (T1 ≡ K1 − J2, T2 ≡ K2 + J1) (2.257)

The finite translations will be denoted by ∆1,2(a1,2). A long time ago, Wigner showed

that by adding J3 to the above subalgebra, one obtained the algebra of the little

group of a massless particle, which was isomorphic to the algebra of the euclidean

two-dimensional group, E(2) = ISO(2):

Sk = E(2) ≡ (T1, T2, J3) (2.258)
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the semidirect sum of the translations TA, (A = 1, 2) and the rotationsR(θ) generated

by J3 ∈ SO(2). A simple calculation shows that

R(θ)∆1(a1)R−1(θ) = ∆1 (a1cos θ + a2sin θ)

R(θ)∆2(a2)R−1(θ) = ∆2 (−a1sin θ + a2cos θ) (2.259)

This means that given eigenstates of the translations, i.e.

T1,2|ψ〉 = a1,2|ψ〉 (2.260)

the state

U (R(θ)) |ψ〉 (2.261)

is another eigenstate with eigenvalues (a1cos θ + a2sin θ,−a1sin θ + a2cos θ). The

only way to avoid this degeneracy (unobserved in the physical world) is to postulate

that

T1,2|ψ〉 = 0 (2.262)

Physical states are then characterized by the eigenvalue of J3, which is the helicity

(the projection of the angular momentum in the direction of the motion)

J3|ψ〉 = h|ψ〉 (2.263)

The helicity has got to satisfy

e4πh = 1 (2.264)

States with oposite helicity are related by parity.

2.6.6 dS(4)

Another way of represent the four-dimensional de Sitter group is as follows. Let us

split the generators into four boosts and six rotations:

M0I ≡ KI

MIJ (2.265)

where the five-dimensional spatial indices run from I, J, . . . = 1, 2, 3, 4. Next define,

for the four-dimensional spatial indices i, j, . . . = 1, 2, 3

Mij = εijkLk

M4i = Ni (2.266)

The commutators read

[K4, Ki] = −iNi

[Ki, Kj] = −iεijkLk
[K4, Li] = 0

[K4, Ni] = −iPi
[Ki, Lj] = iεijkKk

[Ki, Nj] = iδijK4 (2.267)
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as well as

[Li, Lj] = iεijkLk

[Ni, Nj] = iεijkLk

[Li, Nj] = iεijkNk (2.268)

so that if we define

J±i ≡ Li ±Ni (2.269)

there are two commuting SO(3) algebras:

[J+
i , J

+
j ] = iεijkJ

+
k

[J−i , J
−
j ] = iεijkJ

−
k

[J+
i , J

−
j ] = 0 (2.270)

(Of course this is a simple consequence of the isomorphism SO(4) ∼ SO(3)×SO(3),

and the fact that SO(4) is a subgroup of the de Sitter group).

It is plain to verify that the little group of a null vector is now the euclidean

three-dimensional group E(3), generated by the six elements

[Li, Lj] = iεijkLk

[Ti, Tj] = 0

[Li, Tj] = iεijkTk (2.271)

where

Ti ≡ Ki +Ni (2.272)

and the group that takes a null vector into a multiple of itself is none other than

SIM(3), where the Lie algebra is augmented with the new generator K4, and

[K4, Li] = 0

[K4, Ti] = −iTi (2.273)

2.6.7 AdS(4)

Let us call x0 and x4 the two times, so that the metric η = diag (1,−1,−1,−1, 1).

We shall define the hamiltonian as the hermitian operator

H ≡M40 (2.274)

because it reduces to the minkowskian hamiltonian in an Inönü-Wigner contraction.

We shall also consider the six ladder operators

M±
i ≡M0i ± iM4i (2.275)
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that obey
(
M+

i

)+
= M−

i as well as

[H,M±
i ] = ±M±

i

[M±
i ,M

±
j ] = 0

[M+
i ,M

−
j ] = 2 (Hδij − iMij) (2.276)

It is obvious that they raise and lower the energy of the states.

Together with Mij, that generate SO(3), H (that generates SO(2)) constitute

the maximal compact subgroup, SO(3)× SO(2).

On the other hand, the Casimir reads:

C2 = −1

2
MABMAB = −H2−J2+

1

2

∑
i

{M+
i ,M

−
i } = −H (H − (n− 1))−J2+

∑
i

M+
i M

−
i

(2.277)

where

J2 ≡ 1

2
M ijMij (2.278)

Let us asume that there is a lowest weight state, in the representation, that is

H|E0, s〉 = E0|E0, s〉
J2|E0, s〉 = s(s+ 1)|E0, s〉
M−

i |E0, s〉 = 0 (2.279)

Then, on this representation and in four dimensions the Casimir reads (it can be

computed on the lowest weight state)

C2 = −E0 (E0 − 3)− s(s+ 1) (2.280)

This value is constant on all states of a given representation.

Several bounds can be easily extracted, following [91]

• When s ≥ 1 there is in general a state with E = E0 + 1 but j = s− 1. Then

C2 = 〈E0 + 1, s− 1|C2|E0 + 1s− 1〉 =

−(E0 + 1)(E0 − 2)− s(s− 1) +
∑
|M−

i |E0 + 1, s− 1〉|2 = −E0(E0 − 3)− s(s+ 1)

This implies that

E0 ≥ s+ 1 (2.281)

In the limiting case, |M−
i |E0+1, s−1〉 = 0, so that |E0+1, s−1〉 is itself a ground

state, which decouples along with its descendants. This is interpreted as due to

a gauge symmetry, corresponding to a massless multiplet. The corresponding

casimir is

C2 = −2
(
s2 − 1

)
(2.282)
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• Let us now consider a state with j = s and some unknown energy E. The

casimir reads

−C2 = E0(E0− 3) + s(s− 1) = E(E− 3) + s(s− 1)−
∑
i

|M−
i |E, s〉|2 (2.283)

• For s = 0 the first excited state with s = 0 has got E = E0 + 2, because

0⊗ 1 = 1 and 1⊗ 1 = 2⊕ 0, yielding 4E0 − 2 ≥ 0.

• The limiting case E0 = 1/2 is the famous Dirac’ s singleton, with only one state

for a given value of the spin, and casimir −C2 = −5/4

• For s = 1/2, the first excited state with s = 1/2 has E = E0 + 1, because

1/2⊗ 1 = 3/2⊕ 1/2, yielding E0 − 1 ≥ 0.

• The limiting case, E0 = 1 is again a singleton, also with −C2 = −5/4

2.6.8 Oscillators

This useful technique yields all unitary irreducible representations in a simple man-

ner. The only drawback is that it cannot be worked out for arbitrary dimension. Each

case has its own specific characteristics. We shall do it here for the four dimensional

case.

We shall assume , following [91] a certain number,p, of mutually commuting

pairs of bosonic creation and annihilation operators, transforming as doublets under

the compact subgroup SO(2) × SO(3) ⊂ SO(3, 2), (ai(r), b
i(r)), r = 1 . . . p, and i

is the doublet index for SU(2) ∼ SO(3). There is another annihilation operator ci
when we need an odd number os oscillators. The total number of oscillators will then

be n=2p or n=2p+1. In this paragraph the number of spacetime dimensions is four,

so that no confusion should arise. We define ai ≡ a+
i , b

i ≡ b+
i , c

i ≡ c+
i , and a dot

product as ai.aj ≡
∑p

r=1 a
i(r)aj(r). The basic commutation relations are:

[ai(r), a
j(s)] = δji δrs

[bi(r), b
j(s)] = δji δrs

[ci, c
j] = δji (2.284)

Then the four operators

U i
j ≡ ai.aj + bj.b

i +
1

2

(
cicj + cjc

i
)

= ai.aj + bj.b
i + cicj +

1

2
δij =

ai.aj + bj.b
i + cjc

i − 1

2
δij =

ai.aj + bi.bj + cicj + δij (2.285)

obey
(
U i
j

)+
= U j

i as well as

[U i
j , U

k
l ] = δkjU

i
l − δilUk

j (2.286)
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and

Q ≡ 1

2
U i
i =

1

2
(N + n) (2.287)

as well as

[Q,Uk
l ] = 0

[Q, ai] =
1

2
ai

[Q, ai] = −1

2
ai (2.288)

This means that they are generators of SU(2), (which we would like to identify

with Mij). Here N is the total oscillator level corresponding to the a oscillators, the

b oscillators, and, in its case, to the c oscillators. (We will eventually identify Q with

H).

To be specific,

T1 ≡
1

2

(
U1

2 + U2
1

)
=

1

2
tr σ1U

T2 ≡ −
i

2

(
U1

2 − U2
1

)
=

1

2
tr σ2U

T3 ≡
1

2

(
U1

1 − U2
2

)
=

1

2
tr σ3U (2.289)

obey the SU(2) algebra

[Ti, Tj] = iεijkTk (2.290)

and, besides,

[Q, Ti] = 0 (2.291)

Le us now construct the buiding blocks for M±
i :

Sij = (Sij)
+ = ai.bj + aj.bi + cicj (2.292)

It is a fact that

[Q,Sij] = Sij

[Q,Sij] = −Sij
[Sij, Skl] = [Sij, Skl] = 0

[Sij, Skl] = δikU
j
l + δilU

j
k + δjkU

i
l + δjlU

i
k

(2.293)

We can then identify

M+
1 ≡

1

2
√

2
σ3
abS

ab

M+
2 ≡

1

2
√

2
iδabS

ab

M+
3 ≡

1

2
√

2

(
−σ1

ab

)
Sab (2.294)
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and correspondingly

M−
1 ≡

1

2
√

2
σab3 Sab

M−
2 ≡

1

2
√

2

(
−iδab

)
Sab

M−
3 ≡

1

2
√

2

(
−σab1

)
Sab (2.295)

which obey

[M+
i ,M

−
j ] = 2Hδij − 2iMij (2.296)

In order to construct a representation, we start with a vacuum state such that

Sij|Ω〉 = 0 (2.297)

The simplest possibility is just to take the Fock vacuum

|Ω〉 = |0〉 (2.298)

But it is also possible to take

|Ω〉 = ai(r1)aj(r2)bk(r3)bl(r4) . . . |0〉 (2.299)

as long as they do not include a pair ai(r)bj(r) + aj(r)bi(r), (which are the building

blocks out of which the operators Sij are constructed).

Let us examine the simplest cases in detail:

• n=1. One oscillator only.

Then Q =
c+1 c1+c+2 c2+1

2
≡ N1+N2+1

2
and Sij = c+

i c
+
j . Besides,

T1 =
1

2

(
c+

1 c2 + c+
2 c1

)
T2 = − i

2

(
c+

1 c2 − c+
2 c1

)
T3 =

1

2

(
c+

1 c1 − c+
2 c2

)
(2.300)

and the Casimir
~T 2 =

1

4
(N1 +N2) (N1 +N2 + 2) (2.301)

There are two possibilities for the vacuum state.

• |Ω〉 = |0〉 This corresponds to Q = 1
2

and s = 0.

The states are of the type

c+
1 c

+
1 |0〉 (2.302)

with ~T 2 = 2 (j=1) etc. In general there will be an even number of creation

operators. This is then the s = 0 singleton representation.
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• |Ω〉 = c+
1 |0〉 This corresponds to Q = 1 and ~T 2 = 3/4, so that s=1/2. This is

the s = 1/2 singleton.

• n=2 (p=1) Two oscillators

In this case,

T1 =
1

2

(
a+

1 a2 + a+
2 a1 + b+

1 b2 + b+
2 b1

)
T2 = − i

2

(
a+

1 a2 − a+
2 a1 + b+

1 b2 − b+
2 b1

)
T3 =

1

2

(
a+

1 a1 − a+
2 a2 + b+

1 b1 − b+
2 b2

)
(2.303)

and the Casimir

~T 2 =
1

4

(
(Na

1 +Na
2 ) (Na

1 +Na
2 + 2) +

(
N b

1 +N b
2

) (
N b

1 +N b
2 + 2

))
+

1

2
(Na

1 −Na
2 )
(
N b

1 −N b
2

)
+

1

2

(
a+

1 a2b
+
2 b1 + a+

2 a1b
+
1 b2

)
(2.304)

The are, again, several possibillities for the vacuum:

• |Ω〉 = |0〉. This has Q = 1 and s = 0, and corresponds to the massless s = 0

representation .

• |Ω〉 = a+
1 |0〉 This has got Q = 3/2 and s = 1/2, and yields the massless s = 1/2

representation.

• |Ω〉 =
(
a+

1

)m |0〉 This has Q = m/2 + 1 and s = m/2.

• |Ω〉 =
(
a+

1 b
+
2 − a+

2 b
+
1

)
|0〉 This has Q = 2, and(
Na

1 +N b
1

)
|Ω〉 =

(
Na

2 +N b
2

)
|Ω〉 = |Ω〉

(Na
1 −Na

2 ) |Ω〉 = −|Ω〉(
a+

1 a2b
+
2 b1 + a+

2 a1b
+
1 b2

)
|Ω〉 = −|Ω〉 (2.305)

ao that altogether, ~T 2 = 0. This is then the second massless s = 0 representa-

tion.

• Finally n ≥ 3 More than two oscillators

More than two oscillators yield massive representations.
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2.7 σ-models

Let us consider the two-dimensional sigma-model with target space C±εN . The action

is given by:

S =
1

4πα′

∫ √
|γ|d2ξγab∂aX

µ∂bX
νgµν(X) (2.306)

The beta function of the coupling is

βµν = α′Rµν +
(α′)2

2
RµαβγR

αβγ
ν +O((α′)

3
) (2.307)

and using

Rµν = ±n− 1

l2
gµν

Rµνρσ = ± 1

l2
(gµρgνσ − gµρgνσ) (2.308)

they reduce to

βµν = ±α′n− 1

l2
gµν + (α′)

2 n− 1

l4
gµν +O((α′)

3
) (2.309)

This means that de Sitter space is one loop asymptotically free whereas anti de

Sitter is not.
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3. The linear regime. Fierz-Pauli and beyond.

3.1 The unitarity road to consistent lagrangians

Let us start with the well-known analysis which leads eventually to the Fierz-Pauli

lagrangian for a free massless spin two particle (cf. [87],[69]). A simple road is as

follows: the quadratic part of the lagrangian is the inverse of the propagator, and

the propagator is related to the possible polarizations. There are five of those in the

massive spin two case, which can be represented as εAµν A = 1 . . . 5, with

εAµν = εAνµ

kµεAµν = 0

ηµνεAµν = 0 (3.1)

We can expand the momentum space 7 propagator in terms of the basic tensors kµ

and the off-shell transverse projection operator ηTµν ≡ ηµν − kµkν
k2 as

Dµνλσ ≡
∑
A

εAµνε
A
λσ = c1η

T
µνη

T
λσ + c2η

T
µνkλkσ + kµkνη

T
λσ

+c3(ηTµλη
T
νσ + ηTµση

T
νλ) + c4(kµkση

T
νλ + kµkλη

T
νσ +

kνkση
T
µλ + kνkλη

T
µσ + c5kµkνkλkσ (3.2)

Imposing off-shell transversality and tracelessness we get uniquely

Dµνλσ = c1

(
ηTµνη

T
λσ −

3

2
(ηTµλη

T
νσ + ηTµση

T
νλ)

)
(3.3)

Acting on conserved currents, we can drop the superscript T .

In order to find the lagrangian, we have to compute the propagator by impos-

ing transversality on shell only. Otherwise there are unwanted degeneracies. This

amounts to change the projector in (3.3) ηTµν for a quantity ηTOSµν ≡ ηµν− kµkν
m2 , which

behaves as a projector on shell only:

ηTOSµν kν = kµ
m2 − k2

m2

ηTOSµν ηµν = 3 +
m2 − k2

m2

ηTOSµν (ηTOS)νρ = ηTOSµ
ρ +

k2 −m2

m4
kµk

ρ (3.4)

7Both position and momentum space notation will be used for convenience. Although most
formulas will be written in arbitrary dimension, most of the polarization reasoning is implicitly
four-dimensional.

– 48 –



What remains is

Dm
µνλσ = c1

(
ηTOSµν ηTOSλσ − 3

2
(ηTOSµλ ηTOSνσ + ηTOSµσ ηTOSνλ )

)
(3.5)

The lagrangian is then found by computing the inverse.

(Km)µναβ(Dm)αβ λδ =
1

2
(ηµληνδ + ηµδηλν) (3.6)

The conventional normalization corresponds to

c1 = −4

3

1

k2 −m2
(3.7)

and yields

(Km)µνρσ =
k2 −m2

8
(ηµρηνσ + ηµσηνρ − 2ηµνηρσ)

−1

8
(kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ − 2kµkνηρσ − 2kρkσηµν) (3.8)

which corresponds to the Fierz-Pauli lagrangian

LFP =
1

4
∂µh

νρ∂µhνρ−
1

2
∂µh

νρ∂νhµρ+
1

2
∂µh∂

σhσµ−
1

4
∂µh∂

µh−m
2

4
(hαβh

αβ−h2) (3.9)

where h ≡ ηµνhµν .

It follows that

kνKm
µνρσh

ρσ = −2m2(kρhρµ − kµh) (3.10)

so that necessarily,

k2h = kρkσh
ρσ (3.11)

The trace gives:

ηµνKm
µνρσh

ρσ = −2(1− n)m2h (3.12)

which in turn implies that

h = kµkνh
µν = 0 (3.13)

and using (7.43),

kµhµν = 0 (3.14)

so that the field obeys the Klein-Gordon equation

(2 +m2)hµν = 0 (3.15)

It can be shown ([?]) that this particular mass term is the only one which is

compatible with unitarity.
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3.2 The massless limit.

The massless limit is singular. Three polarizations can be written as

kµuν + kνuµ (3.16)

with k.u = 0. Namely, in an obvious notation, (e(a) ≡ ∂a, etc)

k ⊗ k
k ⊗ e(1) + e(1) ⊗ k
k ⊗ e(2) + e(2) ⊗ k (3.17)

The remaining two are

ε1 ≡ e(1) ⊗ e(2) + e(2) ⊗ e(1)

ε2 ≡ e(1) ⊗ e(1) − e(2) ⊗ e(2)

(3.18)

and under the little group, they transform into the other three (cf.[?]).

This means that exactly the same type of reasoning that gives rise to the abelian

gauge invariance yields the unimodular theory of Einstein, which is invariant under

area preserving diffs only:

δhµν = ∂µξν + ∂νξµ (3.19)

with

∂µξ
µ = 0 (3.20)

Once we implement this symmetry (with or without the unimodularity condition

(3.20)), then there is a gauge in which the massless Fierz-Pauli propagator is defined

up to a constant as:

DGF
µνρσ = c2(ηµρηνσ + ηµσηνρ − ηµνηρσ) (3.21)

And then, it is a simple matter to show that, acting on conserved currents,

DGF
µνρσ = Dm

µνρσ +
c1

2
ηµνηρσ (3.22)

which means that there is an extra admixture of spin s = 0 in the massless case.

The conventional normalization corresponds to

c2 =
4

k2
(3.23)

and yields

KGF
µνρσ =

k2

8
(ηµρηνσ + ηµσηνρ − ηµνηρσ) (3.24)
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This corresponds to the massless Fierz-Pauli lagrangian with the harmonic gauge

condition

LGF =
1

2
(∂νhµ

ν − 1

2
∂µh)2 (3.25)

that is

L0 =
1

4
(∂µhαβ)2 − 1

8
(∂µh)2 (3.26)

3.3 Unimodular lagrangians

If we implement the restricted gauge symmetry only, a simpler lagrangian exists:

Lu =
1

4
(∂µhαβ)2 − 1

2
∂µhαβ∂

αhµβ (3.27)

although the full Fierz-Pauli lagrangian LFP is obviously still invariant under the

restricted symmetry. This is exactly the same thing that would have been gotten by

putting h = 0 in the Fierz-Pauli lagrangian, that is

(Ku)µνρσ =
k2

8
(ηµρηνσ + ηµσηνρ) +

−1

8
(kµkρηνσ + kρkνηµσ + kσkνηµρ + kσkµηνρ) (3.28)

Let us now construct a massive unimodular theory. In order to do that, we

postulate the most general mass term, say

−m
2

8
(2hµνh

µν − rh2) (3.29)

where r is an arbitrary constant (which for the full Fierz-Pauli theory happens to

take the value r = 2). The posited full kinetic operator is then

(Km
u )µνρσ =

k2 −m2

8
(ηµρηνσ + ηµσηνρ) +

r
m2

8
ηµνηρσ −

1

8
(kµkρηνσ + kρkνηµσ + kσkνηµρ + kσkµηνρ) (3.30)

The corresponding equation of motion is:

(Km
u h)µν =

k2 −m2

4
hµν +

rm2

8
hηµν −

1

4
(kµkρhν

ρ + kνkρhµ
ρ) (3.31)

Computing again the transverse part of the equation of motion:

(Km
u .h)µν =

k2 −m2

4
hµν + r

m2

8
hηµν −

1

4
(kµk

ρhνρ + kνk
ρhµρ) (3.32)

kµkν(Km
u )µνρσh

ρσ = −(k2 +m2)kρkσh
ρσ + r

m2k2

2
h = 0 (3.33)
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and the trace:

ηµν(Km
u )µνρσh

ρσ = (k2 −m2 +
n

2
rm2)h− 2kρkσh

ρσ = 0 (3.34)

This two conditions enforce

h = kρkσh
ρσ = 0 (3.35)

as long as r > 0. Even when r = 0 they do enforce full transversality, although

tracelessness is then only guaranteed off shell

(k2 −m2)h = 0 (3.36)

The conclusion of this analysis is that the unimodular theory becomes massive with

a mass term of the Fierz-Pauli type.

3.4 Propagators

Logically, our attention should now turn to a discussion of the unimodular massive

propagator. The fact is that, for the minimal model (3.27), supplemented by a mass

term such as the one in [3.29], there is no propagator, because this lagrangian is

singular. This is perhaps somewhat of a surprise, because there is no known gauge

symmetry when the mass is nonvanishing, but it is nevertheless true. Actually, the

situation is as follows: there is a particular mode, proportional to

(ηTu )ρσ ≡ (k2 +m2 − rm
2

2
)ηρσ − (k2 +m2 − rn

2
m2)

kρkσ
k2

(3.37)

such that

(Km
u η

T
u )µν (3.38)

is transverse, i.e.

(Km
u η

T
u )µνk

µ = 0 (3.39)

Although this is not a zero mode sensu stricto, it is enough to make the lagrangian

singular. The situation is somewhat strange. Nevertheless, we already know, because

of the argument of the polarizations at the beginning of the present section, that the

correct lagrangian for massive spin 2 is the Fierz-Pauli one, (3.9). On the other hand,

we know that the model (3.27 3.29) is the minimal one which can be extended to

exactly the Fierz-Pauli one while keeping only the restricted gauge symmetry in the

massless case.

While it would be interesting to further study the minimal theory, we shall

therefore confine our attention from now on to the Fierz-Pauli lagrangian.

Let us begin our discussion with the most general Lorentz invariant local la-

grangian for a free massless symmetric tensor field hµν ,

L = LI + β LII + a LIII + b LIV , (3.40)
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where we have introduced

LI =
1

4
∂µh

νρ∂µhνρ, LII = −1

2
∂µh

µρ∂νh
ν
ρ,

LIII =
1

2
∂µh∂ρhµρ, LIV = −1

4
∂µh∂

µh. (3.41)

The first term is strictly needed for the propagation of spin two particles, and we

give it the conventional normalization. Before proceeding to the dynamical analy-

sis, which will be done in Subsection 2.4, it will be useful to consider the possible

symmetries of (3.40) according to the values of β, a and b.

3.5 Intermediate states

Let us consider (cf. for example, [?]) the free energy in the presence of arbitrary

conserved sources. This quantity is an exceedingly useful one to consider, because in

summarizes in a very simple way the physical content of the theory. We shall assume

two spatially disconnected sources: Tαβ ≡ (T1)αβδ
(3)(~x − ~x1) + (T2)αβδ

(3)(~x − ~x2),

with

∂α(T1)αβ = ∂α(T2)αβ = 0 (3.42)

Keeping only the term bilinear in the sources, assumed to act for a total time interval∫
dx0 ≡ T , one easily gets:

W = −2

3
T

∫
d3k

1

~k2 +m2
ei
~k(~x−~y)E12 (3.43)

Starting with the massive Fierz-Pauli theory, the answer stemming from (3.5) is

E12 = (tr T1tr T2 − 3tr T1T2) (3.44)

In the massless case, the Fierz-Pauli interacion energy in the harmonic gauge is

proportional instead to

E12 ≡
1

2
(2trT1T2 − (tr T1)(tr T2)) (3.45)

Even forgetting about the coefficients, there is a mismatch of 3/2 in the term tr T1T2;

this is the famous van Dam-Veltman discontinuity ([?]), which indicates that there

is some sort of non smoothness in the massless limit.

In full 8 detail:

E12 =
1

2
T 00

1 (T 00
2 + T 11

2 + T 22
2 + T 33

2 ) +
1

2
T 11

1 (T 00
2 + T 11

2 − T 22
2 − T 33

2 ) +

1

2
T 22

1 (T 00
2 − T 11

2 + T 22
2 − T 33

2 ) +
1

2
T 33

1 (T 00
2 − T 11

2 − T 22
2 + T 33

2 ) +

2
(
T 12

1 T 12
2 + T 13

1 T 13
2 + T 23

1 T 23
2 − T 01

1 T 01
2 − T 02

1 T 02
2 − T 03

1 T 03
2

)
(3.48)

8t The resulting expression can be further simplified using current conservation:

T 00 =
κ

ω
T 03 =

κ2

ω2
T 33

T 0i =
κ

ω
T 3i (3.46)
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In order to identify possible off-shell intermediate states in the massless Fierz-

Pauli theory, it is useful to transform the expression (3.48) (that is, before using

current conservation) into the suggestive form proposed by Dicus and Willenbrock

[?].

E12 =
1

2
(T 11

1 − T 22
1 )(T 11

2 − T 22
2 ) + 2T 12

1 T 12
2 +

2
(
T 13

1 T 13
2 + T 23

1 T 23
2 − T 01

1 T 01
2 − T 02

1 T 02
2

)
∗

1

6
[2(T 00

1 − T 33
1 ) + T 11

1 + T 22
1 ][2(T 00

2 − T 33
2 ) + T 11

2 + T 22
2 ]

−1

6
[−T 00

1 + T 11
1 + T 22

1 + T 33
1 ][−T 00

2 + T 11
2 + T 22

2 + T 33
2 ]

(3.49)

This can be easily checked: in order for the coefficient of T 00
1 in (3.49) to be the same

as the one in (3.48) we have to add a term T 00
1 T 33

2 , and also if we want the coefficient

of T 33
1 in (3.49) to be the same as in (3.48) we have to add another term T 33

1 T 00
2 .

But in order for the coefficients of T 03
1 to match, we have to add −2T 03

1 T 03
2 , which

exactly cancel owing to the conservation of the energy momentum tensor.

This expansion can be spelled down physically as follows. Let us introduce a

real basis of polarizations in the generic case as

ε3 = e(0) ⊗ e(0) − e(1) ⊗ e(1)

ε4 = e(0) ⊗ e(1) + e(1) ⊗ e(0)

ε5 = e(0) ⊗ e(2) + e(2) ⊗ e(0) (3.50)

Then the second line of (3.49) is proportional to:

T µν1 (2ε4 + ε5)µν(2ε4 + ε5)ρσT
ρσ
2 (3.51)

and the third one to

T µν1 (ε2 + 2e3)µν(ε2 + 2e3)ρσT
ρσ
2 (3.52)

whereas the last one is a spin zero contribution

T µν1 (ε1 + ε2 + e3)µν(ε1 + ε2 + e3)ρσT
ρσ
2 (3.53)

getting

E12 =
1
2

(T 11
1 − T 22

1 )(T 11
2 − T 22

2 ) + 2T 12
1 T 12

2

+
m2

2ω2
(T 11

1 + T 22
1 )T 33

2 + 2
m2

ω2
(T 13

1 T 13
2 + T 23

1 T 23
2 )

+
1
2
T 33

1

(
m4

ω4
T 33

2 −
m2

ω2
(T 11

2 + T 22
2 )
)

(3.47)

This clearly shows that in the massless limit only the two polarizations in (3.18) contribute (cf.
[?][?]) to this physical observable.
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which obviously does not correspond to spin two, but is nevertheless neccessary to

cancel the contribution of the unphysical polarizations in the massless case. So that

not only are off-shell spin zero components allowed by the theory as intermediate

states, but as has been pointed out by Dicus and Willenbrok, they are actually

neccessary for consistency. The appearance of these components was first pointed

out in [?].

Coming back to our main theme, a natural question is how can we experimen-

tally discriminate between both theories? There is an easy answer, namely that

graviton scattering amplitudes are expected to be different in detail. But unfortu-

nately, graviton scattering data do not abound.

A most interesting, and perhaps feasible experiment would be to weigh the vac-

uum energy, i.e. Casimir energy. Indeed, under the restricted variations in (??)

which we have labelled δtgµν , the vacuum energy does not affect 9 the equations of

motion.

A related point is the following. Granting that the two Einstein theories are in-

deed different at the quantum level, the most important physical question is whether

this improves or otherwise reformulates in some way the problem of the cosmological

constant. Interesting suggestions in this direction have been made by [?] and [?],

although no compelling model exists yet.

3.6 TDiff and enhanced symmetries.

Under a general transformation of the fields hµν 7→ hµν + δhµν , and up to total

derivatives, we have

δLI = −1

2
δhµν2h

µν ,

δLII = δhµν∂
ρ∂(µhν)

ρ ,

δLIII = −1

2

(
δh∂µ∂νhµν + δhµν∂

µ∂νh
)
,

δLIV =
1

2
δh2h. (3.54)

It follows that the combination [6]

LA ≡ LI + LII (3.55)

is invariant under restricted gauge transformations

δhµν = 2∂(µξν), (3.56)

with

∂µξ
µ = 0. (3.57)

9This point has been developed in discussions with Tomás Ort́ın.
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Since LIII and LIV are (separately) invariant under this symmetry, the most general

TDiff invariant Lagrangian has β = 1, and arbitrary coefficients a and b:

LTDiff ≡ LA + a LIII + b LIV . (3.58)

An enhanced symmetry can be obtained by adjusting a and b appropriately. For

instance, a = b = 1 corresponds to the Fierz-Pauli Lagrangian [?], which is invariant

under full diffeomorphisms (Diff), where the condition (3.57) is dropped. In fact,

a one parameter family of Lagrangians can be obtained from the Fierz-Pauli one

through non-derivative field redefinitions,

hµν 7→ hµν + λhηµν , (λ 6= −1/n) (3.59)

where n is the space-time dimension and the condition λ 6= −1/n is necessary for

the transformation to be invertible. Under this redefinition, the parameters in the

Lagrangian (3.58) change as

a 7→ a+ λ (an− 2) , b 7→ b+ 2λ(nb− a− 1) + λ2(bn2 − n(2a+ 1) + 2). (3.60)

Starting from a = b = 1, the new parameters are related by

b =
1− 2a+ (n− 1)a2

(n− 2)
. (3.61)

It follows that Lagrangians where this relation is satisfied are equivalent to Fierz-

Pauli, with the exception of the case a = 2/n, which cannot be reached from a = 1

with λ 6= −1/n.

A second possibility is to enhance TDiff with an additional Weyl symmetry,

δhµν =
2

n
φηµν , (3.62)

by which the action becomes independent of the trace. In the generic transverse

Lagrangian LTDiff [hµν ] of Eq. (3.58), replace hµν with the traceless part

hµν 7→ ĥµν ≡ hµν − (h/n)ηµν . (3.63)

This is formally analogous to (3.59) with λ = −1/n, but cannot be interpreted as

a field redefinition. As such, it would be singular, because the trace h cannot be

recovered from ĥµν . The resulting Lagrangian

LWTDiff [hµν ] ≡ LTDiff [ĥµν ], (3.64)

is still invariant under TDiff [the replacement (3.63) does not change the coefficients

in front of the terms LI and LII ]. Moreover, it is invariant under (3.62), since ĥµν
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is. Using (3.60) with λ = −1/n, we immediately find that this “WTDiff” symmetry

corresponds to Lagrangian parameters

a =
2

n
, b =

n+ 2

n2
. (3.65)

This is the exceptional case mentioned at the end of the previous paragraph. Note

that the densitized metric g̃µν = g−1/ngµν ≈ ηµν + ĥµν enjoys the property that g̃ = 1.

This is the starting point for the non-linear generalization of the WTDiff invariant

theory, which is discussed in Subsection 2.5.

It is easy to show that Diff and WTDiff exhaust all possible enhancements of

TDiff for a Lagrangian of the form (3.40) (and that, in fact, these are its largest

possible gauge symmetry groups). Note first, that the variation of LI involves a

term 2hµν . For arbitrary hµν , this will only cancel against other terms in (3.54)

provided that the transformation is of the form

δhµν = 2∂(µξν) +
2φ

n
ηµν , (3.66)

for some ξµ and φ. The vector can be decomposed as

ξµ = ηµ + ∂µψ (3.67)

where ∂µη
µ = 0. Using (3.54) we readily find

δL = ην(β − 1)2(∂µh
µν)

+
ψ

2

[
(b− a)22h+ (2β − a− 1)2(∂µ∂νh

µν)
]

+
φ

n
[(bn− a− 1)2h+ (2β − na)∂µ∂νh

µν ] . (3.68)

TDiff corresponds to taking β = 1, with arbitrary transverse ηµ and with φ = ψ = 0.

This symmetry can be enhanced with nonvanishing φ and ψ satisfying the relation

n(a− 1)2ψ = 2(2− an)φ, (3.69)

provided that

b =
1− 2a+ (n− 1)a2

(n− 2)
. (3.70)

Eq. (3.69) ensures the cancellation of the terms with ∂µ∂νh
µν , and Eq. (3.70)

eliminates terms containing the trace h. Eq. (3.70) agrees with (3.61), and therefore

the Lagrangian with the enhanced symmetry is equivalent to Fierz-Pauli, unless

a = 2/n, which corresponds to WTDiff10.

10Incidentally, it may be noted that for n = 2 both possibilities coincide, since in this case the
symmetry of the Fierz-Pauli Lagrangian is full diffeomorphisms plus Weyl transformations.
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3.7 Comparing Diff and WTDiff

Let us briefly consider the differences between the two enhanced symmetry groups.

A first question is whether the Fierz-Pauli theory LDiff is classically equivalent to

LWTDiff . Since Diff includes TDiff, we can use (3.64) to obtain

δSWTDiff [h]

δhµν
=
δSDiff [ĥ]

δĥρσ

(
δµ(ρδ

ν
σ) −

1

n
ηρση

µν

)
. (3.71)

Hence, the WTDiff equations of motion are traceless

δSWTDiff [h]

δhµν
ηµν ≡ 0.

In the WTDiff theory, the trace of h can be changed arbitrarily by a Weyl transfor-

mation, and we can always go to the gauge where h = 0. Likewise, in the familiar

Diff theory we can choose a gauge where h = 0. Then, hµν = ĥµν , and the WTDiff

equations of motion (e.o.m.) are just the traceless part of the Fierz-Pauli e.o.m.

Differentiating Eq. (3.71) with respect to xµ and using the Bianchi identity

∂ρ

(
δSDiff [h]

δhρσ

)
= 0,

one easily finds that δSWTDiff [h]/δhµν = 0 implies

δSDiff [h]

δhρσ
ηρσ = Λ.

Hence, the trace of the Fierz-Pauli e.o.m. is also recovered from the WTDiff e.o.m.

(in the gauge h = 0), up to an arbitrary integration constant Λ which plays the role

of a cosmological constant11 . Thus, the two theories are closely related, but they

are not quite the same.

Let us now consider the relation between the corresponding symmetry groups.

Acting infinitesimally on hµν they give

δDhµν = 2∂(µξν) = 2∂(µην) + ∂µ∂νψ (3.72)

δWTDhµν = 2∂(µη̄ν) +
2

n
φηµν (3.73)

where ∂µη
µ = ∂µη̄

µ = 0. In (3.72) we have decomposed ξν = ην +∂νψ into transverse

and longitudinal part. The intersection of Diff and WTDiff can be found by equating

(3.72) and (3.73)

2∂(µην) + ∂µ∂νψ = 2∂(µη̄ν) +
2

n
φηµν . (3.74)

11Here we assume Λ = O(h).
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Taking the trace, we have

2ψ = 2φ. (3.75)

The divergence of (3.74) now yields

2(η̄µ − ηµ) =
n− 1

n
2∂µψ. (3.76)

Taking the divergence once more, we have

2φ = 0. (3.77)

Taking the derivative of (3.76) with respect to ν, symmetrizing with respect to µ and

ν, and using (3.74) and (3.75), we have (n − 2)∂µ∂ν2ψ = 0. For n 6= 2 this implies

∂µ∂νφ = 0, i.e.

φ = bµx
µ + c,

where bµ and c are constants. Hence, not every Weyl transformation belongs to Diff,

since only the φ’s which are linear in xµ qualify as such. Conversely, the subset of Diff

which can be expressed as Weyl transformations are the solutions of the conformal

Killing equation for the Minkowski metric [?],

∂(µξ
CD
ν) =

1

n
φηµν , (3.78)

where φ = ∂ρξCDρ (and, as shown above, φ has to be a linear function of xµ). These

solutions generate the so called conformal group, which we may denote by CDiff. In

conclusion, the enhanced symmetry groups Diff and WTDiff are not subsets of each

other. Rather, their intersection is the set of TDiff plus CDiff.

3.8 Traceless Fierz-Pauli and WTDiff

• An alternative route to the WTDiff invariant theory is to try and construct a

Lagrangian which will yield the traceless part of Einstein’s equations.

It is clear, however, that we can only obtain traceless equations of motion from

a Lagrangian which is invariant under Weyl transformations. If the e.o.m. are

traceless, then δS = 0 for variations of the form for δhµν ∝ ηµν . This symmetry

is not included in Diff, and therefore the traceless part of Einstein’s equations

cannot be recovered from this Lagrangian in every gauge. Rather, we should

look for a Lagrangian which will yield the traceless part of Einstein’s equations

in some gauge.

Let us consider the Diff e.o.m. in momentum space

δSDiff [h]

δhρσ
= Dρσµν

Diff hµν , (3.79)
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where

8Dµνρσ
Diff = k2 (ηµρηνσ + ηµσηνρ − 2ηµνηρσ)−

(kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ − 2kµkνηρσ − 2kρkσηµν) .(3.80)

We can also define the traces

trDρσ
Diff = ηµνD

µνρσ
Diff =

n− 2

4

(
kρkσ − k2ηρσ

)
,

tr trDDiff = ηµνηρσD
ρσµν
Diff = −(n− 1)(n− 2)

4
k2. (3.81)

The traceless part of the Dρσµν
Diff ,

8
(
Dt

Diff

)µνρσ
= 8

(
Dµνρσ

Diff −
1

n
ηµνtr Dρσ

Diff

)
=

k2

(
ηµρηνσ + ηµσηνρ + 2

(
n− 2

n
− 1

)
2ηµνηρσ

)
−(

kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ − 2kµkνηρσ + 2

(
n− 2

n
− 1

)
kρkσηµν

)
.

cannot be derived from a Lagrangian for any dimension n 6= 2 as it is not sym-

metric in the indices (ρσ) vs. (µν). Nevertheless, we can still define traceless

symmetric Lagrangians. One might think of substituting ηµν in the previous

expression by tr Dµν
Diff , and dividing by its trace. However, this would be non-

local.

• Some people [69] define

8
(
D̂Diff

)µνρσ
= 8

(
Dµνρσ

Diff −
1

n− 2
ηµνtr Dρσ

Diff

)
=

k2 (ηµρηνσ + ηµσηνρ)− (kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ − 2kµkνηρσ) .

• A very important property is the transverse character. Actually, we shall prove

that

Dµν(h) =
1

4

(
k2 (hµν − hηµν)−

(
kµk

λhλν + kνk
λhµλ − kµkνh− ηµνkλkσkλσ

))
=

2kληµνλ = 2∂ληµνλ (3.82)

The tensor η is not uniquely defined [69]. Let us simply show just one possibility

ηµνλAD = −∂σKµλνσ (3.83)

where the superpotential is given by

Kµνρσ ≡
1

2

(
ηµσh̄νρ + ηνρh̄µσ − ηµρh̄νσ − ηνσh̄µρ

)
=

1

2
((ηµρηνσ − ηνρηµσ)h+ ηµσhνρ + ηνρhµσ − ηµρhνσ − ηνσhµρ)
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enjoys exactly the same set of symmetries as the Riemann tensor, and is defined

in terms of the convenient variable

h̄µν ≡ hµν −
1

2
hηµν (3.84)

Indeed

kσKµνρσ =
1

2

(
(ηµρkν − kµηνρ)h+kµhνρ+ηνρk

σhµσ−ηµρkσhνσ−kνhµρ
)

(3.85)

and

kνηADµρν = kνkσKµνρσ =
1

2

((
k2ηµρ − kµkρ

)
h+ kµk

νhνρ + kρk
σhµσ − ηµρkνkσhνσ − k2hµρ

)
=

−2Dµρνσh
νσ (3.86)

• For a local Lagrangian which is still invariant under TDiff, we must restrict to

deformations which correspond to changes in the parameters a and b in (3.40).

The most general symmetric Lagrangian with these properties is of the form

Dµνρσ
tDiff ≡ Dµνρσ

Diff − η
µνDρσ −Dµνηρσ, (3.87)

with Dρσ a symmetric operator at most quadratic in the momentum. Asking

that the result be traceless leads to:

Mµν =
1

n
(tr Dµν

Diff − (tr M)ηµν) , (3.88)

which implies

tr M =
1

2n
tr tr DDiff . (3.89)

Therefore

Mµν =
1

n

(
tr Dµν

Diff −
1

2n
(tr tr DDiff)ηµν

)
, (3.90)

and we can write

8Dµνρσ
tDiff = k2 (ηµρηνσ + ηµσηνρ)− (kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ)

−2(n+ 2)

n2
k2ηµνηρσ +

4

n
(kµkνηρσ + kρkσηµν). (3.91)

Moving back to the position space, this corresponds to the WTDiff Lagrangian,

i.e. the case a = 2
n

and b = n+2
n2 in (3.58). As shown before, this yields the

traceless part of the Fierz-Pauli e.o.m. in the gauge h = 0.

A similar analysis could be done for the massive case. However, as we shall see in

the next section, the corresponding Lagrangian has a ghost.
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3.9 Dynamical analysis of the general massless Lagrangian.

The little group argument mentioned in the introduction indicates that the quantum

theory is not unitary unless the Lagrangian is invariant under TDiff. In fact, in

the absence of TDiff symmetry the Hamiltonian is unbounded below. This leads to

pathologies such as classical instabilities or the existence of ghosts.

To show this, as well as to analyze the physical degrees of freedom of the general

massless theory (3.40), it is very convenient to use the “cosmological” decomposition

in terms of scalars, vectors, and tensors under spatial rotations SO(3) (see e.g. [?]),

h00 = A

h0i = ∂iB + Vi

hij = ψδij + ∂i∂jE + 2∂(iFj) + tij (3.92)

where ∂iFi = ∂iVi = ∂itij = tii = 0. The point of this decomposition is that in the

linearized theory the scalars (A,B, ψ,E), vectors (Vi, Fi) and tensors (tij) decouple

from each other. Also, we can easily identify the physical degrees of freedom without

having to fix a gauge (see Appendix A).

The tensors tij only contribute to LI , and one readily finds

(t)L = −1

4
tij2tij (3.93)

The vectors contribute both to LI and LII . Working in Fourier space for the spatial

coordinates and after some straightforward algebra, we have

(v)L =
1

2
κ2
(
V i − Ḟ i

)2

+
1

2
(β − 1)

(
κ2F i + V̇ i

)2

. (3.94)

For β = 1, corresponding to TDiff symmetry, there are no derivatives of V i in the

Lagrangian. Variation with respect to V i leads to the constraint V i− Ḟ i = 0, which

upon substitution in (??) shows that there is no vector dynamics.

Other values of β lead to pathologies. The Hamiltonian is given by

(v)H =
(ΠF + κ2V )2

2κ2
− [ΠV + (1− β)κ2F ]2

2(1− β)
+

(1− β)κ4F 2

2
− κ2V 2

2
, (3.95)

where the momenta are given by ΠF = κ2
(
Ḟ − V

)
and ΠV = (β − 1)

(
κ2F + V̇

)
,

and we have suppressed the index i in the vectors F and V . Because of the alternating

signs in Eq. (3.95), the Hamiltonian is not bounded below. Generically this leads to a

classical instability. The momenta satisfy the equations Π̇F = κ2ΠV and Π̇V = −ΠF .

These have the general oscillatory solution

|κ|ΠV + i ΠF = C exp i(|κ|t+ φ0),
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where C and φ0 are real integration constants. On the other hand, V and F satisfy

V̈ + κ2V =
−β

(β − 1)
ΠF , (3.96)

F̈ + κ2F =
β

(β − 1)
ΠV . (3.97)

For β 6= 0 these are equations for forced oscillators. For large times, the homogeneous

solution becomes irrelevant and we have

V + i|κ|F ∼
(

βCt

(β − 1)|κ|

)
exp i(|κ|t+ φ0),

whose amplitude grows without bound, linearly with time. This classical instability

is not present for β = 0. However, in this case F and V decouple and we have

(v)Lβ=0 =
1

2
κ2(∂µF

i)2 − 1

2
(∂µV

i)2,

so Vi are ghosts.

Hence, the only case where the vector Lagrangian is not problematic is β = 1,

corresponding to invariance under TDiff. The scalar Lagrangian is then given by12

(s)LTDiff =
1

4

[
(∂µA)2 − 2κ2(∂µB)2 +N(∂µψ)2 − 2κ2∂µψ∂

µE + κ4(∂µE)2
]

− 1

2

[
(Ȧ+ κ2B)2 − κ2Ḃ2 − κ2ψ2 + 2κ4Eψ − κ6E2 + 2κ2Ḃ(ψ − κ2E)

]
+
a

2

[
(Ȧ−Nψ̇ + κ2Ė)(Ȧ+ κ2B)− κ2(A−Nψ + κ2E)(Ḃ − ψ + κ2E)

]
− b

4

[
∂µ(A−Nψ + κ2E)

]2
, (3.98)

where N = n− 1 is the dimension of space. It is easy to check that B is a Lagrange

multiplier, leading to the constraint

(N − 1)ψ = (a− 1)h, (3.99)

where h = A−Nψ + κ2E is the trace of the metric perturbation. Substituting this

back into the scalar action (3.98) we readily find

(s)LTDiff = −∆b

4
(∂µh)2, (3.100)

where

∆b ≡ b− 1− 2a+ (n− 1)a2

n− 2
. (3.101)

Hence, the scalar sector contains a single physical degree of freedom, proportional to

the trace. Whether this scalar is a ghost or not is determined by the parameters a

and b. For b = (1−2a+(n−1)a2)/(n−2), corresponding to the enhanced symmetries

which we studied in the previous subsection, the scalar sector disappears completely,

and we are just left with the tensor modes.
12The equivalent expression in terms of gauge invariant combinations is given in Appendix A.
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4. Conceptual issues in quantum gravity. The diffeomorphism

group

All theories of gravity we are going to be interested at are invariant under (a subgroup

of) the group of all diffeomorphisms of the spacetime manifold (perhaps keeping

invariant some boundary conditions).

We shall represent diffeomorphisms (diffs) without any loss of generality as a

local translation:

y = x+ ξ(x) ≡ Tξ(x)x (4.1)

so that

δx ≡ y − x ≡ ξ(x) (4.2)

and the jacobian must enjoy a nonvanishing determinant

det
(
δαβ + ∂βξ

α
)
6= 0 (4.3)

The group law is mapping composition:

η ◦ ξ ≡ x→ x+ ξ(x) + η(x+ ξ(x)) (4.4)

The inverse diff

x = y + ξ−1(y) (4.5)

(this is just the definition of ξ−1(y)). In order to compute it, we start from

x+ ξ(x) = y = x− ξ−1(y) (4.6)

so that

ξ
(
y + ξ−1(y)

)
+ ξ−1(y) ≡ T

(
ξ−1(y)

)
ξ(y) + ξ−1(y) = 0 (4.7)

as well as

ξ(x) + ξ−1 (x+ ξ(x)) = 0 (4.8)

This means that, at least formally,

ξ(−1)µ(x) = −T−1(ξ)ξµ = −ξµ+ξλ∂λξ
µ+ξλ∂λ (ξσ∂σξ

µ)+
1

2
ξλξσ∂λ∂σξ

µ+O(ξ4) (4.9)

where we 13 define the differential operator that translates the argument of a function

as the corresponding Taylor series:

T (ξ) ≡
∑ 1

n!
ξa1 . . . ξan∂a1 . . . ∂an (4.12)

13This fact can be checked in the analytic case by expanding

ξµ ≡
∑

Eµ α1...αnx
α1 . . . xαn (4.10)

and assuming all constant coefficients Eµ α1...αn to be of the same order ε. One finds by equating
the formal power series that

ξ(−1)µ = (−Eµ + EµνE
ν) +

(
−Eµν + EµρE

ρ
ν + 2EµρνE

ρ
)
xν +O(ε2) (4.11)
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In spite of the name of translations, those operators do not commute in general:

[T (ξ), T (η)] = T ([ξ, η]) + . . . (4.13)

By definition,

T−1(ξ) = T (ξ−1) = 1−
(
ξα − ξβ∂βξa

)
∂α +O(ξ2) (4.14)

This means that BCH formulas (confer [9]) are in principle not valid for these

generalized exponentials.

Acting now with a second diff

z = y + η(y) (4.15)

the composition of the two is still another diff:

z = x+ ξ(x) + η (x+ ξ(x)) = x+ ξ(x) + T (ξ)η(x) (4.16)

Clearly

za = xa + ξa(x) + ηa(x) + ∂bη
aξb +O(ξ2) (4.17)

so that, to linear order

η ◦ ξ = η + ξ + (ξ.∂)η (4.18)

and

[η, ξ] = £(ξ)η (4.19)

The group Diff(M) is not locally compact for n > 1. We shall call large diffs those

that are not continuously connected to the identity. The set of all small diffs is

denoted as Diff0(M)

The component group is the mapping class group (MMG).

MCG(M) = Diff(M)/Diff0(M) (4.20)

If we call Diff 1
x(M) the little group (stabilizer) of x, then

M ∼ Diff(M)/Diff 1
x(M) (4.21)

If the manifold is endowed with a measure, say m(M), than there is a natural sub-

group ofDiff(M), namely the subgroup of all diffs which preserve the given measure,

Diff(M,m).

The linear subgroup ofDiff(M) isGL(n) and the corresponding linear subgroup

of TDiff(M) is SL(n). General mathematical references are [85][54].
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4.1 Coordinates in Diff(M)

Given a vector field, ξ(x), there is a one parameter subgroup of diffs generated by it,

i.e., More precisely, a one-parameter subgroup is defined by the system of ordinary

differential equations associated to the vector field ξ(x):

dxα

dt
= ξα

(
xβ(t)

)
(4.22)

The integral curves are

xα′ = fα (t, xa) (4.23)

with initial conditions such that

xα = fα (0, xα) (4.24)

Then the mapping

ft : x0 ≡ x→ xt ≡ x′ (4.25)

is a local group of diffs.

Expanding in powers of t, it is easily discovered that

xα′ = xα + tξα +
t2

2
ξβ∂βξ

α +
t3

6

(
ξβ∂βξ

γ∂γξ
α + ξβξγ∂β∂γξ

α
)

+O(t4) (4.26)

Nevertheless it is well-known that there are in general diffs (even arbitrarily close

to the identity) that do not lie on one-parameter subgroups. An explicit example is

the C∞ diff in C
z → e

2πi
N z + α zN+1 (4.27)

The statement is that this diff does not lie on a one-parameter subgroup of diffs

ξ(t) : C→ C (4.28)

with ξ(0) = 1. The result is essentially contained in previous work by Sternberg [75].

Freifeld’s proof [40] consists in an explicit analysis of the expansion

ξ(t, z, z̄) =
∞∑

m,n=0

am.n(t)zmz̄n (4.29)

An even simpler example in the circle S1, put forward by Milnor [64] is

θ → θ +
π

N
+ ε sin2 (Nθ) = θ +

π

N
+ ε

1− cos 2Nθ

2
≡ fM(θ) (4.30)

with 0 < ε < 1
N

, in such a way that

dfM
dθ

= 1 + εN sin 2Nθ 6= 0. (4.31)
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The claim is that there is no vector ξ such that

f(θ) = Exp(ξ) (4.32)

although there is a representation in terms of several exponentials:

f(θ) = Exp(ξ1) ◦ . . . ◦ Exp(ξk) (4.33)

The proof of this statement is really simple. There is always a point with period 2n,

namely the origin θ = 0. If we iterate fM we get

0→ π/n→ 2π/n→ . . . (2n)π/n (4.34)

On the other hand, no other point 0 < θ0 < π/n is congruent with its iterated image,

because, θ1 ≡ fM(θ0) satisfies

θ0 + π/n < θ1 < 2π/n (4.35)

and

θ1 + π/n < θ2 < 2π/n (4.36)

and so on. Now Milnor shows that there is no f such that

fm = f ◦ f (4.37)

This is stronger than we claimed, because if fM = Exp(v) then of course fM =

Exp(v/2) ◦ Exp(v/2). Noe a very simple diagrammatic analysis shows that if an

arbitrary function f has orbits of even period, say 2m then f ◦ f gets two orbits of

half-period, m. If f has orbits of odd period, 2p + 1, then there is also an orbit of

f ◦ f with the same odd period. The point is that this shows that the number of

orbits of even period for any function of the type f ◦ f must be even.

Now we just saw that fM has one orbit of period 2n, namely the one correspond-

ing to θ = 0.

It is also curious no remark that there are unimodular diffs such that the gener-

ating vector is not transverse, i.e. in R2

x→ −ey

y → xe−y (4.38)

and ∂aξ
a = −2− xe−y 6= 0.

The reason seems to be that it is not smoothly connected with the identity.

Even for diffs which are connected to the identity, the divergenceless condition

only holds to first order. Let us consider, for example,

x→ ex − 1

y → ye−x (4.39)
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Then

ξ =
(
ex − 1− x, y(e−x − 1)

)
(4.40)

and

∂iξ
i = ex + e−x − 2 = 0 +O(x2) (4.41)
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4.2 Integration over Diff 1
x

We can in principle write

ξµ = ξµT + ξµL (4.42)

where

ξµT ≡ ξµ − ∂µ2−1∂αξ
α

and

ξµL ≡ ∂µ2−1∂αξ
α

It is plain that

∂αξ
α
T = 0

This decomposition is unique to the extent that the inverse of the laplacian is unique.

This will need some boundary conditions in general.

Transverse diffeomorphisms for a subgroup, that leaves invariant the Lebesgue

measure on Rn.

Some geometric properties, in particular the sectional curvature of the subgroup

TDiff in the case of the torus have been considered by Arnold [9].
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4.3 Observables in quantum gravity.

What is the meaning of background independence? Is is the same thing as to say that

quantum gravity is got to be a topological theory, such as Chern-Simons theories?
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4.4 Fields

The active interpretation of a diff

y = f(x) (4.43)

leads to

(f ∗φ)(x) ≡ φξ(x) ≡ φ(y) (4.44)

This means that

φξ(x) = φ (x+ ξ(x)) = T (ξ)φ(x) (4.45)

Lagrangian densities in QFT are usually scalars. In the linear approximation,

δφ = ξa∂aφ (4.46)

A vector field obeys

(f∗V )µ(y) = V α(x)∂αf
µ (4.47)

and a one-form

(f ∗ω)µ(x) ≡ ωξµ(x) = ωα(y)∂µf
α (4.48)

The metric transforms as a covariant tensor:

gξαβ(x) =
∂fγ

∂xα
∂f δ

∂xβ
gγδ(y) (4.49)

and the determinant transform as

gξ(x) = J(y/x)2g(y) (4.50)

where

J(y/x) ≡ det
∂fγ

∂xα
= J(x/y)−1 (4.51)

The jacobian can be expanded:

J(x/y) = det (δab − ∂bξa) = etr log(δ
a
b−∂bξ

a) =

1− ∂aξa +
1

2
(∂aξ

a)2 − 1

2
∂aξ

b∂bξ
a +O(ξ3) (4.52)

The subgroup of those diffs that enjoy unit determinant, 14 dubbed TDiff in a pre-

vious paper of ours, correspond to “transverse vectors”

∂aξ
a = 0 (4.53)

We shall reserve the name unimodular for exactly those diffs, and not for the ones

that leave the metric volume element invariant (cf. later on in this paper).

14This is called by Arnold, SDiff.
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Nevertheless it has already been remarked that there are in general (that is, in

more than one dimension) diffs (even arbitrarily close to the identity) that do not lie

on one-parameter subgroups.

When the manifold is endowed with a metric (which did not play any role until

now), its determinant is usually considered to transform (more on this later) as:

δg = −2∂aξ
ag (4.54)

so that

δ
√
|g|φ = −∂a

(√
|g|φξa

)
= −∇a

√
|g| (φξa) (4.55)

which is the origin of the usual recipe to build diff- invariant actions: the lagrangian

is a scalar times the square root of the determinant of the metric tensor.

4.5 Fake gauge theories

It is well known (cf [38]) that any theory can be made gauge invariant by means of

a sort of group averaging.

Assume a lagrangian

L(φ, ∂φ) (4.56)

which includes matter fields that transform under a certain representation of a group

G, g ∈ G
φg ≡ D(g)φ (4.57)

Let us now perform a local transformation U(x) ∈ G, so that the lagrangian reads

L (U(x)φ(x), ∂a (Uφ)) (4.58)

Now

∂a (Uφ) = ∂aUφ+ U∂aφ = U
(
∂a + U−1∂aU

)
φ ≡ U (∂a + AaU)φ ≡ UDaφ (4.59)

where we have introduced the “fake gauge field”

Aa ≡ U−1∂aU (4.60)

The resulting theory is obviously invariant under

U → UV −1(x)

φ→ V (x)φ (4.61)

which leaves the combination Uφ invariant. The transformation of the “fake” field

U is fixed by this requirement of redundancy. The original theory is then recovered

in the unitary gauge, U = 1.

The construct Aa transforms as a true gauge field:

Aa → V (Aa + ∂a)V
−1 (4.62)
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4.6 Fake Diff

It is also well known that any theory can be put in a covariant (diff invariant)

language.

For example, if we have a theory invariant under the subgroup of diffs with unit

determinant, namely, TDiff, such as

S =

∫
d4xΦ(x) (4.63)

We can formally write the transformed lagrangian

L = T (V )Φ ≡
∑ 1

n!
V a1 . . . V an∂a1 . . . ∂anΦ (4.64)

which is invariant under

Φ→ T (η)Φ

T (V )→ T (V )T−1(η) (4.65)

This yields for the first few terms of the part linear in η:

V a
η = V a − ηa + V c∂cη

a − 1

2
V cV d∂c∂dη

a +O(∂3η) (4.66)

An amusing thing is that, contrasting with the compensator mechanism that was

proposed in [5], the equation of motion of the new field V a is

δS

δV a
=
∑ 1

(n− 1)!
V a2 . . . V an∂a∂a2 . . . ∂anΦ = 0 (4.67)

which is verified by

Φ = constant (4.68)

whereas in the compensator mechanism the analogous equation did imply

Φ = 0 (4.69)

All this is a bit formal. To be specific, let us write

S[Φ, V ] ≡
∫
d4xΦ(x+ V (x)) =

∫
d4yJ(x/y)Φ(y) =

∫
d4y

1

|det (δµρ + ∂ρV µ) |
Φ(y)

(4.70)

where

y ≡ x+ V (x) (4.71)

Under a further diff,

z = y + ξ (4.72)
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S[Φ, V ] =

∫
d4zJ(y/z)J(x/y)Φ(z) =

∫
d4zJ(x/z)Φ(z) =∫

d4y
1

|det (δµρ + ∂ρV µ + ∂ρξµ) |
Φ(y) (4.73)

so that the action is invariant if we define

Vξ = V + ξ (4.74)

In particular, if we demand that∫
d4x

1

|det
(
δµρ + ∂ρV

µ
ξ

)
|
Φξ(x) =

∫
d4x

1

|det (δµρ + ∂ρV µ) |
Φ(x) (4.75)

we are led to
1

|det
(
δµρ + ∂ρV

µ
ξ

)
|

= J(x/y)
1

|det (δµρ + ∂ρV µ) |
(4.76)

that is

|det
(
δµρ + ∂ρV

µ
ξ

)
| = J(y/x)|det

(
δµρ + ∂ρV

µ|
)
| (4.77)

whose linear part is

1 + ∂µV
µ
ξ = (1 + ∂αξ

α)(1 + ∂βV
β) (4.78)

leading again to

Vξ = V + ξ (4.79)
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5. The effective field theory approach

Let us now summarize the things that can be learned from the bottom-up approach.

This is solid knowledge (with some caveats). What happens is that almost all the

important questions we hope to understand with quantum gravity, such as the reso-

lution of singularities etc, shy away from the region of applicability of the low energy

effective field theory approach. Nevertheless this seems to us the only ladder we can

step on to try and get a higher view of the complications of the subject.

The coupling constant of general relativity, κ, has mass dimension [κ] = −1.

The Planch mass is defined as

Mp ≡
1

κ
(5.1)

If we assume that the fundamental symmetry of gravity is Diff(M) invariance, then

according to the Wilsonian wisdom the most general lagrangian that includes gravi-

tation assuming that new physics appears at a scale Λ can be written as:

S =

∫
d4x
√
ḡ
(
c0Λ4 + c1Λ2R̄ + c2R̄

2 +
c3

Λ2
R̄4 + . . .

+
1

2
∇̄µφ∇̄µφ+ c4R̄φ

2 +
c5

Λ2
R̄2φ2 +

c6

Λ2
R̄µν∇̄µφ∇̄νφ+ . . .

)
(5.2)

where R̄n represents some trace of the n-th power of the background Riemann tensor,

and cn are dimensionless constants.

Now, experiment tells us that

c1Λ2 = M2
p (5.3)

so that, barring very small or else very big values for the constant c0, this means

that

Λ ∼Mp (5.4)

which in turn make unavoidable the prediction that the cosmological constant should

be of order M4
p unless c0 is finely tuned to 60 decimal places or so.

The experimental fact that the value of the cosmological constant is instead of

the same order of magnitude as the Hubble constant

λobs ∼ H0 ∼ 10−60Mp (5.5)

is probably an indication of some subtleties still to be understood in the Wilsonian

approach in the presence of gravity.

The contribution of an irrelevant operator of dimension N to a process with

characteristic energy scale E is then up to logs, of the order(
E

Mp

)N
(5.6)
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Much effort has been devoted, for example, to analyze theories quadratic in the

curvature [?]. If one takes them seriously as fundamental theories, the graviton

propagator is quartic in the momenta, schematically

1

k4 −M2
pk

2
(5.7)

This generically improves the ultraviolet behavior (as a matter of fact, some of these

theories are renormalizable), but the have problems with unitarity, because the quar-

tic propagator can be written

1

k4 −M2
pk

2
= − 1

M2
p

(
1

k2
− 1

k2 −M2
p

)
(5.8)

where the residue of the pole of the second term has the wrong sign.

In the static limit this would predict a correction to the Newtonian potential of

the form

V (r) = −Gm1m2

(
1

r
− e−Mpr

1

r

)
(5.9)

Donoghue [24] claims that or low energies, E
Mp
→ 0, the Yukawa piece just has

support on the origin, and all we have the right to claim 15 is that

V (r) = −Gm1m2

(
1

r
+ Cδ(3)(~x)

)
(5.10)

(where C is a constant which can be determined in a precise manner from the pa-

rameters of the low-energy effective lagrangian).

The effective field theory description is fine as long as the energy involved is much

smaller than the Planck mass. When this is not the case anymore, all operators in

the effective lagrangian are equally important, including the matter content. There

is no high energy limit in which gravity is decoupled from the other interactions.

The opposite point of view, namely that it makes sense to quantize just the

Einstein-Hilbert action, in isolation with the rest of interactions in the Universe,

which is the one held by the Loop Quantum Gravity community is at variance with

all this effective lagrangians experience. This is one of the strongest arguments for

studying supergravity and superstrings.

5.1 Vierbeins

Let us introduce tetrads (that is, orthonormal frames) following Weyl ([90])

15The identity
lim
ε→0

e−
r
ε = 4πε2rδ(3)(~x)

is used to that effect.
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gµν = ηabe
a
µe
b
ν (5.11)

Let us show, by working out in detail a two dimensional example, that not all

tetrads corresponding to a given metric are related by a Lorentz transformation. The

flat metric will be euclidean, i.e.,

δabe
a
µe
b
ν = gµν (5.12)

We shall first determine covariant components in terms of contravariant ones.

e1
1e2 1 + e1

2e22 = 0

e2
1e11 + e2

2e12 = 0 (5.13)

This gives

e21 = −
e1

2

e1
1
e22

e11 = −
e2

2

e2
1
e12 (5.14)

Let us now impose

e1
1e11 + e1

2e12 = 1

e2
1e21 + e2

2e22 = 1 (5.15)

leading to

e12 = −ee2
1

e22 = ee1
1

e11 = ee2
2

e21 = −ee1
2 (5.16)

where

e−1 ≡
(
e1

1e2
2 − e2

1e1
2
)

(5.17)

which is exactly Eisenhart’s result, expressing in a very explicit way covariant com-

ponents in terms of contravariant ones.

Now we impose that

eµa = gµνea
ν (5.18)

This leaves arbitrary the components e1
1 and e1

2, whereas:

e2
1 − 1

e

(
g21e1

1 + g22e1
2
)

e2
2 =

1

e

(
g11e1

1 + g12e1
2
)

(5.19)
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Finally, we still have to impose:

g11 = (e11)2 + (e21)2

g12 = e11e12 + e21e22

g22 = (e12)2 + (e22)2 (5.20)

Perhaps surprisingly, the three conditions above are fulfilled provided

g11

(
e1

1
)2

+ 2g12e1
1e1

2 + g22

(
e1

2
)2

= 1 (5.21)

which in turn is satisfied (provided g11 6= 0) as long as

e1
1 =
−g12e1

2 ±
√
g11 − e2 (e1

2)2

g11

(5.22)

so that we can always choose e1
2 = 0, leading to

e1
2 = 0

e1
1 =

1
√
g11

e2
1 = − g21√

g11

e2
2 =
√
g11

e21 = 0

e22 =
e
√
g11

e11 =
√
g11

e12 =
g21√
g11

(5.23)

The general tetrad in its Lorentz orbit is

e1
1 =

coshχ− sinhχ g21√
g11

e1
2 = sinhχ g11

e2
1 =

sinhχ− coshχ g21√
g11

e2
2 = coshχ

√
g11 (5.24)

Another possible choice in (5.22) is

e1
2 =

√
g11√
g

(5.25)
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In order for this solution to be in the orbit, it is necessary that

sinhχ =
1
√
g

(5.26)

Then

e1
2 = −

√
g11√
g
g12 (5.27)

ought to equal √
1 + g − g21√

gg11

(5.28)

i.e.

g11g22 =
√

1 + g − g21 (5.29)

which can easily be shown to be false, for example, for a diagonal metric

Latin (which we will denote following B. Zumino as flat or Lorentz) indices

are raised and lowered using the Minkowski metric ηab, whereas greek (curved or

Einstein) indices are raised and lowered using the spacetime metric gαβ. The reason

is that if we define the inverse tetrad through

ea µE
µ
b = δab (5.30)

then by multiplying with eaρ ≡ ηace
c
ρ

Eρb ≡ gρσE
σ
b = ebρ (5.31)

Changing indices in (5.30) leads to:

gαβea
αeb

β = ηab (5.32)

Tetrads are defined up to a local Lorentz transformation L ∈ O(1, 3):

(e′)a µ ≡ La b(x)eb µ (5.33)

where the defining (fundamental) representation is such that

ηcdL
c
a(x)Ld b(x) = ηab (5.34)

This implies that

LdaL
db = δba (5.35)

that is, defining a matrix L ≡ (Lab)

(LT )−1 = η−1Lη−1 (5.36)

For any field that transforms under any representation D(L) of the Lorentz group

( the tetrad in particular, that transforms as the vector representation, (1/2, 1/2))

φ→ φ′ ≡ D(L)φ (5.37)
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a covariant derivative ∇µ ≡ ∂µ + ωµ can be defined such that

(∇µφ)′ = D(L)∇µφ (5.38)

This condition implies that the Lorentz (or spin) connection transforms as:

ω′µ = DLωµD
−1
L − ∂µDLD

−1
L (5.39)

The spin conection thus defined is endowed with indices on the representation D:

ωµ ≡ ωuµ v = ωabµ D(Tab)
u
v (5.40)

Where Tab is a local basis of the Lie algebra of the Lorentz group where we label the six

generators of SO(1, 3) by two antisymmetric four-dimensional indices: T ab = −T ba,
In this basis the commutators read

[Tcd, Tab] = iηdaTcb − iηacTdb − iηdbTca + iηcbTda (5.41)

The linearized approximation corresponds to

D(L)u v = δu v + ilabD(Tab)
u
v (5.42)

This yields

(ω′)abµ D(Tab)
u
v = Du

L wω
ab
µ D(Tab)

wzDL
vz − ∂µDL

uw.DL
vw =

ωabµ D(Tab)
u
v + ilcdD(Tcd)

u
wω

ab
µ D(Tab)

wv + ωabµ D(Tab)
uzilcdD(Tcd)vz

−i∂µlabD(Tab)
u
v (5.43)

which using the commutator algebra as well as the antisymmetry of lab and ωabµ in

the Lorentz indices can be reduced to

δωabµ ≡ (ω′)abµ − ωabµ = 4lc
aωcbµ − i∂µlab (5.44)

In the fundamental (vector) representation the finite form reads

{(xa)′ = Labxc} ⇒ {xa = x′bL
ba} (5.45)

so that, in an obvious notation,

(ωab)
′
µ = Lacω

cd
µ Lda − ∂µLacLb c (5.46)

In terms of the one-forms

ωab ≡ ωabµ dx
µ (5.47)

the transformation rule of the Lorentz connection reads

ω′ = LωL−1 − ∂µLL−1 (5.48)
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Einstein and Lorentz indices convey different symmetries in general. In the particular

case when we demand that Lorentz and Einstein indices are fully equivalent, we are

assuming the tetrad postulate, namely that the doubly covariant derivative of the

tetrad vanishes

∂νe
a
µ + (ων)

a
be
b
µ − Γλνµe

a
λ = 0 (5.49)

This fully determines the Lorentz connection in terms of the Christoffel symbols:

(ων)
a
c = −ec µ∂νea µ + Γλνµec

µea λ (5.50)

This connection is torsionless:

T ≡ de+ ω ∧ e = 0 (5.51)

The field strength (curvature tensor) is a two-form given by

F ≡ dω + ω ∧ ω (5.52)

that is

F ab = dωab + ωac ∧ ωbc (5.53)

It so happens that the Riemann-Christoffel tensor is given by

Rµνρσ = F ab
µνeaρebσ (5.54)
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5.2 The background field technique

The usual definition of effective action is

W ≡ −log
∫
Dφ e−S[φ]−

R
Jφ (5.55)

We define

φc = 〈φ〉J ≡
δW

δJ
(5.56)

(please remark that [φc] = 1 because δJ(x)
δJ(y)

= δ(n)(x − y)) and perform a Legendre

transform in order to reach the efective action

Γ(φc) = W (J)−
∫
Jφc (5.57)

in such a way that

J = − δΓ
δφc

(5.58)

which conveys the fact that the action is stationary in the absence of sources.

In the background field technique we define

WB(J, φ̄) ≡ −log
∫
Dφ e−S[φ̄+φ]−

R
Jφ (5.59)

Following ’t Hooft [78] (confer [1]) we only introduce sources for the quantum fields

Shifting integration variables in the functional integral, this means that

WB(J, φ̄) = W (J)−
∫
Jφ̄ (5.60)

The classical field is now

φBc =
δWB

δJ
= φc − φ̄ (5.61)

and the effective action

ΓB(φBc , φ̄) = WB(J, φ̄)−
∫
JφBc = W −

∫
Jφ̄−

∫
J(φc − φ̄) = Γ(φc) (5.62)

To say it otherwise,

ΓB(φBc , φ̄) = Γ(φc = φ̄+ φBc ) (5.63)

or else,

Γ(φc) = ΓB(φc − φ̄, φ̄) (5.64)

That is that we are usually interested in

ΓB(φBc = 0, φ̄) = Γ(φc = φ̄) (5.65)
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Let us write the scalar euclidean action as

S =

∫
dnx

1

2
φx
(
−2 +m2

)
φx + V (φ) (5.66)

In the one loop approximation,

W
(1)
B = S̄ +

1

2
log det δ2S(φ̄)− 1

2

∫
J
(

¯δ2S(φ̄)
)−1

J (5.67)

and

Γ
(1)
B = S̄ +

1

2
log det δ2S(φ̄) +

1

2

∫
φBc
(

¯δ2S(φ̄)
)−1

φBc (5.68)

The equation of motion for the background field is(
−2 +m2 + V ′(φ̄)

)
φ̄ = 0 (5.69)

The one loop operator is given by

δ2S(φ̄) = −2 +m2 + V ′′(φ̄) (5.70)

All this is to be compared with Weinberg’s formula ([89] Vol.II,p.68) for the ordinary

(not background) efective action:

e−Γ(φ̄) ≡
∫

1PI

Dφ e−S(φ̄+φ) (5.71)

Another important property of the effctive action is that the full quantum equations

of motion (Schwinger-Dyson) are equivalent to the classical (tree approximation) of

the equations of motion of the effective action, id est

δΓ(φc)

δφc
= 0 (5.72)

In the one-loop approximation, the effective action is then given by:

Γ(1)(φ̄) = S̄(φ̄) +
1

2
log det

(
−2 +m2 + V ′′(φ̄)

)
(5.73)

Our purpose in life is to compute the effective action. The determinant can be

computed with the help of the zeta function, and this in turn in terms of the heat

kernel K(τ) ≡ e−τ∆̄−1

Γ ≡ −1

2

d

ds

1

Γ(s)

∫ ∞
0

dτ τ s−1 tr

∫
dnxK(τ |x, x)

∣∣∣∣
s=0

(5.74)

The heat kernel itself can be obtained through the Barvinsky-Vilkovisky expansion

which, unlike the Schwinger-de Witt one, is uniform in proper time (confer the book

[65]). We start from the exact solution of the free case in flat space,
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Km
0 (τ |x, y) ≡ 〈x|e−τ(−2+m2)|y〉 =

∫
dnp

(2π)n
dτe−τ(p2+m2)+ip(x−y) =

1

(4π)n/2
e−

(x−y)2

2τ
−m2τ

(5.75)

and make the ansatz

K = K0 +K0Q (5.76)

The heat equation
d

dτ
K = −(−2−m2 − M̄2)K (5.77)

(where

M̄2 ≡ V ′′(φ̄)
)

(5.78)

eventually leads to

K0
dQ

dτ
= −M̄2K0 (5.79)

whose solution is

Q(τ) = −
∫ τ

0

dsK−1
0 (s)M̄2K0(s) (5.80)

This means that

K1(τ) = −K0(τ)

∫ τ

0

dsK−1
0 (s)M̄2K0(s) = −

∫ τ

0

dsK0(t− s)M̄2K0(s) (5.81)

Let us be explicit

K1(τ |x, y) = −
∫
dnu

∫ τ

0

dsK0(t− s|x, u)M̄2(u)K0(s|u, y) ≡∫
dnuM̄2(u)K1(τ |x, y;u) =

∫
dnkM̄2(k)K1(τ |x, y; k) (5.82)

with

K1(τ |x, y) ≡ −
∫ τ

0

dsK0(τ − s|x, u)K0(s|u, y) =

−
∫ τ

0

ds
dnp

(2π)n
dnk

(2π)n
e−(τ−s)(p2+m2)+ip(x−u)e−s(k

2+m2)+ik(u−y) =

dnp

(2π)n
dnk

(2π)n
1− eτ(p2−k2)

p2 − k2
e−τ(p2+m2)+ip(x−u)+ik(u−y) (5.83)

This yields

K1(τ |x, y; q) =

∫
dnk

(2π)n
1− eτ((k+q)2−k2)

(k + q)2 − k2
e−τ((k+q)2+m2)+ix(k+q)−iky (5.84)
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so that ∫
dnxK1(τ |x, x; q) =

∫
dnk

(2π)n
(−τ)e−τ(k2+m2)δ(n)(q) (5.85)

Only the constant zero mode of M̄2 contributes to first order.

Putting all this together leads eventually to

Γ(M̄2) = −1

2

d

ds

1

Γ(s)

∫ ∞
0

dτ τ s−1 tr

∫
dnk

(2π)n
(−τ)e−τ(k2+m2)M̄2(q = 0)

∣∣∣∣
s=0

=

−1

2

∫
dnk

(2π)n
d

ds

1

Γ(s)

−Γ(s+ 1)

(k2 +m2)1+s
M̄2(q = 0)

∣∣∣∣
s=0

=

−1

2

∫
dnk

(2π)n
d

ds

−s
(k2 +m2)1+s

M̄2(q = 0)

∣∣∣∣
s=0

=

−1

2

∫
dnk

(2π)n
−1

k2 +m2
M̄2(q = 0) = 0 (5.86)

where the last integral has been evaluated in dimensional regularization.

xhe recurrence relationship reads:

Kn(τ) = K0(τ)

∫ τ

0

dsK0(s)M̄2Kn−1(s) (5.87)

As a matter of fact

log det (−2 +m2 + M̄2) = tr log (−2 +m2)
(
1 + (−2 +m2)−1M̄2

)
=

tr log (−2 +m2) + tr
∞∑
m=1

(−1)m+1

m

(
(−2 +m2)−1M̄2

)m
=

C +
∞∑
m=1

(−1)m+1

m

∫
x1...xm

(−2 +m2)−1
x1x2

M̄2
x2

(−2 +m2)−1
x2x3

M̄2
x3
. . . (−2 +m2)−1

xmx1
M̄2

x1
=

C +
∞∑
m=1

(−1)m+1

m

∫
x1...xm

∫
p1...p2m

eip1(x1−x2)eip2x2
M̄2

p2

p2
1 +m2

. . . eip2m−1(xm−x1)eip2mx1
M̄2

p2m

p2
2m−1 +m2

=

C +
∞∑
m=1

(−1)m+1

m

∫
p1...p2m

δ(p1 + p2m−1 − p2m)δ(−p1 + p2 + p3) . . .
M̄2

p2

p2
1 +m2

. . .
M̄2

p2m

p2
2m−1 +m2

=

C +
∞∑
m=1

(−1)m+1

m

∫
p2...p2m

δ(p2 + p4 + . . .+ p2m)M̄p2 . . . M̄p2mD(m)(p2 . . . p2m) (5.88)

where

(−2 +m2)−1
xy ≡

∫
dnp

(2π)n
eip(x−y) 1

p2 +m2

M̄2
x ≡

∫
dnp

(2π)n
eipxM̄2

p (5.89)

The nontrivial piece of the determinant is
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D(m)(p2 . . . p2m) ≡
∫
p1...p2m−1

δ(p1+p2m−1−p2m)δ(−p1+p2+p3) . . .
1

p2
1 +m2

. . .
1

p2
2m−1 +m2

(5.90)

There are m Dirac deltas, of which m − 1 are efficient in killing a momentum

integration. Given the fact that there were previously m of those, there is one

momentum integration left, that is, all those diagrams are one-loop ones.

The final expression for D(m) is

D(m)(p2 . . . p2m) ≡
∫

dnp

(2π)n
1

p2 +m2

1

(p− p2)2 +m2
. . .

1

(p− p2 − p4 − . . .− p2m−2)2 +m2

(5.91)

In d = 4 dimensions, the first two terms are divergent (although the term m = 1

is taken to be zero in dimensional regularization), and the rest are given by finite

integrals.

The effective potential corresponds to the coefficient to the zero mode,i.e.

M̄2
p = (2π)n δ(n) (p) M̄2

(
φ̄
)

(5.92)

We have

Veff = C +
∞∑
m=1

(−1)m+1

m

(
(2π)n M̄

)m ∫ dnp

(2π)n

(
1

p2 +m2

)m
=

C +

∫
dnp

(2π)n
log

(
1 + (2π)n M̄

1

p2 +m2

)
(5.93)

We have

Veff = C +
∞∑
m=1

(−1)m+1

m

(
(2π)n M̄

)m ∫ dnp

(2π)n

(
1

p2 +m2

)m
=

C +

∫
dnp

(2π)n
log

(
1 + (2π)n M̄2 1

p2 +m2

)
(5.94)

This is similar to the formula by Iliopoulos et al [?]. At any rate, it is much easier

to use the zeta-function approach to get, in four dimensions:

Veff =
1

2
m2φ̄2 + V

(
φ̄
)

+

(
m2 + M̄(φ̄)2

)2

64π2

(
log

m2 + M̄(φ̄)2

µ2
− 3/2

)
(5.95)

If we follow Coleman and Weinberg and define the coupling constant in the massless

φ4
4 theory as

λ ≡ d4Veff (φ̄)

dφ̄4

∣∣∣∣
φ̄=M

(5.96)

we get [18]

Veff =
1

2
m2φ̄2 + λ

φ̄4

24
+

λ2φ̄2

256π2

(
log

φ̄2

M2
− 25/6

)
(5.97)
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6. The ζ-function approach

Given an operator M such that

Mφn = λnφn (6.1)

we define by analogy with Riemann’s ζ-function

ζR(s) ≡
∞∑
n=1

n−s (6.2)

(which can be analytically continued so that

ζR(0) = −1

2
dζR
ds

∣∣∣∣
s=0

= −1

2
log 2π

)
(6.3)

the ζ-function associated with the operator M , namely,

ζ(s) ≡
∞∑
n=0

λ−sn (6.4)

so that

log detM ≡ − dζ

ds

∣∣∣∣
s=0

(6.5)

It is also useful to define the heat kernel operator

K(τ) ≡ e−τM ≡
∑
n

e−λnτ |φn〉〈φn| (6.6)

in such a way that

tr K(τ) =
∑
n

e−λnτ (6.7)

It is a fact of life that

1

Γ(s)

∫ ∞
0

dτ τ s−1 tr K(τ) =
∞∑
n=0

λ−sn ≡ ζ(s) =
1

Γ(s)

∫ ∞
0

dτ τ s−1 tr

∫ √
|g|dnxK(x, x; τ)

(6.8)

On the other hand, it is formally true at the operator level, that

∂K

∂τ
= −M K(τ) (6.9)

which is a heat equation of sorts. This can be written as

∂K(x, x′, τ)

∂τ
= −

∫
dnz 〈x|M |z〉K(z, x′, τ) (6.10)
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The fact that at the operator level K(τ = 0) = 1 means that

K(x, y, τ = 0) = δn(x− y) (6.11)

For the Laplace operator in flat space, which is the starting point in all perturbative

calculations,

µ2M = −
n∑
i=1

(
∂

∂xi

)2

+m2 (6.12)

We have introduced an arbitrary mass parameter, µ, to make the eigenvalues dimen-

sionless. One finds

K(x, y; τ) = µn (4πτ)−n/2 e
−µ

2(x−y)2

4τ
−m

2

µ2 τ (6.13)

This leads inmediatly to

ζ(s) = µnV

(
m2

4πµ2

)n/2−s
Γ(s− n/2)

Γ(s)
= µnV

(
m2

4πµ2

)n/2−s
1

(s− 1)(s− 2) . . . (s− n/2)
(6.14)

where

V ≡
∫
dnx (6.15)

and we have assumed that n ∈ 2Z. The corresponding derivative is then

dζ(s)

ds
= (4π)−n/2

V mn

(s− 1)(s− 2) . . . (s− n/2)

(
−log m

2

µ2
− 1

s− n/2
− 1

s− (n/2− 1)
− . . .− 1

s− 1

)
(6.16)

This means that for any even dimension,

1

2
log detM = −1

2

dζ(s)

ds

∣∣∣∣
s=0

= (4π)−n/2
V mn

(n/2)!

(
log

m2

µ2
−
(

1 +
1

2
+ . . .+

1

n/2

))
(6.17)

In n = 4 dimensions, in particular, this yields

1

2
log detM =

V m4

32π2

(
log

m2

µ2
− 3/2

)
(6.18)
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Al desarrollar

W a
µ = Āaµ + Aaµ (6.19)

el tensor campo reza:

F a
µν = F̄ a

µν + ∂µA
a
ν − ∂νAaµ + cabc(Ā

b
µA

c
ν + ĀcνA

b
ν) + gcabcA

b
µA

c
ν =

F̄ a
µν + ∇̄µA

a
ν − ∇̄νA

a
µ + gcabcA

b
µA

c
ν (6.20)

con lo que teniendo en cuenta que la integral de una derivada covariante total se

anula, aś’ı como el uso de la fórmula (??) para reducir (bajo la integral) el término

(∇̄µAν)a(∇̄νAµ)a = (∇̄νAν)
2 − gcabcF̄ a

µνA
b
µA

c
ν (6.21)

la acción de Yang Mills se puede escribir

S = − 1

4g2

∫
d4x

[
F̄ a
µν + ∇̄µA

a
ν − ∇̄νA

a
µ + gcabcA

b
µA

c
ν

]2
=

[(F̄ a
µν)

2 + 2(∇̄µA
a
ν)

2 − 2(∇̄µA
µ
a)2 +

4gcabcF̄
a
µνA

b
µA

c
ν + 2g∇̄µA

a
νcabcA

b µAc ν + g2cabccauvA
b
µA

c
νA

uµAv ν ] (6.22)

Para cálculos a un lazo es suficiente con considerar los términos de segundo orden en

las fluctuaciones cuánticas:

S = − 1

4g2

∫
d4x

[
(F̄ a

µν)
2 + 2(∇̄µA

a
ν)

2 − 2(∇̄µA
µ
a)2 + 4gcabcF̄

a
µνA

b
µA

c
ν

]
(6.23)

Escogeremos como término que viola la simetŕ’ı a (??)

Lgf = − 1

2α
(∇̄µA

µ
a)2 ≡ −F 2

a (6.24)

de forma que
δFa
δωb

=
1

g
√

2
∇̄µ∇µδab (6.25)

y el término adicional de los fantasmas reza:

Lgh = − 1

g
√

2
∇̄µc̄

a∇µca (6.26)

Hasta orden un lazo, los resultados en CF se pueden expresar en términos de un

determinante que, sin embargo, es dif́’ı cil de calcular en general (más tarde hablare-

mos más de este tema). La manera de trabajar con CF a más de un lazo consiste

en completar el desarrollo de la acción, y calcular diagramas 1PI con patas externas

terminando en los CF.Una vez calculadas las funciones de Green para CF general,

se puede escoger un gauge para el CF, que no tiene por qué coincidir con el gauge

usado para la integración sobre los campos cuánticos. De hecho este último paso
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sólo es necesario para poder definir propagadores del CF, que a su vez se usan para

conectar los trozos 1PI, y constuir de esta manera las funciones de Green conexas,

que determinan la matriz S usando LSZ. Los detalles de estos cálculos se pueden

encontrar en el curso de Abbott en Cracow en 1981 ([?]).

De esta forma el propagador gauge será en términos del campo de fondo (CF),

∆ab
µν = −iδab[

ηµν
p2 + iε

+ (α− 1)
pµpν

(p2 + iε)2
] (6.27)

Y el propagador de los fantasmas:

Dab = iδab
1

p2 + iε
(6.28)

El vértice gauge/dos fantasmas será

Vc̄cĀ = gCabc(p+ q)µ (6.29)

cuando el boson gauge sea de fondo, y

Vc̄cA = gCabcp
µ (6.30)

cuando el bosón gauge sea cuántico.

El vértice a tres gluones cuánticos:

VAAA = gCabc[ηµλ(p− r)ν + ηnλ(r − q)µ + ηµν(q − p)λ] (6.31)

Y a dos gluones cuánticos y uno de fondo

VĀAA = gCabc[ηµλ(p− r − 1

α
q)ν + ηnλ(r − q)µ + ηµν(q − p+

1

α
r)λ] (6.32)

El vértice con dos fantasmas, un bosón gauge de fondo y un boson gauge cuántico

es

VccĀA = −ig2CaceCedbηµν (6.33)

Y si los dos bosones gauge son de fondo:

VccĀĀ = −ig2[CaceCedb − CadeCecb]ηµν (6.34)
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Y finalmente el vértice a cuatro gluones cuánticos, o bien dos cuánticos y dos de

fondo (que son idénticos), será:

VAAAA = −ig2[CabeCecd(ηµληνρ − ηµρηνλ)
+CadeCebc(ηµνηλρ − ηµληνρ)
+CaceCebd(ηµνηλρ − ηµρηνλ)] (6.35)

Mientras que si dos de los bosones gauge son de fonde el resultado es:

VĀĀAA = −ig2[CabeCecd(ηµληνρ − ηµρηνλ +
1

α
ηµνηλρ)

+CadeCebc(ηµνηλρ − ηµληνρ −
1

α
ηµρηνλ)

+CaceCebd(ηµνηλρ − ηµρηνλ)] (6.36)

La acción efectiva CF será:

ΓCF (Ā, < A >CF ) ≡ WCF (Ā.A)−
∫
J. < A >CF (6.37)

donde

< A >CF=
δWCF

δJ
(6.38)

y es en general diferente del campo de fondo, Ā.

• Ejercicio. Demostrar que

ZCF (Ā, J) = Z(J)e−i
R
J.Ā (6.39)

• Solución. Basta con efectuar una traslacion de la variable de integración en la

integral de camino.

• Demostrar también que

< A >CF=< A > −Ā (6.40)

Usando los resultados del ejercicio anterior se demustra la relación básica

ΓCF (Ā, < A >CF ) = Γ(Ā+ < A >CF ) (6.41)

de donde se sigue una expresión para la acción efectiva ordeinaria en términos de la

acción efectiva CF:

ΓCF (Ā, < A >CF= 0) = Γ(Ā) (6.42)

La contribución de los campos gauge se puede empaquetar de la forma (5.22)

con
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(W µ)abρσ = −(Āµ(adj))abηρσ (6.43)

de forma que

φ = −2F̄ (adj) (6.44)

y lo que llamábamos

F = −F̄µνηρσ (6.45)

Esto quiere decir que el contratérmino proveniente de los gampos gauge es

∆L =
1

8π2ε
(−4

CG
4

+
CG
24

)F̄ a
µνF̄

µν
a (6.46)

donde el factor −1 viene de la trφ2 y el factor 1/24 de la trF 2. En total queda

∆L =
5

6

1

8π2ε
CGF̄

a
µνF̄

µν
a (6.47)

La contribución de los fantasmas corresponde a campos complejos, con:

Y = F̄ (adj) (6.48)

de forma que

∆Lgh =
1

12

1

8π2ε
CGF̄

a
µνF̄

µν
a (6.49)

te resultado implica que

1

4g2
B

=
1

4g2
R

+
11

12

CG
8π2ε

(6.50)

o lo que es lo mismo,

gB = gR(1− 11CGg
2
R

48π2ε
) (6.51)

Aparentemente

β = (gR
d

dgR
− 1)a1 = −11CG

24π2
g3
R (6.52)

Sin embargo el valor exacto es exactamente la mitad, ya que la constante de Yang-

Mills

g ∼ µ(4−n)/2 ≡ (µ′)n−4 (6.53)

de forma que
dµ

µ
= 2

dµ′

µ′
(6.54)

y

β(g) = −11CG
48π2

g3 (6.55)
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Este resultado implica que los gluones se comportan como part́’ı culas libres a muy

cortas distancias. La contrapartida de este fenómeno es que a largas distancias,

en el ĺ’ı mite infrarrojo, la teoŕ’ı a está fuertemente acoplada, y se cree que los

estados asintóticos no son los que aparecen en el lagrangiano libre, sino estados

ligados de gluones, en combinaciones singletes frente al grupo gauge (que llamaremos

genéricamentegluebolas). Ninguno de estos estados tiene masa cero, además. Exiiste

una enerǵ’ı a m’́ı nima necesaria para producir estas bolas.La teoŕ’ı a es dif́’ı cil de

estudiar anaĺ’ı ticamente en este régimen, al que de momento sólo se tiene acceso

mediante el estudio en el ret́’ı culo.
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6.1 Efficient computation of determinants
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Como hemos visto repetidamente, el cálculo de la acción efectiva a un lazo es

equivalente al cómputo de un determinante de un cierto operador. Exiisten maneras

eficientes de efectuar esos cálculos, utilizando técnicas introducidas por Schwinger y

de Witt ([20]).

Consideremos la integral ordinaria

I(λ) ≡
∫ ∞

0

dx

x
e−ixλ (6.56)

Puede parecer a primera vista que la integral es independiente de λ, ya que si hacemos

el cambio z ≡ xλ desaparece toda dependencia expl’icita con λ. Esto es una ilusión,

sin embargo, ya que al ser la integral divergente en el ĺ’ı mite inferior tenemos que

definirla mediante un proceso ĺ’ı mite; por ejemplo

I(λ) ≡ lim
ε→0

I(ε, λ) ≡ lim
ε→0

∫ ∞
ε

dx

x
e−ixλ (6.57)

Ahora es fácil de ver que

lim
ε→0

∂I(ε, λ)

∂λ
= −1

λ
(6.58)

Esto demuestra que

I(λ) = − log λ+ C (6.59)

donde C es una constante que resulta ser divergente.

Ahora bien, si tuviéramos un operador ∆ diagonalizable con autovalores discre-

tos, {λn} entonces es claro que

log det ∆ = tr log ∆ ≡
∑
n

log λn (6.60)

El procedimiento matemático para definir el determinante de un operador consiste

casi siempre en efectuar continuación anaĺ’ı tica a partir de una situación donde

el especto es de este estilo (por ejemplo, el espacio eucĺ’ı deo con condiciones de

contorno periódicas).

Nos vemos entonces conducidos a la definición

log det ∆ ≡ −
∫
dτ

τ
tre−iτ∆ (6.61)

Fijémonos en el operador

K(τ) ≡ e−iτ∆ (6.62)

En la práctica trabajaremos con una representación definida por lo que vulgarmente

se conoce como ecuación del calor (aunque es realmente una continuación anaĺ’ı tica

de ella) y que supondremos definida en dimensión arbitraria, n:

(i
∂

∂τ
−∆x)K(x, y; τ) = 0 (6.63)
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ecuación que resolveremos con la condición inicial

K(x, y, 0) = δ(n)(x− y) (6.64)

y a cuya solución llamaremos por abuso del lenguaje núcleo del calor. Los operadores

que vamos a considerar son todos de la forma (que es mucho más general de lo que

parece)

∆ ≡ DµDµ + Y (6.65)

con

Dµ ≡ ∂µ + φµ (6.66)

En el caso X = Y = 0 la solución expĺ’ı cita de la ecuación del calor es:

K0(x, y; τ) =
i

(4πiτ)n/2
e−i

σ2

4τ (6.67)

donde el cuadrado de la distancia geodésica viene dado por:

σ2 ≡ (x− y)2 (6.68)

Como hemos visto anteriormente, las divergencias ultravioletas vienen dadas por el

ĺ’ı mite inferior de la integral, el cual a su vez está dominado por el desarrollo de (la

parte diagonal del) núcleo del calor para tiempos pequeños, llamado de Schwinger-de

Witt

K(τ) = K0(τ)
∑
p=0

ap(x, y)(iτ)p (6.69)

donde por consistencia

a0(x, x) = 1 (6.70)

Representaremos con mayúsculas a la parte diagonal de los coeficientes integrada a

todo el espacio:

An ≡
∫
√
gdnxan(x, x) (6.71)

donde g es el determinante de la métrica definida en el espacio. de forma que

A0 = vol (6.72)

Podemos entonces definir la integral del determinante de la siguiente manera:

log det ∆ ≡ −
∫
dτ

τ
K(τ) ≡ −lims→0

∫ ∞
0

dτ

τ

i

(4πiτ)n/2

∑
p=0

(iτ)ptrape
−iσ

2

4τ (6.73)

es decir

log det ∆ = −
∑
p

(−1)pσ2p−ni

4pinπν/2
tr apΓ(n/2− p) (6.74)
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en n = 4 dimensiones cuando p = 0 hay un término que diverge como 1
σ4 y es pro-

porcional a a0 y, por consiguiente, independiente del operador concreto que estemos

considerando, ∆; el siguiente término es independiente de σ y viene dado cuando

n = 4− ε por
i

8π2ε
a2 (6.75)

ya que sólo aparecen coeficientes pares en el desarrollo de Schwinger-de Witt. Todos

los demás términos desaparecen al tomar el ĺ’ı mite cuando σ → 0. Desde este punto

de vista, calcular el determinante es equivalente a determinar el coeficiente a2 en el

desarrollo.

Para ello, procedamos iterativamente. Substituyendo el desarrollo de Schwinger-

de Witt en la ecuación del calor, obtenemos al orden más bajo (τ−1)

σ.Da0 = 0 (6.76)

y genéricamente

σ.Dap+1 + ∆ap + (p+ 1)ap+1 = 0 (6.77)

Derivando la primera ecuación covariantemente

Dλ(σ
µDµa0) = 0 (6.78)

se deduce

[Dµa0] = 0 (6.79)

donde

[A] ≡ limσ→0A (6.80)

Derivando una segunda vez se obtiene

[(DµDν +DνDµ)a0] = 0 (6.81)

de donde

[D2a0] = 0 (6.82)

y definiendo

Wµν ≡ [Dµ, Dν ] (6.83)

se obtiene

[DµDνao] =
1

2
[([Dµ, Dν ] + {DµDν})ao] =

1

2
Wµν (6.84)

donde también se ha utilizado el hecho de que

[a0] = 1 (6.85)

Tomando p = 0 en (6.77)

−a1 = ∆a0 + σ −Da1 (6.86)
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lo cual inmediatamdente implica que

[a1] = −[∆a0] = −Y (6.87)

Por otra parte, tomando p = 1 en (6.77)

−2a2 = ∆a1 + σ.Da2 (6.88)

de donde

[a2] = −1

2
[∆a1] (6.89)

Es decir, que todo nuestro problema es calcular el segundo miembro. Para ello

derivamos otra vez la expresión correspondiente a p = 0:

−Dµa1 = Dµa0 +Dµa1 + σλDµDλa1 (6.90)

lo que implica

[∆a1] = [D2a1] + [Y a1] = −1

3
[D2D2a0]− Y 2 − 1

3
D2Y (6.91)

Ahora bien, derivando tres veces la expresión (6.76) se obtiene:

[(DδDσDρDµ +DδDσDµDρ +DδDρDµDσ +DσDρDµDδ + sλDδDσDρDµDλ)a0] = 0

(6.92)

Contrayendo con ηδσηρµ

[(D2D2 +DµD2Dµ)a0] = 0 (6.93)

Y contrayendo con ηδρησµ

[(DµDνDµDν)a0] = 0 (6.94)

Ahora bien,

[(DσDµDµDσ)a0] = [(DµDσDµDσ +
1

2
W σµDµDσ)a0] = −1

2
W 2 (6.95)

es decir, que

[D2D2a0] =
1

2
W 2 (6.96)

y

[a2] = −1

2
[∆a1] =

1

6
[D2D2a0] +

1

2
Y 2 +

1

6
D2Y =

1

12
W 2 +

1

2
Y 2 +

1

6
D2Y (6.97)

de forma que

logdet∆ = −2

ε

i

(4π)2

∫
dnφtr(

1

12
W µνWµν +

1

2
Y 2) (6.98)
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(el término en D2Y desaparece al integrar siempre que no haya fronteras).

El cálculo a un lazo que efectuamos diagramáticamente en la sección anterior se

reduce al cálculo del determinante del operador que actúa sobre los campos gauge,

además del del operador que actúa sobre los fantasmas. El primero es (las constantes

multiplicativas son irrelevantes):

∆gaugeµν
bc ≡ ∇̄2δbcη

µν + 2gF̄
µν(ad)
bc (6.99)

en tanto que el operador que actúa sobre los fantasmas es:

∆fant = ∇̄µ∂
µδab = ∇̄µ∇̄µδab (6.100)

(donde la igualdad es debida precisamente a la condición gauge de fondo), y

∇̄abµ ≡ ∂µδab + gĀ
(adj)
µab (6.101)

Para el operador gauge tenemos Y = 2gF̄
(adj)
µν , en tanto que para el operador de los

fantasmas Y = 0. Para ambos, φ = gĀ
(adj)
µab .

El resultado de utilizar la fórmula (6.98) es

Γ = −1

2
log det ∆gauge + log det ∆fant =

22C2(G)

12

1

16π2ε

∫
d4φF a

µνF
µν
a (6.102)

lo cual conduce de nuevo a
1

g2
0

− 22C2(G)

48π2ε
=

1

g2
(6.103)
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6.2 The first estimate for the back-reaction

It is often said that the back reaction of quantum fields in a classical spacetime is

given by the effective equations

Rαβ −
1

2
Rgαβ =

8πG

c4
〈0|Tαβ(φ)|0〉 (6.104)

The status of this has been somewhat clarified by Barvinsky and Nesterov [11].

Let us elaborate on it from a slightly different viewpoint. We shall start from the

partition function of the world,

Z(J, j) ≡
∫
DgDψe−S(g,ψ)−

R
J.g−j.ψ (6.105)

where g is the gravitational field (forgetting indices for the time being) and ψ repre-

sents the matter content.

The true equations of motion for the gravitational field are

0 =

∫
DgDψ δ

δg(x)
e−S(g,ψ)−

R
J.g−j.ψ =

∫
DgDψ

(
δS

δg(x)
− J(x)

)
e−S(g,ψ)−

R
J.g−j.ψ

(6.106)

We now expand in Taylor series around a background such that

δS(g, ψ)

δψ

∣∣∣∣
ψ=ψ̄

= j (6.107)

(it is plain that ψ̄ = ψ̄(j)).

0 =

∫
DgDψ

(
δS

δg(x)
(g, ψ̄)+∫

y,z

δ3S

δg(x)δψyδψz
(g, ψ̄)ψyψz +O(ψ3)− J(x)

)
e−S(g,ψ)−

R
J.g−j.ψ (6.108)

(The linear term is absent because

δ2S

δg(x)δψ(y)
(g, ψ̄) =

δj

δg
= 0) (6.109)

The equation defining the matter propagator in presence of an arbitrary back-

ground is ∫
y

Kxy(g)Gyz(g) = δxz (6.110)

where

Kxy(g) ≡ δ2S

δψxδψy
(g, ψ̄) (6.111)
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and, besides, at the one-loop approximation,∫
Dψ ψxψy e−S(g,ψ)−jψ =

(
G(1)
xy (g)−

∫
u

G(1)
xu (g)ju

∫
v

G(1)
yv (g)jv

)
e−

1
2

R
xy jxG

(1)
xy (g)jy +O(λ) (6.112)

On the other hand, let us define

e−Seff (g) ≡
∫
Dψe−S(g,ψ) (6.113)

By expanding again in Taylor series,

S(g, ψ)−
∫
jψ = S(g, ψ̄) +

1

2

∫
x,y

Kx,y(g, ψ̄)ψxψy +O(ψ3) (6.114)

At one loop

S
(1)
eff (g, ψ̄) = −1

2
log detK(g.ψ̄) (6.115)

in such a way that

δS
(1)
eff (g, ψ̄)

δg
= −1

2
tr K−1 δK(g)

δg
= −1

2
tr G(1) δ

3S(g)

δgδψδψ
(6.116)

The equations of motion in this approximation then stand as

0 =

∫
Dg

(
δS

δgαβ(x)
(g, ψ̄) +

δS
(1)
eff (g)

δgαβ
− Jαβ(x)

)
e−S(g,ψ̄)−

R
Jµνgµν (6.117)

It is somewhat difficult to assess the physical domain of validity of the different

approximations made so far.

– 101 –



6.3 The lowest order quantum corrections.

Let us consider the perturbative expansion around a background in more detail. For

an arbitrary function (of interest in the TDiff invariant setting), and denoting

ḡαβhαβ ≡ h

ḡαβ(h2)αβ ≡ tr h2 (6.118)

f (|g|) = f (|ḡ|) + κf ′ (|ḡ|) . ¯|g|h+
κ2

2

((
f ′ (|ḡ|) |ḡ|+ f ′′ (|ḡ|) |ḡ|2

)
h2 − |ḡ|f ′ (|ḡ|) tr h2

)
(6.119)

In particular,

√
|g| =

√
ḡ

(
1 +

1

2
κh+

1

2
κ2

(
1

4
h2 − 1

2
hαβhαβ

))
(6.120)

The Christoffel symbols expand in the following way:

Γµνρ ≡
∑
n

κn
(n)

Γ
µ
νρ (6.121)

that is:

(0)

Γ
µ
νρ = Γ̄µνρ

(1)

Γ
µ
νρ = −hµσΓ̄σνρ +

1

2
ḡµα(−∂αhνρ + ∂νhαρ + ∂ρhαν)

(2)

Γ
µ
νρ = −1

2
hµε(−∂εhνρ + ∂νhερ + ∂ρhνε) + (h2)µλΓ̄λνρ (6.122)

Higher order terms can be written in a background-covariant way:

(1)

Γ
µ
νρ =

1

2
(−∇̄µhνρ + ∇̄νh

µ
ρ + ∇̄ρh

µ
ν )

(2)

Γ
µ
νρ = −1

2
hµε(−∇̄εhνρ + ∇̄νhερ + ∇̄ρhνε) (6.123)

In particular,

(1)

Γ
µ
µρ =

1

2
∇̄ρh

(2)

Γ
µ
µρ = −1

2
hαβ∇̄ρhαβ (6.124)

In order to expand the Einstein-Hilbert lagrangian we need to consider first the

Ricci tensor:

Rµν ≡ ∂ρΓ
ρ
νµ − ∂νΓρρµ + ΓλνµΓρρλ − ΓλρµΓρνλ (6.125)
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To first order in κ we find:
(1)

Rµν= ∇̄ρ

(1)

Γ
ρ
νµ − ∇̄ν

(1)

Γ
ρ
ρµ (6.126)

To be specific,

(1)

Rµν=
1

2

(
−∇̄ρ∇̄ρhµν + ∇̄ρ∇̄νh

ρ
µ + ∇̄ρ∇̄µh

ρ
ν − ∇̄ν∇̄µh

)
(6.127)

and the scalar of curvature,

(1)

R= ḡµν
(1)

Rµν +
(1)
g µνR̄µν = ∇̄ρ∇̄λh

ρλ − ∇̄ρ∇̄ρh− hµνR̄µν (6.128)

The Einstein-Hilbert action then reads to first order

S(1) = − 1

2κ

∫
dnx
√
|ḡ|
(

1

2

(
R̄ + 2λ

)
h− R̄µνhµν

)
(6.129)

This term vanishes whenever the background equations of motion hold

R̄µν = − 2λ

n− 2
ḡµν (6.130)

The Ricci tensor to second order in κ reads:
(2)

Rµν= ∇̄ρ

(2)

Γ
ρ
νµ − ∇̄ν

(2)

Γ
ρ
ρµ+

(1)

Γ
λ
νµ

(1)

Γ
ρ
ρλ−

(1)

Γ
λ
ρµ

(1)

Γ
ρ
νλ (6.131)

in gory detail,

(2)

Rµν= −
1

2
∇̄ρh

ρλ
(
−∇̄λhνµ + ∇̄νhλµ + ∇̄µhλν

)
−

1

2
hρλ∇̄ρ

(
−∇̄λhνµ + ∇̄νhλµ + ∇̄µhλν

)
+

1

2
∇̄νh

λε∇̄µhελ +
1

2
hλε∇̄ν∇̄µhελ +

1

4

(
−∇̄λhνµ + ∇̄νh

λ
µ + ∇̄µh

λ
ν

)
∇̄λh−

−1

4

(
−∇̄λhρµ + ∇̄ρh

λ
µ + ∇̄µh

λ
ρ

) (
−∇̄ρhνλ + ∇̄νh

ρ
λ + ∇̄λh

ρ
ν

)
=

1

2
∇̄ρh

ρλ∇̄λhµν −
1

2
∇̄ρh

ρλ∇̄νhλµ −
1

2
∇̄ρh

ρλ∇̄µhλν

+
1

2
hρλ∇̄ρ∇̄λhνµ −

1

2
hρλ∇̄ρ∇̄νhλµ −

1

2
hρλ∇̄ρ∇̄µhλν

+
1

2
∇̄νh

λε∇̄µhελ +
1

2
hλε∇̄ν∇̄µhελ +

−1

4
∇̄λhνµ∇̄λh+

1

4
∇̄νh

λ
µ∇̄λh+

1

4
∇̄µh

λ
ν∇̄λh

−1

4
∇̄λhρµ∇̄ρhνλ +

1

4
∇̄λhρµ∇̄νh

ρ
λ +

1

4
∇̄λhρµ∇̄λh

ρ
ν +

+
1

4
∇̄ρh

λ
µ∇̄ρhνλ −

1

4
∇̄ρh

λ
µ∇̄νh

ρ
λ −

1

4
∇̄ρh

λ
µ∇̄λh

ρ
ν

+
1

4
∇̄µh

λ
ρ∇̄ρhνλ −

1

4
∇̄µh

λ
ρ∇̄νh

ρ
λ −

1

4
∇̄µh

λ
ρ∇̄λh

ρ
ν (6.132)
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which implies

ḡµν
(2)

Rµν=
1

2
∇̄ρh

ρλ∇̄λh−
1

2
∇̄ρh

ρλ∇̄µhλµ −
1

2
∇̄ρh

ρλ∇̄µhλµ

+
1

2
hρλ∇̄ρ∇̄λh−

1

2
hρλ∇̄ρ∇̄µhλµ −

1

2
hρλ∇̄ρ∇̄µhλµ

+
1

2
∇̄µhλε∇̄µhελ +

1

2
hλε∇̄µ∇̄µhελ +

−1

4
∇̄λh∇̄λh+

1

4
∇̄µhλµ∇̄λh+

1

4
∇̄µhλµ∇̄λh

−1

4
∇̄λhρµ∇̄ρhµλ +

1

4
∇̄λhρµ∇̄µhρλ +

1

4
∇̄λhρµ∇̄λh

ρµ +

+
1

4
∇̄ρh

λµ∇̄ρhµλ −
1

4
∇̄ρh

λ
µ∇̄µhρλ −

1

4
∇̄ρh

λ
µ∇̄λh

ρµ

+
1

4
∇̄µhλρ∇̄ρhµλ −

1

4
∇̄µh

λ
ρ∇̄µhρλ −

1

4
∇̄µh

λ
ρ∇̄λh

ρµ (6.133)

The scalar of curvature to second order reads:

(2)

R= ḡµν
(2)

Rµν +
(1)
g µν

(1)

Rµν +
(2)
g µνR̄µν =

∇̄ρh
ρλ∇̄λh− ∇̄ρh

ρλ∇̄δh
δ
λ +

3

4
∇̄νh

λε∇̄νhελ −
1

4
∇̄λh∇̄λh

+
1

2
hαβ∇̄α∇̄βh+

1

2
hαβ∇̄µ∇̄µhαβ − hαβ∇̄α∇̄µhµβ −

1

2
∇̄ρhλµ∇̄µhρλ

−hµν 1

2

(
−∇̄2hµν + ∇̄ρ∇̄µh

ρ
ν + ∇̄ρ∇̄νh

ρ
µ − ∇̄ν∇̄µh

)
+
(
h2
)µν

R̄µν (6.134)

The full action to second order (taking into account the product of terms of order in

κ (2,0),(0,2) and (1,1)) reads

S(2) ≡ − 1

2κ2

∫
dnx
√
|g| (R + 2λ)|O(κ3) = −1

2

∫
dnx
√
|ḡ|
(
R̄ + 2λ

2

1

4

(
h2 − 2hαβhαβ

)
∇̄ρh

ρλ∇̄λh− ∇̄ρh
ρλ∇̄δh

δ
λ +

3

4
∇̄νh

λε∇̄νhελ −
1

4
∇̄λh∇̄λh

+
1

2
hαβ∇̄α∇̄βh+

1

2
hαβ∇̄µ∇̄µhαβ − hαβ∇̄α∇̄µhµβ −

1

2
∇̄ρhλµ∇̄µhρλ

−hµν 1

2

(
−∇̄2hµν + ∇̄ρ∇̄µh

ρ
ν + ∇̄ρ∇̄νh

ρ
µ − ∇̄ν∇̄µh

)
+
(
h2
)µν

R̄µν +

h

2

(
∇̄ρ∇̄λh

ρλ − ∇̄ρ∇̄ρh− hµνR̄µν

))
(6.135)

Performing now the integrations by parts and substituting the background equations

of motion leads to:
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S(2) = −1

2

∫
dnx
√
|ḡ|
(

λ

2(n− 2)

(
h2 − 2hαβhαβ

)
−1

2
∇̄ρh

ρλ∇̄λh−
1

4
∇̄µh

αβ∇̄µhαβ +
1

2
∇̄ρhλµ∇̄µhρλ +

1

4
∇̄λh∇̄λh

)
(6.136)

This action is sometimes referred to as the Fierz-Pauli action in an arbitrary back-

ground. Under an arbitrary variation

δSFP = −1

2

∫
dnx
√
|ḡ|1

2

((
2λ

n− 2
(hḡµν − 2hµν) +

+∇̄α∇̄βh
αβ ḡµν + ∇̄µ∇̄νh+ ∇̄α∇̄αhµν − ∇̄α∇̄νhαµ − ∇̄α∇̄µhνα − ∇̄α∇̄αhḡ

µν
)
δhµν +

∇̄µ

(
−∇̄αh

αµδh− δhµα∇̄αh− ∇̄µhαβδhαβ + ∇̄αhµβδhαβ + ∇̄αhβµδhαβ + ∇̄µhδh
))
≡

−1

2

∫
dnx
√
|ḡ|
(
δS

δhµν
δhµν + ∇̄µ

(
Lµαβδhαβ

))
(6.137)

Let us denote
δS

δhµν
≡ D̄µν (6.138)

Particularizing to the gauge symmetry we get

δhµν ≡ ∇̄µξν + ∇̄νξµ (6.139)

δS = 0 = −1

2

∫
dnx
√
|ḡ|
(
D̄µν

(
∇̄µξν + ∇̄νξµ

)
+ ∇̄µ

(
Lµαβ

(
∇̄αξβ + ∇̄βξα

)))
=

−1

2

∫
dnx
√
|ḡ|
(
−2ξν∇̄µD̄

µν
)

+ ∇̄µ

(
2Lµαβ∇̄αξβ + 2ξνD̄

µν
)

(6.140)

As a consequence, there is the gauge identity

∇̄µD̄
µν = 0 (6.141)

and the off-shell conservation of the Noether current

Jµ ≡ Lµαβ∇̄αξβ + ξνD̄
µν (6.142)

Let us make this explicit (we follow [69] here) in terms of the superpotential in the

particular case in which the parameter of the transformation is a background Killing

vector

∇̄µξν + ∇̄νξµ = 0 (6.143)

In this particular case

Jµ = ξνD̄
µν (6.144)
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and we want to show that

Jµ = ∇̄αK
αµ (6.145)

where K(αµ) = 0. To be specific,

Kαµ = ∇̄βK
µανβξν −Kµβνα∇̄[βξν] (6.146)

in terms of the background superpotential

Kµανβ ≡ 1

2

(
ḡµβh̄να + ḡναh̄µβ − ḡµν h̄αβ − ḡαβh̄µν

)
(6.147)

To begin with, we shall write, following the classic work by Abbott and Deser,

D̄µν ≡ Xµν + Yµν (6.148)

where

2Xµν = − 4λ

n− 2
h̄µν +

(
∇̄ν∇̄λ − ∇̄λ∇̄ν

)
hλµ = − 4λ

n− 2
h̄µν + R̄µλνσh

λσ + R̄λ
νhµλ =

− 2λ

n− 2
h̄µν + R̄µλνσh̄

λσ (6.149)

(the background equations (BEM) R̄µν = − 2λ
n−2

ḡµν have been used in the last step).

Le us now compute

R̄ναβσKµ
αβσ =

1

2

(
R̄ναβµh̄

αβ − R̄νσh̄µ
σ − R̄ναµσh̄

ασ − R̄νβh̄µ
β
)

=

R̄ναβµh̄
αβ +

2λ

n− 2
h̄µν = −2Xµν (6.150)

where BEM have been used again.

We are left with

2Yµν = −
(
∇̄ν∇̄λ − ∇̄λ∇̄ν

)
hλµ + ∇̄α∇̄βh

αβ ḡµν + ∇̄µ∇̄νh+ ∇̄α∇̄αhµν −
∇̄α∇̄νh

α
µ − ∇̄α∇̄µhν

α − ∇̄α∇̄ahḡµν =

−∇̄ν∇̄λhλµ + ∇̄α∇̄βh
αβ ḡµν + ∇̄µ∇̄νh+ ∇̄α∇̄αhµν − ∇̄α∇̄µhν

α − ∇̄α∇̄ahḡµν

(6.151)

Let us now compute

∇̄α∇̄βK
µανβ =

1

2

(
∇̄α∇̄µhαν + ∇̄ν∇̄βh

µβ − ∇̄α∇̄βh
αβ ḡµν − ∇̄α∇̄αhµν+

∇̄α∇̄αhḡµν − ∇̄ν∇̄µh
)

= −Y µν (6.152)

We can now write

−Y µνξν = ∇̄α∇̄βK
µανβξν = ∇̄α

(
∇̄βK

µανβξν
)
− ∇̄βK

µανβ∇̄αξν =

∇̄α

(
∇̄βK

µανβξν −Kµ[βν]α∇̄βξν
)

+Kµ[βν]α∇̄α∇̄βξν (6.153)
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Now we use the Ricci identity for Killing vectors

∇̄α∇̄βξν = −ξλR̄βναλ (6.154)

as well as the fact, easily checked by an explicit computation, that

Kµ[βν]α =
1

2
Kµανβ (6.155)

to get

−Y µνξν = ∇̄α

(
∇̄βK

µανβξν −Kµ[βν]α∇̄βξν
)

+Xµνξν (6.156)

This finally shows that

Kµα = ∇̄βK
µανβξν −Kµ[βν]α∇̄βξν (6.157)
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6.4 Reliable low energy results in quantum gravity

It is clear that whenever there is a divergence, there is loss of predictivity, and the

corresponding coefficient in the effective lagrangian is an arbitrary constant to be

determined by experiment. Finite nonlocal contributions can sometimes, however be

interpreted as genuine predictions of the low-energy theory. Let us briefly point out

some of those.

• The only non vanishing tree contribution to the graviton-graviton scattering

in an helicity basis (neglecting the cosmological constant) has been already

computed by deWitt [?] is

A(0)(++; ++) = i
κ2s3

tu
≡ i

s3

M2
p tu

(6.158)

in terms of the usual Mandelstam variables

s ≡ (p1 + p2)2

t ≡ (p1 − p3)2

u ≡ (p1 − p4)2 (6.159)

The one-loop contribution has been determined by Dunbar-Norridge [28].

A(1) (++;−−) = −i 1

30720π2

s2 + t2 + u2

M4
p

A(1) (++; +−) = −1

3
A(1) (++;−−)

A(1) (++; ++) =
1

M2
p

1

4 (4π)
n
2

Γ2
(
n−2

2

)
Γ
(

6−n
2

)
Γ (n− 3)

A(0) (++; ++) stu(
4

4− n

(
log (−u)

st
+
log (−t)
su

+
log (−s)
ut

)
+

1

s2
f

(
− t
s
,
u

s

)
+

2

(
log (−u) log (−s)

su
+
log (−t) log (−s)

tu
+
log (−t) log (−s)

st

))
(6.160)

where the dimensionless function is given by

f

(
− t
s
,
u

s

)
=

(t+ 2u) (2t+ u) (2t4 + 2t3u− t2u2 + 2tu3 + 2u4)

s6

(
log 2 t

u
+ π2

)
+

(t− u) (341t4 + 1609t3u+ 2566t2u2 + 1609tu3 + 341u4)

30s5
log

t

u
+

1922t4 + 9143t3u+ 14622t2u2 + 9143tu3 + 1922u4

180s4
(6.161)

There are several things remarkable about this result.
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First of all it does not depend of the coefficients of the quadratic terms in

the curvature in the effective action. This is due to the combination of the

background equations of motion, which are

R̄µν = 0 (6.162)

with the fact that in four dimensions, the Euler characteristic is given by

χ =
1

16π2

∫ √
|g|d4x

(
1

2
R2 − 2RµνR

µν +
1

2
RµνρσR

µνρσ

)
(6.163)

which forces the term in Riemann squared also to vanish on shell.

The other thing is that it is divergent. This is to be interpreted as an infrared

divergence, and on general grounds it is to be expected that this divergence

is cancelled against the radiation of soft gravitons off external graviton lines

(bremsstrahlung diagrams ). This expectation has been confirmed in an ex-

plicit calculation by Donoghue and Torma [26]. They found an explicitly finite

expression for the differential cross section

dσ

δΩ
=

s5

512π2t2u2M4
p

(
1 +

s

16π2M2
p

(
log
−t
s
log
−u
s

+
tu

2s2
f

(
−t
s
,
−u
s

)
−(

t

s
log
−t
s

+
u

s
log
−u
s

)(
3log (2π)2 + γ + log

s

Λ2
+

∑
ηiηjF (1)(γij)∑
ηiηjF (0)(γij)

))
The objects F are defined implicitly by the integral

F (0)(γ)+
4− n

2
F (1)(γ)+. . . =

∫
dΩn−1

(cos γij − cos αicos αj)2 − 1
2
sin2 αisin

2 αj

(1− cos αi) (1− cos αj)
(6.164)

Here γij is the angle between the n − 1 dimensional momenta of the hard

gravitons; αi is the angle between the ith hard and the soft gravitons; and ηi
is +1(−1) for incoming (outgoing) hard gravitons. Finally, Λ <<

√
s is an

infrared cutoff.

It is remarkable that such a universal result exists in low energy quantum

gravity.

• Quantum corrections to the gravitational potential. There are several ways

to define in a precise way the concept of gravitational potential. Iwasaki [52]

does this through an analysis of the bound state potential. Other possibility

is to define it directly from the scattering amplitude [24]. At any rate there

are both classical (id est, not involving ~) contributions, that go like 1
r

and 1
r2 ,

and come from the tree diagram (the dominant contribution) as well as from a

piece of the triangle diagrams, and from another piece of the vertex correction;

and fully quantum corrections, that go like 1/r3.
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Figure 4: The set of diagrams contributing to the quantum corrections to the newtonian
potential.

The full result coming from the sum of the non-analytic contributions of all

diagrams in the picture is claimed by Bjerrum-Bohr and Donoghue [24] to be

V (r) = −Gm1m2

r

(
1 + 3

G (m1 +m2)

r
+

41

10π

G~
r2

)
(6.165)

There are some possible ambiguities coming from the freedom in defining the

radial coordinate, and even the metric itself (confer [56][14]). It is however

remarkable that the result as quoted does not depend on any of the coefficients

of the terms higher in curvature in the low energy expansion and as such can

be considered as a genuine low energy prediction of quantum gravity.
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7. Transverse gravity: a case study

7.1 Classical equivalence of TDiff and scalar-tensor theories

The simple model with TDiff symmetry considered in [5], i.e.,

S = − 1

2κ2

∫
dnx
√
gR +

∫
dnxgµν∂µφ∂nφ (7.1)

leads to the following equations of motion

Rµν −
1

2
gµνR =

2κ2

√
g
∂µφ∂νφ

∂µ (gµν∂νφ) = 0. (7.2)

It can be seen taking the covariant derivative of Einstein’s equations and using the

contracted Bianchi identity (as well as the e.o.m. of the scalar) that in order to

achieve consistency the Lagrangian has to be a constant

gµν∂µφ∂νφ ≡ Λ

∂µΛ = 0 (7.3)

The action may also be written with the help of a Lagrange multiplier Λ(x) as [?]

S = − 1

2κ2

∫
dnx
√
gR +

∫
dnx
√
gχ−

n(n−2)
2 gµν∂µφ∂νφ−

∫
dnxΛ

(√
gχ−

n(n−2)
2 − 1

)
(7.4)

If we postulate that gµν transforms as a true metric and χ and Λ as scalars, then

all the violation of Diff invariance has been transfered to the very last term. The

equation of motion of the multiplier forces

g = χn(n−2) (7.5)

which of course reflects the lack of Diff invariance. The scalar and Einstein’s e.o.m.

read now

∂ν

(√
gχ−

n(n−2)
2 gµν∂µφ

)
= 0

Rµν −
1

2
gµνR = 2κ2χ−

n(n−2)
2

((
∂µφ∂νφ−

1

2
gµνg

αβ∂αφ∂βφ

)
+

1

2
gµνΛ

)
(7.6)

while variation with respect to the auxiliary field χ gives

Λ = gµν∂µφ∂νφ. (7.7)

Substitution into Einstein’s equation along with the constraint (7.5) reproduces Ein-

stein’s equations in the previous form. Notice that also in this case the condition
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LM = Λ = const. follows from consistency with the Bianchi identity. One could

think that this result is particular of the case without kinetic energy term for the

auxiliary field. This corresponds to taking the Einstein–Hilbert Lagrangian in the

gravity part. If instead we had started from a Lagrangian with an arbitrary func-

tion of the determinant of the metric in front of the curvature scalar we would have

arrived to

S = − 1

2κ2

∫
dnx
√
gR + SM +

∫
dnxΛ (7.8)

where the matter part is

SM =

∫
dnx
√
g

[
(n− 1)(n− 2)

2χ2
gµν∂µχ∂νχ+ χ−

n(n−2)
2 LM [χ, φ, gµν ]− χ−

n(n−2)
2 Λ

]
(7.9)

Suppose for a moment that LM = 0, the multiplier continues to force (7.5) and

varying the action with respect to the auxiliary field gives

(n− 1)

χ3
gµν∂µχ∂νχ+ (n− 1)∂ν

(
1

χ2
gµν∂µχ

)
− n

2
χ−

n(n−2)+2
2 Λ = 0 (7.10)

while Einstein’s equations take the form

Rµν−
1

2
gµνR = κ2

[
(n− 1)(n− 2)

χ2
∂µχ∂νχ− gµν

(n− 1)(n− 2)

2χ2
gαβ∂αχ∂βχ+ gµνχ

−n(n−2)
2 Λ

]
.

(7.11)

Once again the Bianchi identity of the left hand side forces the consistency condition

0 = ∇µ

(
1
√
g

δSM
δgµν

)
=

1

2
χ−

n(n−2)
2 ∂νΛ (7.12)

where we have used the equation of motion (7.10). A basic difference with the

previous case is that now there is not a direct way to relate the constant Λ with

the matter Lagrangian, instead it is related to the matter and the auxiliary fields

through (7.10). Although we haven’t considered a Lagrangian for matter, it is easy to

convice oneself that nothing should change as long as LM is a scalar. In fact a general

argument can be given for Λ to be a constant [?]. Let us perform Diffeomorphism

on the matter action, i.e., a change of coordinates in the active sense, keeping the

volume element dnx unchanged. Since by hypothesis SM is a scalar

0 = δSM =

∫
dnx

[
δSM
δφ

δφ+
δSM
δχ

δχ+
δSM
δΛ

δΛ +
δSM
δgµν

δgµν
]

=

= −
∫
dnx
√
g

(
∇ν

(
1
√
g

δSM
δgµν

)
+ χ−

n(n−2)
2 ∂νΛ

)
ξν (7.13)

from which one reproduces (7.12) under the assumption that the fields verify their

equations of motion16.

16Verificar los cálculos, hay algún problema con la normalización y el signo.
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It is in some sense natural to suspect of the hypothesis that our fields are scalars

under general TDiff, since we have started from an action which is not. In fact, this

assumption is inconsistent with the equation of motion of the multiplier (7.5). We

can make all the reasonings automatically consistent using compensators [5]. Let

C(x) be a field (scalar density) such that the combination

g(x)C2(x) (7.14)

is invariant under an arbitrary diffeomorphism. Starting from a metric gµν one can

define another metric

C−
2
n ĝµν = g−

1
nC−

2
n gµν (7.15)

whose determinant is ĝ = 1. Under TDiff, ĝµν is a tensor and g a scalar. Therefore,

the most general TDiff action takes the form

S = − 1

2κ2

∫
dnxχ2 [g, φω]R [ĝµν ] +

∫
dnxL [g, φω, ĝµν ] (7.16)

where φω denotes a general collection of fields which may have some weight ø

under an arbitrary Diff (not transverse). If one now performs such a Diff, the previous

action takes the form

S = − 1

2κ2

∫
dnxC−1χ2

[
gC2, φωC

−ø
]
R
[
ĝµνC

− 2
n

]
+

∫
dnxC−1L

[
gC2, φωC

−ø, ĝµνC
− 2
n

]
(7.17)

which is invariant by construction. We may go to the Einstein frame

ḡµν = χ
4

n−2C−
2
n ĝµν

ḡ = χ
4n

(n−2)C−2. (7.18)

This last constraint is implemented through a Lagrange multipler Λ. Finally the

action reads

S = − 1

2κ2

∫
dnx
√
ḡR̄ + SM +

∫
dnxΛC−1

SM =

∫
dnx
√
ḡ

[
(n− 1)(n− 2)

2χ2
ḡµν∂µχ∂νχ+ χ−

2n
(n−2)L

[
χ, φωC

−ø, ḡµν
]
− χ−

2n
(n−2) Λ

]
.

We have eliminated the combination gC2 in favor of χ. Notice that this action is

perfectly Diff invariant, so in principle there are no consistency problems. We recover

the usual form of the action in the, so to say, unitary gauge C = 1. It is clear that

if all φ are true scalars, the e.o.m. of the compensator forces the Lagrange multipler

to vanish. In case the matter fields have some weight, there could be terms like for

example
1

2
ḡµν∂µ(φωC

−ω)∂ν(φωC
−ω) (7.19)

But redefining φ ≡ φωC
−ω we see that the e.o.m. for the compensator remains the

same.
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7.2 Abelian gauge invariance: transverse Fierz-Pauli symmetry.

A sometimes confusing issue is the following. The Fierz-Pauli (FP) symmetry is not

exactly the linearization of full diffeomorphism invariance, which would have been

δhαβ = ∂αξβ + ∂βξα + ξρ∂ρhαβ (7.20)

insofar as the last term is absent. This issue is clearly explained in page 80 of Ort́ın’s

book [69].

Indeed, gauge fixing with the full FP symmetry is trivial, and e.g. harmonic

gauge can be imposed:

ωµ ≡ ∂λhλµ −
1

2
∂µh = 0 (7.21)

through a gauge fixing

Lgf = Bµωµ +
α

2
BµBµ (7.22)

The ghost lagrangian is ,

Lgh = bρ2cρ (7.23)

and the BRST transformations can be taken simply as:

shαβ = ∂αcβ + ∂βcα

sBµ = 0

sbµ = −Bµ

scµ = 0 (7.24)

Were we to implement the transverse part of the symmetry (TFP) only, the param-

eters are not arbitrary but rather

∂αξ
α = 0 (7.25)

This complicates matters in several ways. First of all, we cannot reach the full

harmonic gauge. The best we can do is to impose, for example, the spatial piece, i.e.

ωi = 0 (7.26)

or even better, 17 the three independent conditions:

∂αω
αβ = 0 (7.29)

17Another possibility would be to impose as a gauge condition the self-dual part of dω,i.e. .

ω+
αβ ≡ P

+
αβ

µνωµν = 0 (7.27)

where the projector on the space of self-dual forms, is given by

P+
αβ

µν ≡ 1
2

(
δµναβ − iεαβ

µν
)

(7.28)

This cuts in half the number of independent components, so that it amounts to three independent
conditions only.
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where

ωµν ≡ ∂λ (∂µhλν − ∂νhλµ) (7.30)

Another interesting possibility would be to gauge fix three dimension four scalars.

The problem is that there are only two whose variation is not a total derivative,

namely,

Φ1 ≡ ∂µhαβ∂
µhαβ

Φ2 ≡ ∂µhαβ∂
αhµβ (7.31)

Independent ghosts are defined through

cµ ≡ ∂ρc
ρµ
1 (7.32)

where we have indicated as a subscript the ghost number. The antighosts will be

treated momentarily

Those objects are transverse:

∂ρc
ρ = ∂ρb

ρ = 0 (7.33)

owing to the fact that the two-index ghosts are assumed to be completely antisym-

metric (ghostly forms).

There is the apparent complication that the ghostly forms are only defined mod-

ulo total differentials:

εµναβ∂αc
1
β (7.34)

(this is indeed the correct counting: 6− (4− 1) = 3).

The gauge fixing is then

Lgf ≡ Bα∂ρωαρ +
α

2
B2
α (7.35)

The corresponding ghost lagrangian is

Lgh = −bα22cα (7.36)

which has got the drawback of being of fourth order in derivatives, which is irrelevant

nevertheless, because it is independent of the gauge fields. 18 The corresponding

BRST transformations are:

shαβ = ∂α∂
µc1
µβ + ∂β∂

µc1
µα

sBµ = 0

sbµ = −Bµ

sc1
ρµ = 0 (7.40)

18Were we to impose the self-dual form as a gauge condition, then the gauge fixing piece of the
lagrangian can be taken as

Lgf = Bαβω+
αβ +

α

2
B2
αβ (7.37)

where the fields Bαβ represent the three components of a selfdual form; and the ghost lagrangian
reads

Lgh = b+αβP
αβµν
+ 2 (∂µcν − ∂νcµ) (7.38)
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7.3 The non-abelian case

Let us now use the convenient language of differential forms, indicating sometimes

its degree by a subscript (this is trivially related to the ghost number):

c ≡ c1 ≡ cµdx
µ (7.41)

with the constraint (please refer to the Appendix for our notation on differential

forms)

δc1 = 0 (7.42)

so that there is locally a ghostly two-form c2 such that

c1 = δc2 (7.43)

This means that

δsc1 = 0 (7.44)

Indeed, given that acting on the metric

sgaβ = £(c)gαβ = cλ∂λgαβ + gαµ∂βc
µ + gβµ∂αc

µ (7.45)

nilpotency needs

sc1 = −1

2
δ(c ∧ c) (7.46)

that is

scµ = ∂λ
(
cλcµ

)
= cλ∂λc

µ (7.47)

which means that ghosts act geometrically as scalars from the BRST viewpoint19. It

is clear that (assuming [s, δ] = 0)

s2c1 = −1

2
sδ (c1 ∧ c1) = −1

2
δ (sc1 ∧ c1 − c1 ∧ sc1) =

1

4
δ (δ (c1 ∧ c1) ∧ c1 − c1 ∧ δ (c1 ∧ c1)) = 0 (7.49)

It is more or less unavoidable also here that this piece of the lagrangian is of third order in derivatives.
The BRST transformations are then

shαβ = ∂α∂
µc1µβ + ∂β∂

µc1µα

sBµν = 0

sb+µν = −Bµν
sc1ρµ = 0 (7.39)

19Please note that owing to the odd Grassmann parity of the ghosts,

c ∧ c 6= 0 (7.48)
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Consistency of equations (7.43) and (7.46) demands

sδc2 = δsc2 = −1

2
δ (c ∧ c) (7.50)

that is,

sc2 = −1

2
c ∧ c− δc3 (7.51)

This three form c3 cannot be trivial, because using nilpotency again, this time on

the ghost itself,

s2c2 = 0 = s

(
−1

2
c ∧ c

)
− sδc3 (7.52)

whereas

s (c ∧ c) = −1

2
δ (c ∧ c) ∧ c+

1

2
c ∧ δ (c ∧ c) = −δ (c ∧ c ∧ c) (7.53)

conveying the fact that

sc3 =
1

2
c ∧ c ∧ c− δc4 (7.54)

Once more, using nilpotency, and the fact that

s (c ∧ c ∧ c) = −3

2
(c ∧ c ∧ c ∧ c) (7.55)

yields

s2c3 = 0 = −3

2
δ(c ∧ c ∧ c ∧ c)− sδc4 (7.56)

ao that, finally

sc4 =
3

2
c ∧ c ∧ c ∧ c (7.57)

and s2 = 0 because there are no forms of dgree five in four dimensions.

So we need altogether 11 independent ghosts: 6 grassmann odd, ghost number

one c2, plus 4 Grasmann even, ghost number two c3 plus one Grassmann odd, ghost

number three, c4.

For the antighosts the story is even simpler.We define the corresponding forms:

b1 = δb2 (7.58)

and

sb2 = B2

sB2 = 0 (7.59)

The antighosts b are Grassmann odd, and enjoy ghost number −1, whereas B is

Grassmann even and has vanishing ghost number.

This analysis coincides basically with the one performed earlier by Dragon and

Kreuzer [29][57], which however employ a non covariant, less convenient language.
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7.4 Gauge Fixing

The gauge fixing fermion has got to be a Lorentz scalar of ghost number −1. We

can define the most general operator composed out of fields with zero ghost number:

Hα1α2 = Aα1α2α3α4h
α3α4 +Bα1α2α3α4B

α3α4 + Ca1α2α3α4α5α6h
α3α4hα5α6 + . . . (7.60)

That is, the most general polynomial in the fields B and h. The most general

composite operator with ghost number −1 is of the form:

Gα1α2 ≡ Kα1α2α3α4b
α3α4 +Kα1α2α3α4α5α6b

α3α4bα3α4cα5α6 + . . . (7.61)

so that the gauge fixing fermion is given by

Ψ ≡ GµνH
µν (7.62)

where the indices are raised and lowered with Minkowski’s metric. The contribution

to the lagrangian is

sΨ = (Kα1α2α3α4B
α3α4 + . . .)Hα1α2−Gα1α2

(
Aα1α2α3α4

(
∇α3∇λc

α4λ +∇α4∇λc
α3λ
)

+ . . .
)

(7.63)

7.5 Setup

Starting from a TDiff pure gravity term

Sg = − 1

2κ2

∫
dnx ga R (7.64)

we can go to the Einstein frame through a conformal change of the metric (under

the assumption a 6= 1
2
)

ḡµν = χ2[g]gµν

χ2 = g
2a−1
n−2 (7.65)

In this new frame the action takes the form

Sg = − 1

2κ2

∫
dnx
√
ḡ R̄ + Sχ + SΛ (7.66)

where Sχ is a kinetic term for the scalar

Sχ =
1

2κ2

(n− 1)(n− 2)(2a− 1)2

16(an− 1)2

∫
dnx
√
ḡ

1

ḡ2
ḡµν∂µḡ∂ν ḡ

=
1

2κ2
(n− 1)(n− 2)

∫
dnx
√
ḡ

1

χ2
ḡµν∂µχ∂νχ (7.67)
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and we have introduced a Lagrange multipler Λ to fix the determinant of the metric

SΛ =
1

2κ2

∫
dnx Λ

[√
ḡ χ−

2(an−1)
2a−1 − 1

]
. (7.68)

Notice that formal Diff invariance is only broken by this last term. If we now include

a matter term

SM =

∫
dnx gb LM [gµν , φ] (7.69)

after the conformal redefinition it takes the form

SM =

∫
dnx
√
ḡ χ

2n(b−a)+2(1−2b)
2a−1 LM

[
χ−2ḡµν , φ

]
(7.70)

One should also include a kinetic term for the determinant of the metric since anyway

it will be generated radiatively

Sk =
1

2κ2

∫
dnx gc

[
1

2
gµν∂µg∂νg − V (g)

]
=

1

2κ2

∫
dnx
√
ḡ χ

2n(c−a)+2(1−2c)
2a−1

[
2(n− 2)2

(2a− 1)2
χ

4(n−2)
2a−1 ḡµν∂µχ∂νχ− V (χ(g))

]
(7.71)

7.6 Background TDiff

We can consider quantum fluctuations around a classical background, ḡµν . We

parametrize the strength of the perturbation by a field of mass dimension one:

gµν = ḡµν + κhµν (7.72)

where κ2 ≡ 8πG, as usual. This expression involving the metric as a covariant tensor

can be considered as an exact expansion; or rather as the definition itself of the

perturbation to be considered; all other geometric expansions are then defined as

formal series in the coupling constant κ.

If we introduce two other quantities.

hµν ≡ ḡµαḡνβhαβ (7.73)

and

hµν ≡ ḡµαhαν (7.74)

then,

gµν = ḡµν − κhµν + κ2(h2)µν + o(κ3) (7.75)

We shall denote for a general quantity:

A ≡
∑
n

κn
(n)

A (7.76)

– 119 –



The determinant of the metric expands as

g ≡ det gµν = det ḡµλ
(
δλν + κḡλσhσν

)
= ḡetr log (δλν+κḡλσhσν) (7.77)

namely,

g = ḡ{1 + κḡαβhαβ +
κ2

2
[(ḡαβhαβ)2 − ḡαβ(h2)αβ)]} (7.78)

and √
|g| =

√
¯|g|{1 +

κ

2
ḡαβhαβ +

κ2

8
[(ḡαβhαβ)2 − 2ḡαβ(h2)αβ]} (7.79)

Under an arbitrary diffeomorphism,

δgµν = £(ξ)gµν = ξα∂αgµν + ∂µξ
αgαν + ∂νξ

αgµα (7.80)

The determinant of the metric transforms as

δ|g| = |g|gµνδgµν (7.81)

This is an exact formula in the linear diffeomorphism regime. The condition for the

metric volume element to remain invariant, that is,

δ|g| = 0 (7.82)

is

∇µξ
µ = 0 (7.83)

which is equivalent to our unimodularity condition only in flat space.

The background field ansatz implies a further expansion in the coupling constant

κ.

Backgroung gauge transformations correspond to

δḡµν = £(ξ)ḡµν

δhµν = £(ξ)hµν (7.84)

The quantum gauge transformations read

δḡµν = 0

δhµν =
1

κ
£(ξ)ḡµν + £(ξ)hµν (7.85)

Those are the ones that must be gauge fixed.

Under those,

ḡαβδhαβ =
1

κ
(ξρ∂ρ|ḡ|+ 2∂αξ

a) +O(1) (7.86)

i.e., even if the diffeomorphism is unimodular in our sense, ∂αξ
α = 0, there is a

non-vanishing contribution to the variation of the determinant of the metric.
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Suppose now that we have a TDiff action of the form

Sg = − 1

2κ2

∫
dnx
√
g∗ [f(g∗)R∗ + 2fλ(g

∗) Λ] (7.87)

where f and fλ are arbitrary functions of the determinant of th metric g∗ ≡ det g∗µν ,

and the action is in general not Diff invariant. Moreover, under a Diff the action

transforms to

Sg = − 1

2κ2

∫
dnx
√
g∗
[
f(g∗C2)R∗ + 2fλ(g

∗C2) Λ
]

(7.88)

where C(x) is a compensator field, in particular the determinant of the Jacobian of

the coordenates change, so that we can write in terms of the scalar field ϕ∗ ≡ g∗C2

a perfectly invariant action

Sg = − 1

2κ2

∫
dnx
√
g∗ [f(ϕ∗)R∗ + 2fλ(ϕ

∗) Λ] (7.89)

To perform the computation is convenient to go to the Einstein frame, so we make

a conformal transformation

gµν = Ω2g∗µν

g = Ω2ng∗

ϕ = gC2 = Ω2ng∗C2 = Ω2nϕ∗ (7.90)

If we choose the conformal factor as

Ωn−2 = f(ϕ∗) = f(Ω−2nϕ) (7.91)

then in terms of the new metric the action takes the form

Sg = − 1

2κ2

∫
dnx
√
g [R + 2Fλ(Ω) Λ] +

(n− 1)(n− 2)

2κ2

∫
dnx
√
g

1

Ω2
gµν∂µΩ∂νΩ

(7.92)

where we have made use of (7.91) in order to express fλ in terms of Ω

Ω−nfλ(Ω
−2nϕ(Ω)) ≡ Fλ(Ω) (7.93)

A final redefinition of the scalar

φ ≡
√

2(n− 1)(n− 2) ln Ω (7.94)

gives us the desired action

Sg = − 1

2κ2

∫
dnx
√
g [R + 2Fλ(φ) Λ] +

1

2κ2

∫
dnx
√
g

1

2
gµν∂µφ∂νφ (7.95)
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Expanding the fields in a background and a fluctuation

gµν = ḡµν + κhµν

φ = φ̄+ κφ (7.96)

and using

Fλ(φ) = Fλ(φ̄) + κF ′λ(φ̄)φ+
κ2

2
F
′′

λ (φ̄)φ2 +O(κ3) (7.97)

we find up to quadratic order the action

Sg = − 1

2κ2

∫
dnx
√
ḡ

[
R̄ + 2ΛFλ(φ̄)− 1

2
ḡµν∂µφ̄∂νφ̄+

+κ

(
1

2
hR̄+

(1)

R +ΛhFλ(φ̄) + 2ΛF ′λ(φ̄)φ− ḡµν∂µφ̄∂νφ−
1

4
(hḡµν − 2hµν) ∂µφ̄∂νφ̄

)
+

+κ2

(
(2)

R +
1

2
h

(1)

R +

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡµν∂µφ̄∂νφ̄

)
8

(
h2 − 2hµνh

µν
)

+ ΛhF ′λ(φ̄)φ+

+ΛF
′′

λ (φ̄)φ2 − 1

2
ḡµν∂µφ∂νφ+

1

2
(2hµν − hḡµν) ∂µφ∂νφ̄+

1

4
(hhµν − 2hµαhνα) ∂µφ̄∂νφ̄

)]
(7.98)

The term linear in the coupling cancels due to the background equations of motion,

namely

∇̄2φ̄+ 2ΛF ′λ(φ̄) = 0

R̄µν −
1

2
R̄ḡµν − ΛFλ(φ̄)ḡµν −

1

2
∇̄µφ̄∇̄νφ̄+

1

4
ḡµν ḡ

αβ∇̄αφ̄∇̄βφ̄ = 0 (7.99)

Using the known expansion for the scalar curvature (6.134) the quadratic order op-

erator is

Sg =
1

2

∫
dnx
√
ḡ

[
hαβ

(
1

4
ḡαβ ḡµν∇̄2 − 1

4
ḡαµḡβν∇̄2 +

1

2
ḡαµ∇̄β∇̄ν −

1

2
ḡµν∇̄α∇̄β

+
1

2
ḡαβR̄µν −

1

2
ḡαµR̄βν −

1

2
R̄αµβν +

1

2
ḡαµ∂βφ̄∂νφ̄−

1

4
ḡαβ∂µφ̄∂νφ̄

−
(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
8

(ḡαβ ḡµν − 2ḡαµḡβν)

)
hµν

+hαβ
(

1

2
ḡαβ ḡ

ρσ∂ρφ̄∂σ − ∂αφ̄∂β − ΛḡαβF
′
λ(φ̄)

)
φ+ φ

(
−1

2
∇̄2 − ΛF

′′

λ (φ̄)

)
φ

]
(7.100)

At this stage the operator is very cumbersome, but we still have the freedom to fix

the gauge in a way that simplifies the computationa lot. Taking the expresion

χν = ∇̄µhµν −
1

2
∇̄νh− φ∂νφ̄ (7.101)
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we choose as gauge fixing term

Sgf =
1

2

∫
dnx
√
ḡ

1

2ξ
ḡµνχµχν (7.102)

which after expanding can be expressed in the following form

Sgf =
1

2

∫
dnx
√
ḡ

1

2ξ

[
hαβ

(
ḡµν∇̄α∇̄β − ḡαµ∇̄β∇̄ν −

1

4
ḡαβ ḡµν∇̄2

)
hµν

+2hαβ
(
∂αφ̄∂β + ∇̄α∇̄βφ̄−

1

2
ḡαβ ḡ

ρσ∂ρφ̄∂σ −
1

2
ḡαβ ḡ

ρσ∇̄ρ∇̄σφ̄

)
φ

+φ
(
ḡαβ∂αφ̄∂βφ̄

)
φ
]

(7.103)

Let us define the following tensor with the desired symmetry properties, i.e., sym-

metric in (µν), (αβ) and under the interchange (µν)↔ (αβ)

Cαβµν =
1

4
(ḡαµḡβν + ḡαν ḡβµ − ḡαβ ḡµν)

Cαβµν = ḡαµḡβν + ḡαν ḡβµ − 2

n− 2
ḡαβ ḡµν

δαβµν = δ(α
µ δ

β)
ν (7.104)

the full action can be written as

Sg + Sgf =
1

2

∫
dnx
√
ḡ

1

2

[
hαβMαβµνh

µν + hαβDαβφ+ φEµνh
µν + φFφ

]
(7.105)

where the operators are

Mαβµν = Cαβρσ

(
−δρσµν∇̄2 +

1− ξ
ξ

ḡµν∇̄(ρ∇̄σ) +
2(ξ − 1)

ξ
δ

(ρ
(µ∇̄

σ)∇̄ν) + P ρσ
µν

)
P ρσ
µν = −2R̄(ρ

µ
σ)
ν − 2δ

(ρ
(µR̄

σ)
ν) +

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡαβ∂αφ̄∂βφ̄

)
δρσµν + ḡρσR̄µν

+
2

(n− 2)
ḡµνR̄

ρσ − 1

(n− 2)
ḡµν ḡ

ρσR̄ + 2δ
(ρ
(µ∂ν)φ̄∂

σ)φ̄− 1

2
ḡµν∂

ρφ̄∂σφ̄

− 1

(n− 2)
ḡρσ∂µφ̄∂νφ̄+

1

2(n− 2)
ḡµν ḡ

ρσ∂λφ̄∂
λφ̄

Dαβ =
2(1− ξ)

ξ
Cαβρσ ∇̄ρφ̄∇̄σ +

ξ + 1

ξ
Cαβρσ∇̄ρ∇̄σφ̄− ΛF ′λ(φ̄)ḡαβ

Eµν =
2(ξ − 1)

ξ
Cµνρσ ∇̄ρφ̄∇̄σ +

ξ + 1

ξ
Cµνρσ∇̄ρ∇̄σφ̄− ΛF ′λ(φ̄)ḡµν

F = −∇̄2 − 2ΛF
′′

λ (φ̄) +
1

ξ
ḡρσ∂ρφ̄∂σφ̄ (7.106)

in such a way that in terms of the combined field

ψA ≡
(
hµν

φ

)
(7.107)
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and in the minimal gauge, corresponding to ξ = 1, the operator

S =
1

2

∫
dnx
√
ḡ

1

2
ψA∆ABψ

B (7.108)

is minimal, in the sense that it takes a Laplacian form

∆AB = −gAB∇̄2 + YAB (7.109)

with the metric

gAB =

(
Cαβµν 0

0 1

)
(7.110)

the inverse metric

gAB =

(
Cαβµν 0

0 1

)
(7.111)

and the term without derivatives

YAB =

(
CαβρσP

ρσ
µν 2Cαβρσ∇̄ρ∇̄σφ̄− ΛF ′λ(φ̄)ḡαβ

2Cµνρσ∇̄ρ∇̄σφ̄− ΛF ′λ(φ̄)ḡµν −2ΛF
′′

λ (φ̄) + ḡρσ∂ρφ̄∂σφ̄

)
(7.112)

On the other hand, once we have an operator in the Laplacian form (7.109), the

one-loop counterterm (supposing that we work in n = 4 dimensions) is given by the

following coefficient in the heat kernel expansion

a4 =
1

(4π)
n
2

1

360

∫
dnx
√
ḡ tr

(
180Y 2 − 60R̄Y + 5R̄2−

−2R̄µνR̄
µν + 2R̄µνρσR̄

µνρσ + 30WµνW
µν
)

(7.113)

and the field strength is defined through

[∇̄µ, ∇̄ν ]ψ
A = WA

Bµνψ
B (7.114)
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Therefore, in order to find the counterterm we will need the following traces

tr I = δαβαβ + 1 =
n(n+ 1) + 2

2

tr Y = gABYAB = δµναβP
αβ
µν − 2ΛF

′′

λ (φ̄) + ḡρσ∂ρφ̄∂σφ̄

=
n(n+ 1)

2

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
− nR̄ + (n+ 2)ḡρσ∂ρφ̄∂σφ̄− 2ΛF

′′

λ (φ̄)

tr Y 2 = YAB g
BC YCD g

DA = Pαβ
µν P

µν
αβ + 2DαβEµνC

µναβ +
(

2ΛF
′′

λ (φ̄)− ḡρσ∂ρφ̄∂σφ̄
)2

= 3R̄µνρσR̄
µνρσ +

n2 − 8n+ 4

n− 2
R̄µνR̄

µν +
n+ 2

n− 2
R̄2 − 2nR̄

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
+
n (n+ 1)

2

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)2

+ 2∇̄2φ̄∇̄2φ̄− 8ΛF ′λ ∇̄2φ̄

− 8n

n− 2
Λ2(F ′λ(φ̄))2 +

n2 − 5

n− 2

(
ḡρσ∂ρφ̄∂σφ̄

)2
+
n(4− n)(3n− 8)− 4(n− 2)2

(n− 2)2
R̄µν∂µφ̄∂νφ̄

−n
2 + 4n− 16

(n− 2)2
R̄ ḡρσ∂ρφ̄∂σφ̄+ 2 (n+ 1)

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
ḡγλ∂γφ̄∂λφ̄

+
(

2ΛF
′′

λ (φ̄)− ḡρσ∂ρφ̄∂σφ̄
)2

tr WµνW
µν = −(n+ 2)R̄µνρσR̄

µνρσ (7.115)

Using the well known expression (7.113) of the fourth heat kernel coefficient one gets

a4 =
1

(4π)
n
2

1

360

∫
dnx
√
ḡ
{

[542 + n(n+ 1)− 30(n+ 2)] R̄µνρσR̄
µνρσ

+

[
180

n2 − 8n+ 4

n− 2
− n(n+ 1)− 2

]
R̄µνR̄

µν +

[
180

n+ 2

n− 2
+ 60n+

5n(n+ 1) + 10

2

]
R̄2

−30n(n+ 13)R̄

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
+ 90n(n+ 1)

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)2

+180
n(4− n)(3n− 8)− 4(n− 2)2

(n− 2)2
R̄µν∂µφ̄∂νφ̄− 60

[
3
n2 + 4n− 16

(n− 2)2
+ (n+ 2)

]
R̄ ḡρσ∂ρφ̄∂σφ̄

+360 (n+ 1)

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
ḡγλ∂γφ̄∂λφ̄+ 180

n2 + n− 7

n− 2

(
ḡρσ∂ρφ̄∂σφ̄

)2

+360∇̄2φ̄∇̄2φ̄+ 120ΛR̄F
′′

λ (φ̄)− 1440ΛF ′λ(φ̄)∇̄2φ̄− 720ΛF
′′

λ (φ̄)ḡρσ∂ρφ̄∂σφ̄

−1440n

n− 2
Λ2(F ′λ(φ̄))2 + 720Λ2(F

′′

λ (φ̄))2

}
(7.116)

Remember that we need also the contribution coming from ghost loops. The gauge

fixing term mantains background invariance, under which the background ḡµν trans-

forms as a metric and the fluctuation hµν as a tensor. On the other hand it has to
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break the quatum symmetry

δḡµν = 0

δhµν =
2

κ
∇̄(µξν) + Lξhµν

δφ̄ = 0

δφ =
1

κ
ξµ∇̄µ

(
φ̄+ κφ

)
(7.117)

The ghost Lagrangian is obtained performing a variation on the gauge fixing term

δχν =
1

κ

(
∇̄2ḡµν + R̄µν − ∇̄µφ̄∇̄νφ̄

)
ξµ (7.118)

plus terms that give operators cubic in fluctuations and therefore are irrelevant at one

loop (the ghosts are always quantum fields, they do not appear as external states).

Then, as ghost Lagrangian we will take

Sgh =
1

2

∫
dnx
√
ḡ

1

2
V ∗µ
(
−∇̄2ḡµν − R̄µν + ∇̄µφ̄∇̄νφ̄

)
Vν (7.119)

The relevant traces are

tr I = n

tr Y = −R̄ + ḡρσ∂ρφ̄∂σφ̄

tr Y 2 = R̄µνR̄
µν − 2R̄µν∂µφ̄∂νφ̄+

(
ḡρσ∂ρφ̄∂σφ̄

)2

tr WµνW
µν = −R̄µνρσR̄

µνρσ (7.120)

and the coefficient

agh4 =
1

(4π)
n
2

1

360

∫
dnx
√
ḡ
{

[2n− 30] R̄µνρσR̄
µνρσ + [180− 2n] R̄µνR̄

µν

+ [60 + 5n] R̄2 − 360R̄µν∂µφ̄∂νφ̄− 60R̄ḡρσ∂ρφ̄∂σφ̄+ 180
(
ḡρσ∂ρφ̄∂σφ̄

)2
}

(7.121)

Adding the two pieces together and particularizing to the physical dimension n =

4 one gets the one loop counterterm (notice the factor and the sign of the ghost

contribution)

∆S =
1

ε

(
a4 − 2agh4

)
=

1

ε

1

(4π)2

∫
d4x
√
ḡ

{
71

60
R̄µνρσR̄

µνρσ − 241

60
R̄µνR̄

µν +
15

8
R̄2

−17

3
R̄

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
+ 5

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)2

−8

3
R̄ ḡρσ∂ρφ̄∂σφ̄+ 5

(
R̄ + 2ΛFλ(φ̄)− 1

2
ḡρσ∂ρφ̄∂σφ̄

)
ḡγλ∂γφ̄∂λφ̄+

9

4

(
ḡρσ∂ρφ̄∂σφ̄

)2

+∇̄2φ̄∇̄2φ̄+
1

3
ΛR̄F

′′

λ (φ̄)− 4ΛF ′λ(φ̄)∇̄2φ̄− 2ΛF
′′

λ (φ̄)ḡρσ∂ρφ̄∂σφ̄− 8Λ2(F ′λ(φ̄))2

+2Λ2(F
′′

λ (φ̄))2
}

(7.122)
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In case that the cosmological constant vanishes the final result is

∆S =
1

ε

1

(4π)2

1

360

∫
d4x
√
ḡ
{

426R̄µνρσR̄
µνρσ − 1446R̄µνR̄

µν + 435R̄2

+60R̄ ḡρσ∂ρφ̄∂σφ̄+ 360
(
ḡρσ∂ρφ̄∂σφ̄

)2
+ 360∇̄2φ̄∇̄2φ̄

}
=

1

ε

1

(4π)2

∫
dnx
√
ḡ

{
43

60
R̄µνR̄

µν +
1

40
R̄2 +

1

6
R̄ ḡρσ∂ρφ̄∂σφ̄+

(
ḡρσ∂ρφ̄∂σφ̄

)2

+∇̄2φ̄∇̄2φ̄
}

(7.123)

which coincides with the result of ’t Hooft and Veltman except for the last term.

That term is however irrelevant in this case since it vanishes due to the background

equations of motion. Using them the counterterm can be written in the form

∆S =
1

ε

1

(4π)2

∫
d4x
√
ḡ

203

40
R̄2 (7.124)

On the other hand, if we had considered pure gravity in the presence of a Cosmo-

logical Constant that would correspond in our notation to Fλ(φ̄) = 1 and φ̄ = 0.

Nevertheless, in order to compare with the results present in the literature, we have

to subtract from (7.122) the contribution from scalar loops, which is trivially

aφ4 =
1

(4π)
n
2

1

360

∫
dnx
√
ḡ
{

2R̄µνρσR̄
µνρσ − 2R̄µνR̄

µν + 5R̄2
}

1

(4π)
n
2

∫
dnx
√
ḡ

{
1

180
R̄µνρσR̄

µνρσ − 1

180
R̄µνR̄

µν +
1

72
R̄2

}
(7.125)

in such a way that, after using the equations of motion and neglecting the topo-

logical invariant, the one-loop counterterm coincides with the well known result of

Christensen and Duff [19]

∆S =
1

ε

(
a4 − aφ4 − 2agh4

)
=

1

ε

1

(4π)2

1

180

∫
dnx
√
ḡ
{

212R̄µνρσR̄
µνρσ − 2088 Λ2

}
(7.126)

It is possible to use the background equations of motion (7.99) to simplify the final

result (7.122). It is convenient to express the final result just in terms of the scalar,

since we are interested in inverting the conformal transformation. The counterterm

is then

∆S =
1

ε

1

(4π)2

∫
d4x
√
ḡ

{
203

160

(
ḡρσ∂ρφ̄∂σφ̄

)2
+

57

20
ΛFλ(φ̄ )ḡρσ∂ρφ̄∂σφ̄

−57

5
Λ2 (Fλ(φ̄))2 +

1

3
Λ2 (F ′λ(φ̄))2 + 2 Λ2 (F ′′λ (φ̄))2 − 4

3
Λ2 Fλ(φ̄)F ′′λ (φ̄)

}
(7.127)

If we want to write the counterterm in the original frame we must undo the conformal

tranformation, which is very easy once we have it in terms of the scalar. The scalar
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is related to the conformal factor through (7.94), and the conformal factor and the

original function of the determinant of the metric verify (7.91). With this in mind, we

can express the different contributions to the counterterm in terms of the functions

appearing in (7.87). Taking into account the definition of the potential Fλ(φ̄) given

in (7.93) and supposing that f(ϕ∗) is not a constant we get

Fλ(ϕ
∗) = [f(ϕ∗)]

n
2−n fλ(ϕ

∗)

F ′λ(ϕ
∗) =

∂Fλ
∂φ

(ϕ∗) =
∂Fλ
∂ϕ∗

∂ϕ∗

∂Ω

∂Ω

∂φ

=
n− 2√

2(n− 1)(n− 2)
f

2
2−n

[
n

2− n
f−1 fλ + f ′−1 f ′λ

]
F ′′λ (ϕ∗) =

∂2Fλ
∂φ2

(ϕ∗) =
∂

∂φ

(
∂Fλ
∂φ

)
(ϕ∗) =

∂

∂ϕ∗

(
∂Fλ
∂φ

(ϕ∗)

)
∂ϕ∗

∂Ω

∂Ω

∂φ

=
n− 2

2(n− 1)
f
n−4
n−2

[
n2

(n− 2)2
f−2 fλ +

n+ 2

2− n
f−1 f ′−1 f ′λ + f ′−2 f ′′λ − f ′−3 f ′′ f ′λ

]
ḡρσ∂ρφ̄∂σφ̄ =

2(n− 1)

n− 2
f

2(1−n)
n−2 f ′2 gµν∗ ∂µϕ

∗∂νϕ
∗ (7.128)

where the functions f(ϕ∗) and fλ(ϕ
∗) are given from the begining in terms of ϕ∗ and

we have denoted

f ′(ϕ∗) =
∂f(ϕ∗)

∂ϕ∗
(7.129)

and the others in a similar way. Finally, the counterterm of the theory (7.87) is

∆S =
1

ε

1

(4π)2

∫
d4x
√
g∗
{

1827

160
f−4 f ′4 (gµν∗ ∂µϕ

∗∂νϕ
∗)2

+
171

20
Λ f−3 f ′2 fλ g

µν
∗ ∂µϕ

∗∂νϕ
∗ − 57

5
Λ2 f−2 f 2

λ +
1

9
Λ2
[
f ′−1 f ′λ − 2f−1 fλ

]2
+

2

9
Λ2 f 2

[
4 f−2 fλ − 3f−1 f ′−1 f ′λ + f ′−2 f ′′λ − f ′−3 f ′′ f ′λ

]
×
[
2 f−2 fλ − 3f−1 f ′−1 f ′λ + f ′−2 f ′′λ − f ′−3 f ′′ f ′λ

]}
(7.130)

7.7 A slightly more general transverse action

Had we started from an action with a kinetic term for the determinant of the metric

S = − 1

2κ2

∫
dnx
√
g∗
[
f(g∗)R∗ + 2fλ(g

∗)Λ− 1

2
fφ(g∗)gµν∗ ∂µg

∗∂νg
∗
]

(7.131)

so that after an arbitrary change of coordenates

S = − 1

2κ2

∫
dnx
√
g∗
[
f(ϕ∗)R∗ + 2fλ(ϕ

∗)Λ− 1

2
fφ(ϕ∗)gµν∗ ∂µϕ

∗∂νϕ
∗
]

(7.132)

where the scalar field is ϕ∗ ≡ g∗C2. We should now go to the Einstein frame through

a conformal transformation

gµν = Ω2g∗µν (7.133)
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Choosing the conformal factor as20

Ωn−2 = f(ϕ∗) (7.134)

the action in the new frame takes the form

S = − 1

2κ2

∫
dnx
√
g [R + 2Fλ(Ω)Λ] +

1

2κ2

∫
dnx
√
g

[
2(n− 1)(n− 2)

Ω2

+Ω2−n fφ
(
f−1(Ωn−2)

)(∂f−1(Ω)

∂Ω

)2
]

1

2
gµν∂µΩ∂νΩ (7.135)

Where we have defined

Fλ(Ω) ≡ Ω−n fλ
(
f−1(Ωn−2)

)
(7.136)

A final redefinition of the scalar gives the desired action studied earlier[
2(n− 1)(n− 2)

Ω2
+ Ω2−n fφ

(
f−1(Ωn−2)

)(∂f−1(Ωn−2)

∂Ω

)2
]
gµν∂µΩ∂νΩ = gµν∂µφ∂νφ

(7.137)

On the other hand one could have included a potential term

SV = − 1

2κ2

∫
dnx
√
g∗M2 V (ϕ∗) (7.138)

but it can be absorved in the definition of Fλ(Ω), i.e.,

2ΛFλ(Ω) ≡ Ω−n
(
2Λfλ(f

−1(Ωn−2) +M2V (f−1(Ωn−2)
)

(7.139)

so it does not include any interesting new issue and we won’t consider it. In order to

express the known counterterm in terms of these functions and the original variables

we will need:

Fλ(ϕ
∗) = f

n
2−n (ϕ∗) fλ(ϕ

∗)

F ′λ(ϕ
∗) = (n− 2) f

n+2
4−2n

[
n

2− n
f−1 fλ + f ′−1 f ′λ

] [
2(n− 1)(n− 2) f−1 + (n− 2)2 f ′−2 fφ

]− 1
2

F ′′λ (ϕ∗) = (n− 2)2 f
2

2−n
[
2(n− 1)(n− 2) f−1 + (n− 2)2 f ′−2 fφ

]−2
[

2n2(n− 1)

n− 2
f−3 fλ

−2(n− 1)(n+ 2) f−2 f ′−1 f ′λ − 2(n− 1)(n− 2) f−1 f ′−3 f ′′ f ′λ

+2(n− 1)(n− 2) f−1 f ′−2 f ′′λ +
n(3n− 2)

2
f−2 f ′−2 fλ fφ

−(3n+ 2)(n− 2)

2
f−1 f ′−3 f ′λ fφ +

n(n− 2)

2
f−1 f ′−3 fλ f

′
φ

−n(n− 2) f−1 f ′−4 f ′′ fλ fφ + (n− 2)2 f ′−4 f ′′λ fφ −
(n− 2)2

2
f ′−4 f ′λ f

′
φ

]
ḡµν∂µφ̄∂νφ̄ = f

2
2−n

[
2(n− 1)

n− 2
f−2 f ′2 + f−1 fφ

]
gµν∗ ∂µϕ

∗∂νϕ
∗ (7.140)

20The following reasoning is not valid in case f(ϕ∗) = constant since then (7.134) is not invertible
to give ϕ∗ = f−1(Ωn−2).
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So that the counterterm reads

∆S =
1

ε

1

(4π)2

∫
d4x
√
g∗
{

203

160

[
3f−2 f ′2 + f−1fφ

]2
(gµν∗ ∂µϕ

∗∂νϕ
∗)2

+
57

20
Λ
[
3f−3 f ′2 fλ + f−2 fλ fφ

]
gµν∗ ∂µϕ

∗∂νϕ
∗ − 57

5
Λ2 f−2 f 2

λ

+
1

3
Λ2
[
f ′−1 f ′λ − 2f−1 fλ

]2 [
3 + f f ′−2 fφ

]−1
+

1

2
Λ2
[
3f−1 + f ′−2 fφ

]−4

×
[
24f−3 fλ − 18f−2 f ′−1 f ′λ − 6f−1 f ′−3 f ′′ f ′λ + 6f−1 f ′−2 f ′′λ + 10f−2 f ′−2 fλ fφ

−7f−1 f ′−3 f ′λ fφ + 2f−1 f ′−3 fλ f
′
φ − 4f−1 f ′−4 f ′′ fλ fφ + 2f ′−4 f ′′λ fφ − f ′−4 f ′λ f

′
φ

]
×
[
12f−3 fλ − 18f−2 f ′−1 f ′λ − 6f−1 f ′−3 f ′′ f ′λ + 6f−1 f ′−2 f ′′λ − 2f−2 f ′−2 fλ fφ

−7f−1 f ′−3 f ′λ fφ + 2f−1 f ′−3 fλ f
′
φ − 4f−1 f ′−4 f ′′ fλ fφ + 2f ′−4 f ′′λ fφ − f ′−4 f ′λ f

′
φ

−4

3
f−1 f ′−4 fλ f

2
φ

]}
(7.141)

There are a couple of things to comment:

• In case Λ = 0 and the functions in front of the kinetic term and the Einstein–

Hilbert term are f = fφ = 1 we recover the result of t’Hooft and Veltman

∆S =
1

ε

1

(4π)2

∫
d4x
√
g∗

203

160
(gµν∗ ∂µϕ

∗∂νϕ
∗)2

=
1

ε

1

(4π)2

∫
d4x
√
g∗

203

40
R2 (7.142)

• Had we chosen the oposite function fφ → −fφ (does it correspond to a ghostly

behaviour?) then the diferential equation

3f−1 f ′2 − fφ = 0 (7.143)

has a real solution and therefore there is another theory one-loop finite in case

Λ = 0.

SOME INFORMATION ABOUT NONMINIMAL OPERATORS IS TO BE

FOUND IN ANANTHANARAYAN [7].
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8. Speculations on possible Ultraviolet completions of Ein-

stein gravity.
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A. General conventions

• The flat tangent metric is

ηab ≡ diag (1,−1,−1,−1) (A.1)

The Riemann tensor is

Rµ
ναβ ≡ ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα (A.2)

and we define the Riccci tensor as

Rµν ≡ Rλ
µλν (A.3)

Our conventions for the cosmological constant are such that for a constant

curvature space

Rµν = − 2

d− 2
λgµν (A.4)

Then the ordinary de Sitter space has negative constant curvature, but enjoys

positive cosmological constant.

The Einstein action is then defined as

S = − c3

2κ2

∫ √
|g| (R + 2λ) + Smatter (A.5)

with κ2 ≡ 8πG.

• Background covariant derivatives can be integrated by parts:∫
d4x

√
¯|g|∇̄µL

µ =

∫
d4x

√
¯|g| 1√

¯|g|
∂µL

µ =

∫
d4x∂µL

µ (A.6)

Some commutators, which constitute the Ricci identities[
∇̄β, ∇̄γ

]
ωρ = ωµR̄

µ
ργβ[

∇̄β, ∇̄γ

]
V ρ = −V µR̄ρ

µγβ[
∇̄β, ∇̄γ

]
hαβ = −hλβR̄α

λγβ + hαλR̄λγ (A.7)

• Killing vector fields obey the Killing equation

∇̄αξβ + ∇̄βξα = 0 (A.8)

The Ricci identities boil down in this case to

∇̄µ∇̄νξα = −ξλR̄ναµλ (A.9)

cf. [32].
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• Let us recall our notation on differential forms. Given a p-form ([68]) written

in a local chart as

α ≡ 1

p!
αµ1...µpdx

µ1 ∧ . . . ∧ dxµp (A.10)

The components of the exterior differential are given by:

(dα)µ0µ1...µp
≡ 1

p!
ελ0λ1...λp
µ0...µp

∂λ0αλ1...λp (A.11)

where the Kronecker tensor is given by the completely antisymmetric product

pf Kronecker deltas.

ελ0λ1...λp
µ0...µp

≡ p!δλ0

[µ0
. . . δ

λp
µp] (A.12)

Nilpotency follows easily

d2 = 0 (A.13)

Given a metric gµν , the Hodge star operator maps p-forms into (n-p)-forms,

with components

(?α)µp+1...µn
≡ 1

p!
ηµ1...µnα

µ1...µp (A.14)

This definition needs the components of the natural volume element n-form:

ηµ1...µn ≡
√
|g|ε1...nµ1...µn

(A.15)

The co-differential is then given by:

δ ≡ (−1)p ?−1 d? (A.16)

and enjoys local components

(δα)ρ1...ρp−1
= − 1

p!
εµ1...µp
νρ1...ρp−1

∇ναµ1...µp (A.17)

so that also

δ2 = 0 (A.18)
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B. Some comments on the unitary gauge

Let us indeed examine the path integral∫
DφDgµνe−S(φ,g) (B.1)

which enjoys full Diff invariance.

We first perform a point transformation, from the field variables (gµν , φ) to the

new variables (gµν , φ = gC2).We want to partial gauge fix it Diff/TDiff , such that

the residual gauge invariance is TDiff . Formally we have

DφDgµν = DgµνDC
∏
x

(2g(x)C(x)) (B.2)

Therefore ∫
DφDgµνe−S(φ,g) =

∫
DCDgµνe−S(φ,g)+

R
d4x2g(x)C(x) (B.3)

Anselmi [8] claims that in dimensional regularization all determinant of non-derivativa

operators are regularized to unity. Then we go to the unitary gauge C = 1. Let

us compute the Faddeev-Popov determinant, ∆. The gauge variation of the gauge

condition is:

δC = −C∂µξµ + ξµ∂µC (B.4)

The important point is that this variation is independent of the metric, so that the

determinant will also be independent of the metric, let is call it ∆(C). The path

integral in the unitary gauge is then∫
DφDgµνeiS(φ,g) =

∫
DCDδ(C − 1)∆(C)gµνe

−S(φ,gµν)+
R
d4x2g(x)C(x) =∫

Dgµν∆(1)gµνe
−S(g,gµν)+

R
d4x log (2g(x)) (B.5)

A somewhat similar point has been belavored in a related context by Fiol and Garriga

[36].

Point canonical transformations in the path integral have been studied by Omote

[67]. INFORMATION ON THE EQUIVALENCE THEOREM IS TO BE FOUND

IN [53],[58],[2],[34].
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C. Spherical harmonics

• The simplest way of getting eigenfunctions of the Laplace operator in the sphere

is Helgason’s (confer [?]). Consider the following harmonic polynomial in Rn+1

fa,λ ≡ (~a.~x)λ (C.1)

with ~a ∈ C, ~a2 = 0.

Now we know that the full laplacian in Rn+1 is

∆Rn+1 =
∂2

∂r2
+
n

r

∂

∂r
+

1

r2
∆Sn (C.2)

This yields

∆Rn+1fa,λ = 0 =
λ2 + (n− 1)λ

r2
fa,λ +

1

r2
∆Snfa,λ (C.3)

so that the eigenvalues of the Laplacian in the sphere Sn are

−λ(λ+ n− 1) (C.4)

It is more or less equivalent to start from traceless homogeneous polynomials

P ≡
∑

P(i1...ik)x
i1 . . . xik (C.5)

The number of such animals is the number of symmetric polynomials in n

variables of degree λ minus the number of symmetric polynomials of degree

λ− 2:

d(λ) =

(
λ+ n− 1

λ

)
−
(
λ+ n− 3

λ− 2

)
=

(n+ 2λ− 2) (λ+ n− 3)!

λ! (n− 2)!
(C.6)

• If we represent by µ an appropiate collection of indices, then we first build

harmonic polynomials such that∫
Sn

dΩh∗λ′µ′hλµ = δλλ′δµµ′r
λ+λ′ (C.7)

The hyperspherical harmonics are then defined by

hλµ ≡ rλYλµ (C.8)

and are normalized in such a way that∫
Sn

dΩY ∗λ′µ′Yλµ = δλλ′δµµ′ (C.9)
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• Gegenbauer polynomials are generalizations of Legendre polynomials, in the

sense that

1

|~x− ~x′|n−2
=

1

rn−2
>

(
1 +

(
r<
r>

)2 − 2
(
r<
r>

)
x̂.x̂′

)n−2
2

=
1

rn−2
>

∞∑
λ=0

(
r<
r>

)λ
C

n−2
2

λ (x̂.x̂′)

(C.10)

Let us now prove the sum rule for hyperspherical harmonics. For concreteness,

let us assume that

r ≡ |~x<|
r′ ≡ |~x>| (C.11)

Then it is a fact of life that

∆
1

|~x− ~x′|n−2
= 0 =

∞∑
λ=0

1

(r′)λ+n−2
∆
(
rλC

n−2
2

λ (x̂.x̂′)
)

(C.12)

Imposing term by term vanishing leads to(
1

rn−1

∂

∂r
rn−1 ∂

∂r
− 1

r2
∆Sn−1

)(
rλC

n−2
2

λ (x̂.x̂′)
)

= 0 (C.13)

which conveys the fact that

∆Sn−1C
n−2

2
λ (x̂.x̂′) = λ (λ+ n− 2)C

n−2
2

λ (x̂.x̂′) (C.14)

Since the hyperspherical harmonics are by assumption a complete set of eigen-

functions,

C
n−2

2
λ (x̂.x̂′) =

∑
µ

aλµ (~x′)Yλµ (x̂) (C.15)

where

aλµ (~x′) =

∫
x̂

C
n−2

2
λ (x̂.x̂′)Y ∗λµ (x̂) =

2(n− 2)πn/2

Γ(n/2) (2λ+ n− 2)
Y ∗λµ (x̂′) (C.16)

This is related to the degeneracy d(λ) of hyperspherical harmonics in the fol-

lowing way. Choosing x̂ = x̂′, the sum rule leads to

C
n−2

2
λ (1) = Kλ

∑
µ

Y ∗λµ (~x′)Yλµ (x̂) (C.17)

Integrating now over the unit sphere

C
n−2

2
λ (1)V (Sn−1) = Kλ

∑
µ

1 = Kλd(λ) (C.18)

The result is

d(λ) =
(n+ 2λ− 2) (λ+ n− 3)!

λ! (n− 2)!
(C.19)
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• Let us now become more specific and perform some computations in gory detail.

The metric on Sn−1 is

ds2
n−1 = dθ2

n−1 +sin2 θn−1dθ
2
n−2 + . . .+sin2 θn−1 sin

2 θn−2 . . . sin
2 θ2dθ

2
1 (C.20)

id est, in a recurrent form

ds2
1 = dθ2

1

ds2
n = dθ2

n + sin2θn ds
2
n−1 (C.21)

This corresponds to polar coordinates in Rn

Xn = cos θn−1

Xn−1 = sin θn−1 cos θn−2

. . .

X2 = sin θn−1 sin θn−2 . . . cos θ1

X1 = sin θn−1 sin θn−2 . . . sin θ1 (C.22)

Spherical harmonics have been constructed quite explicitly by Higuchi [?], are

such that

2nYln...l1(θn . . . θ1) = −ln(ln + n− 1)Yln...l1(θn . . . θ1) (C.23)

They are orhonormal with respect to the induced riemannian measure

δΩn ≡
√
|g|dθ1 ∧ . . . dθn = dθ1 . . . dθnsin

n−1θn sin
n−2 θn−1 . . . sin θ2 (C.24)

which obeys

dΩn = sinn−1θndθndΩn−1 (C.25)

and

V (Sn−1) =

∫
dΩn−1 =

2πn/2

Γ(n/2)
(C.26)

To be specific,∫
dΩnYln...l1(θn . . . θ1)Y ∗l′n...l′1(θn . . . θ1) = δln,l′n . . . δln,l′n (C.27)

• It is obvious that any function on the sphere can be expanded

f(Ω) =
∑
ln...l1

Cln...l1Yln...l1(θn . . . θ1) =

∑
ln...l1

∫
dΩ′Y ∗ln...l1(θ′n . . . θ

′
1)f(θ′n . . . θ

′
1)Yln...l1(θn . . . θ1)
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which means ∑
ln...l1

Y ∗ln...l1(θ′n . . . θ
′
1)Yln...l1(θn . . . θ1) ≡ δ(Ω− Ω′) (C.28)

where by definition ∫
dΩ′δ(Ω− Ω′)f(θ′) = f(θ) (C.29)

whence in a somewhat symbolic form,

δ(Ω−Ω′) = δ(θ′1−θ1) . . . δ(θ′n−θn)sin−(n−1)θ′n sin
−(n−2) θ′n−1 . . . sin

−1 θ′2 (C.30)

Now we can expand this function, as any other function, in series of Gegenbauer

polynomials

δ(Ω− Ω′) =
∑
l

dlC
ν
l (cos θn) (C.31)

Let us choose our reference frame in such a way that

Ω.Ω′ ≡ cos θn (C.32)

id est, Ω′ is pointing towards the North pole.

On functions constant on Sn−1,

dΩn =
2π

n
2

Γ(n
2
)
sinn−1 θn dθn (C.33)

and, denoting x ≡ cos θn

dΩn =
2π

n
2

Γ(n
2
)

(
1− x2

)n−2
2 dx (C.34)

as well as

δ(Ω) =
Γ(n

2
)

2π
n
2

δ(θn)
1

sinn−1 θn
=

Γ(n
2
)

2π
n
2

δ(1− x)(1− x2)
2−n

2 (C.35)

We can now integrate the two sides of the equation (C.31) against Cν
l′(x)(1 −

x)ν−1/2. The orthogonality property∫ 1

−1

dxCν
l (x)Cν

l′(x)(1− x2)ν−1/2 = δll′
21−2νπΓ(l + 2ν)

l!(ν + l)Γ(ν)2
(C.36)

then implies

dl
21−2νπΓ(l + 2ν)

l!(ν + l)Γ(ν)2
=

Γ(n
2
)

2π
n
2

∫ 1

−1

dxCν
l (x)(1− x2)1−n/2δ(x− 1)(1− x2)ν−1/2

(C.37)
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The member of the right converges when ν = n−1
2

. Given in addition the fact

that

Cν
l (1) =

Γ(l + 2ν)

l! Γ(2ν)
(C.38)

we can write

dl =
Γ(n

2
)(l + n−1

2
)Γ(n−1

2
)2

Γ(n− 1)π
n+1

2 23−n
=

1

V (Sn)

n− 1 + 2l

n− 1
(C.39)

(using Γ(2x) = 21−2x
√
πΓ(x+ 1

2
)/Γ(x)) as well as

δ(Ω− Ω′) =
∑
l

1

V (Sn)

n− 1 + 2l

n− 1
C

n−1
2

l (cos θn) (C.40)

∑
ln...l1

Y ∗ln...l1(θ′n = 0 . . . θ′1)Yln...l1(θn . . . θ1) =
∑
l

1

V (Sn)

n− 1 + 2l

n− 1
C

n−1
2

l (cos θn)

(C.41)

If we employ the notation l ≡ ln and ~m ≡ (ln−1 . . . l1), then the preceding

formula presumably means that

∑
~m

Y ∗l... ~m(Ωz)Yl... ~m(Ω) =
1

V (Sn)

n− 1 + 2l

n− 1
C

n−1
2

l (cos θn) (C.42)

• We begin by defining some eigenfunctions of the differential operator:

D ≡ ∂2

∂θ2
+ (N − 1)cot θ

∂

∂θ
− l (l +N − 2)

sin2 θ
(C.43)

such that

DP̄ l
NL(θ) = −L (L+N − 1) P̄ l

NL(θ) (C.44)

namely,

P̄ l
NL(θ) ≡ clNL (sin θ)−

N−2
2 P

−(l+N−2
2 )

L+N−2
2

(cos θ) (C.45)

where P µ
ν (z) are Legendre functions , and the normalization is given by

clNL ≡

√
2L+N − 1

2

(L+ l +N − 2)!

(L− l)!
(C.46)

The differential equation that Legendre functions P µ
ν (z) are solutions of is

given by

Lw(z) ≡
(
1− z2

) d2w

dz2
− 2z

dw

dz
+

(
ν (ν + 1)− µ2

1− z2

)
w = 0 (C.47)
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Changing variables z = cosθ this reads(
∂2

∂θ2
+ cot θ

∂

∂θ
− µ2

sin2 θ

)
w (cos θ) = −ν (ν + 1)w (cos θ) (C.48)

and using this it is not difficult to actually prove the basic equation (C.44).

The harmonics themselves are given by:

YlN ...l1(θN , . . . , θ1) ≡
N∏
n=2

P̄
ln−1

n ln
(θn)

1√
2π
eil1θ1 (C.49)

• We can now employ the expansion (GR, 8.534)

eimρcos φ = 2νΓ(ν)
∞∑
k=0

(ν + k)ik(mρ)−νJν+k(mρ)Cν
k (cos φ) (C.50)

and using our expansion of the Gegenbauer polynomials in terms of spherical

harmonics,

eizΩ.Ω
′
= 2n/2−1Γ(n/2− 1)

∞∑
k=0

(n/2− 1 + k)ik(z)−(n/2−1)Jn/2−1+k(z)

Ck,n
∑
~m

Y ∗k...~m(Ω)Yk...~m(Ω′) (C.51)

where Cl,n are apropiate constants.
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