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1

Functional integral.

In classical mechanics the trajectory is determined by the initial and final
points. For example, for a free particle, the unique classical trajectory that
at the instant of time t = ti is at the point q = qi and at the instant t = tf
is at the point q = qf is

q(t) = qi + qi − qf
ti − tf

(t− ti) (1.1)

For an harmonic oscillator with the same boundary conditions the corre-
sponding classical solution is

q(t) = qf sin ω(t− ti) + qi sin ω(t− tf )
sin ω (ti − tf ) (1.2)

In quantum mechanics there is no such thing as a unique trajectory with
those boundary conditions. The only thing which is well defined is a tran-
sition amplitude between the initial and the final states, that is,

〈qf tf |qi ti〉 (1.3)

This amplitude can be computed using Schrödinger’s equation.
Dirac first suggested that may be one can think of quantum mechanics as

if every possible trajectory (even non causal ones) have got some probability
amplitude, and the total probality amplitude is in some sense a superposition
of all those amplitudes, with some adecuate weights.

Schwinger had the insight that closure shold somewhat be implemented.
Let us recall that given any hermitian operator with eigenkets |m〉, closure
means that ∑

|m〉〈m| = 1 (1.4)

Then it must be the fact that

〈f |i〉 =
∑
i1...iN

〈f |i1〉〈i1|i2〉 . . . |iN−1〉〈iN−1|iN 〉〈iN |i〉 (1.5)

1



2 1. FUNCTIONAL INTEGRAL.

It is natural to think that by choosing the intermediate states to somewhat
interpolate between the initial and the final state there is some path (in an
abstract space) conecting the initial and the final state, and that tha total
amplitude must be in some sense the total sum of the contributions of those
paths.

Feynman drawing on these ideas, postulated that the quantum mechan-
ical transition amplitude from the state i ≡ (qi, ti) to the state f = (qf , tf )
is given by the functional integral

K(f, i) ≡ 〈tfqf |tiqi〉 =
∫ f

i
Dq(t)e

i
~S(f,i) (1.6)

Schroedinger states depend on time

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (1.7)

Formally their time evolution is given by

|ψ(t)〉 = e−iHt|ψ(0)〉 (1.8)

Given an arbitrary Schroedinger operator (which is independent on time),
say q its matrix elements are given by

〈ψ(t)|q|ψ(t)〉 = 〈ψ(0)| eiHt q e−iHt |ψ(0)〉 (1.9)

These expectation values are the only observables; any representation that
leaves invariant those is a valid one. In Heisenberg representation, for ex-
ample, states are time independent whereas

qH(t) = eiHt qS(0) e−iHt (1.10)

where the Heisenberg and Schroedinger operators coincide at t = 0. Let us
diagonalize it

qS |q〉 = q|q〉 (1.11)

Then the Heisenberg (time independent, then) state that diagonalizes qH(t)
is given by

qH(t)|q t〉 ≡ qH(t)
(
eiHt |q〉

)
= q

(
eiHt |q〉

)
= q|q t〉 (1.12)

Note the different sign with respect to Schroedinger states.
In quantum mechanics the measure Dq is related to the Wiener measure.

In QFT the measure is not understood. To quote Feynman himself in his
famous Reviews of Modern Physics paper, one feels as Cavalieri must have
felt calculating the volume of a pyramid before the invention of calculus.
This lack of mathematical understanding of the measure hinders progress in
the field. There is however some truth in the path integral. First of all it
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includes both classical physics in a limiting case as well as all perturbative
results that can be reached by operator formalisms. Besides, Montecarlo
computer simulations of the functional integral yield seemingly reasonable
nonperturbative results.

In the classical limit ~→ 0 this integral is dominated by the stationary
phase, which corresponds to the classical solution

δS

δq
= 0 (1.13)

Although we use for simplicity the QM language, we always have an
eye on quantum fields φ(~x, t). They correspond to an infinite number of
degrees of freedom q~x(t). Essentially, one degree of freedom per point of the
three-dimensional space ~x ∈ R3.

Let us give some details on Feynman’s definition. Let us divide the total
time interval T ≡ tf − ti into N equal pieces of length ε = ti+1 − ti, in such
a way that t0 ≡ ti . . . tN ≡ tf (q0 = qi, qN = qf ). Then

Nε = T (1.14)

Define
K(f, i) ≡ lim

N→∞

1
A

∫ ∞
−∞

dq1
A

. . .
dqN−1
A

e
i
~S(f,i) (1.15)

The constant A =
√

2πi~ε
m is determined in such a way that this limit exists

for a free particle.
Let us check the quantum mechanical composition law

K(f, i) =
∫
K(f, n)d qn K(n, i) (1.16)

This is a basic quantum mechanical postulate stemming, as we pointed out
earlier, from the competeness or closure of the eigenvalues of the position
operator. It is sometimes dubbed the cutting equation or the sewing equa-
tion. The two integration variables will be q and q̃, such that q0 = qi and
qN = qf . Schematically, the different integrations are

1
A

dq1
A

. . .
dqN−1
A

dqn
1
A

dq̃1
A

. . .
dq̃N−1
A

(1.17)

which is precisely what is necessary for the direct computation of K(f, i) in
2N steps.

Let us work out the free particle in detail.

S = m

2

N∑
i=1

(qi − qi−1)2 (1.18)
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The first integral is just

K1 =
∫
dq1e

im
2~ε [(q2−q1)2+(q1−q0)2] (1.19)

which we define through analytic continuation from Gauss’ famous integral
which was already used when defining the functional measure

I ≡
∫ ∞
−∞

dφe−λφ
2 =

√
π

λ
(1.20)

The easiest way to show this is by squaring it.

I2 =
∫ ∞
−∞

dφ1e
−λφ2

1

∫ ∞
−∞

dφ2e
−λφ2

2 =

=
∫ ∞

0
d|φ||φ|

∫ 2π

0
dθe−λ|φ|

2 = 2π 1
2λ = π

λ
(1.21)

∫ ∞
−∞

dqe−λq
2 =

√
π

λ
(1.22)

( λ ∈ R+), as well as ∫ ∞
−∞

dq e−λq
2+bq = e

b2
4λ

√
π

λ
(1.23)

Then (λ ≡ − im
~ε ; b ≡ −

im
~ε (q2 + q0)).

K1 = 1
A2 e

i m2~ε [q2
2+q2

0 ]

√
iπ~ε
m

e−
im
4~ε (q2+q0)2 (1.24)

which boils down to

K1 =
√

m

2πi~(2ε)e
im

2~(2ε) (q2−q0)2
(1.25)

Performing one step further

K2 = 1
A

∫
dq2K1e

im
2~ε (q3−q2)2

(1.26)

After N − 1 steps, we get

K(f, i) =
√

m

2πi~Nε e
im
2~T (qf−qi)2 (1.27)

(which does not depend on N)
This propagator obeys Schroedinger’s equation

i~
∂K(f, i)
∂tf

= − ~2

2m
∂2

∂q2
f

K(f, i) (1.28)
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Let us now explain the privileged setup of Euclidean time. Denote by

φn(q) ≡ 〈q|n〉 (1.29)

the wave function of the energy eigenstate |n〉.

H|n〉 ≡ En|n〉 (1.30)

in such a way that φ0(q) corresponds to the ground state wave function.
We are interested in the probability amplitude that if the system was in the
ground state at time ti ∼ −∞ in the distant past, it is still in this state at
the time tf ∼ +∞ in the distant future, in case an arbitrary external source∫ tf

ti

dt j(t) q(t) (1.31)

has been added to the lagrangian between t1 ≤ t ≤ t2 where

ti ≤ t1 ≤ t2 ≤ tf (1.32)

Inserting a complete set of energy eigenstates we learn that

〈qf tf |qiti〉j =
∫
dq2 dq1 〈qf tf |q2 t2〉 〈q2t2|q1 t1〉j 〈q1 t1|qi ti〉 =∑

m

∑
n

∫
dq2 dq1 〈qf |e−iH(tf−t2)|En〉〈En|q2t2 〉 〈q2t2|q1 t1〉j 〈q1 |Em〉〈Em|e−iH(t1−ti)|qi〉

When both

tf = i ∞
ti → −i ∞ (1.33)

the lowest energy state |0〉 is selected.

〈qf tf |qi ti〉j = e−iE0T φ0 (qf )φ∗0 (qi) ×

×
∫

dq1 dq2 φ
∗
0 (q2) eiE0t2 〈q2t2|q1t1〉j φ0(q1) e−iE0t1 (1.34)

It is convenient to choose the zero of energies so that

E0 = 0 (1.35)

The vacuum persistence amplitude, which we will denote by the name par-
tition function using the statistical mechanical analogy, is then given by

〈0+|0−〉j ≡ Z[j] ≡ 〈qf tf |qi ti〉j
φ0 (qf )φ∗0 (qi)

=

=
∫

dq dq′ φ∗0 (q′) 〈q′t′|qt〉 φ0(q) (1.36)
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This expressions tell us how to compute vacuum persistence amplitudes;
that is, it selects the vacuum as both the initial and final state.

This means that up to a j-independent constant (which is irrelevant in
most QFT applications)

〈0+|0−〉 ≡ Z[J ] ≡
∫
Dq ei

∫ −i∞
i∞ dt (L[q]+Jq) (1.37)

This is exactly what is gotten from the euclidean formulation, where from
the very beginning

t→ τ ≡ −i t (1.38)

with the boundary condition that q(τ) approaches some constants (which
could be zero) at τ = ±∞. The euclidean integral selects automatically the
vacuum persistence amplitude.

When we include an operator insertion what we get is the time-ordered
product ∫

Dq O(ta) O(tb) eiS = 〈0+|T O(ta) O(tb) |0−〉 (1.39)

This is obvious as a result of our practical definition of the path integral. It
suffices to define a time mesh in such a way that both ta and tb are part of
it.

1.1 Perturbation theory through gaussian integrals.

Let us reproduce the diagrammatic perturbation theory in terms of path in-
tegrals. The rules of the gaussian integral are equivalent to Wick’s theorem
on operator language. All this procedure is essentially algebraic, combina-
toric even ; so that the formal limit to an infinite number of dof is trivial,
with the obvious replacements

∑
i

→
∑
i

∫
d3x

δij → δijδ
3 (x− y) (1.40)

Let us write nevertheless all results in the language of a finite number
of degrees of freedom for the time being. Denote by φ the vector φ =
(φ1 . . . φn) ∈ Rn. Then the Gaussian integral generalizes to

Z0(J) ≡
∫
dφ e−φ

T .M.φ−J.φ = πn/2(detM)−1/2e
1
4J

T .M−1.J (1.41)

This integral allows us to obtain many others∫
dφ φi φj e

−φT .M.φ = ∂

∂Ji

∂

∂Jj
Z0(J)|J=0 = πn/2(detM)−1/2 1

2(M−1)ij
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or else∫
dφ φi φj φk φl e

−φT .M.φ = ∂

∂Ji

∂

∂Jj

∂

∂Jk

∂

∂Jl
Z(J)|J=0 = πn/2(detM)−1/2

{1
2(M−1)ij

1
2(M−1)lk + 1

2(M−1)jl
1
2(M−1)ik + 1

2(M−1)jk
1
2(M−1)il

}
Let us dubb as propagator the quantity

∆ij ≡
1
2M

−1
ij ). (1.42)

The preceding integral then reads∫
dφ φi1 . . . φin e

−φT .M.φ =
∑
p∈Cn2

∏
ia∈p

∆iaip(a) (1.43)

In the example there are C4
2 = 3 different possible pairings.

In general we define the Green function

〈0+ |Tφi1 . . . φin | 0−〉 ≡
∫

dφ φi1 . . . φine
−φT .M.φ−V (φ) = e−V ( δ

δJ
) Z(J)|J=0 ≡

e−V ( δ
δJ

)
∫
dφe−φ

T .M.φ−J.φ |J=0 (1.44)

The time ordering operator, T, appears owing to the time dependence of
the variables, which has not been explicitly indicated. The reader is invited
to work out a few examples.
• Consider for example a cubic interaction

V (φ) = g

3!
∑
i

φ3
i (1.45)

It is plain that

Z(J) =

1 + g

3!
∑
i

(−∂i)3 + 1
2

(
g

3!

)2∑
i

(−∂i)3∑
j

(−∂3
j )

 e 1
2J∆J

(1.46)
In an obvious notation

∂j → ∆Jj
∂2
j → ∆jj + ∆J2

j

∂3
j → 3∆jj∆Jj + ∆J3

j

∂i → 3∆jj∆Jj∆Ji + 3∆jj∆ji + 3∆J2
j ∆ji + ∆J3

j ∆Ji
∂2
i → 6∆jj∆ji∆Ji + 3∆jj∆Ji∆ii + 3∆jj∆Jj∆J2

i + 6∆Jj∆2
ji +

+6∆J2
j ∆ji∆Ji + ∆J3

j ∆ii + ∆J3
j ∆J2

i

∂3
i → 9∆jj∆ji∆ii + 9∆jj∆ji∆J2

i + 9∆jj∆Jj∆ii +
+3∆jj∆Jj∆J3

i + 6∆3
ji + 18∆Jj∆2

ji∆Ji +
9∆J2

j ∆ji∆ii + 9∆J2
j ∆ji∆J2

i + 3∆J3
j ∆ii∆Ji + ∆J3

i ∆J3
j (1.47)
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It is also plain that

〈0+ |T φk φl | 0−〉 = ∆kl + 1
2
g2

36

{
(18∆2

ij (∆ik∆jl + ∆il∆jk) +

+9∆ii∆ij (∆jk∆jl + ∆jl∆jk) + 9∆jj∆ij (∆ik∆il + ∆il∆ik) +

+6∆ii∆jj (∆ik∆jl + ∆il∆jk) +
(
6∆3

ij + 9∆ij∆ii∆jj

)
∆kl

}

We can divide all diagrams into two sets: connected and non-connected.
Non-connected diagrams are by definition those can be divided in two
by a line that does not cut any existing line of the diagram).

Consider the two-point function. To zeroth order in the coupling con-
stant, this is just the propagator. To first order in g there is no di-
agram. To second order, there are two diagrams. The first one is a
correction to the propagator, with a factor in front g2

2 ; and the second
one is a tadpole, also with a factor in front g2

2 .

• Consider the interaction denoted by φ4
4.

V (φ) = λ

4!
∑
i

φ4
i (1.48)

Define
Z(J) ≡

∫
dφe−φ

T .M.φ−V (φ)−J.φ (1.49)

and deduce

Z(J)
Z0(J) = 1 + λ

4!

{
3∆2

ii + 6∆ii(∆iuJu)2 + (∆iuJu)4
}

+1
2

(
λ

4!

)2 {
9∆2

ii∆2
jj + 72∆ii∆2

ij∆jj + 24∆4
ij

+(∆jvJv)2[18∆2
ii∆jj + 72∆ii∆2

ij ]
+(∆iuJu)2[18∆2

jj∆ii + 72∆jj∆2
ij ]

+∆iuJu∆jvJv[96∆3
ij + 144∆ii∆ij∆jj ]

+3(∆iuJu)4∆2
jj + 3(∆jvJv)4∆2

ii + 48(∆jvJv)3∆iuJu∆ii∆jj + 48(∆ivJv)3∆juJu∆ii∆jj

+(∆iuJu)2(∆jvJv)2[36∆ii∆jj + 72∆2
ij ] + 6(∆iuJu)2(∆jvJv)2∆jj + 6(∆juJu)2(∆ivJv)2∆ii

+16(∆iuJu)3(∆jvJv)3∆ij + (∆iuJu)4(∆jvJv)4
}

+O(λ3) (1.50)

This expression summarizes all Green functions perturbation theory
up to O(λ2).
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Figure 1.1: Vacuum diagrams

For example, the full two-point function reads

〈0+ |Tφkφl| 0−〉 = ∆kl + λ

4!

{
3∆2

ii∆kl + 12∆ii∆ik∆il

}
+1

2

(
λ

4!

)2 {
(9∆2

ii∆2
jj + 72∆ii∆2

ij∆jj + 24∆4
ij)∆kl

+2∆jk∆jl(18∆2
ii∆jj + 72∆ii∆2

ij) + 2∆ik∆il(18∆2
jj∆ii + 72∆jj∆2

ij)

+(∆ik∆jl + ∆il∆jk)(96∆3
ij + 144∆ii∆ij∆jj)

}
(1.51)

In particular, terms linear in the coupling constant read

〈0+ |Tφkφlφiφiφiφi| 0−〉 (1.52)

From the C6
2 = 15 possible pairings, 3 correspond to the combination

∆kl∆ii (1.53)
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1 / 4
1 / 6

1 / 4

Figure 1.2: Connected contributions to the two-point function.
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and the other 12, to the other possible combination

∆ik∆il∆ii (1.54)

Connected functions stem from

W [J ] ≡ log Z[J ] (1.55)

This object is often called the free energy by analogy with corresponding
statistical-mechanics quantity

〈0+ |Tφi1 . . . φin | 0−〉c ≡
∂

∂Ji1
. . .

∂

∂Jin
logZ(J)|J=0 (1.56)

∂W = i
∂Z

Z

∂2W = i

(
∂2Z

Z
− ∂Z∂Z

Z2

)
(1.57)

In perturbation theory

Z = Z0 + gZ1 + g2Z2 +O(g3) (1.58)

so that
1
Z

= 1
Z0
− Z1
Z2

0
g + g2

(
Z2

1
Z2

0
− Z2
Z2

0

)
+O(g3) (1.59)

Normalize Z0 = 1. Then

1
Z

= 1− Z1g + g2
(
Z2

1 − Z2
)

+O(g3) (1.60)

as well as

1
Z2 = 1− 2Z1g + g2

(
3Z2

1 − 2Z2
)

+O(g3) (1.61)

which implies

〈0+ |φiφj | 0−〉c = 〈φiφj〉0 − 〈φi〉0〈φj〉0[
− Z1〈φiφj〉0 + 〈φiφj〉1 + 2Z1〈φi〉0〈φj〉0 − 〈φi〉0〈φj〉1 − 〈φi〉1〈φj〉0

]
g +[

〈φiφj〉2 + 〈φiφj〉0
(
Z2

1 − Z2
)
− 〈φiφj〉1Z1 − 〈φi〉0〈φj〉0

(
3Z2

1 − 2Z2
)

+

2Z1 (〈φi〉0〈φj〉1 + 〈φi〉1〈φj〉0)− 〈φi〉0〈φj〉2 − 〈φi〉1〈φj〉1 − 〈φi〉2〈φj〉0
]
g2

It is amusing to check that all this is self-consistent. A formal proof is
to be found in Hugh Osborn’s lectures.
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1.2 Berezin integral
The classical limit ~ → 0 of fermion fields does not exist unless we accept
anticommuting c-numbers, that is, elements of a Z2 graded Grassmann al-
gebra,

V = V1 ⊕ V2 (1.62)

The parity is denoted by p ∈ Z
2Z . Finite dimensional Grassmann algebras

enjoy a set of N generators,

{ψi, ψj} = 0 (1.63)

All of them are idempotent
ψ2
i = 0 (1.64)

A representation of the algebra is given in terms of matrices as follows.
Define

σ± ≡
1√
2

(σ1 ± iσ2) (1.65)

Then

σ2
± = 0
{s±, σ3} = 0
{σ+, σ−} = 1 (1.66)

The representation of the n-dimensional Grassmann algebra is generated by
the N matrices of dimension 2N

ψ1 ≡ σ+ ⊗ σ3 ⊗ . . .⊗ σ3

ψ2 ≡ σ3 ⊗ σ+ ⊗ . . .⊗ σ3

ψ3 ≡ σ3 ⊗ σ3 ⊗ σ+ . . .⊗ σ3

. . .

ψn ≡ σ3 ⊗ σ3 ⊗ . . .⊗ σ+ (1.67)

An arbitrary element of the algebra can be written as

χ =
∑
n<N

∑
i1...in

c
(n)
i1...in

ψi1 . . . ψin (1.68)

(the coefficients c(n)
i1...iN

∈ C are complex-valued antisymmetric tensors.)
Odd elements (n ∈ 2Z+1) have fermionic character, and do anticommute

with all other odd elements; whereas even ones have a bosonic character and
commute with all other elements of the algebra, even or odd.

All analytic functions are just polynomials. For example, in a one di-
mensional algebra

f(ψ) = a+ bψ (1.69)
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And in two dimensions

f(ψ1, ψ2) = a+ b1ψ1 + b2ψ2 + cψ1ψ2 (1.70)

Derivatives can be taken from the left or from the right, and they are in
general different. Assuming g(f) = 0, for example

∂L
∂ψ1

f = −b1 + cψ2 (1.71)

whereas
∂R
∂ψ1

f = b1 − cψ2 (1.72)

The only translational invariant measure is Berezin’s∫
dψ (a+ bψ) ≡ b (1.73)

Indeed ∫
dψ (a+ b (ψ − ψ0)) =

∫
dψ (a+ bψ) ≡ b (1.74)

In QFT we often encounter independent integration variables ψi y ψ̄i
(not related by complex conjugation)∫

dψ̄dψe−ψ̄λψ =
∫
dψ̄dψ(1− ψ̄λψ) = λ (1.75)

To belabor this point∫
dψ̄1dψ1dψ̄2dψ2 e

−(ψ̄1ψ1M11+ψ̄1ψ2M12+ψ̄2ψ1M21+ψ̄2ψ2M22) =∫
dψ̄1dψ1dψ̄2dψ2

(
M11M22ψ̄1ψ1ψ̄2ψ2 +M12M21ψ̄1ψ2ψ̄2ψ1

)
=

M11M22 −M12M21 = detM (1.76)

The gaussian integral is then defined as the determinant∫
dψ̄dψe−ψ̄iM

ijψj = detM (1.77)

Translational invariance allows for

Z0 (η, η̄) ≡
∫
dψ̄dψe−ψ̄iK

ijψj−η̄iψi−ψ̄lηl = detKeη̄lK
−1
lm
ηm (1.78)

The usual fermionic integration in QFT reads

V ≡ gψ̄iNijψj (1.79)

Nij is a matrix valued in different spaces (spin, flavor,color,etc)
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We will be interested in Green functions of the type:

< 0+
∣∣∣Tψlψ̄m∣∣∣ 0− >≡ ∫ dψ̄dψe−ψ̄iK

ijψj−gψiN ilψ̄lψlψ̄m (1.80)

With S ≡ K−1 we get

< 0+
∣∣∣Tψpψ̄q∣∣∣ 0− >≡ Spq + g(SpqNijSji − SjqSpiNij)

+g2

2 (SpqSlkNijSjiNkl − SpkSlqNijSjiNkl + SpkSjqSliNijNkl − SlkSjqSpiNijNkl

+SlqSjkSpiNijNkl − SjkSliNijNklSpq) (1.81)

1.3 Summary of functional integration.

• We just saw that

Z[J ] = N e
i
∫
d4y V

(
δ

i δJ(y)

)
Z0[J ] (1.82)

Now we claim that this is equivalent to

Z[J ] = N

{
e

1
2

∫
d4x1d4x2∆(x2−x1) d

δφ(x1)
δ

δφ(x2)

}
ei
∫
d4x (V (φ)+Jφ)

∣∣∣
J

= 0

(1.83)
This stems from a generalization of the identity

F

(
∂

i∂xi

)
G(xi) =

{
G

(
∂

i∂yi

)
F (yj) ei

∑
xiyi

}∣∣∣∣
yk=0

(1.84)

Let us prove it for plane waves

G(x) = ei
∑

aixi

G(x) ≡ ei
∑

qixi (1.85)

The first member gives

eai∂i eiqx =
(

1 + ai∂i + 1
2aiaj∂i∂j + . . .

)
eiqx =

=
(

1 + iqa− 1
2(a.q)2 + . . .

)
eiqx = eiq(x+a) (1.86)

The second member, in turn, reads

eq∂y ei(a+x)y
∣∣∣
y=0

= ei(a+x)(q+y)
∣∣∣
y=0

= ei(a+x)q QED.(1.87)

The formula [1.83] clearly represents Feynman’s perturbation series.
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• Complex scalar fields

φ ≡ φ1 + iφ2√
2

(1.88)

Assuming a symmetric Kij = Kji,∫
Dφ e−

∫
dnx φ̄ Kφ = det K−1 (1.89)

• Berezinian or superdeterminant,

∫
Dφ Dψ Dψ̄ e

−
∫
dnx

{
φ̄Mφ+ψ̄Kψ+ψ̄N1φ+φ̄N2ψ

}
=

∫
Dφ Dψ Dψ̄ e

−
∫
dnx

{
(φ̄+ψ̄N1M−1)M(φ+M−1N2ψ)−ψN1M−1N2ψ+ψ̄Kψψ

}
=

= det M−1
∫
DψDψ̄ e−

∫
dnx ψ̄(K−N1M−1N2) = det M−1det

(
K −N1M

−1N2
)

Denoting by

M≡
(
M N2
N1 N1

)
(1.90)

It is customary to call berezinian the quantity

berM≡ det M−1det
(
K −N1M

−1N2
)

(1.91)

• The only extra thing we need to postulate on the functional measure
is that it must be invariant under translations, that is

D (ψ + ψ0) = Dψ
D (φ+ φ0) = Dφ (1.92)

This we need to compute the action of external sources.

• Sometimes it is convenient to specify morte the measure. We can
define

Dφ ≡
∏
x

dφ(x) (1.93)

With this definition there is a divergent factor of δ(n)(0) each time a
point transformation is made.

D [fφ] ≡
∏
x

d [f(x)φ(x)] = det
[
f(x)δ(n)(x− y)

]
Dφ =

etr log [f(x)δ(n)(x−y)] Dφ = eδ
(n)(0)

∫
dnx log f(x) Dφ (1.94)
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• A very important property, which will be used repeateadly in the se-
quel is that the integral if a total derivative vanishes∫

Dφ δ

δφ
F [φ] = 0 (1.95)

• Under a change of functional variables

Df(φ) = det
(
∂f

∂φ

)
Dφ

Dg(ψ) = det−1
(
∂g

∂ψ

)
Dψ (1.96)

The formula for the change of variables in fermionic integrals (inverse
jacobian) is forced upon us by consistency, because already when λ is
a constant

1 =
∫
d(λψ) (λψ) (1.97)

• Unfortunately all this is formal, because all this determinants are di-
vergent and must be regularized. This is, in some sense, the essence
of quantum field theory.
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Schwinger’s action principle
and the equations of motion.

From the functional integral Schwinger’s action principle is more or less
obvious. It states that under any smooth changes in the lagrangian

δ〈φf tf |φi ti〉 =
∫ tf

ti

d4x 〈φf tf
∣∣∣∣ i~δL(x)

∣∣∣∣φi ti〉 (2.1)

Starting from Feynman’s integral

δ〈φf tf |φi ti〉 = δ

∫
Dφ ei

∫ f
i
d4x L =

=
∫ tf

ti

d4x 〈φf tf
∣∣∣∣ i~δL(x)

∣∣∣∣φi ti〉 (2.2)

It should be clear that a logical possibility would also be to start from
the action principle and then derive Feynman’s integral as a consequence.
In a sense, they are two formally equivalent formulations, one in terms of
functional differentials, and the other in terms of functional integrals.

Either from the action principle or directly from the functional integral
one can derive the equations of motion, sometimes called the Schwinger-
Dyson equations. Those are an infinite set relating the two-point function
to the four point function, and the four point function to the sixth order
function, and so on. This hierarchy can be solved perturbatively, and it
yields the diagrammatic Feynman series.

Choosing the φ4
4 theory as an example, let us write the action as

S =
∫
d(vol)

(1
2 φ(x)Kφ(x)− λ

24φ(x)4 − J(x)φ(x)
)

(2.3)

Here we have denoted the inverse propagator as

K ≡ �+m2 (2.4)

17
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The starting point is the fact that the functional integral of a total derivative
vanishes. This yields ∫

Dφ δ

δφ(x1) e
−S = 0 (2.5)

This is
K〈φ(x1)〉J −

λ

6 〈φ(x1)3〉J − 〈J(x1)〉J = 0 (2.6)

Let us now convolute with the propagator

∆xy ∗K = δxy (2.7)

to get the formal solution. This an exact statement, holding formally form
all values of λ and for arbitrary sources J(x).

〈φ(x1)〉J −
λ

6 ∆x1x2 ∗ 〈φ(x2)3〉J −∆x1x2 ∗ 〈J(x2)〉J = 0 (2.8)

We can now functionally derive this extression with respect to J(z). This
yields

〈Tφ(x3)φ(x1)〉J−
λ

6 ∆x1x2∗〈Tφ(x3)φ(x2)3〉J−∆x1x2∗〈J(x2)φ(x3)〉J−∆x1x3〈1〉J = 0
(2.9)

This equation yields, as promised, the two-point function in terms of the
four-point function. Functionally deriving twice more we get

〈Tφ(x4)φ(x3)φ(x1)〉J −
λ

6 ∆x1x2 ∗ 〈Tφ(x4)φ(x3)φ(x2)3〉J −

−∆x1x2 ∗ 〈J(x2)Tφ(x4)φ(x3)〉J −∆x1x2 ∗ δx2x4〈φ(x3)〉J −∆x1x3〈φ(x4)〉J = 0(2.10)

as well as

〈Tφ(x5)φ(x4)φ(x3)φ(x1)〉J −
λ

6 ∆x1x2 ∗ 〈Tφ(x5)φ(x4)φ(x3)φ(x2)3〉J −

−∆x1x2 ∗ 〈J(x2)Tφ(x5)φ(x4)φ(x3)〉J −∆x1x2 ∗ 〈δx2x5Tφ(x4)φ(x3)〉J −
−∆x1x2 ∗ δx2x4〈Tφ(x5)φ(x3)〉J −∆x1x3〈Tφ(x5)φ(x4)〉J = 0 (2.11)

Again those equations are exact equations: no approximations are involved
in deriving them. We can now make contact with the perturbative expan-
sion.

In the absence of sources

〈Tφ(x3)φ(x1)〉 = ∆ (x1 − x3)+ λ

6

∫
d4x2 ∆(x1−x2)〈Tφ(x3)φ(x2)3〉 (2.12)

To O(λ2) all we need is the four-point function to O(λ). This is easily
obtained from the last equation

〈Tφ(x5)φ(x4)φ(x3)φ(x1)〉 = ∆ (x1 − x5) ∆(x4 − x3) + ∆ (x1 − x4) ∆(x5 − x3) +
+∆ (x1 − x3) ∆ (x5 − x4) (2.13)
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which reproduces Wick’s theorem. The tow point function reads

〈Tφ(x3)φ(x1)〉 = ∆ (x1 − x3) + λ

6

∫
dx2∆ (x1 − x2)) 3∆(0)∆ (x2 − x3)

(2.14)
and physically represents the contribution of the tadpole.

This procedure can be easily extended to any order in perturbation the-
ory as well as to more complicated theories, involving nontrivial spins. Let
us compute now the O(λ2) contribution to the two point function. We need
the sixth point function to O(λ). Let us carry on

〈Tφ(x6)φ(x5)φ(x4)φ(x3)φ(x1)〉J −
λ

6 ∆x1x2 ∗ 〈Tφ(x6)φ(x5)φ(x4)φ(x3)φ(x2)3〉J −

−∆x1x2 ∗ 〈J(x2)Tφ(x6)φ(x5)φ(x4)φ(x3)〉J −∆x1x2 ∗ 〈δx2x5Tφ(x6)φ(x4)φ(x3)〉J −
−∆x1x2 ∗ 〈δx2x6Tφ(x5)φ(x4)φ(x3)〉J
−∆x1x2 ∗ δx2x4〈Tφ(x6)φ(x5)φ(x3)〉J −∆x1x3〈Tφ(x6)φ(x5)φ(x4)〉J = 0 (2.15)

and finally,

〈Tφ(x7)φ(x6)φ(x5)φ(x4)φ(x3)φ(x1)〉J −
λ

6 ∆x1x2 ∗ 〈Tφ(x7)φ(x6)φ(x5)φ(x4)φ(x3)φ(x2)3〉J −

−∆x1x2 ∗ 〈J(x2)Tφ(x7)φ(x6)φ(x5)φ(x4)φ(x3)〉J −∆x1x2 ∗ 〈δx2x7)Tφ(x6)φ(x5)φ(x4)φ(x3)〉J −
−∆x1x2 ∗ 〈δx2x5Tφ(x7)φ(x6)φ(x4)φ(x3)〉J −
−∆x1x2 ∗ 〈δx2x6Tφ(x7)φ(x5)φ(x4)φ(x3)〉J
−∆x1x2 ∗ δx2x4〈Tφ(x7)φ(x6)φ(x5)φ(x3)〉J −∆x1x3〈Tφ(x7)φ(x6)φ(x5)φ(x4)〉J = 0 (2.16)

When the sources vanish this yields to the lowest order, which is all we need,
the sixth point function in terms of the four-point function.

〈Tφ(x7)φ(x6)φ(x5)φ(x4)φ(x3)φ(x1)〉 = ∆(x1 − x7)〈Tφ(x6)φ(x5)φ(x4)φ(x3)〉+
+∆(x1 − x5)〈Tφ(x7)φ(x6)φ(x4)φ(x3)〉+ ∆(x1 − x6)〈Tφ(x7)φ(x5)φ(x4)φ(x3)〉
+∆(x1 − x4)〈Tφ(x7)φ(x6)φ(x5)φ(x3)〉+ ∆(x1 − x3)〈Tφ(x7)φ(x6)φ(x5)φ(x4)〉

Plugging in our previous results,this reads

〈Tφ(x7)φ(x6)φ(x5)φ(x4)φ(x3)φ(x1)〉 = ∆17 (∆65∆43 + ∆64∆53 + ∆63∆54) +
+∆15 (∆76∆43 + ∆74∆63 + ∆73∆64) + ∆16 (∆75∆43 + ∆74∆53 + ∆73∆54)
+∆14 (∆76∆53 + ∆75∆63 + ∆73∆65) + ∆13 (∆76∆54 + ∆75∆64 + ∆74∆65)

The desired λ2 contribution to 〈Tφ(x3)φ(x1)〉 is
λ2

36

∫
d4x2d

4y ∆(x1 − x2)∆(x2 − y)〈Tφ3φ
2
2φ

3
y〉 = λ2

36

∫
d4x2d

4y ∆12∆2y

{
∆y3 (∆0∆0 + ∆2y∆2y + ∆2y∆2y) + ∆y2 (∆32∆0 + ∆3y∆2y + ∆3y∆2y) +
+∆y2 (∆32∆0 + ∆3y∆2y + ∆3y∆2y) + ∆0 (∆32∆2y + ∆32∆2y + ∆3y∆0) +

+∆0 (∆32∆2y + ∆32∆2y + ∆3y∆0)
}

(2.17)
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2.1 The S-matrix in QFT.
The most important task in order to be able to extract testable predic-
tions out of fundamental theories is to compite cross-sections. Those are
known once S-matrix elements are known. There is a systematic recipe for
computing these in terms of Feynman diagrams, namely the Feynman rules.

Let us recall that the in-states are defined so that

e−iHt|in〉 = e−iH0t|in〉 (2.18)

The S-matrix is then given in the interaction representation by

S = lim
t′′→∞

lim
t′→−∞

eiH0t′′e−iH(t′′−t′)e−iH0t′ (2.19)

2.2 Feynman Rules.
The simplest field is the spin zero scalar field. It corresponds to the Higgs
field in the standard model. Its lagrangian reads

L = 1
2(∂µΦ∂µΦ−m2Φ2)− g

3!Φ
3 − λ

4!Φ
4 (2.20)

Reinstating c and ~, masses are really inverse Compton lengths m2c2

~2 . The
quartic coupling constant λ is really λ

~ . Redefining

Φ ≡ ~1/2Φ̃ (2.21)

the action reads

S = ~
∫
d4x

(
1
2(∂µΦ̃∂µΦ̃− 1

l2c
Φ̃2)− g~1/2

3! Φ̃3 − λ

4!Φ̃
4
)

(2.22)

Then this quartic coupling is dimensionless, [λ] = 0, and the cubic coupling
has got dimensions of an inverse distance: [g~1/2] = L−1.

Feynman boundary conditions (positive frequencies propagating towards
the future; negative frequancies propagating towards the past) are equivalent
to working in the euclidean fremework

x0 ≡ −ix4 (2.23)

so that
iS = −SE = −

∫
d4xE

(
(∂µφ)2

E +m2φ2
)

(2.24)

When Fourier transforming we shall continue in such a way that

p0 = ip4. (2.25)
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Instead of the discrete indices i, j, k . . .,we have now four-dimensionsl
coordinates, x, y, z . . ..

∑
ij

−φiMijφj → −
∫
d4xd4yφ(x)M(x, y)φ(y) (2.26)

What is in the exponent of the path integral is just iSclas. Then we are led
to identify

M(x, y) = i

2(�+m2)δ4(x− y) (2.27)

Also
−
∑
i

Jiφi → i

∫
d4xJ(x)φ(x) (2.28)

The bosonic propagator ∆ ≡ 1
2M

−1 is defined through∫
d4zM(x, z)∆(z, y) = 2δ4(x− y) (2.29)

This can be solved in momentum space

∆(x− y) ≡
∫

d4p

(2π)4 e
−ip.(x−y)∆(p) (2.30)

namely

∫
d4p

(2π)4 e
−ip.(x−y) i

2
(
−p2 +m2

)
∆(p) =

∫
d4p

(2π)4 e
−ip.(x−y) (2.31)

Feynman’s boundary conditions (or else analytical continuation from eu-
clidean space) lead to the contour defined by the limit ε→ 0+;

∆(p) = i

p2 −m2 + iε
(2.32)

Feynman’s propagator is symmetric with respect to the exchange p → −p,
or what is the same thing, with respect to the exchange of the points x and
y.

It is proportional to the Fourier transform of the time ordered two-point
function

∆xy ≡ ∆(x− y) = 〈0|Tφ(x)φ(y)|0〉 (2.33)

Let us compute it using the identity

i

P + iε
=
∫ ∞

0
ds eisP (2.34)
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∆(x1 − x2) =
∫

d4k

(2π)4 eik(x1−x2)
∫ ∞

0
ds eis(k

2−m2) =

=
∫ ∞

0
ds e−ism

2
∫

d4k

(2π4 e
is

(
k+ (x1−x2)

2s

)2
−i (x1−x2)2

4s =

= 1
(2π)4

∫ ∞
0

ds e−ism
2
(
π

is

)2
e−i

(x1−x2)2
4s = 1

8π2
2m√

(x1 − x2)2 − iε
ei
π
2 ×

×K1

(
−m

√
(x1 − x2)2 − iε

)
(2.35)

The imaginary part appears as a condition of convergence of the integral

∫ ∞
0

xν−1e
iµ2

(
x−β

2
x

)
dx = 2 βνe

iνπ
2 K−ν(βµ) (2.36)

only when Im µ > 0 and Im (β2µ) < 0.
In the massless limit the behavior

Kn(z) ∼ 2n−1 (n− 1)!
zn

(2.37)

implies

∆(x1 − x2) = − i

4π2
1

(x2 − x1)2 − iε
(2.38)

Let us repeat the same calculation with the euclidean propagator.

∆E(x1 − x2) =
∫

d4k

(2π)4 eik(x2−x1)
∫ ∞

0
ds e−s(k

2
E+m2) =

= 1
16π4

∫ ∞
0

ds

(
π

s

)2
e−m

2s− (x2−x1)2
4s = 1

4π2
m√

(x2 − x1)2
E

K−1

(
m
√

(x2 − x1)2
E

)

In the massless limit (Remember that K−ν(z) = Kν(z)).

∆E(x1 − x2) = 1
4π2 (x1 − x2)2

E

(2.39)

Let us compute the first quantum corrections to this Green function
in the scalar theory φ4

4. All terms follow strictly the ones in [1.51].Please
compare with the diagrams in the figure. The coefficients in front of each
of them are combinatorial in nature and thera are elaborate formulas to
compute them (cf. for example [?]). The safest way is however to go back
to basics and expand the path integral directly.
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Figure 2.1: Position space feynman diagrams.
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〈0 |Tφ(x)φ(y)| 0〉 = ∆(x− y) + λ

4!

∫
d4x

{
3∆(z − z)2∆(x− y) +

+12∆(z − z)∆(z − x)∆(z − y)
}

+1
2

(
λ

4!

)2 ∫
d4zd4w

{[
9∆(z − z)2∆(w − w)2 + 72∆(z − z)∆(z − w)2∆(w − w) +

+24∆(z − w)4
]
∆(x− y) + 2∆(w − x)∆(w − y)

[
18∆(z − z)2∆(w − w) +

+72∆(z − z)∆(z − w)2
]

+

+2∆(z − x)∆(z − y)
[
18∆(w − w)2∆(z − z) + 72∆(w − w)∆(z − w)2

]
+ (∆(z − x)∆(w − y) + ∆(z − y)∆(w − x))

[
96∆(z − w)3 +

+144∆(z − z)∆(z − w)∆(w − w)
]}

Formally, the infinite volume of space-time is the quantity

Vx ≡
∫
d4x (2.40)

It is usually covenient to work in momentum space. Let us denote∫
p
≡
∫

d4p

(2π)4 (2.41)

When integrating over space-time points we get a delta function in space-
time enduring momentum conservation at each vertex, plus a global mo-
mentum conservation on external lines.

The momentum-space two-point-function then reads

G(p) = ∆(p) + λ

4!

{
3Vx

(∫
q

∆(q)
)2

∆(p) + 12
∫
q

∆(q)∆(−p)∆(p)
}

+1
2

(
λ

4!

)2 {[
9V 2

x

(∫
q

∆(q)
)2 (∫

q1
∆(q1)

)2
+ 72Vx

(∫
q

∆(q)
)3

+

+24Vx
∫
p1p2p3

∆(p1)∆(p2)∆(p3)∆(−p1 − p2 − p3)
]
∆(p) +

4∆(p)∆(−p)
[
18
(∫

q
∆(q)

)3
Vx + 72

(∫
q

∆(q)
)2

+

+48
∫
q1q2

∆(q1)∆(q2)∆(p− q1 − q2)
]

+ 72∆(p)
(∫

q
∆(q)

)2 }
(2.42)
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Figure 2.2: Momentum space feynman diagrams.
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Please note that in a real scalar spinless theory

∆(p) = ∆(−p). (2.43)

The terms proportional to a power of the spacetime volume Vx are precisely
the non-connected diagrams. The power affecting the volume is the number
of vacuum bubbles in the diagram.

Let us now turn to abelian U(1) gauge theories (quantum electrodynam-
ics, QED). At at time it was considered as a model for all QFT; nowadays
is considered as a rather special case. The lagrangian reads

L = −1
4FµνF

µν (2.44)

After integrating by parts

S =
∫
d4x− 1

2A
µ (−�ηµν + ∂µ∂ν)Aν (2.45)

This means that

Mµν(x, y) = (−�ηµν + ∂µ∂ν) δ4(x− y) (2.46)

The operator M is singular, owing precisely to gauge invariance∫
d4yMµν(x, y)∂νε(y) = 0 (2.47)

One solution to this problem is to chose a gauge condition, such as

∂αA
α = 0 (2.48)

In order to do that, we add to the lagrangian an extra term

Lgf = 1
2α (∂αAα)2 (2.49)

It is clear that when α→∞ we implement the gauge condition formally
The new M operator reads

Mµν(x, y) =
(
−�ηµν +

(
1− 1

α

)
∂µ∂ν

)
δ4(x− y) (2.50)

There are good resons to think that the functional integral will be in-
dependent of α (this will be proved when studying the BRST approach to
gauge fixing). Feynman actually favors

α = 1 (2.51)

which will be called somewaht symbolically Feynman gauge.
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The photon propagator reads

∆µν = ηµν
p2 + iε

(2.52)

that is
〈0|TAµ(x)Aν(y)|0〉 (2.53)

The fermion-gauge coupling reads

L = ψ̄(γµ(i∂µ − qAµ)−m)ψ (2.54)

The fermion propagator

S(x− y) ≡
∫

d4p

(2π)4 e
−ip(x−y) 1

/p−m+ iε
(2.55)

in momentum space

Sab =
(

1
γµpµ −m+ iε

)
ab

(2.56)

It is a fact
iSab(x− y) = 〈0|Tψa(x)ψ̄b(y)|0〉 (2.57)

S(x− y) represents the amplitude of propagation from the point y towards
the point x,the, because of the conventional Fock’s structure of Dirac’s field
(ψ ∼ (b, d+)) what propagates is electron towards the future or a positron
toward the past (that is, negative charge towards the future). The arrow goes
from ψ̄ towards ψ and has nothing to do with four-momentum propagation.
We represent the propagator with a continuous line and an arrow that goes
from the point y to the point x. To change the arrow is the same as to
change p to −p.

The photon-fermion-fermion vertex (the only one in QED)

iqγµab (2.58)

The Yukawa coupling between scalar-fermion-fermion

gyψ̄φψ (2.59)

with gets a vertex
igy (2.60)
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Figure 2.3: QED vertex

2.3 One-Particle-Irreducible Green functions
The basic building blocks out of which all Green functions can be recon-
structed are not the connected functions, but rather, the one-particle irre-
ducible (1PI) Green functions. Those are by definition the ones that can
not be made disconnected by cutting one internal line. Their generating
functional can be easily obtained from the free energy by a Legendre trans-
form similar to the one used to define the hamiltonian out of the lagrangian
Define

φc ≡
δW

δJ
(2.61)

Invert this to get the function J(φc). Then define the effective action

Γ[φc] ≡W [J ]−
∫
dnzJφc (2.62)

It is then plain that

δΓ
δφc(x) =

∫
dny

δW

δJy

δJy
δφc(x) − J(x)−

∫
dnzφc(z)

δJ

δφc(x) = −J(x) (2.63)

Connected functions in presence of sources are given by

Gn(x1 . . . xn) ≡ δ

δJ(x1) . . .
δ

δJ(xn)W [J ] (2.64)

It is plain that
Gn(x1 . . . xn)|J=0 = Gcn(x1 . . . xn) (2.65)

Define in an analogous way

Γn(x1 . . . xn) ≡ δ

δφc1
. . .

δ

δφc(xn)Γ(φc) (2.66)

It is claimed that 1PI functions are given by functional derivatives of the
effective action.

Γn(x1 . . . xn) = Γn(x1 . . . xn)|φc=0 (2.67)

Remembering that

G2(x, y) ≡ δ2W [J ]
δJ(x)δJ(y) (2.68)
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it is fact that

δJx
δJy

= δxy =
∫
z

δJx
δφcz

δφcz
δJy

=
∫
z

δJx
δφcz

δ2W

δJzδJy
= −

∫
z

δ2Γ
δφcxφ

c
z

δ2W

δJzδJy
(2.69)

That is
Γ2 = −G−1

2 (2.70)

To lowest order, Γ2 is just the quadratic piece of the classical action. This
procedure can be extended easily. For example the full connected three-point
function can be reconstructed out of the 1PI three-point function.

G3(x1, x2, x3) = −
∫
dny1

δφc(y1)
∂J(x3)

δ

δφc(y1)Γ−1
2 (x1, x2) =

=
∫
dny1 d

ny2 d
ny3 G2(y1, x3) Γ−1

2 (x1, y2) δΓ2(y2, y3)
δφc(y1) Γ−1

2 (x2, y2) =

=
∫
dny1 d

ny2 d
ny3 G2(y1, x3) G2(x1, y1) Γ3(y2, y3, y1) G2(x2, y2)
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3

Gauge theories.

Gauge invariance is a formal invariance of the action with respect to trans-
formations that depend of continuous parameters which are functions of the
space-time point, say g(x) ∈ G. The group G can be abelian like U(1),
corresponding to electromagnetism, or non abelian, like SU(n). Gauge
transformations that approach the identity at infinity, G0, are noy really
symmetries, and the physical configuration space is A/G0. These transfor-
mation are really redundancies of our description in terms of the variables
A.

There are also in the non-abelian case large gauge transformations that
do not tend to the identity at infinity, and relate different points in A/G0
which are physically equivalent. Those are true symmetries.

3.0.1 Renormalization.

When computing all but the simplest diagrams, we find that they give rise
to divergent integrals. For example the simplest scalar vacuum bubble reads

B ≡
∫

d4p

(2π)4
i

p2 −m2 + iε
=∞ (3.1)

Before even discussing what is the correct procedure to make sense out
of this infinity we just encountered, we have to regularize, that is, modify
our theory to a different one that yields finite answers and that reduces
to the physical theory in some limit depending on continuous parameters.
When this is done, we will have to study what happens when the continuous
parameters go to the physical limit. This is what is called renormalization.

The simplest way to regularize is momentum cutoff, in which a factor of

θ(Λ2 − p2) (3.2)

is inserted into the momentum integrals. Our vacuum bubble regularized in
such a way reads

B = CΛ2 (3.3)

31



32 3. GAUGE THEORIES.

The physical limit is then
lim

Λ→∞
(3.4)

It can then be said that the bubble B is is quadratically divergent in the
physical limit.

This procedure breaks Lorentz invariance as well as (soon to be discussed
in detail) gauge symmetry. It is then preferable to work from the very
beginning in a framework that respects as many symmetries as possible.

The superficial degree of divergence of a diagram is the difference between
the number of momenta in the numerator of the integral and the number
of momenta in the denominator. In spite of it being a very simple concept,
its importance cannot be overestimated, because there is a famous theorem
by Weinberg asserting that if a graph and all its subgraphs habe negative
superficial degree of divergence„ then the full diagram is finite.

There is a quite simple way of computing it. The superficial degree of
divergence in dimension n, just to get the general trend, is just

D ≡ nL− 2Ib − If (3.5)

The fact that we can write the diagram in a paper means that the Euler
characteristic must be one, so that

χ = 1 = L− I + V (3.6)

This means that

D =
∑

nidi+n(I−V+1)−2Ib−If =
∑

nidi+(n−2)Ib+(n−1)If−n(
∑

ni−1)
(3.7)

The law of conservation of boson ends states that

Eb + 2Ib =
∑

nibi (3.8)

where bi is the number of boson lines stemming from a vertex labelled i, of
which there are ni in the given diagram. The law of conservation of fermion
ends states that

Ef + 2If =
∑

nifi (3.9)
Then the superficial degree of divergence reads

D =
∑

nidi + (n− 2)Ib + (n− 1)If − n
∑

ni + n =

=
∑

nidi + n− 2
2

(∑
nibi − Eb

)
+ n− 1

2
(∑

nifi − Ef
)
− n

∑
ni + n =

= −n− 2
2 Eb −

n− 1
2 Ef + n+

∑
niδi (3.10)

where di is the number of derivatives attached to the vertex labelled i. The
index of divergence

δi ≡
n− 2

2 bi + n− 1
2 fi + di − n (3.11)
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In theories in which δi > 0 the degree of divergence gets bigger and bigger
as we add more vertices. Those theories are certainly non-renormalizable.

Assume there is no derivative vertex, Then di = 0. The condition for
the index of divergence to be negative is

n− 2
2 bi + n− 1

2 fi ≤ n (3.12)

This means that in n=4 dimensions,

bi + 3
2fi ≤ 4 (3.13)

vertices cannot have more than four bosonic legs, or two fermionic ones and
one bosonic.

In n=2 dimensions,
1
2fi ≤ 2 (3.14)

vertices can have an arbitrary number of bosonic legs, but only up to four
fermionic ones.

Curiously enough, in n=6 dimensions the condition reads

2bi + 5
2fi ≤ 6 (3.15)

so that the theory φ3
6 looks renormalizable by power counting.

Renormalization is only the first step in order to be able to extract
precise answers from QFT to compare eventually with experimental results.
Even when we are guaranteed that all computations will yield non-divergent
answers, we still have to compute them. This work is usually even harder
that the one necessary to elimitate all infinities.

The only reason why a sample of these calculations is not included here
is one of lack of space-time.

3.0.2 Dimensional regularization.

Analytic continuation in the spacetime dimension (’t Hooft and Veltman)
regulates simultaneously IR and UV which is sometimes a nuisance, al-
though usually convenient. The continuous parameter here is precisely the
spacetime dimension, n and the physical divergences appear when the limit

lim
n→4

(3.16)

is taken.
Wilson introduced an axiomatic formulation of this regularization. He

was able to prove that the analytic function of the complex variable n

I(n; f) ≡
∫
dnpf(p) (3.17)

is uniquely defined by
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• Lineality
I(af + bg) = aI(f) + bI(g) (3.18)

• Scaling.
Define (Dλf)(p) ≡ f(λp).

I(Dλf) = λ−nI(f) (3.19)

• Translational invariance.
Define (Tqf)(p) ≡ f(p+ q)

I(Tqf) = I(f) (3.20)

Recall the definition of Euler’s beta function

B(z, w) = Γ(z)Γ(w)
Γ(z + w) =

∫ ∞
0

dx
xz−1

(1 + x)z+w (3.21)

where Euler’s Gamma function is given by

Γ(z) ≡
∫ ∞

0
e−t tz−1 (3.22)

The euclidean integral∫
dnp

p2a

(p2 +m2)b = πn/2mn+2a−2bΓ(a+ n/2)Γ(b− a− n/2)
Γ(n/2)Γ(b) (3.23)

implies in particular that ∫
dnp pa = 0 (3.24)

There is a quite useful (proper time) parameterization due to Schwinger
1

(k2 +m2)a = 1
Γ(a)

∫ ∞
0

dττa−1e−τ(k2+m2) (3.25)

Then several template integrals are easily done. First of all∫
dnp

1
(p2 + 2p.k + C)a = πn/2(−k2 + C)n/2−aΓ(a− n/2)

Γ(a) (3.26)

thens∫
dnp

pµ
(p2 + 2p.k + C)a = −kµπn/2(−k2 + C)n/2−aΓ(a− n/2)

Γ(a) (3.27)

and finally ∫
dnp

pµpν
(p2 + 2p.k + C)a = πn/2

Γ(a)(−k2 + C)n/2−a ×

×
(

Γ(a− n/2)kµkν + Γ(a− 1− n/2)−k
2 + C

2 δµν

)
(3.28)
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In order to take the physical limit, we need to evaluate these analytic func-
tions of the complex variable n in a neighborhood of the physical value
n = 4 + ε

Γ
(4− n

2

)
= Γ (−ε/2) = − 1

4− n +O(1) = 1
n− 4 +O(1) (3.29)

This result stems from the well-known fact that

Γ (1 + z) = zΓ (z) (3.30)

When fermions are considered, we need to define also n-dimensionsl Dirac
matrices. They obey

{γµ, γν} = 2gµν = −2δµν (3.31)

Also
tr 1 = 4 (3.32)

which can be shown to be consistent, and implies

γµγ
µ = n

tr γµγν = 4gµν
γµ/pγ

µ = (2− n)/p
γµ/p/qγ

µ = (n− 4)/p/q + 4p.q
γµ/p/q/kγ

µ = −(n− 4)/p/q/k − 2/k/q/p/p (3.33)

Canonical dimensions are now space-time dimension dependent

[A0
µ] = n− 2

2
[ψ0] = n− 1

2
[e0] = 4− n

2 (3.34)

This fact will be relevant in a moment. This means that we have to distin-
guish (as we have done from the very beginning) between fields defined in
n dimensions (which we shall dub bare) and decorate with a sub- or super-
index 0, and physical fields with have the correct four-dimensional canonical
dimension

A0
µ = µ

n−4
2 Aµ

ψ0 = µ
n−4

2 ψ

e0 = µ
4−n

2 e (3.35)

When we compute the divergences associated to different diagrams, we
need to substract them somewhat. This is renormalization sensu stricto.



36 3. GAUGE THEORIES.

One way of doing that is just by substracting the divergent part, defined
just as the residue at the pole. This is called minimal substraction (MS)
scheme. It is possible to substract also some finite pieces (factors of 2π and
the like) that simplify the algebra somewhat, as in theMS scheme, in which
one substractas also a factor

− γ + log(4π) (3.36)

For example, given the result

1
16π2

(
2
ε
− γ + log 4π − log A

2

µ2

)
(3.37)

in MS we keep
1

16π2

(
−γ + log 4π − log A

2

µ2

)
(3.38)

whereas in M̄Swe would keep only

1
16π2 log µ

2

A2 (3.39)

This is useful mainly to one loop order.
This has to be done order by order in perturbation theory. That is, we

assume that it is consistent to neglect higher order (two loo and beyond) in-
finities when working at one loop, in spite of them being divergent, because
they got a higher power of ~ in front. Actually the two-loop renormalization
depends upon the one-loop results, that appear in subdivergences. The gen-
eral structure of the renormalization constants in a theory with a coupling
constant λ is of the type

λB = µ4−n
(
λR + a1(λR) 1

4− n + a2(λR) 1
(4− n)2 + . . .

)
(3.40)

with
a1(λR) ≡

∞∑
n=2

a1
nλ

n
R (3.41)

and the coefficients of the expansion are finite for all values of the renormal-
ized coupling constant λR.

All that renormalization physically means is that by changing (an infinite
amount) what is meant by masses and other coupling constants, as well as
by an (infinite) readjustment of the kinetic energy term, it is possible to
extract finite predictions out of QFT.

Several comments are in order. First of all, this procedure, arbitrary as it
seems at first sight, does not work for every QFT, but only for a small subset
of the ones that are classically well defined; those are called renormalizable
QFT. On second thought, this procedure is not as unnatural as it seems.
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We cannot measure the bare couplings; only the renormalized ones ap-
pear in the physical expressions or S-matrix elements, and those are perfectly
finite. Of course we need to check that physics is independent of all the ar-
bitrariness we have introduced, such as different methods of regularization,
different renormalization schemes, etc.

This can be argued to be the case at least for non-abelian gauge theories.

Gauge theories are theories in which there have been introduced redun-
dant variables in order to make other symmetries (typically Lorentz invari-
ance) manifest. This redundancy consists in invariances that depend on
local (i.e. functions of the space-time point) parameters. This extra invari-
ance does not imply extra Noether charges in addition to the ones stemming
from the rigid (i.e., space-time independent) invariance. There are however
some identities (Ward’s) that are essential to the consistency of the quantum
version of gauge theories.

All presently favored theories of the fundamental interactions are gauge
theories. Even General Relativity is a gauge theory, although with some
peculiarities.

3.1 Abelian U(1) gauge theories

The simplest gauge theories are abelian ones, where the gauge group is just
U(1). The theory of the interactions of fermions with photons (quantum
electyrodynamics or QED for short) is the most important example. Pure
classical electromagnetism can be written in terms of gauge invariant quan-
tities (namely electric and magnetic fields). Lorentz invariance is however
obscure in terms of these variables . This is actually the reason why it took
a certain time to discover the full invariance group of Maxwell’s equations.
The coupling of electromagnetism to fermions is even subtler and needs the
vector potential.

Let us the stick to the Lorentz covariant notation. The Lagrangian
written in terms of bare fields (we shall need to change the fields as time
goes by) reads

L = −1
4Fµν(A0)2 − 1

2α0
(∂µAµ0 )2 + ψ̄0

(
i /D + e0 /A0 −m0

)
ψ0 (3.42)

Recall the Feynman rules for this theory
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QED FEYNMAN RULES

1. Identify distinguishable connected diagrams.

2. Write down a vertex factor

−ig(2π)4δ4(
∑
kjIja)

iλ(2π)4δ4(
∑
kjIja)

s
−iq(γµ)dc(2π)4δ4(

∑
kjIja)

where c stands for incoming arrow and d outgoing arrow; µ corresponds to the photon
3. Associate (2π)4δ4(pE −

∑
kjIjE) a los vértices externos.

4.Associate
∫ d4p

(2π)4
i

p2−m2 to every bosonic internal line.

5. Write the fermionic propagator
∫ d4p

(2π)4

(
i

/p−m

)
ab

to every internal fermion line

(arrow goes from a to b, and momentum in the direction of the arrow).
Spinor matrices are always multiplied together in the direction opposite to the charge arrow.

6. Write down
∫ d4p

(2π)4
i
p2

(
−ηµν + (1− 1

α) pµpν
p2+iε

)
for the photon propagator connecting µ and ν.

7. Write down the corresponding symmetry factor.

8. Write a minus sign for diagrams the differ in the swappig of external fermionic lines

9. Write down snother minus sign for any fermionic loop.

The renormalization procedure consist in appropiate rescalings of the
bare fields and coupling constants in order to define the physical fields and
coupling constants. Let us define

Aµ0 = Z
1/2
3 Aµ

ψ0 = Z
1/2
2 ψ

e0 = Z1Z
−1
2 Z

−1/2
3 µ

4−n
2 e

α0 = Z3α

m0 = Zmm (3.43)

This is because the engeneering dimension of the bare fields and bare cou-
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pling constants is

[A0] = n− 2
2 = 1 + n− 4

2
[ψ0] = n− 1

2 = 3
2 + n− 4

2
[e0] = 4− n

2
[m0] = [m] = 1

(3.44)

The renormalization constants turn out to diverge in the physical limit. The
effect of all rescalings in the lagrangian can also be expressed in terms of
the physical lagrangian with the addition of the so called counterterms

L = −1
4F

2
µν −

1
2α(∂µAµ)2 + ψ̄

(
i /D + µ

4−n
2 e /A−m

)
ψ −

(Z3 − 1)1
4F

2
µν + (Z2 − 1)ψ̄i /Dψ − (Z1 − 1)ψ̄eµ

4−n
2 /Aψ − (Z1Zm − 1) mψ̄ψ

QED COUNTERTERMS FEYNMAN RULES
(Amputated diagrams; that is external lines stripped off.)

1. Fermion line
i
(
(Z2 − 1) /p− ((Zm − 1) + (Z2 − 1))mR

)
2. Photon line

−i(Z3 − 1)
(
q2ηµν − qµqν

)
3.Vertex counterterm
−ieR(Z1 − 1)γµ

4. Feynman Gauge fixing
−i(Z3 − 1)q2ηµν

It will be seen in due time that gauge invariance (through Ward’s iden-
tities) implies that Z1 = Z2, that is, the charge renormalization is the same
as the fermion wavefunction renormalization.

3.1.1 Electron self-energy.

Let us begin by considering the simplest one-particle irreducible (1PI) self-
energy diagram. Let us amputate the external legs, which are not essential
for our present discussion. Consider first the simpler U(1) case. Let us also
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call the charge of the particle e.

Σ(p) = i

∫
dnk

(2π)n
(
−ieµ

4−n
2 γµ

) i(/p− /k +m)
(p− k)2 −m2 + iε(

−ieµ
4−n

2 γν
) −iηµν
k2 + iε

(3.45)

Now it is a good moment to introduce Feynman parameters

1
AB

=
∫ 1

0
dx

1
(xA+ (1− x)B)2 = − 1

A−B
1

x(A−B) +B

∣∣∣∣1
0

= − 1
A−B

( 1
A
− 1
B

)
(3.46)

A useful alternative was provided by Schwinger, who championed the proper
time representation

1
(m2 − p2)a = 1

Γ(a)

∫
dτ τa−1 e−τ(m2−k2) (3.47)

The sort of integrals needed when using this representation are∫
dnk eAk

2+2bk = i

(
π

A

)n
2
e−

b2
A∫

dnk kµ eAk
2+2bk = i

(
π

A

)n
2
(
−b

µ

A

)
e−

b2
A∫

dnk kµkν eAk
2+2bk = i

(
π

A

)n
2
(
−b

µbν

A2 −
1

2Aη
µν
)
e−

b2
A∫

dnk kλkµkν eAk
2+2bk = i

(
π

A

)n
2
(
−b

λbµbν

A3 + 1
2A2

(
bληµν + bµηλν + bνηλµ

))
e−

b2
A

and so on and so forth.
Then, using

γµ/pγ
µ = pρ (2ηρµγµ − γργµγµ) = (2− n)/p (3.48)

we get

Σ(p) = −ie2µε
∫ 1

0
dx

∫
dnk

(2π)nγ
µ (2− n)(/p− /k) + nm

((1− x)k2 + x((p− k)2 −m2) + iε)2γµ =

= −ie2µε
∫ 1

0
dx

∫
dnk

(2π)n
(2− n)(/p− /k) + nm

(k2 − 2xk.p+ x(p2 −m2) + iε)2 (3.49)

The integral over momenta can be easily made

k → xp

C → x(p2 −m2) (3.50)
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It yields

Σ(p) = α

2π

(
4πµ2

p2

)ε/2
Γ(ε/2)

∫
dx
(
(2− n)(1− x)/p+ nm

)
×

×
(
−x(1− x) + xm2/p2 − iε

)−ε/2
(3.51)

Let us now take the physical limit ε→ 0 , and separate the pole

Σ(p) = − α

4π

(( 2
4− n + log 4πµ2/p2 − γE

)
/p− 4m

2 − /p− 2m
2 +∫

dx
(
/p(1− x)− 2m

)
log

(
−x(1− x) + xm2/p2 − iε

))
(3.52)

The divergent part of the self-energy can be cancelled with a MS coun-
terterm

Z2 − 1 = − α

4π
2

4− n (3.53)

Mass renormalization is multiplicative. This means that the physical mass
vanishes when the bare mass also vanishes.

Zm − 1 = −3α
4π

2
4− n (3.54)

In SU(N) gauge theory the only difference is that there are extra factors
T a and T b at each of the vertices. The propagator of the gauge bosons gets
an extra δab. The net result is then

δab T
a T b ≡ C2(F ) (3.55)

namely, an extra factor proportional to the second Casimir of the fermionic
representatrion of SU(N), For the fundamental representation, where for
example in the SU(3) case the generators are given ion terms of the eight
Gell-Mann matrices as

T a = 1
2λ

a (3.56)

C2(F ) = N2 − 1
N

(3.57)
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3.1.2 Vacuum polarization.

This is the traditional name for the photon self energy. The corresponding
1PI diagram is given by

−iΠαβ(q) = i

∫
dnk

(2π)n tr
(
(−ieγα) (/k +m) (−ieγβ)

(
−/q + /k +m

))
i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
=

= ie2µε/2
∫ 1

0
dx

∫
dnk

(2π)nNαβ(p.k) 1
((1− x)k2 + x ((q − k)2 −m2) + iε)2 =

= ie2µε/2
∫

dnk

(2π)nNαβ(p.k) 1
(k2 − 2xk.q + xq2 −m2 + iε)2 (3.58)

The first thing is to perform the Dirac traces. This lead to

Nαβ = 8kαkβ − 4 (kαqβ + qβkα) + 4gαβ
(
k.q − k2 +m2

)
(3.59)

The divergent part of the full expression reads

−iΠαβ = −
(
q2gαβ − qαqβ

) 2α
π

(
4πµ2

)ε/2
Γ(ε/2)×

×
∫
dx

x(1− x)
(m2 − x(1− x)q2 − iε)ε/2

=

−
(
q2gαβ − qαqβ

) α

3π

( 2
4− n + finite

)
(3.60)

It is worth remarking that this counterterm is transverse, that is

qλΠλα = 0 (3.61)

The MS photon wavefunction renormalization is

Z3 − 1 = − α

3π
2

4− n (3.62)

In the non-abelian case, the modification is just the trace

trT aT b = IRδ
ab (3.63)

(For the fundamental,
IF = 1

2) (3.64)

To sum up

Παβ = i
(
qαqβ − q2ηαβ

)
π(q2) (3.65)
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where

π(q2) ≡ 2α
π

δab

{
log (4πµ2)−

∫ 1

0
dx x(1− x) log

[
m2 − x(1− x)q2

]}
• The geometric series of the polarization contributions to the photon

propagator can be summed yielding the result Gµν

Gµν = Dµν+DµαΠαβDβν+DµαΠαβDβγΠγδDδν+. . . = Dµα (δαβ + ΠαβGβν)
(3.66)

It is fact that (using matrix notation)

DΠG = G−D (3.67)

so that

(1−DΠ)G = D ∴ G−1 (1−DΠ)−1 = D−1 (3.68)

that is
G−1 = D−1 (1−DΠ) = D−1 −Π (3.69)

Putting back indices

G−1
µν = i

(
k2ηµν +

(
k2ηµν − kµkν

)
π(k2)

)
(3.70)

that is
iGµν = 1

k4 (1 + π(k2))
(
k2gµν + π(k2)kµkν

)
(3.71)

The same procedure applied to the fermion self-energy leads to

Γ = /p−m− /Σ (3.72)

It is worth remarking that owing to the regular behavior of the func-

tion π(k2) near k2 = 0 the only solution of the equation

k2
(
1 + π(k2)

)
= 0 (3.73)

is still
k2 = 0 (3.74)

that is, the photon mass does not renormalize. In one of the problem
sheets you are invited to notice that this is not true anymore in n=2
dimensions where k2π(k2) goes to a finite limit when k = 0 and the
would-be photon develops a finite mass.
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The logarithm gets an imaginary part for timelike q2 when

m2 − x(1− x)q2 ≤ 0 (3.75)

Given that
x(1− x) ≤ 1

4 (3.76)

a branch cut appears when

q2 = 4m2 (3.77)

The values of x for which this is possible are determined by the equa-
tion

x(1− x) ≥ m2

q2 (3.78)

which only happen for
x− ≤ x ≤ x+ (3.79)

where

x± =
1±

√
1− 4m2

q2

2 (3.80)

Actually,

Im π
(
q2 − iε

) 2α
π

∫ x+

x−
dxx(1−x) = α

3

(
1 + 2m2

q2

)√
1− 4m2

q2 (3.81)

which is proportional to the cross section for production of a fermion-
antifermion pair.

• This is a consequence of the optical theorem, which is in turn a cose-
quence of unitarity.
Let us write

S = 1 + iT (3.82)
Then

SS+ = 1 = 1 + i(T − T+) + TT+ (3.83)

TT+ = −i
(
T − T+

)
(3.84)

∑
I

〈f |T |I〉〈I|T+|i〉 = −i
(
〈f |T |i〉 − 〈f |T+|i〉

)
= 2 (2π)4δ4(pi − pf ) ImMfi =

=
∑
I

(2π)4 δ4 (pf − pI) (2π)4 δ4 (pi − pI) MiI M
∗
fI (3.85)

This implies lots of relationships (id est the Cutkosky rules), the
simplest one being the optical theorem proper, that asserts that the
imaginary part of the forward scattering amplitude equals the total
cross section for production of any possible final state.

Im M (k1k2 → k1k2) = 2 E p σT (k1k2 → all) (3.86)
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• At a certain level, that is, in the static limit

k0 = 0 (3.87)

the whole effect of the vacuum polarization is the replacement of the
electron charge e2 by

e2

1 + π(−~k2)
(3.88)

This is what happens in dielectric materials. The effective charge is
defined in terms of the a dielectric constant ε(~k) through

e2

ε(~k)
(3.89)

In perturbation theory

e2

1 + π(−~k2)
∼ e2

~k2

(
1 + α

15π
~k2

m2

)
(3.90)

In position space this corresponds to the so-called Uehling potential

V = e2

4πr + αe2

15πm2 δ
(3)(~x) (3.91)

3.1.3 Renormalized vertex.

Ths 1PI Vertex function reads

Γµ = −i
∫

dnk

(2π)n
1

(p+ k)2 −m2 + iε

1
(q + k)2 −m2 + iε

1
k2 + iε

(
−igβα

)
(
−ieµε/2γβ

)
i
(
/q + /k +m

) (
−ieµε/2γµ

)
i
(
/p+ /k +m

) (
−ieµε/2γα

)
(3.92)

Using Feynman’s identity

1
ABC

= 2
∫ 1

0
dx dy dz δ(x+ y + z − 1) 1

(x A+ y B + z C)3 (3.93)

we learn that

Γ∞µ = −4ie3
∫ 1

0
dx

∫ 1−x

0
dy

dkk

(2π)n
/kγµ/k

(k2 + 2k.(xp+ yq) + xp2 + yq2 − (x+ y)m2 + iε)3 =

= −eγµ
α

4π
2

4− n (3.94)
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The renormalization is then given by

Z1 − 1 = − α

4π
2

4− n (3.95)

Indeed
Z1 = Z2 (3.96)

which as we shall see in a moment, is a consequence of the gauge smmetry.
What changes in the non-abelian case? There are three matrices in the

fermion representation; but the gauge boson propagator forces two of them
to be equal. The extra factor is then

TaTbTcδac = Ta (TaTb + ifbadTd) = C2(A)Tb + ifbad TaTd =

= C2(F )Tb + ifbad
1
2 [Ta, Td] = C2(A)Tb + ifbad

1
2 ifadcTc =

= C2(F )Tb −
1
2C2(A)δbcTc =

(
C2(F )− 1

2C2(A)
)
Tb (3.97)

For the group SU(N) with fermions in the fundamental this is(
N2 − 1

2N − N

2

)
Tb = − 1

2N Tb (3.98)

3.1.4 Mass dependent and mass independent renormaliza-
tion.

MS is a mass-independent renormalization scheme. Traditionally, QED used
to be renormalized in a different and in a certain sense more physical, mass-
dependent scheme. The finite arbitrariness was fixed by the following re-
quirements

• The physical mass of the electron is equal to m.

Σ(/p = m) = 0 (3.99)

• The residue of the pole of the fermionic propagator is set equal to 1.

d

d/p
Σ(/p)/p=m = 0 (3.100)

• The residue at the pole of the photon propagator is also set to 1.

Π(q2 = 0) = 0 (3.101)

• The electron charge is set to the physical value,e

− ieΓµ(q − p = 0) = −ieγµ (3.102)
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In fact QED is almost the only theory to which such an scheme can be
made to work, because it is the only piece of the standard model which is
infrared free, that is, weakly coupled in the infrared. Quantum chromody-
namics (QCD) is the prototype of a theory that is strongly coupled in the
infrared, where our ability to compute is limited to lattice simulations. Mass
independent schemes (first employed in QCD) are now much more widely
used, even for QED.
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3.2 Nonabelian gauge theories
It is often the case that matter fields are invariant under a set of rigid (global)
transformations, acting in some representation

h ∈ G→ DR(h) (3.103)

namely
φ→ φ′ ≡ DR(h)φ (3.104)

QED Dirac’s lagrangian for the electron

L = ψ̄(i /D −m)ψ (3.105)

enjoys abelian invariance h ∈ G = U(1)

ψ → D(h)ψ ≡ eiαψ (3.106)

The parameters must be constant

(∂µφ)′ = ∂µD(h)φ+D(h)∂µφ (3.107)

for example
(∂µψ)′ = eiα(i∂µα+ ∂µ)ψ (3.108)

Any rigid symmetry can be promoted to a local one by introducing a co-
variant derivative (that is, a connection in the precise mathematical sense),

∇µ ≡ ∂µ + iAµ (3.109)

where Aµ is a gauge field. Its transformation is determined by the require-
ment that

(∇µφ)′ = D(h)∇µφ (3.110)

which leads to

A′µ ≡ A(g)
µ = DhAµD

−1
h + i

g
∂µDhD

−1
h (3.111)

In a given representation R, of the algebra, the generators are given by T a,
a = 1 . . . dG

Aµ ≡ AaµT a (3.112)

Structure constants are purely imaginary for hermitian generators

[Ta, Tb] = ccabTc ≡ ifabc Tc (3.113)

When the semisimple group is compact, it is always possible to choose a
basis such that the structure constants are totally antisymmetric, Elements
of the group are obtained by exponentiation

h = eiω
aTa (3.114)
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with real parameters, ωa ∈ R. G = SU(N), Ta = T+
a (physicist’s con-

vention). When generators are anti-hermitian (mathematicians preferred
convention) then h = eω

aTa .
Close to the identity

h ∼ 1 + iωaTa (3.115)
the gauge transformation reads

δAaµ = gfabcA
b
µω

c − ∂µωa (3.116)

The field strengh (the curvature of the connection) is given by

Fµν ≡ ∂µAν − ∂νAµ + ig[Aµ, Aν ] (3.117)

After a gauge transformation

F ′µν = DhFµνD
−1
h (3.118)

In a given basis
F aµν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (3.119)

The (hermitian) adjoint representation is defined by

(T a)bc ≡ ifbac (3.120)

and acts on the algebra itself, of dimension dG,which for SU(N) is

dSU(N) = N2 − 1 (3.121)

This is a representation by virtue of Jacobi’s identity.
The Dynkin index of the representation is defined by

trR TaTb ≡ IR δab (3.122)

The Second Casimir invariant of the group reads

C2(R) ≡ δabTaTb (3.123)

Casimir invariants take a constant value in each representation. This value
depends on the representation considered and can actually be used to label
different representations.

Tracing we learn that both objects are related through

C2(R) dR = IR dG (3.124)

When considering the adjoint representation of the group, its dimension
coincides with the one of the group, dR = dG, so that

C2(G) ≡ Iad (3.125)
In the particular case of G = SU(2), with generators in the fundamental
representation

Ta(F ) ≡ σa
2 , (3.126)

then IF = 1/2, C2(F ) = 3/2 y C2(G) = 2.
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3.2.1 Yang-Mills action

Staring at the transformation (3.118) it is plain that an invariant action for
the Yang-Mills gauge fields would be

SYM ≡ −
1

4IRg2 tr

∫
d4x Fµν(A)Fµν(A) (3.127)

so that, independently of the fermion representation

SYM = − 1
4g2 tr

∫
d4x δabFaµν(A)Fµνb (A) (3.128)

3.2.2 Ghosts.

The functional integration over all gauge fields is a redundant one because
W and its gauge transformW g represent the same physical state ∀g(x) ∈ G.

One possibility is to choose a gauge. This is nothing else than a repre-
sentative for each gauge equivalence class, where

A ∼ A′ ⇔ ∃g ∈ G,Ag = A′ (3.129)

A good gauge condition
F (A) = 0 (3.130)

is supposed to intersect every orbit once and only once.
Faddeev and Popov, proved that the integral of a gauge invariant func-

tional f(A) = f(Ag) is given by∫
DA f(A) =

∫
Dg

∫
DA det

∣∣∣∣∣ δFδAµDµ

∣∣∣∣∣ δ(F ) f(A) (3.131)

Here
Dg ≡

∏
x

dµ(g(x)) (3.132)

Let us prove this formally. Define M(A) from

M(A)
∫
Dg δ(F (Ag)) = 1 (3.133)

The integration measure over a compact Lie group is well known to be given
by a function of the group parameters, ω ≡ (ω1 . . . ωn),

dµ(g) ≡ e(ω) dω1 ∧ dω2 ∧ . . . ∧ dωn. (3.134)

We need now to generalize the well-known formula that states that

δ (f(x)) =
∑
i

1
|f ′(xi)|

δ(x− xi) (3.135)
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where the sum runs over all zeros of the function

f(xi) = 0 (3.136)

Working to linear order, the gauge transformation means that

F (Agµ(x)) = F (Aµ(x)) +
∫
dny

δF (Aµ(x))
δAλ(y) δAλ(y) =

= F (Aµ(x)) +
∫
dny

δF (Aµ(x))
δAλ(y) Dλω(y) (3.137)

which means that

δ(F (Aµ(x))) = 1
det

∣∣∣ δF (Aµ(x))
δAµ

Dµ
∣∣∣δ(ω − ω̄) (3.138)

where the parameters ω̄(x) are defined as

F
(
Ag(ω̄(x))

)
= 0 (3.139)

therefore the Faddev-Popov determinant is a functional one defined by

M(A) = det
∣∣∣∣δF (Aµ(x))

δAλ(y) Dλ

∣∣∣∣
ω=ω̄

(3.140)

It is easy to show that this object is gauge invariant

M(Ag) = M(A) (3.141)

The reason is that the measure of integration over a compact group is right
as well as left invariant

Dg = D (hg) = D (gh) (3.142)

We can then insert 1 in the desired integral∫
DA f(A) =

∫
DA f(A) M(A)

∫
Dg δ(F (Ag)) =

=
∫
Dg

∫
DAf(A)M(A)δ(F (Ag)) =

=
∫
Dg

∫
DA det

∣∣∣∣∣ δFδAµDµ

∣∣∣∣∣ δ(F ) f(A) (3.143)

where in the last line we have redefined

Ag ≡ B (3.144)
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and we have postulated that the functional measure for integration over
gauge fields is gauge invariant

D A = D Ag (3.145)

Now the integrand is independent of g, so the integration over the gauge
group is just a divergent consnat, and we define the physical integration
dividing by this constant as∫

DA f(A)|physical ≡
∫
DA det

∣∣∣∣∣ δFδAµDµ

∣∣∣∣∣ δ(F ) f(A) (3.146)

It has proven convenient to introduce some fermionic ghost fields, ca and c̄a
to functionally represent the Faddeev-Popov determinant. Actually, this is
the precise definition of what is meant by determinant in the present context.
It could seem at first sight that this definition is a little bit circular, but those
determinants can be defined in a quite satisfactory way using heat kernel
techniques.

det
∣∣∣∣∣ δFδAµDµ

∣∣∣∣∣ =
∫
DcDc̄e

−i
∫
d4x c̄a

(
δF
δAµ

Dµ
)
ab

cb

(3.147)

The net outcome of this analysis has been the need to add to the gauge
lagrangian a ghostly piece, given by

Lgh ≡ −i
∫
d4x c̄a

(
δF

δAµ
Dµ

)
ab

cb (3.148)

Ghosts play an important part in gauge computations to one loop and
beyond. They are also essential in ensuring unitarity and independence of
the gauge fixing condition. Nevertheless, it is plain that there are no ghosts
in external lines of the S-matrix; that is ghosts do not appear as asymptotic
states.

We have still to take into account the gauge fixing condition. There is a
trick to exponentiate the said gauge fixing condition as well. In order to do
that, generalize the gauge condition to

F (A) = a(x) (3.149)

In the functional integral now appears a term

δ (F − a) (3.150)

Given the fact that the result must be independent of the value of a, it
is possible to integrate over a with a factor

e−
i

4α tr
∫
a(x)2dx (3.151)
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this will chance the global normalization of the partition function, which
is at any rate out of control and irrelevant for the computation of Green’s
functions. This implies a modification in the action

Sgf = − i

4α

∫
d4xF 2

a (3.152)

Let us now concentrate in the most popular of all gauge fixings, namely

Fa ≡ ∂µAµa (3.153)

The full gauge lagrangian reads

L = −1
4(∂µAaν − ∂νAaν + gfabcA

b
µA

c
ν)2 − 1

4α(∂µAµa)2 +

+c̄a ∂µ
(
∂µ + fabc A

b
µ

)
cc (3.154)

Let us now recall the Feynman rules

• In order to determine the gauge boson propagator, consider the full
quadratic part

Lgauge = 1
2A

a
µ

(
�ηµν −

(
1− 1

2α

)
∂µ∂ν

)
Aaν (3.155)

Then the propagator in momentum space is

− iδab
[

ηµν
k2 + iε

−
(

1− 1
2α

)
kµkν

(k2 + iε)2

]
(3.156)

• The ghost propagator

iδab
k2 + iε

(3.157)

• The three gauge boson coupling is momentum-dependent and stems
from

L3 = −g2fabc∂µA
a
νA

µ
bA

ν
c ≡

1
3!V

µνρ
abc (p, q, k) AaµAνbAρc (3.158)

It is necessary to antisymmetrize in color indices

L3 = −g2fabc
1
6
(
∂µA

a
νA

µ
bA

ν
c + ∂µA

c
νA

µ
aA

ν
b + ∂µA

b
νA

µ
cA

ν
a−

∂µA
a
νA

µ
cA

ν
b − ∂µAcνA

µ
bA

ν
a − ∂µAbνAµaW ν

c

)
(3.159)
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This yields the vertex

−gfabc
(
ηµν (q − p)ρ + ηνρ (k − q)µ + ηρµ (p− k)ν

)
=

−gfa1a2a3 (ηµ1µ2 (p1 − p2)µ3 + ηµ2µ3 (p2 − p3)µ1 + ηµ3µ1 (p3 − p1)µ2)

Where all three momenta, p1, p2, p3 are flowing into the vertex. The
vertex written in this form is invariant under any relabelling of the
vertices.

• The four gauge boson vertex stems from the term

L4 = g2fabc A
b
µ A

c
ν fauv A

µ
u A

ν
v (3.160)

It is compulsory to symmetrize in all pairs of indices (µa),(νb),(ρc)
and (σd)

1
4! V

µνρσ
abcd Aaµ A

b
ν A

c
ρ A

d
σ (3.161)

Eventually the correct Feynman rule for the vertex is obtained

−ig2
{
feabfecd (ηµρηνσ − ηµσηνρ) + fecafedb (ηµνηρσ − ηµσηρν) +

+feadfecb (ηµρησν − ηµνηρσ)
}

(3.162)

• The gluon-ghost vertex is given by

Lgff = c̄a∂µ
(
fabdA

b
µc
d
)

(3.163)

The Feynman rule reads
gfabc pµ (3.164)

(where p is the antighost momentum flowing into the vertex)

• The gauge boson-fermion-fermion coupling is

Lint = ψ̄Ai A
a
µγ

µ (T a)AB ψB (3.165)

where A,B . . . are flavor indices and (T a)AB yield the gauge algebra
in some representation. The Feynman rule is

ig(γ)µαβ T
a
AB (3.166)
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3.3 One loop structure of gauge theories.

The loop order of a diagram stands for the number of independent integra-
tions over momenta. Those diagrams in which all momenta are fixed by the
delta functions, so that there are no momenta integrations left, are called
tree diagrams. The loop expansion can also be understood as an expansion
of the path integral in powers of ~. Were we to reinstate ~ 6= 0 for a moment,
then propagators get a factor of ~ whereas vertices get each a factor of ~−1;
altogether each amputated 1PI graph gets a factor of

~I−V (3.167)

where I is the number of internal lines and V is the number of vertices. On
the other hand

L = I − V + 1 (3.168)

We learn that the power of each diagram is just

~L−1 (3.169)

The tree diagrams are of order 1
~ ; they are determined by the saddle point

expansion and thus reproduce the perturbative classical physics.
Let us analyze the structure of the gauge theory to the lowest nontrivial

order that is, one loop. The starting point will be

Leff ≡ ψ̄R
(
i /D − gRµε /AR.TF −mR

)
ψR −

1
4F

2
µν(AR, gRµε)−

1
2αR

(∂AR)2 −

−c̄aR (∂µ∂µδac − gRfabc∂µAµR c) c
b
R (3.170)

3.3.1 Renormalized lagrangian

The full renormalized lagrangian reads

LR(eR,mR, λR) = ψ̄R
(
i /D − eRµε /AR −mR

)
ψR −

1
4F

R
µνF

µν
R

− 1
2αR

(∂AR)2 + ψ̄Ri /DψR(Zψ − 1)− ψ̄ReRµε /ARψR(Z1 − 1)

−mRψ̄RψR(ZψZm − 1)− 1
4F

R
µνF

µν
R (ZA − 1) (3.171)

Soon to be studied Ward identities guarantee that the renormalized la-
grangian has the same gauge symmetry that the bare lagrangian.

Gluon self-energy

• This is the first diagram in which there is an important difference with
the abelian case. There are three extra diagrams to begin with. The
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first is the one that includes two three-gluon couplings (with flowing
momenta from the left, so that for the first vertex

p1 = q

p2 = −k
p3 = k − q (3.172)

whereas for the second one

p1 = −q
p2 = k

p3 = k − q (3.173)

The diagram reads

−iΠ1
αβ,ab = 1

2 ig
2µ2εfacdfdcb

∫
dnk

(2π)nNαβ(q, k) 1
k2 + iε

1
(q − k)2 + iε

(3.174)

The numerator is given by

Nαβ(q, k) = kαkβ(4n− 6) + qαqβ(n− 6) + (qαkβ + kαqβ)(−2n+ 3) +
(2k2 − 2qk + 5q2)ηαβ

The divergent part is computed by techniques by now standard

− iΠ1,div
αβ,ab = α

8πδabN
(19

6 q
2ηαβ −

11
3 qαqβ

) 2
4− n (3.175)

Hum! It does not seem transverse!

• The second diagram corresponds to the four-gluon vertex (a tadpole
of sorts)

− iΠ2
αβ,ab = δabV

4
αβg

2µ2ε
∫
dnk

1
k2 + iε

= 0 (3.176)

here V 4 is the complicated tensor that corresponds to the four-gluon
vertex. The results holds because in dimensional regularization all
integrals without a scale yield zero.

• Finally, there is the ghost loop

−iΠ3
αβ,ab = ig2Nδab

∫
dnk

(2π)n
1

k2 + iε

1
(q − k)2 + iε

(−kαqβ + kαkβ)
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Its divergent part is

− iΠ3,div
αβ,ab = α

8πNδab
(1

3qαqβ + 1
6q

2ηαβ

) 2
4− n (3.177)

Doing now some numerics
19
6 + 1

6 = 10
3 = −11

3 + 1
3 (3.178)

which is already transverse. To this result must be added the abelian
diagram already computed, which was proportional to the Dynkin
index TF . The end result then reads

− iΠdiv
αβ,ab = α

3πδab
(5

4N − T (F )nf
)(
−qαqβ + q2ηαβ

) 2
4− n (3.179)

which is indeed transverse as it should.

The full counterterm then reads

− 1
4
(
∂αA

R
β,a − ∂βARα,a

)2
(Z1

A − 1) (3.180)

with
Z1
A = 1 + α

3π

(5
4N − T (F )nf

) 2
4− n (3.181)

It is worth remarking that the gauge fixing is not renormalized to one loop
order

ZλZA = 1 (3.182)

Fermion-fermion-gluon vertex

The non-abelian correction stems from a trilinear vertex and two Yukawa
ones. The trilinear vertex has

p1 ≡ q1 + q2

p2 = −q1 − k
p3 ≡ k − q2 (3.183)

The color factor is given by

fabc
(
T bT c

)
ij

= 1
2fabc [Tb, Tc] = i

2fabcfbcdTd = − i2C(A)δadTd = − i2C(A)Ta
(3.184)

and the diagram itself reads

igΓµ(p2) ≡ (ig)2g

∫
dnl

(2π)nγ
ρ i/k

k2 + i0γ
ν −i

(q1 + k)2 + i0
−i

(q2 − k)2 + i0N
µνρ (k, q1, q2)

(3.185)
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where the numerator is given by

Nµνρ (k, q1, q2) ≡ ηµν (2q1 + q2 + k)ρ+ηνρ (−q1 + q2 − 2k)µ+ηρµ (k − 2q2 − q1)ν
(3.186)

In order to capture the pole it is enough to put all external momenta to
zero. The dependence on those external momenta can then be restored by
dimensional analysis.

Γµ(0) = g2
∫

dnk

(2π)n
γρ/kγν

k6 (ηµνkρ − 2ηνρkµ + ηρµkν) =

= g2
∫

dnk

(2π)n
1
k6 (/k/kγµ − 2γρ/kγρkµ − γµ/k/k) =

= g2
∫

dnk

(2π)n
1
k6

(
2k2γµ − 2(2− n)/kkµ

)
(3.187)

The integral is standard, and its divergent piece is:

Γ2,pole
µ,a = −gTFa γµ

3α
8πN

2
4− n (3.188)

The total counterterm including both the abelian and non-abelian parts
reads then

Z1 − 1 = − α

4π (N + C2(F )) 2
4− n (3.189)

In principle, the QCD renormalized lagrangian has many independent ren-
prmalization constants, to wit

LR(g,m, λ) = Lef (g,m, λ) + ψ̄Ri /Dψ(Zψ − 1)− gµεψ̄ /AaTFa ψ(Z1 − 1)−

mψ̄ψ(ZmZψ − 1)− 1
4(∂αAβ,a − ∂βAα,a)2(ZA − 1) +

+1
2gµ

εfabcA
α
bA

β
c (∂αAβ,a − ∂βAα,a)(Z ′1 − 1)

−1
4g

2µ2εfebcfevkA
α
bA

β
cAα,vAβ,k(Z4 − 1)

−c̄a∂2ca(Zc − 1) + gµεfabcc̄a∂µA
µ
b cc(Z

′′
1 − 1)

Ward identities suggest a scheme such that

Z1 = ZψZ
1/2
A Zg

Z ′1 = Z
3/2
A Zg

Z ′′1 = ZcZ
1/2
A Zg

Z4 = Z2
AZ

2
g

which is possible only if

Z
1
2
AZg = Z1

Zψ
= Z ′1
ZA

= Z ′′

Zc
=
(
Z4
ZA

) 1
2

(3.190)
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which is only possible thanks to gauge symmetry. Thse relations constitute
in fact another way of writing down the Ward (Slavnov-Taylor) identities

Using all previous results we can derive the renormalization constant for
the gauge coupling

Zg = Z1
Zψ

Z
−1/2
A = 1− α

4π

(11
6 N −

2
3T (F )nf

) 2
4− n (3.191)

It is not difficult to check it by computing other diagrams.
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4

The renormalization group.

Let us consider a generic scalar field theory. (The spin does not play an
important role, so that our results will be generic.)

S =
∫
d4x

(
1
2∂µφ∂

µφ− m2

2 φ2 − g

4!φ
4 + g1φ

6 + . . .

)
(4.1)

If we perform a scale transformation

x ≡ λx′ (4.2)

The action transform as

S =
∫
d4x′ λ4

(
1
2λ
−2∂µ′φ∂

µ′φ− m2

2 φ2 − g

4!φ
4 + g1φ

6 + . . .

)
(4.3)

If we want this theory to have the same propagator as before, we have to
rescale

φ = λ−1φ′ (4.4)

In terms of the new fields

S =
∫
d4x′

(
1
2∂µ

′φ′∂µ
′
φ′ − m2λ2

2 φ2 − g

4!
(
φ′
)4 + g1λ

−2 (φ′)6 + . . .

)
(4.5)

In the vicinity of the gaussian fixed point, that is

S =
∫
d4x′

(1
2∂µ

′φ′∂µ
′
φ′
)

(4.6)

when we go towards the infrared (λ→∞) we see that

m′ →∞
g1 → 0
g → g (4.7)

61
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Operators like m2φ2 of dimension less than four are called relevant. Oper-
ators like g2φ

6 of scaling dimension bigger than four are called irrelevant.
and operators like λφ4 of scaling dimension exactly equal to four are called
marginal.

Any physical observable should be independent of the scale µ, which has
been introduced as an intermediate step in the regularization and is thus
completely arbitrary. Observables then obey

0 = d

dµ
S [pi, g0,m0]

∣∣∣∣
g0,m0

= d

dµ
S [pi, gR,mR, µ]

∣∣∣∣
g0,m0

=

=
[

∂

∂ log µ + β(gR,mR) ∂

∂gR

∣∣∣∣
µ,mR

− γm(gR,mR) ∂

log mR

∣∣∣∣
gR,µ

]
S [pi, gR,mR, µ]

This is dubbed the renormalization group equation (RGE). We have defined

β(gR,mR) ≡ µ
∂

∂µ
gR(µ)

∣∣∣∣
g0,m0

γm(gr,mR) ≡ − µ

mR

∂

∂µ
mR(µ)

∣∣∣∣
g0,m0

(4.8)

Since the function S [pi, gR,mR, µ] is analytic at n = 4, it is natural to expect
that both functions β and γm are analytic as well. In order to compute these
universal functions, and remembering that

m0 = Z
1
2
m mR (4.9)

and
g0 = Zg gR µ

4−n
2 (4.10)

β(gR,mR) ≡ g0µ
∂

∂µ

1
Zgµ

4−n
2

∣∣∣∣∣
g0,m0

γm(gr,mR) ≡ −m0
mR

µ
∂

∂µ
Z
− 1

2
m

∣∣∣∣
g0,m0

(4.11)

All this is much simpler in a mass independent renormalization scheme,
where the renormalization constants are independent of mR and µ. We
have already discussed that MS (or MS) are such a schemes.

It is plain that

µ
∂

∂µ
g0 = 0 = µ

4−n
2

(4− n
2 ZggR + µ

∂

∂µ
(ZggR)

)
(4.12)

Now
gR Zg = gR +

∞∑
n=1

an(gR)
( 2

4− n

)n
(4.13)
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Let us make the Laurent-type ansatz (we shall see later that it is actually
necessary)

β(gR) ≡ β1(gR) (4− n) + β0(gR) + . . . (4.14)

We get

4− n
2

(
gR + a1(gR) 2

4− n + . . .

)
+ β1(gR) (4− n) + β0(gR) + . . .+

+da1(gR)
dgR

{β1(gR) (4− n) + β0(gR)} 2
4− n + . . . = 0 (4.15)

Terms of O(n− 4) (which are now seen to be neccessary) yield

gR
2 + β1(gR) = 0 (4.16)

and terms of O(1) imply

β(gR, n− 4) = −gR
4− n

2 − a1(gR) + gR
da1
dgR

(4.17)

There are recursion relations worked out by ’t Hooft to compute all an, n > 1
from the knowledge of a1.

For the theory φ4
4 the result is

β = 3 λ2

(4π)2 (4.18)

In QED

β = e3

12π2 (4.19)

Whereas for the (also renormalizable) six-dimensional theory φ3
6

β = −3 λ3

4(4π)3 (4.20)

For a nonabelian SU(N) gauge theory with nf fermion flavors in the fun-
damental representation,

β = − g3

(4π)2

(11
3 N −

4
3nfT (F )

)
(4.21)

Now, for a general beta function to assert

β ≡ bλ3 (4.22)

means that
dλ

λ3 = b d log µ (4.23)
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Integrating with the boundary conditions that

λ = λi (4.24)

when
µ = µi (4.25)

yields the dependence of the coupling constant on the RG scale, µ

λ2 = λ2
i

1− bλ2
i log µ

µi

(4.26)

When b is positive (like in φ4
4 or QED), there is a Landau pole at

µ = Λ ≡ µi e
1

b λ2
i (4.27)

Trading µi by the scale Λ

λ2 = λ2
i

bλ2
i log Λ

µ

(4.28)

Those theories are infrared safe, but they do not enjoy an UV consistent
limit.

When b < 0 (this what happens for φ3
6 and also for ordinary gauge

theories) there is a pole at

µ = Λ ≡ µi e
− 1
|b| λ2

i (4.29)

The paradigm of these theories is QCD. They are asymptotically free but
infrared slave The Landau pole is now located in the infrared region. Its
scale is also denoted by Λ and the running coupling reads

g2(µ) = g2
i

2bg2
i log µ

Λ
(4.30)

Λ is obviously renormalization group invariant and experimentally its value
is

Λ ∼ 217MeV (4.31)

and it signals the scale at which QCD starts being strongly coupled.
Green functions also obey some different renormalization group equa-

tions, because they are multiplicatively renormalized. The starting point is
that

µ
∂

∂µ
Γ0 = 0 (4.32)

Then{
µ

∂

∂µ

∣∣∣∣
gR,mR

+β(gR) ∂

∂gR

∣∣∣∣
µ,mR

−γm(gR) ∂

∂mR

∣∣∣∣
gRµ
−nγφ(gR)

}
ΓR (pi, gR,mR, µ) = 0
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where we have defined the anomalous dimension

γφ(gR) ≡ 1
2 µ

∂

∂µ
log Zφ = 1

2 β(gR) ∂

∂gR
log Zφ (4.33)

For the theory φ3
6

γφ(g) = 1
12

λ3

(4π)3 + 13
432

(
λ2

(4π)3

)2

(4.34)

The RE equations for 1PI in gauge theories are best writing by first defining
the operator

D ≡ µ ∂

∂µ
+β(gR) ∂

∂gR
−γm(gR)mR

∂

∂mR
+δ(gR, λR) ∂

∂αR
−nAγA−nfγψ−ncγc

(4.35)
The 1PI equation itself reads

D ΓR,n(gR,mR, ζR) = 0 (4.36)

The number of external gauge fields is (nA), external fermions by(nf ) and
ghosts (nc), and their corresponding anomalous dimensions γA,γf ,γc.

The generic definition of the anomalous dimension reads

γ ≡ 1
2µ

∂

∂µ
log Z (4.37)

These objects are in general gauge dependent.
Using the identity

ZλZA = 1 (4.38)

δ(gR, αR) ≡ µ ∂

∂µ
αR = −αRµ

∂

∂µ
log ZA = −2αRγA (4.39)
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Figure 4.1: Gluon self-energy.
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Figure 4.2: Gauge-fermion vertex.
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Figure 4.3: More diagrams.
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Two loops in φ3
6.

5.1 One loop
We have alrady seen that the six-dimensional theory φ3

6 is renormalizable.
The action reads

S =
∫
d6x

(
1
2(∂µφ)2 − m2

2 φ2 − g

6φ
3
)

(5.1)

In the figure we have drawn the divergent graphs to one loop order. The
first diagram gives

Γa(p2,m2) = g2

2 (4π)−
n
2 Γ(2−n/2)

∫ 1

0
dx
[
m2 − x(1− x)p2 − iε

]n/2−2
(5.2)

The pole at n=6 is given by

− g2

2
1

(4π)3

(
2m2

6− n −
p2

3(6− n)

)
(5.3)

The counterterm lagrangian reads

∆L = 1
2(∂µφ)2 (Zφ − 1)− m2

2 φ2 (ZφZm − 1)− g

6
(
Z

3/2
φ Zg − 1

)
φ3 (5.4)

Then in MS
Zφ − 1 = g2

(4π)3

(
− 1

12

) 2
6− n (5.5)

The mass counterterm is

δm2 ≡ m2 (ZφZm − 1) = g2

(4π)3

(
−1

2

) 2
6− n (5.6)

Taking into account that the rules of the game are such that to one loop
order

(ZφZm − 1) = (Zφ − 1) (Zm − 1) (5.7)
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we learn that
(Zm − 1) = g2

(4π)3

(
− 5

12

) 2
6− n (5.8)

This means in particular, that the mass is multiplicatively renormalized

m0 = Z1/2
m m (5.9)

This stands in contradistinction of the φ3
4 theory, inwhich the same renor-

malizartion is additive
m2

0 = m2 + δm2 (5.10)

The triangle diagram yields

Γb(p1, p2, p3) = −i(−ig)3

(2π)n
∫
dnk

i

k2 −m2 + iε

i

(p1 + k)2 −m2 + iε

i

(p2 + k)2 −m2 + iε
(5.11)

The divergent part reads

− g3

2(4π)3

( 2
n− 6 + finite

)
(5.12)

Then
g
(
Z

3/2
φ Zg − 1

)
= −g

3

2
1

(4π)3
2

n− 6 (5.13)

which means
Zg = −g

2

2
1

(4π)3
3
8

2
n− 6 (5.14)

5.2 Two loops.

The contribution to Γ2 from the first graph, reads

−iΓ1 = − i2(−ig)4
∫

dnk

(2π)n
i

(p− k)2 −m2 + iε

i2

(k2 −m2 + iε)2 ×

×
∫

dnq

(2π)n
i

q2 −m2 + iε

i

(k − q)2 −m2 + iε
(5.15)

For n < 4 all integrals are convergent, and we may begin with whichever.
Doing the integral over dq first

−iΓ1 = i

2g
4Γ(2− n/2)

∫
dnk

(2π)n
1

(p− k)2 −m2 + iε

1
(k2 −m2 + iε)2 ×

×
∫ 1

0
dx [x (1− x)]n/2−2

[
m2

x(1− x) − k
2 − iε

]n/2−2

(5.16)
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Figure 5.1: Divergences in φ3
6.



72 5. TWO LOOPS IN φ3
6.

Figure 5.2: Two loop divergences in φ3
6.
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We need the general formula for the Feynman parameters
N∏
i=1

1
Aηi

= 1∏N
i=1 Γ(ηi)

× Γ
(

N∑
i=1

ηi

)
×

×
∫ 1

0
dx1 x

η1−1
1 . . . dxN xηN−1

N × 1(∑N
i=1 xiAi

)∑N

i=1 ηi
× δ

(
N∑
i=1

xi − 1
)

This is valid for arbitrary values of the parameters ηi.
We then get

−iΓ1 = g4 (4πµ2)6−n

2(4π)6 Γ (5− n)
∫ 1

0
dx [x(1− x)]n/2−2 ×∫ 1

0
dx1

∫ 1−x1

0
dx2 x

1−n/2
2 (1− x1 − x2)

[
m2

(
1− x2 + x2

x(1− x)

)
− p2x1(1− x1)− iε

]n−5
(5.17)

It is worth noticing that the factor x1−n/2
2 is defined only for n < 4. We

need to make an analytic continuation in the integral over dx2. We do that
by making two integration by parts. The result is

−iΓ1 = g4 (4πµ2)6−n

2(4π)6 Γ (5− n)
∫ 1

0
dx [x(1− x)]n/2−2 ×∫ 1

0
dx1

2
6− n

2
4− n

{∫ 1−x1

0
dx2 x

3−n/2
2

d2

dx2
2

[
(1− x1 − x2) f(x, x1, x2)n−5

]
+

+(1− x1)
6−n

2 f(x, x1, (1− x1))n−5
}

(5.18)

where

f(x, x1, x2) ≡ −p2x1(1− x1) +m2
{

1− x2

(
1− 1

x(1− x)

)}
(5.19)

There are single and double poles at n=6

pole part = − 1
48

g4

(4π)6
4

(6− n)2

(
p2

3 + 3m2
)
−

− 1
12

2
6− n m2 g4

(4π)6

∫ 1

0
dz

{
g(z)− 5(1− z)

}
log m2 g(z)

4πµ2 +

+ 1
12

2
6− n

g4

(4π)6 p2
(
−23

72 + 1
6γE

)
+ 1

12
2

6− n m2 g4

(4π)6

(9
8 + 3

2γE
)

and
g(z) ≡ 1− z(1− z) p2

m2 (5.20)

Please note that the pole terms with a log coefficient cannot be cancelled
by a local counterterm, so that they have to cancel by themselves.
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The second diagram in which we include the one loop counterterm as a
vertex yields

−iΓ2 = −i(−ig2)µ6−n
∫

dnk

(2π)n
i2

(k2 −m2 + iε)2
i

(p− k)2 −m2 + iε
×

× i

2 g2 1
(4π)3

2
6− n

(
m2 − k2

6

)
(5.21)

Using the trick

m2 − k2

6 = 5
6m

2 − k2 −m2

6 (5.22)

we get

−iΓ2 = 1
2

2
6− n

g4

(4π)6 m2
{5

6 Γ
(6− n

2

) ∫ 1

0
dz (1− z)

[
m2g(z)
4πµ2

]n−6
2

+

+1
6 Γ

(4− n
2

) ∫ 1

0
dz g(z)

[
m2g(z)
4πµ2

]n−6
2 }

(5.23)

The pole terms are easily found to be

pole terms = 1
24

4
(6− n)2

g4

(4π)6

(
p2

3 + 3m2
)

+

+ 1
12

2
6− n

g4

(4π)6 m2
∫ 1

0
dz (g(z)− 5(1− z)) log m2g(z)

4πµ2 +

+ 1
72

2
6− n

g4

(4π)6 p
2(1− γE)− 1

12
2

6− n
g4

(4π)6m
2
(

1 + 3
2γE

)
(5.24)

After taking care of the other diagrans, the full pole term reads

Γpole
2 = g4

(4π)6 p
2
{
− 5

144
4

(6− n)2 + 13
864

2
6− n

}
+ g4

(4π)6m
2
{ 5

16
4

(6− n)2−
23
96

2
6− n

}
(5.25)

The two loop renormalization constants then read [9]

Zφ = g4

(4π)6

{ 5
144

4
(6− n)2 −

13
864

2
6− n

}
(Zφ + Zm) = g4

(4π)6

{ 5
16

4
(6− n)2 −

23
96

2
6− n

}
δg = g4

(4π)6 g

{ 5
16

4
(6− n)2 −

23
96

2
6− n

}
(5.26)
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Spontaneously broken
symmetries.

6.1 Global (rigid) symmetries
Consider a charged scalar field transforming under g ∈ U(1) as

φ′ ≡ gφ = eiαφ (6.1)

with potential energy
V (φ) = λ

4!(|φ|
2 − v2)2 (6.2)

Then the vacuum of the theory is not the Fock vacuum

ak|0〉 = 0 (6.3)

because in Fock’s vacuum
〈0|φ|0〉 = 0 (6.4)

whereas the fundamental state of the potential (6.2)

〈vac(θ)|φ|vac(θ)〉 = veiθ (6.5)

Under group transformations

〈vac(θ)|eiαφ|vac(θ)〉 = vei(θ+α) = 〈vac(θ + α)|φ|vac(θ + α)〉 (6.6)

that is
g|vac〉 6= |vac〉 (6.7)

which means that the symmetry is spontaneously broken. When there is an
infinite number of degrees of freedom all thse vacua are orthononal to each
other [?].

〈vac1|vac2〉 ≡ 〈v1|v2〉 == 0 (6.8)
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Let us now change variables to the fields ρ and θ such defined

φ = (ρ+ v)eiθ (6.9)

the lagrangian reads

L = 1
2∂µφ

∗∂µφ− λ

4!(|φ|
2 − v2)2 =

1
2(∂µρ)2 + 1

2(ρ+ v)2(∂µθ)2 − λ

4!((ρ+ v)2 − v2)2 (6.10)

that is, the field ρ has got a mass

m2 = λ

3 v
2 (6.11)

whereas the field θ remains massless.
This is the simplest instance of Goldstone’s theorem.
Let us prove it in general. Consider a theory invariant under

δφi = iωa(T a)jiφj (6.12)

The matrices T a generate a representation R of a Lie algebra G.
In the preceding example T = 1. An invariant potential obeys

V (gφ) = V (φ) (6.13)

with g ≡ eiωaTa .
To be specific, the condition reads

∑
ij

∂V

∂φi
(T a)ji φj = 0 (6.14)

Deriving once more

∑
ij

∂2V

∂φi∂φk
(T a)ji φj + ∂V

∂φi
(T a)ki = 0 (6.15)

and evaluating it at the stationary points vj ≡ 〈φ〉j reads

Mik (T a)ji vj = 0 (6.16)

where the mass matrix is defined as

Mik ≡
∂2V

∂φi∂φk

∣∣∣∣
φ=〈φ〉

(6.17)

On the other hand, we know that Mik = ∆−1
ik (0).
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The subgroup H ⊂ G leaving the vacuum invariant is characterized by
the condition

(Ha)ji vj = 0 (6.18)

Those generators correspond to the trivial zero eigenvalue of the matrix
M = ∆−1. (In our example this subgroup was just the identity H = 0).

To avery generator of the group G which is not included in H, say Ka,
it corresponds a nontrivial eigenvector with zero eingenvalue of the matrix

∆−1
kl (0) (6.19)

Then the theory contains dG−dH massless fields, which are called Gold-
stone bosons.

In n = 2 dimensions there are no Goldstone bosons because the corre-
sponding propagator violates positivity [?]. This fact was first proved by
Coleman.

6.2 Spontaneously broken gauge symmetries.
Let is first consider the Higgs model, which is a simple extension of the
model of the previous chapter. The lagrangian reads

L = 1
2 |Dµφ|2 −

1
4FµνF

µν − λ

4!(|φ|
2 − v2)2 (6.20)

where the covariant derivative is given by

Dµφ ≡ ∂µφ+ iqAµφ. (6.21)

The gauge symmetry is
δφ = iεqφ. (6.22)

Introducing again the polar variables

Dµφ = (∂µρ+ i (ρ+ v) ∂µθ + iq (ρ+ v)Aµ) eiθ (6.23)

leads to

L = −1
4FαβF

αβ + 1
2(∂µρ)2 + 1

2(ρ+ v)2(∂µθ + qAµ)2 − V (ρ+ v) (6.24)

Redefining now the gauge field

Wµ ≡ Aµ + 1
q
∂µθ (6.25)

which is equivalent to working in the gauge

θ = 0 (6.26)



78 6. SPONTANEOUSLY BROKEN SYMMETRIES.

the full lagrangian reads

L = −1
4Fαβ(W )2 + 1

2(∂µρ)2 + q2

2 (ρ+ a)2W 2
µ − V (ρ+ v) (6.27)

The Goldstone boson has disappeared and we have a massive vector boson
instead

m2(W ) = q2v2 (6.28)

In the general case we can always make a change of variables (using a
real field basis, which can always be done)

φ̃i ≡ gji (x)φj (6.29)

where the transformations gji (x) are so chosen that

φ̃i (Ka)ji vj = 0 (6.30)

In our example, and using real fields

φ ≡ φ1 + iφ2 (6.31)

the only generator of the algebra U(1) ∼ SO(2) reads

K =
(

0 1
−1 0

)
(6.32)

so that in the vacuum representative in which only the real part of the field
is nonvanishing 〈φ2〉 = 0, but 〈φ1〉 = v,

φ̃2 = 0 ≡ sin θ (6.33)

which is in our former notation precisely

θ = 0 (6.34)

This gauge completely eliminates Goldstone bosons. This is called the
unitarity gauge

In the general case, consider the kinetic energy piece

1
2
(
Dµφ̃i

)2
(6.35)

where the covariant derivative reads

Dµφ̃i ≡ ∂µφ̃i − iAaµ(T a)ji φ̃j (6.36)

Define now translated fields

φ̃i ≡ vi + σi (6.37)
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The gauge condition reads now

(vi + σi) Kij v
j = σiKijv

j = 0 (6.38)

(owing to antisymmetry). Expanding to quadratic order, the term mixing
σ with A vanishes owing to our gauge condition (6.30),

1
2
(
∂µσi − iAa(T a)ji (vj + σj)

)2
=

1
2

(
(∂µσi)2 − 2i∂µσiAaµ (T a)ji (vj + σj)−AaµAbµ(T a)ji (vj + σj)

(
T b
)k
i

(vk + σk)
)

Let us introduce the convenient notation

Hµ ≡ AaµHa

Kµ ≡ AaµKa (6.39)

The trilinear gauge scalar scalar vertex reads, owing to our gauge con-
dition

− 2i∂µσi (Hµ +Kµ)ji (vj + σj) = −2i∂µσi (Aµ)ij σj (6.40)

id est, the quadratic piece mixing A− σ has dissapeared.
The quartic coupling has the symbolic form

(Hµσ +Kµ (v + σ))i (Hµσ +Kµ (v + σ))i (6.41)

Only survive
(Hµσ) (Hµσ) (6.42)

and the mass term. The full quadratic piece then reads in this gauge

1
2 (∂µσi)2 − 1

2µ
2
abA

a
µA

bµ (6.43)

and the gauge fields mass matrix reads

µ2
ab ≡ (Ka)ijvj(Kb)ilvl (6.44)

There are dH massless gauge bosons and dG − dH massive gauge bosons.
This mechanism wears the name of Higgs mechanism

The gauge fields kinetic energy reads

Mab
µν = −δab (ηµν�− ∂µ∂ν)− (µ2)abηµν (6.45)

In order to find the propagator of the gauge fields we have to solve(
δab
(
k2ηµν − kµkν

)
−
(
µ2
)
ab
ηµν
) (

∆bc
)µν

(k) = δcaδ
λ
µ (6.46)

Let us make the ansatz

∆ ≡ Aabηµν +Babkµkν (6.47)
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so that

(k2 − µ2) A = 1
(k2 − µ2) B −A−B k2 = 0 (6.48)

Then
∆µν
bc (k) =

(
k2 − µ2

)−1

bd

(
ηνλδdc − (µ−2)dckνkλ

)
(6.49)

whose UV limit (|k| → ∞) is a constant, which spoils the power counting
necessary for renormalizability.

In order to renormalize the theory is better to work in another gauge,
discovered by ’t Hooft, where however the physical particle content is ob-
scure. The great advantage is that in this new gauge propagator decreases
at infinity as 1

k2 .
This has been reformulated much more clearly by Fujikawa, Lee y Sanda

(FLS) who introduced the so called ξ-renormalizable gauge which somewhat
interpolates between both gauges, ’t Hooft and unitarity.

The gauge fixing term reads as usual

Lgf = − 1
2ξFaF

a (6.50)

and is chosen in such a way that

Fa = ∂µA
µ
a − iξ(Ta)ijσivj (6.51)

Again, it cancels the gauge-scalar mixing
When ξ →∞ the unitarity gauge is recovered, whereas when ξ = 0 the

FLS gauge reduces to the one of Landau,

∂µA
µ
a = 0 (6.52)

Under a gauge transformation the gauge fixing gives

δFa = �εa − ifabc∂µ(εbAµc ) + ξ(Tav)iεb(Tbφ)i (6.53)

This means that the ghost lagrangian is given by

L(c, b) = ba
(
�ca − ifabc∂µ(cbAµc ) + ξ(Tav)icb(Tbφ)i

)
(6.54)

Putting together all the pieces, the full quadratic lagrangian then reads

L(2) = −1
4
∑
a

(∂µAaν − ∂νAaµ)2 − 1
2
∑
ab

µ2
abA

a
µA

µ
b −

1
2ξ
∑
a

(∂µAµa)2

1
2
∑
i

(∂µσi)2 − 1
2M

2
ijσiσj − ∂ba∂µca − ξ

∑
ab

µ2
abbacb
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where

µ2
ij =

∑
a

(Tav)i(Tav)j

M2
ij = Vij + ξ

2µ
2
ij

(6.55)

and
Vij ≡

∂2V

∂φi∂φj

∣∣∣∣
v

(6.56)

and γi the Yukawa coupling matrix.
That is, ghosts get gauge dependent masses

mgh =
√
ξmgauge (6.57)

In the unitarity gauge ξ →∞ what happens is that the Goldtone bosons
get so heavy that they decouple wheas the other bosonic mases remanin
finite.

Gauge propagators (with the same ansatz as before) have to obey

A = (k2 − µ2)−1(
k2 − (1− 1

ξ
)k2 − µ2

)
B = (1− 1

ξ
) A (6.58)

namely
∆ab
µν =

[ 1
k2 − µ2

(
ηµν − (1− ξ) kµkν

k2 − ξµ2

)]
ab

(6.59)

which has the good UV behavior except when ξ → ∞. In practice almost
always one works in Feynman gauge ξ = 1. The scalar propagator is to be
found from the ansatz

∆ = A δij +Bij (6.60)

and reads
∆ij =

[
1− ξµ2

k2 −m2 − 1
2ξµ

2

]
1

k2 −m2 (6.61)

It is possible to show that the non-physical ξ-dependent poles cancel between
the gauge and scalar pieces.

The ghost propagator, on the other hand, reads

∆ab =
[ 1
k2 + ξµ2

]
ab

(6.62)
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7

BRST

7.1 The adjoint representation
Let us work out in detail the consequences of the Jacobi identity for the Lie
algebra of a simple group. This states that for any three operators

[[Ta, Tb] , Tc] + [[Tb, Tc] , Ta] + [[Tc, Ta] , Tb] = 0 (7.1)

This implies
fabdfdce + fbcdfdae + fcadfdbe = 0 (7.2)

Let us define now the antisymetric hermitian dG × dG matrices

(T a)bc = − (T a)cb ≡ ifbac = (T c)ab =
(
T b
)
ca

(7.3)

Jacobi’s identity then can be read as

−
(
T bT c

)
ae

+ ifbcd
(
T d
)
ae

+
(
T cT b

)
ae

= 0 (7.4)

that is
[Tc, Tb] = ifcbd Td (7.5)

This is the dG-dimensional adjoint representation of the Lie algebra. Many
identities amongst structure constants are best understood in terms of the
adjoint repesentation. A more intrinsic definition is as follows. Given two
elements of the Lie algebra X,Y ∈ Lie(G) , we define an endomorphism of
L as

ad X(Y ) ≡ [X,Y ] ∈ L (7.6)
Given a normalized basis

X ≡ XaTa (7.7)
then one can define

ad X(Y ) ≡ Aab Y b T a (7.8)
where

Acd = ifcadX
a (7.9)
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7.2 Symmetries of the gauge fixed action
The gauge fixed action, in spite of not being gauge invariant, still enjoys
a symmetry, first uncovered by Becchi, Rouet y Stora, and independently,
Tyutin.

Let us begin by parametrizing gauge fiximg by auxiliary fields

Lgf ≡ Ba∂µA
µ
a + α

2BaB
a (7.10)

EM
αBa + ∂µA

µ
a = 0 (7.11)

so that
Lgf =

(
− 1
α

+ α

2
1
α2

)
(∂µAµa)2 = − 1

2α (∂µAµa)2 (7.12)

(α = 0 corresponds to the so-called Landau gauge). The ghost lagrangian
reads

Lgh ≡ −i∂µ ba(Dµc)a ≡ baMabc
b (7.13)

The fields ca = (ca)+ and ba = (ba)+ (this is the field formely denoted by c̄a;
we changed its name here for clarity) are independent hermitian fields, so
that hey are not related by charge conjugation. The BRST symmetry reads

sAaµ = (Dµc)a

sBa = 0
sca = −g2fabc c

bcc ≡ −i g2 T abc c
bcc

sba = −iBa (7.14)

The gauge action is invariant, because on physical fields this is just a
gauge transformation. On the gauge-fixing piece

sLgf = Ba∂
µ(Dµc)a (7.15)

The ghost variation

sLgh = ∂µB
a(Dµc)a + ∂µbas[(Dµc)a] (7.16)

The BRST variation of the ghost covariant derivative vanishes

s[(Dµc)a] = s
(
∂µc

a + gfauvA
u
µc
v) = s

(
∂µc

a + igT auv A
u
µc
v) =

−ig2∂µ(T auv cucv) + igT abc (Dµc)b cc + igT abc A
b
µ

(
−g2

)
iT cuv c

ucv =

= −ig2∂µ(T auv cucv) + igT abc ∂µ c
bcc −

−g2T abcT
b
uvA

u
µc
vcc + g2

2 T
a
bc A

b
µT

c
uv c

ucv (7.17)
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We have represented here the hermitian matrices in the adjoint representa-
tion by

fabc ≡ iT abc = iT bca = iT cab (7.18)
Lert us first study the terms containing derivatives

− ig2 T
a
bc

(
∂µ(cbcc)− 2∂µcbcc

)
= − ig2 T

a
bc

(
∂µ(cbcc)− ∂µcbcc + ∂µc

ccb
)

= 0

The terms without derivatives read
g2

2 Abµc
ucv (T abcT cuv − T acvT cbu + T acuT

c
bv) (7.19)

Now the term into parenthesis can be written as

− (T aT u)bv + (T uT a)bv − ifuacT
c
bv = 0 (7.20)

Then the variation of the ghost lagrangian plus the variation of the gauge
fixing term yields a total derivative, letting the action invariant.

This is a nilpotent symmetry

s2
BRST = 0 (7.21)

The only non-obvious piece is

s2ca = s

(
− ig2 T abcc

bcc
)

= −g
2

4 T abc

(
T buvc

ucvcc + cbT cuvc
ucv
)

=

= −g
2

4 cucvcc
(
T abcT

b
uv + T acbT

b
uv

)
= 0 (7.22)

owing to antisymmetry of the structure constants.
Besides the whole combination of ghosts plus gauge fixing is BRST exact

Lgf + Lgh = sΨ ≡ −s
[
c̄a∂µA

µ
a + α

2 baBa
]

(7.23)

7.3 The physical subspace.
Consider the standard Noether BRST current

JBRSTµ = ∂L

∂(∂µAaρ)
sAaρ + ∂L

∂(∂µB) sB + ∂L

∂(∂µc)
sc+ ∂L

∂(∂µb)
sb =

= F aµρD
ρca + i∂µb

a
(
−g2

)
fabcc

bcc − (Dµc)a(−Ba) (7.24)

and its corresponding charge

QBRST =
∫
d3x

[
F a0ρD

ρca − ig2∂0b
a fabc c

bcc − (D0c)a(−Ba)
]

=

=
∫
d3x

[
Ba(D0c)a − Ḃaca + ig

2 fabcḃ
acbcc

]
(7.25)
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where the EM have been used

(DµFµν)a = ∂νB
a − igfabc∂νbbcc

∂µAaµ + αBa = 0
∂µ(Dµc)a = 0
(Dµ∂µb)a = 0 (7.26)

Let us now discuss in gory detail the reality of the ghost field. With

Lgh = −i∂µbaDµc
a ≡ −i∂µba

(
∂µc

a + fabcA
b
µc
c
)

(7.27)

If we assume
ba = c+

a (7.28)

then the first term (without the i in front) would be hermitian. But there
is no way in which the second term (namely −i∂µba fabcAbµcc) can be self
adjoint inless we assume that both ghost are already hermitian to begin
with.

The Noether charge associated to the invariance of Lfp under ghost
rescalings

ca → eλca

ba → e−λba (7.29)

is aptly named ghost charge

jµgh ≡
∑ ∂L

∂(∂µφ) δφ ≡ −iDµc
a(−λba) + i∂µbλca (7.30)

Qgh ≡ i
∫
d3x

(
ba(D0c)a − ḃaca

)
(7.31)

It is important to notice that this charge is hermiytian

Q+
gh = −i

∫
d3x

(
baD0ca − ḃa ca

)
= Qgh (7.32)

The ghost charge can be expressed in terms of canonical momenta

πa ≡ ∂LL

ċa
= iḃa

and

π̄a ≡ ∂LL

∂ḃa
= −i(D0c)a) (7.33)

,

Qgh = −
∫
d3x

[
baπ̄a + πac

a
]

(7.34)
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{πa(t, ~x), cb(t, ~y)} = −iδabδ(3)(~x− ~y) (7.35)

and
{π̄a(t, ~x), bb(t, ~y)} = −iδabδ(3)(~x− ~y), (7.36)

so that eventually

[iQgh, ca(x)] = ca(x)
[iQgh, ba(x)] = −ba(x) (7.37)

The eigenvalues of Qgh are imaginary (∈ iZ) in spite of the fact that the
charge itself is hermitian. This fact was clarified by Kugo and Ojima and
stems from the fact that our ghosts are hermitian fields.

Let us denotes eigenstates of the ghost charge by

Ggh|in〉 ≡ in|in〉 (7.38)

Then owing to the fact that

Q+
gh = Qgh (7.39)

〈in|im〉 = 〈in
∣∣∣∣Qghim

∣∣∣∣ im〉 = 〈in
∣∣∣∣Qgh−in

∣∣∣∣ im〉 = δn+m (7.40)

The last equality is just a normalization. There are then null eigenvectors

〈in|in〉 = 0 (7.41)

This conveys the fact that the scalar product in Fock space is not positive
semidefinite. Defining

|λ〉 ≡ |in〉+ λ| − in〉 (7.42)

then
〈λ|λ〉 = 2Reλ (7.43)

which does not have a definite sign, as advertised.
The commutation rules of the charge read

{QBRS , QBRS} = 0
[iQfant, QBRS ] = QBRS (7.44)

The BRST charge is exact

QBRST = −isQgh (7.45)

which in turn means that

2Q2
BRST = {QBRST , QBRST } = sQBRST = s(−isQgh) = 0 (7.46)
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Let us now define the physical subspace as the set of all vectors in Fock’s
space which are annihilated by the BRST charge (this interpretation was
first proposed again by Kugo and Ojima). This is a clever generalization of
the old-fashioned Gupta-Bleuler condition in QED.

Hfis ≡ {|Φ〉, QBRS |Φ〉 = 0} (7.47)

We postulate that the vacuum is a physical state.

QBRS |0〉 = 0 (7.48)

Actually this is necessary in order to be able to prove that the ensuing
theory is independent of the gauge fixing, or what is the same, of the odd
quantity Ψ. Let us study the variation of an arbitrary overlapping under a
variation of the gauge fixing condition.

δ〈u|v〉 = 〈u|δS|v〉 = 〈u|s δΨ|v〉 ≡ 〈u|[QBRS , δΨ]|v〉 (7.49)

In order for this matrix element to vanish, it is necessary that

QBRS |u〉 = QBRS |v〉 = 0 (7.50)

7.4 BRST for QED.

Let us study BRST in the simplest QED instance. Previous attempts to
define a physical subspace by imposing constraings have difficulties. For
example

∂µA
µ |Ψ〉 = 0 (7.51)

This contradicts

[∂µAµ(x), Aν(y)] = i∂µD
µν(x− y) 6= 0 (7.52)

This is the reason why Gupta and Bleuler proposed to impose only half of
the constraint

(∂µAµ)+ |Ψ〉 = 0 (7.53)

which implies
〈ψ| (∂µAµ)− = 0 (7.54)

so that expectation values of the contraints vanish

〈Ψ| ∂µAµ |Ψ〉 ≡ 〈Ψ |
{

(∂µAµ)− + (∂µAµ)−
}
|Ψ〉 = 0 (7.55)
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But even that has got problems with the coupling of the electromagnetic field
to other fields. Let us now derive the elegant way in which this problem is
solved in the BRST approach.

sAµ = ∂µc

sb = ∂µA
µ

sc = 0 (7.56)

Representing fields in Fock space

Aµ(x) =
∫

d3p√
(2π)32ωp

[
aµ(p)e−ipx + a+

µ (p)eipx
]

b(x) =
∫

d3p√
(2π)32ωp

[
b(p)e−ipx + b+(p)eipx

]

c(x) =
∫

d3p√
(2π)32ωp

[
c(p)e−ipx + c+(p)eipx

]
(7.57)

Let us state some facts.

• Given an arbitrary physical state

QBRS |χ〉 = 0 (7.58)

the state with a transverse photon added

|ε χ〉 ≡ εµaµ+|χ〉 (7.59)
is a physicsl state as well, provided

εp = 0 (7.60)

because
[QBRST , aµ(p)] = −pµc(p) (7.61)

and so

QBRST |ε χ〉QBRST εµaµ+|χ〉 = εµ
[
QBRST , a

µ+(p)
]

= (ε.p) c|χ〉 = 0
(7.62)

• On the other hand,

{QBRST , b+(p)} = pµa+
µ (p) (7.63)

which implies:
QBRST b

+|χ〉 = pµa+
µ |χ〉 (7.64)

This just means that the polarization εµ is physically equivalent to the
polarization εµ + λpµ,because the difference is BRST-exact.
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• Antighosts are not physical

QBRST b
+|χ〉 = pµa+

µ (p)|χ〉 6= 0 (7.65)

• Ghosts are BRST exact, owing to the fact that[
Q, a+

µ (p)
]

= pµc
+(p) (7.66)

Then
c+(p)|χ〉 = 1

ε.p
QBRST ε

µa+
µ |χ〉 (7.67)

7.5 Positiveness
Three problems which are always difficult to solve in any covariant formalism
of gauge theories are as follows First of all, show that the hamiltonian in
the full Fock space is self-adjoint

H = H+ (7.68)

Second, show that there is an invariant subpsace of the Fock space, the
physical subspace, invariant under the evolution operator

HHphys ⊂ Hphys (7.69)

Third, prove that the scalar product in the physical subspace is positive
semidefinite

{|ψ〉 ∈ Hphys} ⇒ 〈ψ|ψ〉 ≥ 0 (7.70)

In practice, all that we shall be able to prove is that there are indeed states
that violate positivity, but thosed atates appear only in null-norm combina-
tions.

Owing to BRST nilpotency, all BRS-exact states ,

|ψ〉 = QBRS |φ〉 (7.71)

are physical states according to our definition. Nevertheless, all those are
orthogonal to any other physical state, since

〈phys|ψ〉 = 〈phys|QBRS |φ〉 = 0 (7.72)

and besides, they have zero norm

〈ψ|ψ〉 = 〈ψ|QBRS |φ〉 = 0 (7.73)

Treating those states as trivial states is akin to definig an equivalence
relation: two states are physically equivalent provided their difference is
BRST exact.
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The BRST cohomology is defined as

H(Q) ≡ ker QBRS/ImQBRS (7.74)

The kernel of the BRST operator

ker QBRS ≡ {|ψ〉, QBRS |ψ〉 = 0}, (7.75)

The image of the BRST operator is the set of vectors such that

ImQBRS ≡ {|χ〉 = QBRS |κ〉}. (7.76)

• The set of elements in H(Q) will be dubbed singlet states . We shall
denote the sunset of ghpst number n as Hn(Q).

• Singlet states can have vanishing ghost number |χ0〉 ∈ H0(Q) (those
are the ones that correspond to physical particles sensu stricto) or else
a non-vanishing one, |χn〉 ∈ Hn(Q).

• In the latter case they can be a unpaired singlet |χn〉. This means that
there is no physical states among the ghost number complements of
the type |σ−n〉 , and such that 〈χn|σ−n〉 = 1. Then it is not possible
either that a descendent state

Q|ξn−1〉 (7.77)

has got nonvanishing scalar product with our unpaired singlet, because
if this were true, then

〈ξ−n−1|Q|χn〉 = 0 (7.78)

owing to the fact that |χn ∈ H(Q).
This in turn means that no such complement state is in H(Q), so that
the restriction of the scalar product to H(Q) is degenerate in the sense
that this unpaired singlet is orthogonal to the whole H(Q). This is
considered not to be a harmful situation.

• There can slso be a singlet pair, with equal and opposite ghost number.
There are then physical states of the form

|ξ〉 ≡ |χn〉+ ξ|σ−n〉 (7.79)

which have negative norm.

〈χn + ξσ−n |χn + ξσ−n〉 = ξ + ξ̄ (7.80)

Then a consistent reduction of the Fock space is not possible.
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This situation is however not realized in ordinary gauge theories.
The reason stems from a small theorem asserting that in any coho-
mology class in H(Q) there is a representative with vanishing ghost
number. Indeed, any physical state with ghost number −k can be
represented as

| − k〉 ≡ ba1 . . . bakt
[a1...ak]|g〉+ . . . (7.81)

where the state |g〉 does not involve antighosts, so that it has vanishing
ghost number. We are then concentrating in the component with the
minimum possible number of antighosts. Other components have more
antighosts (and also more ghosts to keep even the balance).
Now, we know that this whole state is annihilated by the BRST charge.
The component with Ngh = −(k − 1) must then annihilate by itself.
Recall that

sba = [iQBRS , ba] = iBa (7.82)
then

0 = QBRSba1ba2 . . . bakt
[a1...ak]|g〉 ∼ Ba1ba2 . . . bakt

[a1...ak]|g〉 (7.83)

This is possible in general only if

ba2 . . . bakt
[a1...ak] = Ba0ba2 . . . baku

[a0a1...ak] (7.84)

so that the whole thing cancels by antisymmetry Then

|−k〉 = ba1Ba0ba2 . . . baku
[a0a1...ak]|g〉 = QBRSba1ba0ba2 . . . baku

[a0a1...ak ]|g〉
(7.85)

This shows that the component with minimum possible number of
antighosts is exact. Induction proceeds until we reach a representative
without any antighost.

• All non-physical states |λn〉 give rise to a BRST doublet

{|λn〉, |δn+1〉 ≡ QBRS |λn〉}, (7.86)

where the other element of the doublet is BRST exact (and then nilpo-
tent). It the scalar product is to be non-degenerate there must exist at
least one state with non-vanishing scalar product with it. This state
has to have opposite ghost number

〈δn+1|δ−1−n〉 = 1 (7.87)

Finally, |λ−n〉 ≡ QBRS |δ−1−n〉 is the last member of this quartet.
These do appear in ordinary gauge theories
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It can be the case that all physical states can be described in terms of
asymptotic fields, that is asymptotic completeness (this does not happen in
unbroken non-abelian gauge theories owing to confinement, but this fact is
unfortunately beyond BRST techniques).

The operators that create these states out of the vacuum

|λn〉 ≡ a+
n |0〉

|δn+1〉 ≡ QBRS |λn〉 = −ic+
n+1|0〉

|δ−(n+1)〉 ≡ −b+−n−1|0〉
|λ−n〉 ≡ QBRS |δ−(n+1)〉 = −b+−n|0〉 (7.88)

We can assume with no loss of generality that n is even, n ∈ 2Z.
A quartet that always appear in ordinary gauge theories is generated by

the pure gauge fields

|λn=0〉 ∼ Aaµ(x) ∼ ∂µaa(x) + . . .

|δ1〉 ∼ (Dµc)a ∼ ∂µca(x) + . . .

|δ−1〉 ∼ ba(x) ∼ ba(x) + . . .

|δ(−n=0)〉 ∼ Ba(x) ∼ ba(x) + . . . (7.89)

Let us now show that quartets appear only as zero norm combinations.
They are then undetectable.

• It is a fact that asymptotic states corresponding to physical particles
are always orthogonal to quartets.
The only dangerous matrix element is the overlap of a physical state
with one of those animals

〈phys|λn〉 (7.90)

and this is possible when n = 0 only.
But in this case we can choose another representative of the cohomol-
ogy class such that

|PHY S〉 ≡ |phys〉−
∑
m

|λ−m〉〈λm|phys〉 = |phys〉−QBRS
∑
m

|δ−m−1〉〈λm|phys〉

(7.91)
clearly

〈λn|PHY S〉 = 〈λn|phys〉 −
∑
m

〈λn|λ−m〉〈λm|phys〉 = 0. (7.92)

because
〈λn|λ−m〉 = δnm (7.93)
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• Let us now define projectors (details can be found in Kugo-Ojima’s
[?]) in the subspace of Hphys with N quartets.

P2
N = P+

N = PN
PNPM = PMPN = δNMPN∑
N

PN = 1 (7.94)

Those projectors are BRST invariant

[QBRS ,PN ] = 0 (7.95)

and there is a resolution of the identity in the form

1− P0 = {iQBRS ,R} (7.96)

Ths subspace of genuine physical particles is the projection into the
subspace without any quartet from the whole physical space

H0
phys ≡ P0Hphys (7.97)

• It is then a fact that any BRST closed state

|f〉 ∈ PNH (7.98)

with N 6= 0 is necessarily exact. This is indeed plain because

|f〉 = PN |f〉 ⇒ (1− P0)|f〉 = |f〉 = {iQBRS ,R}|f〉 (7.99)

that is
|f〉 ∼ RQBRST |f〉 ≡ |0〉 (7.100)
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Ward identities

8.1 The equations of motion.
The postulate that the functional integral of a functional derivative vanishes
implies the equations of motion (Schwinger Dyson, plus contact terms.∫

Dφ δ

δφ(x)

{
ei[S[φ]+

∫
d(vol) J(x)φ(x)]

}
= 0 (8.1)

namely ∫
Dφ

(
δS

δφ(x) + J(x)
)
ei[S[φ]+

∫
d(vol) J(x)φ(x)] = 0 (8.2)

Which implies for example that∫
Dφ δ

δJ(y)

{(
δS

δφ(x) + J(x)
)
ei[S[φ]+

∫
d(vol) J(x)φ(x)]

}
= 0 (8.3)

That is

〈0|T δS

δφ(x) φ(y)|0〉+ δn(x− y) + 〈0|J(x)φ(y)|0〉 = 0 (8.4)

8.2 Ward
When the lagrangian enjoys a symmetry, some manipulations on the fuc-
tional integral imply relationships between Green’s functions. Those identi-
ties are generically known as Ward identities and are the quantum mechan-
ical version of Noether’s theorem

Assume the action to be invariant under rigid (∂µε = 0) transformations
of the form

φ′i(x) = φi(x) + εδφi(x) = φi(x) + εti
jφj(x) (8.5)

This means that under local (∂µε 6= 0) transformations

95
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S[φ′] = S[φ] +
∫
dnx JµNoether(x) ∂µε. (8.6)

Assuming that the functional measure is also invariant the partiction func-
tion reads

Z ′ =
∫
Dφ′ eiS[φ′]+i

∫
Jiφ′i = Z =

∫
Dφ eiS[φ]+i

∫
dnx Jiφi ×

×
[
1 + i

∫
dnx ε(x) ∂µJµN (x) + i

∫
d4x ε(x) J itjiφj

]
(8.7)

Functionaly differentiating with respect to J(x1) . . . J(xn) and evaluating
the result at the point when all sources vanish J = 0),

〈0+|Tφi1(x1) . . . φin(xn)
∫
d4x ε(x) ∂µJµN.(x)|0−〉 =

=
k=n∑
k=1

ε(xk)〈0+|Tφi1(x1) . . . δφik(xk) . . . φin(xn)|0−〉 (8.8)

which can be rewritten as

∂µx 〈0+|Tφi1(x1) . . . φin(xn)∂µJµN (x)|0〉 =
k=n∑
k=1

δ(x−xk)〈0|Tφi1(x1) . . . δφik(xk) . . . φin(xn)|0−〉

(8.9)
Please note that this procedure yields nothing new (over the rigid case) for
gauge theories.

8.3 Charge conservation
Let us work the simplest example in detail. When dealing with complex
scalar fields

φ ≡ 1√
2

(φ2 + iφ2) (8.10)

charge conservation stems from the phase symmetry

δφ = iα(x)φ (8.11)

The Noether current reads

Jµ = i (∂µφφ∗ − φ∂µφ∗) (8.12)

The Ward hierarchy of identities stems from

∂µ〈0+|Tφi1(x1) . . . φin(xn)i (∂µφ(x)φ∗(x)− φ(x)∂µφ∗(x))φ∗(y1) . . . φ∗(ym)|0−〉J =

=
k=n∑
k=1

δ(x− xk)〈0+|Tφi1(x1) . . . φik(xk) . . . φin(xn)φ∗(y1) . . . φ∗(ym)|0−〉J +

−
l=m∑
l=1

δ(x− yk)〈0+|Tφi1(x1) . . . φik(xk) . . . φin(xn)φ∗(y1) . . . φ∗(yl)φ∗(ym)|0−〉J(8.13)
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8.4 QED
• Let us consider the particularly important case of QED abelian gauge
invariance. The reason why this gives a nontrivial result is that there
is a associated rigid symmetry acting on the charged matter, namely

δψ = ieψ

δψ̄ = −ieψ̄ (8.14)

Noether’s current reads

jµN (x) = iψ̄(x)γµψ(x) (8.15)

and Ward’s identity in the simplest nontrivial instance reads

〈0|T∂µjµN (x)ψ(y)ψ̄(z)|0〉 = δ(4)(x− y)〈0|Tieψ(y)ψ̄(z)|0〉+
δ(4)(x− z)〈0|Tψ(y)(−ie)ψ̄(z)|0〉 (8.16)

Fourier transforming x1 = x− z y x2 = y − z and defining

SF (p) ≡
∫
d4xeipx〈0|Tψ(x)ψ̄(0)|0〉 (8.17)

we easily derive:

pµ1Gµ(p1, p2) ≡
∫
d4x1d

4x2e
i(p1x1+p2x2)〈0|T∂µjµN (x1)ψ(x2)ψ̄(0)|0〉 =

= iSF (p1 + p2)− iSF (p2) (8.18)

and defining the amputated function

Γµ(p1, p2) ≡ S−1
F (p1 + p2)Gµ(p1, p2)S−1

F (p2) (8.19)

The QED Ward’s identity reduces to

pµ1 Γµ(p1, p2) = iS−1
F (p2)− iS−1

F (p1 + p2) (8.20)

This is the old-fashioned form of the identity found for example, in
Bjorken and Drell’s book . It can be written in a more symmetric
form as The QED Ward’s identity reduces to

(pµ − qµ) Γµ(p1, p2) = iS−1
F (q)− iS−1

F (p) (8.21)

In the limit when p→ q this is equivalent to

Γµ(q) = i
∂

∂qµ
S−1
F (q) (8.22)

This implies immediatly that

Z1 = Z2 (8.23)
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• A natural question to ask is whether the gauge symmetry does not
have any more direct consequances for the photon sector. The short
answer is yes. Transversality. Consider the photon four-momentum

kµ = E (1, 0, 0, 1) (8.24)

In this frame the two physical polarizations of the photon are just

ε1 ≡ (0, 1, 0, 0)
e2 ≡ (0, 0, 1, 0) (8.25)

Now what happens is thet the little group does not leave invariant the
subspace (ε1, ε2). Consider for example the Lorentz transformation

Lµ ν ≡


3
2 1 0 −1

2
1 1 0 −1
0 0 1 0
1
2 1 0 1

2

 (8.26)

First of all, L ∈ SO(1, 3) because

LT ηL =


3
2 1 0 1

2
1 1 0 1
0 0 1 0
−1

2 −1 0 1
2




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




3
2 1 0 −1

2
1 1 0 −1
0 0 1 0
1
2 1 0 1

2

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ η (8.27)

It also belongs to the little group, because

Lµ νk
ν = kµ (8.28)

But
Lµ νε

ν
1 = εµ1 + E−1kµ (8.29)

(It leaves invariant the subspace generated by ε2 though). Physical
amplitudes are of the form

M≡ εµMµ (8.30)

where
εµ = C1ε

µ
1 + C2ε

µ
2 (8.31)

Under a Lorentz transformation

M′ =
(
C1
(
εµ1 + E−1kµ

)
+ C2ε

µ
2

)
M′µ (8.32)
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But there are no physical states with longitudinal polarizations. The
only way out is that

kµMµ = 0 (8.33)

That is physical amplitudes involving physical photons must be trans-
verse.

• In real life, one has to take into account gauge fixing terms and ghosts.
To be specific, with the gauge fixing term

Lgf ≡
1

2α(∂µAµ)2 (8.34)

ghosts do not couple to the physical fields and can be ignored.
Under a gauge transformation the only non-invariance comes from
sources as well as gauge fixing. This implies a Ward identity as usual

(
− 1

2α�∂µ
δ

δJµ(x) + η̄
δ

δη̄(x) − η
δ

δη(x)

)
W [J ] + ∂µJ

µ = 0 (8.35)

Legendre transforming we arrive to Ward’s identity in terms of the
1PI effective action(

∂µ
δ

δAµ(x) + ψ
δ

δψ(x) − ψ̄
δ

δψ̄(x)

)
Γ[A] +�∂µAµ = 0 (8.36)

We have denoted classical fields as if they were ordinary fields in order
not to clutter the notation unnecessarily.

8.5 Non-abelian Ward (Slavnov-Taylor) identi-
ties.

Let us now include sources for some composite operators, namely

L→ L(A, b, c)+
∫
d4x

[
JaµA

µ
a+ξ̄aca+baξa+χaBa+Kaµ(Dµc)a−

1
2Lafabccbcc

]
(8.37)

Under al BRST transformation, only the trems including sources are
noninvariant∫

d4x〈0|TJaµ(Dµc)a + ξ̄(−1
2fabccbcc)−Baξa|0〉J = 0 (8.38)

which can be rewritten∫
d4x

[
Jaµ

δ

δKaµ
+ ξ̄

δ

δLa
− ξa

δ

δχa

]
Z(J) = 0 (8.39)
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Functionally deriving with respect to sources, a whole hierarchy of equations
relating different Green functions is easily derived. These were first obtained
through a much more involved argument by Slavnov and Taylor.

The antighost EM is easily obtained by performing a translation in the
functional integral

b→ b+ ∆b (8.40)

or else through the fact that the functional integral of a total functional
derivative vanishes ∫

DADbDc δ

δb(x) e
iS = 0 (8.41)

〈0 |TMabcb + ξa| 0〉J = 0 (8.42)

In terms of the partition function[
Mab

(
δ

iδJ

)
cb + ξa

]
Z(J) = 0 (8.43)

and taking into account that

Mabcb = ∂µ(Dc)a (8.44)

(in the standard gauge Fa = ∂µA
µ
a), reads[1

i
∂µ

δ

δKaµ
(x) + ξa(x)

]
Z(J) = 0 (8.45)
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8.6 Renormalizaction of non-abelian gauge theo-
ries

Let us study the simplest case in which the gauge fixing condition is linear
in the gauge fields. Other more complicated cases are treated similarly.

Let us recall Ward’s identity (8.45) for the free energy W ≡ i log Z in
the covariant gauge

Fa ≡ ∂µAµa (8.46)

to wit

∂µ
δW

δKaµ(x) = ξa(x) (8.47)

Start by defining as usual classical fields

A(cl)
aµ (J) = δW

δJaµ

c(cl)
a (J) = δLW

δξ̄a

b(cl)a (J) = −δ
LW

δξa
(8.48)

Classical fields are nothing else than the vacuum expectation value of the
field operator in the presence of external sources. Legendre transforming
leads to the effective action (the generator of 1PI Green functions)

Γ(A, c, b,K,L) ≡W (J, ξ, ξ̄,K, L)−
∫
d4x

(
JA+ ξ̄c+ bξ

)
(8.49)

Classical fields are represented by the same symbol as ordinary fields; this
should not lead to any confusion, because in this section only classical fields
will be discussed

Aaµ = δW

δJaµ
Jaµ = − δΓ

δAaµ

ca = δW

δξ̄a
ξ̄a = δΓ

δca

ba = −δW
δξa

ξa = δΓ
δba

(8.50)
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Given the fact that

δΓ
δA(x) ≡

∫
d4y

δW

δJ(y)
δJ(y)
δA(x) −

∫
d4y

δJ(y)
δA(x)A(y)− J(x)

δΓ
δcx
≡
∫
d4y

δξ̄(y)
δc(x)

δW

δξ̄(y)
−
∫
d4y

δ ¯ξ(y)
δc(x)c(y) + ξ̄(x)

δΓ
δbx
≡
∫
d4y

δξ(y)
δb(x)

δW

δξ(y) −
∫
d4yb(y)δξ(y)

δb(x) − ξ(x)

(8.51)

From the very definition it is plain that derivatives with respect to any
parameter not involved in Lagendre’s transform are the same for the effective
action as for the free energy

δW

δP (x) = δΓ
δP (x) (8.52)

This means that Ward’s identity∫
d4x

[
Jaµ

δ

δKaµ(x) + ξ̄
δ

δLa(x) + ξa
δ

δχa(x)

]
Z(J) = 0

can be written in terms of the effective action∫
d4x

(
− δΓ
δAaµ

(x) δΓ
δKaµ(x) + δΓ

δca(x)
δΓ

δLa(x) −
δΓ

δba(x)∂µA
µ
a

)
= 0

δΓ
δba(x) + ∂µ

δΓ
δKaµ(x) = 0 (8.53)

We have identified Ba with −Fa = −∂µAµa , which stems from the EM. It is
possible to simplify the preceding identities by a slight modification in the
effective action :

Γ̃ ≡ Γ− 1
2

∫
d4x (∂αAαa )2 (8.54)

by defining the star product (Zinn-Justin)

Γ̃ ∗ Γ̃ ≡
∫
d4x

(
− δΓ̃
δAaµ(x)

δΓ̃
δKaµ(x) + δΓ̃

δca(x)
δΓ̃

δLa(x)

)
= 0

∂µ
δΓ̃

δKaµ(x) + δΓ̃
δba(x) = 0 (8.55)

When working woth the modified action, Γ̃, the only thing that changes is

δΓ̃
δAaµ(x) = δΓ

δAaµ(x) −�A
µ
a (8.56)
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The second equation of the set above remains the same, whereas the first
one wins an extra term

∂αA
α
a ∂µ

δΓ
δKaµ

= −∂µ
δΓ

δba(x) (8.57)

(where the second equation gas been used). This trick then leaves the Zinn-
Justin equation without any linear terms.

Let us now sketch an inductive argument in order to show that the gauge
lagrangian

L = Lgauge + Lgf + Lgh (8.58)

is stable under renormalization.
Divergences in the ~n+1 loop order Γn+1 can be cancelled just by adding

to Γ̃ a counterterm such that the renormalized action Γ̃ to the desired order
~n+1 obeys Ward’s identities. In that way, Ward’s identities can be shown
to be stable under renormalization.

It then will follow that the renormalized action Γ̃(ren) is the most general
dimension four local polynomial obeyng Ward’s identities.

Remembering the dimensions of the different fields involved

d(A) = d(c) = d(ξ) = 1
d(K) = d(L) = d(B) = d(χ) = 2
d(J) = 3 (8.59)

Also the ghost number asignments read gh(K) = −1 and gh(L) = −2.
Dimensional analysis and ghost number conservation then imply that

Γ̃(ren) =
∫
d4x

(
Kaµ(D(ren)

µ (A)c)a−
1
2f

(ren)
abc Lacbcc+L(ren)(A, c, b)

)
(8.60)

where the renormalized covariant derivative is defined as

(Dren
µ c)k = ∂µck + f renkbj A

b
µc
j (8.61)

and is given in terms of some renormalized constants f renabc .
The second identity (8.55) then implies

∂µ(D(ren)
µ c)a(x) +

∫
d4y

δL(ren)(x)
δba(y) = 0 (8.62)

so that the antighost dependence is fixed. The dependence on ghosts then
follows by ghost number conservation.

Γ̃(ren) =
∫
d4x

(
Kaµ(D(ren)

µ (A)c)a −
1
2f

(ren)
abc Lacbcc −

−ba∂µ(D(ren)
µ c)a + L(ren)(A)

)
(8.63)
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The first Ward identity of the set (8.55) leads to

∫
d4x

−
Kaµ

δD
(ren)
abµ

δAkλ
cb + δL(ren)

δAkλ
− ba∂µ

δD
(ren)
abµ

δAkλ
cb

D(ren)
λkj cj

−1
2f

(ren)
kij cicj

(
KaµD

(ren)
akµ − f

(ren)
akc Lacc + ba∂µD

(ren)
akµ

)]
= 0 (8.64)

All this has got to be true for arbitrary sources. Let us analyse its conse-
quences in some detail.

• First of all, demanding the vanishing of the coefficient of the fermionic
source Kaµ(x) we learn that

∫
d4x

δD(ren)
µai

δAkλ
ciD

(ren)
kjλ cj + 1

2D
(ren)
akµ f

(ren)
kij cicj

 = 0 (8.65)

To be specific, the integrand reads

K ≡ f renaki c
i
(
∂µck + f renkbj A

b
µc
j
)
+1

2
(
f renaij ∂µ(cicj) + f renabkA

b
µf

ren
kij c

icj
)

= 0
(8.66)

Consider first the set of terms that do not involve gauge fields

f renaij c
j∂µc

i = −1
2f

ren
aij

(
∂µc

icj + ci∂µc
j) (8.67)

which vanishes as long as the renormalized constants are antisymmet-
ric

f rena(ij) = 0 (8.68)

On the other hand, the terms contaning gauge fields read

f renaki f
ren
kbj c

icj + 1
2f

ren
kij c

icjf renabk (8.69)

which is equivalent to

f renaki f
ren
kbj − f renakj f

ren
kbi + f renkij f

ren
abk (8.70)

That is, this terms also vanishes provided the constants

f renijk (8.71)

obey Jacobi’s identity.

• Vanishing of the coefficient of the sources L(x) implies∫
d4x

(
− f (ren)

lij cif
(ren)
alc cjcc

)
= 0 (8.72)

namely, Jacobi’s identity again.
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• Consider finally, the term without sources

−δL
(ren)

δAlλ
D

(ren)
λlb cb + ∂µ

[(
fakbc

b(Dren
µ c)k + 1

2fkijc
icjDren

akµ

)
ba

]
= −δL

(ren)

δAlλ
D

(ren)
λlb cb + ∂µ [Kba] = 0 (8.73)

Using the fact that K = 0 it reads∫
δL(ren)

δAlλ
D

(ren)
λlb cb = 0 (8.74)

This implies that D(ren) obey the same equations as D, so that this is
just a fancy way of writing down gauge invariance

Besides, the constants f (ren)
abc obey the (Jacobi) identity neccessary for

them to qualify as structure constants of a group G.

• Finally, the last equation tells us that the lagrangian L(ren)(A) is again
gauge invariant.
When the group G is simple, it is plain by continuity arguments that
both the symmetry group and the representations involved must be
the same as in the bare lagrangian.

The semisimple case can be treated using much the same techniques.
Also more general gauge conditions can be considered.
Nevertheless, in order to renormalize spontaneously broken gauge theo-

ries some extra work has to be done.
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9

Effective field theories

For phenomenological reasons it is often advisable not to commit ourselves
on what the theory should be at arbitrarily high energies, and behave as
if all we knew is an effective theory valid for energies lower than a certain
cutoff scale

E ≤ Λ (9.1)

Quite often there are universal predictions, depending only on the symme-
tries of the problem and on the available degrees of freedom.

9.1 Composite operators.

Sometimes, namely in order to define the energy-momentum tensor, or else
the equations of motion (EM), nor to speak on the operator product ex-
pansion (OPE) we need to compute correlators including fields evaluated at
the same space-time point. Those have divergences in addition to the ones
already renormalized, and new counterterms are necessary. We work in
momentum space except for the operator, which remains in position space.

Consider, for example [3] the operator φ2 in φ3
6. We are interested in

G ≡ 〈0|Tφpφqφ2
z|0〉 ≡

∫
d6x d6y ei(p1x+p2y) 〈0|Tφxφyφ2

z|0〉 (9.2)

The lowest order graph yields

Glo = i

p2
1 −m2 + iε

i

p2
2 −m2 + iε

(9.3)

107
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Figure 9.1: Simplest diagrams for φ2.
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The first one-loop graph yields

G1 = i

p2
1 −m2 + iε

i

p2
2 −m2 + iε

ig2µ6−n

(2π)n
∫
dnk

1
(k2 −m2 + iε)((k − p1)2 −m2 + iε)((k + p2)2 −m2 + iε) =

= i

p2
1 −m2 + iε

i

p2
2 −m2 + iε

g2

64π3 Γ(3− n

2 )
∫ 1

0
dx

∫ 1−x

0
dy

[
m2 − p2

1y(1− x− y)− p2
2x(1− x− y)− (p1 + p2)2xy

4πµ2

]n
2−3

(9.4)

The corresponding counterterm reads

− 1
(p2

1 −m2)(p2
2 −m2)

g2

64π3
1

n− 6 (9.5)

In such a way that the renormalized graph reads

− 1
(p2

1 −m2)(p2
2 −m2)

g2

64π3

{
− γ

2 −
∫ 1

0
dx

∫ 1−x

0
dy

log
[
m2 − (p2

1y + p2
2x)(1− x− y)− (p1 + p2)2xy

4πµ2

]}
(9.6)

The second one-loop graph reads

G2 = −gµ3−n2

(p2
1 −m2)(p2

2 −m2)((p1 + p2)2 −m2)
igµ3−n/2

2(2π)n
∫
dnk

1
(k2 −m2)((p1 + p2 + k)2 −m2) =

= −gµ3−n2

(p2
1 −m2)(p2

2 −m2)((p1 + p2)2 −m2)
−gµn/2−3

128π3 Γ(2− n/2)
∫ 1

0
dx

[
m2 − (p1 + p2)2x(1− x)

]n/2−2

(4πµ2)n/2−3

with counterterm

−gµ3−n/2

(p2
1 −m2)(p2

2 −m2)((p1 + p2)2 −m2)
gµn/2−3

64π3

(
m2 − (p1 + p2)2

6

)
1

n− 6
(9.7)

In such a way that the renormalized graph reads

− g

(p2
1 −m2)(p2

2 −m2)((p1 + p2)2 −m2)
−g

128π3

{
(γ − 1)

(
m2 − (p1 + p2)2

6

)
+
∫ 1

0
dx

(
m2 − (p1 + p2)2x(1− x)

)
log

[
m2 − (p1 + p2)2x(1− x)

4πµ2

]}
(9.8)

The counterterm are just vertices for φ2 and for
(

1
6�+m2

)
φ, in such a way

that the total renormalized G reads

G =
{

1 + g2

64π3
1

n− 6

}
〈0|Tφp1φp2

1
2φ

2(0)|0〉+
{
gµn/2−3

64π3
1

n− 6

}
〈0|Tφp1φp2

(
m2 + 1

6�
)
φ(0)|0〉+O(g4)
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This means that the (renormalized) composite operator [φ2] is defined by

1
2
[
φ2
]
≡
{

1 + g2

64π3
1

n− 6

}
φ2

2 +
{
gµn/2−3

64π3
1

n− 6

(
m2 + 1

6�
)}

φ+O(g4)(9.9)

In fact, a renormalized operator can always be defined by a formula of the
type (please remember that the canonical dimension of the field φ in six
dimension is 2)

1
2
[
φ2
]
≡ Za

φ2

2 + µn/2−3Zbm
2φ+ µn/2−3Zc�φ (9.10)

where the Z depend only on (g, n). The operators that appear as conterterms
have dimension lees than or equal to that of the original operator. A closed
set of operators under renormalization is then

1
2 [φ2]
φ
�φ

 =

Za µn/2−3 Zb m
2 µn/2−3 Zc

0 1 0
0 0 1


1

2φ
2

φ
�φ

 (9.11)

9.2 Warmup on proper time.
Remember that

i

A+ iε
=
∫ ∞

0
ds eis(A+iε) (9.12)

Also
1
AB

= −
∫ ∞

0
ds1

∫ ∞
0

ds2e
is1A+s2B (9.13)

Replace

s1 ≡ xτ
s2 ≡ (1− x)τ (9.14)

Then

1
AB

= −
∫ 1

0
dx

∫ ∞
0

τ dτ eiτ(xA+(1−x)B) =
∫ 1

0

dx

(ax+B(1− x))2 (9.15)

This yields a nice interpretation of Feynman parameter x = s1
s1+s2 as how

much one particle is lagging the other obe running in the loop.
Then we can represent Feynman’s propagator as

DF (x, y) =
∫

d4p

(2π)4 eip(x−y) i

p2 −m2 + iε
=
∫

d4p

(2π)4 eip(x−y)
∫ ∞

0
ds eis(p2−m2+iε) =

= − i

16π2

∫ ∞
0

dss2 e
−i
(

(x−y)2
4s +sm2−iεs

)
(9.16)
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Let us introduce, following Schwinger, one-particle Hilbert space spanned
by |x〉 and sich that

〈p|x〉 = eipx (9.17)

defining

p̂µ|p〉 = pµ|p〉
Ĥ ≡ −p̂2 (9.18)

(a non-relativistic hamiltonian; this the priging of the fact that the dimsnions
[s] = −2) in such a way that

eisp
2〈p|x〉 ≡ 〈p|e−isĤ |x〉 (9.19)

we get

DF (x, y) =
∫ ∞

0
dse−sε e−ism

2 〈y|e−isĤ |x〉 ≡
∫ ∞

0
dse−sε e−ism

2 〈y; 0|x; s〉

yielding a nice interpretation of the propagator as the amplitude to propa-
gate from the point x to the point y in proper time s and integrated over all
proper time. More is true.

DF (x, y) =
∫

d4p

(2π)4 eip(x−y) i

p2 −m2 + iε
=
∫

d4p

(2π)4 〈y|p〉〈p|
i

p̂2 −m2 + iε
|x〉 ≡ 〈y|Ĝ|x〉 =

=
∫ ∞

0
ds e−sε e−ism

2 〈y|e−iĤs|x〉 (9.20)

9.3 Simplest examples.
Let us work out some simple examples to begin with. Consider, for example,
a Yukawa interaction at low energies.

S =
∫
d4x

{
ψ̄i/∂ψ − 1

2φ
(
�+m2

)
φ+ λψ̄ψ

}
(9.21)

If we neglect scalar loops, we can write

φ ≡ λ
(
�+m2

)−1
ψ̄ψ (9.22)

and the action reads

S =
∫
d4x

{
ψ̄i/∂ψ + λ2

2 ψ̄ψ
(
�+m2

)−1
ψ̄ψ

}
(9.23)

When we are interested in energies much smaller than the mass of the
Yukawa particle,

E << m (9.24)
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this in turn can be expanded in a series of local operators

S =
∫
d4x

{
ψ̄i/∂ψ + λ2

2m2 ψ̄ψψ̄ψ + λ2

2m4 ψ̄ψ�ψ̄ψ + . . .

}
(9.25)

Let us now do a slightly more complicated exercise, namely, the effective
lagrangian for the case aof a constant field strength Fµν . This was first
derived by Euler and Heisenberg in 1936. Let us start by studying the
fermion propagator in an external electromagnetic background.

Once the fermions are integrated out the effective action reads

Le = −1
4F

2
µν − iTr log

(
i /D −m

)
(9.26)

taking one derivative over the mass

d

dm2Le = i

2mTr i /D +m

− /D2 −m2
= i

2Tr 1
− /D2 −m2

= 1
2

∫ ∞
0

dse−ism
2Tr e−i /D

2
s

(9.27)
Integrating now over dm2 we learn

Le = −1
4F

2
µν + i

2

∫ ∞
0

ds

s
e−ism

2Tr e−i /D
2
s + C (9.28)

Now acting on some arbitrary function

/D
2
f(x) =

(
/∂ + ie /A

)2
ψ =

(
∂µ∂ν + ie∂µAν + ieAν∂µ + ieAµ∂ν − e2AµAν

)
γµγνf(x) =

=
(
�+ ie∂µA

µ + ie
1
2Fµνγ

µν + 2ieAλ∂λ − e2AµA
µ
)
f(x) =

=
(
DµD

µ + 1
2eFµνσ

µν
)
f(x) (9.29)

where
σµν = iγµν (9.30)

Let us dub
H ≡ DµD

µ + 1
2eFµνσ

µν (9.31)

Then
Le = −1

4F
2
µν + i

2

∫ ∞
0

ds

s
e−ism

2 Tr 〈x|e−iHs|x〉 (9.32)

We are using here covariant first quantized formalism, where

[x̂µ, p̂ν ] = −iηµν (9.33)

In particular, we recover [
x̂i, p̂l

]
= iδij (9.34)
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The states |x〉 obey
x̂µ|x〉 = xµ|x〉 (9.35)

In the Heisenberg picture

x̂µH ≡ e
iĤsx̂µe−iĤs (9.36)

The Schroedinger state is by definition

|x; s〉 ≡ e−iĤs|x〉 (9.37)

It is then a fact that

i∂s〈y; 0|x; s〉 = 〈y|e−iĤsĤ|x〉 (9.38)

as well as
〈y|e−iĤsx̂µ(s) = 〈y|x̂µe−iĤs = yµ〈y|e−iĤs (9.39)

Let us introduce the operator

π̂µ ≡ pµ − eAµ(x̂) (9.40)

We have
[x̂µ(s), π̂ν(s)] = −iηµν (9.41)

and for constant field strength

[π̂µ(s), π̂ν(s)] = −ieFµν (9.42)

It is clear that

Ĥ(s) = −/̂π
2 = −π̂µ(s)π̂µ(s) + e

2Fµνσ
µν (9.43)

The Heisenberg EM implies that, whenever F is constant

dπµ

ds
= i

[
Ĥ, πµ(s)

]
= 2eFµ νπν (9.44)

Then
πµ(s) =

(
e2esFµ ν

)
πν(0) (9.45)

It is also a fact that
dxµ

ds
= i

[
Ĥ, xµ

]
= 2πµ (9.46)

This is easily checked to be solved by

xµ(s) = xµ0 + (eFµ ν)−1 (πν(s)− πν(0)) = xµ(0) +
(
e2sF − 1
eF

)µ
ν π

ν(0) =

= x(0) + 2 s eesF
(sinh (esF )

esF

)
π(0) (9.47)
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This implies that

π(0) = e−esF
(

eF

2 sinh (esF )

)
(x(s)− x(0)) (9.48)

and consequently

π(s) =
(
e2esF

)
π(0) = eesF

(
eF

2 sinh (esF )

)
(x(s)− x(0)) (9.49)

We can now rewrite the hamiltonian as

Ĥ = −π̂µ(s)π̂µ(s) + e

2σµν F
µν =(

eesF
)
µλ

(
eF

2 sinh (esF )

)λ
σ (x(s)− x(0))σ

(
eesF

)µ
δ

(
eF

2 sinh (esF )

)δ
ε

(x(s)− x(0))ε −

−e2tr (σF ) = − (x(s)− x(0)) K (x(s)− x(0))− e

2tr (σF ) (9.50)

with
K ≡ e2F 2

4 sinh2 (esF )
(9.51)

owing to the fact that(
eesF

)
µλ

(
eesF

)µ
δ

=
(
ees(F+FT )) = 1 (9.52)

Let us now move all the x(s) to the left and the x(0) to the right

π(s)π(s) = x(s)Kx(s)−x(s)Kx(0)+x(0)Kx(0)−x(s)Kx(0)−K [x(0), x(s)]
(9.53)

(Please note that K is a constant matrix).
Now it is a fact that

Kµν [xµ(0), xν(s)] = Kµν

[
xµ(0), xν(0) + 2eesF sinh esF

eF
πν(0)

]
=

= − i2 Tr {eF + eF coth esF} = − i2 Tr {eF coth esF} (9.54)

owing to the fact that

2KeesF sinh esF
eF

= eFeesF

2sinh esF = eF

2 (1 + coth esF ) (9.55)

We conclude that

Ĥ = −x(s)Kx(s)+2x(s)Kx(0)−x(0)Kx(0)− i2Tr {eF coth esF}− e2Tr σF
(9.56)
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Then we can work out the expression

i
∂

∂s
〈y; 0|x; s〉 = 〈y|e−iHsH|x〉 = 〈y|e−iHs

{
− x(s)Kx(s) + 2x(s)Kx− xKx

}
|x〉+ . . . =

= 〈y|
{
− yKy + 2yKx− xKx

}
e−iHs + . . . |x〉 = 〈y|

{
− yKy + 2yKx− xKx

}
+ . . . |x; s〉 =

−〈y| (y − x)K (y − x) + . . . |x; s〉 (9.57)

In this way Schrodinger’s equation now is just an ODE and reads

−i∂s〈y : 0|x; s〉 = −
[
(y−x) e2F 2

4sinh2 (esF )
(y−x)+ i

2 Tr {eF coth (esF )}+e

2Tr σF
]
〈y; 0|x; s〉

(9.58)
The general solution of the ODE is readily found and reads

〈y; 0|x; s〉 = C(x, y)e−i(y−x) eF4 coth(esF )(y−x)+ 1
2 Tr log sinh(esF )

eF
−i e2 Tr (σF )s

(9.59)
This holds for any value of the function C(x, y). In order to determine it,
there is some additional information we may use, namely,(
−i ∂
∂x
− eA

)
〈y; 0|x; s〉 = 〈y; 0| π(0)|x; s〉 = e−esF

eF

2sinh (esF )(y−x)〈y; 0|x; s〉

(9.60)
as well as(

i
∂

∂y
− eA

)
〈y; 0|x; s〉 = eesF

eF

2sinh (esF )(y − x)〈y; 0|x; s〉 (9.61)

Owing to the fact that

eF

2
eesF + eesF − 2e−esF

eesF − eesF
= eF

2 (9.62)

Those equations imply(
−i ∂
∂x
− eA− e

2F (x− y)
)
C(x, y) =

(
−i ∂
∂y
− eA− e

2F (x− y)
)
C(x, y) = 0

(9.63)
The solution of those reads

C(x, y) = C eie
∫ y
x
dzµ(Aµ(z)+ 1

2 Fµν(zν−yν) (9.64)

which is independent on the path zµ(λ) between the two points x and Y
because the differential form to be integrated is closed. The remaining con-
sntant, C, is fixed by the demand that we recover the correct result when
A = 0. This determines

C = − i

16π2s2 (9.65)
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Let us now come back to our effective lagrangian. We have

Le = −1
4F

2
µν + i

2

∫ ∞
0

ds

s
e−ism

2Tr {〈x|e−iĤs|x〉 = −1
4F

2
µν +

− 1
32π2 Tr

∫ ∞
0

ds

s3 e−ism
2−i es2 Tr (σF )+ 1

2 Tr log sinh (esF )
seF (9.66)

Now

Tr (σF )2 = Tr
(
2F 2

µν + iγ5ε
αβγδFαβFγδ

)
≡ 8 (F − iγ5G) (9.67)

where

F ≡ 1
2
(
B2 − E2

)
G ≡ ~E ~B (9.68)

The eigenvalues of Tr (σF ) are

λ = ±
√

8 (F ± iG) (9.69)

Then

Tr ei
es
2 Tr (σF ) = e

ies
2

√
8(F+iG) + e−

ies
2

√
8(F+iG) + e

ies
2

√
8(F−iG) + e−

ies
2

√
8(F−iG) =

= 2 cos
(
es
√

2 (F + iG)
)

+ 2 cos
(
es
√

2 (F − iG)
)

= 4Re cos (esX) (9.70)

with

X ≡

√
1
2F

2
µν + i

2FµνF̃
µν =

√
2 (F + iG) =

√(
~B + i ~E

)2
(9.71)

Next
1
2Tr log sinh (eFs)

esF
= log

√
λ1λ2λ3λ4 (9.72)

The eigenvalues are easily determined form the corresponding eigenvalues
of F , which read

Λi = ± i√
2

(√
F + iG ±

√
F − iG

)
(9.73)

which leads to
1
2Tr log sinh (eFs)

esF
= (es)2G

Im cos (esX) (9.74)

The final result for the Euler-Heisenberg effective legrangian is

Le = −1
4F

2
µν −

e2

32π2

∫ ∞
0

ds
1
s
e−im

2sRe cos (esX)
Im cos (esX) FµνF̃

µν (9.75)
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Expanding perturbatively in e, we find

Re cos (esX)
Im cos (esX) FµνF̃

µν = 4
e2s2 + 2

3F
2
µν −

e2s2

45

(
F 4
µν + 7

4
(
FµνF̃

µν
)2
)

+ . . .

(9.76)
The first two terms in this expansion are UV divergent. The very first is
just the vacuum energy density. With a proper time cutoff

Le = −1
4F

2
µν

(
1− e2

12π2 log m
2

Λ2 + . . .

)
(9.77)

This is an effect of the vacuum polarization corresponding to

β = e3

12π2 (9.78)

Consider now the case when the electric and magnetic fields are parallel.
Then

Le = 1
2
(
E2 −B2

)
− e2

8π2

∫ ∞
0

ds

s
eiεσ e−sm

2
(
EBcot (esE) coth (esB)−

− 1
e2s2 −

B2 − E2

3

)
(9.79)

Given the fact that the singularities are associated with the electric field,
we can consider the limit B ∼ 0, where

Le ∼
1
2E

2 − 1
8π2

∫ ∞
0

ds

s3 e
iεse−sm

2
(
eEscot (eEs)− 1 + 1

3 (esE)2
)

(9.80)

which has poles for real E whenever

s ∈ π

eE
N (9.81)

This physically means that strong electric fields can create electron-positron
pairs, by pair production (Schwinger). The probability per unit time and
volume that any number of pairs are created is

2Im Le = 1
4π

∞∑
n=1

1
s2
n

e−m
2sn = αE2

2π2

∞∑
n=1

1
n2 e

−nπm2
eE (9.82)

This is negligible until

E ∼ Ec = m2

e
∼ 1018 volts/m (9.83)

This fact is sometimes invokes to explain why the periodic table has less
than α−1 = 137 elements, the reason being that further elements would not
be stable owing to this mechanism.
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10

Advanced topics.

10.1 The background field technique.
Let us expand around an arbitrary background comfiguration

Wµ = Āµ +Aµ (10.1)

The background is sometimes denoted the classical field while the fluctuation
is refered to as the quantum field. In the functional integral we integrate
over quantum fields only.

Z[Ā ≡
∫
DAµ e−S[Ā+A] (10.2)

The background is assumed to obey the classical equations of motion

δS

δAµ

∣∣∣∣∣
Āµ

= 0 (10.3)

The full quantum gauge tramsformations, under which the background field
remains inert read

Ā′µ = Āµ

A′µ = g
(
Āµ +Aµ + ∂µ

)
g−1 − Āµ (10.4)

This is the gauge transformation that we have got to gauge fix. The thing is
that there is another, background gauge transformation, which can be kept
even when gauge fixing [10.4]. Namely

Ā′µ = g
(
Āµ + ∂µ

)
g−1

A′µ = g Aµ g
−1 (10.5)

under which the quantum fields rotate in the adjoint. For example, we could
use the gauge fixing

F ≡ D̄µA
µ (10.6)

119
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where D̄ stands for the covariant derivative with respect to the background
gauge field. When doing so all counterterms must respect background gauge
covariance which greatly restricts them.

The Yang-Mills action reads now

S[Ā+A] = −1
4
(
F̄ aµν + D̄µAν − D̄νAµ + fabcA

b
µA

c
ν

)2
+

− 1
2α
(
D̄µA

µ
)2
− D̄µc̄a

(
D̄µca − fabccbAµc

)
(10.7)

Terms linear in the quantum fields vanish when the background field lies on
shell. The quadratic piece gives then rise to two determinants

W [Ā] = −1
2Tr log

((
D̄µD̄

µηαβ −
(

1− 1
α

)
D̄αD̄β

)
δbc − 2F̄ aαβfabc

)∣∣∣∣
gauge

+

+Tr log
(
D̄µD̄

µ
)
δbc
∣∣∣
ghost

(10.8)

Renormalizarion constants are defined as usual

g0 = Zgg

Ā0 = Z
1
2
AĀ (10.9)

Then the field strength renormalizes as

F̄0 = Z
1
2
A

(
∂Ā− ∂Ā− gZgZ

1
2
AfĀĀ

)
(10.10)

which is background gauge invariant only when

ZgZ
1
2
A = 1 (10.11)

The coupling constant renormalizations is then related to the wave function
renormalization.

Let us finally remark for future use that when α = 1 all relevant operators
are of the form

DµD
µ + Y (10.12)

with
Dµ ≡ ∂µ +Xµ (10.13)

Namely, for the gauge operator

Xµ = Aµ

Y = −2Fµν (10.14)

whereas for the ghost determinant

Xµ = Aµ

Y = 0 (10.15)
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10.2 Functional determinants
It is a fact that to one loop order, only the terms quadratic in the quantum
fields contribute. This because the topological identity

L = I − V + 1 (10.16)

collapses in this case to
I = V (10.17)

which means that every one loop diagram is just a circle with classical fields
attached in trilinear vertices with one classical field and two quantum fields
that propagate in the circle.

10.2.1 Feynman diagrams

As a matter of fact

log det (−�+m2 + M̄2) = tr log (−�+m2)
(
1 + (−�+m2)−1M̄2

)
=

tr log (−�+m2) + tr
∞∑
m=1

(−1)m+1

m

(
(−�+m2)−1M̄2

)n
=

C +
∞∑
m=1

(−1)m+1

m

∫
x1...xm

(−�+m2)−1
x1x2M̄

2
x2(−�+m2)−1

x2x3M̄
2
x3 . . . (−�+m2)−1

xmx1M̄
2
x1 =

C +
∞∑
m=1

(−1)m+1

m

∫
x1...xm

∫
p1...p2m

eip1(x1−x2)eip2x2
M̄2
p2

p2
1 +m2 . . . e

ip2m−1(xm−x1)eip2mx1
M̄2
p2m

p2
2m−1 +m2 =

C +
∞∑
m=1

(−1)m+1

m

∫
p1...p2m

δ(p1 + p2m−1 − p2m)δ(−p1 + p2 + p3) . . .
M̄2
p2

p2
1 +m2 . . .

M̄2
p2m

p2
2m−1 +m2 =

C +
∞∑
m=1

(−1)m+1

m

∫
p2...p2m

δ(p2 + p4 + . . .+ p2m)M̄p2 . . . M̄p2mD(m)(p2 . . . p2m) (10.18)

where

(−�+m2)−1
xy ≡

∫
dnp

(2π)n e
ip(x−y) 1

p2 +m2

M̄2
x ≡

∫
dnp

(2π)n e
ipxM̄2

p (10.19)

The nontrivial piece of the determinant is

D(m)(p2 . . . p2m) ≡
∫
p1...p2m−1

δ(p1+p2m−1−p2m)δ(−p1+p2+p3) . . . 1
p2

1 +m2 . . .
1

p2
2m−1 +m2

(10.20)
There are m Dirac deltas, of which m−1 are efficient in killing a momen-

tum integration. Given tha fact that there werpreviously m of those, there
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is one momentum integrtation left, that is, all those diagrams are one-loop
ones.

The final expression for D(m) is

D(m)(p2 . . . p2m) ≡
∫

dnp

(2π)n
1

p2 +m2
1

(p− p2)2 +m2 . . .
1

(p− p2 − p4 − . . .− p2m−2)2 +m2

(10.21)
In d = 4 dimensions, the first two terms are divergent (although the term
m = 1 is taken to be zero in dimensional regularization), and the rest are
given by finite integrals.

The effective potential corresponds to the coefficient to the zero mode,i.e.

M̄2
p = (2π)n δ(n) (p) M̄2

(
φ̄
)

(10.22)

We have

Veff = C +
∞∑
m=1

(−1)m+1

m

(
(2π)n M̄

)m ∫ dnp

(2π)n
( 1
p2 +m2

)m
=

C +
∫

dnp

(2π)n log
(

1 + (2π)n M̄2 1
p2 +m2

)
(10.23)

This is similar to the formula by Iliopoulos et al.
At any rate, it is much easier to use the zeta-function approach (to be

explained in a moment) to get, in four dimensions:

Veff = 1
2m

2φ̄2 + V
(
φ̄
)

+

(
m2 + M̄(φ̄)2

)2

64π2

(
log

m2 + M̄(φ̄)2

µ2 − 3/2
)

(10.24)
If we follow Coleman and Weinberg and define the coupling constant in the
massless φ4

4 theory as

λ ≡ d4Veff (φ̄)
dφ̄4

∣∣∣∣∣
φ̄=M

(10.25)

we get [?]

Veff = 1
2m

2φ̄2 + λ
φ̄4

24 + λ2φ̄2

256π2

(
log

φ̄2

M2 − 25/6
)

(10.26)

10.3 Heat kernel
Let us now follow a slightly different route which is however intimately
related. We begin, following Schwinger, by considering the divergent integral
which naively is independent of λ

I(λ) ≡
∫ ∞

0

dx

x
e−xλ (10.27)
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The integral is actually divergent, so before speaking about is it has to be
regularized. It can be defined through

I(λ) ≡ lim
ε→0

I(ε, λ) ≡ lim
ε→0

∫ ∞
ε

dx

x
e−xλ (10.28)

such that
lim
ε→0

∂I(ε, λ)
∂λ

= − 1
λ

(10.29)

It follows
∴ I(λ) = − log λ+ C (10.30)

It is natural to define (for trace class 1) operators

log det ∆ = tr log ∆ ≡
∑
n

log λn (10.31)

Now given an operator (with purely discrete, positive spectrum) we could
generalize the above idea (Schwinger)

log det ∆ ≡ −
∫ ∞

0

dτ

τ
tr e−τ∆ (10.32)

The trace here encompasses not only discrete indices, but also includes an
space-time integral. Let is define now the heat kernel associated to that
operator as the operator

K(τ) ≡ e−τ∆ (10.33)

Formally the inverse operator is given through

∆−1 ≡
∫ ∞

0
dτ K(τ) (10.34)

where the kernel obeys the heat equation(
∂

∂τ
+ ∆

)
K(τ) = 0 (10.35)

In all case that will interest us, the operator ∆ will be a differential operator.
Then the heat equation is a parabolic equation(

∂

∂τ
+ ∆

)
K(τ ;x, y) = 0 (10.36)

which need to be solved with the boundary condition

K(x, y, 0) = δ(n)(x− y) (10.37)
1 In the physical Lorentzian signatura, all quantities will be computed from analytic

continuations from riemannian configurations where they are better defined. This proce-
sire is not always unambiguous when gravity is present.
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The mathematicians have studied operators which are deformations of the
laplacian of the type

∆ ≡ DµDµ + Y (10.38)

where Dµ is a gauge covariant derivative

Dµ ≡ ∇µ +Xµ (10.39)

and ∇µ is the usual covariant space-time derivative.
In the simplest case X = Y = 0 and ∇µ = ∂µ, the flat space solution

corresponding to (minus) the euclidean laplacian is given by

K0(x, y; τ) = 1
(4πτ)n/2

e−
σ(x,y)

2τ (10.40)

where the world function in flat space is simply

σ(x, y) ≡ 1
2(x− y)2 (10.41)

To be precise, the heat equation in the flat case reads(
∂

∂τ
−�

)
K (τ ;x, y) = 0 (10.42)

where
� ≡ ηµν∂µ∂ν (10.43)

is a flat metric (either minkowkian or eudlidean) and

σ(x, y) ≡ 1
2ηµν (x− y)µ (x− y)ν (10.44)

In the massive case the heat kernel is modified to

Km
0 (x, y; τ) = K0 (τ ;x, y) e

−µ
2

µ2 τ (10.45)

This can be easily checked by direct computation.
It is unfortunately quite difficult to get explicit solutions of the heat

equation except in very simple cases. This limits the applicability of the
method for computing finite determinants. These determinants are however
divergent in all cases of interest in QFT, , and their divergence is due to
the lower limit of the proper time integral. It we were able to know the
solution close to the lower limit, we could get at least some information on
the structure of the divergences. This is exactly how far it is possible to go.

The small proper time expansion of Schwinger and DeWitt is given by
a Taylor expansion

K (τ ;x, y) = K0 (τ ;x, y)
∞∑
p=0

ap (x, y) τp (10.46)
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with
a0(x, x) = 1 (10.47)

The coefficients ap (x, y) characterize the operator whose determinant is to
be computed. Actually, for the purpose at hand, only their diagonal part,
an (x, y) is relevant.

The integrated diagonal coefficients will be denoted by capital letters

An ≡
∫ √
|g| dnx an(x, x) (10.48)

in such a way that
A0 = vol ≡

∫
M

√
|g| dnx (10.49)

10.3.1 Propagators

The famous integral∫ ∞
0

dx xν−1 e−
β
x
−γx =

(
β

γ

) ν
2
Kν

(
2
√
βγ
)

(10.50)

defines the mother of all propagators(
∆ +m2

)−1
≡
∫ ∞

0
dτ Km

0 (τ ;x, t) = 1
2π

(
m

2π |x− y|

)n
2−1

Kn
2−1 (m |x− y|)

(10.51)
where

∆ ≡ −
n∑
i=1

∂2
i

|x|2 ≡
n∑
i=1

x2
i (10.52)

and Kn(x) is Bessel’s function with imaginary argument.
It is quite interesting to apply the Schwinger-deWitt expansion to the

heat kernel definition of the propagator

∆−1 (x, y) ≡
∫ ∞

0
dτ K(x, y; τ) (10.53)

The result is

∆−1 (x, y) =
∞∑
p=0

ap(x, y)
(4π)

n
2

(
σ (x, y)

2

)p−n2 +1
Γ
(
n

2 − p− 1
)

(10.54)

In n = 4 dimensions this yields

∆−1 (x, y) = a0(x, y)
(4π)2

2
σ (x, y) + a1(x, y)

(4π)
n
2

(
σ (x, y)

2

) 4−n
2

Γ
(
n− 4

2

)
+ . . .

(10.55)
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Terms with
p ≥ 2 (10.56)

are proportional to positive power of σ and they vanish in the coincidence
limit σ (x, y)→ 0. Expanding everything around n = 4 this yields (keeping
only terms that are singular when x→ y)

∆−1 (x, y) = a0(x, y)
(4π)2

2
σ (x, y) + a1(x, y)

(4π)2

(
1 + 4− n

2 log 4π
)
×

×
(

1 + 4− n
2 log σ (x, y)

2

)( 2
n− 4 − γ

)
= a0(x, y)

(4π)2
2

σ (x, y) +

+a1(x, y)
(4π)2

2
n− 4 −

a1(x, y)
(4π)2 (γ + log (2πσ (x, y))) (10.57)

The behavior of the propagator in the coincidence limit is said to be of
the Hadamard type [6]. Actually this behavior was derived for hyperbolic
equations; we see here that it is a consequence of the assumed Schwinger-
DeWitt expansion.

A different way to proceed is to put explicit IR (µ) and UV (Λ) proper
time cutoffs, such that Λ

µ >> 1. It should be emphasized that these cutoffs
are not cutoffs in momentum space; they respect in particular all gauge sym-
metries the theory may enjoy. The propagator reads then in four dimensions

∆−1 ≡
∫ µ−2

Λ−2
dτ K(x, y; τ) =

∫ µ−2

Λ−2
dτ

1
(4πτ)2

∑
p

ap(x, y) τp e
−σ(x,y)

2τ =

= 1
16π2

∑
p

ap(x, y)
(
σ(x, y)

2

)p−1 (
Γ(1− p,Λ−2)− Γ(1− p, µ−2,

)
=

= 1
16π2

{(
Γ(1,Λ−2)− Γ(1, µ−2)

)
a0(x, y) 2

σ(x, y) +

+
(
Γ(0,Λ−2)− Γ(0, µ−2)

)
a1(x, y) + . . .

}
where Γ(z, w) is the incomplete gamma function.

Let us now consider the minkowskian signature. It is well known that the
position space propagator computed with Feynman’s boundary conditions
is

1
σ (x, y)− iε (10.58)

This iε factor is responsible for the logarithmic piece of the singular behavior
of the propagator in the coincidence limit.

How can we get this imaginary part from the heat equation? The sim-
plest guess would read

K0(x, y; τ) = 1
(4πτ)n/2

e−
σ(x,y)−iε

2τ (10.59)
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which obeys the modified heat equation(
∂

∂τ
−
(
�− i ε

2τ2

))
K (τ ;x, y) = 0 (10.60)

which corresponds to p2 → p2 + iε.

10.3.2 Determinants

The determinant of the operator is then given by an still divergent integral.
Let us recall that the trace operation involves in particular taking x = y
and integrating over the whole spacetime. The short time expansion does
not arrange anything in that respect. This integral has to be regularized by
some procedure. One of the possibilities is to keep x 6= y in the exponent,
so that

log det ∆ ≡ −
∫ ∞

0

dτ

τ
trK(τ) ≡ − lim

σ→0

∫ ∞
0

dτ

τ

1
(4πτ)n/2

∞∑
p=0

τptr ap(x, y) e−
σ
4τ

(10.61)
We have regularized the determinant by point-splitting. For consistency,
also the off-diagonal part of the short-time coefficient ought to be kept.

All ultraviolet divergences are given by the behavior in the τ ∼ 0 end-
point. Changing the order of integration, and performing first the proper
time integral, the Schwinger-de Witt expansion leads to

log det ∆ = −
∫
d(vol) lim

σ→0

∞∑
p=0

σ (x, y)p−n/2

4pπn/2
Γ
(
n

2 − p
)

tr ap (x, y)

(10.62)
Here it has not been not included the possible σ dependence of

lim
σ→0

an (x, y) (10.63)

In flat space this corresponds to

(x− y)2 = 2σ → 0 (10.64)

Assuming this dependence is analytic, this could only yield higher powers
of σ, as will become plain in a moment.

The term p = 0 diverges in four dimensions when σ → 0 as

1
σ2 (10.65)

but this divergence is common to all operators and can be absorbed by a
counterterm proportional to the total volume of the space-time manifold.
This renormalizes the the cosmological constant.
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The next term corresponds to p = 2, and is independent on σ.In order
to pinpoint the divergences, When n = 4− ε it is given by

log det ∆|n=4 ≡
1

156π2 (4− n) A2 (10.66)

From this term on, the limit σ → 0 kills everything.
Using again proper time cutoffs,

log det ∆ ≡ −
∫
dτ

τ
tr K(τ) ≡ −

∫ 1
µ2

1
Λ2

dτ

τ

1
(4πτ)n/2

∑
p=0

τptr Ap [∆] (10.67)

This yields, for example in n = 4 dimensions

log det ∆ = 1
(4π)2

(
1
2Λ4 V ol +A1 [∆] Λ2 +A2 [∆] log Λ2

µ2

)
(10.68)

10.4 Zeta function
Let us recall the definition of Riemann’s ζ-function

ζR(s) ≡
∞∑
n=1

n−s (10.69)

This series converge only when

Re s ≥ 1 (10.70)

The function can be analytically continued to the whole complex plane, in
such a way that

ζR(0) = −1
2

dζR
ds

∣∣∣∣
s=0

= −1
2 log 2π (10.71)

This analytic continuation yields a sum for the divergent series
∞∑
n=1

1 = −1
2 (10.72)

Given an operator M such that

Mφn = λnφn (10.73)

we define by analogy the ζ-function associated with the operatorM , namely,

ζ(s) ≡
∞∑
n=0

λ−sn (10.74)
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so that
log detM ≡ − dζ

ds

∣∣∣∣
s=0

(10.75)

It is a fact of life that the zeta function can easily be reconstructed out
of the heat kernel, because

1
Γ(s)

∫ ∞
0

dτ τ s−1 tr K(τ) =
∞∑
n=0

λ−sn ≡ ζ(s) =

= 1
Γ(s)

∫ ∞
0

dτ τ s−1 tr

∫ √
|g|dnxK(x, x; τ) (10.76)

Let us compute the zeta function using the short time Schwinger-DeWitt
expansion for the heat kernel

ζ(s) = 1
Γ(s)

1
(4π)

n
2

∑
p

∫ ∞
0

dττ s−1+p−n2 ap (x, y) e
−σ(x,y)

2τ =

= 1
Γ(s)

1
(4π)

n
2

∑
p

4
n
2−p−s ap (x, y)) σ (x, y)s+p−

n
2 Γ

(
n

2 − p− s
)

Now the properties of Euler’s gamma function

Γ(1 + z) = z Γ(z)
Γ(z) Γ(1− z) = π

sin πz
1

Γ(z)

∣∣∣∣
z∼0

= z + γz2 + 6γ2 − π2

12 z3 +O(z4)

Γ(z − n)|z∼0 = (−1)n

n!

(1
z
− γ

)
+O(z) (10.77)

determine the zeta function around s = 0

ζ(s) = 1
1
s − γ

1
(4π)

n
2

∑
p

4
n
2−p (1− s log 4) ap (x, y)) σ (x, y)p−

n
2 ×

× (1 + s log σ(x, y)) Γ
(
n

2 − p
)(

1− s ψ0

(
n

2 − p
))

(10.78)

where ψ0(z) is the polygamma function

ψ0(z) ≡ Γ′(z)
Γ(z) (10.79)

For example, close to four dimensions

ζ(s) = 1
1
s − γ

1
(4π)

n
2

∑
p

4
n
2−p (1− s log 4) ap (x, y)) σ (x, y)p−

n
2 ×

× (1 + s log σ(x, y)) Γ
(
n− 4

2 + 2− p
)(

1− s ψ0

(
n− 4

2 + 2− p
))



130 10. ADVANCED TOPICS.

That is

ζ(s) = s

{ 1
π2

1
σ(x, y)2 a1(x, y) + 1

16π2

(
1 + 4− n

2 log 4π
)
×

× a2 (x, y) 2
n− 4

(
1 + 4− n

2 log σ(x, y))
)}

+O(s2) (10.80)

so that

ζ ′(s = 0) = 1
π2

1
σ(x, y)2 a1(x, y)+ 1

16π2 a2 (x, y)
( 2
n− 4 − log (4πσ (x, y))

)
(10.81)

The rest of the terms carry positive powers of σ(x, y).
It is also possible to perform a purely four dimensional calculation, by

introducing again proper time cutoffs.

ζ(s) = 1
Γ(s)

∫ µ−2

Λ−2
dτ τ s−1 1

(4πτ)2

∞∑
p=0

ap(x, y) τp = 1
16π2Γ(s) ×

×
∞∑
p=0

ap(x, y) 1
2− s− p

(
Λ2(s+p−2) − µ2(s+p−2

)
=

= 1
16π2Γ(s)

{
a0(x, y) 1

2− s
(
Λ2(s−2) − µ2(s−2

)
+ a1(x, y) 1

1− s
(
Λ2(s−1) − µ2(s−1

)
+

−a2(x, y) 1
s

(
Λ2s − µ2s

)
+ analytic

}
(10.82)

In the neighborhood of s = 0 this yields

ζ(s) = − s

16π2 a2(x, y) log Λ2

µ2 (10.83)

conveying the fact that

ζ ′(s = 0) = − 1
16π2 a2(x, y) log Λ2

µ2 (10.84)

It is also frequent the use of the regularization corresponding to

Λ−2 = 0
µ−2 = 1 (10.85)

in which case in the same neighborhood

ζ(s) = − 1
16π2 (1 + γs) a2(x, y) (10.86)

where we have used
1

Γ(s) = s
(
1 + γs+O(s2)

)
(10.87)
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This yields

ζ(0) = − 1
16π2 a2(x, y)

ζ ′(0) = − γ

16π2 a2(x, y) (10.88)

10.5 The Coleman-Weinberg effective potential

For the Laplace operator in flat space, which is the starting point in all
perturbative calculations,

µ2M = −
n∑
i=1

(
∂

∂xi

)2
+m2 (10.89)

We have introduced an arbitrary mass parameter, µ, to make the eigenvalues
dimensionless. One finds

K(x, y; τ) = µn (4πτ)−n/2 e−
µ2(x−y)2

4τ −m
2

µ2 τ (10.90)

This leads inmediatly to

ζ(s) = µnV

(
m2

4πµ2

)n/2−s Γ(s− n/2)
Γ(s) = µnV

(
m2

4πµ2

)n/2−s 1
(s− 1)(s− 2) . . . (s− n/2)

(10.91)
where

V ≡
∫
dnx (10.92)

and we have assumed that n ∈ 2Z. The corresponding derivative is then

dζ(s)
ds

= (4π)−n/2 V mn

(s− 1)(s− 2) . . . (s− n/2)

(
−log m

2

µ2 −

− 1
s− n/2 −

1
s− (n/2− 1) − . . .−

1
s− 1

)
(10.93)

This means that for any even dimension,

1
2 log detM = −1

2
dζ(s)
ds

∣∣∣∣
s=0

= (4π)−n/2 V m
n

(n/2)!

(
log

m2

µ2 −
(

1 + 1
2 + . . .+ 1

n/2

))
(10.94)

In n = 4 dimensions, in particular, this yields

1
2 log detM = V m4

32π2

(
log

m2

µ2 − 3/2
)

(10.95)
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When computing in background field in a massless φ4
4 theory

m2 ≡ λ

2 φ̄
2 (10.96)

in such a way that

Ve(φ̄) = λ

4! φ̄
4 + λ2φ̄4

256π2

(
log λφ̄2

2µ2 −
3
2

)
(10.97)

In order to compare with Coleman-Weinberg’s result it is necessary to re-
member that they define a coupling constant such that

λM ≡
d4Ve(φ̄)
dφ̄4

∣∣∣∣∣
φ̄=M

(10.98)

This determines a running coupling constant

λM = λ+ 3λ2

32π2

(
log λM2

2µ2 + 8
3

)
(10.99)

and the effective potential now reads

Ve(φ̄) = λ

4! φ̄
4
(
λM −

3λ2
M

32π2

(
log λMM

2

2µ2 + 8
3

))
+

+λ2
M φ̄

4

256π2

(
log λφ̄2

2µ2 −
3
2

)
(10.100)

The dependence in µ cancels as it should, and we are left with

Ve(φ̄) = λM
φ̄4

24 + λ2
M φ̄

4

256π2

(
log φ̄2

M2 −
25
6

)
(10.101)

10.6 The conformal anomaly
In the case of the standard scalar laplacian,

∆ ≡ ∇2 ≡ 1
√
g
∂µ (gµν√g∂ν) (10.102)

the conformal weight coincides with its mass dimension, λ = 2.
The new zeta function after a global Weyl transformation is given in

general by
ζ̃(s) = Ω−λs ζ(s) (10.103)

so that the determinant defined through the ζ-function scales as

det ∆̃ = Ω−λζ(0) det ∆ (10.104)
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and this modifies correspondingly the effective action

W̃ = W + λ ω ζ(0). (10.105)

where we have defined
Ω ≡ 1 + ω (10.106)

The energy-momentum tensor is defined in such a way that under a general
variation of the metric the variation of the effective action reads

δW ≡ 1
2

∫
d(vol) Tµν δgµν (10.107)

which in the particular case that this variation is proportional to the metric
tensor itself (like in a conformal transformation at the lineal level),

δgµν = −2 ω gµν (10.108)

yields the integrated trace of the energy-momentum tensor

δW = −
∫
d(vol) ωT. (10.109)

Conformal invariance in the above sense then means that the energy-momentum
tensor must be traceless. When quantum corrections are taken into account,
it follows that

−
∫
d(vol)T = λ ζ(0). (10.110)

We have already seen that

ζ(0) ≡ lim
s→0

s

∫ ∞
0

dτ τ s−1K(τ) = lim
s→0

s

∫ 1

0
dτ τ s−1K(τ) = a d

2
(10.111)

where d is the specific value of the spacetime dimension. The conformal
anomaly is usually then written as

−
∫
d(vol)T = λa d

2
. (10.112)

The Schwinger-de Witt coefficient corresponding to the physical dimension,
n = d

2 precisely coincides with the divergent part of the effective action when
computed in dimensional regularization as indicated above. This means that
in order to compute the one loop conformal anomaly in many cases it is
enough to compute the corresponding counterterm.

This argument shows clearly that when the conformal weight of the
operator of interest vanishes, λ = 0 all eigenvalues remain invariant and
there is no conformal anomaly for determinants defined through the zeta
function.
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10.7 Flat space determinants
Let us see in detail how the heat equation can be iterated to get the co-
efficients of the short time expansion for operators pertaining to flat space
gauge theories.

The small proper time expansion of the heat kernel should be substituted
into the heat equation for the gauge operator as above, It follows

∂

∂τ
K (τ ;x, y) = 1

(4π)
n
2
e−

(x−y)2
4τ

∑
p=0

(
ap

(x− y)2

4 +
(
p− n

2 − 1
)
ap−1

)
τp−2−n2

(10.113)
Now derive with respect to the coordinates

∂µK = 1
(4πτ)

n
2
e−

(x−y)2
4τ

∑
p

(
−σµ2τ ap + ∂µap

)
τp

DµK (τ ;x, y) = 1
(4πτ)

n
2
e−

(x−y)2
4τ

∑
p

(
−σµ2τ ap +Dµap

)
ap(10.114)

Finally,

DµD
µK (τ ;x, y) =

= 1
(4π)

n
2
e−

(x−y)2
4τ

∑
p

(
− n

2τ ap + (x− y)2

4τ2 ap −
∑
µ

σµ

τ
Dµap +D2ap

)
τp−

n
2 =

= 1
(4π)

n
2
e−

(x−y)2
4τ

∑
p

(
−n2 ap−1 + (x− y)2

4 ap −
∑
µ

σµ Dµap−1 +D2ap−2

)
τp−2−n2

Now in order to be an elliptic operator,in flat space we have got to define
when X = Y = 0

∆ ≡ −∂µ∂µ (10.115)

This can be easily checked with the form of the fundamental flat space
solution. Let us then agree that

∆ ≡ −DµD
µ + Y (10.116)

It follows

−∆K (τ ;x, y) =
(
D2
µ − Y

)
K =

= 1
(4π)

n
2
e−

(x−y)2
4τ

∑
p

(
−n2 ap−1 + (x− y)2

4 ap −
∑
µ

σµ Dµap−1 −∆ap−2

)
τp−2−n2

(where σµ ≡ (xµ − yµ)).
The more divergent terms are those in τ−2−n2 , but they do not give

anything new
a0
4 (x− y)2 = a0

4 (x− y)2 (10.117)
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The next divergent term (only even p contribute to the expansion without
boundaries) is τ1−n2

− n

2 a0 = −n2 a0 − σ.Da0 (10.118)

ao that we learn that
σ.Da0 = 0 (10.119)

Generically,(
p− n

2 − 1
)
ap−1 = −n2 ap−1 − σ.Dap−1 −∆ap−2 (10.120)

which is equivalent to

(p+ 1)ap+1 = −σ.Dap+1 −∆ap (10.121)

Taking the covariant derivative of the first equation,

Dλ(σµDµa0) = 0 = Dλa0 + σµDλDµa0 (10.122)

the first coincidence limit follows

[Dµa0] = 0 (10.123)

(please note that [a0] = 1 which we knew already, does not imply the
result.) Taking a further derivative, we get

[(DµDν +DνDµ)a0] = 0 (10.124)

whose trace reads [
D2a0

]
= 0 (10.125)

The usual definition
Wµν ≡ [Dµ, Dν ] (10.126)

implies

[DµDν a0] = 1
2 [([Dµ, Dν ]− + {Dµ, Dν})a0] = 1

2Wµν (10.127)

where the fact has been used that

[a0] = 1 (10.128)

Taking p = 0 in (10.121)

− a1 = ∆a0 + σ.Da1 (10.129)

so that
[a1] = − [∆a0] =

[
D2 − Y

]
a0 = −Y (10.130)
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(since ∆ = −D2 + Y ). When p = 1 in (10.121)

− 2a2 = ∆a1 + σ.Da2 (10.131)

so that
[a2] = −1

2 [∆a1] (10.132)

Let us derive again the p = 0 expression before the coincidence limit, namely
We get

−Dµa1 = Dµ∆a0 +Dµ (σ.Da1) = Dµ∆a0 +Dµa1 + σλDµDλa1 (10.133)

Then
− 2Dµa1 = Dµ∆a0 + σλDµDλa1 (10.134)

Deriving once more, this implies at the coincidence limit

− 2
[
D2a1

]
=
[
D2∆a0

]
+
[
D2a1

]
(10.135)

Then [
D2a1

]
= −1

3
[
D2∆a0

]
(10.136)

in such a way that

− [∆a1] ≡
[
D2a1

]
− [Y a1] = 1

3
[
D2D2a0

]
− 1

3D
2Y + Y 2 (10.137)

Now deriving three times the equation (10.119)(
Dµ2Dµ1 +Dµ1Dµ2 + σλDµ2Dµ1Dλ

)
a0 = 0(

Dµ3Dµ2Dµ1 +Dµ3Dµ1Dµ2 +Dµ2Dµ1Dµ3 + σλDµ3Dµ2Dµ1Dλ

)
a0 = 0

(Dµ4Dµ3Dµ2Dµ1 +Dµ4Dµ3Dµ1Dµ2 +Dµ4Dµ2Dµ1Dµ3 +Dµ3Dµ2Dµ1Dµ4+

+σλDµ4Dµ3Dµ2Dµ1Dλ

)
a0 = 0 (10.138)

(DδDσDρDµ+DδDσDµDρ+DδDρDµDσ+DσDρDµDδ+σλDδDσDρDµDλ)a0 = 0
(10.139)

Contracting with ηµ4µ3ηµ1µ2

2
[
(D2D2 +DµD2Dµ)a0

]
= 0 (10.140)

and contracting instead with ηµ4µ2ηµ3µ1

2 [(DµDνDµDν)a0] +
[
DµD2Dµa0

]
+
[
D2D2a0

]
= 0 (10.141)

so that also
[(DµDνDµDν)a0] = 0 (10.142)
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Now

[(DσDµDµDσ)a0] = [(DµDσDµDσa0 +W σµDµDσa0] (10.143)

It follows that[
DαD2Dαa0

]
= 0 +W σµ [DµDσa0] = −1

2W
2 (10.144)

so that [
D2D2a0

]
= 1

2W
2 (10.145)

and finally

[a2] = −1
2 [∆a1] = 1

6
[
D2D2a0

]
+ 1

2Y
2 + 1

6D
2Y = 1

12W
2 + 1

2Y
2 + 1

6D
2Y

(10.146)
The final expression for the divergent piece of the determinant of the flat

space gauge operator reads

log det ∆ = − 2
(4− n)

i

(4π)2

∫
dnx tr

( 1
12W

µνWµν + 1
2Y

2
)

(10.147)

(the term in D2Y vanishes as a surface term).
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10.8 The Casimir effect
Let us work out the simplified case of scalar Dirichlet boundary conditions
in

x = 0, a (10.148)
The frequencies are now quantized

λn = π

a
N (10.149)

Define as usual
ζ(s) ≡

∑
n

λ−sn =
∑
n

(
πn

a

)−s
(10.150)

This is closely related to the original Riermann’s zeta function

ζR(s) ≡
∞∑
n=1

n−s (10.151)

and actually the vacuum energy can be defined to be given by

E(a) ≡ 1
2
∑

λn ≡
1
2ζR(−1) = − 1

24a (10.152)

In three dimensions the resulting force is

F (a) ≡ −dE(a)
da

= − π2~c
240a4A (10.153)

where A is the area of the walls.
Let us now examine to what extent this result is regularization indepen-

dent. Casimir himself proposed the following general regularization

E(a) ≡ π

2
∑
n

n

a
f

(
n

aΛ

)
(10.154)

where f(x) is a function of which more in a moment. Consider a finite
space with length 0 ≤ x ≤ L with the plates inside separated by a distance
0 ≤ x ≤ a. The total energy of the L− a side of the plates will be

E (L− a) = π

2 (L− a) Λ2∑
n

n

(L− a)2Λ2 f

(
n

(L− a)Λ

)
(10.155)

In the continuum limit (L→∞)

E (L− a) 0 = π

2 L Λ2
∫
dx x f(x)− π

2 a Λ2
∫
dx x f(x) (10.156)

The first term is independent of a. Now, doing the change of variables
x ≡ n

aΛ in the second, we have

E ≡ E(a) +E(L− a) = CL + π

2a

(∑
n

nf( n
aΛ)−

∫
ndnf

(
n

aΛ

))
(10.157)
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This is given by the Euler-MacLaurin formula

N∑
n=1

F (n)−
∫ N

0
F (n)dn = F (0) + F (N)

2 +F ′(N)− F ′(0)
12 +. . .+Bj

F (j−1)(N)− F (j−1)(0)
j! +. . .

(10.158)
where Bj are Bernoulli’s numbers. For us

F (n) ≡ nf
(
n

aΛ

)
(10.159)

We conclude that

E = CL −
πf(0)
24a −

B4
4!

3π
2a3Λ2 f ′′(0) + . . . (10.160)

Then the class of regulator with

f(0) = 1
lim
x→∞

x f (j)(0) = 0 (10.161)

all yield the same value for the Casimir energy.
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10.9 First quantized QFT and one dimensional quan-
tum gravity.

Let us consider the lagrangian for a free massive relativistic particle

S = 1
2

∫
e(τ)dτ

( 1
e2 ẋ

2 +m2
)

(10.162)

Under a reparameterization the einbein behaves as

edτ = e′dτ ′ (10.163)

Then the canonical momenta

pµ = m
ẋµ
e

(10.164)

ao that the hamiltonian reads

H = pµẋ
µ − L = ep2

m
− ep2

2m −
em2

2 = e
p2 −m2

2 (10.165)

Let us now consider the probability amplitude from propagation from a
point x to another pont y. The only invariant of the path from the two
pints is the proper length, T .

K(x, y) ≡
∫ ∞

0
dT 〈y|e−TH |x〉 =

∫ ∞
0

dT

∫
dnp

(2π)n e
ip(x−y)e−

T
2 (p2−m2) =∫

dnp

(2π)n e
ip(x−y) 2

p2 −m2 (10.166)

In order to take into account interatcions, consider a one-dimensional graph
connecting a number of external points x1 . . . xn

Γ (x1 . . . xn) (10.167)

through some vertices located at points y1 . . . ym.
We have to integrate over all proper lengths of the internal lines connect-

ing the different points y1 . . . ym. This yields a propagator for each internal
line.

The integration over the positions of the vertices y1 . . . ym themselves
then yield momentum conservation at each vertex.

Eventually all Feynman rules are reconstructed in the first quantized
formalism.

This shows an intimate relationship between QFT and one dimensional
quantum gravity, not unlike the relationship between string theory and
CFT2. Let us now be more specific and compute the scalar effective ac-
tion in an electromagnetic background. We start from

L = φ+D2φ (10.168)
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where

Dµ ≡ ∂µ − igAµ (10.169)

We have

Γ[A] = − log det
(
−D2

)
=
∫ ∞

0

dτ

τ

∫
d4p

(2π)4 〈p|e
− 1

2 eτ(p−gA)2
|p〉 =

=
∫ ∞

0

dτ

τ
N

∫
Dx e−

∫ τ
0 ds 1

2e ẋ
2+igA[x(s)].ẋ (10.170)

With minkowskian signature

Γ[A] =
∫ ∞

0

dτ

τ
N

∫
Dx e−

∫ τ
0 ds 1

2e ẋ
2
eig
∮
A[x(s)] (10.171)

which is just the expectation value of a Wilson loop. We shall assume
this formula to remail true also in the non-abelian case, with the trivial
modifications.

Let us now expand this action to order gN .

ΓN [A] = (ig)N

N !

∫ ∞
0

dτ

τ
N

∫
Dx e−

∫ τ
0 ds 1

2e ẋ
2

Tr
N∏
i=1

∫ τ

0
dsiA [x(si)] .ẋ(si)

(10.172)
Insert now for Aµ a sum of states with outgoing momentum ki, polarization
εi and gauge charge Ta

Aµ(x) ≡
N∑
i=1

T aiεµi e
ikix (10.173)

where T ai belongs to the appropiate representation for the scalar field. Keep-
ing onpy the terms in which each mode appears precisely once,

ΓN (k1 . . . kN ) = (ig)N
∫ ∞

0

dτ

τ
N

∫
Dx e−

∫ τ
0 ds 1

2e ẋ
2

Tr (T aN . . . T a1)
N∏
i=1

∫ si+1

0
dsi εi.ẋ(si) eikix(si) (10.174)

Let us first neglect the polarizations. The total source reads

Jµ(s) =
N∑
j=1

ikµj δ (σ − σj) (10.175)
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Then

ΓN (k1 . . . kN ) = 4(ig)N

(4π)2e2 Tr (T aN . . . T a1)
∫ ∞

0

dτ

τ3

N∏
i=1

dsi ×

×e−
1
2

∫ τ
0 ds

∫ τ
0 ds′Jµ(s)GB(s,s′)ηµνJν(s′) =

= ΓN (k1 . . . kN ) = 4(ig)N

(4π)2e2 Tr (T aN . . . T a1)
∫ ∞

0

dτ

τ3

N∏
i=1

dsi ×

×e
1
2
∑N

i,j=1 ki.kjGB(si,sj) (10.176)

Here GB is a one-dimensional Green’s function, to be discussed in a moment.
Before doing that, let us take care of the polarizations. The standard methos
is to exponentiate them, keeping only linear terms. This changes the sources

Jµ(s) =
N∑
i=1

δ(s− si) (εµi ∂si + ikµi ) (10.177)

Now we get

ΓN (k1 . . . kN ) = ΓN (k1 . . . kN ) = 4(ig)N

(4π)2e2 Tr (T aN . . . T a1)
∫ ∞

0

dτ

τ3

N∏
i=1

dsi ×

×e
1
2
∑N

i,j=1 ki.kjGB(sj−si)−2iki.εj∂sjGB(sj−si)−εi.εj∂2
sjsi

GB(sj−si)
∣∣∣∣
linear in each εi

(10.178)

The bosonic Green function obeys

e−1 ∂
2

∂s2 GB
(
s, s′

)
= δ

(
s− s′

)
(10.179)

On the real line the solution reads

GB
(
s, s′

)
= e

2 log |s− s′|+ C1 + C2s (10.180)

On a circle of circumference τ we have to modify the equation

e−1 ∂
2

∂s2GB
(
s, s′

)
= δ

(
s− s′

)
− 1
τ

(10.181)

and the periodic solution is

GB
(
s, s′

)
= e

2

(
log |s− s′| − (s− s′)2

τ

)
(10.182)

Now do a few things

• Owing to the fact that GB(s, s) = 0 as well as ∂GB(s, s) = 0, the
terms in εi.ki as well as the terms with k2

i can be removed without the
use of the EM.
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• Replace
si → uiτ (10.183)

This factors out N powers of τ .

• The integral over dsN is trivial. Also fix the origin of proper time by
choosing

sN ≡ τ (10.184)

• Choose the gauge
e = 2 (10.185)

• Perform the momentum integrals in

n = 4− ε (10.186)

dimensions.
Then we get

ΓN (k1 . . . kN ) =

(
igµ

ε
2
)N

(4π)2− ε2
Tr (T aN . . . T a1)∫ ∞

0

dτ

τ
3−N ε

2

∫ 1

0
duN−1

∫ uN−1

0
duN−2 . . .

∫ u2

0
du1 e

∑N

i<j=1 ki.kjG
ji
B

e
∑N

i<j=1(−iki.εj−kj .εi)ĠjiB+εi.εjG̈jiB
∣∣∣∣
linear in each ε

(10.187)

The Green functions read

GB = τ
(∣∣u− u′∣∣− (u− u′)2)

ĠB = sign
(
u− u′

)
− 2

(
u− u′

)
G̈B = 2

τ

(
δ
(
u− u′

)
− 1

)
(10.188)

The term

e
∑N

i<j=1 ki.kjG
ji
B = e

τ
∑N

i<j=1 ki.kj(|u−u′|−(u−u′)2) (10.189)

after integrating over dτ yields the usual Feynman parametrized denomina-
tor corresponding to a scalar loop integral.

The integral∫ ∞
0

dττae
∑N

i<j=1 ki.kjG
ji
B = Γ (1 + a)(

−
∑N
i<j=1 ki.kj

(
|u− u′| − (u− u′)2

))1+a

(10.190)
and the remaining term

e
∑N

i<j=1(−iki.εj−kj .εi)ĠjiB+εi.εjG̈jiB
∣∣∣∣
linear in each ε

(10.191)

provides the numerator of the Feynman parameter integral. More details
can be found in Strassler’s paper [14] and references therein.
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The singlet chiral anomaly.

Consider a set of left and right fermions in an external gauge field

L = ψ̄i /D(A)ψ = ψ̄Li /D(A)ψL + ψ̄Ri /D(A)ψR (11.1)

When necessary, we shall use Weyl’s representation of Dirac’s gamma ma-
trices

γ0 =
(

0 1
1 0

)
(11.2)

and

γi =
(

0 −~σ
~σ 0

)
(11.3)

In this form, the operator i/∂ reads

/∂ =
(

0 i∂0 + i~σ~∇
i∂0 − i~σ~∇ 0

)
(11.4)

Finally

γ5 ≡ iγ0γ1γ2γ3 =
(

1 0
0 −1

)
(11.5)

is such that
{γ5, γµ} = 0 (11.6)

In that way the left and right projectors

PL ≡
1
2(1 + γ5) =

(
1 0
0 0

)
(11.7)

as well as

PR ≡ 1− PL =
(

0 0
0 1

)
(11.8)
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. To be specific

ψ =
(
ψL
ψR

)
(11.9)

It is plain that
ψ̄L ≡ (PLψ)+γ0 = ψ+PLγ0 = ψ̄PR (11.10)

Kinetic energy terms do not mix chiralities

L = ψ̄i /Dψ = ψ̄Li /DψL + ψ̄Ri /DψR (11.11)

which is not the case with either masses or Yulawa couplings

Lm ≡ ψ̄mψ = ψ̄LmψR + ψ̄RmψL (11.12)

Charge conjugates are defined by

ψc = −γ2ψ
∗ =

(
σ2ψ

∗
R

−σ2ψ
∗
L

)
(11.13)

Let us also recall the well-known fact that the whole action cal be expressed
in terms of left-handed fields

(ψ̄c)L = (0, ψTRσ2) (11.14)

Also
(ψ̄c)R = (−ψTLσ2, 0) (11.15)

In fact

(ψ̄c)Li /D(ψc)L = ψRσ2(i∂0 − i~σ~∇)σ2ψ
∗
R =

ψTR(i∂0 + i~σ∗~∇)ψ∗R = −i∂0ψ
+
RψR − i~∇ψ

+
R~σψR (11.16)

(we have taken into account that σ∗i = −σ2σiσ2). Integrating by parts this
yields

iψ+
R∂0ψR + iψ+

R~σ
~∇ψR (11.17)

which is precisely
ψ̄Ri /DψR (11.18)

All this holds independently of the structure of any non-spinorial indices the
fermions may have

For example, if we have a Dirac spinor with a flavor index i = 1 . . . N ,
we can always define a 2N left component spinor

Ψ ≡
(
ψL
ψcL

)
(11.19)
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The kinetic energy piece reads

L = Ψ̄i /DΨ (11.20)

and is U(2N) invariant under

δΨ = iUΨ (11.21)

Majorana spinors ara self-conjugate ψ = ψc. Then

ψM =
(

ψL
−σ2ψ

∗
L

)
(11.22)

Both Weyl and Majorana spinors have only two complex independent com-
ponents, which is half those of a Dirac spinor.

Majorana masses are couplings of the form

Mψ̄MψM = −M
(
ψTLσ2ψL + ψ+

Lσ2ψ
∗
L

)
(11.23)

and they violate fermion number conservation.
This lagrangian is invariant under two different global transformations.

This first is the vector one

δψ = iεψ (11.24)

that is

δψL = iεψL

δψR = iεψR (11.25)

The corresponding Noether current is fermion number conservation

jµ = ψ̄γµψ (11.26)

The second symmetry is the axial or chiral

δψ = iεγ5ψ (11.27)

that is
δψL = iεψL (11.28)

δψR = −iεψR (11.29)

The corresponding Noether current reads

jµ5 ≡ ψ̄γ5γ
µψ (11.30)

It is plain that

ψ̄γµψ = ψLγ
µψL + ψ̄Rγ

µψR

ψ̄γ5γ
µψ = ψLγ

µψL − ψ̄RγµψR (11.31)
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What happens is that in quantum mechanics there is an anomaly in the
latter current. Besides, thie anomaly is a total derivative.

∂µj
µ
5 ≡ A = g2

16π2 tr ε
αβµνFαβFµν = g2

4π2 ε
αβγδTr ∂α

(
Aβ∂γAδ + 2

3AβAγAδ
)

(11.32)
The abelian anomaly does not signal any inconsistency, but it has some
important phenomenological consequences.

The fact that we keep conservation of the vector current implies that the
left anomaly is equal and opposite in sign from the right anomaly.

∂µj
µ
L ≡ ∂µ(ψ̄LγµψL) = −∂µjµR ≡ −∂µ(ψ̄RγµψR) = 1

2A (11.33)

This anomaly is called the abelian anomaly, although it is present also in
nonabelian theories.

There is also a non abelian anomaly in the non abelian current

jaµ ≡ ψ̄γµT a P+ ψ (11.34)

namely

Dµj
µ
a = 1

24π2 Tr Ta ε
αβγδ∂α

(
Aβ∂γAδ + 1

2AβAγAδ
)

(11.35)

It is striking the similarity of this expression with the abelian anomaly
[11.32]. It is no less remarkable the difference betewen the factor 2

3 and
the factor 1

2 in the trilinear terms.
Anomalous theories are believed to be inconsistent insofar as the anoma-

lous current is coupled to gauge fields. In the standard model they cancel
generation by generation between left and right contributions. Let us first
concentrate in the abelian anomaly.

11.0.1 The Adler-Bell-Jackiw computation.

It is still worth looking in detail to the old fashioned perturbative calculation
in massless QED with external vector and axial sources. Define

∆5
λµν(k1, k2) ≡ F〈0|TJ5

λ(0)Jµ(x1)Jν(x2)|0〉 (11.36)

The diagrams give

∆5
λµν(k1, k2) = i

∫
d4p

(2π)4 Tr γλγ5
1

/p− /k1 − /k2
γν

1
/p− /k1

γµ
1
/p

+

+γλγ5
1

/p− /k1 − /k2
γµ

1
/p− /k2

γν
1
/p

(11.37)
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Figure 11.1: Triangle diagram
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and
Ward’s identity for the vector current (current conservation) implies

kµ1 ∆5
λµν = kν2∆5

λµν = 0 (11.38)

and the axial Ward identity

(k1 + k2)λ∆5
λµν = 0 (11.39)

Let us impose the vector current conservation, that is

kµ1 ∆5
λµν(k1, k2) = i

∫
d4p

(2π)4 Tr
{
γλγ5

1
/p− /k1 − /k2

γν
1

/p− /k1
/k1

1
/p

+

γλγ5
1

/p− /k1 − /k2
/k1

1
/p− /k2

γν
1
/p

}
(11.40)

The integrand can also be written as

kµ1 ∆5
λµν(k1, k2) = i

∫
d4p

(2π)4 Tr
{
γλγ5

1
/p− /q

γν

( 1
/p− /k1

− 1
/p

)
+

+γλ γ5

( 1
/p− /q

− 1
/p− /k2

)
γν

1
/p

}
=

i

∫
d4p

(2π)4 Tr
(
γλγ5

{ 1
/p− /q

γν
1

/p− /k1
− 1
/p− /k2

γν
1
/p

})
(11.41)

This naively vanishes; it is just necessary to make the change of integration
variable

p− k1 → p (11.42)

But this is not kosher, because the integral does not converge, and we better
be careful.

Let us examine what are the consequences of an arbitrary shift in the
integration variable

p→ p+ a (11.43)

kµ1 ∆5
λµν(a, k1, k2) = i

∫
d4p

(2π)4 tr γλγ5

{ 1
/p+ /a− /q

γν
1

/p+ /a− /k1
−

− 1
/p+ /a− /k2

γν
1

/p+ /a

}
We shall compute the difference

[
k1∆5

]
λν
≡ kµ1

(
∆5
λµν(a, k1, k2)−∆5

λµν(a = 0, k1, k2)
)

(11.44)
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Using Stokes’theorem ,∫
dnp

(
f(p+ a)− f(p)

)
=
∫
dnp aµ

∂

∂pµ
f(p) + . . .

= aµnµ f∞ Sn−1 (11.45)

(where

nµ ≡ lim
p→∞

pµ

p
∈ Sn−1

lim
p→∞

pµpν

p2 = ηµν (11.46)

that is, assuming that the asymptotic value of the function does not depend
on the polar angles

lim
p→∞

f(p) = f∞ (11.47)

Our function is given by

f(p) ≡ Tr
(
γλγ5

1
/p− /k2

γν
1
/p

)
= ελµνρ

kµ2 p
ρ

(p− k2)2p2 (11.48)

What we actually would really like to compute is the difference between
doing that with a1 = a and doing it with a2 = a− k1. This is

k1
µ lim

Λ→∞

Λµ

Λ (2π2k3)γλγ5(/Λ− /k2)γν /Λ
(Λ− k2)2Λ2 = −2π2ik1

µ lim
Λ→∞

Λµ

Λ Λ3 1
Λ4 ελρνσk

ρ
2Λσ =

= −i2π2k1
µελρνσk

ρ
2η
µσ (11.49)

This yields a nonvanishing, independent on the value of the shift a, and
finite value for the vector Ward identity.

kµ1 ∆5
λµν = 2iπ2 1

(2π)4k
µ
1k

ρ
2ελρνµ (11.50)

It looks that there is no possible way to keep vector symmetry in the quan-
tum theory. This would mean that QED does imply quantum violation of
electric charge conservation.

In order to clarify the issue, let us go back to basics and define yet
another shift-dependent correlator, before imposing any Ward identity. Our
purpose in life is to examine what are the possibilities of imposing current
conservation.

∆5
λµν(a, k1, k2) = i

∫
d4p

(2π)4 Tr
{
γλγ5

1
/p+ /a− /k1 − /k2

γν
1

/p+ /a− /k1
γµ

1
/p+ /a

+

γλγ5
1

/p+ /a− /k1 − /k2
γµ

1
/p+ /a− /k2

γν
1

/p+ /a

}
(11.51)
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Let us compute again the object [∆]. The function we have to analyze
is now

f(p) ≡ Tr γλγ5
1

/p− /q
γν

1
/p− /k1

γµ
1
/p

= Tr
γλγ5

(
/p− /q

)
γν
(
/p− /k1

)
γµ/p

(p− q)2 (p− k1)2 p2

(11.52)
Traces are easily computed

Tr
(
γλγ5/pγν/pγµ/p

)
= Tr γλγ5(2ηνµ1 − γνγµ1)γµ2(2ηµ3ν − γµ3γν)pµ1pµ2pµ3 =

= Tr γλγ5γνp
2γµ3γµp

µ3 (11.53)

This leads to the expression

[
∆λµν

5

]
= 4i

8π2 lim kαkβ
k2 εβνµλ + (µ, k1 → νk2) = i

8π2aαε
ανµλ (11.54)

Let us now consider the most general shift we can imagine, namely a linear
combination of the momenta k1 and k2

a ≡ x(k1 + k2) + y(k1 − k2) (11.55)

leading to[
∆5
λµν

]
≡ ∆5

λµν(a)−∆5
λµν(a = 0) = iy

4π2 ελµνσ(k1 − k2)σ (11.56)

because the piece linear in q ≡ k1 + k2 disappears when symmetrizing on
(µ, k1)↔ (νk2).

There is an ambiguity in the momentum over which we integrate. The
most general choice would be

k → k + λ1k1 + λ2k2 (11.57)

Doing that we get for the vector current

kµ1M
5
λµν = 1

4π2 (1− λ1 + λ2) ελνρσ k1
ρk

2
σ (11.58)

as well as
qλM5

λµν = 1
4π2 (λ1 − λ2) εµνρσ k1

ρk
2
σ (11.59)

Then we can choose
λ2 − λ1 = 1 (11.60)

in order to implement vector current conservation; but then

qλM5
λµν = 1

4π2 εµνρσ k1
ρk

2
σ (11.61)
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11.0.2 Pauli-Villars regularization.

The Pauli-Villars regularization is a gauge invariant way of introducing a
cutoff. The main idea stems from the fact that the difference of two propa-
gators behaves much better at infinity than each one separately.

1
p2 −m2 −

1
p2 −M2 = m2 −M2

(p2 −m2)(p2 −M2) (11.62)

Of course the minus sign in from of the propagator is not physical, and
indicates that the corresponding particle is a ghost. One must make sure
that all unwanted ghostly efects are gone when M → ∞. This regulariza-
tion works best with fermion loops (like the one appearing in the abelian
vacuum polarization diagram), which can be understood as the determinant
of Dirac’s operator

det i /Dm (11.63)

where
i /Dm ≡ i/∂ − e /A−m (11.64)

Then we substitute instead of the determinant the quantity

det i /Dm

i=n∏
i=i

(
det i /DMi

)ci (11.65)

or what is the same,

Tr log i /Dm +
i=n∑
i=i

ciTr log
(
i /DMi

)
(11.66)

The coefficients ci cannot be all positive, because they have to obey∑
ci + 1 = 0∑

i

ciM
2
i +m2 = 0 (11.67)

This means that in general the regulators will violate the spin-statistics
theorem,id est , they are ghosts.

In order to compute the j-th determinant we write

Tr log i /DMj
= Tr log

(
i/∂ −Mj

) (
1− e(i/∂ −Mj)−1 /A

)
=

= Tr log
(
i/∂ −Mj

)
+ Tr log

(
1− e(i/∂ −Mj)−1 /A

)
=

N +
∞∑
n1

(−e)n

n
Tr
∫
d4x1d

4x2 . . . d
4xn /A(x1)Sj(x1 − x2) /A(x2) . . . /A(xn)Sj(xn − x1)

where N is a divergent constant and(
i/∂ −Mj

)−1 ≡ Sj(x− y) (11.68)
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(we can include as well the physical mass asM0 ≡ m). The Pauli-Villars’regulator
loop in momentum space is proportional to

∫
d4k1 . . . d

4kn

∫
d4p

Tr
(
γµ1(/p+Mj)γµ2(/p+ /k1 +Mj) . . . γµn(/p+ /kn−1 +Mj)

)
(p2 −M2

j )((p+ k1)2 −M2
j ) . . . ((p+ kn−1)2 −M2

j )
×

×Aµ1(k1) . . . Aµn(kn) δ(4)(k1 + k2 + . . . kn) (11.69)

Given the fact that the numerator of the integrand has mass dimension n
whereas the denominator has mass dinension 2n, the superficial degree of
divergence of this diagram is

D = 4− n (11.70)

This means that all terms with n ≤ 4 will be divergent. We can represent
the integrand as a power series in the masses (Pλ(p) represents a polynomial
in p of degree λ).

Pn(p) +M2
j Pn−2(p) + . . .+Mn

j

P2n(p) +M2
j P2n−2(p) + . . .+M2n

j

=
Pn(p)

(
1 +M2

j
Pn−2(p)
Pn(p) + . . .+Mn

j
1

Pn(p)

)
P2n(p)

(
1 +M2

j
P2n−2(p)
P2n(p) + . . .+M2n

j
1

P2n(p)

) =

= Pn(p)
P2n(p)

(
M2
j

(
Pn−2(p)
Pn(p) −

P2n−2(p)
P2n(p)

)
+ . . .

)
(11.71)

The net contribution of the regulators is the sum of all this terms weighted
with cj . The coefficient of Mλ

j behaves at large momenta as p−n−λ. If the
weights are chosen to obey the conditions as above, this cancels the terms
in M0

j (behaving as Λ4−n) and M2
j (behaving as Λ2−n). This is enough in

or case. In other situations, we maight have to impose extra conditions to
the coefficients cj .

For our purposes, it is enough to consider a single regulator of mass
M . The physical limit will be m → 0 and M → ∞. In the regularized
theory, with finite M , we can safely perform changes of variables in the
finite integrals

∆PV
λµν(k1, k2) ≡ ∆λµν(m)−∆λµν(M) (11.72)

The axial Ward identity reads

qλ∆λµν ≡ lim
M→∞

[2m∆µν(m)− 2M∆µν(M)] (11.73)

Let us compute the diagram corresponding to the regulator

∆µν(M) = −i
∫

d4p

(2π)4 tr

(
i

/p−M + iε
γ5

i

/p− /q −M + iε
γν

i

/p− /k1 −M + iε
γµ −

i

/p−M + iε
γ5

i

/p− /q −M + iε
γµ

i

/p− /k2 −M + iε
γν

)
(11.74)
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Introducing Feynman parameters,

∆µν(M) = −
∫

d4p

(2π)4 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

Tr (/p+M)γ5(/p− /q +M)γν(/p− /k1 +M)γµ
[(p2 −M2)x2 + ((p− q)2 −M2)(1− x1 − x2) + ((p− k1)2 −M2)x1]3 −

(k1 ↔ k2)(µ↔ ν) (11.75)

The only way we could possibly get a nonvanishing trace is with four Dirac
matrices besides the γ5. The full set of terms in the numerator reads

/pγ5/qγνMγµ + /pγ5Mγν(/p− /k1)γµ +
+Mγ5(/p− /q)γν(/p− /k1)γµ −Mγ5/pγν /k1γµ (11.76)

All those terms cancel but one.

MTr γ5/qγν /k1γµ = M4iεβναµkµ2kα1 + (k1 ↔ k2)(µ↔ ν) (11.77)

ending up with

∆µν =
∫

d4p

(2π)4 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

2M4iεµναβkα1 k
β
2

[p2 − 2pk −N2]3 (11.78)

where
k ≡ q(1− x1 − x2) + k1x1 (11.79)

and
N2 ≡M2 − q2(1− x1 − x2)− k2

1x1 (11.80)

The momentum integral is a particular instance of∫
dnp

(p2 − 2pk −N2)a = i1−2aπn/2
Γ(a− n/2)

Γ(a)
1

(k2 +N2)a−n/2
(11.81)

The final result is then

lim
M→∞

2M∆µν(M) = lim
M→∞

1
(2π)4

π2

2i
1
M2 2M2M4iεµναβkα1 k

β
2 2
∫ 1

0
dx1

∫ 1−x1

0
dx2 =

1
2π2 εµναβk

α
1 k

β
2 (11.82)

From this Pauli-Villars viewpoint, all the anomaly comes from the regulator.

11.0.3 Dimensional Regularization.

The problem of dimensionally regularizing chiral fermions is a nototious one.
The reason is that the number of components of a fermion grows as 2n, as
do the dimensions of gamma-matrices. Also, the definition of γ5 (which is
defined at any rate in even dimensions only) is dimension-dependent.
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After some trial and error it is nowadays clear that the best definition
of γ5 in dimensional regularization is the one initially proposed by ’t Hooft
y Veltman [3]:

{γ5, γµ} = 0 (µ = 0 . . . 3)
[γ5, γµ] = 0 (µ = 4 . . . n− 1) (11.83)

The diagram we have to consider is

δλµν = −
∫

d4p

(2π)4
dn−4P

(2π)n−4 tr
1

/p+ /P
γλγ5

1
/p+ /P − /q

γν
1

/p+ /P − /k1
γµ

−(k1 ↔ k2)(µ↔ ν) (11.84)

where we have been careful in distinguishing

/p ≡
3∑
0
γµp

µ (11.85)

from the extra components

/P ≡
n−1∑

4
Pµγµ (11.86)

Again, once the theory is regularized, we can translate the integration vari-
ables

p→ p+ k1 (11.87)

The axial Ward identity reads

qλ∆λµν = −
∫

d4p

(2π)4
dn−4P

(2π)n−4
tr (/p+ /P + /k1)/qγ5(/p+ /P − /k2)γν(/p+ /P )γµ
[(p+ k1)2 − P 2][(p− k2)2 − P 2][p2 − P 2]

+(k1 ↔ k2)(µ↔ ν) (11.88)

The rules of the game mean that

/p/p = p2

/P /P = −P 2

/p/P + /P/p = 0
(/p+ /P )(/a+ /P ) = p2 − P 2 (11.89)

There are 18 different terms in the numerator. The computation simplifies
using

Tr γ5γαγβγµγνγργσ = i

2

(
ηρσεαβµν−ηνσεαβµρ+ησµεαβνρ−ηβσεαµνρ+ησαεβµνρ

)
(11.90)
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The only surviving terms after taking the trace are the ones proportional to
/P /P :

4 Tr γ5γµγν /k1/p

∫
d4p

(2π)4
dn−4P

(2π)n−4
P 2

[p2 − P 2][(p+ k1)2 − P 2][(p− k2)2 − P 2]
(11.91)

Introducing Feynman parameters and performing the momentum integral
we get

16iεµναβkα1 k
β
2

1
(2π)4

π2

2i 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

dn−4P

(2π)n−4
P 2

P 2 + f(x1, x2) (11.92)

The last integral is a particular instance of∫
dnP

(2π)n
(P 2)a

(P 2 + f)b = fa+b+n/2

(2
√
π)n

Γ(a+ n/2)Γ(b− a− n/2)
Γ(n/2)Γ(b) (11.93)

so that the physical four-dimensional limit

lim
n→4

∫
dn−4P

(2π)n−4
P 2

P 2 + f(x1, x2) = −1 (11.94)

where the finite value is the result of a cancellation

0×∞ (11.95)

due to the product
Γ(−ε)
Γ(ε) (11.96)

These operators are often dubbed evanescent operators.
Finally we recover the result

qλ∆λµν = − 1
2π2 εµναβk

α
1 k

β
2 (11.97)

11.0.4 Anomalies as due to non-invariante of the functional
integral measure.

This way of looking to the anomaly is due to Fujikawa [?]. The starting
point is the formal definition of Berezin’s functional integral measure∏

x

Dψ̄(x)Dψ(x) (11.98)

Giving the fact that ∫
dψψ = 1, (11.99)

then ∫
d(λψ)λψ = 1 (11.100)
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which implies
d(λψ) = 1

λ
dψ. (11.101)

The infinitesimal version of the jacobian of the transformation (11.28)

ψ′(x) = eiεγ5ψ(x)
ψ̄′ = ψ̄eiεγ5

Dψ′Dψ̄′ = e−2iεγ5DψDψ̄ (11.102)

will then be
J ≡ det (1− 2iε(x)γ5) (11.103)

id est
log J = −2 i tr ε(x)γ5δ(x− y) (11.104)

The only thing that remains is to give some precise sense to the above
expression. In order to perform the trace, we shall use a complete set of
eigenfunctions of Dirac’s operator

/Dφn(x) ≡ (/∂ − ig /A)φn(x) = λnφn(x). (11.105)

Let us regularize as follows

i

2 log J =
∑
n

∫
d4x d4y φn(x)+ ε(x) γ5 δxyφn(y) ≡

= lim
Λ→∞

∫
d4x ε(x)

∑
n

φ+
n (x) γ5 e

−λ
2
n

Λ2 φn(x) =

= lim
Λ→∞

∫
d4x ε(x)

∑
n

φ+
n (x) γ5 e

− /D2
Λ2 φn(x) =

= lim
Λ→∞

∫
d4x ε(x) tr

∫
d4k

(2π)4 e−ikx γ5 e
− /D2

Λ2 eikx (11.106)

where in the last line we have changed to a plane wave basis.
It is not difficult to check the following facts

/D
2

Λ2 = 1
Λ2

(
DµDµ + 1

4[γµ, γν ][Dµ, Dν ]
)

(11.107)

Dµe
ikx = (∂µ − igAµ)eikx = (ikµ − igAµ)eikx (11.108)

DµDµe
ikx = (−k2 − ig∂.A+ 2gk.A− g2AαA

α)eikx (11.109)

[Dµ, Dν ]eikx = igFµνe
ikx (11.110)

What is left to compute is precisely
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lim
Λ→∞

Tr
∫

d4k

(2π)4 e−ikx γ5 e
1

Λ2 [−k2−ig∂.A+2gk.A−g2AαAα+ i
4gγ

µνFµν ]eikx.

(11.111)
where

γµν ≡ [γµ, γν ]. (11.112)

Rescaling k = pΛ and keeping the exponential of momenta in the integral,
the only surviving term after tracing and regulating is∫

d4p

(2π)4 e
−p2 1

2!Tr −g
2

16 γ5(Fµνγµν)2 = ig2

32π2 Tr εµνρσ Fµν Fρσ

given that the volume of the unit three-sphere is V (S3) = 2π2, as well as∫ ∞
0

p3dpe−p
2 = 1

2
Tr γ5γµνγρσ = −16iεµνρσ. (11.113)

All this means that taking into account the jacobian, the axial current
is not conserved anymore, but rather

∂µ〈ψ̄γµγ5ψ〉 = g2

8π2 Tr
∫
d4x ∗ Fµν Fµν (11.114)

where the dual field strength has been defined

∗ Fµν ≡
1
2εµνρσF

ρσ (11.115)

The preceding analysis is related to the index theorem (cf. [?]). What
we are evaluating is actually∑

φ+
n γ5φn = n(+) − n(−) (11.116)

namely the difference between the number of positive and negative chirality
eigenmodes of Dirac’s operator. Neverteless it is the case that only zero
modes can be chiral, because given some eigenfunction

/Dφ(+)
n = λnφ

(+)
n (11.117)

the action on γ5 on it
φ(−) ≡ γ5φ

(+) (11.118)

obeys
/D φ(−)

n = −λnφ(−)
n (11.119)

This means that nonvanishing eigenvalues just come in pairs with op-
posite sign, and the only mismatch can only stem from the zero modes, for
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which our arguments do not apply. The quantity (11.116) is exactly what
mathematicians call the index of the Dirac operator, and what Fujikawa just
proved with physicist’s techniques, is that

ind /D = − 1
16π2 Tr

∫
d4x ∗ Fµν Fµν (11.120)
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11.0.5 The Heat kernel approach.

• It is clear that the singlet anomaly is given by

A(x) ≡ lim
τ→0

Tr γ5K (τ, x, x) (11.121)

It is approppiate to substitute here the short proper time expansion
for the diagnonal piece of the heat kernel

K (τ ;x, x) = 1
(4πτ)

n
2

∑
p

ap(x) τp (11.122)

It so happens that the trace of the first two terms vanish, and the only
nonvanishing contribution comes from

Tr (γ5 a2) (11.123)

The calculation of this coefficient is essentially the same as the one
done by Fujikawa, which has been extended somewhat by Nepomechie.

• It is also possible to define the anomaly through the zeta function

A(x) ≡ lim
s→0

Tr (γ5ζ(s)) (11.124)

Both regularizations are related through

ζ(s) ≡ 1
Γ(s)

∫ ∞
0

dzzs−1K (z;x, x) (11.125)

Here we can divide the integral into two pieces,
∫ ε
0 and

∫∞
ε . The second

piece is some analytical function of s, say f(s).

A(x) ≡ lim
s→0

{ 1
Γ(s)

∫ ε

0
dz

1
(4πz)

n
2

∑
p

ap(x) zp + f(s)
Γ(s)

}
(11.126)

Defining the integral for Re s big enough, this yields

A(x) ≡ lim
s→0

{
s

Γ(1 + s)
∑
p

ap(x) εs−
n
2 +p

s− n
2 + p

+ f(s)
Γ(s)

}
= Tr

(
γ5an2

)
(11.127)

The operator whose heat kernel we are dealing with is the square root
of

/D
2 = DµDµ+ig1

4γ
µν Fµν = �−ig∂µAµ−2igAµ∂µ−g2AαA

α+ig1
4γ

µν Fµν

(11.128)
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This operator is already of the canonical form.
Let us regularize the determinant through point splitting plus dimen-
sional regularization; id est

log det ∆ ≡ −
∫
d(vol) lim

σ→0

∞∑
p=0

σp−
n
2

4p π
n
2

Γ
(
n

2 − p
)

Tr ap(x, y) =

−
∫
d(vol) lim

σ→0
Tr
(

1
(πσ)

n
2

Γ
(
n

2

)
a0 + 1

4π
n
2
σ1−n2 Γ

(
n− 2

2

)
+

+ σ
4−n

2

16π
n
2

Γ
(
n− 4

2

)
a2 + . . .

)

where the coincidence limit of the world function

σ ≡ (x− y)2

2 (11.129)

kills all the terms with
p >

n

2 (11.130)

Now the square of our operator [11.128] has got

Xµ = −igAµ

Y = ig

4 γ
µνFµν (11.131)

Defining
Wµν ≡ ∂µXν − ∂νXµ + [Xµ, Xν ] (11.132)

the heat kernel coefficient reads

a2 = 1
12 W 2

µν + 1
2Y

2 + 1
6 D2Y (11.133)

The γ5 factor in the trace kills everything except for

Tr γ5 a2 = −g
2

16 Tr γ5 γµν γρσF
µνF ρσ = −g

2

16 εµνρσ F
µνF ρσ (11.134)

• Let us now turn to the non-abelian anomaly. The current of interest
is now

Jµa ≡ ψ̄P−Taγµψ (11.135)

The operator of interest is

D ≡ γµP−Dµ (11.136)

where
Dµ ≡ ∂µ − iAaµT a (11.137)
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Let s define
D−1(x, y) = SF (x, y) ≡ 〈ψ(x)ψ̄(y)〉 (11.138)

It is such that

DxD
−1(x, y) = δ(x− y)

D−1(x, y)←−Dy = −δ(x− y) (11.139)

where ←−
Dy ≡ −

←−
∂ y − ieA (11.140)

Then for example

Tr ∂µ
(
ψ̄γµT aψ

)
= Tr ∂µψ̄γµT aψ + ψ̄γµT a∂µψ = −Tr

(
ψ∂µψ̄γ

µT a + ∂µψψ̄γ
µT a

)
=

Tr lim
y→x

(
∂µSF (x, y)γµT a − SF (x, y)

←−
∂yµγ

µT a
)

(11.141)

Analogously,

(Dµj
µ)a = ∂µj

µ
a + fabcA

b
µj
µ
c = Tr

(
TaDSF − TaSF

←−
D
)

(11.142)

The Dirac operator D is not of the canonical form whose heat kernel
small proper time expansion we can control. Let us define another
operator

D̄ ≡ P+ /D (11.143)

Then

DD̄ = P−∆
D̄D = P+∆ (11.144)

where
∆ ≡ /D

2 = D2 + 1
2γ

µγνFµν (11.145)

Then we define the regularized propagator as

S(x, x) ≡ D̄
∫ ∞

0
KDD̄(τ) (11.146)

It is natural to define here

jµa ≡
∫ ∞

0
dτTr

(
TaP−D̄KDD̄(τ)

)
(11.147)

Then

(Dµj
µ)a =

∫ ∞
0

dτTr
(
TaDD̄KDD̄(τ)− TaD̄KDD̄(τ) ←−D

)
=

= lim
τ→0

Tr (TaKDD̄(τ)− TaKD̄D(τ)) (11.148)
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owing to the fact that

KDD̄

←−
D = DKD̄D (11.149)

This leads to an expression in terms of the small proper time heat
kernel expansion

(Dµj
µ)a = 1

16π2 Tr
(
Taa

DD̄
2 − TaaD̄D2

)
(11.150)

This in turn leads to a covariant expression for the anomaly

(Dµj
µ)a = 1

16π2 Tr
(
Taγ5a

∆
2

)
= 1

32π2
1
4Tr

(
Taγ5 (γµγνFµν)2

)
=

= − i

32π2 ε
αβγδTr (TaFαβFγδ) (11.151)

It is also possible to derive an expression for the consistent anomaly
by using similar techniques.

11.1 Consistency conditions
Consider the free energy as a function of the background gauge field

e−W [A] ≡
∫
DψDψ̄ e−

∫
dnx ψ̄i /Dψ (11.152)

under an infinitesimal gauge transformation

δvA = dv + [A, v] ≡ Dv (11.153)

the variation of the free energy reads

δvW [A] =
∫
dnx

δW [A]
δAaµ

(Dµv)a = −
∫
dnx va

(
Dµ

δW [A]
δAaµ

)a
=

= −
∫
dnx vaDµJaµ ≡ −

∫
dnx vaAa(x,A) (11.154)

That ism the generator of gauge transformations acting on functionals of
the gauge field is

vaDµ
δ

δAaµ(x) ≡ −v
aJ a(x) (11.155)

Let us now compute the commutator
[
J a(x),J b(y)

]
. It is useful to represent

Wµ
a (x) ≡ δW

δAaµ(x) (11.156)
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as well as
Wµν
ab (x, y) ≡ δ2W

δAaµ(x)δAbν(y) (11.157)

It is a fact of life that

Wµν
ab (x, y) = W νµ

ba (y, x) (11.158)

J a(x)J b(y) W = Dx
µ

δ

δAaµ(x)D
y
ν

δW

δAbν(x) = Dµ
δ

δAaµ(x)(
∂yν W

ν
b (y) + fbb1b2A

b1
ν (y) W ν

b2(y)
)

= Dx
µ

{
∂yν W

µν
ab (x, y) +

+fbab2 ηµν δxy W ν
b2(y)

}
= ∂xµ∂

y
ν W

µν
ab (x, y) + fbab2 ηµν ∂

x
µδxy W

ν
b2(y) +

+faa1a2A
a1
µ (x)

{
∂νW

µν
a2b

(x, y) + fba2b2W
µ
b2

(x)
}

(11.159)

Jacobi tells us that

faa1a2 fa2b2b = −fb2aa2 fa2a1b − fa1b2a2 fa2ab (11.160)

Then

= ∂xµ∂
y
ν W

µν
ab (x, y)− fbab2 ηµν δxy ∂xµW ν

b2(y) +
+faa1a2A

a1
µ (x)∂νWµν

a2b
(x, y)− (fb2aa2 fa2a1b + fa1b2a2 fa2ab)Aa1

µ (x)Wµ
b2

(x) =
= ∂xµ∂

y
ν W

µν
ab (x, y) + faa1a2A

a1
µ (x)∂yνW

µν
a2b

(x, y)− fb2aa2 fa2a1bA
a1
µ (x)Wµ

b2
(x) +

+fabb2 ηµν δxy ∂yµW ν
b2(y)− fa1a2b2 fa2abA

a1
µ (x)Wµ

b2
(x) (11.161)

The next to the last line is symmetric versus the change (ab). This stems
from the fact that

∂yνD
x
µW

µν
ab (x, y) = ∂xµD

y
νW

νµ
ba (y, x) (11.162)

Finally, taking into account that

fabc δxy JcW = fabc δxy D
λW c

λ = fabc δxy
(
∂λW λ

c (y) + fcc1c2 A
c1
λ (y)W λ

c2(y)
)

(11.163)
we get the commutation relations[

J a(x),J b(y)
]

= ifabc δ
4(x− y) J c(x) (11.164)

This immediatly implies a consistency relation for the anomaly, namely

J a(x)Ab(y,A)− J b(y)Aa(x,A) = ifabc δ
4(x− y) Ac(y,A) (11.165)
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Those are the Wess-Zumino consistency conditions. Remember now that
BRST transformations act as

sAaµ = ∂µc
a + fabc Abµ c

c

sca = −1
2 fabc cbcc (11.166)

It is quite useful to consider gauge fields as G-valued one-forms on the cotan-
gent space

A ≡ Aaµ(x)T adxµ (11.167)

and besides, assume that
{s, d} = 0 (11.168)

Now define the anticommuting integrated anomaly as

A(c, A) ≡
∫
d4x ca(x) Aa(x,A) (11.169)

It is a fact that the Wess-Zumino consistency relations are equivalent to the
demand that the object A(c, A) be BRST closed.

s A(c, A) =
∫
d4x (s ca(x)) Aa(x,A)− ca(x) (s Aa(x,A)) =

=
∫
d4x

{
− 1

2fabcc
bccAa(x,A)− ca

∫
d4y

(
Dµc

b(y) δA
a(x,A)

δAbµ(y)

)}
=∫

d4x

{
− 1

2fabc c
b(x) cc(x) Aa(x,A)− ca(x)

∫
d4y cb(y) J b(y) Aa(x)

}
(11.170)

This is possible only when

J a(x)Ab(y)− J b(y)Aa(x) = fabc JAcdxy(y = (11.171)

It is natural top identify anomalies with the BRST cohomology, computed
in the space of local functionals of ghost number one.
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Conformal invariance

12.1 Scale invariance.

In flat space, a scale transformation is defined as

x′µ = λxµ (12.1)

Scale transformations belong to the conformal group, SO(2, n), which in-
cludes besides the special conformal transformations

x′µ = xµ − aµx2

1− 2a.x+ a2x2 (12.2)

as well as the whole Poincaré group. The special conformal transformations
C are a combination of a translation

Ta : xµ → xµ + aµ (12.3)

and an inversion
I : xµ → −x

µ

x2 (12.4)

namely
C = Ta ◦ I ◦ Ta (12.5)

Altogether, there are 15 parameters in the conformal group. The infinitesi-
mal generators can be chosen [?] as

Mµν = Mµν M65 = D

M5µ = 1
2 (Pµ −Kµ) J6µ = 1

2 (Pµ +Kµ) (12.6)

where D is the generator of dilatations, Kµ generate the special conformal
transformations and Pµ are the ordinary translations. MAB A = 1 . . . 6 are
the generators of SO(2, 4).

167
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There is a remarkable 11-dimensional subgroup incorporating only the
dilatations, besides the Lorentz group. This is precisely the little group of
the origin in Minkowski space, SO0(2, 4). It is remarkable that the quotient
space

SO(2, n)/SO0(2, n) (12.7)

has dimension n always.
Working in a local inertial frame in a ganeral spacetime it is sometimes

possible to trade scale transformations for drigid (global) Weyl transforma-
tions (

eaµ

)′
≡ λeaµ (12.8)

In order to be able to do that, it is needed that the scaling of the term

∂µφ∂
µφ (12.9)

is the same as the Weyl scaling of the term
√
g gµν ∇µφ∇νφ (12.10)

which is n− 2. This means that this idea works only in n = 4 dimensions.
If we are willing to give up diff invariance and remain with the smaller

invariance under area preserving (transverse) diffs only, then this is true in
any dimension for the kinetic energy term

g
2
n gµν ∇µφ∇νφ (12.11)

Of course we can always change the rescaling of the metric to

g′αβ = Ω
4

n−2 gαβ (12.12)

and this reproduces the scaling of the laplacian for any dimension.
When the spacetime is not flat, gauge (local) Weyl transformations are

defined by
g′µν ≡ Ω2(x)gµν(x) (12.13)

This is the more general sense in which conformal transformations might be
considered.

Let us come back to the linearized approximation in flat space, when
λ = 1 + ε,

δxµ = εxµ

and fields transform as
φ′(x) = λDφ(λx) (12.14)

δφ = εDφ+ εxµ∂µφ

The corresponding Noether current is

jµ ≡ xλTλµ (12.15)
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provided an adequate definition of the energy-momentum tensor is used. Let
us quickly review how this comes about.

S ≡
∫
dnxL(φa, ∂µφa) (12.16)

Assume in general that there is a symmetry under(
x′
)µ − xµ ≡ δxµ ≡ ξµ(x)

δφa ≡ φ′a − φa(x) (12.17)

This means that∫
dnx′L(φ′a, ∂′µφ′a)−

∫
dnxL(φa, ∂µφa) = 0 (12.18)

First of all,
dnx′ = dnx (1 + ∂µξ

µ) (12.19)

We define internal variations as

δφa ≡ φ′a(x)− φa(x) (12.20)

so that for example an scalar field obeys

φ′(x′) = φ(x) (12.21)

δφ = −ξα∂αφ (12.22)

It is convenient to represent the ξ-independent piece of the variation by
another symbol:

δφ ≡ −ξα∂αφ+ δ̄φ (12.23)

(in the case of an scalar field,
δ̄φ = 0 (12.24)

but for a multiplet such
δ̄φa = ωa

bφb (12.25)

This yields∫
dnx

∑
a

(
∂L

∂φa

(
−ξρ∂ρφa + δ̄φa

)
+ ∂L

∂(∂µφa)
(−∂µ (ξρ∂ρφa) +

+∂µδ̄φa
)

+ L∂µξ
µ
)

= 0 (12.26)

Integrating by parts we easily arrive to∫
dnx ∂µ

(
∂L

∂(∂µφa)
δ̄φa

)
+ δS

∂φa
δ̄φa − ∂µ (ξνTµν) + ξρ∂ρφa

δS

δφa
− ξλ∂λL = 0

(12.27)
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The Euler Lagrange equations as well as conservation of the canonical
energy-momentum tensor, id est,

δS

∂φa
≡ ∂L

∂φa
− ∂µ

∂L

∂(∂µφa)
= 0

∂ρT
ρ
µ ≡ ∂ρ

(
∂L

∂(∂ρφa)
∂µφa − ∂µLηρµ

)
= 0 (12.28)

then imply the conservation of the Noether current

∂µJ
µ
N ≡ ∂µ

(∑
a

∂L

∂(∂µφa)
δφa − ξρTµ ρ

)
= 0 (12.29)

The conservation of the energy momentum itself corresponds to the partic-
ular case of the symmetry under spacetime translations:

ξµ = aµ (12.30)

In this conditions
∂λL = 0 (12.31)

The internal variation of the fields vanishes in this case

δ̄φa = 0 (12.32)

and it follows that
JµN = −aρTµρ (12.33)

so that

0 =
∫
dnx

∑
a

δS

∂φa
δφa + ∂µT

µνaσ∂σφa − aδ∂µTµδ (12.34)

For diagonal dilatations,

ξµ = λxµ

δφa = λdaφa (12.35)

This yields for an scalar field with canonical kinetic energy term the so called
virial current, JµV ,

JµN = JµV − x
ρTµρ (12.36)

It is a fact that
JµV = ∂νJ

νµ (12.37)

with
Jµ ≡ 1

2∂
µ
(
φ2
)

(12.38)

Jµν ≡ 1
2φ

2ηµν (12.39)
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If we define for an scalar field the improved energy-momentum tensor (which
is best understood in terms of a nonminimal coupling to gravitation, dubbed
Ricci gauging in [?])

T impµν ≡ T canµν −
1
6 (∂µ∂ν − ηµν�)φ2 (12.40)

then we can change the dilatation current by adding a divergenceless piece

Jµnew ≡ Jµcan + 1
6∂σ (xµ∂σ − xσ∂µ)φ2 = Tµνimpxν (12.41)

This means that ∂αjα = 0 is equivalent to

∂µj
µ = Tµ µ = 0 (12.42)
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12.2 The conformal group C(1, 3) ∼ SO(2, 4) ∼
SU(2, 2)

Let us define a mapping between n-dimensional Minkowski space, M1,n−1,
and the lightcone at the origin of The (n+2)-dimensional Minkowski space
, with two times, M2,n. A point in M(2, n) will be represented by ξA and
its two-times metric by ηAB. This lightcone is defined as

N0 ≡ {ξ2
0′ + ξ2

0 −
i=n∑
i=1

ξ2
i = 0} (12.43)

Its coordinates are defined up to a multiplicative factor, that is

ξA → λξA (12.44)

We introduce lightcone coordinates

ξ± ≡ ξ0′ ± ξn (12.45)

The lighcone N0 now reads

ξ2 ≡ ξ2
0 −

i=n−1∑
i=1

ξ2
i = −ξ+ξ− (12.46)

Now define a mapping
N0 →Mn (12.47)

For µ = 0 . . . n− 1,
ξ → xµ ≡ ξµ

ξ+
(12.48)

Then
x2ξ2

+ = ξ2 (12.49)

The inverse map
Mn → N0 (12.50)

is given by

ξµ = ξ+x
µ

ξ− = −ξ+x
2 = − ξ

2

ξ+
(12.51)

It is so that the defining equations [12.46] are satisfied.
It is clear that all transformations of SO(2, n)

ξA →MA
Bξ

B (12.52)
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with
MA

BM
C
D ηAC = ηBD (12.53)

induce conformal transformations of Mn,because(
x′
)2 = Ω(x)2x2 (12.54)

means that
(ξ′)2

(ξ′+)2 = Ω2 ξ
2

ξ2
+

(12.55)

which is always true when N0 is preserved, because then this is simply

(ξ′−)2 = Ω2ξ2
− (12.56)

which tields the value of Ω.
Consider the most nontrivial one, the one that swaps

ξ± → ξ∓ (12.57)

Then
x′µ = ξµ

ξ−
= xµ

ξ+
ξ−

= −x
µ

x2 (12.58)

Penrose’s compactification of the four-dimensional Minkoski space pro-
ceeds as follows [?][?]. There is an embedding of R(1,3) into the light cone
of the origin in R(2,4).

x ∈ R(1,3) → ξ ≡ σ(x)
(
xµ,

1√
2

(
1 + x2

2

)
,

1√
2

(
1− x2

2

))
(12.59)

Where the signature of the six-dimensionsl flat space is (+,−4.+), so that

ξA = σ

(
xµ,−

1√
2

(
1 + x2

2

)
,

1√
2

(
1− x2

2

))
(12.60)

and
ξ2 ≡ ξAξA = 0 (12.61)

The six dimensional Minkowski metric is then mapped into a metric confor-
mal to the four-dimensional Minkowski metric

ηABdξ
AdξB = σ2ηµνdx

µdxν (12.62)

Any six-dimensional Poincare transformation

ξA → LA Bξ
B (12.63)

then induces a conformal transformation of the four-dimensional space.
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For example, inversions are obtained through a first translation

aA1 =



0
0
0
0
− 1

2
√

2
− 1

2
√

2


(12.64)

then a Lorentz transformation

LA B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


(12.65)

Write everything in terms of
yµ ≡ xµ

x2 (12.66)

with
σ ≡ 1

x2 = y2 (12.67)

and finally a second translation

aA2 =



0
0
0
0
1

2
√

2
1

2
√

2


(12.68)

It is plain that there are points in the six-dimensional cone that do not
belong to the four dimensional minkowski space, for example

N ≡ (aµ,−b, b) (12.69)

(with a2 = 0). Penrose then adds to M4 points at infinity to get useful
correspondence. Namely one for every null direction, plus another one cor-
responding to a = 0.

Twistors transform under SU(2, 2) as

Zα → Tα βZ
β (12.70)

with
Tα βT

γ
δΛαγ = Λβδ (12.71)
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where the matrix of signature (+2,−2)

Λ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (12.72)

There is a mapping between antisymmetric SU(2, 2) twistors and SO(2, 4)
vectors [?] given by

ξA ≡ ΣA
αβZ

αβ (12.73)
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12.3 The Callan-Symanzik equations

It is more or less obvious that scale invariance is not maintained in general
in the quantum theory. There are two reasons for it. First of all, the beta
function

β(g) = ∂g

∂ log µ
= − ∂g

∂ log x
(12.74)

This means that the Lagrangian transforms as

δL ≡ Tµµ = β(g) ∂
∂g

L (12.75)

For example, writing the QED lagrangian as

L = − 1
4e2 FµνF

µν (12.76)

we learn that
Tµµ = β(e)

2e3 FµνF
µν (12.77)

The second reason is that if there is a non-constant gravitational field (even
as a background), there is a length scale associated to it.

The Ward identities associated with the anomalous behavior under di-
latations can be obtained by the following procedure. The renormalized 1PI
functions are defined as:

Γ(n)(p1 . . . pn) = Z
n/2
3 Γ(n)

0 (p1 . . . pn) (12.78)

Green function with m2
0φ

2 insertion

iΓ(n)
(0)δ(0; p1 . . . pn) = m0

∂

∂m0
Γ(n)

(0) (p1 . . . pn) (12.79)

The corresponding renormalized quantity needs a new constant Z(Λ):

Γ(n)
δ(0; p1 . . . pn) = ZZ

n/2
3 Γ(n)

(0)δ(0; p1 . . . pn) (12.80)

it follows

iΓ(n)
δ (0; p1 . . . pn) = Zm0

∂

∂m0
Γ(n) (p1 . . . pn)− n

2Zm0
∂ logZ3
∂m0

Γ(n) (p1 . . . pn)
(12.81)

and using the chain rule

iΓ(n)
δ (0; p1 . . . pn) =

((
Zm0

∂m

∂m0

)
∂

∂m
+
(
Zm0

∂λ

∂m0

)
∂

∂λ
− n

2

(
Zm0

∂ logZ3
∂m0

))
Γ(n) (p1 . . . pn)

(12.82)
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One can choose constants in such a way that

Zm0
∂m

∂m0
= m (12.83)

we define
β(λ) ≡ Zm0

∂λ

∂m0
(12.84)

as well as
γ(λ) ≡ 1

2Zm0
∂ logZ3
∂m0

(12.85)

This is the famous Callan-Symanzik equation(
m

∂

∂m
+ β(λ) ∂

∂λ
− nγ(λ)

)
Γ(n)(p1 . . . pn) = iΓ(n)

δ (0; p1 . . . pn) (12.86)

There are two main differences with the naive result(
m

∂

∂m

)
Γ(n)(p1 . . . pn) = iΓ(n)

δ (0; p1 . . . pn) (12.87)

the anomalous dimension of the field

D = 1 + γ(λ) (12.88)

and the anomaly proporcional to β(λ).
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12.4 Dimensional regularization
We define Weyl transformations in a general space-time as

g̃αβ ≡ Ω2(x)gαβ

such that when
Ω2 ≡ 1 + w(x)

δgµν = w(x)gµν (12.89)

We define the (expectation value of the) energy momentum tensor from the
quantum effective action

Z[g] ≡
∫
Dφ eiS(φ,g) ≡ eiW [g]

Tµν ≡
2
√
g

δW

δgµν
(12.90)

obeys
δW = 0 = 1

2w
∫
dnx
√
gTαβg

αβ (12.91)

The massless scalar field

S = 1
2

∫
dnx
√
g∂µφg

µν∂νφ (12.92)

is Weyl invariant in n = 2 dimensions. In four dimensions n = 4 Weyl
invariance can be reached through a non minimal coupling (cf. Callan,
Coleman y Jackiw) .

Sξ = 1
2

∫
dnx
√
g
(
∂µφg

µν∂νφ− ξRφ2
)
≡ 1

2

∫
dnx
√
g Lξ (12.93)

Under a Weyl transformation,

δgµν ≡ ωgµν (12.94)

so that δ√g = n
2ω
√
g, ([?]):

δR = −ωR− (n− 1)∇2ω (12.95)

The variation of the non minimal action reads

δSξ = 1
2

∫
dnx

√
|g| n2ωLξ − ω(∇φ)2 − ξφ2

(
−ωR− (n− 1)∇2ω

)
=

1
2

∫
dnx ω

[(
n

2 − 1 + 2 (n− 1) ξ
)

(∇φ)2 − (n2 − 1)ξRφ2
]

+

(n− 1)ξ∇α
(
φ2∇α ω − 2φ∇αφ ω

)
+ 2(n− 1)ξ φ∇2φω (12.96)
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when the boundary terms do not contribute, this vanishes provided the
parameter ξ takes the conformal value

ξc = − n− 2
4 (n− 1)

and furthermore
(n2 − 1)Rφ2 − 2(n− 1)φ∇2φ = 0 (12.97)

The equations of motion read in general

∇2φ+ ξRφ = 0

and reduce for the conformal choice of ξ = ξc to [12.97] The energy-momentum
tensor reads

Tαβ = 1
2g

αβ[(∇φ)2−ξRφ2]−∇αφ∇βφ−ξφ2(Rαβ−1
2Rg

αβ)−ξ(gαβ∇2φ2−∇α∇βφ2)
(12.98)

so that its trace

gαβTαβ =
(
n

2 − 1− 2ξ (n− 1)
)

(∇φ)2 − ξRφ2 − 2ξ (n− 1)φ∇2φ

vanishes on shell for conformal coupling ξc.
Forgetting for the time being non minimal coupling, the Weyl variation

of the scalar lagrangian is

δL = n− 2
2 δw(x)L (12.99)

If the theory is scale invariant in d dimensions, then

δL = ε

2L (12.100)

with ε ≡ n− d.
For example, for the Maxwell lagrangian

L = −1
4FµνFρσg

µρgνσ (12.101)

δL = −2δw(x)L (12.102)

which leads to
δ

(√
|g|L

)
= (n/2− 2)L (12.103)

This also holds for gravitational counter terms. For example in d = 2 the
only candidate with the correct dimension is

Lct = αR (12.104)
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δR = −δw(x)R−∇2δw (12.105)

so that we reproduce (12.100) under global Weyl (∇µδw = 0).

δ[√gR] = ε

2[√gR] (12.106)

In arbitrary dimension

δRαβγδ = δw(x)Rαβγδ + gδ[α∇β]∇γδw − gγ[α∇β∇δδw (12.107)

Ricci:
δRαβ = −n− 2

2 ∇α∇βδw −
1
2gαβ∇

2δw (12.108)

The variation of the quadratic invariants reads

δR2 = −2δwR2 (12.109)

δRαβR
αβ = −2δwRαβRαβ (12.110)

and
δRαβγδR

αβγδ = −2δwRαβγδRαβγδ (12.111)

so that including the variation of the volume element δ
√
|g| = nw

2
√
|g| we

recover (12.100) in d = 4 dimensions.
If we consider now the effect of the counterterms

L = Lclass + 1
ε
Lcount (12.112)

is plain that
Tµµ = Lcount (12.113)

The gravitational contributions to the generic one loop counterterm(cf. [?])
reads:

δL = 1
8π2ε

√
g[12(1

6R−X)2 + 1
12YµνY

µν + 1
60H + 1

180G] (12.114)

where H and G are determined by the Euler density

E4 ≡ RαβγδRαβγδ − 4RαβRαβ +R2 (12.115)

as well as the Weyl tensor squared,

W 2 = RαβγδR
αβγδ − 2RαβRαβ + 1

3R
2 (12.116)

G = E4

H = 1
2(W 2 − E4) (12.117)
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12.5 Interacting theories

There is a simple argument∫ √
|g| dnx Tαα = 2

∫
dnx gαβ

δS

δgαβ
= 2δW

δw
(12.118)

Now, a rigid Weyl variation

δgαβ = δwgαβ (12.119)

is equivalent to a scale transformation

xµ → (1 + δw)1/2xµ (12.120)

that is
Λ→ (1 + δw)−1/2Λ (12.121)

In dimensional regularization, with ε ≡ 4− n,

φ0(ε) = Z1/2(ε)φ
m0(ε) = Z1/2

m (ε)mR

g0(ε) = Zg(ε)gRµ
ε
2 (12.122)

Wilsonian β function,
β(g0) ≡ ∂g0

∂logΛ (12.123)

δlogΛ
δw

= −1
2 (12.124)

δW

δw
= ∂W

∂g0
β(g0)(−1

2) (12.125)

If a lattice regularization is used, we can be more specific. We do not want
the renormalized coupling to depend on the lattice spacing, so that

a
d

da
gR = 0 =

(
a
∂

∂a
− ∂g0
∂log a

∂

∂g0

)
gR ≡

(
a
∂

∂a
− βLatt.(g0) ∂

∂g0

)
gR

(12.126)
On the other hand,

∂

∂log a
gR(g0,mRa) = ∂

∂log mR
gR(g0,mRa) ≡ β(gR) (12.127)

This means that

β(gR) = βLatt(g0) ∂

∂ log mR
gR(g0,mRa) (12.128)
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Indeed

β(gR) = β1g
2
R + β2g

3
R + . . .

βLatt(g0) = β̂1g
2
0 + β̂2g

3
0 + . . .

β1 = β̂1

β2 = β̂2

β2 6= β̂3 (12.129)

Tαα = −β(g0)∂W
∂g0

(12.130)

We could also use (
µ
∂

∂µ
+ β(g) ∂

∂g

)
W = 0 (12.131)

Drummond y Hathrell have computed the corrections to the gravitational
QED trace anomaly, Theor result reads

Tαα = 2
3
αe
4π 〈N (FµνFµν)〉− 1

20(4π)2

(
3 + 35αe

72π

)(
W 2 + 2

3�R
)

+ 1
(4π)2

( 73
360 + αe

6π

)
E4
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Problems

13.1 AQFT. Problem sheet 1

• 1.- Find the combinatoric structure of the two point function in the
φ3 scalar theory.

V (φ) ≡ g

3!φ
3 (13.1)

using the Schwinger-Dyson approach.

• 2.- Idem in the φ4 theory.

V (φ) = λ

4!φ
4 (13.2)

This time, draw the answer from the path integral.

• 3.- Write the expression for the tadpoles (one point functions) in the
theory with potential

V (φ) = λ

4!(φ
2 − v2)2 (13.3)

• 3.-Compute the order α correction to the fermion propagator in QED
in the presence of fermionic sources

Ssources ≡
∫
d4x

(
η̄ψ + ψ̄η

)
(13.4)

13.2 AQFT. Problem sheet 2
• 1.- Check the gauge tranformation of the non-abelian field strength

F̃µν = UFµνU
+ (13.5)

183



184 13. PROBLEMS

• 2. Compute
[Dµ, Dµ] (13.6)

acting on Diract spinors.

• 3.- What is the dimension of the gaume coupling constant in n = 3
spacetime dimensions? And in n = 6 spacetime dimensions?

• 4.- Compute the Dynkin index and the second Casimir of SU(3) in the
representation provided by Gell-Mann matrices.

λ1 ≡

0 1 0
1 0 0
0 0 0

 λ2 ≡

0 −i 0
i 0 0
0 0 0

 λ3 ≡

1 0 0
0 −1 0
0 0 0


λ4 ≡

0 0 1
0 0 0
1 0 0

 λ5 ≡

0 0 −i
0 0 0
i 0 0

 λ6 ≡

0 0 0
0 0 1
0 1 0


λ7 ≡

0 0 0
0 0 −i
0 i 0

 λ8 ≡
1√
3

1 0 0
0 1 0
0 0 −2

 (13.7)

• 5.- Prove the Fierz-like identity

A=8∑
A=1

(λA)ab (λA)cd = 2δab δcd −
2
3δ

a
b δ
c
d (13.8)

13.3 Examen TCA. March 2016. Schwinger’s model
Remember the fact that in QED4 the photon mass remains zero after renor-
malization, owing to gauge invariance. Consider now the same theory in two
dimensions (Schwinger’s model), QED2 with massless fermions. Compute
the photon mass renormalization in this theory.

Here there are a few properties that perhaps you might find useful.
• First, than in two dimensions any two-form can be written as

ω2 = φd(vol) ≡ φ dx0 ∧ dx1 (13.9)

• It is also a fact that, calling γ̄ the two-dimensional analogue of the
four dimensional γ5 matrix, then

γµγ̄ = −εµνγν (13.10)

• The chiral current, jµ5 ≡ ψ̄γ̄γµψ is not conserved, but rather

∂µj
µ
5 = e

2π εµνFµν (13.11)

How is your result compatible with gauge invariance?
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13.3.1 Solution

Let us choose

γ0 = σ2 =
(

0 −i
i 0

)

γ1 = −iσ1 =
(

0 −i
−i 0

)
(13.12)

Then

γ̄ ≡ γ0γ1 = σ3 ≡
(

1 0
0 −1

)
(13.13)

A brute force calculation in dimensional regularization around n = 2 leads
to

πµν = 2e2

k2π

(
k2ηµν − kµkν

)
(13.14)

It so happens that π(k2) has a pole at k = 0, which is precisely what does
not happen in four dimensions. This is the reason why the photon remains
massless in four dimensiona, but fails to do so in two dimensions.

The EM of the theory are

∂νF
µν = ∂νφ ε

µν = ejµ = eεµν j5
ν (13.15)

that is
�φ = e2

2π εµν εµνφ = −e
2

π
φ (13.16)

The photon has converted into a scalar and got a (dimensionless) mass

m2
γ = e2

π
(13.17)

This is the first example in the literature of (dynamical) spontaneous sym-
metry breaking.

13.4 Problem sheet 5
• The Higgs sector of the standard model reads

L = −1
4(W a

µν)2 − 1
4B

2
µν + (DµH)+DµH +m2H+H − λ(H+H)2(13.18)

where Bµ is the hypercharge gauge vector boson, andW a
µ are the weak

SU(2) gauge fields.

DµH = ∂µH − igW a
µτ

aH − ig′

2 BµH (13.19)
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Expend the Higgs field as

H = e2iπ
aτa

v

(
0
v+h√

2

)
(13.20)

with v ≡ m√
λ
. The physical fields are

Zµ ≡ cos θ W 3
µ − sin θ Bµ

Aµ ≡ sin θ W 3
µ + cos θ Bµ (13.21)

where
tan θ ≡ g′

g
(13.22)

Compute the gauge boson propagators in the unitary gauge (πa = 0)-

13.5 Problem sheet 6

• Consider a theory of two-index Maxwell field

L = −1
4∂[µAνρ]∂

[µAνρ] (13.23)

Determine its gauge invariance. Compute the ghost sector. How do
you deal with the fact that the ghost lagrangian has itself a gauge
invariance?

• Consider the following lagrangians for spin 2 in momentum space. The
first is the Fierz-Pauli one.

SFP =
∫
dnx hµν

{
−� (ηµρηνσ + ηµσηνρ − 2ηµνηρσ)

+ (∂µ∂ρηνσ + ∂ν∂σηµρ + ∂µ∂σηνρ + ∂ν∂ρηµσ − 2∂µ∂νηρσ − 2∂ρ∂σηµν)
}
hρσ
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Determine its gauge symmetry and ghost lagrangian.
The second is the unimodular one.

SU =
∫
dnx hµν

{
− 1

8� (ηµρηνσ + ηµσηνρ) + 1
8 (∂ν∂σηµρ + ηµσ∂ν∂ρ + ∂ν∂ρηµσ + ∂ν∂σηµρ)−

− 1
2n (ηµν∂ρ∂σ + ηρσ∂µ∂ν) + n+ 2

4n2 �ηµνηρσ

}
hρσ (13.24)

Determine also the gauge symmetry and the ghost content.
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