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Introduction

This text grew out of lectures from an introductory graduate course on
gravitational physics. The emphasis is in field theory, and in the analogies
of the gravitational interaction with all other fundamental interactions. The
necessary background in differential geometry is included only in a terse
manner, and should be supplemented with personal study of the references.

In general the viewpoint of this lectures is closer to the classic texts of
Landau and Schrédinger than to many modern texts. Only a few basic
things are included, but these in some detail. In some sense, the aim of
this book is to put these admirable books in a modern context, relating the
gravitational interaction with the other three fundamental interactions. It
is believed, with strong experimental support that the other interactions,
namely the electroweak and strong interactions are described by gauge the-
ories. General relativity is also a gauge theory in some sense. One of our
aims is precisely to nuance this statement, putting it in context.

There is an immediate difference between these four interactions which
is obvious, and this is that out of the four only the electromagnetic and grav-
itational ones are long range, which means that they have classical manifes-
tations. The classical equations descibing the behavior of those two fields
are Maxwell’s and Einstein’s equations respectively. In spite of the fact
that both fields have classical (that is, non quantum) manifestations, both
set of equations are quite different. Maxwell’s are linear partial differential
equations (PDE), whereas Einstein’s are nonlinear PDE, and in that sense,
similar to the sort of non-abelian classical equations corresponding to the
Yang-Mills theories describing the other two interactions, namely the weak
and strong ones. In these cases we are interested mainly in the quantum
behavior of those fields, owing to the short range of their interactions, which
make their analysis even more difficult. Actually the existence of a mass gap
for Yang-Mills theory is one of the Millenium Prize Problems of the Clay
Mathematical Foundation. For the time being, the only evidence we have
that glueballs are massive are the lattice simulations of the corresponding
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path integral. While convincing for the majority of the physics commu-
nity, apparently they are not good enough for the Clay foundation. One of
the main (I would even dare to say the main) open problems in theoretical
physics is to understand the strong coupling regime, in which perturbative
analysis is not applicable. This we would like to do in quantum field theory
(QFT), but the sad reality is that we do not understand this regime even in
nonlinear classical field theory. Actually other of the Clay Millenium Prizes
is offered for the proof of the Navier-Stokes existence and smoothness of
solutions. Now the Navier-Stokes system of PDE is a baby version of Ein-
stein’s ( or even Yang-Mills) equations. Many surprises are in store for when
we understand these equations fully. There are even indications that string
theory may represent some aspects of this nonperturbative sector, at least
in some cases.

To summarize, our understanding of the gravitational interaction is some-
what perplexing. On the one hand, we have a classical theory which works
extremely well, and there is no reason to doubt its validity so far. It is true
that until recently, the theory was checked in the quasi-linear approxima-
tion. The so called pametrized post-newtonian (PPN) approach was devised
precisely with the purpose of doing that in a systematic way. Since the dis-
covery of the first binary pulsar by Hulse and Taylor there is astrophysical
evidence of variation of its orbital period with time, interpreted as due to
loos of energy by gravitational radiation. The cumulative agreement of the
data with the Einstein formula is impressive.

There are in cosmolgy however indications that there is something miss-
ing in our understanding, which bears the dark names. Dark matter means
unknown matter that weighs as normal matter does. Dark energy is the
name given to a mechanism that produces a cosmological constant, which
weighs in a weird way and should explain the observed cosmological accel-
eration. Many people has tried (and keeps trying) to look whether some
modification of Einstein’s gravity could help explain some of these phenom-
ena.

The corners of parameter space in which it can be modified while keeping
agreement with observations are growing thinner and thinner as time goes
by and experiments achieve better precision.

On the other hand, if gravity is a fundamental interaction, it should be
compatible with quantum mechanics. This has not yet been achieved, and
many of the most interesting open problems in theoretical physics are related
to this fact. The point of view that gravitation is not a fundamental theory,
but rather emergent in some sense at a macroscopic level is not without
problems of its own. We have tried to give a flavor of these problems as
well.

It is perhaps not superfluous to insist that the only way of learning
physics is through personal work and experience.

The most important part of the learning process is however the next one,



when one asks and tries to solve her own questions. It is far more important
to learn to ask important questions than to be able to learn how to solve
somebody else’s.

Throughout the lectures we sometimes use the acronyms FIDO (fiducial
observer) to mean an observer at rest in a given gravitational field and
FREFO (free falling) to mean an observer in a free falling frame.

I would like to thank here all my students, collaborators and teachers
from whom I learned everything I know.
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Energy-momentum tensors.

Our first task will be to find a variational principle for the Maxwell equations.
Given a general action depending on a set of fields and their derivatives

S = /d%L(@,am,auaV@...) (2.1)

the action principle tells us that the action must be stationary under those
variations that vanish at the boundary of the spacetime integration region

B 4 oL A oL ' oL '
5= [t (a@ AR T R R TE W WS R ) (22)

integrating by parts

5S = / iz 0% 54 = / 4z 66,

0i
oL oL oL
— — Oy +0,0 =+ ... 2.3
<3¢i H0(0upi) "V 0(0,009:) ) 23)
the equations of motion read
oS
pr— .4
7 (2.4)
In Maxwell’s case, trial and error leads to
1 1
— o o af| j4
s /[ 5 40j® = = FapF }d z (2.5)

The source current j*(z) should be conserved (i.e., d,j” = 0) in order for
the action to be gauge invariant . For example, when the source of the field
is a point particle of charge g, the current is give by E]

J(e) = ¢ / U ()54 (@ — 2P (\))dA (2.6)

't is plain that 9.% = [u®(A)ad*(z” — 2 (X)) = — [ &% (2" —2”(N))d\ = §*(a¥ —
2”(Xo)) — 6*(2” — 2”(\1)), which vanishes almost everywhere.

)
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The variation of the action reads
4 1 e 1 af
so that an integration by parts yields
L.
OuFP = EJB (2.8)

From the conceptual point of view the scalar spin zero field is the simplest
field: just a scalar function over space-time ¢(x). When performing an
arbitary space-time transformation (not only for Lorentz transformations)

¢'(a') = ¢(2) (2.9)

The recently discovered Higgs particle corresponds to a short range massive
scalar field my ~ 125 GC%V. They are spinless (s=0). We shall see in a
moment why.

We shall show in a moment that its static potential (the analogous of
the Coulomb potential) is of the Yukawa form

__mer

e " h

V, ~ (2.10)

r
and its range is given by the Compton wavelength of the corresponding

particle

h
[~ — 2.11
— (2.11)

2.1 Conserved currents from Poincaré invariance.

Let us consider a lagrangian depending on a set of fields,¢; (they do not
have to be spinless) and their first derivatives, L(¢;, 0,.¢;).
The transformations to be considered are

dzt = M (x)
61 = 6l(x) — du(x) = —€"0ndss + 56,
quz = ngﬁ] + dﬁ“&u@ +1; (2.12)

When & = 0, we speak of internal transformations. The matrices Dg and dg
depend on continuous parameters, say €1 ...€n.

The set define a symmetry when 6.5 = 0 off shell that is, whithout
employing the EM. For example the lagrangian for N scalar fields ¢;,

S = /d4x;5ij3ad>i5a¢j (2.13)
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is invariant inder the N(N — 1)/2 transformations

T

" =0

Di(e) = o (2.14)
provided w(;;y = 0. These generate the N-dimensional rotation group,

SO(N)), which is the internal symmetry of this action principle. The
N(N —1)/2 parameters are the € ~ wj;.

2.2 Internal transformations

Let is first discuss the simplest example of a pure internal transformation.
Let us perform a variation letting the parametrs €, conatined in the matrix
D! depend on the spacetime point. The variation of the action will not
vanish in general, but it will be proportional to d,¢, (because it has to
vanish when d,¢, = BuDg =0).

oL _; oL 0S .
05 = /d4l‘ {a@Df%JrWau(D%k)} = /d%{a@quﬁﬁau(Jﬁ)fo}

(2.15)

The variation of the lagrangian will in general be a total derivative (usually
represented as partial derivatives!)

55 = / 'z 9,AF (2.16)
The current is given by
; oL
I = ————¢; — AH 2.17

We can now choose the parameters ¢, is such a way that
Dlg; =0 (2.18)
at the boundary. This variations correspond to the action principle, so that
08 =0 (2.19)

This means that on shell

o Jh =0 (2.20)

The Noether current is conserved.
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2.3 The general case

Let us work out the transformation of the derivatives of the fields.

Oy (a4 €) = D’ D,i(x) (2:21)

This means that

00,0 = 0 ¢/ (x) — 0p(x) = —E1020pp — 0.0 = —0, 09 (2.22)

On the other hand the measure also varies

/
det a—x

d(vol) = d"x' = e d"z = (14 0,8")d"x (2.23)
That is,
dd(vol) = 0,&"d(vol) (2.24)
The full variation of the lagrangian is then
oL = oL =
— = (_ep _ p A wl
oL=3 (a% (=60000 +860) + 5755 (=00 (€70p00) +0.80u) + £O0L + L, ) =0
(2.25)
where we have included the variation of the Lagrangian itself as a scalar,
'L =L (2') — L(z) = £*0\L (2.26)

Leibnitz rule implies

/ d"z 9, < )5¢a> 5 ——06¢a—0,, (&,TH)— Spaqua +0p, (L&) =0, (§"L)

5¢a
(2.27)
Here we have defined the canonical energy-momentum tensor,
oL
TP = —— 9,0, — L1’ 2.28
4= 5,00 O (229
Now the hypothesis that the action is invariant, that is
05 =0 (2.29)
then implies the conservation of the Noether current
Nl =0, | D L&ﬁa —&PTH ) =0 (2.30)
a 8(({9“@1)
To begin with, let us apply this to pure (constant) translations. Then
é'Oé — aa
Shg = 0 (2.31)

In this case the Noether current coincides with the energy-momentum tensor
itself. It follows
o T" =0 (2.32)
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2.4 Scale transformations

An important example of spacetime dependent symmetry is dilatation sym-
metry. The free scalar action

1
S = / d" 50u00"6 (2.33)
is invariant under a rescaling of the spacetime coordinates
o = (14 N)a (2.34)

provided that the field is correspondingly rescaled

oy o)
¥ @) = 2 (2.35)
This means that
£ = Agh
0p = —Ao (2.36)

This yields the so called virial current, J{; (which is defined as a quantiuty
such that
T =8,J4), (2.37)

as well as the dilatation current
Iy = Jy —2PTY
U 1 2 v
Jp = 50" (6%) = 0,0 (2.38)
2
with 1
LM = —§¢2nw (2.39)
Acually, the existence of this current means thatmthe theory is conformal
tnwariant, and not just scala invariant. The conformal current is given by
Ky = (2253, — 220, ) T° = 20,0 + 2Ly, (2.40)
It is easy to check that indeed
9, K" =0 (2.41)

If we redefine for an scalar field the improved energy-momentum tensor
(which is best understood in terms of a nonminimal coupling to gravitation,
dubbed as Ricci gauging )

1

TP =T + Iy, = T — 5 (0,0, — 1) ¢ (2.42)
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The added piece is conserved and does not contribute to the total energy.
It is not traceless, bu rather

I = %Dqs? — (96)* + ¢00 (2.43)
Given the fact that
Pl = 2 @0 — D) F = — (00, —m D) F (244)
as well as
O gt = a,%ag (2107 — 2°0") ¢2 = 0
éaa (2107 — 270M) ¢2 = é (0" + 20 — 40" — 3°9,0M) ¢2 = —%a# (¢%) H2amp

we can change the dilatation current by adding a divergenceless piece

1
JE = JE + 66” (@07 — 27O) ¢* =TI x, (2.46)
This means that 0,J5,,, = 0 is equivalent to
8#']#610 = Cril;npﬂ =0 (247)

The improved energy-momentum tensor is traceless. The canonical energy-
momentum tensor for a massless scalar field is given by

1
Tuu = a,ugbauﬁb - iaagbaa(ﬁ"’/uu (2'48)
which fails to be traceless in four dimensions (although it is so in two di-

mensions). It is easy to check that the corresponding improved energy-
momentum tensor is indeed traceless on shell.

2.5 Conserved charges out of conserved currents.

Given a conserved current, 0,j% = 0, it is possible to define a conserved
charge which is time independent,

Q= / dxj0(t, ©) (2.49)

92 = [dP20y)° = [ d*xVj =0
The charge corresponding to the energy-momentum tensor is given by

pr = / BrTH0 = (PO —E, 13) (2.50)
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2.6 Invariance under Lorentz transformations.
A Lorentz transformation has

et =wha” (2.51)

v

The transformation of a scalar field
¢’ (" +wha") = ¢(x) (2.52)
so that

F (@) = Bt — wlia) = 6(x) — wlia 06 = B(a) + W (40" — ") 6

(2.53)
This means that
0¢p =w.Dp =w.Do (2.54)
with 1
Daﬁ = 5 (l’aaﬁ - l’gaa) (2.55)

Fields with spin have extra indices, say ¢,; the transformation of the field
is then given by
Daﬂ — Daﬁ + Zaﬁ (2.56)

where ¥,5 acts on the extra indices and is called the spin matriz. For
example, for a vector field (please check)

1
(Zap)y, = 5 (5[}77% - 55?7@) (2.57)

It is possible to verify that this corresponds with the representation 1 =
(1/2,0) @ (0,1/2). In our case it is true that

50,6 = 0, (w.D) (2.58)

The equation asserting the conservation of Noether’s current then tells
us that

L
0=20, < 0 w.Np — @,T“”) (2.59)
9(0u)
Taking into account that
0P =W’y (2.60)
we get the interesting equation
oL
o° o) T 2.61
<8<8p¢> ' ) " (261

This means that we can define a new symmetric energy-momentum tensor
(called the Belinfante tensor)
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oL ; oL ; oL ,
T =T, —O° Yo il Y Jg. Y, il b
e = T =0 Gngy e O gy atangy
(2.62)
It is natural to define an angular momentum tensor
MMV = gl — gV T (2.63)

which is conserved because the Belinfante tensor is symmetric
To give an explicit example, the canonical Maxwell energy-momentum

tensor reads 11
Tow = 5 <4FQ5F°‘B77W - FP#OVAP) (2.64)

which is neither symmetric nor gauge invariant
The Belinfante tensor reads

1/1
T;zil = 9 (4Fa5Faﬁan - Fquij) (265)

It is easy to show that the energy density of the field is given by
_ Lz m
Too = 5 (E +B ) (2.66)
as well as the corresponding momentum dendity (Poynting vector):
. 1 N
0 _ _ —
T% = -3 ((E x B) ) (2.67)

Finally the Rosenfeld tensor is defined by first coupling the theory to a
external metric

Nuv — Guv (268)
and then definint 59
Thos =2 Sg (2.69)

Guv="Nuv
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Gauge invariance.

3.1 Propagators.

Let us first derive the different Green’s functions corresponding to the op-

erator
2

_d 2
To begin, let us analyze the equation for a delta-source

KG(t) = 6(t) (3:2)

as well as the homogeneous one

KGg(t)=0 (3.3)
In momentum space
dk
G(t) = | —=e*G(k) (3.4)
27
so that
(—k* +w?) Glk) =1 (3.5)
as well as
(—k2 + wQ) Gu(k) =0 (3.6)
Two particular solutions of the homogeneous equation are
H_ ' tiwt dk ipi2m 2 2
=—— = | —e"'—0(% — .
G 53¢ 5-¢ 0(+k)o(k* — w?) (3.7)

They are as such hat is, two generators of the full space of solutions, G
and represent on shell "particles”. This means that

Gu(t) = / %eiktg(k)é (—k2 + w2) =acoswt+bsin wt (3.8)

13
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It is a fact that

Gl (t) =G (-)
Gl (t) = -G (1)
G (1) = -G (-)

1
Re G = +—sin wt
2w
1
Im GY = o, ¢os wt (3.9)

where g(k) is an arbitrary function, giving rise upon integration to the
two arbitrary constants.
On the other hand, turning back to the inhomogeneous equation

_ (AR g 1
G(t)_/27re —— (3.10)

There are two poles on the integration circuit. There are several possibilities.
At any rate we can always write

ikt ) eik‘t
+ 20(—t)R€S_ m

e

G(t) = —if(t)Res it o)

(3.11)

closing the contour on the upper (positive) half-plane for positive ¢, and on
the lower (negative) half-plane for negative ¢.
The four different possibilities are drawn in the figures.

e The Dyson boundary conditions The prescription
w? + e (3.12)

Or equivalently, ‘
k— ke (3.13)

places the positive pole on the upper half of the complex plane, whereas
the negative pole stays on the lower half. This leads to the so-called
Dyson propagator,

Gp(t) = *i (6()e™" + 0(—t)e ") = fieiw\tl = 0(t) G +0(—t)GH
(3.14)
where )
— _L +iwt
Ge(t)=—5 ¢ (3.15)

To summarize, .
Gp = —ieiw‘” (3.16)
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e Retarded The prescription
w? + ie sign (k) (3.17)

or else
k— k—ie (3.18)

places the two poles in the upper half of the complex plane. This leads
to the retarded propagator:

Grlt) = —%Q(t) (et — 1) = (t) (G — ) = % O(t)is(i;b fgt)
Grlt) = 0" = 4G 1 (3.20)

e Advanced Were both poles to be placed in the lower half of the complex
plane, id est
w? — e sign (k) (3.21)

that is
k— k+ie (3.22)

we would have found the advanced propagator

_i_ wt _ —iwt) _ H H___l~
Gat) = 5 0(=1) (et = e7t) = o(—t) (GH = G} = —0( t)c(usm)wt
3.23
inwt 1
Galt) = —0(—t) “Z“’ = —0(~t)Re G (3.24)
It is plain that
Ga(—t) = Gg(t) (3.25)
e Feynman Finally,
w? — e (3.26)
id est
k — ke' (3.27)

leads to the Feynman propagator, namely,

GF (t) — i (e(t)e—iwt + 6(_t)eiwt> _
-G —0(—t)GY = —0()G_ — 0(—t)G+  (3.28)

that is,
i —iw
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It propagates positive frequencies towards the future and negative fre-

quencies towards the past. It is an even function:
Gr(t) = Gp(—t).
and
p=Gr
It is a fact of life that

sinwlt|

Gr+Gp =2ReGr =Gr+ Gy =

(3.30)

(3.31)

coswt /1 —w?(Ga+ GR)?

Grp—Gp =2iImGp =1 =1
w w

as well as

2G =GR~ Ga+ Gy — Gr
2GH = GA—Gr+ Gy — Gp
Gr—Gp=-GI
Gr—Ga=-GY

(3.32)

(3.33)

The real part of the Feynman propagator is just the half sum of the
advanced and the retarded propagators, and the imaginary part is the

time-symmetric homogeneous solution

Gp(t) = % (Gr(t) + Ga(t)) + %COS wt =
Galt) + Galt) _ Golt) ~ G_(1)

.34
5 5 (3.34)
In momentum space
2m 2 2\ _ ot
7
-1
G —
F e 02 e
-1
Gra= 13 ik (3.35)
A fact that will turn out to be useful in due time is:
Gk = —— 1 _p b p b st —w) 4 imd(k +w)
wHR Ck4tw—ide k—w—ie k4w k—w o W) .
1 1 1 1
2 k) = — =P - P imd(k —w) —imd(k
wGa(k) k4+w+ie k—w-+ie k+w l{:—w—'—m( w) = imo(k +w)
1 1 1 . .
2wGF(k:)—k+w_i6—k_w+i€—Pk+w—Pk_w+27r5(k—w)+z7r5(k—l—w)
1 1 1 1
2wGp(k) P - P —imd(k —w) —imd(k + w)

:k+w+ie_k—w—ie: k+w k—w
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In conclusion

Galk) = Gx(k) (3.36)
Gr(k) =0(k)Ga(k)+0(—k)GRr(k) (3.37)
as well as many other relationships easily unveiled.

e The euclidean propagator The euclidean theory is defined uniquely by
the requirement that

e (3.38)

goes to
e 9E (3.39)

with Sg positive semidefinite. This fixes

t=—it (3.40)
The euclidean Green function is defined as

d? 2) &
&) Gu(r) = ~5(r), (3.41)

dr -
Gp(r) = ie“’”GE(/@), (3.42)

dr IKT 1 1 —wT wT
GE(T) = %e m = % (9(7)6 + 9(—7')6 ) =

0(1)Gg(1) + 0(—7)GE(T) (3.43)

where the two independent solutions of the homogeneous equation are
chosen as:

1 twr
— . 3.44

The full euclidean propagator is then

G

Gp = 56—“"7' (3.45)
The euclidean propagator is related to Feynman’s propagator by the
analytic continuation 7 = it such that the piece which goes with 6(7)
in the euclidean function goes into /—1 times the piece that is pro-
portional to #(t) in Minkowskian time and the piece which goes with
6(—7) in the euclidean function goes into /—1 times the piece that is
proportional to (—t) in Minkowskian time .
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3.2 Current-current interaction.
Let us consider an scalar field with an external current
n 1 2
S — /d 2 - 56 (0+m?) 6+ J(2)o(x) (3.46)

There is simple way to extract thefull depende of the action on the external
sources. This will determine the strength of the interaction between those
sources. We start with the identity

1 1 1
— §¢0¢ +Jp = —§@T0—1q> +5J OtJ (3.47)

where the fields
d(z) =0 —J (3.48)
ol =p0—J (3.49)

represent a point transformation of the canonical variables. The inverse of
the operator is formally defined as

/dnz Ox—2)0"" (z—y) =6 (z—y) (3.50)

The moral of all this is that the interaction between the sources is given
by the Green’s function of the quadratic operator ©. In the static approxi-
mation it is enough to consider the euclidean one

1

. . i B 1
Gp(r) = /dn p e Y1 pipt +m? ~e rn=3 (3:51)

This gives the Yukawa potential in 3+1 dimensions (and a logarithmic po-

tential in 2+1 dimensions.

67’!’1’17’

Viuk ~ (3.52)

It is a fact of life that in the physically most interesting case of gauge
theories it is not possible to invert the oparator untl after fixing the gauge.
The reason is that the operator has a zero mode, precisely in the gauyge
invariant direction. For example, in the EM case,

Oaﬁ = (Dnaﬁ — 8a85) (3.53)

N | —

obeys
Oupd’A =0 (3.54)

This means that this operator does not have an inverse. In the Lorenz gauge
however the operator reduces to

1
Oap = 5 Dilap (3.55)
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so that the current-current interaction is given by the Lienard-Wiechert
potentials
L () A ¢ (3.56)

There is another caveat. In order for the current piece to be gauge invariant,
this current must be conserved.

In both the scalar and vector cases the sign of the interaction is arbitary,
depending of the sign of the currents. In the case of the gravitational field,
which corresponds to spin 2, the current is the energy-momentum tensor,
and from the fact that the energy is positive, the sign of the gravitational
interaction between external sources is fixed to be attractive.

3.3 From rigid to gauge.

Consider the lagrangian corresponding to a charged scalar field (= two real
scalar fields)

1
S = / d*z {am*a% - 2m2¢¢*] (3.57)
5= [t 3 [30utsirs; - ymioso] (3.58)
e 12 2
The EM are again given by the Klein-Gordon equation
08
- (O N = )
o (O4+m%)p=0 (3.59)

The lagrangian is invariant under constant (rigid,global) changes of phase
¢ = et (3.60)

(0,0 =0,g€R). €1 € U(1) ~R2 ~ SO(2). The real form is

¢; = M;j0; (3.61)
with
59 My My, = 6y (3.62)
The Noether current reads
= 0L 56— iq(0ne76 — 4 ) (3.63)
9(0u9)
(") =" (3.64)

and the charge
Q=ig [ da(do - 66") (3.65)
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We would like this invariance to hold true when the parametrer is not con-

stant (gauge,local),
9,0 # 0 (3.66)

In order to get that we need to couple the scalar field to the electromagnetic
field. The minimal coupling is defined by replacing all derivatives by the
covariant derivatives

D, =0, —1qAn (3.67)

It is a fact that it transforms as
(Dug) = e’ Dyd (3.68)

The full lagrangian reads
4 1 * My 1 2 * 1 v
S=[d=x §Da¢ D% — 5m Pd" — ZFWFM (3.69)

and is gauge invariant under U(1) abelian transformations.
If the starting point is a set of Dirac fermions

N
S=3 [ i ous — miis (3.70)
=1
The action is invariant under
5 = ie 3 Tig; (3.71)
J

as long as the matrix T is hermitian
T =T; (3.72)
This means thet the finite transformation is unitary
U=¢T cU(N) (3.73)

Now we can ask under what circumstances can we promote this summetry
to a local one, id est, d,¢ # 07 The problem is clearly with the derivative,
because (using matrix notation)

0, U # Ud,) (3.74)

In order to fix this, we need to introduce what mathematicians call a connec-
tion and physicists a gauge field. This animal has an index for the derivative,
and then the same set of indices as the matrix U. The fixed derivative is
called the covariant derivative

Dyp = 0pp — Ayt (3.75)
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What we want is that
(D) = 9, (Uy) - ALUw =U (Oup — Apy) (3.76)
which would be true provided
UA, =0,U + A/”U (3.77)

that is
A, =UA U —0,UU* (3.78)

Gauge fields (both abelian and non-abelian) pervade our current understand-
ing of the fundamental interactions. We shall see that the gravitational field
can also be understood using a similar set of ideas. It is a simple exercise
to show that

F.=0,A -0,A,+A,A, —AA, (3.79)
transforms as
F,,=UF,U" (3.80)
This means that !
L= —Etr F F* (3.81)

is gauge invariant and the natural candidate for the kinetic energy term of
a gauge theory. Indeed

A, = Dy Ay, = 0, (UAU = 9,UU) = 9, (UAU = 9,0U™)
LA = A = (UAUY = 0,0U0") (UAUY - 9,UU) —
(VAU —o,uU") (VAU - 0,UU) (3.82)

and the result follows using

o, UUt = —Ud,U*
o,UU = —Uo,U (3.83)
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Figure 3.1: The Feynman contour.
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Figure 3.2: The retarded contour.
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Figure 3.3: The advanced contour.
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Figure 3.4: The Dyson Contour.



4

The Fierz-Pauli spin 2
theory.

Let us review one viewpoint on the origin of gauge invariance which is found
in Tini Veltman’s Les Houches lectures. Let us begin wity the simplest case
of spin 1. When the vector particle is massive, it has three polarizations
(25 4+ 1). Choosing the frame in such a way that the momentum is

k= (m,0,0,0) (4.1)
The three polarizations can then be chosen as

€1 =€1 = (O, 1,0,0)
€) = €9 = (0,0, 1,0)
€3 = €3 = (0,0,0, 1) (42)

Now let us imagine that we want to take the massless linit, m — 0. The
momentum is now null, so the best we can do is

k= (1,0,0,1) (4.3)

The polarizations are still three, namely

€1 = €1
€9 = €9
€3 — k (44)

It is actually possible to get propagators from unitarity. The amplitude for
creating a photon with polarization €j(x) at a given spacetime point, z, is
proportional to the polarization itself. The amplitude for this same photon
to be absorbed at the point y is proportional to €%(y). In order to get the
full propagator, we have to sum over all three polarizations.
3

D,, = K;Vl => €u€y = Opw = Ny — % (4.5)

a=1

25
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The transverse metric is really a projector, which does not have an inverse.
On shell it can be sustituted by

TOS _ kuky (4.6)

GHV — Qw, = 77“,/ W

Then the ensuing lagrangian

Lo A (0hs) A~ A (K = m?) iy + k) A7 (A7)

v
Normalizing properly, this yields the lagrabgian for a massive photon
1 1
L= —EF/%Z, - §m2Ai (4.8)

The only known way to stay with only two polarizations (massless fields)
is to make the identification
e~et+k (4.9)
that is, longitudinal polarizations are pure gauge. In position space this
reads
€p ~ €+ O (4.10)
Let us now turn to spin 2. There are now five polarizations in the massive
case.

2
€i®6j+€j®6i—§ <Z€k®ek> (51']' (4.11)
k

In the massless limit we have

0010
0 00O
as=kQ@e+e®k= 100 1
0010
01 00
. |1 0 00
eau=k®e1+e1 k= 000 0
01 00
1 0 01
. 10 0 00
S=ROE=10 00 0
1 0 01
0 00O
e @ et er @6 = 0010
€1 = €1 €9 €9 [ 0100
0 00O
00 0 O
. 101 0 0
=€ Qe —erRey = 00 -1 0 (4.12)
00 0 O
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The last two rotate among themselves under the little group. The smallest
gauge invariance we need to stay with only two polarizations is

€ap ~ €ap + 0adp + Opka (4.13)
(Actually it is enough to as these conditions for transverse veciors,
0,67 =0 (4.14)

but we shall not pursue this here.) The most general form of the propagator
is

D;u//\a = Z Eﬁyefa = C1MuwMhe T C2 (nwjk/\ka + k,ukun)\a) +c3 (77;1)\771/0 + nuanu)\) +
A

C4 (kukanu)\ + kuk/\nua + kukan,u/\ + kuk/\nua) + CSkukuk)\ka

Demanding transversality and tracelessness is enough to fix it up to a con-
stant. Transversality and tracelessness can also be argued for from the fact
that an on shell graviton cannot decay neither in an scalar particle nor in a
vector one.

3
D;u//\a = <9,u1/0)\0 ) (H,u)\ez/o + 9#091//\)> (4'16)

In order to find the lagrangian we proceed as in the U(1) case and sub-
stitute
O — 010° (4.17)

The ensuing propagator reads

Kby = Do = 1 (95,9%{;35 ~ g (05950705 + 950050,{95» (4.18)

Computing the inverse and normalizing properly, we get the massive
Fierz-Pauli theory, describing a massive spin 2 particle in Minkowski space-
time. This theory was first considered by Fierz and Pauli in 1939, 24 years
after Finstein wrote down General Relativity in 1915. It is nevertheless
interesting to understand why and in what sense does not work.

It simplifies the computation to use projectors. We start with the longi-
tudinal and transverse projectors

kaks
0045 = 77045 - k’2
kok
Wap = kf (4.19)
They obey

O+w=0,+w,=0d,=1
0° =050} =6, =0
w? = wgwg =w)] =w (4.20)

(4.15)
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as well as

tr=n—1

trw=1

The four-indices projectors are

1
710,”9“,

1
P = 5 (0p0v0 + 0,60,,) —

1

P = 3 (Oppwre + Ouowup + Oupwue + Ouewyp)
1

B = =700

w —
Py = wuwps
1

Pgw = ﬁeuywmy
1
Péﬂs = \/mw“yepo-

Their physical meaning can be seen as follows.
The projectors obey

pe P]‘-’ = 5,60 PY
pe ijc = 5,0 poe
Pebpe = 5,5t pa
pebped 5, gbeged pe
as well as

tr Py =" (Pa)ywpe =0

tr Py =0y,

tr Py’ = wpo

tr PL =0

tr P5Y =v/n—1 wpy,

1
Y
1

Pyt Py + B+ P§ = o (8107 +075)
Any symmetric operator can be written as
K =ao0Py+ a1 P; + awPSU + CLSPS + CLXPOX
(where PJ* = Pl’* + P§"). Then

Qo ax

_ 1 1 a
K'=_—-P4+—P+ P+ - P —
as al sy — A% A5y — A5 AsQyy — A5

X
2P0

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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It is a fact that

(P2), * (Pur) o N = Py

Ripy=p - " Lpy o Lp
A

P Py =P

PPy = Py = Y2 Lppe _ Lpw

Ryrpy = R Y0 Lpn 7Ly (127)

The end result of the Fierz-Pauli lagrangian is

1 1 1 1 2
S = / d4a:{4(8uhpg(3uhp”—28Mh“”8phyp+28“h8ph“”—48Hh6“h—nzl (Pash®? = h?) }

(4.28)
It can be easily checked that in the massless case, m = 0, this is the unique
lagrangian which is invariant under the gauge symmetry

5h;w = 8/161/ + augu (4'29)
It is interesting to study a little bit the FP EM.
_ 1/ 2 1
K;u/pa == g (k -—m ) (nupnua + nuanl/p) - g (k,ukpnua + kukanyp + kl/kpnp,o + kl/kanup) +
1 1
1 (Muwkoks + Eukunpe) — 1 (k2 - mz))nwnpg (4.30)

The EM in momentum space read

Ao = (K2 = 2 By bk by by K by £ 1 KPR o e i (62 = m?) myh = 0

(4.31)
The divergence of the EM yields
K K poh?” = —2m? (kP hpy, — kuh) = 0 (4.32)
It follows that
k*h = kyk,h*” (4.33)
On the other hand, the trace of the EM is
N Kpeh?” = —2(1 — n)m?h (4.34)

This tells us that in fact,

h = kyk,h* =0
k*hy, = 0 (4.35)
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and the EMK imply the Klein-Gordon equation
(D + m2) By =0 (4.36)

We have seen that were we interested in the massless limit, we better impose
the abelian gauge invarian

6huy - Mé-y + 8V£N (437)

where the gauge parameter is now a Minkowski vector, ;. In the quadratic
approximetion the most general Lorentz invariant is given by

1 1 1 1
= Zﬁuh'/p(?“hl,p — Biaﬂh“payhz + aga“h@phﬂp — bzaﬂhﬁ“h (438)
It is quite easy to check that gauge invariance implies uniquely that
b=a=b=1 (4.39)

That is, demanding that a quadratic Lorentz invariant lagrangian have ex-
actly this gauge symmetry fixes the lagrangian to the massless Fierz-Pauli
form: (the choice

f=1
2

a=—
n
n+ 2

b= T (4.40)

corresponds to the linear limit of unimodular gravity, an interesting variant
theory of which we can not say more here.

S = /d4 { (OuhpeOy hp"—f(? h’“’@phl,p+ 8’%8 h’“’—fa h@”h} (4.41)
The quadratic operator
S = / d*z hy, OMP7 by (4.42)

is given by

1
OHvPo — (P’ + oy P) O + - (8“8”77”" + 01T + OV 0PN + OO +

8
Lywange 1 L wprs = 5 (p, _ops
—57 oy 0= = (P - 2K)

A very convenient gauge is the de Donder or harmonic gauge,

1 2 k:2 Vn—1
(8)\}1)‘#_28”‘]1) — 4 <P]_+ P0+ PO — 9 _P><

1
H _
(4.44)

(4.43)
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In this gauge the lagrangian simplifies enormously
Of"" = —5 (o0 +nton?) O+ g P70 =
_ _’f{Pg + P — 3P 4 Lpw — Yol px }WW (4.45)
The interaction between two external sources will then be
W= / 'z T, (2) (07" (2 ) T2, () (4.46)
In n=4 dimensions

(0" (& —y) = i KMo (p — 2) (4.47)

1 vpo 1 14 14 v
. / d'z KPP (2—2) K poag(2—y) = (2 (4% + o508 + (n — ) " nag) 5(z—y)

(4.48)
so that the interaction energy is proportional to
L (@ _ Lrope

The same calculation in the massive case (no need for gauge fixing there)
yields the value
_ 1) (2 1) (2

W = ﬁ (3 THT@r 7 >) (4.50)
It is then plain that the massless Fierz-Pauli propagator (in the harmonic
gauge) it is not the limit of the massive propagator when m — 0. This
phenomenon is dubbed the van Dam and Veltman discontinuity, in honor
of its discoverers.

In terms of projectors

4 1 n—3 n—1
A= k2{P2—|—P1 n_2pg+n_2pg—vn_2PX} (4.51)

The residue of Py is negative. Consider the ADM decomposition of the
graviton

1 1
huw = hl) + 04Ay + 0, A, + T + ( Oy — nD”W) a (4.52)
with

hipy 1 =0
PhiTl =
O At =0 (4.53)
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in such a way that

R Ry = ¢
" hy =0A, + 20,0 + 2100,a
MO by = t0¢ + “10% (4.54)

Then

(Put =
(Pih),, = 0uA, + 0,4,
Py =21 (6 K2

wPhye = L (¢ + (n — 1)k%a) (4.55)

hP§h = "5t (6 — K?a)” (4.56)
(P°h) = W (¢ + (n = Dk?a)
hPYh =L (¢ + (n— 1)k%a) (4.57)
(P*h),, = W}T_l (0 + (n—1)k?a) O + =1 (¢ — k2a) wyn
hP*h =260 (6 + (n — Dk?a)(¢ — k2a) (4.58)
Besides, under a FP gauge transformation
§u =&+ 0u€
g, =g
el =0 (4.59)
this fields transform as
ShLl =0
6A, =&
da = 2¢
0 = 200 (4.60)
in such a way that the field
d=¢—Ua (4.61)

is gauge invariant.
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The FP lagrangian is expressed in terms of this fields as
L= —}l{hEVT Onb + ga@au@} (4.62)

It is a fact of life that this is invariant under linearized TDiffs

Shlt = 0uh + Ay (4.63)
with
N =0 (4.64)
and under CKV
0P = 9,n" (4.65)
Actually
5L ~ 9,0\ "D ~ Do\ ® = 0 (4.66)
because the CKV equation
2,
Oty + 0umy = E@w s (4.67)
do imply
Do =0 (4.68)

for any dimension n # 2.

TDiff invariance reduces the number of DOF from 5 to 2, and CKV
seems to kill the massless scalar field (this argument works for any massless
scalar field).

4.1 The coupling to matter

The main argument in favor of considering spin 2 as a candidate theory of
gravitation is the positivity of the classical energy density. It is then natural
to try a coupling for example to a scalar field of the type

2
Lint = 6h" T [6] = kM (aﬂa/)ayqﬁ - % <8p¢ap¢ - n;¢2> W) (4.69)

Here x is a coupling constant with mass dimension -1.
The EM would now read

K;wpahpa = K/Tp&l/ (470)
The first member is divergence-free

0" K s = 0 (4.71)
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It follows that the second member must also enjoy a vanishing divergence if
the EM are to be consistent. But this is not trie anynore because the scalar
EM have been modified due to the interaction term. The new conserved
canonical energy-momentum tensor is

T = T + 1 ((A0p0 — h0u) 0 — h™ T ) (4.72)

This means that we should modify the couping accordingly. But in doing so,
we modify again the conserved energy-momentum tensor. There is clearly
an infinite series of terms that we have somewhat to add. There is an
exceedingly clever way of doing it in a fell swoop due to Stanley Deser.
First of all, let us rewrite the Fierz-Pauli lagrangian in first order form as

L= —kh" (0,05, = 9,00, ] + 0 [T, 10, = Th,1% ] (4.73)

where

. 1
hyw = by — 3 h Ny
[0‘57] =0 (4.74)

The EM are given by

5%‘3 == —0,I, + % (0T +0,T,)
5?; = D™ — % (040,77 + 810 h"") = 1T -
—% (T#6% + TV6k) + T + Thgn™” (4.75)
where
r,=T3,
IR (4.76)

The trace of the h-equation tells us that

Ty = 9,T" (4.77)
whereas the trace d;; of the Gamma-equation yields

IV = 0,h"° (4.78)
and taking the trace n*

Oah — Ok — Lo —T2nrq +To + T =0 (4.79)
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so that
1

o h
n—2a

To=—

and then the full Gamma equation tells us that

_ 1 _
— Oahyw + ma‘lh N + Lvap + Tpar =0

where
Luas =M Tag
In terms of the variables h,, this reads
Fu;au + F,u;l/oz = +8ah,u1/
Cycic permutations are
F,u;l/a + Fa;,uu = +8uha,u
Fa;/u/ + Fl/;a,u = +8uhua

Summing 1+2-3 yields
1
Lpva = 3 (Ophap + Oahy — Ophuq)

which yields the linear piece of Christoffel’s symbols

1 (07
1% (Ouhpy + Ouhpy — Oghyu)

I = 5

The Deser action enjoys on shell the gauge invariance

Shya = Oy + 0,8,
0TS, = 50,6

35

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(That is the variation of the action is proportional to the EM). The EM are

equivalent to
Rl [h =0

and the linearized Bianchi identities tell us that
1
aHR'ZV = §aVRL
Now we change again the action. The extra term reads

AS=-—r / d'z b [T, 10, =T, 1% ]

The full lagrangian now reads

(4.88)

(4.89)

(4.90)

L=k 0,10, = 9,00, ) + (0 = k) [[h,00, = Th,1%,] - (4.91)

272 DN
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Let is call )
n* — kh* = f* (4.92)

and its inverse
farf? =65, (4.93)

so that the lagrangian reads

— v v v A A
L= (f# - 77'u ) |:8MF1€,0 - 8PFZV} + fﬂ [F,uprllj)\ - Fuurl))\p} (4'94)

The new EM read

0S
5‘)('”” = RIJJ’ [F]
4S5 1
:aw/_* VO_},LO' uoua_uura_
st = Oaf" = 5 (G001 + 050, °7) = f
1
— 5 (D92 4+ T f4) + Tl 17 4 Tl £ (4.95)

This equations are similar to the ones we solved previously. One gets

T o8 = 9, o (4.96)
as well as
I = Lf ISP = 1 pgr (4.97)
n—2 af n—2 o ’
where
F =det fu (4.98)
The full Gamma equation now reads
1
Ouft + — E TN, F + Tho [ + T4, 7" =0 (4.99)
which can be written in the form
0u (f1 F72) 4+ Th, f0 F752 £ T4, f70 P75 =0 (4.100)
It is natural to define )
gt = Fn—2 fH (4.101)
so that
M =/g9" (4.102)

Miraculously, the full lagrangian is diff invariant with the measure
d(vol) = /g d"z (4.103)

The equation can again be solved by cyclic permutations, resulting in the
connection taking the Christoffel value



4.1. THE COUPLING TO MATTER

1
FZV = Q.gp)\ (a,ug)\u + al/g)\u - akg,uu)

so that
Ry = Ry 9]

the full nonlinear Einstein equation.

37

(4.104)

(4.105)
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5

The principle of equivalence
and the space-time manifold.

There is a mistery in Newton’s law of gravitation. The force that a given
body of mass my exerts on another body of mass ms is given by

F = Gmymy 2 (5.1)
712
where
T2 = |7 — 7 (5.2)

First of all, if we compare it with the Coulomb force between two electrically
charged objects, with charges ¢q; and ¢o, which reads in Gauss units
= i — T
F=qq¢p—; (5.3)
T12

we see immediatly that the masses play the role of the charges. The first
difference is that the gravitational charges, that is the active gravitational
masses as we will dub them from now on, are always positive. This a mystery
in Newtonian physics. But if we now want to compute the acceleration that
this force impinges on the particle number two, we should use Newton’s
second law

i r —Tr2
myry = Gmim§——; (5.4)
r

Here we have put m® to indicate that what apppears in Newton’s second
law is the inertial mass whose physical meaning lies in the effectiveness of a
given external force to produce acceleration on that body, which in princi-
ple has nothing to do with the ability of that body to create a gravitational
field, which is proportional to its gravitational charge, id est the active grav-
itational mas, which we have denoted by m9. The experimental fact that
these teo masses are equal

m' = mY (5.5)

39
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means that we can simplify the above equation

z 1 — T2
7o = Gm{ 3 (5.6)
12

which now implies that all bodies are subjected to the same acceleration,
independently of their mass. This is one of the more important experiments
in the history of physics. The present experimental limit, due to the Eot-
Wash group at the university of Washington in Seattle by using a torsion
balance is (in the particular case of berilium and titanium)

(mg ) Be (mg ) Ti
n(Be, Ti) = 24—~/ < 101 (5.7)
()" 2
m; m;
This parameter 7 is usually called the E6tvos parameter, and it should vanish
if the equivalence principle is correct. More information can be easily found
in the home page of the Washington group: http://www.npl.washington.edu/eotwash/

Einstein postulated on this physical basis the strong equivalence princi-
ple, asserting that all physics in a free falling frame is equivalent to physics
in absence of gravitation. This means that at any point in spacetime there
is a reference system in which the laws of special relativity are exactly valid.
This reference system varies from point to point (even in Newtonian grav-
ity).

The great leap forward, one of the biggest intellectual achievements in
the history of mankind taken by Einstein in 1916 is to atribute this to tha
fact that four dimensional spacetime wa not flat as is Minkowski spacetime,
but curved instead, and that the precise amount of curvature was dictated
by some precise equations, the are now denoted as Einstein equations. This
means that spacetime is a curved four dimensional space, what mathemati-
cians call a differential manifold, which looks locally like a flat space. The
prototypical example is a sphere. Locally, as we can assert from everyday
experience, a two-sphere looks like a two-dimensional plane. A point in
spacetime is again represented by four coordinates

t = (a:o = ct, xl,x2,x2) (5.8)
We shall represent the three spatial coordinates by
gt i=1,2,3. (5.9)
The metric of the spacetime will then be given by
ds* = g datdz” (5.10)

where the 10 components of the metric tensor guy(mo,ml,xz,ﬁ') sre to be
determined by the Kinstein equations, a set of nonlinear PDE. Since GR
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was discovered, gravitation is expressed in the language of differential ge-
ometry. To speak gravitation, it is necessary to know the language. How
do we characterize the free falling frames? We can call them locally inertial
frames LIF, because in them the standard laws of SR do hold. Now, Lorentz
transformations are linear. This means that coordinates and vectors trans-
form the same way. This is not true anymore when transformations are
nonlinear, which is the case that will concern us when studying the gravita-
tional field in a general setting. This means that LIF can be characterized
by a basis of vectors in the tangent space of the spacetime manifold. When
studying vectors and tensors in general it is useful to consider specific basis,
which in this context, will be called frames. The are many possible frames
in Minkowski space. The canonical one will consist in four unit vector, one
timelike and the other three spacelike.

u?=1

e% = e% = 6% =-1

u.e; =0

ei.ej = —0;j (5.11)

It is convenient to call u = eg. If we represent in a vary explicit way the
indices, this is
el (5.12)

a

with @ = 0, 1, 2, 3 labels the four vectors of the frame, and the contravariant
index indicates that each object is indedeed a four-vector. The orthogpnality
properties then tell us that

nuuegeg = Tab (5.13)

Any vector in the Minkowski space can be written as

vt = Zv%g (5.14)

where
Vg = vyel (5.15)

The position of the indices is material.

The mathematical consequence of the equivalence princliple is that at
each point x € V of spacetime the is such a frame (that will depend on the
point) e#(x). This defines at each point a 4 x 4 matrix, which must not be
singular. This is an essential hypothesis of the whole approach. Let us now
consider the inverse matrix, which we shall call EZ
(5.16)

a

w b _ ¢b
eq-By, =19

Now let us consider
(n0etiet) Egnea = e (5.17)
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B, = guesn® =e (5.18)

a
“w
From now on, no distinction will be made between the matrices e and E,
because the position of the indices is enough to identify them unambiguously.
It is important to distiguish between latin indices, a,b,c, ..., which we will
call following Zumino Lorentz indices (sometimes called flat indices, that are
lowered or raised with the flat Minkowski metric 745, and the greek indices
WV, p, ..., which we will call Einstein indices, or curved indices, lowered or
raised with the spacetime metric, which is precisely the position-dependent
matrix

nhebicy = ¢ () (5.19)

More on this later.
From the moving frame e# we define quantities in the frame by projecting

Vo = eV, (5.20)
Leibnitz rule implies that
0Va = Ouen. Vi + end, Vi (5.21)

Given a frame at T}, e,, any Lorentz-rotated frame with an (point-dependent)
transformation is physically equivalent to it, and in particular gives rise to
exactly the same space-time metric

() = L(z)lel (5.22)
This stems from the fact that
N ()l (¢), = 1P L Lielel = nleliey = g (x) (5.23)
On the other hand, each of the four vectors in a frame transforms as a vector
under spacetime diffeomorphisms.
5.1 Differential forms.

We shall identify tangent vectors v € T, with directional derivatives of
functions defined at a given point of the manifold

v(f) = v Ouf (5.24)
A particular basis is given by the vectors
Oy (5.25)

Given an arbitrary function, its differential is defined as df € T;

df (v) =7 (f) (5.26)
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Differential forms are antisymmetric linear maps

wr v ER" s w) eR (5.27)
A local basis is given by
dx®(0p) = 0y (5.28)
we (v,w) € R" X R" = wy(v,w) € R (5.29)
We shall write in local coordinates
1
o= HO‘#L--Mdem A...Ndxh (5.30)

It is exceedingly useful to introduce the Kronecker symbol

ef‘&:::i‘ﬁ =p! 53}1 e 52‘;]
eﬁll'.’.',';of;am---up =p! Cpy .y

R A LA
A

st = 191 €77,
i = L i
9]
M Mg AT = pl
Vol = 0
d(vol) = Ny, ..y, dxt™ N .. N dat = \/Hd:xl Ao Adx"
dxtt A oA dat = nfeFrd(vol) (5.31)

To verify these formulas is excellent gymnastics.

e Exterior product. The exterior product of two one-forms yields a two-
form

w1 (’02) aq (Ug)

(wi A ag)(vr,v2) = det < wivr) - aa(vy) ) (5.32)

In the general case, the product of a p-form and a g-form is a (p+q)-
form

(we Awp) (V1. vpag) = Z Fw(viy - v )W (Vi - Vi) (5.33)
A general formula is given by

11
aNf= 5~ ah...)\pﬂmu-uqu)\l A ANdzrdztt AL A date (5.34)
p-q
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The basic identity reads
wp Awg = (—1)P? wy A wy (5.35)
Sometimes we shall write
dxhtHr = daktt NN date (5.36)
This means that for every odd degree form

wWop+1 NWopt1 = 0 (537)

e Coordinate basis In the basis of the tangent space associated to a local
chart, (z%),

Wi = Z Wiy, dzt A A datt (5.38)

11 <...<tg

e Exterior differential The differential of a function is given by a one-

form
df = Z Oy fdz® (5.39)
In the general case, the differential of a p-form is a (p+1)-form
dw = Z dw,, . Ndz™ AN datE (5.40)
11 <...<tg

A general formula can also be given

AoALAp
HOM1 - p (p+1)! 6#0#1-..up8)\00‘>\1...>\p

(dev) (5.41)
The uselfuness of exterior calculus stems essentially from the basic fact
that

d>=0 (5.42)

It is also a fact that the graded Leibnitz rule holds, id est,

d(op A Bg) = doy A Bg+ (—=1)Poy, Ad, (5.43)

e Hodge The Hodge operator maps p-forms into (n-p)-forms. It is de-

fined by
1
()i = ol Ny oopin QP (5.44)

Its square depends on the dimension of spacetime as well as on the
degree of the form
2 = (—1)PnP) (5.45)
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In four dimensions (actually, in any even dimension)
¥2 = (=1)P (5.46)
In three-dimensions it is always +1
¥2 = 41, (5.47)

The exterior codifferential is the adjoint of the exterior differential

(o, 68) = (dev, B) (5.48)
It is given by
§=(—1)P x 1 dx (5.49)
It is possible to give a simple formula
1 12
(5a)/71---pp—1 = _H Egélugpflv a,LLl...ILLp (550)

The interior product of a p-form and a vector, X, is the (p-1)-form
given by
(U(X)w) (v1 .. vp—1) = wp (X, v1...0p_1) (5.51)

e Stokes’ theorem We start from the properties of the volume defined
by an elementary cell of R?

— It vanishes if the vectors are linearly dependent.

— It stays the same when we add to a given vector a linear combi-
nation of the other vectors.

— Depends in a linear way on all vectors.
Al these properties are enjoyed by the elementary formula
V= Z eijkviv%'vlg =1 (01, V2, V3) (5.52)
where the volume element is defined by
n = dz' Ada? A da? (5.53)

This leads in a natural way to define volumes through intagration

/E)Vw = /de (5.54)

The classical theorems of Gauss, Stokes and the divergence are but
particular instamces of this. For example

dA, = / A (5.55)
So C1=0S52
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If A; is a 1-form of R3

Ay = Agda? (5.56)
then )
dA; = 5 (0A; — 0;4)) da' A dx? (5.57)
It is customary to define the rotational or curl as
(I‘OtA)Z- = El'jkajAk (558)
The surface integral
1 . .
/ dAy = / - (8ZA] - 8]AZ) dz* Ndx? = (559)
s 52
It is customary to define
. 1 .
n'dS = o eijpda’ dz® (5.60)
so that
> (rotA);midS =" (0; Ay, — OrA;) da? A da” (5.61)
i jk

and we recover Stokes’original theorem

/ wtAidS= [ Adz (5.62)
S oS
Let us now apply it to
dws = / wo (5.63)
Vs V3

Write 1

w2 =5 wijdz' A dz? (5.64)
so that

1 . 1 .
dwy = Qakwijdxk Adz' A dx? = 3 pwije™i dv (5.65)

Now we define the dual one-form

, 1
Qidmz = (*w2)1 = 5 €ijkWik (566)
then
dw2 = aka = div(? (567)
and we recover Gauss’divergence teorem
/ divQdv=[ QfidS (5.68)
1% av

Many other examples can be found for example, in Flanders’book
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e Lie derivative The Lie derivative of a function is defined as the direc-
tional derivative

u(f) = £L(0)f (5.69)

The Lie derivative of a one-form is defined in a natural way.

£(0)df = di(f) (5.70)

This definition extends to a general case simply by postulating that
Leibnitz’ rule holds true

£(5)aqd€? = (£(F)aq)dE® + o £ (T)de® (5.71)

In the case of vectors we use the dual application

—

£, X) = (£(D)a, X) + (o, £(D) X) (5.72)

It is a fact that

£(X)Y =[X,Y]

£(X) = i(X)d + di(X) (5.73)
e Diffeomorfisms An active diffeomorphism
E:xeM—y=¢x)eM (5.74)

Acting on vectors, given g : y — R, then go & : x — R and v € T}, we
define a different vector {,v € T}, through

&«(v)(g) = v(go &) (5.75)
In a local coordinate basis
(&) (y) = vP0," () (5.76)
Given a one-form w € T)f we define another form {*w € T} through
w(v) = w(éw) (5.77)
In a local coordinate basis
(§w)a(®) = wu(y)0at" (z) (5.78)
If it were a 2-form
(&*w) (v,w) = w (v, w) (5.79)

that is
(§*wW) g (¥) = W (Y)0a&H 058" (5.80)
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5.2 Particle motion in external gravitational fields.

It is natural to postulate that the action for an otherwise free particle moving
in an external (background) gravitational field will be given by

=—mc [ ds = —mc/ Juy TPV dA (5.81)
A

where the ds is the pseudo-riemannian element of length as given by the
metric. The integral is extended over the parameterized curve -~y

zH =z () (5.82)
and we have denoted by
Pt = dz* (5.83)
= .

In the timelike case we can normalize the tangent vector

we (5.84)
U = —F—= .
1/‘7';2

The extrema of the action are by definition the geodesics of the manifold.
We get

4SS = —mc/d/\ {0pg o2l it i + 2g,, 812"} = —mc/d)\ 530’){
8p9,uui’ufby - (az\gup + augAp) it — QQupiu} (5-85)

Expressed in the form of four ordinary differential equations for the four
functions of one variable z#(s) they read

d?zH dx® dzP
4 TH, =0 5.86
ds? tlap ds ds ( )

Here the Christoffel symbols are given by
1
F)\,;w = g)\prﬁy =G9xn §gpa (_aog;w + 8,uguo + 8ugvcr) (5.87)

The Christoffel symbols are in a sense the gauge field associated to diffeo-
morphisms, that is, given a vector

Ve (z) (5.88)

It is obvious that
O, VH (5.89)
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does not transform as a tensor unless the diffeomorphism is a linear one.
Then the gauge fields are defined in such a way that

V, V=0,V +T6, V7 (5.90)
does transform as a tensor, that is

B 9% Ozt

VoV ) = 5

Ve VA (5.91)

This yields immediatly the transformation properties of the connection,
that is

v oz n Pt 9x° _ Oa? '
PN GzA T 92 0z Oz Oz Bxd O
Because of the inhomogeneous term the Christoffel symbols are NOT ten-
sors. Thay are connections, that is, gauge fields. It is useful exercise to
check at least the the Christoffel symbols are a solution of these equations.
Actually they are the unique solution involving the metric tensor alone.

It is also useful to check that for covariant tensors.

(5.92)

Vuwy, = 0wy — F;}Vu»\ (5.93)
Using this formula, it is plain to check that the metric is covariantly constant
Vagsy = 0a9sy — Lapgry = Taygns = 0 (5.94)

The analogous to the field strength tensor for gauge theories is the Riemann-
Christoffel tensor

R yap = 0al'os — 0T, + ThaI0s — T, (5.95)
The Ricci tensor is defined by contracting indices
R =R 1\, (5.96)

The Riemann tensor is, by construction, antisymmetric in the first two in-
dices, and also in the last two indices; and is symmetric to the interchange
of the first couple of indices by the second couple of indices. It obeys also
the identity

This leaves 2( ) )
n“(n® —1
— 15 (5.98)

independent components (20 in n=4 dimensions).
There are also some differential identities, the Bianchi identities

VaR" gy + VR Lo + VER! o =0 (5.99)
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Contracting 55
VaRyy =V Rya + VR )ya =0 (5.100)
Contracting again g”“
V*Ray = V,R+V, R =0 (5.101)

We shall derive most of these equations in a short while. Many useful formu-
las of tensor calculus are to be found in Eisenhart’s book, still indispensable.
Also very useful are the Ricci identities that state that

[V, Vglwy = Raprs &° (5.102)

This can actually be taken as the definition of the Riemann tensor, as is
done in many books.
All this means that the geodesic equations can be written as

u'V,u® =0 (5.103)

where the four-velocity of the massive particle is given by

dx®
= 5.104
ut = — (5.104)
This allows us to identify the nonrelativistic limit, in which the action must
reduce to )
v
S = —mc/ (c S 9) dt (5.105)
2c c

Where Vj, is the gravitational potential. This means that we have to identify
in this limit

ds? = (CQ n 2Vg) dt® — di? (5.106)
where i
=2 1
V= o (5.107)
This leads to the identification of the newtonian potential in the limit
2,
goo =1+ 2 (5.108)

Proper times at different places obey

1
dr = — ydxtdx? 5.109
T Cw/gu rhdx ( )

Frequencies (corresponding to atomic transitions) obey the inverse law. If
the emitting object is a rest

2 V2_v1
wi (Y00 g g
ha T’Vl"‘i

5.110
o\, 2 (5.110)
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If the atom is raised over a height h over the Earth surface

GM
Voo ——— 5.111
wh) , GM  GM 1_GM+GM(1_h>_
W(O) C2R@ C2 (R@ + h) C2R@ C2R@ R@ N
GM
=1———h 112

This makes sense from the photon viewpoint. It costs energy for the photon
to get out of the gravitational potential; the atome raised at the height h
has less gravitational energy to fight upon. This is a generic prediction of
GR, independent of the equations of motion, and was as such realized by
Einstein. It was experimentally verified by Pound and Rebka in 1960 in a
laboratory experiment. Please google it for recent experiments.

5.3 The Space-Time Manifold. Moving Frames.

As a matter of principle, let us discuss the different types of connections that
can exist in a manifold, following the excellent reference [4]. First of all, there
are general connections on vector bundles, what physicists understamd as
gauge fields. In the particular case when the vector bundle is the tangent
bundle of a manifold, those are the affine connections. Closely related is the
frame bundle, the set of all frames in the tangent space at each point of the
manifold. Namely, in a local chart

€ = €eho, (5.113)

The determinant of the matrix e# # 0.
The corresponding coframe is defined by

e = ()" da” (5.114)
o
where

(e—l)i el = 67 (5.115)

When there is a metric in the manifold, it makes sense to choose orthonor-
malized frames, and to study whether the connection is compatible with
orthonormalization. This last case is the one of interest in general relativity
and its natural extensions. Namely

Ea.Eh = Nab (5.116)

We claim that "
(6_1>M = n“bgwjeb” (5.117)
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Indeed
(n“bg,wez) eq = eueq =J) (5.118)
JOT = J5 =6 (5.119)
It follows that
€pear = Juv (5.120)

The gravitational field is then represented in GR as the fact that the
spacetime metric

da* = g () dat dx” (5.121)

is not flat; to the extent that it differs from the flat metric, it indicates the
presence of a gravitational field. At each point there are tensors (or spinors)
that represent physical observables. For example, the energy momentum
tensor

T () (5.122)

This tensor live in the tangent space; the set of all tangent spaces of the
manifold is the tangent bundle. A frame is a basis of the tangent vector
space at a given point of the space-time manifold. This four vectors are
represented by

€=eho, (5.123)

where the index a = 0,1, 2,3 labels the four different vectors. The simplest
possibility is to choose one of them timelike (this is the one labeled &) , and
the other three spacelike. Furthermore, they can be normalized in such a
way that

Juvebey = Nap (5.124)

This is the reason why latin indices are dubbed Lorentz indices, whereas
the ordinary spacetime indices are called Einstein indices. Such a frame is
precisely a LIF (where FREFOS live) and the physical observables measured
in the LIF are simply

Top = Ty eliey (5.125)

The determinant of e considered as a matrix cannot vanish. We can then
define the coframe made out of the dual one-forms

e () = epey = 05 (5.126)

When indices are put in place, this is equivalent to computing the inverse
matrix

ey =0y
€nea =0, (5.127)

From the normalization condition

guVEéLElI;j = Tab
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and multiplying both members by the dual form e%
= €, = glwnabe,’j

This means that the dual form is simply the frame with the Einstein indices
lowered with the spacetime metric, and the Lorentz indices raised with the
Lorentz metric. Following most physicists we shall represent both the frame
and the coframe with the same letter, although when neccessary we will
indicate explicitly its nature, as in

€, = el
€y = equdzt (5.128)

The parallel propagator is defined once frames at different points are
selected by some mechanism

¢ (2, 2') = € (w)el (o) (5.129)
Then physical quantities at different points are related through

A%(z) = g% pr(z,2")a™ (2)) (5.130)

For n-dimensional spheres in stereographic coordinates

ds? = O? 6, dxtdz” (5.131)
where .
Q= ——+ (5.132)
14

and the coframe is defined by
ey, = Q0 (5.133)

in such a way that the frame itself is given by

1
el = 555 (5.134)
The S,, Christoffels read
« Qﬂ « Q’Y « Qa
Under a local Lorentz transformation
€y = Lo ¥(2) &, (5.136)

el (x) is a nonsingular square n x n matrix. The commutators are given by

[é’a’ gb] = Cgbgc
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It is a fact that

1 1
de® = 0, epdz” N\ dat = 3 <8uefj - 8VeZ) dxt Ndz¥ = - (8Me,‘ﬁ - &,eZ) elelet N el =

2
1 1
= 5 (ecled)el — ealef)et) e net = o (calet)ef, — efec(el)) e Net =
1 1
= [en )" e cf Ael = —5Cae’ A el

To be specific, the structure constants read
Cop = €, (eé‘@Ae’g — e{,\a,\eg) = e (eéVAe’; — el),‘VAeg) (5.138)

(The Christoffels cancel when taking the antisymmetric part). In our S,
example,

c Qb c Qll c
ab - @ 5& - @ 5}) (5139)

Under a local Lorentz transformation the vierbein transforms as

e = L% (x)e’ (5.140)

This is not true of the derivatives of the vierbein, de®, owing to the term
in dL%;, . We would like to introduce a gauge field (connection) in the LIF,
the so called spin connection, such that the two-form

De = de® + wy A e® (5.141)

transforms as
(De?) = L%, De® (5.142)

For this to be true we need
d (L“ beb> + (W) 5 A (Lb cec> =L%, (deb +wlen ec) (5.143)
This is equivalent to
ALy A e? 4 (W) y ALY ce® = L%y . A €° (5.144)
which is kosher provided
dL® . + (W) pLP o = Ly’ (5.145)
Lorentz transformations are such that
L*Lyg = 65= L“Ly, (5.146)
Finally we get the transformation law for the gauge field
(W) g=L wb. Lg®—dL* .Ly© (5.147)

At the linear level,
Lab = Nab + Aab (5.148)

ow? by = _a,u)\ab + [)\,wu]a b (5.149)

(5.137)
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Assume now a field transforming with a given representation of the
tangent group, say

¥ — D(L)Y = (1+d(\) (5.150)

1 P
56' = A (Sa)' 50
where the ¥ represent the algebra of &9(n)

[Eaba 2cd] = Cab,cd efzef - ECLdnbc + Ebcnad - 2acnbd - Ebcnac
For a Dirac spinor, for example,

1 1

Yap = o ab = Z[’Ya,%]

The representation that we were implicitly using until now is the fun-
damental of &9O(n)

d" (wu)p =wg, () (5.151)
where ]
dA\* _ L (casd da
(T.1)" = : (6205 — 56 (5.152)
as well as
d"(X) = Aap (5.153)
In ths new language
0d” (wu)® b = =0ud” (V)" + [d7 (V) ,d" (w)] " (5.154)

and this relationship clearly goes through in any representation. Please
note that the adjoint operators also obey

20 B8] = —Cabed S8 = =SFmbe — Sfinad + Sdmwa + Siiac
Define the covariant derivative as
Vit = 0uth + Qup (5.155)
where () is a matrix in the representation considered. We demand that
(Vi) = 8, (D(L)w) + QD(L)y
= D(L)Vw = D(L) (0 + 00) (5.156)
The condition for that to be true reads

Q, = D(L)Q,D (L) — 9,D(L)D~"(L) (5.157)
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At the linearized level

0, = [d(N), Q] — 0ud(N) (5.158)
This is obeyed by
Q=d(wy) (5.159)
e Knowing that the quantity 11 is a Lorentz scalar, it has got to be
true that
Db = 0, (w.q/;) (5.160)
This fact determines uniquely
Dytp = 91 — wilPSap (5.161)
in contradistinction to
Dyt = 0,1 + Wi Sapt) (5.162)
In fact, from
1
o = B (w.X) (5.163)
we deduce that )
+ _ o+ +
ot = o (wzt) (5.164)
and then
o = 1% (’Yow Z+’YO) = —1@ (w.X) (5.165)
5 . 5 . .
because
28 = —10Za%0 (5.166)

e We have just seen this to be valid for any field living in the LIF that
transforms with a representation of the Lorentz group. But any field
can be so represented. For example, a vector field, V* is projected on
the LIF by a FREFO as V* = ef,V#. We want that its Lorentz covari-
ant derivative is also the projection of Einstein’s covariant derivative,
that is

VEWVY) =0,V +wy, VP = e (VEV) = ed 9,V + T4,V
(5.167)
This physical requirement determines the relationship between Lorentz
and Einstein connections; otherwise, those two connections could be
completely independent.

W py = eiFf‘weéf — ep0o€) (5.168)



THE SPACE-TIME MANIFOLD. MOVING FRAMES. 57

Using the known formula for the Christoffel’s symbols, this leads after
a few manipulations, to

Wable = Wabplh = %{eb“ (Ogett — Ocell) + €co (Oa€] — Ohed) + eqo (Ocef — Opel) } =
= %{ebucac deg + ecoCap deg + eaoCep deg} = %{Cadb + Cab|c + ch|a} (5169)

Please note that the structure constants are not totally antisymmetric
in general. Nevertheless

Wable = ~Whalc (5170)

It is a fact (confer [25]) that the torsion can be defined through the
connection wy by

1
de® +wine’ =T = 5 2 eb A e
In geberal we can define the non-metricity through

vCLT/bc = _cha (5171)

Demanding that the tangent metric is covariantly constant we learn
that

Vanpe = engnbc =0= 65 <_wzb77dc - Wffc"?db = —Wulbe — wu\cb)
(5.172)

When the torsion vanishes, and in tensor form
Bpey — Dpely + W' ey — W poe) =0 (5.173)

it follows that

g
Cb
[P}
Il
[
Q
o5}
<
o}
o
|
&
®
=
SN—
|

Wad|e — Wac|ld = (apeaa - 80604)) e
=€, Cac "€y = Cylq (5.174)

where we have used the fact that
€p0ceq = —€4q0:€h (5.175)

This means that the torsion-free condition completely determines the
antisymmetric part of the connection. One often is interested in the
case when the connection lies in the Lie algebra of a simple group. For
example, if w, € &O(n))

w#‘ab == *(JJMba (5176)
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For spheres we have

1 /9. O,
Walbe = 5 <QQ Oab — @ 5@0) (5177)
Qb Qa Qb Q Qa Q
2wl‘|ab = ﬁéﬂa - 6 5/141) = (9 5au + ﬁu 5ab - ﬁ (5by, - ﬁu (5ab
(5.178)

We see that this is equivalent to our physical postulate of FREFOs
and FIDOS. The curvature of the connection is defined through

1
dwy +wl ANwp = Ry, = §R§Cdec A el

It is asy to check that this a true Lorentz tensor; that is, under a local
Lorentz transformation

R¢ — L% R¢ 4Ly (5.179)
This leads immediately to Bianchi identities

dT% = dwf A e’ —wi Ade® = (RE —wl Aw§) A e —wi A (TP — wb A ef) =
= R¢ANeb —wd AT?

dRy = dwi N wy —we A dwy =

(R — wi Awd) Awf —wr A (R — wS Awd) = REA W —w® AR (5.180)

For a Levi-Civita connection the algebraic Bianchi identity in a natural
basis reads

R¢Neb=0= %ngelj\d:z”’”\ (5.181)
In gory detail
RY ) = 0= R\ + R jux + R” Ly (5.182)
Clever use of this identity allows to prove that
Ropys = Rysap (5.183)
Let us see it. We start with

Ra)\,uz/ + Ra,m/)\ + Raz/)\u =0
R)\a,uz/ + R)\Z/a/,L + R)\,LLI/CM =0 (5184)

Substracting

2Roz)\uu + Ram/)\ + Roa/)\u - R)\yau - R)\;wa =0 (5185)
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The same equation with the indices interchanged

(aX) = (uv) (5.186)

2R,ul/oz>\ + R,ua)\y + R,u)\l/a - RV)\/LO( - RVCV)\M =0 (5187)
conveys the fact that

R,uzza)\ = Ra)\/,w (5188)

We have then a symmetric tensor R;; where each index is in the

antisymmetric [af] (that is, D = @ values). This yields
D(D +1) n n?(n? - 1)
_ =~ =/ 5.189
2 (4) 12 ( )

(we withdraw ()}) because of the algebraic Bianchi identity) indepen-
dent components. Id est, 20 in n=4 dimensions. The differential iden-
tity in a natural basis reads

V[aR Vo RP Bvs T V,YR‘LL Béa T VsRH Bay = 0 (5.190)

ll‘ — p—
Bvé] —

where the overline on an index means that this particular index is
absent from the antisymmetrization. Now
Vil 561 = OB 55 + Tl B 5,5 — Pt ovel = Tion B Gaos) — Tas B ) =
= a[aRu E'Y(S] + Fl[flERo. B’Wﬂ - P([ZMBRH 5’75] (5191)
Using the relationship between wy, and I'g | derived above we are done.
On the other hand

OaR! gys = Oa (ege%R“ bvé) = (0q€t) e%R“ bysteh (8ae%) R b,yg—i—ege%@aRa byo
(5.192)
It is a fact of life that

Ve, (ep) =TS ec
Tye = Tpe = Iy — Che
R g = EcLgy — Ealgy + Tgle — TG, — Ceal'dy (5.193)

5.4 Commuting Spinors.

It is sometimes useful to take advantage of the fact that the Lorentz group
and the group of unit-determinant complex two-dimensional matrices are
simply related

SO(1,3) ~ SL(2,C)/Zs (5.194)
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It works at follows. To any vector v*3d, € T'(M) we map the two-dimensional
hermitian matrix o = o

00 10 0 3 1_ ;.02
. _ (v v _ [ vV +v v —w
vV = (UOi vli> = <U1 Lin? W0 v3> (5.195)

det o =v? = v — va (5.196)

Clearly

This means that the transformations that preserve the determinant of the
two dimensional matrix, as well as its hermitian character are equivalent to
Lorentz transformations. Those are precisely the SL(2,C transformations

M — MoM™ (5.197)

We now introduce spinors as elements of a two dimensional complex space
S which transform under the (1/2,0) representation of the group SL(2,C)
as

YA — MA gyP (5.198)

Elements of the dual space S* are denoted by &4 so that

§(y) = Earp? (5.199)

The symplectic structure is denoted by

[, 1] = eapyn® (5.200)

where eqp = —€ep4. Spinors in the (0,1/2) are dubbed dotted spinors and
transform with the comjugate matric

= ()Y e P (5.201)

In GR it is computationally convenient to define spinors as commuting ob-
jects. This means that
A B __
eapyp YT =0 (5.202)

This is inconsistent with the classical (h — 0) limit of quantum field theory,
which yields anticommuting spinors. These spinors are best looked instead
at as a tool to perform computations which are essentially bosonic in char-
acter rather than as fundamental fields in the theory.

The Levi-Civita tensor defines in formal terms a symplectic structure
which in turn defines the determinant of the two-dimensional matrix through

eapM* o MP p = det Mecp (5.203)
It also defines a natural (NW/SE) isomorphism between S and S*

Ea=E%€pa (5.204)
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Owing to the fact that spin space is two-dimensional, the Jacobi identity
follows

6A[B6C'D] =0 (5205)

It is convenient to define the dual object with a minus sign in it
eAB = _ (e—l)AB (5.206)
This is so because consistency of
¢C = “Bep = “BePepp (5.207)

demands
“Besp =64 (5.208)

It is worth remarking that
ccd = ePecp = —eBepo = -4 ¢ (5.209)
The equivalent of a vierbein is now a spin basis that consists of two spinors,
[or] = eap ot B =1 (5.210)
Then it is easy to check that

AB = oA B _ AB (5.211)

Given a spin basis (o, ¢) there is a associated Newman-Penrose (NP) null
tetrad

1* = oA
n® = A
mé = OAZA’
m® = 44 (5.212)
It is plain that
lgn® = —mm, =1 (5.213)

A useful fact is that only symmetric spinors matter, so that for example
1 c
TAB :T(AB)+§5ABTC (5.214)
The tangent matric is given by

JABA'B’ = €EABEA'B! = lanﬂ + lﬁ’l’la - maﬁllg - mlgma (5215)

It is a fact of life that

EABEA' B = NabT4 4055 (5.216)
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where the Infeld-van der Waerden symbols are given by the Pauli matrices

/ 1
P ﬁaa (5.217)
where
o, = (1,0") (5.218)
Then )
Tadl A = E(1, —c') (5.219)
because

Oanrn = epaepacl B = (ioyo, (—ioa))! = o9oloy = (1,—3)  (5.220)
We have
Vg = UaAA’UAAI (5221)
In particular
AA' BB _ r_ . p_1 r_ 1 T_T
€ABEA'B'O, " Op = 5 tr 05 o4t0920] = itr 09204090}, = itr 040 = Nab
(5.222)
using the magic of Pauli matrices
ol = —020i09 (5.223)
as well as
{oi,05} =26 (5.224)
which implies
tr 0;05 = 2(5@' (5.225)

The Riemann tensor written in spinor language reads
Rapcpapop = €eapecp (‘I’ABCD - 2AEA(CED)B) +eapecpPapop +
€ABECD (@A/B'C/D/ - 21_\6/1/(0'613/)13/) + eapecrpr®arpren (5.226)
where the Bianchi identity implies that
A=A (5.227)

and ® is hermitian. Besides, the traceless piece of Riemann’s tensor, dubbed
the Weyl tensor (to be precisely defined in a moment) reads

Wwps = Wapcpean + W arpcrpreABecn (5.228)
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and the traceful piece, the Ricci tensor
R, = Rapap = —2Papap + 6Aeapeap = —2@,, +6Ag,,  (5.229)
where the traceless Ricci is given by
28, = Ry — iRgW (5.230)

Finally
R =24A (5.231)

The tracefree part of the Ricci tensor can be decomposed as

/ /

DPog = Paparp o4 oB5A'5E
/ !

Py = Paparp o4 oB3A' B
AR/

(I)OQ = CI)ABA’B’ OA OBLA LB
A _ !

@10 = q)ABA’B’ OA LBOA OB
A _nt

@11 = @ABA’B’ OA LBOA LB

(1312 = (I)ABA’B’ OA LBZAIZB,

Dy = PaparpiPo s

Py = (I)ABA/B/LALB5A/ZB,

oy = D apap BT TP (5.232)

There are 9 complex quantities such that
S = Py (5.233)

which yield
9=10—-1 (5.234)

real quantities. Also, the ten components of the Weyl tensor can be packed
into five complex scalars defined as

Vo=V acD od 0B oC P

\111 = \IIABC’D OA OB OC LD

Yo =V apcp ot oB,C P

U3 = Vypep ot BuCP

Uy = UypeptdBCP (5.235)

5.5 Conformal invariance.

Under a Weyl rescaling
Jap = € gap (5.236)
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where o(x) is a function of the space-time point, the Riemann tensor trans-
forms as

€ 27 Ropys = Raprs + 9as05y + 967005 — GarTss —
— 98500y + (V0)? (905987 — Gar95s) (5.237)

where
00 = VgVao — VaoVgo (5.238)

The Ricci tensor transforms as
Rgy = Rgy — (n—=2)03, — (Ao + (n—2)(Vo)?) g5, (5.239)
The curvature scalar
eR=R—-2(n—1)Ac — (n—2)(n —1)(Vo)? (5.240)

By eliminating Ao from the last couple of equations, and thel plugging the
resulting value of 0,4 in the equation for the Riemann tensor we learn that
the so called Weyl tensor

1 1
Wapys = Ragyo——5 (9ayRps — gas Rpy — gpyRsa + gﬁaRm)ﬂLm
(5.241)
is such that 3
W gy5 = W gys (5.242)

The Weyl tensor has exactly the same symmetries of the Riemann tensor.
The only possible trace would be
— A 1 1

Way =W pry = Rﬁw_m ((n—2)Rgy + R957)+m
(5.243)

and it vanishes identically. This means that the necessary (also sufficient)

condition for a manifold (of dimension bigger than three) to be conformally

flat is that its Weyl tensor vanishes.

In three dimensions

Ropys = 9oy Rgs — gas Rpy — 9syRoa + gas Rya — %R (9ar985 — 9as98+)
(5.244)
so that Weyl’s tensor vanishes identically and yields no information.
It is useful to consider the Schouten tensor defined as

1 1
K,UV = m (RNV - 2(7.1/1)Rgl“’> (5245)

which is such that .
K=—-—-—"R 5.246
2(n—1) ( )

) R (ga'ygéﬁ — 9as9

)R(ngﬁw —gpy) =0
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as well as 1
V. K" = QV”R (5.247)
The Weyl tensor is simpler when expressed in terms of Schounten’s
Wapsys = Rapys — (9o Kps — 9as Ky — 987 Ksa + 9ps Kra) (5.248)
The differential Bianchi identity tells us that

VEWaﬂv(S“—v(SWaﬁsw_"v’yWaﬁés = goz'yCﬁeé“_gaécﬁ'ye_‘_gﬁwCozée+g,360a’ye+gﬁeca'y(5+gaecﬁ(5'y
(5.249)

The antisymmetrized covariant derivative of the Schounten tensor is the

Cotton tensor

Capa = ZV[JKp]a (5.250)
It is a fact that
C%0 =0 (5.251)
as well as
V)‘W)\g,y(; = (3 — n) 0575 (5.252)
Under a Weyl rescaling,
Capy = Cagy + (n = 2)006W> 510 (5.253)

Remembering that in three dimensions the Weyl tensor vanishes, we learn
that the vanishing of the Cotton tensor is the necessary and sufficient con-
dition for a three dimensional manifold to be conformally flat.

In two dimensions all manifolds are conformally flat, baceuse there

R
R,uupa = ) (g,upguo' - guogup) (5254)

n(n—1
The Bach tensor is defined out of the Weyl and Cotton tensors as
Bap = VA COap + KM Waag, (5.255)

It is traceless (because both Cotton and Weyl are so) and conformally in-
variant as well in n=4.
It is then a fact of life that the scalar

4 2
V191 Wagrs W = \/|g|Raprs R ———Rog R +———————R? =, /|g|W.
(5.256)
is conformally invariant in four and only in four dimensions. The variational

derivative of the action constructed out of this is proportional to Bach’s
tensor

5
0 ~ B. 2
o / Wi ~ Bag (5.257)
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There is a generalization of this to arbitrary dimension, namely Branson’s
Q-curvature

/ d(vol)@Q (5.258)

The Q-curvature itself is not pointwise conformal invariant, but its integral
over a compact manifold is conformal invariant.
On the other hand, the Euler characteristic in four dimensions is given

by
1 4
(M) = 5o [ dtalgl By (5.259)

where the Euler density reads

Ey = Rypo R — AR, R + R? (5.260)

This means that whenever a term Riemann squared appears in the la-
grangian, it can be traded out for Ricci squared and curvature squared,
as follows

/ d(00l) Ry R¥P7 = 3212\ (M) + / d(vol) (4R, R* — B?)  (5.261)
In four dimensions, the Q-curvature is
6Q = —AR+ R* — 3R, R" (5.262)

In general, there is a formula by Graham and Juhl, that states that in even
dimension n,
-1

2nC2Q = o™ + 3 (n — 2k)pyv ™M (5.263)
1

|3

>
Il

where

oo (-DE

S G- D) (200

The constructs v(27) are the coefficients appearing in the asymptotic expan-
sion pf the volume form of a Poincaré metric for the metric g. For example

- _1p
2

@ = é (P2 |P]?)

1 2
00 — v (_ y PP, +3P|P|> — P3 - 2PWP3PM)(5.265)
n—

The differential operators po are those that appear in the xpansion of a
harmonic function for the Poincaré metric; for example

—2(n—2)pe = A
8(n —2)(n — 4)ps = A% +2PA + 2(n — 2)P*'V ,V,, + (n — 2) VI5EZ66)
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Details can be found in the Graham-Juhl paper just cited.

Its integral is a linear combination of the integral of W, and FEj.

There is a generalization of Bach’s tensor for arbitrary dimension, namely
the Fefferman-Graham obstruction tensor O, is tracefree and symmetric,
conformally invariant and vanishes for conformally Einstein metrics. The
EM derived from this action are

J n
g | Qv = (-1)%

—9
”TOW (5.267)

Let us finally mention that spacetimes can be classified (Petrov) by the
eigenvectors of the Weyl tensor. The eigenvectors define some null vectors,
the principal null directions (PND). This is best treated using commuting
spinors [22]. Actually

Ciuvpe = Yapcpeapec'p +Yapc'p€ABECD (5.268)

where
Vapep = aaBBycip) (5.269)

Grosso modo, the Petrov types are as follows

e Type I Four simple PND, (1,1,1,1) THis is the algebraically general
case.

Type II One double PND and two simple PND, (2,1, 1).

Type D Two double PND, (2, 2).

Type IIIOne triple PND and one simple PND, (3,1).

Type N One cuadruple PND,(4).

Type 0 Weyl=0. These spaces are conformally flat

5.6 Timelike congruences.

A timelike congruence is a field of (normalized) timelike vectors. In fancy
language, a chapter of the tangent bundle. It can represent a family of
observers defined in every point of spacetime.

u? = g (z)ut(z)u” (z) = 1 (5.270)

This implies
u'Vou, =0 (5.271)

The projection on the space orthogonal is

ht =68 — utuy, (5.272)
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By construction
htu” =0 (5.273)
It is plain that it is indeed a projector in the mathematical sense
hyhy, = Rl (5.274)
A conguence is geodesic when
i, = uMVyu, =0 (5.275)

We can assume that each geodesic is characterized by a label, say A, and s
represents the arc length on each geodesic. That is

Oxt (s, \)

ut(s,\) = 5
s

(5.276)

It is natural to define a deviation vector £€* between neighboring geodesics
through

orH
b= _—_ 2
o= (5.277)
By definition
aua_)\ a_aga_p a — fa
= OVt = S =y et = (5.278)

Another useful equation can be easyly proved: The scalar product .u is a
constant of motion:

1
ut'V, (u.g) = u'V P, + EPuV yu, = VU u, = igﬂvu (u2) =0
(5.279)
Let us compute the quantity
£ = MV, (V%) = WV (€7V,u%) = Vg (V,u) + (1 VaV,ut) € =
VPV pu® + €00 (V,Vau® + Ry, ® gu) = €V, V u® + EPuP Ry, g + €0V, (1Y
—f”Vpu’\V,\uO‘ = fpu/\R)\p @ 511,5

The resulting Jacobi equation

£ = R* gosulue’ (5.281)

is known in the physics literature as the geodesic deviation equation, and is
of fundamental importance. Its solutions are called Jacobi fields.

For example, this gives the difference between an homogeneous gravita-
tional field and a central one (like the one of the Earth).

Let us now consider the tensor

\ON (5.282)
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First of all, this tensor is purely transverse. It is also a fact that
Vsual? = uPV &, (5.283)

so that physically this tensor measures the extent to which £¢ fails to be
parallel transported by the congruence u. A canonical decomposition of this
tensor reads

1
Vpta = Wag + 0ag + —— Ohag (5.284)

The scalar
0 = V,u” (5.285)

is called the expansion of the congruence. The congruence is expanding if
# > 0, and it is converging otherwise. The symmetric tracefree part,

1
is called the shear; and the antisymmetric piece
Wap = V[ﬁua] (5.287)

the rotation of the congruence. It is possible to show that when the rotation
vanishes, then the congruence is hypersurface orthogonal, that is, there are
a couple of scalars ¥ (z) and ¢(x) such that

uy = P(x)V,o(x) (5.288)
Actually,
Wap = V(o ¥V ¢ (5.289)
But on the other hand,
waptt” = 0=V, V500V ¢ (5.290)
implies
Vo) ~ Voo (5.291)

Let us now derive Raychaudhuri’s equation
UAVAVMLQ = UAVBV)\UQ + UAR)\ﬁapup =Vpg (UAV)\UQ) — (Vﬂu)\) (Vau®) +
—i—u’\R,\gapup = —Vﬁu,\VAua + UAR)\ﬁapup (5.292)

Taking the trace,

1
n—1

0=—

6% — Uaﬁoaﬁ + wagwaﬁ - Raﬂuauﬁ (5.293)

This clearly implies the focusing theorem in the hypersurface orthogonal
case, when the rotation of the congruence vanishes. Then

0<0 (5.294)

in agreement with the atractive character of the gravitational interaction.
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5.7 Normal coordinates

We shall show that there is a system of coordinates where at a givan point
PeM,

9oplp = Nagp
o Gaslp =0 (5.295)

Geodesics are defined by the ODE

d?z® o dzt dz”

a5t s ds O (5.296)

It is plain that

3 é 6

dzt — _apruﬁﬂdxiﬁ + F#ﬁr?ﬁ@@@ + I‘Mﬁrg dljdidxe =

ds3 P ds ds ds @ ds ds ds AP0 ds ds ds

dxP dz® dz
= ——— 5.297
reB ds ds ds ( )
and so on. Power series solution through the point zf, ats = 0 reads
. 1 o
zH(s) = xf) + ihs — 3 Fgﬁloxg‘xgsz—}—... (5.298)

We want now to define new coordinates z* such that in the new system of
coordinates (normal coordinates) the solutions are just linear functions of
the arc length

y* = if's (5.299)

withought any higher order term. The origin of arc length s = 0 is taken at
the point P

Yo = Th (5.300)
To be specific,
zh(s) = af) + yH — % FZB‘OyO‘y +... (5.301)
This means that
|, =0
?6//7’5’) o0
(5.302)

Now, it is a fact of life that

9agpy = {Ba; v} + {ye; B} (5.303)
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so that by a constant linear transformation we can get

7a5|0 = Tagp
Dngpnly =0 (5.304)

From the general expression of Riemann’s tensor in terms of derivatives of
the metric
2RV vaf = 8QF55 - 8ﬂrlzja + Fga ZB - Fgﬂrga =

009" (—0s9u + Ov9ps + 089v0) + 9" (—0a059u8 + 0a0v9ss + 0alsguo) —
—039"° (=06 9va + Oagov + Ovgoa) — 9" (=0805Gva + 030agor + 030vgoa) +
+9"* (—07goa + 0sgra + 0agro) 97° (—0s9up + Ougss + Ogus) —

9" (—0xgop + 0o gpr + 0p9r0) 97° (—Osgva + Ougsa + Oagsy) (5.305)

we learn that in normal coordinates
ZRuw,ﬁ = —8,,8ﬂga5 + &l&,g,gu + agﬁugm — 8/33agw, (5.306)

Besides from the condition
8(“ Z,@) =0 (5.307)

we learn that

— 0)\0ugaB — 0a0rg8u — 080AGua + 20,0098 + 20,089ra + 200089), = 0
(5.308)
which can be put in the form

010uGap + 0a0vgsu + 080ugap = 2 (040agus + 04089va + 0adagu) (5.309)
Swapping [uv] yields
00 9o + 0a0ugsy + 080ugar = 2 (000agus + 0v089ua + 0a03gu) (5.310)
and adding the two
400089 + 0u0agus + 0v0agus + 0.089ar + 00089an = 20,0190 (5.311)
so that
(400089 + 20,0905 + 20,00gu8) 2’ = (20,0, 9ap) v (5.312)

This means that 3
Rwygaja:z:ﬂ =-3 D00p gt a’ (5.313)

and the expression of the spacetime metric in normal coordinates to second
order in a Taylor expansion around the origin reads

1
G = M = 3 Ruenpr®a’ + O(a?) (5.314)



72 5. THE PRINCIPLE OF EQUIVALENCE AND THE SPACE-TIME MANIFOLD.

Consider the geodesics through an arbitrary point, P

d2zH " dx® dzP

—_ _—= 31
ds? thap ds ds 0 (5-315)
From it, deriving once
d3zH dx? dz® dxP dzP dx? dxP dz® dzP dx°
a5 N e S Y e (s Y
ds3 O ag ds ds ds + aﬂ( P? ds ds ds P? ds ds ds
(5.316)

The equation of the geodesic through P can be written as

1 o 1 a
i =l € = 5 (Ths) €°67° = 5 (Thp,) €775+ (5317)

Riemann normal coordinates (RNC) are defined such that the geodesic equa-
tion is the equation of a straight line

y'=¢s (5.318)

They are given in an implicit way by
1 1
= (00) 0~ (1) e 510

It is clear that in those coordinates

ox®

A
<8y5 > p 7

D2t "
<6yayﬂ>P B (FO‘B)P =0

D3t L
(y’Yayaayﬂ>P - (a(’yraﬁ))P =0

(5.320)
This implies many useful relationships. In any system
Viugap =0 = Ougap =Ta9p8 + FZﬂgpa
O Ougap = Oul09pp + Tha (nggoﬁ + Fgﬁgdp) +
0T 50p0 + T (T05000 + T50gpo )
So that in RNC
0v0ugap = 0100 9p8 + &,I‘Zﬁgpa (5.321)

Using now
0L, + 0,15, + 0,1, =0 (5.322)
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Rl = 8,0t —9,T! = 28,I% +9,T",
R:,, = 8,Ih —9,Tt =28,T + 9Tt

pvo
R . =30,

E o (5.323)

Yo
Indeed
1 pov 171 5 1_, v

2\3 3
(5.324)
One can continue in this way

1 1
9aB = Nap — gRauﬁ)\yuy)\ - gauRonB6yuy7y5 +
16

1
+5 (—GVMV)\Ra(sgy + 3

R)\ﬁu pR’yaép) yAy“y7y5 + ... (5325)

5.8 Fluid form of the energy-momentum tensor

Given a family of observers with unit tangent vector u, it is poossible to
write an arbitrary energy-moemntum tensor in the following way

Top = (p+p) tatis = Pgap + datip + qalia + Tap (5.326)
where the heat flow vector obeys
g—u=0 (5.327)
and the shear tensor m,g

Fagua =0
7% =0 (5.328)

«

A perfect fluid does not have heat conduction not shear. There is also a
coserved particle numner (such as baryon number, for example), which is
represented by a four current

" = nut (5.329)
The fact that it is conserved implies
V' =n+nd =0 (5.330)

where given any functiom we represent by an overdot the derivative in the
direction of the observer, that is

f=uVaof (5.331)
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and the so called ezpansion of the congruence u is defined as
0 = V,u® (5.332)
The covariant conservation of the energy-momentum tensor
V. T = (p+p) (0w’ +a") + (p+p)u’ —V'p=0 (5.333)
The tangent projection yields
u,V,T" =p+(p+p)0 =0 (5.334)
and the normal component (remember that u.i = 0)
(p+p) iy —hV,p=0 (5.335)

h;w = Guv — Uplty (5.336)

5.9 Null congruences.

The Newman-Penrose (NP) null tetrad consists in four null vectors, of which
two real, | and n, and one complex, m.

(5.337)

It has proved itself useful in many circumstances. For this, and many other,
reasons, it is interesting to study also the null case, where the tangent vector
12 = 0. We shall also define a deviation vector ¢ in an analogous way as in
the timelike situation, that is

1L.£=1[1=0 (5.338)
To define what transverse means now, we need another null vector
n?=0 (5.339)
normalized in such a way that
In=1 (5.340)
Then we define the transverse projector

huw = guv — luny — vuly (5.341)
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which obeys

hyhy = I,
hywn” = hyl” =0
hit=n—2 (5.342)

We can write as in the timelike situation the transverse part of the derivative
of the tangent vector

hapVul? = V1P —14nsV 0P (5.343)
The deviation vector is not neccessarily transverse; actually,
b= hhed = ¢t — gnlt (5.344)
Let us compute its variation in the direction of the flow
(zAvAggi)T = DSV, (R3€7) = WYY k&7 + hSIMETV iy =
hSEPV 17 — hQ1HET N,V N = hS (4 — 1M (€ —n)) VI =
hoEh v 17 = ggihghgvpza =& (V) (5.345)
Let us write 1

It is easy to check that
0 =V, (5.347)

Frobenius’ theorem is still valid for null congruences. There is a small sub-
tlety though. When the rotation vanishes, then there is a family of surfaces

flz)=C (5.348)
such that
lo ~ Ouf (5.349)

Then the vector 1 is at the same time parallel and orthogonal to the surface;
so that the geodesics lie in fact on the surface, and are called the null
generators of it. On the other hand Raychaudhiri’s equation is still valid,
with the only change of

1
6% — —
n—1 n—2

62 (5.350)

The NP tetrad is a natural by-product of a spin basis, (o,¢), in the sense
that given a spin basis, the NP tratrad is naturally defined, namely

I
[* = oA
!
nt = A4
!
mt = o4

mt = A (5.351)
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The directional derivatives along the NP vectors are conventionally denoted
by

D=1I"V,
A=n'V,
d=mh'vV,
6= mh'v,
(5.352)
There is a sum rule
Vi =nuD+ 1A —mm,6 —m,d (5.353)

The connection is given in terms of the 12 complex rotation coeflicients

k= o4 Doy = m®Dl,

1
e=o04Diy = 3 (n’\DlA — m’\Dm)\)

= LAD/,A = —m)‘DnA

r=0%A0y

v =0%Auy

v=14Auy

o=0%0,

B =04y

pw=14uy

p= ) oy

a = oty

A= 1%0 (5.354)

Einstein’s equations simplify enormously in a NP tetrad is many cases.
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The gravitational action
principle.

Under a diffeomorphism connected withg the identity, £ € Diffy(M), which
in local coordinate chart reads

o = 1 = 3% — % (2) (6.1)
the variation of the metric is

0cGap = Valp + Ve = £(6)gap = £ 00Gas + 00 025 + 05 gar  (6.2)

the variation of the determinant is

1
-1 afs e’ “w
9 09 = g"o¢gap = 2Val® =2—=9, (\/Iglé) (6.3)

5cy/lgl = 0, Q/@é“) (6.4)

Now any scalar function, no matter how complicated (it will include all fields

so that

and derivatives) transforms as
0¢® = £70,P (6.5)

And magically

¢ (\/@cb) — 9, (Mgﬂ) B +/1916%0.@ = 9, (\/@g@) (6.6)

so that the product
|g|® (6.7)

transforms under a diffeomorphism into a total derivative, so that its integral
is invariant provided appropriate boundary conditions are imposed.

7
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It is also the case that covariant derivatives can be integrated by parts.

/\/Q d"z AV, 5F :/\/Q &'z AL@L <M2u> _
[ @ (o (8l =) - ol w) [ il e v,a

provided A and Y¥# decay fast enough at infinity.

6.1 The Einstein-Hilbert lagrangian.

C3 n
5= " lorc /V d"zy/lgl (R +2)) + Smatter + Sov (6.9)

It is customary to write

k% = 8n@G (6.10)

The negative sign in front of the Einstein-Hilbert term is determined by the
sign of the matter action. To compute the variations it pays to be careful

ORY,5 =0 (0aTlsy — 0Tty + T TA,T0, ) = 0adT%; — 058641)

oo V,B_

Even the variations of the connections are well-defined tensors (which the
connection itself is not)

1
000 = 59”7 (=Va0gus + Vidgrs + Voign) (6.12)
We also need the variation of the determinant

89 = 99°%gap = —99apdg®” (6.13)

1 (07
o\/lgl = =51/1919a509 A (6.14)

so that

This leads easily to

1
Ry = =

> (9000aV? = 95,0V = 90V + 005VuV,) 697 (6.15)

as well as

SR = 66" Ry + Vt? = —0g,eR"" + V ,1* (6.16)

The total covariant derivative behaves indeed a total derivative when inte-
grated with the diff invariant measure because

J s~ e g ()= e ()

(6.17)
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Altogether we have got (assuming for the time being that the integration
domain is boundaryless),

c3 1 0Smatt
) =— d" B — — 2\) ga Mﬂ/dn —matt 548
Sen 167TG/ Vi0gld'z (R =5 (B +20) g B> g | A s o0
(6.18)
The definition of the metric energy-momentum tensor is
2 ma
Ty = —2C OSmatt (6.19)

7= gl 9P

This leads to Einstein’s equations (derived by him without using the action
principle)

1 &rG K2
Sag = Raﬁ — 5 (R + 2)\) JaB = cTTaﬂ = Tag (6.20)

A
The first member is called Einstein’s tensor and it contracted covariant
derivative vanishes identically by virtue of Bianchi’s identity

V,S* =0 (6.21)

The integrability condition of Einstein’s equation is then precisely the co-
variant conservation of the energy-momentum tensor of the matter

vV, T" =0 (6.22)

In the above derivation wa have assumed that 9V = 0. This is not the
case in mosr circumstances. For example, one can integrate on the slice of
spacetime defined by

ti<t<t; (6.23)

where t is some cosmic time. Then the boundary includes the hypersurfaces
>; and Xy, where
Y =t = constant (6.24)

Let us then repeat the analysis keeping the boundary terms. This is hard
work.

OR = Ryudg™ + (V2 = V,.V,) g™ (6.25)
The boundary term in the Einstein-Hilbert variation then reads
3 3
Sov = — d"y\/|h VP — V697 ) = — d"y\/|h| n,J°
6.26

Taking into account that
09aslgy =0 (6.27)
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as well as
(g = VuVy)dgh =V, (Vﬁg‘M - V“ga55g“ﬂ) (6.28)
(remember that gog = nang + hag), it is possible to write

n’J, =0 (9 V9" — 9,eV1,09°") =
NpJas (VO‘(SQ”'B - Vpégaﬁ) =n, (Namw + hag) (Va5gpﬂ - V”(Sgo‘ﬁ) =
= —nh" 0,09, (6.29)

The product of three normals are symmetric in (pa), whereas the factor
in the variations is antisymmetric with respect to thsese same indices [pa].
The product then vanishes.

Besides, tangential derivatives of the variation of the metric must vanish
as well: h,,,0"6g"” = 0. We are then left with the stated term only.

This surface variation can be cancelled with the boundary action

c
Sov = —— hld" 'y K 6.30
v =og [ Iy (630
where
K=V n® = (nanﬁ + haﬁ) Vsne = h**Van, (6.31)
In fact (on the boundary dhyg = 0), and
1
T 5 = igp)‘ (=V20gas + Vadgas + Vdgan) (6.32)
1
0K = —h*06T" 4n, = §h°‘5n’\8>\69a5 (6.33)

which precisely cancels the boundary term in the variation of the bulk piece
of the Einstein-Hilbert action.

A perfect fluid as the one that is usually taken to represent the coarse
grained material content in cosmology has

Top = (p+ p) Uatg — Pgags (6.34)

So that a cosmological constant corresponds to

p=-—p
1

The Einstein vacuum equations reduce to the Ricci flatness condition for
the corresponding space
R, =0 (6.36)
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6.1.1 Schrodinger’s I' — I' noninvariant lagrangian-

The EH lagrangian has got clearly two pieces in it. Let us dub

Sap = Bprm ngfgﬁ (6.37)
and
Ls = /5 9% Sap (6.38)

It is a fact that
Len = /l9l (s°905T5, - 9,005 + Ls = 05 (lolg™T2, ) — 0, (lal 97785 ) -
—0s (x/\glga6> I%s +0p <\/@ga5> bstLs=0s (\/ lglg*TC, ) (,/| | g*°1T? ) -

—Lg =

where we have used

o \% a (0% oz a (6%
9p (\/ lglg ﬁ) = \/ ( ;\)/7 g Fpug Fﬁug Hl = \/ lg] (Fap Fpug - Fﬁug H)
so that
— 9 (\/ |g|9°‘6> Ie +0p (\/ \glgo‘5> IMs=—2Ls (6.39)

This shows that the Einstein-Hilbert lagrangian and Schrédinger’s I' — T
lagrangian differ by a total derivative, and thus yield the same equations of
motion.

This is remarkable, because Lg is not diffeomorphism invariant. On the
other hand, it depends only on first derivatives of the metric; this then gives
a new insight insight explaining why Einstein’s equations are second order.

There are many lessons to be drawn fro this fascinating lagrangian; for
example, that the symmetries of the equations of motion do not have to
coincide with the ones of the lagrangian; they can be enhanced, as is the
case here.

6.2 The first order formalism.

L= ~3, 2Rb A Sap (6.40)
It is very easy to derive a first order action principle provided one is
willing to postulate that the torion of the connection vanishes.

S = / d"21/19lg"" R (T) (6.41)

Here the connection is itself a variable, so that we cannot integrate by partis
covariant derivatives.
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The so called Palating identity tells us that
OR! Jop = Va5 — VoI, (6.42)

and

ORyu = V0T, — V,0T), (6.43)
We can then write

1
05y = / V19l dnx{ (Ruu - 2R9uV> og"” +

g (V,\5F;\W - v,,5rfM) } (6.44)
It is useful to use again the variable

lglg" =g (6.45)

1
55, = / d”x{ (RW — 2ng) Sgh + ghv (v AT, — vyargk) } =
1
/ d”:c{ (RW — 2ng> 5g" + Vi (g“”(SFi‘W — gWrgg) + Vg oT), + vygﬂwrgg} =

1
/ d"a:{ (RW - 2Rg,“,> 3g" — Vgt oT), + vygwrgg} (6.46)

because for a tensor density

Vath = 9yt (6.47)
This means that
Vagh = 6,V gt (6.48)
which is easily seen to imply
Vg =0 (6.49)

so that the metric is covariantly constant and the connection is the Levi-
Civita one.
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6.3 The physical meaning of diffeomorphism in-
variance.

GR is in some sense a gauge theory. There are however some subtle differ-
ences.

GENERAL RELATIVITY

Levi Civita connection Fﬁp

GAUGE THEORY
Gauge field A,
nothing

Field strength F},,

spacetime metric

Riemann Christoffel tensor R* 5

nothing Action linear in curvature y/|g| R

r ¢ e

Action quadratic in curvature / tr Fy,, F* Action quadratic in curvature / \/ 19l (aR2 + bR, R )

A general diffeomorphism is characterized by a vector field
¥ =x+¢ (6.50)

It is a fact that the variation of a geometric emtity under a diffeomorphism
is another geometric entity

Ve = [V, &% = £V (6.51)
dwa = £(&)wa (6.52)

as well as
59#5 = -’5(5)9046 =Vaép + V,Béa = _gpapga,é’ + 8a§pgpﬂ + 8,8§pgpa (6'53)

There are particular diffeomorphisms that leave invariant the metric. Those
are dubbed isometries. The generator of an isometry is called a Killing field.
They are specific to a given metric, and obey

£(£)gaﬂ = Va&p + vﬁfa = _gpapgaﬂ + 6a§pgp6 + 8,3£pgpa =0 (6'54)

Let us denote
H;U'V = v“fy + legu =0 (655)

Consider

0 — Vtup + VPHI/,U, - VVHP,U‘ — [v“, sz] fp + [Vp, VV] 5# + {v“, VP} é.y -
= Rpyn & + Ruwpd & + 2V, V &0 + Ry & (6.56)

And using the algebraic Bianchi identity,

vuvpgu = Rpl/u)\é—A (657)
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The set of all isometries of a given space-time form a group. Let us show
that the commutator of two isometries is indeed another isometry. We shall
do that by a brute force very useful calculation.

Vo [é1, 65+ Val€1, 8], = Va (V] — &6V,85) + V5 (61Va€2 - Va8 ) =

VoVl — & VaVuly + 6, VsV 5 — VsVl =

~EVa Vs + EVaVEl — §'VsVa + 6 VsVab) =

—E1E Rargy + £ Rappr — E1€6 Rprap + € Rpuar =

€165 (—Rax + Raypr — Raupr + Raxgu) = 0
This in turn implies that the said commutator is a linear combination of
other Killings with constant coefficients, the structure constants of the isom-

etry group. In general if £;,a = 1...7 represents a basis of the linear space
of Killing fields of a manifold, the following is true

€0, &) = Capée (6.59)

This isometry group is simply transitive if the Killing vectors are linearly
independent. Otherwise the group is multiply transitive. The orbits of the
group are homogeneus spaces, which have the same dimension as the group
in the simply transitive case. When a given space enjoys a timelike isometry
the space is stationary. It is useful to consider coordinates adapted to the
isometry, in which the isometry reads

§=(1,0,0,0) (6.60)

Naturally, then
€0 = goo (6.61)

There is no need for go; = 0. When they do, we say that the spacetime is
static. Ay any rate the equation for the isometry guarantees that time is a

cyclic coordinate
d0gap =0 (6.62)

When there is an isometry, there is a conserved current
J(OF = T (6.63)
It is conserved in the sense that
Vi (EF =2V, Ey T + £V, T =0 (6.64)

But it is a fact of life that for vectors (and only for vectors)

a 1 «
Val? = 10 (\/@J > (6.65)

(6.58)



6.4. THE WEAK FIELD LIMIT. 85

This means that there is a conserved charge in the usual sense by integrating
the current over a codimension one hypersurface (such as ¥, in case there
is a globally defined time coordinate)

Q%) = / TS, (6.66)

Indeed, integrating over the cylinder capped by ¥; and X,
0= / Voo = / TS — [ TS = Q(S2) — Q(Z1)  (6.67)
22 E1

Diffeomorphism invariance does not imply any conserved charge in gen-
eral. Noether’s theorem however allows us to derive Bianchi identities in
another way. The covariant conservation of the energy-momentum tensor is
a particular instance of the above.

5S ., 58
05 =4 / VIgld's L (¢, .0) = / V/Igld'z 59 b= / VIgld'z 5oy (Vels T Vita) =

2/\/@61435 {va ((;;‘jﬁ @) —gav%{;jﬁ}

This means that to the extent that there are diffeomorphisms that vanish
on the boundary of spacetime

oy =0 (6.69)
we get the identity
oS
\Y% =0 6.70
5o (6.70)

As advertised, this includes the contracted Bianchi identities when consid-
ering the pure gravitational piece of the action, as well as the covariant
conservation of the energy-momentum tensor when considering the matter
piece.

6.4 The weak field limit.

The weak field expansion corresponds to small curvatures

Juv = Nuv + /ﬁlh“y (671)

(so that
g =" — khM) (6.72)

A simple calculation tells us that

1 1 1 1
R =5 (=500 + 50,0000+ 50,000~ 30,0,0) +OG) (673

(6.68)
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The Ricci flatness condition coincides with the Fierz-Pauli massless equa-
tion.

It is interesting also to consider small deviations from an arbitraruy
background, g,

uv = g;w + Iihuy (674)
Then

o

(6.75)

R sy = B st s (Vo (s + Vol 4 Vaht) + T (TP — T bl — Tttt
The Ricci tensor reads
Rus = R+ o0 (~hs + DuTubls + 0,5t~ Vs0h)  (6.76)
and the curvature scalar
R=R+r(V,V,h" ~ V2h) (6.77)

The Weyl tensor reads

2 _ _ _ _ _ _ _ _
- (W vap = W o) = Va (Vg + Vbl + Vshtt) + Vs (Ve — Vbl = Vahls) +
_ _ _ _ 1 _
n B pHE my _ aPh 4 — g? Bg o
— (Rihys + Ryghtt = Rihy — Ruohl) L (94hus = Ghua + Hligus — b
1
~ (1) Wop _ pMauz  p)pp) _
—— (B REY + RUJgh — RS G — RUINS)
1 _ _
- Uh/\a - 2h gh _I/ — 95 _Va

The harmonic gauge also dubbed de Donder gauge corresponds to
by = %auh (6.79)
This means that the Ricci flat condition is simply the wave equation
Uhyuw =0 (6.80)

In the static case, Einstein equations should reduce in this regime to the
well-known Poisson equation

AV, = 4nGp (6.81)

Actually, Einstein’s equation can be written as

1
Rag = K> (Taﬁ - 2Tgaﬁ> (6.82)
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Assuming a perfect fluid form for the energy-momentum tensor, in the non-
relativistic limit the pressure is negligible, so that the only nonvanishing
component of the second member is coming from the energy density:

I€2

R) = o (6.83)

A simple calculation reveals that in this limit
1
Ry ~ 5 A® 6.84
0 2 ( )

so that Einstein’s equation reduce to

This leads to the identification
G
K= = (6.86)

6.5 Gravitational Waves.

Dimensional arguments tell us that in order to be able to carry away energy
to infinity, the radiation field should decay far from the source as

4mr? A? < o0 (6.87)

This means 1
A~ = (6.88)

T

It should depend also on the time derivative of some moment of the charge
density. In electromagnetism the first moment is the charge, which is con-
served, so that its time derivatice vanishes. This means that there is no
monopolar radiation. The electric or magnetic dipole are not conserved, so
dipolar EM radiation is allowed.

The analogous reasoning in gravitation tells us that there should not
be monopolar gravitational radiation (GR) because te energy is conserved;
nor dipolar radiation, owing to conservation of linear momentum. The first
nontrivial momentum must be the quadrupole.

Assume the dimensionless perturbation produced bt GR sue to a source
of linear extent R to be

G1o*
ctr ot?

Assume some sort of binary such that

(MR?) (6.89)

M =my +mo (6.90)
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and the reduced mass is

mi1mso
= 6.91
p=—pr (6.91)
The orbital frequency is
Q% ~ M (6.92)
Assume 5
— ~0? 6.93
ot? ( )
This means that the dimensionless variable
G 1 M? M 0.01sec\ 3 /100 Mpc
h~~10_22< )( ) ( ) 6.94
cAroa 2.8M, T r (6:94)

This is quite small owing to the prefactor. Nevertheless the flux of energy
is huge:

3
F~h%? ~ %h%ﬂ (6.95)

This yields tipically 100erg/cm?sec. This contrasts with Sirius’ flux which
is is ~ 10~%erg/cm?sec. Unfortunately it is difficult to detect such a huge
amount of energy due to the small value of Newton’s constant which governs
the coupling of this energy to the measuring apparatus.

We have already seen that in the linear approximation and in the har-
monic gauge (HG) the gravitational perturbations in vacuum obey the wave
equation, because

1
R,ul/ = _§|:|hp1/ (696)
When matter is present the second member does not vanish
1 1 1_- 871G
— §D (h/“’ - 2h77/w> = —imhuy = CTZ—‘HV (697)
Once in the HG,
1
OuhM” = iﬁ”h (6.98)

The HG condition does not fix completely the gauge. Actually, it is easy to
see that
VHG, = 1¢, (6.99)

It is possible to use this residual gauge freedom, namely those diffeomor-
phisms such that
Ot =0 (6.100)

to reach in a source-free region the radiation gauge (this is not really a gauge
sensu stricto in that we have to use the EM to reach it)

h = ho, =0 (6.101)
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Let us see in detail how this comes about. We write at the initial time t=0
the conditions

28,,6%(0, %) + h(0,Z) = 0
00 (0, %) + 0;60(0, Z) + hoi(0,7) =0 (6.102)

as well as their time derivative (please note that & = AEH because the gauge
parameters are also solutions of the wave equation)

—

5 <A§0(0, 7) — VO, f)) +h(0,7) = 0
A&(0, @) + 8i€o(0, @) + hoi(0,7) = 0 (6.103)

These are eight PDE in R? for the eight quantities (0, %), £#(0,Z). This
picks a gauge such that

h(0, &) = hoi(0,&) = 0 (6.104)

Since both h and hg; obey the wave equation, this remains true for all time.
On the other hand, the harmonic gauge

- 1
doh%° + 9;h*° = 58% (6.105)
implies now that
hoo =0 (6.106)
so that the wave equation reduces to
Ahgo =0 (6.107)
so that in vacuum,
hoo =0 (6.108)

as well. This is then a close analogous of the radiation gauge in electromag-
netism.
The solutions can then be written as linear combinations of

Py = € " (6.109)

where there are a priori 10 independent polarizations. The gauge conditions,
however tell us that

ke i =0 (3 conditions)
€op =0 (4 conditions)

e=0 (1 condition) (6.110)
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This means that there are only 2 = 10 — 8 polarizations left, which is the
correct amount for a massless particle according to Wigner’s general analy-
sis.

It is customary to denote the two polarizations by the names of plus and
CToss.

0 0 0 0
0 h h 0
ew = | h: _]; 0 (6.111)
0 O 0 0
Right and left handed circular polarizations are defined by
1
hr = 7 (hy +ihy)

1 .

The geodesic deviation equation teaches us that the tidal force in an adapted
RS is .
X' = Rl gn X = ihijxj (6.113)

valid in the radiation gauge. The expected magnitude of the perturbation
in a GW is of the order
|h| ~ 10717 (6.114)

which is quite small. This is the same order of the fractional relative dis-

placement
H

l
Over a distance of 1 Km this means that we need a precision of

(6.115)

105 x 10717 em ~ 10 fermi (6.116)

The amazing thing is that it is claimed that this is reachable in ongoing
experiments like LIGO.

The metric disturbance can in principle be computed by the retarded
propagator (when matter is present we have to go back to the de Donder
gauge where the EM reads

. 167G
Ohy = _C%TW) (6.117)
h (m)—4/ Tpy—ds’ (6.118)
T e e |

where the integral is extended to the past light cone of the point x € M,
denoted here N .
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We are using here the fundamental retarded solution

St —r)

Grog = ST
T At — ]

(6.119)

which obeys
OG et () = —0W (2) (6.120)

Let us concentrate our efforts in the purely spatial components (the other
components can be obtained from the gauge condition). Let us Fourier
transform in the time coordinate only

1

|z — 2|

s’ (6.121)

i 0,) = 4G [ (e, ) /57

Far away from the source, we can pull out the exponential term out of
the integral and replace it by

wr
e

- (6.122)

The remaining integral is

/Tijd% = /8k (Tkj:):i) dx— /akajxid3x = iw/Tojxid‘gm =

% (Toja:i + TOixj) dr = % / %) (TOla;ixj) d3r — /81T0lxixjd3a; =
2
% / T 3y (6.123)

where we have used

T = —9TY
T = —9yT% (6.124)

This means that in this approximation

_ 9 wr
hij = —?)Gwze Dij(w) (6.125)

where the quadrupole moment is defined as
Dy; = / T (32%27 - 5;0%) d*x (6.126)

We have implicitly assumed that ¢ # j. In position space

- 2G d*’D;;

(6.127)

ret
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Let us consider a simple plane wave in the x-direction. This means that
all components are assumed to be functions of the variable x —ct. The gauge
condition reads

- 1
d,h" = 9, <h“” - thﬂ”) =0 (6.128)
Using that for all these functions 9; = —%80 we deduce
- _ _ 1 -
Bohf) + O1h), = 0= 9y (hg - h,ﬁ) (6.129)

In gory detail

h% = hd = h{ = n'°

hY = —p% = —pi = p

B2l — p20

p3Y = p3t (6.130)

Using the residual gauge transformations &, (ct — x) one can put to zero
R R e e (6.131)
We only have to take into account that
h*2 + b33 = hog — h1y (6.132)

and that we have four arbitary functions, namely the four components of
£u(x — ct). The only non vanishing fluctuations are

]tL23 ?é 0
h?2 —h33 40 (6.133)

Let us now turn to estimate the energy such waves carry. The pseudo tensor
energy-momentum (to be defined later in the main text) is easily shown to

be

2 . 1 . . 2 G 522 — Dgg 2 e
0= (h2 = (has — ):
167G 2371 ] ( 22 33) 367672 2 + Dag

(6.134)
At any rate, the order of magnitude is clear, just by analogy with the corre-
sponding formula in electromagnetism, where the energy dentity is propor-
tional to B2 + B2. This is all we need for an order of magnitude estimate.
The intensity of the radiation is then given in general by

diﬁ = m <4 (Dijn’n]> + §Dij - DijDikank> (6.135)
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The total rate of energy loss is then given by averaging

dE G ..o

- = Dy (6.136)

The total energy flux emitted is of the order of

f ) ( h ) ergs
F=3 6.137
(1 kHz) \10722 ) cm?sec ( )

For comparison, the solar neutrino flux at the earth is of the order of

ergs

F, ~ 10 (6.138)

cm?sec

It is possible to compute (and measure) the rate of variation of the radius
of the orbits of two bodies gravitationally bound owing to the loss of energy

due to emission of gravitational radiation. Starting from the formula
dE G ..o

_ — P 1
dt  45¢° Dij (6.139)

Assuming circular orbits, Landau and Lifshitz derive (or rather propose as
an exercise)

dE  32G [ M;M; >2 e
- — = R*Q 6.140
dt 5¢d (M1 + M, ( )
where the frequency is assumed to be
Q*R3 = G (M + M>) (6.141)
Given the fact that Iy
E=-G—2=2 (6.142)
R
we easily get
R——@MM(M + My) (6.143)
and the variation in the orbital period
T 96G3

This has been verified experimentally through the observation by Hulse and
Taylor [29] of the binary pulsar PSR B1913+16. The decrease in the or-
bital period owing to energy loss by gravitational radiation agrees with this
formula to an amazing factor

0.997 4 0.002 (6.145)

This result is often interpreted as indirect evidence for gravitational radia-
tion.
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6.6 Exact plane waves.

Bondi, Pirani and Robinson discovered in 1959 an exact solution with many
analogies with electromagnetic plane waves. Let us write these in the form
proposed by Synge.

Fu = B(u) ((kuly — kuly,) cos O(u) + (kymy — kymy,) sinf(u))  (6.146)

where k is the null propagation vector k? = 0; [ and m are constant spacelike
vectors orthogonal to k

=1 =-1
kl=km=Ilm=0 (6.147)
The amplitude B(u) and the polarization 6(u) are functions of the variable

u = k.x. Waves propagating in the positive z-direction are described by the
explicit choice

k=(1,1,0,0)

[ =1(0,0,1,0)

m = (0,0,0,1) (6.148)
This means that

u=t—ux (6.149)

The field strength is invariant under a 5 parameter subgroup of 1.SO(1,3)
that leaves invariant u to wit

2 2
y? ;2% —%1)2 by b3 I(l) ag + %ab
L I e L BN N O I (6.150)
Yy by —by 1 0 z a2
y3 bo —bg 0 1 3 a3
where a® = a' and by &k = 3,4 are the five independent parameters. b? =

sumpbgby. This is equivalent to y* = L* ,(a,b)x”, where

1 1
0:x0+a0+2bk (wk+2ak+26ku>
k

2 2
y* = aF + aF 4+ bvFu (6.151)

1 1
y' =2t 4ol + Zbk (a:k + zag + bku>
k

0

where a® = a!. First, we observe that this transformation leaves u invariant

u=u (6.152)
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According to Wigner, it can be written as the product of a boost, with

velocity
b2
v = (2, bg, b3> (6.153)
and a spatial rotation,
L[4 4by 4b3
R=1—p | 4 4+ b2 — b3 —2bobs (6.154)
TN\ —dby —2boby A+ B2 B2
The world-line of the origin,
XV=1
et =2?=2%=0 (6.155)

gets transformed under a null rotation into

b2
y02<1+2>7'

b?
—T

1 _
=5
yF =kr (6.156)

Let us denote the infinitesimal generators of this transformations by T'(a, b).
Then

T"(a®,b=0) = (1,1,0,0)
T"(a?,b=0) = (0,0,1,0)

T"(a3,b = 0) = (0,0,0,1) (6.157)
and
0 0 10
0 0 10
Tla=0b)=|, | 4 o (6.158)
00 00
0 1 00
0 1 00
Tla=0b)=|,0 4 o o (6.159)
1 =100

The non-vanishing commutators are

[TCEQa sz] = Tao
[Tog, Thy] = Tpo (6.160)
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We want to define plane gravitational waves in as similar a way as pos-
sible. The corresponding spacetime metric reads

ds? = ¢2¢(w) (dT2 — d§2) —u? (cosh (26(u)) (dn2 + d{z) +
sinh (28(u)) cos (20(u)) (dn* — ) — 2sinh (28(u)) sin (20(u)) dndC)

where u = 7 — £. The function B(u) defines the amplitude of the wave and
the function 6(u) the polarization. Let us hereinafter restrict to waves with
a fixed plane of polarization, = 0. In addition, Ricci flatness demands

20/ (u) = u(f' (u))? (6.161)
In the vierbein
0
— e
=c or
0
el = e ? 875
1 0
= _ﬂ -
€y = » € (977
1 0
=-e — 6.162
es= ¢ 5 (6.162)
The nonvanishing components of the Riemann tensor reads
R3130 = —Rg131 = Ri212 = R0 = 0 (6.163)
where
o= 1 e~ 2(w) (B” + QQI — u(ﬁl)3> (6.164)
ol u ‘

Let us consider sandwich waves with amplitude non-vanishing for a finite
range of u; < u < uy only (not including u = 0). Elsewere, spacetime is flat.
To be specific, in the overlapping regions where both the plane wave ansatz
as well as Minkowski coordinates are allowed, we can choose, for example
the flat form

¢ = o (6.165)
B = bo (6.166)

In the filling the wave is a smooth deformation of this. Minkowski coordi-
nates are defined by

T—€f=t—x=u

2., .2
T4 E=e 2 (t—l—a:—y tz )

t—x
77267’80 Yy

(= = (6.167)

S
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The mathing with the flat metric when v — u; involves
(67,07) =lim,_,,~ (8, 0) (6.168)
whereas the one at u — u™ involves
(5%,6%) = lim, .+ (5.9) (6.169)

The matching can be done in a smooth manner in a finite overlapping region.
The BPR solutions can be generalized [26] giving an interesting family of
vacuum exact solutions (Petrov type N) is that of plane-fronted parallel
waves with parallel rays (PP waves). Define null coordinates through

u=t—x,
v=t+a, (6.170)
These spaces are characterized by the existence of a parallel null vector,

that is
VuZ,=0 (6.171)

This means that Z is a Killing vector field, and also that it is a gradient. If
it does not vanish anywhere, we can define a null coordinate such that

7= % (6.172)
The Killing equation can be written as
£(Z2) g =0 = Z g — 02 gr0 — v Z gru = oGy (6.173)
On the other hand, the fact that
ViuZ,) =0 (6.174)
conveys the fact that locally
Zy = Guo = Opu(x) (6.175)

The metric has then the form
ds? = dudv + K (u, z7)du® + 24, (u, z7)dzdu + gap(u, v7)dzdz’ (6.176)
where the transverse coordinates
zr=(z%) (a=1...n—2) (6.177)
In fact we are going to be specially interested in the case where

Gab = dab (6178)
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which are the real plane-fronted waves with parallel rays (often shortened to
pp waves). Note that the wave fronts

u=C (6.179)

are flat, then planar. The other part of the name (parallel rays) refers to
the existence of a parallel null vector. Shifts of the coordinate v

ov = A(u, z7) (6.180)

belong to the residual gauge symmetry. Then

§K = %&IA
§Aq = O, (6.181)

Plane waves are a particular case where A, = 0. Then

ds? = dudv — Agy(u)z2’du® — 6,dz*da® (6.182)

where

We shall see in a moment that a plane wave is flat iff A,, = 0.

It is easy to check that the only nonvanishing component of the Riemann
tensor is

Ruaub = —Aub (6.183)

The Ricci tensor, in turn, has as the only nonvanishing component
Ry = —06% Ay (6.184)
in such a way that the scalar curvature vanishes
R=0 (6.185)

The manifold is Ricci flat whenever the transverse matrix A is traceless.
The nonvanishing components of the Weyl tensor are given in by

1
Wuaub - - (Aab - m 5ab tr A) (6186)

which vanishes iff A, is a pure trace. As a consequence, all curvature
invariants of a plane wave vanish.
The geodesic deviation equation (to be derived later) tells us that
d? b
a __

de = Aab(5x (6187)
which is an harmonic oscillator equation. This shows in particular that the
tidal forces become infinite whenever A, diverges.
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One interesting aspect of PP waves is that they are generic in the sense
that every space time admits a PP wave as some limit, the Pentose limit of it.
The said Penrose limit is associated to a particular null geodesic congruence,
~v(A), whose tangent vector is represented in adapted coordinates as

¥ = 0u (6.188)

so that the geodesics themselves are parametrized by constant values of v
and the traneverse coordinates xl} In Penrose’s coordinates

so that the full metric reads

ds? = —2dudv — a(u,v, x7)dV? — 2b(u, v, x7)dY"'dV — gij(u,v, :L’T)dxdea:gp
(6.190)
We can interpret the coordinates (v, z%) labelling different geodesics in the
congruence, whereas u is an affine parameter along each geodesic.
Penrose first instructs us to first make a boost

(u,v,2p) = (u/A, Au, x7) (6.191)
At the same time, we rescale all coordinates by
(u,v,x7) = (Au, Av, \er) (6.192)

so that altogether we have

(u,v,z7) — (u, o, )\:UT) (6.193)
Next we perform an overall rescaling of the metric
1
ds? — ﬁdSQ (6.194)

The end result is

ds? = dudv—Na(u, \2v, \e§)dv? —2)\b(u, \2v, \ek)dalpdv—gij (u, N, Ax?)dw%dw%ﬂ
(6.195)
Taking now the limit when A — 0 yields

ds% = dudv — g;; (u)dmf‘pdij (6.196)

It is a fact that if two geodesics are related by an isometry, the Penrose
limits are themselves isometric. The limit preserves Ricci flatness, conformal
flatness and local symmetry.

Let us work out an example in detail. Consider the manifold with metric

ni—1 no—2

ds? = R} (df? — sin® ¢ dO2, ) — B3 (d0? - sin® 0402, ,)  (6.197)
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We shall see later on that this represents the direct product of a n1-dimensional
constant curvature anti de Sitter space and an ordinary positive curvature
no-dimensional sphere. This manifold is interesting because it can be an ex-
act background of string theory and as such is one of the components of the
celebrated AdS/CFT Maldacena duality. Let us introduce null coordinates

u = Rl t— R20
V=R + Ryt (6.198)

so that
“21;1“ 02, | — R sin® “;1 a0, (6.199)

The Penrose limit is now easily obtained in Rosen coordinates

ds® = dudv — R? sin®

u

2R

2 u

dz? 6.200
2R, 2T ( )

ds% = dudv — sin® dy? — sin

6.7 Stationary spacetimes

We have already emphasized that the GR generalization of stationary grav-
itational field consist in demanding the there is a timelike Killing vector,
which can then be taken along the time direction, id est,

£(§)gap = Va&s + Vs€a =0 (6.201)
Then in the coordinate system adapted to the Killing vector,
0
== 6.202
f=o (6202
this condition is simply
0
— =0 6.203
In general,
goi # 0 (6.204)

Spacetime is said to be static if the Killing is hypersurface orthogonal, which
is the case when
ENE=0 (6.205)

(by Frobenius’ theorem).
It is fact of life that the tangent vector to a geodesic, say k, then obeys

k*V o (k.£) = kaﬁﬁvakg + k%avagﬁ =04+0=0 (6.206)
The general form of the metric of a stationary space-time is

ds? = A%(2%, 22)dt® — B(2?, 2%) (d¢ — wdt)?* — C? (22, 2°) (da:% + dw%)
(6.207)
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where the two Killing vectors are given by

0
§= 5,
_9
X = 96
A tetrad defining a LIF is
€eyp — Adt
e1 = wBdt — Bdo
eq = Cdz?
es = Oda?

A given observer will have a four velocity

d 6%
uCM = % = 7(1797‘,1527:153)
where
do .
=" =
dt ¢
ds \/A2 — B2(Q— w)2 — C%v2
where

2 — 22 .2
vp = 22”7 + X3

In the LIF defined by our tetrad the four velocity is measured as

(A, B(w—Q),Caia, Cics)

101

(6.208)

(6.209)

(6.210)

(6.211)

(6.212)

(6.213)

An observer at rest in a LIF (which means that Q = w) will have angular
velocity w in a coordinate frame. An observer at rest in a coordinate frame
(FIDO) which means 2 = 0 will have angular velocity —w in a LIF. This
dragging of inertial frames is due to the angular momentum of the source

(proportional to w) and has been studied by Lense and Thirring.

6.8 Noether charges and superpotentials

There are two cases to consider essentially different.

e Non-covariant appproach without boundary terms. Let us re-
view here the non-covariant approach leadinbg to pseudotensors, first

pioneered by Einstein [19] himself.
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The Einstein-Hilbert lagrangian reads (we suppress the overall factr
1 c3 )

T2k T 167G /-

L=y |9|{ — 29”292 g0 ges (—0rgup + Oagun + Ovgpy) +

_|_%glfﬂg/v\ (_8uaAgu,B + 8uaﬁgy)\ + 8uaugﬁ)\) + %guegNSaﬁgeé (_a/\g;w + aug)\y + aug/\u) +
_lglﬁ\ (—858,\9#,/ + aﬁaugu)\ + 8,6’8119#)\) +
+ig/51/gu>\ ( a/\g;w + a,ug/\a + 8aguA) ( 869,81/ + 81/966 + aﬁgué)

1B (Z g5y + Dsgre + Bogsn) 97 (—Bsgus + Dus +aug,,5>} (6.2

It follows that

OLpn <1 af aﬁ)
=+/lg| | =g*"R— R 6.215
s =lal (5 (6:215)
and
oL
5 aEH _ /’g‘ (_Fgagpcrgau_‘_FZLngagBJ+Fgagpogﬂu+rgagpagaﬂ>
(Ouios) (6.216)
as well as

OLgpy 1 { pa fBr va , ufB uv aﬂ}
= — 21
T Ovgns) 2 913 (9"9™ +g"9"") = g9 (6.217)

A general variation of the lagrangian can be written as

_ 9
0Lpn = HF

+ W(wﬂga[g + ﬁ&? (9Vgag =
_ 0L
= agEgI dgap + Oy ((8#9 ﬁ)éga5> (8Ma(a gag)) dgap +

OLg oL
0 (350,800 ) + (0,0, 0245 ) gas — 0 (BB 5g0s ) =

__ 4S8 OLgy —
= 6g§§ 0gas + Oy (6((,9“ )5ga5 + 7(8 5 gaﬂ)éa L0GaB — 8”6(@65%5)59&5) =
= 523gap + Ou" (6.218)

where the canonical EM are given by

0SEH — ILpH _ ILpH +9,0 67[/7131{
890 Ogap "0 (0ugap) " 0(0400gas)

It so happens that

(6.219)

pn = LgeSR — RP — 9, (\/m (—F B.gP7 g + TH gPegPo 4+ T gPo gPr+

09as
+1%,9779°%) ) + 0,0, (33191 (9797 + g729"°) — "g°) ) (6.220)
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Under a diffeomorphism

59aﬁ = guaugaﬁ + aag)\g/\ﬁ + aﬁg)\”)’a)\
00908 = 0,EH0ugap + £10,0uGup + (9V8a§>‘g)\,@ + 3a§>‘8yg>\3 +
+0,08E gor + 031Dy g (6.221)

Now
0L =0, (§"'L) (6.222)
Then we learn that on shell
O (—LE" + ) = 0, (€1 T{ + 067 UL + 00,6 V7)) = 0
(6.223)

Taking into account that £ is arbitary, we get the cascade equations
of Julia and Silva [14]

& (0,T5) =0
0 (T4 + 9,U8") =0
020,€° (U7 + 0, V17) = 0
0u0r0,€° (V) =0 (6.224)

The energy-momentum pseudotensor is given by

_ oL oL oL _
T = —L8y + ( — O A ) ONGas + e OuOrGas =

90,903
= — R + /gl ((~T5,977 9% + Ty g? g% + 15,67 g% + Tty g°% 67 ) Drgas+
4.% (gﬂagﬁu + guaguﬁ _ guugaﬁ) 81/8)\9&5) — (6.225)

e It is also possible to proceed as follows. Starting from
ORVM yop = VaéFﬁﬁ — Vgdl't, (6.226)
where

o5 = 9" (=VA09as + Vadgrs + Vadgra) (6.227)

| =

The variation of the curvature scalar
SR =g"P6R,5 = g"PV 0T 5 — VoTh, = 5g*° {g/M x
XV,u (_v)\dguﬁ + Vﬁégku + vl/(sg)\b’) - gﬂ)\vﬁ X
X (=Vx0gva + Vidgra + Vadgur) } (6.228)
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and

1
5\/lgl = 5V/1919°7ga5 (6.229)

Then
3Sp = [ d(vol){ (—R + 1 Rg*®) 6gas + Vi [9ap: 09as] }

where the precise expression for the current j# will be given momen-
tarily.

We have just seen that the full variation of the Einstein-Hilbert la-
grangian can be expressed as

1 08
= —— R T
08pm = ~5 / { g, Somdvol) + V. }d(vol) (6.230)

with

gt = V,ugpa(sgpo - vadgua = gu)\gpav)\(sgpg - vadgua -
= 9" 900 (000977 + T5;39%7 + 155697 ) — 009" — T 56g7 — TY;001

Now, under a diffeomorphism
09" = —g"7 g 0goy = 059" — 05619" — 0567g"°  (6.231)
Then
= g’“gpa{ax (5‘5859”" — 056Pg"" — 5‘55”9”) +
185 (62009 = 0a€09°7 = 0at?9" ) +
TG, (600" — 0,679°7 — 0,879°) | -
01 (£700g" — 089" — 0,69 -

_I‘/;é (gaaagé)\ _ aagdga)\ _ aaf)\gua> o
Iy (6700 — Bat"g™ — 0,€09") (6.232)

Grouping terms with the same number of derivatives of the generator
é'Oé
9| j* = EPTH + 0,67 UL + 950,£° VI° (6.233)

Now for a diffeomorphism

0Sgg =0 (6.234)
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Then on shell (that is when 655;% =0),

V" = \/1\?\ 9, (Mjﬂ) —0 (6.235)

Now different order of derivatives of the arbitrary parameters £ are
totally independent, so that their coefficients have got to vanish.

It follows that on shell

OuT) =0 (6.236)
as well as
Ol T + 0,6 UM =0 (6.237)
Then
TH = —0\U* (6.238)

The objects U l;\“ are traditionally called superpotentials in the litera-
ture.

It is also the case that

UL = —0\ V) (6.239)

where Vp)‘(y“ ) constitute another set of superpotentials, which are con-
strained by

Vi) = (6.240)

Let us proceed to the computation of the superpotentials. For that
purpose it is better to rewrite the Noether current corresponding to
Diff as

" = VFgpe09”" — Vodgh? = —2VHV AN + V, (VHET + VIEH) =
= (9“355 - go‘“5f) Va V€t + REEA (6.241)

owing to Ricci identity’s
Vi, VAl €7 = Ry o’ (6.242)
Now
Vit = (97984 — g5 ) ViVa Ve + VuRE X + RY V.60

Let us work out the triple covariant derivative
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e Let us consider now boundary terms. In this case there is an
extra contribution to the variation, namely

/8M Vbl d3y 5¥n, (6.243)

where n is the unit normal to the boundary, and h;; is the induced
metric on it. The full spacetime metric is related to the induced metric
through

9o = hap £ nang (6.244)

in case n?> = +1. The null case is more complicated and should be
dealt with separately.

In the above derivation wa have assumed that 0V = 0. This is not
the case in mosr circumstances. For example, one can integrate on the
slice of spacetime defined by

ti <t<ty (6.245)

where t is some cosmic time. Then the boundary includes the hyper-
surfaces YJ; and Xy, where

Y =t = constant (6.246)

Let us then repeat the analysis keeping the boundary terms. This is
hard work.

OR = Ryudg™ + (g0 V? = V,uV,) g™ (6.247)

The boundary term in the Einstein-Hilbert variation then reads

_ dn— 1 5 PSaHY — SaP?) = / dn— 1 P
Sov = ~ 15, G/ Y Iy (9 VE0g™ = Viog™ 167TG yyIrim,J
(6.248)
Taking into account that
09aslgy, =0 (6.249)

as well as
(900 = Vi) 69" = Vi (V09" = Vigapdg®®)  (6.250)
(remember that go,s = nang + hag), it is possible to write

n’Jy =1’ (9w V69" — 9,6 V.,69°") =
NpGas (Vo‘5g”5 — Vpégo‘ﬁ) =n, (NaMw + hag) (Vo‘ég”ﬁ — V”égo‘ﬂ) =
= P 9,50, (6.251)
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The product of three normals are symmetric in (pa), whereas the
factor in the variations is antisymmetric with respect to thsese same
indices [pa]. The product then vanishes.

Besides, tangential derivatives of the variation of the metric must van-
ish as well: h,,0"6g?” = 0. We are then left with the stated term
only.

This surface variation can be cancelled with the boundary action

3
C
Soy = —— hld" 'y K 6.252
v =g VM (6.252)
where
K = Van® = (n*n” + h*?) Vgna = h*Vgn, (6.253)

In fact (on the boundary dh,g = 0), and

1
0T = igpA (=VAd9as + Vadgng + Vdgan) (6.254)

1
0K = —h*?6T" 4n, = ihaﬂnkawgaﬁ (6.255)

which precisely cancels the boundary term in the variation of the bulk
piece of the Einstein-Hilbert action.

A perfect fluid as the one that is usually taken to represent the coarse
grained material content in cosmology has

Top = (p+p) UaUB — PGap (6.256)

So that a cosmological constant corresponds to

p=-p
1
p=-3\ (6.257)

The Einstein vacuum equations reduce to the Ricci flatness condition
for the corresponding space

R, =0 (6.258)

6.8.1 The I' — I' noninvariant lagrangian-
The EH lagrangian has got clearly two pieces in it. Let us dub

Sag =T9,00, — 9,17 (6.259)
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and
Ls = /g 9°Sup (6.260)
It is a fact that

L = /gl (9°%05T%, — 8,1%5) + Ls = 05 (f glg°T > (\m T > _
"y (Mﬁ) L+ 0, (fﬁ) I+ Ls =0 (\/>goz6ra ) (M oo

—Lg=

where we have used

/ v -
8/)( ‘g|gaﬁ>: |g|< \/* a,g Fpug Fpug )Z lg] (Fopg Fpug Fgugc

so that

— g (\/@9“5) ro, +9, (\Mgﬂ 0, =—2Ls  (6.261)

This shows that the Einstein-Hilbert lagrangian and Schrédinger’s
I' — T lagrangian differ by a total derivative, and thus yield the same
equations of motion.

This is remarkable, because Lg is not diffeomorphism invariant. On
the other hand, it depends only on first derivatives of the metric; this
then gives a new insight insight explaining why Einstein’s equations
are second order.

There are many lessons to be drawn fro this fascinating lagrangian; for
example, that the symmetries of the equations of motion do not have
to coincide with the ones of the lagrangian; they can be enhanced, as
is the case here.

6.8.2 The first order formalism.

Assume there is a frame e®(z) (a section of the cotangent bundle)

1
L= %QR b A 2€abcdec A el (6.262)

Define a spin (Lorentz) connection such that under a Lorentz trans-
formation (such that L} = Ly,)

Wy = L% " o (L7Hy — (L7HeydL? . (6.263)
That is, when w®;, = 6f + A}

dwp = A"y w"p —wy A — dA%p (6.264)
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We define the curvature two-form

Ry = dw®p + w® . Awy

(6.265)
the torsion two-form
T% = De = de® + wy A e (6.266)
and the non-metricity one-form
Q% = Dp® = dn® 4 w® + whe (6.267)

From the definitions some identities (Bianchi) can be derived
ARy, = dw® . AN wCp — w® . A dw®y = (R“C —wad/\wdc) ANwCy —
—we . A (Rcb —wcd/\wdb) =R*. ANwp —w?. AR (6.268)
which can also be written as
DR, =0 (6.269)
It is also a fact that

dT% = dw*y Neb —wy Adeb = (R — wc AwCp) Al —
—wiy A (TP —wynel) = ROy Aeb —w?y ATY (6.270)

that is
DT® = R*, A eb (6.271)

Finally
dQ® = dw® + dwbe (6.272)

that is

Dwab = anb 4 wac A (wa 4 wbc) 4 Wbc (wac 4 wca) —
—_ dwab + dwba + wac A (wa + wbc) 4 Wbc (wac + wca) — Rab + Rba
The variation yields

1

5= 52

1 1
/d43: (Déw“ A ieabcdec Ael + Ry A 5 €abed (5ec Ae + ef A 6ed)
(6.273)
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The EM then read
€abed D (ec AN ed) =0
€abed R p N e =0 (6.274)

Under local Lorentz transformations the Noether currrent reads

()\auwub—wav)\vb —d)\ab) /\eabcdec/\ed =
A de +dXNY y NUY (6.275)

D=

L oL  __
]L:5Lwab/\m—

where

jv u = (WU b€ubcd — w? ueavcd) Aec N ed
Uy = —€puede® N e (6.276)

Now the condition
dir, =0 (6.277)

yields a Julia-Silva cascade

Jjo+dUv, =0
dj* =0 (6.278)
Under Diff
ozt = &H(x) (6.279)

the variation of the different forms is

8wy = (dig + ied) W

de® = (dig +igd) e® (6.280)
0L = £(§)L = (dig +i¢d) L = digL (6.281)
Noether tells us that
dje = d (gL — £(E)w" b A €apeac® Ae?) =0 (6.282)
Now using the fact that
L(fX)a=fL£(X)a+df Nixa (6.283)
when fX = £°0,,
L(§w = EPL£(0p)w + dEPig,w (6.284)

it follows that
Je =&1,4+d¢P Noy (6.285)
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with

Tp = i(ﬁp)L — £(8p)wa b A\ €abed€S N ed
op =1(0p)w* b A €qbede’ N et (6.286)

The cascade leads to the superpotential
T, = do, (6.287)
The theory is also Weyl invariant in some sense under
dw?p = w(z)dy (6.288)

This is quite trivial, because when the non-metricty vanishes, the con-
nection is antisymmetric

Wb = —Wha (6.289)
In case there is a symmetric piece
w=w+wd (6.290)
they decpuple in the sense that
R=R’+RA (6.291)

More

It is vary easy to derive a first order action principle provided one is
willing to postulate that the torion of the connection vanishes.

S = / d"z\/lglg"” R (T) (6.292)

Here the connection is itself a variable, so that we cannot integrate by
partis covariant derivatives.

The so called Palatini identity tells us that
ORM yop = VaéFﬁﬁ — Vgdél'l, (6.293)

and
0Ryu = V0T, — V, 0T, (6.294)

We can then write

1
3S, = / varl d”a:{ (RW - 2Rgm,> ogt” +

g (v AT, — vyarfm) } (6.295)
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It is useful to use again the variable

lglg" =g (6.296)

1
58, = / d"a:{ (RW - 2Rg,w> Sgh + g (vwrﬁu - v,,(srgk) } =

1
/ dnx{ (RNV - 2RgHV) 5gluj + v/\ (guy(sr;);l/ - g)‘ﬂ(s]:‘zo_) + v)\guyérl/)y + vuguy(SFZJ

1
/ d%{ <Ruv - gng> 69" — Vg oy, + Vuﬂ“”mff} (6

because for a tensor density

Vath = ot (6.298)
This means that
Vagh” = 6,V g1 (6.299)

which is easily seen to imply

Vag =0 (6.300)

so that the metric is covariantly constant and the connection is the
Levi-Civita one.
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The Schwarzschild vacuum

solution.

In any static space-time, the frequency of any radiation observed by a FIDO

is given by

A possible definition of a spherically symmetric space-time is

U= \/5?2 (7.1)
w= \k/% (7.2)
M2 X SQ (73)

where Ms is a two-dimensional lorentzian manifold. The metric reads

ds® = B*(t,r)dt* — A%(t,r)dr® — r?dQ3 (7.4)

There is a natural tetrad, namely

In the corresponding LIF

so that

ey = B dt
e1 =Adr
es =1 db
e3 = rsin 6 do
(7.5)
OgA
=2— .
R "BA? (7.6)
A= A(r) (7.7)
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only. On the other hand, still in the LIF
21
R22 — Roo = ;ﬁ&«log (AB) (78)

We learn that
AB = f(t) (7.9)

It is plain that we can always redefine the time coordinate in such a way
that f(¢) = 0. This is actually Birkhoff’s theorem: the space-time external
to an spherical mass is necessarily static. The other equation reads

oA 1 1 1

The solution to this equation is

1 rg
—=1-— 7.11
A? r ( )

The Schwarzschild metric (Petrov Type D) is given by
rg dr?
d82 = (1 — ) dt2 — de’Q — TQdQ% (712)

r
T

where the Schwarzschild radius is give by

TS = 2GTM (7.13)
The Killing vector is given by
0
§= o (7.14)
so that its square is
& =goo=1-"-" (7.15)

For the Sun, rg ~ 3 km. The formula above then tells us that

wi_ [k _ |15

w? k? 1-7
This is nothing but a fancier derivation of the gravitational redshift formula.
A FIDO at rg = oo will measure a frequency

wozwﬂ/l—%g (7.17)

which is smaller than w, (that is, the waves are redshifted) and actually
vanishes when 7 ~ rg; there is an infinite redshift for all waves emitted at

(7.16)
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the horizon. In order to observe a finite frequency at infinity, the frequency
close to the horizon (that is, at a distance r = rg + € ) must be

rs

We = 2w0? (7.18)
which is transplanckian for
e < 2]\% rs (7.19)
7.1 Timelike geodesics.
We shall follow the thorough analysis in [3]. The equivalent lagrangian reads
L= 1{(1—>t2 7;2—7'292—7“2$in29¢52} (7.20)
2 r 1-1= )

Cyclic coordinates:

ptz(l—)t—E:const

r
pg = rsin 0 ¢ = const (7.21)
On the other hand,
d ) )
g (r29> = r2sin 6 cos 0 ¢ (7.22)
-

so that if we assign 6 = 5 when 0 =0, then § = 0, and 0 = 5 forever. We

shall therefore restrict ourselves to the plane 6§ = 5. Then
2 =1L (7.23)
The normalization of the four velocity now takes the form

E? P2 L2
s — 5 = (L) (7.24)

for timelike or null geodesics, respectively. Let us restrict to the timelike
case for the time being. Then

() (-5 (+5)-»
d¢ £ (7.25)

Nl s 32
qu \/ 1 + r3 —1r2 +rgr (7.26)
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and in terms of the convenient variable u = r—1!

du reu 1 — E?
M—\/r’gu?’—u?—i—LQ—LQ (727)

Once this equation is solved the problem is completely determined through

dr 1

dt E

dé Lu?(1 — rgu) (7.29)

e Let us begin by considering the simplest instance, namely the radial
geodesics. Those have zero angular momentum The equations are

dr rg
R 2 _ (1= E2
dr r ( )
dt FE
= (7.30)

dr 1-7s

We shall consider boundary conditions such that they start with

r T3
=0 (7.31)
Then
rs
We define an auxiliary variable n such that
T 1+ cos T
r=q —SE2 5 n_ 1 —SE2 cos? g = rjcos? g (7.33)
It is plain that
n=>0 (7.34)
when
r=r; (7.35)
The horizon crossing (r = rg) is located at
ny =2sin" ! E (7.36)

and the singularity at r = 0 is reached when

n=m (7.37)
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The equations to be integrated are

d —
V7

dr
dr . n
i = —rsin o cos (7.38)
Now
dt _ dtdrdr  Ecos” j (7.39)
dn ~ dndrdn cos® 2 —cos? UL )
It follows

dr 3o r3
B L=/ 7.40
i \/ TSCOS 5 \/ - (14 cos n) (7.40)

so that normalizing such that r=0at n =0

r3
T =4/ (n+sinn) (7.41)
rs

This means that the particle crosses the horizon at a finite proper time

[3
> .
TH = é (nm + sin ng) (7.42)

and reaches the singularity in a finite proper time as well

r3

= - 7.43
= (7.3

This is what would have measured a FREFO.

To obtain the corresponding coordinate time (as measured by a FIDO)
we have to integrate

dt 2 B
g o 2 SOS 2 2 nH (7.44)
dn 5 cos® 5 — cos® gt
The result of the quadrature is
r3 (n+sinng tg UL +tg I
t=E -+ (1——"+(1-FE? log —2——2 (745
e e e L) R e

It is plain that the FIDO time diverges logartithmically when n — ng.

Let us now consider in detail the bound orbits (they correspond to
E? < 1)
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They are defined through

du _
dp
The roots of

fu) = \/r5u3 —u2 Sy - (7.46)

f(u)=0 (7.47)

it being a cubic polynomial, fall into two classes: either there are three
real roots, or else there is one real root and two complex conjugate
ones. At any rate

1— E?
flu=0)=— 2
1— E2

rglL?

<0

uju2uU3z =

1
Ul + Uz + Uz = — (7.48)
rs
In fact there are five possibilities for the real roots. Let us call the
roots u;

— 1. 0<u <ug < us.
Then there are two distict orbits confined to the intervals in which
f(u) > 0, that is, either

u < u < ug (7.49)

(this is an orbit that oscillates between two extreme values of r,
namely, 7711 and %) or else

u > ug (7.50)

(which starting at certain aphelion distance (namely 1713 finishes
at the singularity. These two classes of orbits are dubbed first
and second kind

—ii. 0 < up = ug < ug.
Then the orbit of the first kind is a stable circular orbit of zero
eccentricity.

— iii. 0 < up < uo = ug

Then the orbit of the first kind starts at aphelion u% and spirals

towards the circle of radius u%, The orbit of the second kind

spirals towards the singularity.

—iv. 0 <up =ug = ug
1

There is an ustable circular orbit of radius a
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—v. 0<u up =u3.
In this case all orbits finish at the singularity

Let us now concentrate on the orbits of the first kind. We define
the latus rectum, | and the eccentricity, 0 < e < 1 through

" :1—6
=
:1—|—e
uy = ]
1 2
= — — — 7.51
s rg 1 ( )

The ordering us < us that we have assumed implies that

I>rs(3+e) (7.52)
Let us define re
so that .
< 7.54
o= 2(3+e¢) (7.54)
or what is the same thing,
1—6p—2pe>0 (7.55)

Now

f(u)—rs(u—lje)(u—l—;e><u—:s+?) (7.56)

and consistency implies

rs 20 —rg(3+ e?)

202 212
1—E?  (1-2rg)(1—¢€?)
77 = B (7.57)
that is
1 1-puB3+€?)
2 Irg
1—FE?  (1—4p)(1—e?)
2= B (7.58)
from which it easily follows that
1
I (7.59)
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It is a fact that
E? 2(2,u, —1)2 — 4p2e?
L2 Irs

Let us now make the substitution

(7.61)

1+ecos x
mw =

j (7.62)

where x is the relativistic anomaly, which is such that x = 7 at aphe-
lion, and x = 0 at perihelion. Then

dx 2_1 9 _ 2 X
— ) =1-2u(3+ecos x) = (1 —6u+2ue) —4u e cos 5 (7.63)

dp
so that
;l)p( = /1—6u+2ue,/1 — k20052§ (7.64)
with , Apie
g2 = 16,720 (7.65)

Our previous inequalities mean that

E><1 1—6p+2ue>0 (7.66)
Thie means that
¢ = 2 F(”_Xk) (7.67)
VT —6u+ 2ue 2 7 ’

where the Jacobian elliptic integral is defined as

F(ib,k) = /Ow A (7.68)

1 — k2 sin? z

and the origin of ¢ has been chosen at the aphelion x = 7. Perihelion
occurs at x =0 (¢ = §). The solution includes

_1/d¢_1/d¢d><_
L R X u?

\/2z3<1u<3+62>> / ; 1 _
TS X X(1—|—ecosx)2\/1—2u(3+ecosx)_

,_% (1— )P (1— p(3+ ) (7.69)
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as well as
LB [de  dx _ 2P (2p = 1) —dpPe?)
L) dyu?(1—urs) TS
/! 1
X X (1 —2u(14 e cos x) (14 e cos x)? /T —2p (1 — 2u(3+ e cos x)
T
oo/ (1= €23 (2= 1)? — dpe?)
7r

where the Newtonian period of the orbit with the same eccentricity

and latus rectum

823
Ty =4 —ao— .71
N (1—e2)3rg (7.71)

Let us now consider the case ii) e=0 when the two roots u; = ug
coincide and the case iii) 2u(3 4 €) = 1 when the roots us = us.

The case e = 0. In this case the orbit is a circle w ith

re =1
rs
= — 7.72
n=a, (7.72)
Using
12—
L2 rug
2
rs _
E72 = QM (7.73)
L2 Ters

The first equation can be rewritten as
2

L
r2 — Qgrc +3L2=0 (7.74)

L2 7‘2
e=—|1&£4/1-3-2 .
T - ( 3L2) (7.75)

This means that no circular orbit is possible when

so that

L
— 2 .
7 < V3 < (7.76)

and for the minimum value of this ratio

8
E? = 5 (7.77)

(7.70)
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On the other hand, the largest root of the quadratic equation corre-
sponds to a minimum of the potential energy, while the smaller root
corresponds to a maximum. The respective allowed ranges read

3rg <r.<oo (stable)

3
'S <r.<3rg (unstable) (7.78)

The periods are given by

(7.79)

When = % and r. = 3rg then tp = oo.

The case 2 (3 + €) = 1. The perihelion and aphelion distances are
given by

1 3+e
rp = =r
P=1%e 1+e
e+ 3
T'AE’r'Sl_e (7.80)

They are restricted to the interval

2rg <rp < 3rg (7.81)
Besides
E  (3+¢e)?
r%  (3-e)(1+e)
1—e2
1—-FE?= 7.82

The modulus k2 = 1 and besides
d 2
<X> = 4yiesin? g (7.83)

which means that
¢ =———log tg X (7.84)

so that ¢ = 0 whenever x = 7, and ¢ = oo when y = 0 at the perihe-
lion approach. The orbit approaches the circle at rp asymptotically,
spiralling around it an infinite number of times. Actually, this orbot
continues into the interior of the corcle as an orbit of the seconfd kind
to plunge eventually into the singularity.
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The post-newtonial approximation.

The quantity

'S L1076 (7.85)

Y

is usually quite small. Expanding to first order in p we learn that
—d¢ = dx (1 + 3p + pe cos x) (7.86)

namely
—¢=(143u)x + pe sin x +C (7.87)

The change in ¢ after one complete revolution during which Ay = 27
is given by 2(1 + 3u)w. The advance of the perihelion (Einstein) per
revolution is then given by

Ap = 38 —3gp_ '8

z i (7.88)

where a denotes the semi-major axis of the Keplerian ellipse.

Orbits of the second Kind

These have their aphelions at %3 and eventually plunge into the singi-
larity at » = 0. Given the fact that

1
Ul + ug + uz = — (7.89)
rs
and
up +ug >0 (7.90)
as well as .
uz < — (7.91)
rs
all these orbits stay outside the horizon. Let us make the substitution
12 1 3+e\, ¢
=(— -~ — — tg® = 7.92
=G ) G- )ws e
Then when & = 0,
1 2
and when £ — oo
u — 00 (7.94)

and the ODE reduces to

<2§5>2 = (1 -6+ 2ue) (1 — k? sin? g) (7.95)
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so that 5 ¢
= [ 2k .
¢ V1 —"06p+2pe (27 > (7.96)
At aphelion, when £ = ¢ = 0; and at the sigunlarity, £ — 7 and
2
=pp=¢ = ——-—-—— K (k 7.97
b=h= 0= e K () (7.97)
where K (k) denotes the complete elliptic integral
bl dz
K(k) = / R — 7.98
*) 0 V1—k?sin? 2 (7.98)
Proper and coordinate time can be found through
gr _ 1 d¢
dé¢  Lu? d¢
dt E do

d¢ ~ Lu® (1 —urg) dé (7.99)

This means that the parts of the orbits with r < rg are inaccesible to
a FIDO outside the horizon. Let us now consider two special cases:

e=0 Then k2 = 0 and we can write

§=/1—06p (¢ — o) (7.100)
as well as
u = % + (7“15 — ?) sec? (W (¢ — ¢0)> (7.101)

In spite of having zero eccenticity, this orbit is not a circle. Starting

at an aphelion distance u% (so that

3 1
—rg < — <3 7.102
5" < 5, S 9rs) (7.102)
when ¢ = ¢g, it reaches the singularity when

™

Vv1—06u

after circling one or more times. The circle at 7%3 is the envelope of
tehse solutions. The case e = 0 and 6p = 1 must be treated separately.
Then all three roots of the equation f(u) = 0 coincide and

¢ — ¢o = (7.103)

1
Uy = u2 = % (7.104)
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(;ﬁ)z g <u _ 3;)3 (7.105)

1 4

U=t —————
3rs  rg (¢ — o)’
The orbit approaches the circle at r = 3rg asimptotically.

Then

which means that

(7.106)

The case 2u(3 + e) = 1 Then the roots of f(u) =0 read

1—e
Uy = l
1 1—e 1+e
= = —-— pr— ‘1
R Y l (7.107)
and the obvious substitution is
1 2e tg? &
u= +e+le £ 3 (7.108)
Then, when £ = 0,
1
U]p = U = Uz = —l’—e (7.109)
whereas when £ = 7,
U — 00 (7.110)
Besides,
d 2
<dfb) = 4pie sin® g (7.111)
so that
¢——Llo t § (7.112)
= e g 1g 5 .

This means that when ¢ = m, then ¢ = 0, wheras when & — 0, then

¢ — oo, and the preihelion is approached at
[

1+e

The orbit approaches the circle at r = rp by spiralling around it an
infinite number of times.

r=rp= (7.113)

The orbits with imaginary eccentricities In this case the equation
flu)=0 (7.114)

allows one real root (positive for the bound orbits) and a pair of
complex-conjugate complex roots. They can start at some finite aphe-
lion distance, but they eventually fall into the siongularity, though
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they may circle the origin one or more times before doing so. We shall
use the imaginary eccentricity ie (with e > 0) so that

12
U = — — -

rg 1

1+ e
Uy =

l

b

uz = —< (7.115)

It is then plain that

1 1—u(3—e?)

73 = 2 Irg (7.116)
as well as ) ( \( 2)
1-F 1—4p)(1+e
2= 2 (7.117)
E? (2 — 1) + 4p2e?
77 = 2 Irs (7.118)

(this implies that [ > 0). As we are considering bound orbits, E? < 1,
so that 4 < 1 and
1—2u+pe? >0 (7.119)

(There is no upper limit to the value of e2. The ODE to be solved is

e [ e I

Under the substitution

1+etg$
u= # (7.121)
Rememberging the range of u
1 2
— ——-<u<o (7.122)
rg

the range of £ is determined to be

<é<m (7.123)
where
sin 5—0 = _6,u —1
2 A
cos 0 — 24¢ (7.124)

2 A
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with
A= /(6 — 1) + du2e? (7.125)
The ODE reduces to
8¢ .
i~ :I:\/2 (6 —1) +2pe sin £+ (6 — 1) cos &) (7.126)

and the solution is again given in terms of a Jacobian elliptic integral

1 ¥ dy
+o= / 7.127
¢ VA 1 — k2 sin? y ( )
where A+ 6p+1
=R 7.128
5A (7.128)
and
sin? 1 = A —2pe sin & — (6 — 1) cos & _
A+6p—1
A+6u—1—2(2ue sin%—i—(ﬁ,u—l) cos g)cosg
(7.129)
A+6p—1
We have that
sin? ¢ = 1 (7.130)

both when { = £ (aphelion) as well as when £ = 7 (the singularity).
Besides
sin? 1) = 0 (7.131)

whenever
_1 2pe

6p —1
This means that ¢ assumes the value ¥ = 0 withinn the range of &.
Therefore

§=tg (7.132)

™ ™
— <y <= 1
S <w<] (7133)

so that, assuming that ¢ = 0 at the singularity, where £ = 7 and

v=3

K(k) = F(¢, k)
VA

The unbound orbits (E? > 1) In this case the equation f(u) = 0
must allow for a negative root. It is not possible that the three roots
are negative. We can distinguish orbits of two kinds when two roots
are positive. Orbits of the first kind restricted to the interval

¢ = (7.134)

0<u<uy (7.135)
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which are the analogues of the hyperbolic orbits in Newtonian theory.
Then there are the orbits of the second kind, with

u > ug (7.136)

which are in essence no different from bound orbits of the second kind-
When uy = usz the two orbits coalesce. Whe the equation f(u) = 0
allows for a pair of complex conjugate roots (besides a negative real
root) the orbits have imaginary eccentricity.

Orbits of the first and second kind The eccentricity e > 1. Then

e—1
Uy = — l
w — e+ 1
2T
1 2
= — — - 7.137
s rs 1 ( )
Now we still have
1—6p—2pe>0 (7.138)
(this dependes only on the fact that
(75} S u9 S us (7139)
Besides ( ) )
1 2(1—p(3+e)
— 7.140
L2 lrg ( )
E?—1  (1—4p)(e? 1)
= 2 (7.141)
It is a fact that
1—pu(B3+e?) >0 (7.142)
as well as )
,uleqz (7.143)
When
2u(3+e)=1 (7.144)
That is, when us = ug, those become
4172 3+e)?
== 4& (7.145)
% 3—e)(e+1)
2
-1
E2-1=5"1 (7.146)

9 —¢e2
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For these special orbits
1<e<3 (7.147)

and the perihelion distances obey
3
57s <Tp < 2rg (7.148)

The impact parameter is given by

, L* L’E?

= == 14
V2 E2-1 (7.149)
[ (7.150)
T 1-V2 '
Making the substitution
1
y = € 00X (7.151)

l

Now when u = 0 then y = cos™! (—%) = Xoo The perihelion still
ocuurs at y = 0. Therefore

0 < X < Xoo (7.152)

Then
2(K(k) - F(3—3,k)

V1I—6u+2pue

The trajectory goes off at infinity asymptotically along the direction
2(K(k) — F(¢oo, k))

¢ = (7.153)

¢=9 v1—6u-+2ue ( )
where
Yoo = lcos_1 E (7.155)
T2 e ’
e The orbits with imaginary eccentricities We have
1 2(1-p(B-¢?)
il 7.156
L? lrg ( )
e Bl (ap 1)1+ e)
—1 du—1)(1+e
7= 2 (7.157)
Now we have 1
> 1 (7.158)

as well as
1—3pu+pe? >0 (7.159)
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When p > % is neccessary to impose

1
>3- — (7.160)
7
The range of £ nust be terminated at £, where
£ 1
=== 161
tg = . (7.161)
that is
i &0 1
in >— = —
2 V14 e?
oo €
cos ~— 7.162
5 T (7.162)
When € < £, u becomes negative. The range of ¢ is therefore
foo <& (7.163)
The solution still reads
K(k)—F, k
VA

The origin of ¢ is at the singularity, where § = m and ¢ = 5. The
lower limit of 1, 1o reads

4p—1
.2 2
o= ———— | A —1-2 1
sin” A—i—ﬁ,u—l( +6u €e2+1) (7.165)
7.2 Null Geodesics
We have now ) ) )
E T L
1_7;5_1_7;5_ﬁ:0 (7.166)
that is ) )
dr L rs 9
— —(1—-—=|=F 7.167
(dr) + r2 ( r) ( )
which must be considered together with
rg\ dt
-——=]|—=F
( r ) dr
dp L
- == 7.168
dr  r? ( )
All this boils down to
du\? 3 o 1
(dgb) =rgu’ —u+ Dz = f(u) (7.169)
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where the impact parameter is defined as

D
= — 1
z (7.170)
e The radial geodesics Then
dr
— =4F 171
dr (7.171)
and it
(1 - TS) “-F (7.172)
r T
That is J
r rg
—=4(1-= 7.173
dt < r ) ( )
which means that
t=4r, +Cy (7.174)
in terms of the tortoise coordinate
r« =71+ rg log (T - 1) (7.175)
rs
It is a fact of life that
Ts — 00 (7.176)
when
r—r (7.177)
as well as
Ty =T (7.178)
whenever
r — 00 (7.179)
On the other hand,
r=+FE7+ K4 (7.180)

whic means that radial geodesics cross the horizon in finite proper
parameter.

The tangent vectors are

dt r2

= _ ' F

dr A

dr

— =x1F

dr

do

P 0

d

—¢ =0 (7.181)

dr
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e The critical orbits

The roots of the equation f(u) = 0 obey

1
Uy +ug +uz = —
rs

1

rgD?

uiju2U3z = — (7.182)

This means that there is at least one negative real root; the other two
can be either real or o complex-conjugate pair. Let us begin with the
case in which the two other real roots are degenerate. Indeed

2
= U = —— 7.183
uz =g =3 ( )
is a double root whenever
27
D? = ng (7.184)
In this case, moreover, the negative root is given by
! (7.185)
U] = ——o .
! 3rg
For such a D P
U
b =0 (7.186)
A | y—u,
This means that a circular orbit of radius
3
r=grs (7.187)

is an allowed null geodesic (however unstable). Indeed

(B ) o)

is satisfied by the substitution

1 1 th? ¢_¢0

Let us choose ¢g such that
1
th? % =3 (7.190)

Then, when ¢ = 0,
u=0 (7.191)
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and besides, when ¢ — oo
U= — (7.192)

This means that a null geodesic approaching from infinity with impact
parameter
3V3

2

approaches a circle of radius %7’5 spiralling around it. Asspociated to
this orbit, there must be another one that originates at the singularity
at approaches frpom the opposite side the same asymptotic circle. This
is given buy the substitution

D=2 (7.193)

2 1 9 &
=— 4+ —t 7.194
b 3rg rg & 2 ( )
Then the ODE reduces to
2
(fb) = sin? g (7.195)
so that
tg % - (7.196)
and 5
2 4
U= (7.197)
3rg rg (6¢ — 1)
Along this orbit when ¢ =0
U — 00 (7.198)
and when ¢ — oo )
— 7.199
3rg ( )

It is useful to define the cone of avoidance generated by those null
rays passing through that point, since light rays inside the cone must
necessarily cross the horizon and get trapped. Denoting by v the
half-angle of the cone

cothlﬁ 1 _ 1 du 1 (1 27“) 1_|_L

rdpl— 75 _u\/l—rgu@: /T _q 3y 3rg
rs
(7.200)
This means that when » — oo, then
3vV3
b~ ;f:S (7.201)
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and when r = %7’5 then
(7.202)

o 3

Finally, at the horizon r = rg
Yp=m (7.203)
The cone of avoidance narrows as we approach the horizon.

e Geodesics of the first kind

Consider now the case when all the roots of the cubic equation f(u) = 0
are real and the two positive roots are different.

P—rs—Q
U = —7--—=
! 2rgP
1
UQZF
P—-rs+@Q
S —. 204
s g P (7.:204)

where P denotes the perihelion distance. Q will be determined in a
moment.

The ordering iof the roots requires that

Q+P—3rs>0 (7.205)
Evaluating
fu) =rs (u—u1) (u—ug) (u—us) (7.206)
we learn that
Q? = (P —rg) (P +3rg) (7.207)
and , )
1 Q"= (P—rg)
Ty = 2
D2 4drgP3 (7.208)
so that 5
P
D? = 2
P—rs (7.209)
The former inequality now implies
(P —r5) (P +3rg) > (P —3rg)? (7.210)
that is 5
P>ors (7.211)
as well as
3v3

D> " rs = D, (7.212)
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The orbits lie entirely outside the circle r = %TS. Let us now make
the substitution
I Q—P+3rs

u— —

= 1 7.21
fz IroP (1 + cos x) (7.213)

in such a way that the perihelion corresponds to x = 7

1
= — 214
u= (7.214)
and v = 0 whenever y = xo
.2 Xoo __ Q—-P+rg
—_— 7.215
T = 0P+ 3rg (7.215)
and the ODE reduces to
2 1— k:Q 02 X
<d><> _ sin” 3) (7.216)
do 2Q
with Q-Pi3
2 - + rs
== 2 217
: 50 (7:217)

This means that

¢ = 2\/2 (K(k:) _F (;‘ k)) (7.218)

where the origin of ¢ has been chosen at perohelion passage when
x = 7. The asymptotic value of ¢, at — oo, is given by

oo = 2\/5 (K(k) —F <X;° )> (7.219)

Let us compute the asymptotic value of ¢, when P — %7"3 as well as
for % >> 1. It is a fact that when P = %rs then

QZ%?‘S

_3\/37,

=1

.92 Xoo _ 1

Sin 2—3

Xoo 1. V3+1

FX®2 1) =21 7.220
(2’) 2 % 51 (7.220)
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We next find that if

= T?S (3+¢)
_ "5 (3,9
=5 <3 + 3€>
4
(K2 =1-k*= o° (7.221)
And the asymptotic relation
4 1
K(k) — log e log 6 — ilog € (7.222)

Using those, we learn that

1 6'v3(v3-1)?* 1 2¢D

o == log ————— — - lo 7.223
$oo = 5 log — BiiE 2 8 (7.223)
that is A )
2eD -1
D OWVIVE-1) gy, (7.224)
rs 2(V3+1)?
So that if we write )
oo = 3 (m+ ©) asny (7.225)
we learn that
2eD —1)2
2D _ 6453037 1° r -0 _ 3 4593 00 (7.226)
rs V3 —1)2

The geodesics which have been deflected by © + 27n have impact
parameters

Dy, = D, + 3.4823 %S e~ (6+2mn) (7.227)

Similar arguments show that for P >> rg the deflection is given by

2rg
~— .22
C] D (7.228)

(this yields the celebrated deflection of the light rays) and

rs
D~P(14 -2 22
( +2P> (7.229)

The geodesics of the second kind

Now the range is
uz < u < 00 (7.230)
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Let us make the substitution

1 Q4+ P—3rg 9 X
==+ " = 7.231
P orsP 0 2 (7:231)
This means that u is at aphelion when
Q+P—rg
=y =42 7.232
= 2Prg (7.232)

and y = 0, and that u — oo when x = m. Then

¢ = 2\/3 F (’2‘ k) (7.233)

where the origin of ¢ is now at aphelion passage.
e The orbits with imaginary eccentricities and impact param-
eters less that %rs

Let us consider now the case when the equation f(u) = 0 has a pair
of complex conjugate roots (besides a negative real toot)

12 1, &2
- e - — 234
) = rs (u rSﬂ)((U ) +l2> (7.234)
so that
_ TS (g2 =
-5 (3-¢*) =0
1 2 1)\ 1+¢?
—=(--— 7.235
rgD? (l rg) 12 ( )
or in terms of = 55
2 _ 3up—1
I
ar_ 1 (7.236)
rg p(dp—1)? '
This requires
1
> 3 (7.237)
and
3v3
D < ;frg (7.238)
The solution to the ODE yields
K(k) — F(¢oo, k
boo = (k) (o0, k) (7.239)

VA
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where now
A+1

= 24
A+ 6u+1 (7.:240)

sin? Yoo =

and where

A= \[48u2 — 160+ 1 (7.241)
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7.3 Rindler space.

Let us consider an accelerated observer in two dimensional flat space
1
t = —sinhar
a

1
x = —coshar (7.242)
a

This is such that the four-velocity is given by

u = (cosh ar , sinh aT> (7.243)
normalized to
u? =1 (7.244)
and the acceleration
t“=a (sinhaT , cosh a7'> (7.245)
obeys
a?=-1
au=0 (7.246)

In comoving coordinates, id est, adapted to the four-velocity,

b= — (7.247)

.
(r)=0 (7.248)
In general

1
€%

t= sinh a&® = psinh w
e’

T = cosha&® = p cosh w (7.249)
a

so that the value of the coordinate & (or p) tells us which hyperbola we are

talking about

2a¢t
(&
22

= —p° (7.250)

2
a
In terms of these coordinates the Minkowski metric reads

ds? = di? — da® = ™' (dg] — de}) = pPdw? — dp® —da?  (7.251)
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When

I/\\

<<
oo < ¢! (7.252)

only one quarter of the original Minkowski space has been covered, namely
the one corresponding to
It| <z (7.253)

This is called Rindler’s wedge or Rindler space. The lightcone plays the role
of the event horizon.

It is easy to realize that the behavior of (a piece of) Schwarzschild when
r ~ rg is similar to the behavior of Rindler when x ~ 0.

7.4 Painlevé-Gullstrand coordinates.

It is possible to find coordinates such that Schwarzschil’s metric read

2
ds? = dT? — (dr + ,/de) — r2d03 (7.254)

which is manifestly regular at the horizon.
Besides, the spacelike hypersurfaces

T = constant (7.255)

are flat. Time like radial geodesics can be obtained from the action principle

2
L=12— (r + ,/TST) (7.256)
T
with the first integral

2
72 (7; n /’"ST'> 1= 72 (1 - TS) — 2 — o, |8 (7.257)
T T T

This action principle immediatly tells us that

T - (7” + ,/TST> ,/T—S = constant (7.258)
r r

It is clar that a particular solution is given by

T=1

f+,/r75=o (7.259)
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This means that it is possible to identify the coordinate T with the
proper time along such geodesics. Then

- (7.260)

r

reaches the velocity of light at the horizon r = rg. The four velocity remains
normalized all the way.
The metric on constant radius hypersurfaces r = R reads

ds? = (1 - ’;) dT? — R? dQ2 (7.261)

When R = rg the metric degenerates and becomes two-dimensional. The
time translation vector P

— .262

oT (7.262)

then becomes null.

On the other hand, it is possible to see directly that no signal can travel
at infinity from the region inside the horizon, r < rg. The coefficient of dT
is negative, so that the only way the interval gets of avoiding being spacelike
is through the cross-term

dTdr <0 (7.263)

This means that the future (d7° > 0) lies entirely within the horizon and
leads eventually towards the singularity.

Null radial curves obey
dr rs
— 4/ — ==1 7.264
dr + r ( )

When the above sign is -1,then the whole range of values of the coordi-
nate r is covered as t varies.

For those null curves governed by the +1 sign, this is not so. At large
distances from the center

d
r>rsz>é>0 =1rg <r<oo (7.265)
Inside the horizon,
dr
r<r5:>d—T<O =0<r<rg (7.266)
Exactly at the horizon the derivative vanishes
dr
r=rs = o (7.267)

Timelike radial geodesics when parameterized by the proper time obey

T2 — (7’“ + \/?Tf =1 (7.268)
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7.5 The maximal analytic extension and black holes.

There is a maximally analytic extension of Schwarzschild’s geometry dis-
covered by the american scientist Martin Kruskal in 1959. It is believed to
represent the black hole metric.

u=t—r*

v=t+r*

r* =r+rglog (T - 1) (7.269)
rs

The coordinate 7, is the Regge-Wheeler tortoise coordinate. The metric is
2 _ rs 2 702
ds® = (1 - ) dudv — r=dQ; (7.270)
r

where the function 7 (u,v) is defined through

r+rg log (: - 1) =" 5 “ (7.271)
S

It is a fact that
dr

1_7s
T

dry, =

(7.272)

There is a further change of coordinates

o
U=e %s
v

V =e?s (7.273)

The function r(U, V) is to be obtained from

e's (T - 1) —UV = Lets (1 - r5> (7.274)
rs rg r
The singularity, 7 = 0 corresponds to
Uv =-1 (7.275)
and the horizon, r = rg to
Uv =0 (7.276)
Then 1
dUdV = —gdvdu — r7s <1 - TS) (7.277)
arg rg r
Finally, Kruskal’s metric is
i = VS Earay - r2(U, V)02 (7.278)
—r(U,V) ' 2 :
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Once this point has been reached, we can extend the values of the coordinates
to the whole real line
-0 <UV < (7.279)

Region I corresponds to U > 0V > 0. Region Il to U <0V > 0.
Region IT1 to U > 0V < 0. In region I of an eternal BH (U > 0&V > 0)
U _t
v rs (7.280)
This means that constant ¢ surfaces are straight lines through the origin
in Kruskal spacetime. They have a piece in region I and another piece in
region IV. Actually
P:(UV)—(-U-V) (7.281)

is an isometry, so that region IV is isometric to region I.
If we rewrite the metric in isotropic coordinates

2
rs

=(1+-= 7.282
r=(1+3) o (7.282)
They cover regions I and IV, because p becomes complex for r < rg.Actually

2 2

rg rg rg
2p=r— ==+ -——=) == 7.283
p=r—"2 ¢ (r-%) -5 (7.283)

Note that to each value of the radial coordinate r there are two values of the
coordinate p. These are related by the isometry

— = 7.284
= Top (7.284)
whose fixed point is
rs

= — 7.285
= (7.285)

(This is nothing but the old isometry P). The metric reads

2 1-3 ’ 2 rs\ (2 2 o2
ds® = <1+£> dt® — <1+4p> (dp +p dQ2) (7.286)
4p

The constant time surfaces are conformally flat. When p — =2 from either
side the radius of a 2-sphere of constant p on a constant time surface de-
creases to a minimum of 75 when p = =2, which corresponds to a minimal
2-sphere. It is the midpoint of the FEinstein-Rosen bridge connecting spa-
tial chapters of regions I and IV. This is one of the simplest instances of a
wormhole connecting two asymptotically flat regions of space-time

The Killing associated to the time translation, £ = 9, in Kruskal coor-

dinates reads

§

| o 0
o (—v(w + UaU) (7.987)
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Its square is
UV

N 47‘%

It is timelike in regions I and IV; spacelike in regions II and IIT and null in

r = rg, that is when U = 0 or V = 0. This last set is the fixed set on k.

It is easy to check that when U = 0, £ = % whereas when V =0, & = %

This means that v is the natural parameter on U = 0. The Boyer-Kruskal

azxis, U =V =0 (which is a 2-sphere) is a fixed point of the Killing vector.
Let us now consider null surfaces, that is

£2 (7.288)

S(z)=C (7.289)
For example, in Kruskal spacetime,
N={U=0}uU{V =0} (7.290)
This means that the normal vector, which is proportional to
l=¢"0,50, (7.291)

is null, [? = 0. Null hyperfurfaces have a curious property. tangent vectors
are by definition those orthogonal to the normal vector.

tl=0 (7.292)

In Kruskal, the normal to U = 0 is

0
|~ — 7.293
B ( )
and the normal to V =20 9
| ~ — 7.294
50 ( )

This means that [ itself is also a tangent vector, so that there must exist
a null curve z# = z#(\)

dxt
th = — 7.295
o (7.295)
It is a fact of life that these curves are geodesic.
PV = "MV, S = ¢" 1MW, 0,8 = VM2 (7.296)

Now we all know that [2 is constant on the surface. This means that the
derivative in the direction of any tangent vector must vanish

VA2 =0 (7.297)

which in turn tells us that
Val% ~ 1y (7.298)
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and
AN RN (7.299)

and it is possible to nomalize in such a way that the parameter is an affine
one

VAP =0 (7.300)

Thse null geodesics are called the generators of the null surface.
A Killing horizon is a null surface N such that the Killing vector £ is
normal to AV on N. This means that there exists a function f such that on

Jy:
§=f(z)l (7.301)

which in turn conveys the fact that
EVEr =V \log f € = ke! (7.302)

The quantity s is called the surface gravity.
Then on U = 0 in terms of the affine parameter of the geodesic

1 0

E=fl= %VW (7.303)
This means that ]

= 7‘/’ . 04
fle) =5 - (7.304)

and the surface gravity

oV 1

k=E&"Vylog V v s (7.305)

Otherwise in V =0

1 0

E=fl= —%U@ (7.306)

Indeed, let us condider the proper acceleration of a FIDO. Its velocity is
given by

b= & 7.307
= (7.307)

where
A% = 52 (7.308)

First of all, lets us show that A is time independent.
A2 = w2 = 267N 0V, 6, = 0 (7.309)

because of Kllling’s equation.
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Now it is plain that

1 1 1
oA S _ A _ 2 _ 2
ut =u V)\U'u == 5 EV)\é-'LL = _ﬁg V“@\ = —@V‘uf == —V‘ulog A
(7.310)
There is a theorem by Frobenius that guarantees that
§u Vs, N 0 (7.311)

The theorem is simplest in the notation of differential forms, and it simply
states that
ENDE=0 (7.312)

whenever ¢ is hypersurface normal. Taking into account that Killingness
means that
Vufy - v[,u,gl/} (7313)

Frobenius can be written as

gpvugu + fuvyﬁp - Euv,ugpb\/ =0 (7-314)

Multiplying by V#£¥ we learn that
EVIEN L e = —2 VIEYENVLE |\ = =2 KEVE |y = _2”253}/?\’/15)
so that the formula for the surface gravity reads
2 1 v
k®=— -VHEV L, (7.316)
2 N

Coming back to Kruskal’s spacetime, since [.N = 0, N is a Killing horizon.
Besides, [.VI = 0, so that the surface gravity is, on U = 0,

1 0 1
=k.VI S VA, | — 31
k = k.Vlog f 2T5V8V0g|v‘ s (7.317)
Andon V=0
1 0 1
= k.Viog f = ——U-2] - 31
k = k.Vlog f 2TSUang]U\ s (7.318)

It is also easy to show that the surface gravity is constant on orbits of
¢. Consider a tangent to N.

t.VK? = — VIV, V6,

N —Vﬂg”t)‘Ruupaf" (7.319)
Choosing now t = £, we are done:

EVEZ=0 (7.320)
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The surface gravity is essentially Hawking’s temperature, of which more
later
Kk =271} (7.321)

It is said that the horizon is mondegenerate when the surface gravity is
nonvanishing. Otherwise it is degenerate. Let us assume that x # 0 on
one orbit of £ in A/. Then this orbit coincides with only part of a null
generator of M. We define the group parameter, o as such that

_9
A

This means that the relationship between the affine parameter and the group
parameter we just defined is given by the old function f

3 (7.322)

d\
= — .32
f o (7.323)
Then
A = £ (7.324)

so that when —oco < a < oo, we cover only thone of the pieces of the
generator of N, either A > 0 or else A\ < 0. The bifurcation point A = 0
is a fixed point of &, which can be shown to be a 2-sphere, the bifurcation
two-sphere, B. This is the BK axis in the Kruskal case. This is a bifurcate
Killing horizon.

It is also a fact that in this case x is constant on N.

Surface gravity is not a property of A alone; it also depends on the
normalization of &.

In the asymptotically flat case there is a natural normalization, namely

ity oo €2 =1 (7.325)

This is the one we have been using in the Kruskal example.

7.6 The Kerr metric and the Newman-Janis trans-
formation.

The Newman-Janis transformation is a complex change of coordinates from
Schwarzschild metric to the Kerr solution, which represents the metric sourced
by a stationary (but not static) object with non-vanishing angular momen-
tum. We start with the contravariant form of the metric in tortoise coordi-
nates

u=t—r—rglog(r—rg) (7.326)

namely

ds? = (1 — Tf) du? + 2dudr — r2dQ3 (7.327)
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0 1 0 0
1 — (1 — LS) 0 0
[l g— r
gt = 0 0 _%2 0 (7.328)
0 0 0 r2si112 0
in a Newman-Penrose tetrad
g =1"n" + Vnt — mtm? —m"mt (7.329)
with
l— 0
o 1 ( ) 0
r ) or
1 < 8 i 0 )
m=— =
rv/2 \00  sin 0 9¢
(7.330)

Now we assume that the radial coordinate can take complex values and we
rewite

/2 \00  sin 0 0¢
(7.331)
Now we perform the change of coordinates
v =r +iacos 0
u' = u — iacos 6 (7.332)

Now let us insist in 7’ as well as u’ to be real. Then

0
/—7
1_87“’

S et
T S\ ("2 + aZcos2 0) ) or

m = ! (iasin o (8 - 8) +— 8)
(1" +iacos 0) V2 ou 00 sin 6 O¢
(7.333)

which can be shown to be equivalent to the Kerr metric.
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This somewhat mysterious transformation ins related to the fact that
Kerr’s metric can be written as

9" = gh" + N (7.334)
whete [ = % and

2 o TST
Gy (7.335)

where g is flat.

7.7 Hawking’s temperature.

Let us consider the euclidean Schwarzschild’s metric

ds? = (1 _ 7"5) Ao} + g dr® + 12d03 (7.336)
, TS
Close to
r=7rg +x (7.337)
the metric reads
ds? =2 [ L da? + L de® + a02 (7.338)
o rg 4 Trs 2 '
Put R
T = TSZ (7.339)
Then
2 2 R? 2 2 2

In order that this metric is regular (Se x S2) we need

1
— 7.341
2rg 4 ( )
to be an angle. It is well known on the other hand that a quantum field
theory at finite temperature can be represented as an euclidean theory with
periodic euclidean time coordinate. The period of the euclidean time coor-
dinate is the inverse temperature. Then

B = 4drrg (7.342)

This suggests that were such an interpretation possible, this would be the
associated temperature. With all factors included

B hic
- 81GM

Ty (7.343)



150 7. THE SCHWARZSCHILD VACUUM SOLUTION.

It is outside the bounds of the present course to show that vacuum fluctua-
tions with
AFEAt ~ h (7.344)

allow one of the components of the particle-antiparticle pair to materialize
and fall inside tthe horizon, in such a way that the other component of the
pair can escape the hole. This process constitutes the Hawking radiation,
which is a black body radiation at T' = Tp.
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Spaces of constant curvature.

Let us first consider the simpler case of ordinary spheres embedded in eu-
clidean space.
The sphere S,, of radius ! embedded in R,;; is defined thtough the

equations
A=n+1

Y oXi="r (8.1)
A=1

where a point in R"*! is represented by the (n+1) coordinates (X1, X1, ... Xp41)-
We are all used to polar coordinates, a generalization of the polar angles (6, ¢)

for the two-sphere S5. We need n angles to define a point in the n sphere.

We shall call these angles, 6 ...6,, and to be specific,

Xpt1 =1cosby

X, =rsinb, cosl,_1
X9 =rsinb,sinb,_1...cosb
Xi=rsinb,sinb,_1...sinby (8.2)

(were we to use r itself as the radial coordinate, those would be polar coor-
dinates in R, 11, in them the equation of the sphere is simply

r = | = constant (8.3)

The X, 41 axis is special in those coordinates; any axis however can be taken
as the X, 41 axis. The metric induced on S™ by the euclidean metric in R,, 1
is

ds? = 64pdXA(0)dX P (0) = d6>+sin® 0,d0> | +. . .+sin? 0, sin®0,_1 ... sin? 02d6?
(8.4)

151
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id est, in a recurrent form

ds? = d?
ds? = df? + sin*0, ds>_, (8.5)

The tangent space is a vector space T, with the same dimension as the
manifold itself. It can be defined as the set of vectors orthogonal to the
normal vector

ng =Xy (8.6)
In general, given a surface in R, 41 defined by the equation

f(Xa)=0 (8.7)
the normal vector is given gy the gradient

na=0af (8.8)

To come back to the sphere, the tangent space is defined as those vectors
that obey

Za}AtA =0 (8.9)
A

Particularizing to the two-dimensional sphere, the tangent space is now the
tangent plane, that is, the set of vector in R3 such that

ny.sin 6 cos ¢ + no.sin 6 sin ¢ + ngcos 6 = 0 (8.10)

In the North or South pole (§ = 0,7) the tangent plane is just the plane

Xo =+l (8.11)
that is, the set of vectors
(0,11, n2) (8.12)
and in the equator (6 = %)
ni cos ¢ + ngsin ¢ =0 (8.13)

Polar coordinates do not cover the whole sphere (neither do they cover eu-
clidean space). They are not well defined at the two poles. It is interesting
to study other set of coordinates, which are actually close to what cartog-
raphers do when drawing maps. The stereographic coordinates are defined
out of one of the poles (either North or South) Northern pole stereographic

projection

21 X#
Xt =_—— .14
Xo+1 Qg (8 )

o
g
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(uw = 1...n). Let us choose cartesian coordinates in R, ; with origin in
the South pole itself. This meags tgeat the South pole is represented by
X4 =0, and the norh pole by X4 = (1,0,...,0). One can imagine that one
is projecting a point P(X4) € S,, from the South pole into into a point 2/
that one van view as living on the tangent plane at the North pole.

2
1-— %
Xo = 1—2 = 1(205 — 1) = 120y + 1) (8.15)
1+ 3%
1
1+ 5%
2
Z8 1
412 1+ X, (8.17)
This means that when Xy = [ (the North pole) then
2
xs
—= =0 8.18
4l2 ( )
and when Xy = —![ (the South pole) then
X2 =00 (8.19)
The jacobians of the embedding is
L
9,X° = —Q%%
%z
0u X = Qad; — V=" (8.20)
The induced metric
ds? = 540, X0, X Bdarda” = Q%6 dx"dz” (8.21)
Performing the North pole projection, uniqueness of Xy means that
208y +1=20g -1 (8.22)
and uniquenedd of X*#
Q 41
zhy = —Sx’é = ——al (8.23)
N Zg
This leads to 1
Qn = — — (8.24)
N
1+ 3%

The antipodal map
X4 o —x4 (8.25)
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corresponds in stereographic coordinates to

2 2
ry 4
- = — (8.26)
42 2%
and the jacobian is
o H 4l2 K v
o (55 = 2“S§S> (8.27)
Ts Ts Ts

Only functions which are invariant under the exchange of North and South
pole stereographic coordinates are well defined on the sphere. The induced
metric on the sphere reads

2 2
drg dry

ds? = = >
(T4 722 (1+ )2

(8.28)

which is conformally flat. This is the main virtue of these coordinates, and
the reason why cartographers are fond of them, We shall call a frame a basis
on the tangent space to the sphere as a manifold. Let us define a frame
through

5abeﬁelb, = Guv (8.29)
The frames are given by
1
(es)y, = ok 2 (8.30)
1+ 37
1
(en)y = —0k ) = (8.31)
T a2
It is easy to check that
Ho.S
§a — 2%85e v
b M x2 ox
Ly(x) (es), = 2= i (en); (8.32)
1+ 33 s

where the position dependent rotation is given by

(8.33)

In fact this was the reason for the apparently arbitrary minus sign in front
of the definition of ey, which is unneccessary to reproduce the metric.
There are many reasons to be drawn from this example. First of all,
it is mever possible to cover a non trivial manifold with a single coordinate
system. In this case we need at least two, namely North and South stere-
ographic coordinates. Second, at each coordinate system, there is a frame
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in the tangent space, and if we refer all quantities to this frame formal
operations are similar to the flat space ones.

When there is a nonvanishing cosmological constant the flat Minkowski
space is not a solution of Einstein’s equations. There are however two priv-
ileged spacetimes which do satisfy Einstein’s equations. They are privileges
in the sense that they have an isometru group which is as big as the Poincaré
group, IO(1,n — 1) (also they both are Petrov Type O, as is the case with
all Friedmann-Robertson-Walker spaces) . There are de Sitter space, with
symnmetry group O(1,n), and anti-de Sitter space, with isometry group
O(2,n — 1). Both are symmetric spaces in the mathematical sense: all
points are related by an isometry. Besides, the observational fact that the
universe is accelerating, means that it resembles grosso modo de Sitter space.
Were the hypothesis of inflation true in some sense, then the Univeser really
underwent a phase of de Sitter expansion. On the other hand anti-de Sitter
is very interesting from the point of view of other speculatve theories, such
as supersymmetry and strings.

Figure 8.1: A pictorial representation of Anti de Sitter (X2 + X? = I+ X2
in R™).

The real chapters of the complex sphere can be treated in an unified way.
Let us choose coordinates in the embedding space in such a way that in the
defining equation we have

X% =Y €sX] = napdXdXP = £1? (8.34)
A=0

on a flat space with metric ds?> = napdX“4dXB. If we change in an arbitrary
manifold gap — —gap, then both Christoffels and Riemann tensor remain



156 8. SPACES OF CONSTANT CURVATURE.

Figure 8.2: A pictorial representation of Euclidean Anti de Sitter (or Eu-
clidean de Sitter) (X2 — X? =12+ X% in R"

invariant, but the scalar curvature flips sign R — —R. We can furthermore
group together times and spaces, in such a way that

nag = (1',(=1)°) (8.35)

If we call n + 1 =t + s, then this ambient space is Wolf’s R?*! where the
subindex indicates the number of spaces.
The standard nomenclature in Wolf’s book [?] is

St X e RVPL X2 =2

H!: X e RI, X% = -2 (8.36)

The curvature scalar is given by:

-1
R= i”(”p ) (8.37)
and
n—1
R, = inguv

1

Ruupo— = :l:j (gupgua - gupgua) (838)

l

Please note that the curvature only depends on the sign on the second mem-
ber, and not on the signs €4 themselves.
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Figure 8.3: A pictorial representation of de Sitter (X2 — X2 = —[2 4 X?2)
in R™).

It is clear, on the other hand, that the isometry group of the correspond-
ing manifold is one of the real forms of the complex algebra SO(n+1). The
Killing vector fields are explicitly given (no sum in the definition) by

Lap = eaX“0p —epXB0y = X40p — Xpoa (8.39)
The square of the corresponding Killing vector is
L? = eg X2 +eaX3 (8.40)
Our interest is concentrated on the euclidean and minkowskian cases:

e The sphere S, = S ~ H) is defined by X2 = 12, with isometry group
SO(n+1).

e The euclidean Anti de Sitter (or euclidean de Sitter) FAdS, = S)! ~
& is defined by (X°)? — X2 = [2, with isometry group SO(1,n).

e The de Sitter space dS, = H" | ~ S} is defined by (X°)% — X2 =
—I2, with isometry group SO(1,n). In our conventions de Sitter has
negative curvature, but positive cosmological constant.

e The Anti de Sitter space AdS, = S" ; = H} is defined by (X?)% +
(X1H? — X2 =2, with isometry group SO(2,n —1). For us AdS,, has
positive curvature and negative cosmological constant.
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8.1 Global coordinates

A very useful coordinate chart for these spaces is the one called global coor-
dinates, wich nevertheless do not cover the full space in any case:

(X4) =1 (cosh 7 @;(£2), sinh 7 74()) (8.41)
where @ and 7 are unit vectors of both ¢t — 1 and s — 1 dimensional spheres.
This is for ST’ spaces. For H' spaces is simply:

(X4) =1 (sinh 7 @1 (Q), cosh 7 7ig41()) (8.42)
Our convention for a unit vector of a (n — 1)-dimensional sphere is:
Un () = (cosby,8in 6 cosbs, ... sinf;...sinb, 1) (8.43)
so that our convention for the “north pole” is:

S" N =(1,0,...); H": N=(0,...,1,0,...) (8.44)
~——

s

t—1
The invariant distance, that we call z, is defined as

XY

2(X,)Y)==+ 2

(8.45)

, where the sign is chosen to make z(X, X) = 1 in every space. In our cases
of interest:

e Sphere: X = 11,(2), z = cosb

e Euclidean Anti de Sitter: X = [(cosh7,sinh 7i,_1(2)), 2 = cosh 7

e de Sitter: X = [(sinh 7, cosh7,_1()), z = cosh 7 cos ;

e Anti de Sitter: X = [(cosh7 cos#,cosh7sinf,sinh 7i,_2(Q)), z =
cosh 7 cos 6

8.2 Projective coordinates

We shall further assume that ¢, = +1, that is, the choosen coordinate has
the same sign for the metric as the second member in (8.36]). We then define
the south pole (i.e. X* = —I) stereographic projection for p # k, as

21 X#
Xh=" (8.46)
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The metric in these coordinates is conformally flat:
ds* = O&n, datida’ (8.48)

We could have done projection from the North pole (for that we need
that X* # 1). Uniqueness of the definition of X* needs

QN + QS =1 (8.49)

and uniqueness of the definition of X*#

Qg 412
Ro— 22l — 4= gt 8.50
Ty QN;ES x% 'y ( )

The antipodal Zs map X4 — —X4 is equivalent to a change of the
reference pole in stereographic coordinates

zhy > 2 (8.51)

8.3 The Poincaré metric

A generalization of Poincaré’s metric for the half-plane can easily be ob-
tained by introducing the horospheric coordinates [?]. It will always be as-
sumed that ¢y = +1, that is that X° is a time, and also that e, = —1, that
is X™ is a space, in our conventions. Otherwise (like in the all-important
case of the sphere S,)) it it not possible to construct these coordinates.

X

L W |~
Il

2 X! (8.52)

<
Il

X" =x"-Xx° (8.53)
1<4,5...<n— 1. The promised generalization of the Poincaré metric is:

S edy? F 12d2?

ds* (8.54)

where the signs are correlated with the ones defined in (??7), and the surfaces
z = const are sometimes called horospheres. This form of the metric is
conformally flat in a manifest way.

The curvature scalar is given by:

(8.55)
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For any constant curvature space,

R

R,uzz = Eg,ul/
R
Ruvpo = m (gupgua - g,upglla) (8.56)
In our case this yields
n—1

R;W = :IZTQ;W

1
R,prcr = iﬁ (g,u,pgucr - g,upgl/a) (857)

Please note that the curvature only depends on the sign on the second
member, and not on the signs €4 themselves.

It is clear, on the other hand, that the isometry group of the correspond-
ing manifold is one of the real forms of the complex algebra SO(n+1). The
Killing vector fields are explicitly given (no sum in the definition) by

Lap = esX"0p —epXBOy = X40p — Xpoa (8.58)
The square of the corresponding Killing vector is

L? = eg X2 +eaX? (8.59)

8.4 FEuclidean de Sitter
To be specific, when the metric is given by:

o XN oydy'dy F 1Pd2?
o 2

ds (8.60)

z

ie., Cf. _y, then the isometry group is SO(n,1). This is the case for what

could be called euclidean de Sitter, FdS,, = H} = C|. _;, which in our

conventions has got all coordinates timelike, and negative [| curvature. This

is the version of Lobatchevsky upper half plane used by Witten [?] to analyze

the AdS/CFT correspondence. Witten refers to ot as "euclidean AdS".
The metric of EdS,, in Poincar’e coordinates reads:

S 6y dytdy? + 12d2?

22

'"We use the Landau-Lifshitz Spacelike conventions (LLSC) and we define the Cosmo-
logical Constant in such a way that for a space of constant curvature,

2

o =43

AGuv (8.61)
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8.5 de Sitter

The related situation where

s =" 6dytdy) F 12d2?
B 2
z

ds (8.63)

ie., C’ffln enjoys SO(1,n) as isometry group, and includes de Sitter
space, dS, when z is a timelike coordinate, dS, = Hy_ = Cy _jn. Its
metric reads o
— S dytdy? + 12d2?
2
z

dsig = (8.64)

In our conventions de Sitter has negative curvature, but positive cosmo-
logical constant. Globally, dS,, is given by:

XXt .. —X2=-P? (8.65)
The square of the Killing vectors My, (candidates to be timelike) are

Mg, =X2—X5=> X —1° (8.66)
b#a

so they are timelike only outside the horizon defined as

Hu=) Xp=10" (8.67)
b#a

For example, the horizon corresponding to Hy,, is
Yoy =1 (8.68)

This means that de Sitter space, d.S, is not globally static.
To go from Poincaré coordinates to FRW, we need

d
P e HT | gr (8.69)

so that
z=—e HT (8.70)

It seems to be a convention that as
—o00<T00 ¢ —00<2<0 (8.71)

It is interesting to study static coordinates
t
X% = /12 — r2ginh 7
t
X' =12 = r2cosh -

l
Xi=m' (1=2...n) (8.72)
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8.6 Euclidean anti de Sitter

What one would want to call Euclidean anti de Sitter , FAdS,, = S] =

Cff _1n, has got all its coordinates spacelike, and positive curvature. To be

specific

=S dytdy? — 12d2?
22

Pleate note that the metric is just the one corresponding to FEdS,,, with a

change of sign. This explains the change of sign in the scalar curvature.
Globally,

ds2 40, = (8.73)

X2 -XP— .. - X2=1 (8.74)
(That is, de Sitter with imaginary radius).

8.7 Anti de Sitter

Finally, when the metric is given by

_ X" nydy'dy? F 1Pd2?
- 2
z

ds?

(8.75)

(where as usual, 7;; = diag(1,(—1)""?)), i.e. C§7_1n71 then the isometry
group is SO(2,n — 1). This includes the regular Anti de Sitter, AdS,, =
Sp_, = Cfgﬁln_l when the z coordinate is spacelike. For us AdS,, has
positive curvature and negative cosmological constant.
" g dy'dy! — Pdz?
2

dshas, = (8.76)
Globally, AdS,, is

X2+ Xx2_x2_ . —Xx2=p (8.77)

z

In this case there is a globally defined timelike Killing vector field, namely
My Indeed, Mg = 23 + 23 = I? + et 22 is everywhere positive. This
means that anti de Sitter space, AdS, is globally static, as opposed to de
Sitter.

Actually there is a host of admissible foliations [?]. AdS, can be foliated
by AdS,_1, by dS,_1 or by M,,_1. In contrast, dS, can only be foliated by
M,,_1 or by S,,_1. Curiously enough, M, can also be foliated by dS,,_1.

8.8 Isometries, conformal invariance and Confor-
mal structure

To be specific, let us denote

=y F3 = ZQZ/? T 1222 (8.78)

(2
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Then we define

0:l27$2
21z
XnE_lz—i—ac2
o2z
iYL
' == (i=1...n—-1) (8.79)

This is legitimate change of coordinates as long as we keep the radius [ itself
as one of the coordinates. Conversely

y = X0 _ xn
L
- X0 _ xn
=5 (X3 - X2+ Y eX?) (8.80)
Some useful formulas
0 z 22 E—
— = —"y'0;, — =0, 0
ox, 17 [T o
0 z 22 1?4+ 22
=y'0,+—0,F ——0
ox, Yot ToF o
ai‘ =052, (8.81)

8.9 Conformal invariance.

The full isometry group is some non-compact real form of SO(n + 1). In
Poincaré coordinates there is a manifest 1SO(n — 1) isometry subgroup
not involving the horographic coordinate. It is important to understand
all isometries in Poincaré coordinates. Let us work out the non-explicit
generators

Lon = X°0, + X,,00 = y'0; + 20,

(12 — 2*)dij + 265y,
2l

8]‘ + Giyiiaz

Loi = X 0; — i X;00 =) l

;
(2 + 2°)di5 — 2eiyiy;
2

Lpi=—X"0; — X,0, = 3 0; — ey 7d8.82)
j

Translations of the y* correspond to the combination

_, 0
ki =g 5 = —(Lni + Loi) (8.83)
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All spaces considered here whose Poincaré metric reads

S edy? T 1Pd2?

ds® = ==L — (8.84)
are obviously scale invariant
/
Yi = AYi
2= \z (8.85)

This corresponds in Weirestrass coordinates to the lorentz transformation
on the plane (X°X™)

N+ 1D)X%+ (A2 —1)Xx"
2\

AN —1)X0+ (A2 4+1)Xxn
2\

Xp =

X/:(

(8.86)

id est,

Xt oo (8.87)

(which should be plain from the previous formula for the generator Lg,.)
They also enjoy invariance under inversions, that is

Yi
D =
ST T
P - (8.88)

_> -
> ey; F 1222

In Weierstrass coordinates they correspond to the swap of the two lightcone
coordinates in the aforementioned plane (X°X™)

Xt o X~ (8.89)

The remaining isometries are the somewhat nasty combinations

—2%)6;; + 26y, 2
LOi — an = Z ( ) ”l zyzy] 8j -+ 261@/27@ (890)
J

We are now in a position to study the little group H of a given point (which
can always be rotated to a fiducial one, P)

P=(7=0,2=1) (8.91)
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because general theorems then ensure thatr the whole space will then be
isomorphic to SO(n+1)/H. The translational isometries must be generated
by the n generators

Ly; + Lo;
Lo, (8.92)

It seems then that

H ={Lij, Ln;}
H™ ={Li;, Lo;} (8.93)
The number of non-compact generators is equal to the number of timelike

coordinates amongst the y* in the + case, and equal to this same number
plus une unit in the — case. This implies

AdS,, = SO(2,n—1)/SO(1,n —1)

EAdS,, = SO(1,n)/SO(n)

dS, =S0(1,n)/SO(1,n — 1)

EdS,, = SO(n,1)/SO(n) (8.94)
Eunclidean anti de Sitter £ AdS), is just de Sitter dS,, with imaginary radius.

Euclidean deSitter EdS,, is Euclidean anti de Sitter with negative ambient
metric.

8.10 Asymptotic Behavior.

8.11 de Sitter

ds,,
The n-dimensional de Sitter space can be globally coordinatized by
X0 = lsinhT
X' =In'cosht (i=1...n) (8.95)

where Yi="n? = 1 and —oo < 7 < co. This gives

ds? = 1? (dr* — cosh? T d2} ) (8.96)
A further change of coordinates, namely cosT = coslhT where —7/2 < T <
/2 yields
2 ? 2 2
ds* = —5 (a2 — a0 _,) (8.97)

which is conformal to a piece of R x S"~! which is the Einstein static
universe, the template used by Hawking and Ellis [?] to study conformal
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T=pi/2 T=pi/2

s (n=-1)

T=—pi/2 T=—-pi/2

Figure 8.4: Conformal structure of dS,. In the figure on the right it is
represented the portion of the space covered by Poincaré coordinates.

structure. The piece is a slab in the timelike direction, but otherwise in-
cluding the full three-sphere at each time. The fact that conformal infinity
is spacelike means that there are both particle and event horizons.

The piece of space covered by the static patch is one quarter of it, namely
just the left wedge containing the center and the corbers at minus and plus
infinity.

8.12 Anti de Sitter AdS,,.

The fact that in this case there are two times suggests:

0 COST
X0= lcosp
Y4 _ lsinT
cos p
X'=In"tgp(i=1...n—1) (8.98)

where Eﬁi’f‘l nf =land -7 <7 <m 0 < p<w/2. The space is again
conformal to a piece of half Einstein’ s static universe:
l2

cos?p

l2

ds® = (dT2 —dp® — sz’anin,Q) = (dT2 - in,l) (8.99)

cos?p

If we want to eliminate the closed timelike lines, one can consider the
covering space —oo < 7 < oo. The slab of R x S"~! to which AdS,, is
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conformal to includes now the full timelike direction, but only an hemisphere
at each particular time. Null and spacelike infinity can be considered as the
timelike surfaces p = 0 and p = 7/2. This implies that there are no Cauchy
surfaces. Consider for instance the null geodesic

T=0p (8.100)

It propagates from the prigin p = 0 to spatial infinity at p = 7 in finite time

Ar = 7;/ (8.101)

Conversely information leaking in from spatial infinity reaches the origin in
finite time.

8.13 Euclidean anti de Sitter space EAdS,,

We write

X* =Intsinht
X" =lcosht (8.102)

with ZZ;[I) e#nz =1, so that the metric reads

ds* =12 <d7‘2 + sinh 72d92_1> (8.103)
The change of variables
el =thr/2 (8.104)
yields
2 €7 2 2
ds* = "7 (ar? +d02_,) (8.105)

(the other half of the global space would be covered by another copy of
the above metric).

In this metric, X,, > Xy always, which means that in Poincaré coordi-
nates z > 0, and z — 0 when 7 — oo, which is equivalent to T" — oo, and
represents the boundary of the space, a S,,_1 sphere.

8.14 What portion of Weiersstrass coordinates do
Poincaré coordinates cover?

e dS,

If we call n the n-th component of the unit vector 7, then there is a
critical value of the parameter 7 such that

tanhT(n) =n (8.106)
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which is such that
T<71(n)=2>0 (8.107)

and
z—tooe T 7(n)T (8.108)

This means that at any given value of 7 only those points on the sphere
that obey

n < tanht (8.109)

can be represented in Poincaré coordinates. For example, when 7 =
—00, that is T = —7/2, tanhT = —1, so that only the South pole
(n = —1) can be covered. At the other extreme, when, 7 = co, that is
T = +n/2, tanh T = 1, we can cover the full sphere.

z=0

z=inft

Figure 8.5: Surfaces of constant z in Poincaré coordinates in d.S,.
On the other hand, it is clear that

2= 0 e 71— Foo (8.110)

There is a discontinuity at 7(n) which depends on the point in de
Sitter space.

e AdS,
It is clear that the region z > 0 corresponds to the patch

/A<t <m (8.111)
and the region 0 > 2 to

—m <7< -37/4 (8.112)
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The region
z=0 (8.113)

is dubbed the boundary (of the Poincaré patch) of AdS and corresponds
to

p=m/2 (8.114)

tau=pi tau=pi
l z=0
tau=pi/4 s Tid ety
tau=-pi e
P LLLL _ tau=-pi [ Hibmpil
rho=pi/2 rmo=pt tho=0 rho=pi/2

Figure 8.6: Conformal structure of AdS,. In the figure on the right it is
represented the portion of the space covered by Poincaré coordinates.

Finally
Z =00 (8.115)

is usually called the horizon and corresponds to X™ = X0, that is,
T=mn/4 (8.116)

or else
T=-3r/4 (8.117)
(assuming p # 7/2).
When p=n/2—cand 7 =7/4+9,
V2 e

p=E-s (8.118)

and the limit depends on how the limit point ¢ = § = 0 is reached.
The same thing happens when p = 7/2 — e and 7 = —3nw/4 £+ 6,

V2e
z = —

=F5; (8.119)
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9

Friedmann-Robertson-
Walker Cosmological
Models.

The so called cosmological principle assumes that the universe is spatially
homogeneous and isotropic and filled with a materia content which can be
properly approximated by a perfect fluid.

A manifold is said to be spatially homogeneous in a mathematical sense
when there are a uniparametric family of hypersurfaces, 3; such that given
two points, P and Q in the same hypersurface, there is an isometry that
carries P into Q (it is said in learned language, that the isometry group acts
transitively). The group of isometries has maximum dimension

n(n+1)

D
2

(9.1)

in which case, it is a space of constant curvature. This implies, D=10 in
n=4 (this is the case of Minkowski, de Sitter and anti de Sitter spaces, an
only those). In three dimensions, n=3, the maximum D=6, and this is the
case we are interested with .

The perfect cosmological principle which was the basis for the steady
state cosmological model assumed full homogeneity of the four-dimensional
space-time manifold. This restrict the form of the metric to one of the three
maximally symmetric four-dimensional spaces: de Sitter, anti-de Sitter or
Minkowsli. It is not easy to accommodate the CMB data on these models
without many epycicles.

This means that the three-dimensional Riemann tensor must be of con-
stant curvature

O Rijr = Kkhygihjy (9-2)

Positive curvature (k = 41) corresponds spaces isometric to the three-

171
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dimensional sphere

22+ + 22+ w? = R? (9.3)
Negative curvature (k = —1) corresponds to spaces isometric to the hyper-
boloid

t2—a? —y? -2 =R? (9.4)

Coordinates can be defined in such a way that

ds?_,, = dip® + sin® 1 (d92 1 sin20 d¢2) (9.5)
and
ds?__| = dip? + sinh? ¢ (d92 + sin0 d¢2) (9.6)

It is also assumed that there is a uniparametric family of isotropic ob-
servers characterized by a vector field u, such that

9.1 The cosmological fluid of fundamental observers

The general form of the metric of an homogeneous and isotropic universe
was shown by FRW to be

ds® = dt* — a(t)*ds3 (9.8)

where ds3 is the metric of a three space of constant curvature such as the
ones we have just seen. When the curvature of the three space vanishes, the
FRW metric reduces to

ds? = dt* — a*6;jdx'dx? (9.9)

FRW models are conformally flat. When s = 0 this immediate using the
conformal time
dt = a(n) dn (9.10)

so that
ds* = a*(n) (dn2 - da_cQ) (9.11)

For the closed model (k = +1) and in terms of the conformal time

(f'=45)

o 3 "2 "
Roo o ((a) —aa )
: 2
6

R=-— (a+d") (9.12)
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Then 8rC 5
77 _ 9 ([ 2 N2
P = (a + (a') ) (9.13)
Assuming an energy-momentun tensor to be of the perfect fluid form,
Einstein’s equations can be easily shown to reduce in this case to

. 81 K
a? — 5 (p+pr)a® — B (9.14)

where we have now represented by p,, the energy density of matter and by

the equivalent quantiy corresponding to the cosmological constant, which is
dubbed dark energy.
The covariant conservation of the energy momentum tensor tells us that

o = 5 (@ (0 +1) (9.16)

From all this can be deduced that

g:—%%p+&0 (9.17)
This means that if the (negative) dark pressure is big enough then cosmic
acceleration may result. The fact that this is observed by cosmologists was
the first indication that there is a nonvanishing cosmological constant in the
universe.

Assuming now the equation of state corresponding to radiation

_ 9.18
p=3gp (9.18)

this yields
pa* ~ constant (9.19)

When the pressure is negligible (which is the case for nonrelativistic matter);
this type of matter is traditionally called dust by cosmologists, then

pa® ~ constant (9.20)

9.2 Cosmological redshift

It is quite easy to check that the u = 0 component of the FRW geodesic
equation is given by
d*t dzt da?
— 10ij———— =10 9.21
axe N (9:21)
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For null geodesics in the x-direction

dt dx

This means that in this case
dt a (dt\?
which in turn implies
dt 1
= oz .24
d\ a (9.24)
The four momentum of such a photon would then be
p=h(w,w,0,0) (9.25)
Now the energy of a photon measured by a comoving observer is
dt woaop
E=pu=—= 9.26
pu= v =— (9:26)

This formula yields the cosmological redshift. 1t could also be derived by
using the constancy of the product

¢k (9.27)

along a geodesic with tangent vector k, { being any Killing vector (not
necessarily timelike). The frequancy is

w=ku (9.28)

Owing to the fact that k£ is null, this is the same as the projection on the
three-space orthogonal

k.3 (9.29)
But there always an specific spacelike killing &, such that
1
kX =k &1 (9.30)

V& a

Let us reming that in general the redshift is defined as

A+ AX AN
w_=AF :1+—:% (9.31)

1+ZEw—|—AoJ: A A

(this would become blueshift in case A\ < 0),
The observation of the cosmological redshift then indicates that
ag

>1 (9.32)

a
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that is, that we are in a universe in expansion. To put is in an equivalent
way, the Hubble parameter is defined as

H(t) = g (9.33)

When a numerical value is quoted it usually refers to its value at the present
time, t = tg, like in

Hy ~ 7144 Kms 'Mpe™' ~ 2x10718 571 ~ 10719% 71 ~ 210742 GeV ~ 2x1075! Mp

(9.34)
Ay any rate we can write to linear order
a(t) = qag (1 + Hy (t — to)) (935)
so that
z ~ Hy (tg — t) (9.36)

In this approximation, the cosmological redshift is proportional to the dis-
tance of the object in question. It is also customary to define the deceleration

parameter as
apap

g = (9.37)

g
The observation favors negative values of this parameter indicating that the
universe is in a period of acceleration.

9.3 Cosmological Horizons

One property of many models is the following. At a given instant of time, a
given particle P has has time to interact only with a portion of the spacetime;
the rest had not yet time to teach the particle with any signal; it is outside
tha past light cone of the particle. This happens for example if we consider
half of Minkowski space without the piece corresponding to negative times,
t<0.

Mf={zeMy & t>0} (9.38)
This is a repectable spacetime with boundary. Consider now an event P at
a given time t = to. It is plain that all events that at time ¢t = 0 were not
closer to the event P that cty did not yet have time to send any signal to P;

they have not been in causal contact.
Let us consider for simplicity the flat FRW model. We can define the

conformal time
= /dt (9.39)
"= a) '

so that the metric is formally conformal to Minkowski space

ds®> = a(7?) (dT2 —dx? — dy? — dz2> (9.40)
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Now there is the possibility that the range of n does not go from

—o00<n< oo (9.41)
but instead from
To <1 <00 (9.42)
In that case there is a particle horizon. This happens when
dt
li — > — 9.43
lmHO/ a(t) > (943)
This is what happens for example in de Sitter Universe, where
1
afn) = (9.44)
n
so that
n=tmy e (9.45)
So that the whole real line
—o00<t<o0 (9.46)
is mapper either into
0<n<oo (9.47)

for the plus sign; or else into
—00<n<0 (9.48)

for the minus option.

9.4 Cosmological parameters

Let us define the associated energy density to the Hubble expansio

3H?
PH = oo (9.49)

as well as the equivalent energy density to the curvature, namely

_ 3K
Pr= g (9.50)

The critical density is by definition
pe = prg (9.51)
Taking quotients with the critical density, we get a sum rule
D+ + Q=1 (9.52)
The recent observational results point towards
Qe ~0
Qn ~ 0.3
Qy ~0.7 (9.53)
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Gravitational energy.

The energy of a gravitational field is not really well defined, owing to the
equivalence principle, that says precisely that for a free-falling FREFO there
is no local gravitational field. This shows that the notion of gravitational en-
ergy does depend on the frame, and so it can not be the timelike component
of a geometrical vector. If it were, its vanishing would have had an intrin-
sic meaning. In a certain sense it could be said that Einstein’s equations
equate the energy-momentum of the matter to the analogous quantity for
gravitation. This would indicate that the gravitational energy-momentum
tensor would be

3

1
T8V = ——— (R, — = (R + 2\ v 10.1

in such a wat that the total energy density vanishes
5" + T =0 (10.2)

This is sensible, except that this construct is covariantly conserved (as is
the energy-momentum tensor of the matter) and does not give rise to any
conserved quantity different from zero. Let us see that in detail.

10.1 Energy of matter in the presense of a back-
ground gravitational field

Let us assume that there is a timelike Killing vector in our spacetime, that
is, a vector & such that

£(8) g = V& + Vi€ =0 (10.3)
Then there is a covariantly conserved four vector
Pt =TH & (10.4)

177
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In fact
VPt = (VT ,) &7 + T V80 = 0 (10.5)

where the second term vanishes because the symmetric part of the covariant
derivative of a Kiling vector also vanishes.

The covariant energy-momentum conservation equation could be written
as a covariant Killing current conservation and this in turn is equivalent to
asserting that a certain one form is co-closed

6T =% td*xT =Vl =0 (10.6)

where 7 is the one-form
T =T dat (10.7)

Now (assuming the first Betti number b; = 0) this means that
dx1=0 (10.8)
Now *7 is a three-form
*T = Nypoda” A daP A dzTHE, (10.9)

Stokes’ theorem guarantees that the integral over any four-dimensional do-

main
O:/ d*’]’:/ *T (10.10)
M oM

Let us take by M the four-dimensional cylinder bounded by two caps at
t =typ and t =t;. We get, refered to the particular static case where £ = 8%

0:/ *T:/ \/ TO—/ /g T 10.11
o0 —t, ‘9‘ 0 rto \9‘ 0 ( )

this shows that Killing energy
E= / Nuwpedx” A dz? A dmoT“A{/\nH (10.12)
it

where n,dx* = dt. is time independent in the static case.

Energy can also be defined in GR in some additional cases, in particular
for fields that correspond to compact sources, so that they are asymptotically
flat. In this case it transforms covariantly under the asymptotic symmetry
group. Can we do this also for the gravitational field? Yes, we can but
Einstein’s equations tell us that the result is exactly the same with opposite
sign.

e Linear Bianchi Starting from

V.G =0
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and expanding
uv = g/w + h;w
we easily get

VuG(l) = =Ly paG™ = Ty pG™

so that to the extent that
GP =0

we get,
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e Flat linear transversality It is a fact that
4(D.h) = K2 hyo = K kphag =k kghag + kipkoh =g (K2h = KRy, )

In terms of the new variables

1
haﬁ = haﬁ — §h77a5
it reads
ADpy = k?hpy — kK Mkpharo — K Mkghay + 1p0 k™M g

Introducing the superpotential with the symmetries of the Riemann
tensor

2K p0 = NMuohwp + Muphpe — Muphve — Mnohyp

then the following is true

—2K"k° K jwpo = 4D,
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e General linear transversality

Expanding Einstein Hilbert one gets

1 - 1. - -, 1_ _ -5 1_ = = 1. - =
S = 5 /dnx\/ghaﬁ (4gaﬂguuv2 - Zgaugﬁuv2 + igozuvﬂvu - §g,uuvavﬂ

1. = 1. = 1 1 /= _ _
+§gaﬁRuu - iga,uR,Bu - iRauﬂV - g (R + 2)\> (gaﬁgw/ - 2ga,ugﬁu)) ﬁlﬂ’l:})

The third term can be shuffled using
ﬁy?ghw/ = ?gﬁth/ — h)‘VR'u,)\ﬁy +h)‘“R)\5

For a constant curvature background,

_ 2
Ra v = _—)\ _Ol 7] v _0{ 7] v

— 2
RNV = —m)\guy

This is the same as in TO, with

The corresponding EM are

1. - = (n+3)\,_ _ _
vVa - 7 1\ Ya 1/_2a v " =
GuwVaVp 4(n — 1) (Gap9p Jon9s )) 0

1 = 1. _ = 1 - -
(gaﬁgﬂ"VQ = 1 90uGo0 V" + 5001V V0 = 5

4 4
raising indices with the background metric, that is

(n+3)A
(n—1)

This is presumably equivalent to TO’s operator which reads

GapV2h—N?hop+2V sV, hY —2V YV gh— (Gaph — 2hap) = 0

_ — — = 5= - = — - = 1
DB = V2peB ARy B APy a1 VOB — s (v% - WVVhW)—QA (h@ﬂ - 2gaﬂh)
This can be rewritten using
o = hos — ——hg
af = Nap n—_2 9ap
as
D% (h) = V2hP —VAVOh, P — VAVPhy @ 4 g*PVHV  hy,, — 200

This is nothing more than our old G?‘lﬂ), so that it also obeys on shell

VoD =0
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Let us consider the current obtained by contracting with a Killing
vector -
j* = D"k,

It is an easily proved fact that
Vit =
Let is define the superpotential
QRcHavS = guBjrer | gragvB _ g B _ gafjm
Let us compute

o 1_ 1 - — _ _
Y = Vo VK = DM 4 D[V, VY hy + A = S DI — X1

1
2

_ _ 1oy - 1oy — _
X = [V, VY Ik + AR = — WV RY 3+ SHY R+ AR

DO

RY o K97 = 2RV (1R 2RV}

10.2 The energy-momentum pseudotensor of the
gravitational field.

In agreement with our previous observations, it is not possible to define
the gravitational energy in a geometrical way, but it is certainly possible
to define it as a quantity that is only tensorial under certain restricted set
of transformations. This is traditionally called a pseudotensor, and there
are many of them, associated to the names of Finstein, Moller, Landau and
Lifshitz, etc.

It seems appropiate to begin by investigating what happens in a free-
falling frame. In normal coordinates appropiate to such a FREFO the Ricci
tensor at the origin, where the metric tensor coincides with the Minkowskian
one, and its first derivativa vanishes (but not the second derivatives)

Gap = Nap
8a.gﬁ7 =0
000398y # 0 (10.14)

(we emphatize that thios is only true at one point, here taken as the origin
of our reference system ) reads

1
RM = 59“@”’”95" (O70sgsp + 050pgro — O\Opgso — 05059xp)  (10.15)
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We have already pointed out that a natural definition of gravitational energy-
momentum tensor is

THY — ct <Rw, . 1Rg,uy) _ o <g“)\gyp . 1gp,yg)\p> g&f %
871G 2 167G 2
4
c
(0705 95p + 050,970 — O20pGso — 05059xp) = e (005g°" — 0,0"gH° — OH0" g—
—0Ogt" — g™ (&ﬂ%gw‘ — Dg)) (10.16)

It so happens that this expression can be written in terms of a superpotental,
H;w)\

1
™ = WE)AHW’\ (10.17)
g
where (the factors of |g| are immaterial in this frame, in which g = —1, tpo

the extent that they are undifferentiated)

4
BN — c BX Vo uv Ao
H" = o= 0o (lgl (929" — gg*)) (10.18)
The key to this result is that the derivative of the determinant
O0ag = ggpgaagpa (1019)

vanishes in a free falling system. The second derivative
00089 = 99" 0a089ps = 1" 0aO39po (10.20)

For a FREFO the derivative of the determinant of the metric tensor is the
same thing as the trace of the derivative of the same metric tensor. The
superpotential is antisymmetric in the two last indices

HWA = — [gHv (10.21)

The conservation of our candidate for gravitational energy is then immediate
(it was at any rate guaranteed by Bianchi identities). Now if we consider
a general observer these formulas need modification; we shall call t*¥ the
necessary addenda so that we have exactly

g (TH + ") = 9\ HM* (10.22)

LL found an exact expression for the pseudotensor

4
v c A v VoA 5 )
th = 167rG{ (99" = 99 ) (203,15, — T4, T5, — T3, Tos) +
_|_g#/\gﬂ¢7 (Fg,\rgg + FZOFg)\ - Fgorip - Knga>
A 5 5 s 5
+9"" 9" (FgAFpa + Fgaré)\ - Fgarkp - F&LPF‘SU)

+9* ", (T — T4, Ts) } (10.23)
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This means that there is an ordinary conservation law for the quantities

1 1
p = E/z Vil ds n (T +#2) = /m dS 9, H"7 (10.24)

If we take
Y= {t=ttu{r<L}

then the normal vector is dual to the one-form
n =dt

that is,
ny =9

It follows
pr=d L ate o,
cJy

The boundary is the timelike surface

0¥ ={r=R}
whose normal one-form is
n =dr
This means that
PH = 1 d" 2z ng HHOk
C Jox

It is necessary to introduce asymptotically flat coordinates
r? = Z 7
i
rdr = Z x;da’

The spatial components (assuming df = d¢ = 0) read

rs .%'Z'.%'j

9ij = —0ij —
J J r ,’n2

ct 4 ct rg ,
H = 15259 (6°0") = 15759 ((1 - r) (W *
_ Mat
 drr2

This yields the LL pseudoenergy

M
EE/ r2 df A dg = M
r—R 4mr?

rs xkxj

r

r

2

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

(10.33)

-5

(10.35)
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The formula in a general reference system is easily computed by restoring
all terms involving first derivatives of the metric tensor. For example

g =2Tg (10.36)
as well as
g™ = —g"Txa — 9"°Thy (10.37)
and .
Oplap = —5 (15, +T2,670:1) T (10.38)
Define
o= € (R“” g W) (10.39)
-~ 87G 91t :
then .
= —O\HMA =T (10.40)
g
yielding
8rG

St = 2Tl + 9Tl ) (97705 +17) -

— ("7 + 9Tl ) (9"°T% + 97°TKa) — (¢"°Ta +T%) (9T + 1) —
~297 (g"°T%, + g"°Th,) = 2¢"” (1" + Tag™)

+2(0, +T2) (97 (6T + ¢*°Tl, ) + g (¢"°Ta +T7)) +

+4 (9“”9'“A -~ g”*g"p) I,T) - (g’“’g’)A — g"tg"” ) (Fg - ngﬁﬂgzs,\) I —

1 1
—g"7g" (—2 (D5 + g5 ) T, + 5 (T2 + Tdeg ™50 ) T3 + )T - F%Fﬁp) +

2
1 v 1 A 1) 1 A pao ocamp
+59" | = 5 (D5 + Thgsn) T4 ST, (9°°TSa + 97°T%,) +
1. ,
+§9A (F§5 + 15,97 96/\) I+ 7T — gaﬁFgAfép} (10.41)

10.3 Hamiltonians on curved surfaces.

When defining canonical momenta in gauge theories there are always rela-
tionahips between coordinates and momenta, which Dirac dubbed primary
constraints.

¢i(g;p) =0 (1=1...P) (10.42)

Dirac [§] defines equations that are true when the constraints are used weak
equations. Let us consider the electromagnetic lagrangian as a primary
example

1 1. . 1 /5 2 1 .
- _ - uy ZA2_ A5 - N Ny Y
5=~ Fu " = z]j (2141 Ao+ 5 (F40)" — (FyF > (10.43)
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It is clear that the canonical momentum conjugate to the variables Ao (¢, %)
vanishes.

mo(t, &) ~ 0 (10.44)
There are then 0o® (one for each point # € R?) primary constraints.

The hamiltonian is not uniquely defined; we can always add any combination
of constraints to the naive H:

P
H = Huaive + Y _ Cithi (10.46)
=1

For electrodynamics, it reads

s [T B - 0
H= /d 2y + > +7.VAy+cm (10.47)

By consistency, we must demand that the primary constraints stay weakly
zero after baing propagated in time, that is,

¢i(q,p) ={¢i, H} = 0 (10.48)

In order to make sure of that, it might be neccessary to introduce new
constraints; those are called secondary constraints. Coming back again to
electrodynamics, we have

7o (z) = {mo(x), H} = V.7(z) ~ 0 (10.49)

This is Gauss’law, which in this language appears as a secondary constraint.
Altogether we have a set of constraints both primery and secondary

¢r=0 I=1...N) (10.50)

For example, at this stage in electrodynamics we have two constraints per
point, namely

$1
b2

o ~ 0
V.7~ 0 (10.51)

Let us determine the arbitrary functions in the hamiltonian. Let us consider
the case where we can ensure that

{61, H} + 3 uifér, 6} ~ 0 (10.52)
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without introducing any new constraints; that is, by determining appropiate
functions u; = U;(p,q). There is always an ambiguity. Namely, given a
solution U; of the above system, let us consider the independent solutions of

Z Vaj (a,p){¢1, 95} ~ 0 (10.53)

(and this for all constraints, VI. Assume there are a = 1... A of them (it is
of course possible that A = 0). Then the total hamiltonian Dirac writes is

Hr=H+)Y Ui¢i + vada (10.54)

where

¢a = Zvak(lsk (1055)

and we recall that the coefficients v, are arbitrary.
This constraints ¢, are such that

{bas &1} =D Vaj (0,0){85, 61} ~ 0 (10.56)
j

Vanishes V.. It is useful to define first class functions of the phase space as
those that have vanishing bracket with all constraints. Otherwise we say the
quantity is second class. It is not difficult to show that the Poisson bracket
of two first class quantities is another first class quantity.

Independent first class primary constraints are the generating functions
of contact transformations that leave invariant the physical state. There is
a redundant description of physical states in our variables; any element of
the gauge orbit is a good representative of the physical state.

In the case of electromagnetism

{¢1,02} ~0 (10.57)

so that both ¢; and ¢ are first class constraints. There are 2 x 0o? first class
constraints and no second class ones. In general, the number of independent
degrees of freedom is given by
1

MDOF =N —NF = ;N5 (10.58)
(where np is the number of first class constraints, and ng the number of
second class ones.

Let us represent the remaining second class constraints as

Xi(q,p) ~0 i=1...ng (10.59)

Let us form the matrix
Aij ={Xi» X5} (10.60)
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It is a nonvanishing antisymmetric matrix (which tells us by the way, that S
is an even number). Now Dirac showed that by replacing Poisson brackets
with what we now call Dirac brackets, namely

oy ={ra) -t (A7) tugy (106D)

This changes nothing for first class quantitites, including the total hamil-
tonian Hr. On the other hand, the Diract bracket of any function with a
second class constraint vanishes.

{fixa}"=0 (10.62)

By using Dirac brackets we can implement second class constraints as strong
equations. One way of dealing with gauge systems is to gauge fir; that is to
introduce a geuge condition, so that only a unique representative is chosen
for each gauge orbit. In the present language this means that all constraints
are now second class. For example, in electrodynamics, we can [15] chose
the radiation gauge

o1 (t, %) = 7o (t,©) ~ 0
¢y (t,7) = VR (£, %) ~ 0
gf)g (t,f) = A() (t,f) ~ 0
¢y (t,7) = VA#,T) ~0 (10.63)

This gauge is admissible because, first of all, the secondary constraint implies

ﬁaﬁ(t, 7) — AAy(t, &) =0 (10.64)

This means that the equations
0Ag=0A =0 (10.65)

and .
OVA=AA=0 (10.66)

are compatible. It is quite easy to show that

S [dyag@-p AR G- = PE- (1069
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We get
0 0 —8 (§— 2) 0
0 0 0 1
-1 dm|Z—1]
A = 53 (& —7) 0 0 0 (10.69)
1
0 4m|Z—7] 0 0

Dirac brackets now read

1
= v R v__ 0, vYs3/7_ 2 14
{malt ), A" ()} = (= onb) 8° (7= 2) + 0,0 =
{7, (,2), (8, 5)} = {A¥, (t,2), A" (£, )} = 0 (10.70)
and the hamiltonian is
22 2
H= /d% (7; + 2) (10.71)

10.3.1 Lagrangians homogeneous of the first degree.

e In order to get a feeling of what Diffy invariance means in the present
context, let us consider now the case of homogeneous of first degree
lagrangians, that is, those that obey

LOL
> g aq = L (10.72)

This naively means that the hamiltonian is zero.

First of all, let us note that any system can be put in such a way by
introducing new phantom degrees of freedom. Assume that

Lo
L=> 595(0)d'd = V(g) (10.73)
ij
This system is equivalent to
PR
L=Y giq (bqu —5b bj) —V(q) (10.74)
]

Tha algebraic EM for b* read
@ =¥ (10.75)

and substituting them in the first order lagrangian, it yields the second
order one.

In fact let us consider the time variable as an extra coordinate (more
about this in the next paragraph)

¢ =t (10.76)
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The new lagrangian for our system is defined as

dg d
* T — * q
L*=1L <q, jqo> =L (q, dT) (10.77)

dr

and is such that in a precise sense,
/L* dr = /Ldt (10.78)

Let us elaborate. A general variation of the action is defined as
O Jidt (pid' — H) = [{2152 dt [(pi + 0p:) (4 + 6¢') — (H + 0H)] ~
= Jidt (pig' — H) =
= [2dt (pidg' + Spiq’ — SH) + [;2702 dt (pig — H) — [ dt (pig’ — H) =

= [} dt (% (pidq") — pidq’ + ¢'0p; — 5H) + 0ty (pig' — H)|,, = 0t1 (pid" — H)|,, =

= G(t2) — G(t) (10.79)
where ' '
G(t) = (pig' — H) 6t + F(t) + pidq’ (10.80)
and .
F(t) E/ dt' (—piéqi +'op; — 5H) (10.81)

The EM are recovered when the variations satisfy the conditions of
the action principle, that is, when

t=20
6ily, = dail,, =0 (10.82)
by demanding that
F(t)=0 (10.83)
we recover the standard EM.
e It is always possible to rewrite the action principle in parametrized
form by enlarging the configuration space
n+1

ta n ) T2
S = dt (Zpiqz — H) = / dr Zpiq; (10.84)
i=1 T i=1

t1 1
with

r_ dqi
q; = E
R(p,q) =ppy1 +H=0
=t (10.85)
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The constraint can be implemented by a Lagrange multiplier

7o n+1
S = / dr Z pidi — NR(p.q) (10.86)
T1 1

The EM for N 59
—=R=0 10.87
SN (10.87)
yields the constraint. The theory is now invariant under arbitrary
reparametrizations
=7 (10.88)
provided
N(1)dr (10.89)

is interpreted as a 1-form.

To reduce a parametrized action to canonical form we insert the solu-
tion of the constraint equations

5= [dr (Zpiq; - Hq;+1> — [ dgu (Zp@-q - H)
1 1

dqn+1
(10.90)
so that g,41 plays the role of the time coordinate. The EM only tell
us that
OR  dppi1 OH " oH
- N = =——=- —q" 10.91
(7) Opni1 dr or ; oq a4 ( )

but given the fact that N(7) is undetermined, this means that it is
possible to choose g,+1(7) also at will.
10.4 Dirac universal brackets

In this section it will prove convenient to reserve tha label y® for the space-
time coordinates to tell them apart from the 3 + 1 coordinates (¢, 2?) to be
defined in the sequel.

Let us now consider a foliation of space-time given by the function

t(y*)=C (10.92)
The level hypersurfaces are spacelike; that is, the normal vector

Ng = NOgt (10.93)
is timelike, and will always be normalized

n?=1 (10.94)
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so that
- = O‘ﬂaatﬁgt (10.95)

We shall also assume the existence of a congruence of curves
y* = o%(z', 1) (10.96)
Each curve in the congruence is thepresented by
g =" (10.97)
Tangent vectors on the hypersurface are given by
F=00% i=1...n—1 (10.98)
The normal vector n is such that

g€’ =0 (10.99)

The vector tangent to the congruence can be expanded as

do™ :
No = % = Nn® + N'¢®* = Nn® + N® (10.100)
where
o do®
N =Nng = - N oat (10.101)

is the lapse and N? is the shift in ADM’s (Arnowitt-Deser-Misner) notation.
This means that the vector that goes from (t,x) € ¥; to the point
(t+dt,z) € X4y does not lie necessarily in the direction of the normal to
the hypersurface.
Actually from the very definition follows that

Nt =1 (10.102)

Also our parametrization of the curves of the congruence as ' = C* imply
that
£(N¥)EP =0 (10.103)

Finally, the fact that the coordinates z' on each surface are independent
means that, considered as spacetime vectors,

&.,&]=0 (10.104)

The oo® dymamical variables 0® will have some canonically conjugate
momenta
{o"(t, ), m(t,y)} = 045" (@ — y) (10.105)
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If the generalized coordinates ¢ are to vary, the constraints have to involve
the conjugate momenta, so that it must be possible to write the constraints
as

Hp = /d”’lx At x) (mo + Ka) (10.106)

Then it is a fact that
ot ={o" Hr}=c" (10.107)

It is useful to decompose any vector index into normal and tangential
components

Vo=Vin
Vi=V.5¢ (10.108)
It is always the danger of taking V; such defined as the space components of

the n-dimensional quantity V', but we shall try not to do so in the future.
Actually,

VI =V,.nk 4+ Vil (10.109)
where
hij = {fgﬂyé“}’ (10.110)
and the inverse matrix - ‘
hihy = 6} (10.111)
(Please notice that - '
hid £ g* g™ by, (10.112)

The spacetime metric reads
ds? = g dy"dy’ = g, (N“dt 4 gfdxi) (N”dt + 5;’d:pi> -
= N2di? + hyj (da’ + N'dt) (da? + NVdt) (10.113)

This in turn implies
Guv = Ny + §&vi (10.114)

Then Dirac showed that for all these systems there is an universal set of
Poisson brackets, namely,

{mr(t,x), ms(t, ')} = ms(t,2)0p6(x — 2') + m.(t, 2" )0 (x — )
{mn(t, ), 7 (t,2")} = 7 (t;2") 00 (2 — ')
{mn(t,z), mo(t, 7))} = =277 (¢, 2)0p(x — 2') — An(t, 2)d(x — ')

(10.115)
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Let us work this out in some detail.

0= {n,ugzyv 7TI/’} = {nm ﬂ-l/’}gf + n,u{fél, 71—1/’} =

= {np, m }' + 1, 0;0(x — 2’) (10.116)
We learn that
{ny, m 3 = —n,0;6(z — ') (10.117)
Again,
0= %{nza T} = {ny, mw b (10.118)
Then
{ram} = {np, mr} (npn,\ + ffkahjk) =
= —n,,&i@ﬂ(a: —2') = —n,0_\(x — ') (10.119)
so that
{nx,mw} = {n,\,ﬁuln“/} = —n“,nué_)\ =

= ¢l (n“/nué(:z - x/)) + Lo (n“/nu> §=—£19:0(x — )

Before going on, let us show an elementary relationship. It is plain that

inu&l +n,0;€t =0 (10.120)
as well as
n,Oint =0 (10.121)
as well as
Oyl = —n it = —n, D€l = Oym,El (10.122)
and multiplying by &P ‘
oinf = &P9;n, &l (10.123)
Now
Ny = gl = §i§j“8jn>\§f‘ = &9, = ny_, (10.124)

It follows that

{7} = {na, 1 €5 } = —n, €500 (x — )€Y =
= —0 (nl,g”,j/gl)fé(x - x')) + Ok (nygljé";’) Sz —a') = Okn,,gl/{f}’é(:v —2') =
= Opna&pey (x — 2') = Onpd(x — o)

Finally

[ T} = fran®, mnt} = myt (e} + nhm ey, '} = ma ) (s}
—W,\fMaié(:c -2+ Wulgﬂ/i8i5(:c —a') (10.12
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10.5 The Arnowitt-Deser-Misner (ADM) formal-
ism.

Let us apply Dirac’s ideas to the gravitational field. We shall assume that
there is a foliation as before. We shall need the components of the spacetime
metric in terms of the lapse and shift functions.

goo = N?
goi = hij N’
gij = hij (10.126)

whose inverse reads

g% = N2
i _ N '
~3
- .. NN
L )
g7 =h" + N2
Let us denote by D; the covariant derivative with respect to the (n — 1)-
dimensional Levi-Civita connection associated to the induced metric, h;;.
It can be easily checked that

(10.127)

DjA; = Vg ALE€] (10.128)
From the definition itself of the induced metric follows
8pga5Dka”6ma8job + gang(aiaa)ajafB + gagaiaaDk(ﬁjaﬂ) =0 (10.129)
Cyclic permutations

8pga5DijakUaaiUﬁ + gang(aka“)Bia'B + gaﬁakO'O‘Dj(aiJ/B> =0
8pga5D¢Up8jJaakUﬂ + gagDi(ajUa)al‘U/B + gagajUaDi((?kU’B) =0

Adding 1+2-3 yields
1

0= gangDkaaDiaﬁ + DkO'pDZ‘UaDjU’8§ (0p9as + 089pa — 0agpp) =

gaﬂDjDkJO‘DiJB + DkopDiaaDjaﬁ{a, Bp} =

= gogDio” (DDjo" + {§,}Dj0" Dy (10.130)
This means that

DijO'a = —{gp}DjO'”BDkO'p + Kjkno‘ (10131)

where the normal component reads

K = nq (Dijao‘ + {gp}Djaﬁpko—P) (10.132)
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Taking the D;

0= Dj (gaﬁaiaan5> = ngaﬁaiaanﬁ + gaﬁDjDio'anﬂ + gaﬁDanDjnﬂ
(10.133)
On the other hand,

Djgap = Djo"0ygap = Djo” ({av; B} + {Br;a}) (10.134)
so that

Kjk = na{%,}Dj0" Dpo? — gapDjoc®Dyn’ — n’ Dyo” ({ap; B} + {Bp; }) Djo® =
—gaﬁDjao‘DknB — nPDyo?{Bp: a}lDjo” = —£?Vpna£]’-’ (10.135)

This tensor is called the extrinsic curvature, and represents the derivative
of the normal vector, projected on the surface.

Our purpose in life is now to relate the Riemann tensor on the hypersur-
face (computed with the induced metric) with the corresponding Riemann
tensor of the spacetime manifold. Those are the famous Gauss-Codazzi
equations, which we purport now to derive. They were one of the pillars
of Gauss’ theorema egregium, [25] which asserts that If a curved surface is
developed upon any other surface whatever the measure of curvature in each
point remains unchanged.

We start with

0=D; (gagno‘nﬁ) = Djo’ ({ap; B} + {pB; a}) n®n® + gagDin®n® + gapn®Djn® =
Gagn® (Dyn® +{8,}Dj0¥n")) = gagn®V,n® Djo" = noV,n ) (10.136)
On the other hand, the explicit expression for the extrinsic curvature reads
Kij = —£?Vpna£]’-’ (10137)

First of all let us derive some properties of the extrinsic curvature. It is
symmetric, K;; = Kj;.

— Kij = Vgna&ie) = —naVsee! (10.138)
But
&) =0 (10.139)
so that
— Kij = —na&MVES = Vana&l & = Kji (10.140)

This symmetry implies a very useful formula for the extrinsic curvature,
namely

— Kij = V(gno) 8] = £(n)gapel €] (10.141)
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By the way, in the physics jargon when K;; = 0 it is said that it is a moment
of time symmetry.
On the other hand, remembering that

£1¢h = g§ —nng (10.142)
we deduce that
— K&, = — (gf} - nanu) Vonal§ = =V,n,uéf (10.143)

(because of [10.136]).

Let us analyze the definition of extrinsic curvature in even more detail.
(DyD;Di = D;DDi) 0° = Eh™ Rue = Dy (—{3,167¢] + Kin®) —
Dy K;jn® + Ki;Dpn® 4 0;{ %p}ffgf; - {%p}Djﬁfiﬁ + {%pfijfﬁ — DKy, — Kig Djn®

and using again the defnition of the extrinsic curvature to eliminate the term
with two derivatives,

Enh™ Reijilh] = 05,3600 — {5,360 (—{0)€1ek + Kin®) + DyKign® + KiyDyn® +
O 8,0l + {53 (Ll + Kiyn®) — DjKiyn® — Ky Djn® =

n® (Dkij — DiK) + Kij (Den® + { §,3n7€0) — K (Dyn + {§,n°€] )

—67€067 (0485} — Bl o} — {5 H Do + {8 H 3y) (10.144)

Using again the definition of the extrinsic curvature, as well as the one of
the full Riemann tensor, we get

Enh™ (Ryiji[h] + KijKv — KipKyj) —n (D K; — DjKy) = —ﬁiﬁf}?sza Boplg]
This projects into the famous Gauss-Codazzi equations
Rujlh] + KaKji — K Kij = &€ €07 Rapoolg)  (10.145)
as well as
DKy, — DyKij = —n“&J €067 Ragoplg] (10.146)

Please note that not all components of the full Riemann tensor can be re-
covered from the knowledge of the Riemann tensor computed on the hyper-
surface plus the extrinsic curvature. As a matter of fact,

MR = 0-VRY 4o2MWR =) R4 K2 Kk 2R (10.147)
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This means that an explicit computation of (n) Ri nin 18 needed before the
Einstein-Hilbert term could be written in the 14(n-1) decomposition. To
do that, consider Ricci’s identity

V7V5na — ngvna = RP aByp (10.148)
Now
n? (V,Van? — VV,n) = nfg* RF y5nP = R™ 5 (10.149)
Besides,
VPV = Vang (nfnk + €M) (nin? + &) Vyun,, =
Vg€l €MEIEY m,, = —Ki; K" (10.150)
Summarizing,

R o =PV, Vgn = nfVaVonT =V, (V) = V,nf Ven? = Vg (nfV,n7) +

+V5n5V7n7 =
=V, (nﬁvﬁm - n"’Vﬁnﬁ) + K K9 — K?

V™ g=N /=D g (10.152)

The EH lagrangian can then be written as follows

Besides,

LEH =N (”71)9 <(n_1)R+ KUKU - KQ) - aavoc = ,EH - 80!‘/&
(10.153)

Ve = 2\/("7)9 (n'gv[grﬂ - n'yv[gnﬁ) (10.154)

The resulting lagrangian, L’;;; does not contain N or N%, and does containg
only first time derivatives of g;;. This is the starting point of the ADM
hamiltonian formalism. There are the primary constraints

where

L

= —
NH

(10.155)

In order to compute the spacelike momenta, consider

hij = £(N®)hij = £€] £(N*)gag =

(10.151)

(Remembering that this Lie derivative of the spacelike basis vectors vanishes) =

= 606 (VaNg + VaNa) = €067 (Vo (Nng + N3) + Vg (Nng + Na)) =

(10.156)
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Then SK )
~ = (gksl 4 k6] 10.1
STy i (%0 + 650 (10.157)
and SK )
—— = —hM 10.158
7' = Vi (K~ KhY) (10.159)
Let us compute now the hamiltonian
H= /d%: (mu V¥ 4 i) — L (10.160)
where -
L= N\/|nl (Rlh] + Ky K9 — K2) (10.161)
Now, it is clear that
h(KyKY - K?) = - |\ - 5 (10.162)
We just derived
hij = QNKij + DiNj + DjNi (10.163)
Summarizing,
H = h" — L =
[ 2N 1 1 o1
= " (\h\ (mj - 27Thij> + D;Nj + DjNi> - N (\/ |h|R[R] + T (mﬂj - 27T2)> =
_ /d% (NH + N3, (10.164)

where (dropping surface terms)

1 ) 1 1
H = NG (hikhji + hithjx — hijhi) 77" — VRR[h] = = (WU — 27r2> — VhRIh]
H; = —2Dj7rf (10.165)

Now we have the following constraints

Ty~ 0

Nt —CHF~0

H~0

Hi~0 (10.166)
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and the corresponding brackets

{mh NP — CP} ~ ghP§(x — ')

{mu, "} ~0

{mu, Hi} ~ 0

{NF—-CHH}~0

(N# — O H;} ~ 0 (10.167)

The other brackets got the universal Dirac-Schwinger form, which is valid
for any diffeomorphism invariant field theory

{H(z), H(@') = (H'(2) + H'(@')) did(w — 2)} ~
{Hi(w), H(@')} ~ H(2)0id(x — o)
{Hz(az), Hj(CEI)} ~ Hi(x/)aj(S(x — w’) + Hj(a:)aid(x - xl)(10.168)

10.6 Boundary terms

The purpose of this section is to give a detailed treatment of boundary terms
following Brown and York [2].

Consider a tubular domain D of spacetime, whose boundary has three
different pieces: The two caps at the initial and final times, ¥, and 3.
Those are spacelike, codimension one hypersurfaces (that is d = n — 1).
Then there is the "boundary at infinity", r = R — oo, which is the surface
of a cylinder, also of codimension one, but timelike instead of spacelike. We
shall call it B = 0D. Now this boundary can be understood as generated
by the union of all the codimension two boundaries of the constant time
hypersurfaces

(B = 0D) = Uy (S; = 0% (10.169)

e An intuitive grasp of the general situation can stem from the trivial
example in flat space, to which we are going to refer all the time.

D={r<R t;<t<ty} (10.170)
In this way the caps are defined by the solid balls
Y ={r < RUt = constant} (10.171)

The embedding in spacetime is simply

y' = at (10.172)
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so that the induced tangent vectors is

000
&= gﬁ; = (1) (1) 8 (10.173)
0 0 1
and the normal vector
n® = (1,0,0,0) (10.174)
The induced metric reads
hij = nas€l€) = =0ij (10.175)
The normal to ¥; in Minkowski space is
n® = (1,0,0,0) (10.176)
The boundary of such caps are the two-spheres
Sy = {r = RUt = constant} (10.177)

We can choose polar coordinates 6, = (6,¢). The imbedding matrix
of the boundary in ¥; using these is

9y cos 0 cos ¢ —sin 0 sin ¢
& = I _ | cos 0 sin ¢ sin 0 cos ¢ (10.178)
o6 i
—sin 6 0

It is equivalent to use

>
S
Il

S
Il
o= ==

(10.179)

2=03R = R\/1— 0% — 62 (10.180)

The embedding matrix is now

then

R 0
& = i 0, o kA (10.181)
Cieie /16763

The induced metric reads

_ R? 1—-063 610
=gty ) 2 102
ab = Sahijly = — 17— 70 ( 0,0, 1- 9%> (10.182)
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The contravariant metric reads

1 (1-62 —6,0
ab _ _ _— 1 1V2
o =—r (—6’162 1_ 6%) (10.183)
Out of the two embedding matrices we can draw the composition
0 0 0 0
€0 = 0] = R 0 | cosBcos¢ —sin @ sin ¢
a = "jra= 0 R | cos @ sin¢ sin 6 cos ¢
~R—4 ~R——2 —sin 6 0
V1-07-03 V1-07-63
(10.184)

The normal to the boundary in ¥ is

V' = (sin 6 cos ¢, sin @ sin ¢, cos ) = (Z, %, ;) = (91,92, \1— 62— 9%)

(10.185)
The extrinsic curvature of S; < X; reads
. 1 .
kab = le/iféfé = E 5@‘ 5(]1512 — —Ogb (10.186)
Let us now examine the constructs
0 0 0 0

e |0 02 0105 011/1 — 62 — 63
o 0260, 03 fa1/1 — 62 — 62
0 01/1—60;—03 0/1—03—03 1-607-63
(10.187)
0 0 0

0
. Lo 1- 62 —0105 —014/1 — 67 — 63
ab o — _R
7 % 0 — 0,6 162 —051/1— 02 — 63
0 —01\/1— 62— 02 —0\/1— 07— 62 02 + 603

(10.188)
All this explicitly checks that
n®nf — P 4 Uabeg‘ef = nf (10.189)
The timelike boundary is just Sy x R
B = US; (10.190)

Its three cordinates are just 2™ = (¢, z,y) ( they could equally well be
chosen as (t,0,¢)). The embeddig matrix reads

1 0 0
0 1 0

G=Rly o (10.191)
0 - &

03 03
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so that the induced metric is just

R2

ds? = dt? — 7 (1 63)d6% + 20102d01d0> + (1 - 63)d63) (10.192)
The normal vector is )
n® = = (0,z,y,2) (10.193)

so that the extrinsic curvature of B «— M reads

o = Vang€l el = (8 00b> (10.194)

e Let us now draw from the example to the general case. The surfaces
5,5”72 = 82?*1 provide a foliation of the timelike boundary B,,_1 < V,,
of the domain of spacetime under consideration. The coordinates in
5" will be denoted by 6, a=1...n—2. The imbedding S,_» —
Yn—1 is described by

€S o y0)ES, 1 (i=1...n—1) (a=1...n—2)

(10.195)

The imbedding of S in ¥ defines in a natural way (n—2) tangent space
vectors ]
- oy*

& =5 (10.196)

The unit normal to S,,_s in ¥,,_1 will be denoted by v, and out of it
we construct a vector

v =¥ € T(9) (10.197)

which is such that it is unitary v.v = 1 and is tangent to ¥,,_1, that is,
v.n = 0. There are also n — 2 spacetime vectors obtained by combining
the two imbeddings S — ¥ and ¥ — M:

& =& (10.198)

The induced metric in S,,_9 = 0%,_1 is
ds® = Y oudf?d0” = i€l el d9do® = gapele) d9°d6®  (10.199)

The spacetime metric can be recovered from

g% =~V 4 nonf 4 g%e el (10.200)
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The extrinsic curvature of S,,_s — X,,_1 is defined as usual

kap = V03¢, (10.201)
It is possible to choose the coordinates 6 in such a way that they
intersect S = X! orthogonally.

the vector n® is the tangent vector

o (0x°

The set of all Stnfl for varying t do foliate the timelike boundary of
spacetime B, _1 = dV,. In this boundary B,_1 we can also introduce
coordinates z™ m = 1...n — 1 (one of which is timelike), ans the
corresponding (n — 1) vectors

ox“
& = ER (10.203)
The induced metric is
Y = GagEmén (10.204)
and we can write the completeness relation
Jap = —VaVs + Ymnéa &5 (10.205)
It is simplest to choose (as we did in our explicit example)
2™ = (t,0%) (10.206)

then

ox® ox®
(0% — 9@ — (0% t (0% a 1 ‘2
dx (6t >9dt—|— <09“>td Nn®dt + &, db (10.207)

in such a way that
dsZ‘B = Yndz™d2" = N2dt* + 04,d0d0" (10.208)
and the determinant obeys
7| = N%o (10.209)
Finally, the extrinsic curvature of B, 1 < V,, is

Fmn = V Va0 (10.210)
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o Let us apply all this mathematics to the Einstein-Hilbert action. We
consider a tubular region of the full spacetime bounded by two space-
like hypersurfaces of constant time, 3o and 31, and the surface of the
asymptotic cylinder, B

oV, =% —-31+B (10.211)

This is the generalization to an arbitrary spacetime of the construction
made in the example.

The full EH action, including the boundary term as well as the total
derivative neglected when constructing the hamiltonian is given by

Sgn = dt/ Ny/|h|d"! K ;K9 — K>~
EH — 167TG s, ( + 1]
1 1 1
-2V N, n® — n*V — K- — K- —
@ (n ult VAR >> + 1 8rCG Sty rG
The total derivative piece in the expansion of R which yields a bound-
ary piece

-2 nPVgn® — n®Vgnb d”1 :—Q/K h|d" Yy
v ( 8 8 ) | al
(10.212)
This precisely cancel the boundary term in the action coming frorn .

The only surviving contribution comes from the timelike boundary, B,

that is

—2/ BVQn —n*Van )Vm/ |d"™™ 12—2/ Vgvan nﬂy/ |d"™ 1y
(10.213)

Summarizing

167G t2
S _/ +2/ K+ Vgvan®n® a1z 10.214
5 VEH= | A ( 8 JRVARL ( )

Let us use now the fact that the timelike boundary B is foliated by S

K+V[3Vananﬁ = Vs (gaﬁ — P4 no‘nﬁ) = Vﬁl/aegef = 0%k =k
(10.216)

_ n—2
/B_2 s kN /ol 20 (10.217)

As was already clear from the explicit example, this integral diverges
even R — oo even in flat space. In order to refer all expressions to this
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value, so that the action in flat space vanishes, it is often substracted
a term in the action

2
AD = — ko N 10.218
167G /B 0 ( )
where kg represents the extrinsic curvature of S, _o embedded in flat

space.

The boundary terms in the hamiltonian read

Hboundary = _2ﬁ ~/Sn_2 (N (k - kO) - Nz (KU - Kh”) Vj) \/aniQ 0
(10.219)

(where Kj; is to be understood as a functional of the hamiltonian
variables h;; and ;. To be specific,

kil = 167G (w”’ - 17rhij> (10.220)
Al 2
This boundary term yields the value of the energy for the gravitational
field. It depends of the foliation chosen as well as on the lapse and
shift which are arbitrary. When the space is asymptotically flat, repre-
senting flat asymptotic coordinates as (T, X*), it is possible to choose
3¢ so that goes into T" = costant. It is clear that

ox® [ Ox®
N - N | — N* . 10.221

” <8T>+ (axz) (10.221)
It is then natural to define the ADM mass associated to a given solu-
tion by choosing a FIDO at rest at infinity, that is, N = 1, N* = 0, so
that

o 0zx“
N (8T> (10.222)

and the flow generates a time translation at infinity. Then

1
M = — lim —/ k—k o|ld¥ 20 10.223
- ( 0) /o] ( )

R—oo 3G

e Let us compute the ADM mass for the four-dimensional Schwarzschild’s
spacetime,

— r2d03 (10.224)

ds? = (1— TS) a2 —
T

Let us choose ¥; to be really the surfaces of constant Schwarzschild
time. Then the unit normal is given by

1_1s
T

1
n® = ————(1,0,0,0) (10.225)
1_7rs
T
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The induced metric in > is

dr® 4 r2dQ3 (10.226)

hijda'dz! = 7=
-

The boundary S = 0% is again the two-sphere r = R, and the unit

normal is 5
rs
- — 10.227
v r Or ( )
The induced metric is
oapd0?d0® = R2d02 (10.228)

The extrinsic curvature reads

a 1 3 \/ 1 - TTS T2 TS
k= Van = ﬁaz ‘h‘l/ = 7“2 87« \/7 1— 7 =
1—1Is

2 rg
2 1_Ts 10.229
7 7 ( )
On the other hand ) 5
2 _
It is then a fact that .
S
k— ko~ ~h2 (10.231)
so that )
M =—4 =M 10.232
ADM = o= 4TS (10.232)

This is actually the reason why we have defined rg = 2GM.

e The ADM mass does not capture the mass loss due to radiation. In
order to do that, it is necessary to choose the boundaru at null infinity,
instead of at spatial infinity. The corresponding mass is called the

Bondi mass .

B 81rG V—+00

where the retarded time has been defined as usual

Myonai = (k — ko) (10.233)

u=t—r (10.234)

and the advanced time
v=t+r (10.235)
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Let us work this out explicitly in an example [23] . Consider the source

1 dM(u)

Tow=———
e A7Gr?  du

lals (10.236)
where now v is the null Schwarzschild coordinate

u=t—r—rglog (: — 1) (10.237)
S

and the mass (and also rg(u) = 2GM (u)) depend on w. The null
vector

=0, (10.238)

The matter represented by the energy-momentum tensor as above is
refered to as null dust. The solution of Einstein’s equations is called
the Vaidya metric and reads

2GM
ds? = <1 — G(“)> du® + 2dudr — r*dQ> (10.239)

T

The contravariant metric in the sector (u,r) reads

0 1
gl“/ — (1 B (1 B 2GM(u))> (10.240)

r

Let us consider again the surface 3; where
u + r = constant (10.241)
Its covariant normal reads
ng ~ (1,1) (10.242)

so that the normal vector

2GM
n~(g"+g",g"+4g") = <1, — (u)) (10.243)
Normalizing
" — IS (3u + 2GM(“)3T) (10.244)
1+ 2GM (u) T

r

The induced metric in ¥ is obtained by substituting du = —dr, so that

2GM
ds® = — (1 + GT(“)) dr? — r2dQ? (10.245)
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The boundary 0% is just the sphere » = R. The normal is

;ﬁ (10.246)
14 2GM (u) Or

N
Il

r

The extrinsic curvature reads

h=Vpfte— 2 2 (1 _GM@) ) (10.247)

o 2G M (u R R
Ry/1 + 2601w

The indiced metric on the boundary is just

ds* = —R%dQ? (10.248)

The extrinsic curvature of a surface of the same intrincic geometry,
only that embedded in flat space is

= —0,(r%) (10.249)

_2
R
so that

_2GM(u)

If we integrate now on spatial infinity R — oo, this means that we
keep t = u + r constant, so that u ~ —R — —oo. This means that

Mapy = M(u=—R) (10.251)
If we integrate now on null infinity v — oo, while w is kept fixed, then
Mp = M(u) (10.252)

the mass function.
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Figure 10.1: The spacetime cylinder with the two caps.
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Conformal Infinity.

We have alredy witnessed some concrete examples of Weyl mappings when
studying spaces of constant curvature. The main idea of Penrose’s conformal
infinity is to perform a Weyl transformation of the metric in such a way thet
Q) ~ 0 at physical infinity. In that way, in a sense, infinity is brought up at
finite distance. Let us work this out in detail for flat Minkowski spacetime.
In cartesian coordinates and in terms of proper time the geodesics are linear

functions
TH — xg =uts

where
u? =4+1,0

for timelike, spacelike or null geodesics. This means that
r=|idls = us

Now for future-directed timelike geodesics

ud

—>1
U

whereas for past-directed timelike geodesics

u0

— < -1
U

We start from

N2
ds? = di? — dr? — 12d92 = dudv — " 4“) 402

where we have defined the null coordinates

u=t—r

v=t+r

211

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

(11.6)

(11.7)
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with

—o0 < u,v < 400
v—u>0

Let us now perform a Weyl rescaling with

0% = 4
T A+ a1+ D)
Then
7.2 4 (u —v)? 2
ds = dudv — dQ)
T T A+ )1+ T w1+ )
Now define
u=tgp
v =1tgq
with
e p<g< D
g =P=1=75
Then

ds® == 4dpdgq — sin? (p—1q) dQ% =dT? — dR? —sin® R dQ%
with

T=p+q
R=qg—p
and that range of the new coordinates is
—nm<T<m

O0<R<nm
7 <T-R<mT

(11.8)

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)

Minkowski space in these coordinates is just a piece of Eisntein Static Uni-

verse (ESU) which is just R x S3, and the coordinates there

-0 <T <
0<R<2rm (11.16)
All future-pointing timelike geodesics are such that
thr s o0 . wv— oo S pg— = o T w&R—0 (11.17)

2
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The point (7',0) is then the future timelike infinity, I'". The limit when
r — oo of future-directed timelike geodesics obey

0
(u,v):tir:(%il)r—ﬂm (11.18)

This means that (p,q) ~ 5 or else that T~ 7, R ~ 0.
In a similar way, we define the past timelike infinity, I~ as the point
(I'=—m, R =0). In this case
w0
(u,v) =(— £ 1)r~ —c0 (11.19)
u

so that (p,q) ~ —3, that is, '~ —7 and R ~ 0. The spacelike infinity 19 is
the point (T'= 0, R = m). Spacelike geodesics are such that |ug| < u; then

ttr=(2L 4+ 1)~ +co (11.20)
u
then
—7r ™
T T 11.21
T (11.21)
so that
T~0 R~ (11.22)

Finally, null geodesics obey |u’| = u. Then for future directed geodesics
t+1r ~ o0 (11.23)

and for past directed ones
t—r~—00 (11.24)

On the other hand, for future directed

t—r=ty—r1o (11.25)
and for past directed ones

t+r=to+1o (11.26)

Then in the future-directed case

T
4=5 P=Po (11.27)
so that - -
TG +m R=g-po T+T=n (11.28)
and in the past-directed case
T
P=-5 4= (11.29)
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so that r T
T:—§+q0 R:§+q0 R-T=n (11.30)

The line T + R = 7 is the future null infinity, 7+, and the line R —T =7
is the past null infinity, J .

Hawking and Ellis characterize a spacetime (M, g) as asymptotically sim-
ple provided there is another manifold (M, g) such that

e The physical manifold M is an open submanifold of M with smooth
boundary, OM.

e There exists a real function Q on M such that G = Q2gW on M.
Besides, 2 =0 and V,Q # 0 on OM.

e Every null geodesic has two endpoints on M
e R,, =0 near OM.

This definition is however too restrictive. It is conveniene to define weakly
asymptotically simple spaces when these conditions hold in a neighborhood
only.

11.0.1 Spinor approach
It is a fact of life that

Uapep = Yapep
-1 L1 ,
A=02A - ZQVCC/VCC Q-+ 5VCC,QVCC 9)
apap = Papap + Q' Vi Vp)pQ (11.31)

It can be also shown through Einstein’s equations [26] that if the matter
fields fall off fast enough near OM, namely

T, = O(0%) (11.32)

then the conformal boundary M is null.
Another easily proved fact is the following. If 7}, vanishes in a neigh-
borhood U of 7, then
Vapcp = 0(Q) (11.33)

The so-called peeling theorem gives information on the rate of falling-off (at
infinity) of different physical quantities when reaching the boundary.

Consider a null geodesic 4 in M reaching J at a point p. Call v the
corresponding geodesic in the physical space-time M. Choose a spin basis
(o,1) at a given point of «, so that [ is tangent to 7 at this point. Then we
propagate the spin basis in such a way that

Do =D =0 (11.34)
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Let us further define the parameter r in such a way that

, d
D =04V 0= — 11.35
oo AA dr ( )
There is a cartain latitude in choosing the Weyl transformation of the spin

basis. It can be used [26] to set at the point p

F=0 (11.36)
as well as 40
DO=-—"=1 11.37
o ( )
The fact that 3
D=Q7D (11.38)
implies that near J
r~ Q7! (11.39)

The peeling theorem proper states that the gravitational field far from an
isolated source can be written as

V) )

Vapcp = - +0(r™?) (11.40)

r2 I
If we assume that the energy-momentum tensor falls off even faster,
namely

T, = O(Q%) (11.41)

then it is possible to choose the residual gauge freedom in € in such a way
that on J
Vang =0 (11.42)

and besides, ¢ be covariantly consnat, again on J
Vata =0 (11.43)

To summarize, all the NP connection scalarsa can be made to vanish on 7,
except o, which then contains all the dynamical information on gravitational
radiation. It can be shown to obey

Do =0 (11.44)
The Einstein’s equations imply

<I>00 = —00

<I>01 = —do

<I>02 =—-Ac

O =A= (11.45)
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The component o9 = —Ag is the famous Bondi news function.

Let S be a cut of J. This means that S is a spacelike 2-surface in J
orthogonal to the generators of J. Then there exists another null surface
>.s which contains S and whose generators are orthogonal to S. Then we can
define a spinor field o on S such that I* = 0454’ is tangent to the generators
of ¥g, and, besides, o4¢* = 1. This is the Bondi system based on that cut.
Althoug the cuts are locally euclidean, they are topologically So. From

ds* = —dz® — dy? = —dzdz (11.46)

Making the stereographic projection

: 0
z = e cot B (11.47)
reads N
gs? =~ +4Z’Z) Q2 (11.48)
Under a Mobius transformation
. az+b
= (11.49)
(with ad — be = 1).
It follows
5 1 (42
d3dz = dzdz = dQ; =
ez lcz + d|* e Aez+d) 2
N2
L+2z) cz+d? + |az +b2)°  ~
= 7( . ) a0 = ( 4|‘cz+‘d’4 ) Q3 (11.50)
Ergo
o (1+22)

= dQ3 = K2d03 11.51
2T (jez 4+ dP? + Jaz +bP2)? 7 ? (11.51)
If we want the theory to remain scale invariant, we better compensate this
by imposing

dio = Kdu (11.52)

that is
=K (u+a(z,z2)) (11.53)

This set of transformations constitute the Bondi-Metzner-Sachs (BMS) group.
The largest proper normal (invariant under conjugation) subgroup is the su-
pertranslation group, S

=u+a(z2z)
P (11.54)

>

N>
Il
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This is so that

Mobius ~ SL (2,C) = BMS/S
where

(11.55)
An interesting subset of the supertranslations is the translation sobgroup, T

A+ Bz+ Bz z
a=2F et f—i—sz (11.56)
1422
In Minkowski space-time, defining
i 4
¢ =e€'? cot 3 (11.57)
we find
(¢+¢)
xr=rr —
1+¢¢
e C
1+¢¢
C—1
r —
1+¢¢
¢ 12
N\ 2 = (1’ + Zy) 4T
(1+)
(11.58)
Under an ordinary translation
at — ot +at (11.59)
r—>7‘+%—|—... (11.60)
This means that
u—>u—|—a—@+ =u+ag— X
0 . RS 0 15 CE
x (a1 (c+§) +iag (c-&) n (45—1) CL3> Y. (11.61)
This belongs to 7 with

A=ag+as
B =a; —iay

C=ap—as

(11.62)

To summarize, there are many Poincare groups at J contained in the
BMS group, namely one for each supertranslation which is not a translation.
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A spinor 7 is said to ba strongly asymptotically constant in M when-
ever both TAOA and TALA are regular at J and besides, it obeys at J the
asymptotic twistor equation

VY (atp) =0 (11.63)

where 7 =7
. . . / . . .
Besides determining a null vector t* = 774" this spinor determines a
symmetric two-spinor
1

PAB = 3 (T(AVC, B)7_—C’ — ’I_'C/VC, (ATB)) (11.64)

which in turn determines a two-form
Fu =€ap¢ap + €apdarp (11.65)

Consider now a null hypersurface ¥ extending to J, and call Sq C ¥ the
two-dimensional 0 surface 2 = C. Define a null tetrad such that I* is tangent
to the generators of ¥, n* is orthogonal to Sq and m and m span T'(Sq).
Then

Q) = / Foulin’dS (11.66)
Sa
It can be shown that
lim () (11.67)
Q—0

exists and defines the Bondi energy through

1= Pit,|, (11.68)
It can also be shown that the Bondi mass is given by
1
Mp = -3 / (09 + sA5) ds (11.69)
where
Wy ~ W03 4 .. (11.70)
and
o~ s (11.71)

Using that, it follows that Mp is positive and non-decreasing.



12

Gravitation and quantum
field theory: The Big Picture

There are many obvious issues when considering quantum gravity, by which
we mean some unknown quantum theory that in the classical limit reduces
to GR.

For example, one of the basis of quantum field theory (QFT) is mi-
crocausality, the statement that field variables defined at points spacelike
separated should commute. Also the canonical commutators are defined at
equal time. It is plain that these concepts make sense in a fixed gravitational
background at best; and even then with caveats when horizons are present.

In a similar vein, any attempt to write a Schrédinger equation for the
gravitational field must face the fact that there is no natural notion of time in
GR, even classically. The Wheeler-DeWitt equation is obtained by interpret-
ing the hamiltonian constraint as an operator equation by substituting the
canonical momenta by functional derivatives. It is similar to the Schrédinger
equation, except precisely for the absemce of time. It has been repeteadly
conjectured ([?] cor a review) that such a time cam appear when a WKB
type of semiclassical approximation is performed on the Wheeler-DeWitt
equation, but this has not been properly substantiated.

Some people try to apply the canonical approach to a clever set of vari-
ables introduced by Ashtekar. Those variables are related to the spacetime
metric in a complicated way. It is unclear how this approach is related to
the classical regime at all. This whole approach is dubbed loop quantum
gravity, because a loop representation is useful to understand some aspects
of the corresponding Hilbert space.

It think it is fair to say that the results obtained so far from the canonical
approach are quite modest.

Were we inclined to use the functional integral to define transition am-
plitudes from one three-dimensional metric on a given three-dimensional
manifold ¥;, say h; to another three dimensional surface ¥; with its corre-

219
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sponding metric hy, something like
K [hi,hy] = / Dge'SeH(9) (12.1)

where the integration is performed over all metrics defined on a four-dimensional
domain D such that
oD =Y, - % (12.2)

We have to face several ugly facts. First of all, the gravitational action is
not positive definite, even with the euclidean signature. The loop expansion
is not then justified by any sort of saddle point expansion. Even worse,
the set of four dimensional manifolds is a complicated one. Kolmogorov
has shown that the problem of classifying four-dimensional geometries is
an undecidable one. Given any two four-dimensional manifolds, there is
no set of topological invariants the can decide when the two manifolds are
diffeomorphic. The problem lies mainly with the first fundamental group,
m1(M). It does not seem the case that there exists any justification for
restricting the functional integral to any subset of manifolds.

Were the spacetime geometry to fluctuate we would have to build anew
all our ideas about QFT, which we understand when defined in flat space
only, and even there we miss non-perturbative effects known to be important.

Another issue is the following. Assuming that the symmetry group of
the quantum theory is still Diff invariance, what are the observables? There
are not many of those. For a fized manifold, integrals of n-forms are Diff
invariant objects, but there are not many of those.

The preceding difficulties did not deter physicist to work on quantum
aspects of gravitation. Besides many long and inconclusive discussions of
the basic points, to be discussed later, such as what are the observables
of the theory, the manin breakthrough was made by ’t Hooft and Veltman
employing techniques invented by deWitt and Feynman. What is computed
are the quantum fluctuations around an arbitrary background, gos(z), which
can be any solution of Einstein’s EM. General relativity is considered in this
treatment as an ordinary gauge theory, forgetting about all questions of
principle. Actually the calculation is usually done with euclidean signature,
making an appropiate analytical continuation at the end of the procedure.
Particularly easy is the computation of the divergences of the effective action,
which must be eliminated in the renormalized theory. In this computation
beautiful mathematical techniques can be employed. The propagator is
assumed to be however well-defined for a generic background metric, which
is a delicate assumption in the presence of horizons and/or singularities.

It is doubtful whether we can assert some proposition about quantum
gravity with some confidence.

1 In order to understand the sequel, the reader is assumed a working knowledge of
quantum field theory (QFT) at a graduate level, up to and including, Feynman’s path
integral approach.
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The tree level estimate for the cross section for production of gravitons
in particle-antiparticle annihilation is of the order of the inverse of the mass
scale associated to this problem whichjust by sheer dimensional analysis is
Planck’s mass, which is given in terms of Newton’s constant, G by

he
\|=—= ~ 10" 12.
e 0GeV (12.3)

If we remember that 1 GeV (= 10° MeV) is the rough scale of hadronic
physics (the mass and inverse Comptom wavelength of a proton, for exam-
ple), this means that quantum gravity effects will only be apparent when
we are able to explore concentrated energy roughly 10 times bigger (or
an scale distance correspondingly smaller; these two statements are sup-
posed to be equivalent owing to Heisenberg’s principle). To set the scale,
the Large Hadron Collider works roughly at the TeV (= 10% GeV') scale, so
there is a long way to go before reaching expected quantum gravity effects
in accelerators.

myp

In terms of the cross section, this yields up to numerical factors of order
unity
o~ 12 ~107% em® ~107%0 fm? (12.4)

This is more or less 40 orders of magnitude smaller than typical nuclear
reactions.

There are however some interesting experimental facts such as the ones
reported in [5]. Free fall of neutros has been reported there. Also there
interference effects due to the Earth’s classical gravitational field on a neu-
tron’s wave function are reported. The experimental apparatus is a neutron
interferometer. The phase shift between the two different paths is given by

N 27Tmf,lgAh

7 (12.5)

where [ is the common horizontal span of the paths and Ah is the difference
in height. There are some more contributions in the actual experiment and
the precision is not too big. Nevertheless the effect seems clear. It is not
clear however what is its meaning with respect to the relationship between
gravitation and quantum mechanics. More recently [17] experimental evi-
dence for gravitational quantum bound states of neutrons has been claimed.

If we want to get direct experimental information of quantum gravita-
tional effects, we have to turn our attention towards Cosmology, or perhaps
look for some clever precision experiment in the laboratory. Lacking any
experimental clue, the only thing we can do is to think and try to look for
logical (in)consistencies.

It has been repeatedly argued by many particle physicists that the prac-
tical utility of the answer to this question will not presumably be great.
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How would we know for sure beforehand?. There has always been a re-
current dream, exposed vehemently by Salam [?] that the inclusion of the
gravitational interaction would cure many of the diseases and divergences
of quantum field theory, through the inclusion in the propagator of terms of
the type

1

‘"LQCL‘Z

(& P

So that for example, the sum of tree graphs that leads to the Schwarzschild
solution as worked out by Duff [?]
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would get modified to
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shifting the location of the horizon and eliminating the singularity at r = 0.
Nobody has been able to substantiate this dream so far.

Ay ant rate quantum gravity is nevertheless a topic which has fascinated
whole generations of physicists, just because it is so difficult. There seems
to be a strong tension between the beautiful, geometrical world of General
Relativity and the no less marvelous, less geometrical, somewhat mysterious,
but very well tested experimentally, world of Quantum Mechanics.

As with all matters of principle we can hope to better understand both
quantum mechanics and gravitation if we are able to clarify the issue.

The most conservative approach is of course to start from what is al-
ready known with great precision about the standard model of elementary
particles associated to the names of Glashow, Weinberg and Salam. This
can be called the bottom-up approach to the problem. In this way of thinking
Wilson taught us that there is a working low energy effective theory, and
some quantum effects in gravity can be reliably computed for energies much
smaller than Planck mass. There are two caveats to this. First of all, we
do not understand why the observed cosmological constant is so small: the
natural value from the low energy effective lagrangian point of view ought
to be much bigger. The second point is that one has to rethink again the
lore of effective theories in the presence of horizons. We shall comment on
both issues in due time.

There is not a universal consensus even on the most promising avenues
of research from the opposite top-down viewpoint. Many people think that
strings [?] are the best buy (I sort of agree with this); but it is true that after
more than two decades of intense effort nothing substantial has come out of
them. Others [?] try to quantize directly the Einstein-Hilbert lagrangian,
something that is at variance with our experience in effective field theories.
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But it is also true that as we have already remarked, the smallish value of
the observed cosmological constant also cries out of the standard effective
theories lore.

It is generally accepted that General Relativity, a generally covariant the-
ory, is akin to a gauge theory, in the sense that the diffeomorphism group of
the apace-time manifold, Dif f(M) plays a role similar to the compact gauge
group in the standard model of particle physics. There are some differences
though. To begin with, the group, Dif f(M) is too large; is not even a Lie
group. Besides, its detailed structure depends on the manifold, which is a
dynamical object not given a priori. Other distinguished subgroups (such as
the area-preserving diffeomorphisms) are perhaps also arguable for. Those
leave invariant a given measure, such as the Lebesgue measure, d"z.

It also seems clear that when there is a boundary of space-time, then
the gauge group is restricted to the subgroup consisting on those diffeo-
morphisms that act trivially on the boundary. The subgroup that act not-
trivially is related to the set of conserved charges. In the asympotically
flat case this is precisely the Poincaré group, SO(1, 3) that gives rise to the
ADM mass.

In the asympotically anti-de Sitter case, this is presumably related to
the conformal group SO(2, 3).

It is nevertheless not clear what is the physical meaning of keeping con-
stant the boundary of spacetime (or keeping constant some set of boundary
conditions) in a functional integral of some sort.

A related issue is that it is very difficult to define what could be observ-
ables in a diffeomorphism invariant theory, other than global ones defined
as integrals of scalar composite operators O(¢4(z)) (where ¢g,a = 1... N
parametrizes all physical fields) with the peudo-riemannian measure

(@) E/\/@d%?O(qﬁa(x))

Some people claim that there are no local observables whatsoever, but only
pseudolocal ones; the fact is that we do not know. Again, the exception
to this stems from keeping the boundary conditions fixed; in this case it is
possible to define an S-matrix in the asymptotically flat case, and a confor-
mal quantum field theory (CFT) in the asymptotically anti-de Sitter case.
Unfortunatelly, the most interesting case from the cosmological point of
view, which is when the space-time is asymptotically de Sitter is not well
understood.

Incidentally, it is well known that the equivalence problem in four-
dimensional geometries is undecidable [?]. In three dimensions Thurston’s
geometrization conjecture has recently been put on a firmer basis by Hamil-
ton and Perelman, but it is still not clear whether it can be somehow im-
plemented in a functional integral without some drastic restrictions. Those
caveats should be kept in mind when reading the sequel.
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A radically different viewpoint has recently been advocated by Gerardus
't Hooft by insisting in causality to be well-defined, so that the conformal
class of the space-time metric should be determined by the physics, but not
necessarily the precise point in a given conformal orbit. If we write the
spacetime metric in terms of a unimodular metric and a conformal factor

G = w? (:1:)?]#,,

with
det g, =1

then the unimodular metric is in some sense intrisic and determines causality,
whereas the conformal factor depends on the observer in a way dictated by
black hole complementarity.

Finally, there is always the (in a sense, opposite) possibility that space-
time (and thus diffeomorphism invariance) is not a fundamental physical
entity in such a way that the appropiate variables for studying short dis-
tances are non geometrical. Something like that could happen in string
theory, but our understanding of it is still in its infancy.

On the other hand, it has been speculated that quantum gravitational
effects can tame the infinities that appear in QFT yielding a finite theory
eventually. Some arguments in favor of this (first proposed by the inventors
of ADM) are as follows. The self-energy of a body of radius € and mass m
and charge e which in newtonian theory reads

e? Gm?

m€=m+%— %

(12.6)

It diverges in the pointlike linit € — 0. The only modification borne out by
GR was shown by ADM to be the replacement in the second member of my
by m.

2 2
c _Gme (12.7)

8me 2e
Solving the quadratic equation yields

_11\/1+26G (m—l—;;)] (12.8)

which has a finite limit when ¢ — 0 namely

€
Me = —

e2

4G

mo = (12.9)
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12.1 The Unruh effect

Before entering the subject matter as such it seems then only appropiate to
dwell for a while in a subtle effects due to the non-inertial character of a
observer, still in a flat background. By the equivalence principle, this ought
to be related to a gravitational field. We are talking of the Unruh effect
[?][27] that although was discovered after Hawking predicted the black hole
thermal emission, is in fact logically simpler and independent.

Let us consider the trajectory of an accelerated observer in two dimen-
sional flat space

t = —sinhar
a
1

x = —coshart (12.10)
a

This is such that the four-velocity is given by

u = (coshav' , sinh a7'> (12.11)
normalized to
u? =1 (12.12)
and the acceleration
u=a (sinhaT , cosh aT> (12.13)
obeys
a® = —1
a.u =0 (12.14)

In comoving coordinates, id est, adapted to the four-velocity,

0
= 12.15
56 (1215)
the worldline of the accelerated observer is
Q) =7
(r)=0 (12.16)
In general
agl
t=° sinhat® = psinh w
!
xr = coshat® = p cosh w (12.17)
a
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so that the value of the coordinate ¢! (or p) tells us which hyperbola we are

talking about
e2a§1
2 -2 = —— = —p? (12.18)

In terms of these coordinates the Minkowski metric reads
ds? = di? — da® = > (g — de}) = pPdw? — dp? — 2% (12.19)
‘When

—00 < ¢ <00
—00 < ¢ <o (12.20)

only one quarter of the original Minkowski space has been covered, namely
the one corresponding to
It| <z (12.21)

This is called Rindler’s wedge or Rindler space. The lightcone plays the role
of the event horizon.
Let us now consider an scalar field

o forne (8- () -3 e () - () -

1 1
5 | podedas (50,0 = @0~ (020)°) (12.22)
The hamiltonial reads
H= % / plpdusde . (7 + (0,0)° + (9.6)?) (12.23)

We can use lightcone coordinates
rTr =tttz (12.24)

as well as
X+=¢604¢ (12.25)
The full solution of the classical equations of motion
0? 0?
8m+8x*¢ T OXTOX-

=0 (12.26)
is a combination of rightmoving, positive frequency modes such as
fhw)=e ™ = e~ w(t=2) (12.27)

and their complex conjugates, wich are negative energy left movers.
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It is worthwile to stop a while to think on the reason why we say that it
is rightmoving. It is because

kff = —i~—f} = wff (12.28)

The reason why we say that it also enjoys positive frequency is because

afh = szR =wfy. (12.29)

The plane waves ‘
gi(zh) = emiwrt (12.30)

are left-moving, positive energy solutions.

The general classical solution can be expanded in a sum of a Fourier
series for the left movers and a corresponding series for the right movers.
We split the series in fr, fr, g1, 9] considering that

0<w< oo (12.31)

We could as well suppress the complex conjugate basis functions and inte-
grate from

— 00 S W< 00 (12.32)
o= /oo dw (w)eiiwm_ 4 a;(w)eiwx_) + (aZ (w)e*i“’ﬁ I az(w)ei‘”ﬁ))
(12.33)

We could also say the corresponding solutions
FE(Q) = e % (12.34)

are right-moving positive frequency with respect to the new space and time
coordinates (€0, &%)
The relationship between the two light cone coordinates is given by:

T = _le—aX_
a
1
gt = ZemX" (12.35)

We then have a different expansion

%0 dQ - —iQX QX - —i i
6 = /0 Ner ((ba(@)e™™ ™ + 5™ ™) + (b (Ve X" 4 bf () ™X7))
(12.36)
We are then tempted to write the field operator

‘%)

/(f ﬁ% ((ant@)e™™ +ap)e ) + (an@)e™ +af(w)e)) =

| i

br()e ™ b)) + (bo(@)e X" + bF (@)X [}2.37)
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where the operators obey canonical commutation relations

[@(w) R, a" ()R] = 6 (w — )
(R, b (V)r] =0 (2 — Q) (12.38)

a
b

and so on.
e We now define the Minkowski vacuum state by the condition
agp(w)|0p) =0 (12.39)

It is clear that this is the vacuum whose excitations would measure an
inertial observer. The Rindler vacuum instead will be defined by

br(w)|0R) =0 (12.40)

and this is the ground state for excitations measured by the accelerated
observer.

e Assuming that the Minkowski vacuum is a physical state, the Rindler
state requires an infinite energy to be prepared: It can be checked
from the expansions that

o) 0¢ 06 09
0|7,-,-10 0 Or 0 12.41
(01T, 510} ~ (Ot 5~ [00r) = (Onl o l0R)  (1241)
This yields
2 N ~ ~ ~
8¢ 8¢ 0X~ 8¢> 8¢ 1 op 0¢
0 0 — | Ogp|z=—=10 0 0
(12.42)
which is expected to diverge at the future horizon £~ = 0.
In a completely analogous way we would have shown that
(0| T+ 4+ 10) (12.43)
are expected to diverge at the past horizon, 27 = 0.
e It is clear that we can Fourier expand one set of modes in terms of the
other:
+ X~ > wa > +
Fi (@ = = [~ dwp)e = = [T dw (p(w) 1) + p(—) (o)
(12.44)
with
_ dax™ —iQX ™ iwxT __ dax™ wx - % _
p(w) = 5 ¢ e = | 5 (—ax™)* =

; i Q 1 - Q
¢ (a) 1B (1 + Z) = — 6226 Slogwl'\ ( )(1245)
2w \iw a 2w a
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We also have

) = e = [~ ana@)e ™ = [7dQ (() Fr() +2(-2) Fa(@) =

/ dQ\/g Q) Fp — *(Q)FL) (12.46)

where this last notation has been introduced with an eye for the Bo-
goliubov transformation that will appear in a moment, and

© dX— . ox— 0 da= 1 A —iQ

Q) = —twz~ 10X :_/ P 7V AR S
W)= [ G [ e (—ar)
B L ey = [T (z‘ta)—ii’:

0 2may 0 27rat w

1 wQ Q
— € 2a 17 lOg wF (— > 1247
27?(16 e Za ( )

This clearly implies that

27

(@) = e |3 (12.48)

e There is a Bogolyubov transformation relating both sets of creation
and destruction operators. Symbolically, the change of basis we have
just done yields

¢~ ar(aF — B F*) + af (o F* — BF) + left =
> brF +bLF* + left (12.49)

In gory detail,
br(Q) = /0 o (0guir(w) — fouih()) (12.50)

The canonical commutation relations do imply that (suppressing carets
over operators from now on)

[/OOO duwy (O‘tha(wl) - Bﬂl,w1a+(wl)) a/dw2 (O‘?Zz,wza(wQ) - ﬁ;‘)%ma*—(wg))} =0 (-

/dw (0,000, — BwBiw)

which is a normalization condition for Bogoliubov’s coefficients. It
implies, in particular, that

w0
/dw || —IBQwI —6 /dw 2,1 - |ﬁgw| (12.52)

0s) =

(12.51)
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The expectation value of b-particles in the Minkowski vacuum will be
<OM‘NQ = bng|OM> =

(O] /dw1 (aawlajj - 5Qw1aw) /de (Oémzaw - BQMGI) |0ar) = /dw|ﬁm|2 =

1 1
—zma——0(0) ~ gV (12.53)

ea —1 ea —1

where V' has to be interpreted as the volume of space. These massless
particles detected by the accelerated oberved in the Minkowski vacuum
obey the Bose-Einstein distribution at a temperature

y— (12.54)
2

This is the Unruh temperature. In order to get to a temperature of
T=1~10erg ~10719MeV (12.55)
and given the fact that the gravitational acceleration at earth is
g~ 10ms 2 ~ 1072 MeV (12.56)

the corresponding acceleration necessary to raise the temperature a
miserable degree is
a~10"%g (12.57)

The possibillity of its detection in storage rings has been advanced
by Bell and Leinaas. More recently, a proposal was put forward by
Chen and Tajima [6] of detecting Unruh radiation with the help of
ultra-intense lasers. It seems however that we have to wait somewhat
before getting experimental confirmation of such an effect.

In the full Minkowski space there is a correlation for example, between

(Ot [2)b(t, —[2])) ~ ‘xﬂ (12.58)

which is not observable bt the Rindler observer. Let us now define,
again in Minkowski space at t = 0

oLt z) = o(t,x) (z<0) (12.59)

This a different meaning of the subscripts L and R than the one for-
merly used. Clearly a general wave function depends on both ¢, and
PR-

(oL, dr) (12.60)
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The Rindler observer will associate a density matrix, pr to the Minkowski
vacuum. We know that

lor:py] = PR, p2] = PR, HE] = 0 (12.61)

We can write

(oL, or) = / Doe"F (12.62)

where we integrate over all fields with ¢ > 0 sith that

¢(t =0) = (¢r,9R) (12.63)

Invariance under time translations (boosts)
Sw=C (12.64)

becomes rotation invariance in the euclidean action. The generator of
such rotations is precisely the Rindler hamiltonian. The wave function
can be computed by performing a full rotation of 7 radians; that is
determining the transfer matrix from ¢g to ¢, which is proportional
to

V(o ér) = [ Doe™" = (prle " o) (12.65)
Now
pr(PR, dR) = /DQSL‘II(CZ)L,d’R)‘IJ*(QSLaCZ)R)\Ij(QSLaCZ);%) =
/ Doy (drle ™ R|1) (dle ™R |¢) =
= (prle>™7|¢R) (12.66)
so that
pr ~ e 2™HER (12.67)

and the Unruh temperature is given by
Tr = — (12.68)

Clearly a FIDO would observe a temperaure

a 1
Th=—=— 12.69
B~ o 2mp ( )

although a FREFO would observe no temperature at all.

Imagine a vacuum fluctuation around the origin in Minkowski. From
the Fido point of view the fluctuation appears at w = —o0, p ~ 0 and
disappears at w = +00, p ~= 0, so that it lasts an infinite time and it
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is not virtal at all. The horizon behaves as a hot membrane emitting
and absorbing thermal energy.

The correct boundary condition to be imposed in QFT on Rindler
space, which has a boundary at p = 0, is at a given cutoff, p = ¢, an
effective stretched horizon is kept at a constant temperature

1
T=— 12.
2me ( 70)

by a heat reservoir.

There is a host of possible vacua in Schwarzschild as classified by
Candelas [?]. Define Kruskal coordinates as

T r t
\/— —1e%s sinh —
Ts 2rg

V=
uz,/ﬁ—lei coshi
Ts 27,
U=v—u
V=v+u (12.71)

e The Boulware vacuum |B). It is defined by requiring normal modes to
be positive frequency with respect to % It is pathological at the hori-
zon, in the sense that the expectation value of the energy-momentum
tensor evaluated in a freely falling frame diverges as r — r;.

e The Unruh vacuum |U). Defined by taking modes that are incoming
from J~ to be of positive frequency with respect to %, while those
that emanate from the past horizon are taken to be positive frequency
with respect to U. (T) is regular in the future horizon but not on the
past horizon. At infinity this corresponds to an outgoing flux of BB
radiation at T.

e The Hartle-Hawking vacuum, |H H). Defined by taking incoming modes
to be positive frequency with respect to V' and outgoing modes to be
positive frequancy with respect to U. It corresponds to an unstable
equilibrium with an infinite sea of BB radiation.
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Gravitation and Quantum
Field Theory: Poor man’s
approach.

13.1 The Effective Lagrangian Approach to Quan-
tum Gravity

But if our previous experience with the other interactions is to be of any
relevance here, there ought to be a regime, experimentally accessible in the
not too distant future, in which gravitons propagating in flat spacetime can
be isolated. This is more or less unavoidable, provided gravitational waves
are discovered experimentally, and the road towards gravitons should not be
too different from the road that lead from the discovery of electromagnetic
waves to the identifications of photons as the quanta of the corresponding
interaction, a road that led from Hertz to Planck.

Any quantum gravity theory that avoids identifying gravitational radia-
tion as consisting of large numbers of gravitons in a semiclassical state would
be at variance with all we believe to know about quantum mechanics.

What we expect instead to be confirmed by observations somewhere in
the future is that the number of gravitons per unit volume with frequencies
between w and w + dw is given by Planck’s formula

n(w)dw = Cu—;dw

-
7726%—1

It is natural to keep an open mind for surprises here, because it can
be argued that gravitational interaction is not alike any other fundamental
interaction in the sense that the whole structure of space-time ought presum-
ably be affected, but it cannot be denied that this is the most conservative
approach and as such it should be explored first, up to its very limits, which
could hopefully indicate further avenues of research.

233
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From our experience then with the standard model of elementary parti-
cles, and assuming we have full knowledge of the fundamental symmetries
of our problem, we know that we can parametrize our ignorance on the
fundamental ultraviolet (UV) physics by writing down all local operators in
the low energy fields ¢;(x) compatible with the basic symmetries we have
assumed.

A (A"
I — Z‘; /(Xn) O(n+4) (sz)

Here A is an ultraviolet (UV) cutoff, which restricts the contributions of
large euclidean momenta (or small euclidean distances) and A, (A) is an
infinite set of dimensionless bare couplings.

Standard Wilsonian arguments imply that dirrelevant operators, corre-
sponding to n > 4, are less and less important as we are interested in deeper
and deeper infrared (IR) (low energy) variables. The opposite occurs wuth
relevant operators, corresponding to n < 4, like the masses, that become
more and more important as we approach the IR. The intermediate role is
played by the marginal operators, corresponding to precisely n = 4, and
whose relevance in the I R is not determined solely by dimensional analy-
sis, but rather by quantum corrections. The range of validity of any finite
number of terms in the expansion is roughly

E
— 1
A<<

where F is a characteristic energy of the process under consideration.

In the case of gravitation, we assume that general covariance (or diffeo-
morphism invariance) is the basic symmetry characterizing the interaction.
We can then write

1
Lers = 2oA*y/lgl + MAR\flg| + A2R2 + 59779V 61/ lg] +
1 1
255 B0 VadV 500 lgl + Mz B lgl + Aty lgl +

n a As - a
0 (lin® (B = wp) = ) Y+ 5P R (D~ wu) o+ .. (131)
where e is the tetrad, such that
elicki®® = g

1% being Minkowski’s metric. The quantities w,, are the spin connection.
The need to recover General Relativity in the classical IR limit means

3

2 _ - _ 2
MAT = 167G 2M,
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This in turn, means that if
AoA?

is to yield the observed value for the cosmological constant (which is of the
order of magnitude of Hubble’s constant, Hg, which is a very tiny figure
when expressed in particle physics units, Hy ~ 10733 V') then

Ao ~ 10724

This is one aspect of the cosmological constant problem; it seems most
unnatural that the cosmological constant is observationally so small from
the effective lagrangian point of view. I do not have anything new to say on
this.

This expansion is fine as long as it is considered a low energy expansion.
As Donoghue [?] has emphasized, even if it is true that each time that a
renormalization is made there is a finite arbitrariness, there are physical
predictions stemming from the non-local finite parts.

The problem is when energies are reached that are comparable to Planck’s
mass,

E ~ M,.

Then all couplings in the effective Lagrangian become of order unity, and
there is no decoupling limit in which gravitation can be considered by itself
in isolation from all other interactions. This then seems the minimum prize
one has to pay for being interested in quantum gravity; all couplings in
the derivative expansion become important simultaneously. No significant
differences appear when supergravity is considered.

In conclusion, it does not seem likely that much progress can be made
by somehow quantizing Einstein-Hilbert’s Lagrangian in isolation. To study
quantum gravity means to study all other interactions as well.

On the other hand, are there any reasons to go beyond the standard
model (SM)?

Yes there are some, both theoretical, and experimental. From the latter,
and most important, side, both the existence of neutrino masses and dark
matter do not fit into the SM. And from the former, abelian sectors suffer
from Landau poles and are not believed to be UV complete; likewise the
self-interactions in the Higgs sector appear to be a trivial theory. Also the
experimental values of the particle masses in the SM are not natural from
the effective lagrangian point of view.

The particle physics community has looked thoroughly for such exten-
sions since the eighties: extra dimensions (Kaluza-Klein), supersymmetry
and supergravity, technicolor, etc. From a given point of view, the natural
culmination of this road is string theory

A related issue is the understanding of the so-called semiclassical grav-
ity, in which the second memnber of Einstein’s equations is taken as the
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expectation value of some quantum energy-momentum operator. It can be
proved that this is the dominant 1/N approximation in case there are N
identical matter fields (confer [?]). In spite of tremendous effort, there is
not yet a full understanding of Hawking’s emission of a black hole from the
effective theory point of view . Another topic in which this approach has
been extensively studied is Cosmology. Novel effects (or rather old ones on
which no emphasis was put until recently) came from lack of momentum
conservation and sem to point towards some sort of instability [?]; again the
low energy theory is not fully understood; this could perhaps have something
to do with the presence of horizons.

Coming back to our theme, and closing the loop, what are the prospects
to make progress in quantum gravity?

Insofar as effective lagrangians are a good guide to the physics there
are only two doors open: either there is a ultraviolet (UV) attractive fixed
point in coupling space, such as in Weinbergs asymptotic safety or else new
degrees of freedom, like in string theory exist in the UV. Even if Wein-
bergé approach is vindicated, the fact that the fixed point most likely lies
at strong coupling combined with our present inability to perform analiti-
cally other than perturbative computations, mean that lattice simulations
should be able to cope with the integration over (a subclass of) geometries
before physical predictions could be made with the techniques at hand at
the present moment.

It is to be remarked that sometimes theories harbor the seeds of their
own destruction. Strings for example, begin as theories in flat spacetime,
but there are indications that space itself should be a derived, not funda-
mental concept. It is hoped that a simpler formulation of string theory exists
bypassing the roundabouts of its historical development. This is far from
being the case at present.

Finally, it is perhaps worth pointing out that to the extent that a purely
gravitational canonical approach, as the ones based upon the use of Ashtekar
variables makes contact with the classical limit (which is an open problem
from this point of view) the preceding line of argument should still carry on.

It seems unavoidable with our present understanding, that any theory of
quantum gravity should recover, for example, the prediction that there are
quantum corrections to the gravitational potential given by [?]

V(T):_Gmlmg <1+3G(m1—|—m2) 41671)
r 107 r2

(the second term is also a loop effect, in spite of the conspicuous absence
of fi.) Similarly, and although this has been the subject of some controversy,
it seems now established that there are gravitational corrections to the run-
ning of gauge couplings, first uncovered by Robinson and Wilczek and given
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in standard notation by

b() 3 167G 2
Blg,E) = —Wg - SWQE

Sometimes these effects are dismissed as perturbative, and therefore trivial.

This is not a healthy attitude.

Something that can be done is to ignore most of the conceptual problems
of quantum gravity, and treat it as a gauge theory. This is possible because
the action of diffeomorphisms is formally similar to the one of the symme-
try group of an ordinary gauge theory. Locally the fact that the group of
dimmeomorphisms of a given manifold, Diff(M) is not a fixed entity, but
rather depends in a complicated way on the specific manifold considered,
this problem we say if of no concern for our perturbative analysis. All we
alm at is to compute the quantum corrections to the gravitational action
to first order in the coupling constant, x. This was first done in a classic
paper by 't Hooft and Veltman in 1973, as a byproduct of their analysis
of one-loop amplitudes in non-abelian gauge theories. An essential tool of
their analysis is the background field technique, first devised by deWitt, to
which we now turn.

13.2 The background field approach in quantum
field theory.

The main problem in quantum field theory is the computation of the par-
tition function, which is nothing else than Schwinger’s vacuum persistence
amplitude in the presence of an external source, J(x). It is useful to represent
it as a functional integral

Z1J) = Wl = /ng iSI81+i [ J(2)6(x) (13.2)

Where in this formal analysis we represent all fields (including the gravita-
tional field) by ¢(x), and we add a coupling to an arbitrary external source as
a technical device to compute Green functions out of it by taking functional
derivatives of Z[.J] and then putting the sources equal to zero. This trick was
also invented by Schwinger. The partition funtion generates all Green func-
tions, connected and disconnected. Its logarithm, W|[J] sometimes dubbed
the free energy generates connected functions only. These names come from
a direct analogy with similar quantities in statistical physics.

It is possible to give an intuitive meaning to the path integral in quantum
mechanics as a transition amplitude from an initial state to a final state.
This is actually the way Feynman derived it.

In QFT the integration measure is not mathematically well-defined. For
loop calculations, however, it is enough to formally define the gaussian path
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integral as a functional determinant, that is
/ Dt $E9) — dot K3 (13.3)
where the scalar product is defined as

(6, K$) = / d(vol) ¢ K ¢ (13.4)
and K is a differential operator, usually
K = V? + something (13.5)

There are implicit indices in the operator to pair the (also implicit) compo-
nents of the field ¢.

The only extra postulate needed is translation invariance of the measure,
in the sense that

/ Deet (640 K. (943) = / Depei(@ K 6) (13.6)

This is the crucial property that allows the computation of integrals in the
presence of external sources by completing the square.

It is quite useful to introduce a generating function for one-particle irre-
ducible (1-PI) Green functions. This is usually called the effective action and
is obtained through a Legendre transform, quite analogous to the one per-
formed when passing from the Lagrangian to the hamiltonian ion classical
mechanics.

One defines the classical field as a functional of the external current by

¢c[J] = % ?]V([xj)] (13.7)
The Legendre transform then reads
Do = W)~ i [ dw(@)s.(a) (138)
It is a fact that
or n, W 0J(2) gt —i [ drse. (s 0J(2) — iT(x
o) = ] 7 T ey D 1 [ ) 5 ‘ﬁ;g)

The background field technique was invented by Bryce Dewitt as a clever
device to keep track of divergent terms in theories (such as gravity) with a
complicated algebraic structure. The main idea is to split the integration
fields into a classical and a quantum piece:

W,=A4,+A4, (13.10)
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The functional integral is performed over the quantum fields only. where
for an ordinary gauge theory the action has three pieces. First the gauge
invariant piece

Lgauge = —ZFW[W]z (13.11)
with
FL W)= 0,We —0,Wi+g fachgW,f (13.12)

The gauge transformations are

_ 1 . 1
Wt =6 (AL + AL) = — fapew W + SO = — o (A + Az) + SOt
(13.13)

This can be implemented in two ways. First letting the background field be
inert. Those are the quantum gauge

5QAZ =0

. 1
0 AL = — fanew” (Af + A%) + i (13.14)

Those are the transfomations in need of gauge fixing. It is to be remarked
thet gauge symmetry is realized non-linearly on the quantum fields.

It is also possible to reproduce the total gauge transformations through
the classical transformations

. 0 1
Sc Al = — fapew A% + P
S AY = — fapew AS, (13.15)

under which the quantum field transforms as an adjoint vector field.
Currents transform in such a way that

5o / JEAT =0 (13.16)

that is
6J5 = — fapew”J; (13.17)

The beauty of the background field method is that it is possible to gauge fix
the quantum symmetry while preserving the classical gauge symmetry. All
computations are then invariant under gauge transformations of the clasical
field, and so are the counterterms. This quite simplifies the heavy work
involved in computing with gravity.

The simplest background gauge is

FO[A] = 0, Al + gfuc AL AL = (DA ) (13.18)
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L. Abbott was able to prove a beautiful theorem to the effect that the
effective action computed by the background field methos is simply related
to the ordinary effective action

Tpr[AP", Al = T[Ad| g, —asr 4 (13.19)
This means in particular, that
['[A] =Tpr[0,A = A (13.20)

At the one loop order all this simplifies enomoursly. Working in euclidean
space

WA = / Depe— 5191~ ¢K18lo—[ Jo _

o~ S16l—3log det K[9]—3 [ JK~'[4] (13.21)
This means that B
b =K1 [g]J (13.22)
so that -
J = ~K[d] . (13.23)
and

TEF g, 6] = W[J(0)] — / Jbe =

= 5[0+ ylog det K() + 5 [ KooK 'olKo. — [ Koo, =
= S[¢] + %log det K[¢] — % /¢CK¢C (13.24)

Then by Abbott’s theorem

D(6) = T5F(0,6 = 6] = W[g] = S[¢] + Slog det K[9]  (13.25)

The one loop effective action is equal to the background field free energy,
and the background field can be equated to the classical field.
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13.3 Geometric computation of the one loop effec-
tive action.

To one loop order all functional integral computations reduce to gaussian
integrals, which can in turn be formally represented as functional deter-
minants. This is hardly of any advantage when computing finite parts.
Contrasting with that, a geometric approach for computing the divergent
piece of the effective action exist. This approach was pioneered by Julian
Schwinger and Bryce DeWitt.

When breaking the total gravitational field g, (z) into a background part,
Guv () and a quantum fluctuation, hy,(x), we are working in a background
manifold, M, with metric G (), and thereby avoiding most of the problems
of principle of quantum gravity. Quantum gravitational fluctuations are
treated as ordinary gauge fluctuations. This approach was culminated by
the brilliant work of 't Hooft and Veltman, where it was shown that pure
quantum gravity is one loop finite on shell. This is not true any more as
soon as some matter is added. Even pure quantum gravity at two-loops is
divergent on shell, as was shown by Goroff and Sagnotti.

The formalism is such that in order to compute the divergent piece of the
effective action, background gauge invariance can be maintained, so that we
do not commit to any specific background, although we assume that some
such background always exists.

Were we to compute correlators, then the particular Green function ap-
propiate to each background is needed, and then all subtle points associated
witk background horizons and singularities will reappear. The Unruh radi-
ation is the simplest manifestation of these.

It is to be emphasized that quantum Diff invariance is spontaneously
broken in this approach. The background gauge transformations read

59;”/ = gAaA?]uu + 8;15)\@)\1/ =+ aufkgu)\ = ﬁugu + @Vg/i
Shyw = EOhyu + 0 iy, + 0, (13.26)

and the quantum gauge transformations read

5§uv = E)\a)\g;w
Sty = EX O\ + € (G + hr) + 8uE (G + ) (13.27)
Working to one loop order, they simplify to

6§}U/ = 5)\8)\5_7#1/ + auf)\g)\u + 8V£)\§,u)\ = @ugu + @Vfu
6hu1/ = g/\a)\huy (1328)

and to

5§yu = g)\a)\g;w
6h;w = gAaAh;w + a,ug)\gku + 81/5)\.@/0\ (13'29)
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They still act nonlinearly of the quantum fluctuations owing to the inhomo-
geneous term. This physically means that the quantum fluctuations behave
as goldstone bosons of broken Diff invariance.

To study the Diff invariant phase would mean to compute with

Dy = 0 (13.30)

which is not possible, bacause there is then no background geometry. For
starters, it is not possible to define even the inverse metrix, g"", neither the
Christoffels, etc.

In some cases, and using the first order formalism, it is possible to func-
tionally integrate without the restriction that the determinant of the metric
does not vanish

g#0 (13.31)

An example is Witten treatment of three-dimensional quantum gravity as a
gauge theory.

It is not clear what are the conclusions to draw for the four-dimensional
case.

13.4 Zeta function

Consider the partition function in euclidean signature

Zz/we*%f\/@d"wf‘d’

This means that the dimension of the fields ¢ must be ”;d*“, where dg4 is

trhe mass dimension of the operator A; usually d4 = 2. The eigenvalues
equation for this operator is

A¢n = >\n¢n

The dimension of A, must necessarily be that of the operator A. We can
fool around with the dimension of ¢,, or fix it through normalization:

(bnlPm) = /\/@ d"r ¢y, dm = Smn

The dimension of ¢y, is then 5 in the Kronecker case, or 0 in the continuous
case when the Kronecker delta is replaced by a Dirac delta of momentum
0" (k).

If the set of eigenfunctions is complete in the functional space, it is
possible to formally expand

szzan On
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The dimensions of the expansion coefficients a,, is ";dA -5 = —%A with the

discrete normalization.
It is tempting to define the functional measure as the dimensionless quan-
tity
d
Do = H IuTA dan,
n

Then the gaussain integral is represented by the infinite product

Z:H“%A”ii

The zeta-function associated to the operator A is now defined by analogy
with Riemann’s zeta function

and find

Cw=-3 e (i) ()

n

so that
A

—'(0) = zﬂ: log </ﬂ2> =log det A

then the determinant of the operator itself is defined by analytic continuation

as
det A=e 'O (13.32)

Let us work in detail the most basic of all determinants, the one of the flat
space d’Alembertian. The dimensionless eigenfunctions ara plane waves
1

o = ) e'hr (13.33)

and are normalized in such a way that
/ &'z G4 (@) (x) = 6" (k — k) (13.34)

The eigenvectors are simply
e = —k? (13.35)

The continuum normalization means that fields are expanded as
() = / &'k ay, $u(@) (13.36)

This means that the dimension of the expansion coefficients is now

n+da
2

lax] = (13.37)
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The zeta function is given by
'k (—K*\ T [dk —sios (2K
c(s) :/7 ) = [EE () (13.38)
pr\ p pn

This leads to the expression for the determinant of the ordinary d’Alembert

operator
— k2
log | —-
( w )

Let us now follow a slightly different route which is however intimately
related. We begin, following Schwinger, by considering the divergent integral
which naively is independent of A

d* k
g

log det [J :/

13.5 Heat kernel

x dx

I()\)E/O — e~ (13.39)

The integral is actually divergent, so before speaking about is it has to be
regularized. It can be defined through

— 1 — 13 > dx —xA

I\ = 11_1}(1)](6, A) = 21_1}(1) e (13.40)

such that dI(e) )

. 67 _ =
e ) W (1341)

It follows
I(\) = —log\+C (13.42)
It is natural to define (for trace class E[) operators

logdet A =trlog A = Zlog An (13.43)

Now given an operator (with purely discrete, positive spectrum) we could
generalize the above idea (Schwinger)
o d
logdet A = —/ i g7

0 T

(13.44)

The trace here encompasses not only discrete indices, but also includes an
space-time integral. Let is define now the heat kernel associated to that
operator as the operator

K(r)=e ™ (13.45)

1 In the physical Lorentzian signatura, all quantities will be computed from analytic
continuations from riemannian configurations where they are better defined. This proce-
sire is not always unambiguous when gravity is present.
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Formally the inverse operator is given through
oo
At z/ dr K(7) (13.46)
0
where the kernel obeys the heat equation

0
— +A)K(1)=0 13.47
(5 +4) K@) (13.47)
In all case that will interest us, the operator A will be a differential operator.
Then the heat equation is a parabolic equation

(887 + A) K(r;z,y) =0 (13.48)

which need to be solved with the boundary condition
K(z,y,0) = 6" (x —y) (13.49)

The mathematicians have studied operators which are deformations of the
laplacian of the type
A=D'D,+Y (13.50)

where D, is a gauge covariant derivative
D,=V,+X, (13.51)

and V, is the usual covariant space-time derivative.
In the simplest case X =Y = 0 and V, = 0, the flat space solution
corresponding to the euclidean laplacian is given by

1 _o(zy)

Ko(z,y;7) = @S (13.52)

where the world function in flat space is simply

o(xz,y) = 1(a: —y)? (13.53)

2

This can be easily checked by direct computation. It is unfortunately quite
difficult to get explicit solutions of the heat equation except in very simple
cases. This limits the applicability of the method for computing finite deter-
minants. These determinants are however divergent in all cases of interest
in QFT, , and their divergence is due to the lower limit of the proper time
integral. It we were able to know the solution close to the lower limit, we
could get at least some information on the structure of the divergences. This
is exactly how far it is possible to go.
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The small proper time expansion of Schwinger and DeWitt is given by
a Taylor expansion

K (ta,y) = Ko (1;2,9) Y ap(z,y) 7" (13.54)
p=0
with
ap(z,z) =1 (13.55)

The coefficients a, (z,y) characterize the operator whose determinant is to
be computed. Actually, for the purpose at hand, only their diagonal part,
an (x,y) is relevant.

The integrated diagonal coefficients will be denoted by capital letters

A, = / \/@ d"z ap(z,x) (13.56)

A :volz/ d"z 13.57
: Vi (13.57)

The determinant of the operator is then given by an still divergent integral.
The short time expansion did not arrange anything in that respect. This
integral has to be regularized by some procedure. One of the possibilities is
to keep = # y in the exponent, so that

in such a way that

log det A /Ooth K(r)=—lim [~ &1 ipt (,y) e

0] € = — —1r T)=— 11Im —_— T°1r a,\T e T

& o T o—0Jo T (4mwT)/2 o AT Y
(13.58)

We have regularized the determinant by point-splitting. For consistency,
also the off-diagonal part of the short-time coefficient ought to be kept.

All ultraviolet divergences are given by the behavior in the 7 ~ 0 end-
point. Changing the order of integration, and performing first the proper
time integral, the Schwinger-de Witt expansion leads to

oo 2p—n

log det A = —/d(vol) limy_0 Y 7 I'(n/2 —p) trap(z,y) (13.59)
p=0

4prv/2
Here it has not been not included the o dependence of
limg_,0 an (z,y) (13.60)
In flat space this corresponds to
(z—y)? =200 (13.61)

Assuming this dependence is analytic, this could only yield higher powers
of o, as will become plain in a moment.
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The term p = 0 diverges in four dimensions when ¢ — 0 as

— (13.62)

IS

but this divergence is common to all operators and can be absorbed by a
counterterm proportional to the total volume of the space-time manifold.
This renormalizes the the cosmological constant.

The next term corresponds to p = 2, and is independent on ¢.In order
to pinpoint the divergences, When n = 4 — € it is given by

1

IOg det A|n:4 = m

A, (13.63)

From this term on, the limit ¢ — 0 kills everything.

A different way to proceed is to take o = 0 from the beginning and put
explicit IR (u) and UV (A) proper time cutoffs, such that % >> 1. It should
be emphasized that these cutoffs are not cutoffs in momentum space; they
respect in particular all gauge symmetries the theory may enjoy.

. dr - 2z dr 1 »

This yields, for example in n = 4 dimensions

2

1 (1 A
<2A4 Vol + A [A] A2 + Ay [A] log u?> (13.65)

1 A=
og det ()2

There are finite contributions that are not captured by the small proper
time expansion; those are much more difficult to compute and the heat
kernel method is not particularly helpful in that respect.

13.6 Flat space determinants

Let us see in detail how the heat equation can be iterated to get the co-
efficients of the short time expansion for operators pertaining to flat space
gauge theories.

The small proper time expansion of the heat kernel should be substituted
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into the heat equation for the gauge operator as above, It follows

a 1 (a:—‘)2 _ 2 "
or K(mwy) =~z e % 2 (ap(xy) + (- o 1)ap—1) P25

or (47‘(‘)5 =0 4 2
1 —(z—y) o
0,K = e ir ( + dua ) T
1 (477)% Zp: o & T Ouldp
1 —(z—y)? o
DuK (T32,y) = (471‘7’)% e 4r zp: (—Q:_Clp + D,ullp> ap
ZD2K(T x,y) =
l[, ) b
m
1 (@=v)? n (z —y)? H
T@mr ¢ Z<_2p+ 12— > —Duay+ Dy | 7772 =
P 1
1 _(e=p)? n r —y)? _g.n
B (4m)% e > (2 ap—1+ (43/)% —>_ 0" Dyap1+ D2ap2> TP
p Iz
AK (riz,y) = (D}~ Y) K =
1 _(@—y)? n x —y)? o n
= (47)% e = Z (—2 ap—1+ (4y)ap — Z ot Dyap1 + Aap_2> P2-5
p Iz

(where 0, = (2 — Yu))- .
The more divergent terms are those in 77272, but they do not give
anything new

Pa—y)?=Ta—y’ (13.66)

The next divergent term (only even p contribute to the expansion without
boundaries) is 7172

- gao - —gao — ¢.Dag (13.67)

ao that we learn that
0.Dag =0 (13.68)

Generically,
n n

P=g - 1) ap—1 = —5 -1 +0.Day_1 + Aay_o (13.69)

which is equivalent to
(p + 1)aps1 = —0.Day. 1 + D?a, (13.70)

Taking the covariant derivative of the first equation,

Dy (c"Dya0) = 0 = Dyag + 0" DyD,aq (13.71)
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the first coincidence limit follows
[Dyao] =0 (13.72)

(please note that [ag] = 1 which we knew already, does not imply the
result.) Taking a further derivative, we get

(DuDy, + D,D,)ag] =0 (13.73)
whose trace reads
[D?ag| =0 (13.74)
The usual definition
W = [D,“ D,] (13.75)
implies
1 1
(DD, ag] = 3 [([Dy, Dy]— 4+ {Dy, Dy })ao] = §WMV (13.76)

where the fact has been used that

[ag] =1 (13.77)
Taking p =0 in
—ay = D%ag + 0.Day (13.78)
so that
[a1] = — [Aag] = =Y (13.79)
(since D> = A —Y). When p=1in
— 2a9 = Aaj + 0.Dasy (13.80)
so that 1
lag] = 5 [Aay] (13.81)

Let us derive again the p = 0 expression before the coincidence limit:
— Dya1 = D,D?*ag + D, (0.Day) = D,D*ag + Dyay + 0*DyDyay (13.82)

Then
—2D,a1 = D,Aag + 0* D, Dyay (13.83)

which implies at the coincidence limit
—2[D%;| = [D*Aao| + [ D1 (13.84)

that is

1
—D?*Y (13.85)

[Aa] = [D?a| + [Yar] = —% [D?D%ag| —¥? — .
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Now deriving three times the equation ([13.68))

(DsDyD,D,,+DsDyD,Dy+D;sD,D,Dy+DyD,D,Ds+0*DsDyD,D,Dy)ag = 0

(13.86)
Contracting with 7°7nPH
(D*D? + D' D?Dy)ag| = 0 (13.87)
and contracting instead with n%°n7*
(DMDYD,D,)ap) =0 (13.88)
Now
(D°D"D,Dy)ag] = [(D*D° D, Dyag + WH D, Dyay) (13.89)
It follows that
[D*D?Daao| = 0+ W [D,Dyac] = —%W2 (13.90)
so that
|D?D%ag| = %W2 (13.91)
and finally
ag] = —% [Aay] = é [D2D2a0} + éYQ + éDQY = 1—12W2 + %YQ + éDzY

(13.92)
The final expression for the divergent piece of the determinant of the flat
space gauge operator reads

2 i 1 1
logc det A= ——"— — [ d"ztr [ —W*W,, +-Y? 13.93
o8 de 4—n) (47r)2/ o (12 wty ) (13.93)

(the term in D?Y vanishes as a surface term).
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13.7 The deWitt computation of gravitational de-
terminants

When the gravitational interaction is physically relevant, things are much
more complicated. First of all, the space-time manifold is not flat, so that the
flat space free solution has got to be generalized. All computations should
be covariant. It is precisely at this point that all computations already done
with the world fiunction will become handy. On the other hand it is when
dealing with this sort of problems that the real power of the heat kernel
technique is visible.

The relevant expansion has been worked out by Bryce DeWitt. Let us
proceed in a pedestrian way, by writing

1 c@a)
K (t;x,2') = ~N(z,2') ez > ap(x,a)rP (13.94)
(4mT)2 =0

where we have left an arbitrary global coefficient, to be determined later,
N(z,2') in front of the Taylor expansion. The purpose here is to show that
it should be equal to the van Vleck determinant. In order to do that, let us
now substitute the short time expansion into the heat equation
a 1 fed g n n
— K (r;2,y) = ——5 Ne 2r ap=+(p—1—=)a, )P ?2
87— (T y) (477_)5 Z( p2 (p 2) P 1>T

p=0

Let us do the computation for (minus) the ordinary laplacian

1 _ o g
VMK (7’;.737y) = (47?7)% e Z (vﬂ N ap + N (v,u(lp - 2¢ap>> TP
p
1 o 1
V2K (T§x7y) = (47”_)% e 27 ZTP{V2N ap + 2N“V,uap - o a“N’u ap —
P
1 1, , 1 1
~5 N o'V ,a, — ENV oa, + NV-<a, — EO’“ <N#ap — ENU“GP + NV“ap> } =
1 _ o _
- (477)2 e 3 T i {VQNCLP2 + 2N"Vyap—o — 0¥ Nyap—1 +
p=0

1 1
+N (40“0“% —o'Vyap_1 — §V20ap_1 + Vzap_2> }

We have defined
ap =10 (13.96)

for negative values of the index p.

(13.95)
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The generic recursion relation is
1 1
VzNap_g + 2NV, ap—2 — 0" Nyap—1 + N (4JHJ“ap —o'Vyap_1 — §V20ap_1—|—
Va, 5 — ap% - (p —1- ;‘) ap_1> =0 (13.97)

Let us work it out for low values of the index p.

e p = (. This yields the equation

1
1 (VuoV#o —20) N ag(z,2') =0 (13.98)
The prefactor here is an identity for the world function. Let us prove

it.
Start for the action for a free particle
a7’ /

S = /m’T dr %gw,dv”dc” = i-(,a:_,a:-] (13.99)
where the integral is taken over the geodesic z#* = z#(7) that goes from
the base point x' at value 7’ of the parameter to the field point x’ at
value 7/ of the same parameter. This defines the square of the geodesic
distance between the points ' and z. It is a scalar for independent
Einstein transformations of the base and field points. This was called
by Synge world function. He used the notation (2 for it, but nowadays
the notation o is much more common. When the geodesic is timelike
and parametrizing with the proper time

o(z,2") = (7—_27/)2 (13.100)
The canonical momentum is given by
Py = 0,8 = T,vﬁUT (13.101)
The Hamilton-Jacobi equation for the free particle reads
0= % HH = UT)Q + ;(:‘LU:)Q (13.102)

and it leads to the basic equation obeyed by the world function
VuoVto =20 (13.103)

It is instructive to study a more pedestrian derivation. Consider a
variation of the world function

do=o(x+dx,2') — o(x,2") (13.104)



13.7. THE DEWITT COMPUTATION OF GRAVITATIONAL DETERMINANTS253

where we rescale the parameters in such a way that (Ao, A1) label the
ends of the new geodesic.

The variation can be computed in an standard way

A1 1 A
5o = (A1 — No) / dX (glw,é“&éy + 2@ng%“5%) = (A1 — o) gap2®d2” ; —
Ao 0
A1
—(/\1 — )\0)/ (gagéﬁ + Fag,yz'ﬂiﬁ/) 0z%d\ (13.105)
Ao

Inserting the information that ine path integral is taken over a geodesic,
we learn that
60 = (A1 — o) gapu®dz’ (13.106)

This means that the derivative of the world function is proportional
to the tangent vector

0o = (A — Xo)uaq = +V20 ug (13.107)

Also
0o = —(A1 — Ao)uw (13.108)

and it is now obvious that
ouot = aﬂza“/ =20 (13.109)

This implies that the equation of parallel transport of any quantity T’
can be written as
u'vV, T =o'V, T =0 (13.110)

also, taking derivatives, the d’Alembertian of the world function is
related to the expansion of the geodesic congruence

Oo=1++v20 0 (13.111)

e Let us examine the p = 1 equation.

1 1
— 0" Nyao + ZNUuUual — o'V a0 — QDO'CL[) — N% a; + gNao =0
(13.112)
It is plain that the coefficient of a; is
N(l w1 > (13.113)
1010 50 .

which vanishes identically. The coefficient ag obeys the equation for
the parallel propagator

"V ao(z,y) =0 (13.114)
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The vanishing of the term that algebraically multiplies ag imposes the
following equation on the prefactor N

1
~ 0"V,N - 500N + gN =0 (13.115)
This can also be written in terms of A = N? as
Vi (Act) =nA (13.116)

and this equation in turn, identifies A as the van Vleck determinant.
Let us explain this.

The van Vleck determinant is defined by
Az, 2') = det AY g(z,2") = det (—gg/(a:’,m)ag/(m,a:')) (13.117)

The parallel propagator is defined as

9" oz, 2") =5 (2)el () (13.118)
so that (@)
’ e\xr
det (g% a(x,2')) = e (13.119)
Taking determinants in the definition of the van Vleck determinant
yields
det (— / ! D !
Alz,2') = -2 ( Tof (2. 2) _ (x’f) (13.120)
ee ee
It is plain that
Ay =5 (13.121)
[A] =1 (13.122)

It is a fact [23] that it obeys the fundamental equation

Vo (A 0%) = nA = 0°VoA+ Ao = nA = 0°VaA + (1 +V20 9) A

(13.123)
The failure of the van Vleck determinant to be parallel propageted is
measured by the expansion of the geodesic congruence

0*Va(log A)y=(n—1)—+v20 0 (13.124)
Indeed, starting from

Aa/ ﬁ/ = —gala (0’7 ao’,yﬁl —|— UVUa,B’«,) = ga, agz,aa ryA’yl BI + V,YACBY;U’Y
(13.125)
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multiplying by the inverse matrix A~! and taking the trace
n="00+ (A Lo7V,A% (13.126)

which implies the desired identity.

The coindidence limit of the fundamental equation holds trivially. We
shall indeed denote the coincidence limit of any bi-scalar function by

(W] = lim, o W (2, ") (13.127)

There is a general rule, called Synge’s rule for computing such limits.
The rule as applied to the world function states that

[Vao.]=Valo.]—[Vao.] (13.128)

where the dots indicate further derivations. Let us prove it. Given
any bi-scalar
Qap (z,2)) (13.129)

where A, B, ... are multi-indexes. Further consider a physical quantity
PA(z) with the same multi-index structure as A; and another one
QP (2') with the same multi-index structure as B’. Both objects are
parallel propagated

UV PA(z) = u¥' V@ QF (') = 0 (13.130)
The bi-scalar
H(z,2') = Qap (2,2 )P 2)QP () (13.131)

can be Taylor expanded in two different ways

oOH
H<)\17/\0):H()‘0a)\0)+()\1_/\0)ﬁ +...=
11X1=Xo
H
= H(\, M) — (A — Xo) o (13.132)
ONo o=,
Then
H(Xo, Xo) = [Qup] PAQP (13.133)
obeys
d _ H\, M) —H(\,No) OH OH
g 1o 20) = T M — Ao X0 lxgns | O Iy oag
= u® [VoQup] PAQP + u! [V, Qap] PAQY (13.134)
Finally

Vo [Qap] = [VaQap] + [VaQap/] (13.135)
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Let us now rewrite the recursion relation taking into account all infor-
mation gathered until now.

1
AT20(A%a,) = 0" Vyapin + (p+ 1) a1 = — A7 ANy +

1
+§A*15Aap + AT'AMY La, + Oay, (13.136)

o p=2. Let us finally write

1 1
oh'Vas + 2a0 = —ZA_2AZCL1 + §A_1|:|ACL1 + A_lA“VMal + Oaq
(13.137)

Our aim is to find the coincidence limit

1 1
las] = —1A72Aza1 + §A71DAa1 +ATTARY a1 + Oay (13.138)

We need [(a;]. For that we can start with the first equation (we shall
need the off diagonal one)

1 1
otVa1 + a1 = —ZAT2A%00 + — AT OAqy + A_IA“VM(LO + Oag
4 H 2
At coindicence, this determines [a;]

lag] = é R + [Cag) (13.139)

We derive once

1 1
ot ,,a}t + U”a}w + all, = §A_3A,,Aiao - iA_QAMA‘“’ao —
1 _ 1 _ 1, _ 1 _
_ZA QAiag - §A 2AV|:|ACLO - §A 1VVDACL[) - iA IDACL?L
fA_2A,,A“ag + A_IA‘“’az + A_IAMCL?W + V,Oag (13.140)
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Take a deep breath and derive again

1

prA 1 pr 1 BA
o a, 0" a, +0""a,

1 1 _
+ auaHVA +a,, =

= AT + AN g+ AN A Ayag +

+%A‘3AVAiaf{ + ATANAL AP ag — %A—M,MA%O -

—%A—QAHANMCLO - %A‘QAMAWaé + %A_?’AAAiag —

—%A‘QA#A“ACLS - EA_QAZCLSA + AT3AA, OAq) —

—%A—QAMDMO - %A_QAVV,\DAG,O - %A_QA,,DAaS -
—i—%A’QA)\VVDAao — %A’lv)\VVDAaO — %A*lvymmg + %A*ZAADAag -

1 1
—5ATIVAOAG, - SATIOAG, + 207 ANA, Ay — ATEA Al —

—AT2A AP — AT2A AFGEN — AT2ANAR Gl + AT AR L
FATIA G — AT2ANA Al + ATIA pah + ATIA b + YV, Oag
This means that everything starts with coincidence limits of covariant

derivatives of ag. Let us proceed carefully to work out coincidence limits of
covariant derivatives of the world function.

e It is plain that
[0] =[ou] =0 (13.141)

(The second equation is true because there is no prefered vector in the
manifold.) Deriving several times the equation ((13.103))

oot = o (13.142)
Once again
080" + 0,01 = 5P (13.143)
oo 0o = oo™ + 0,00 (13.144)
It follows that
[Uuu]::guu (13.145)
as well as its trace
o] =n (13.146)

Another derivative
Ty 0" + 0,501 + 000" 4 0,01 = 52071(13.147)
In an obvious notation

[0123 + 0213 + 0312] = [0123] (13.148)
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o lo21s] = — [0312] (13.149)

But even outside coincidence
0123 = 0213 (13.150)

so that
[0123] = — [0132)] (13.151)

The Ricci identity implies that
Tafy = Oaryf — J#RZW (13.152)

(our conventions are different than [23]). Then the coincidence limit
of three derivatives vanishes.

[0wa] =0 (13.153)
The fourth derivative reads

Oppyso™™ + Uuﬁ'yowé + opupsct T + Uuﬁamw + Uuﬁauaw +
10,7501 4 0,0 g 50HPY 4 g, otP0 = P013.154)

On the other hand, from the last equation follows

[Ua3a1a2a4] + [00&4041042043] + [0a4a1a2a3] =0 (13.155)

First of all,

Oazarazas = Tajasaza (13.156)
Deriving it once we learn that
Oorasasas = Oarasasos — Opos By agas — OuVasRhagay  (13.157)
This means that
2 [Cagarasas] + Rasarasas + [Tarasasas] = 0 (13.158)
But again the Ricci identity implies that
[Carasasas] = [Torasasas) = —Rarasasas — Rasatasas =0 (13.159)

This implies in turn that the coincidence limit

(Ruvpo + Ryupov) (13.160)

L =

o /u/pa] =

In particular
1
Vo Vo] = —3 R,z (13.161)
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The expression with five dervatives is also needed.

Ourse0"™ + 0usns07% + 0,130 + 045,072 +
+0us5c0" Y + 0ups 07 + 040" + 0,500 +
—{—U'ugggua’yé + Juﬁauavée + O-N'Y(ko-#aﬁ + U,WaU“aBE n
+awegﬂaﬁé + 0,y ghaBde Opse ghaby | O gheBye
-f—O'ueU'LLaB'Y‘s + O'MO"LLO{B'Y& — gaBse (13.162)

At coincidence

[Uozﬁvée] + [Uﬁavée] + [Uﬁav&] + [Uvaﬁée] + [Uéaﬁ%] + [Ueaﬁvé] = [Uaﬁ’y56]
(13.163)

We need Ricci’s help
O~yapBde = OayBée = VeV, (V,BV'YO—&> = OaBvyée + VeVs (R,B'ya)\o—)\)
(13.164)
Oaspre = VeVy (VaVs0®) = 0apsye + VeVy (RﬁmaA) (13.165)

TaBéve = VEV7V50aﬁ = Oapyse T Ve (R,ygggaga + Rvgagagﬁ)
(13.166)

Uaeﬂ'yé = V(;V,YVBVEO'Q = O'aﬁe’yts + V(;Vv (Rﬂeao(fg) (13167)

OaBeys = vévwveo—aﬁ = OaBvyes + Vs <R'yea00—0.ﬁ + R’yeﬁoo—aa)
(13.168)

OafByes = v6v60a57 = OaBvyée T R(Seo&\o')\ﬂv + Réeﬂ)\oﬂ)\7 + Réew)\aaﬁA
(13.169)

Putting all together,

So'aﬂ'yée + VeV (Rﬁvo&\o)\) + vev'y (Rﬂéa)\o)\) +
+V, (Rfﬂsﬁaoﬁa + R’ygagoﬁﬁ> + VsV, (Rﬁeagoﬁ) + Vs (Rveagaaﬂ + R%ggaaa) +
+Rscarno®" + Rsepno® + Ryeypno®™ =0 (13.170)

At coincidence

-3 [Jaﬁfy(k] = VER,B'yaﬁ + VéR,B’yae + VER,Béoc'y + V'yRﬂ(Sae + VJR,Beoa'y + V’yRﬁsa5 =
Ve (Rpyas + Rgsary) + Vs (Rpyac + Rpeary) + Vo (Rpsac + Rpeas) (13.171)
In particular

1
[0&‘756} =% (VsRye + VeRys + V4 Res) (13.172)
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Six derivatives

Tpprsecod’ " + Tupr6e0™ ™ + Opprso0" ™ + 01y +

+0 s o™ ‘4o ,3760“0‘ 74+ ngvgo’“aée +0o /370—/106560 +
+Uuﬂéeag T+o uBde ol + o 1360 ohe 4 o ﬁ(so—uavea +
+0u8e00” L 18 oherT 4 o uBo ghavde o 5 ﬁo—uavéea +
1017560 0"P + 0150 4 0,15001PC 4 0 50O
+UM’YeaUu afd 4 Uuyetf‘uaﬁ 7+ Slwgauaﬁ& + %Uuaﬁéea +

+o, éeoauaﬁfv + o, 6€Uuaﬂ70 + o, &rauaﬁve + o, Wuaﬁvw +
5 ) 5 5 5
_,_Uuwauaﬂv + Uueauaﬁ'y T4 O-MUUMQ/B’Y €4 nguaﬁ'y €0 _ yaBvbeo

At coincidence

[Oprys0t 7 + Uuﬁ%am(sg to uﬁwauaée + 0ug5e0™ " + 015 +
_’_O_uﬁego_,ua'y(s +o ﬂo_,ua'y&ea +o de O_,uaﬁcr +

+0H75UU paBe + ou 60—,U«Oéﬁ o + o EO_O-,U« aBd + O'M,ya"uaﬁ&a + O',u,éecro"uaﬁ’y +
to,,501P0 4 aueaww" + UWUWWE] =0 (13.173)

Ricci tells us that

OaoBvyde = Oapfydeo + vs&’y (Rﬁmx)\o)\> + Veé (R’yaoa)\o)\ﬂ + RVU,B)\O-O[A> +
+Ve (R(;aa)\aaﬁ'y + R(sgg,\ao‘)‘v + R(;m,)\aa’g)‘) +
+Raea)\0-a'876 + Raeﬂkgakﬂs + Raew)\o'ocﬁ)\é + Raed)\aaﬁ'y)\ (13174)

OeaBysoc = TaBydesc + vo’é'y (RﬁeaAU)\) + Vs (R'yea)\g)\ﬁ + R’yeﬁ)\aa)\) +
+Vo (Rocard™ + Rseppno™7 + Rseypo®™) (13.175)

OasByec = Oafyses T Vea'y (Rﬁéa)\a)\) + Ve (R'y(sa)\o)\ﬁ + R’yéﬁ)ﬂ'a)\

(13.176)

Carsicr = Oapysco + Voes (Rayara™) (13.177)
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Then the equation at coincidence

1
6[00457560 + vevéRBaa'y + VEV'VR,BUaé + V(Sv'yRﬁooze + gR,Bo'a)\ (R)\'yée + R)\&'y) +
1 1
+VEV6R’)IO'O¢5 + vevéR’yoﬂa + 7R'ya'a)\ (R/\,Bée + R)\éeﬁ) + 5

3 SR'yU,B/\ (Ra)\ée + Ra&e)\) +
1 1
+*R5aa)\ (R/\Bq/e + R)\'yeﬁ) + -

1
3 3R§Uﬁ)\ (Ra)\fye + Rorye)\) + *R&r'y/\ (Raﬁ)\e + Ra)\eﬁ) *

3
1 1
+§Raea>\ (Raﬂfy6 + Ra'y(?ﬂ) + gRoeﬁ)\ (Ra)m/zi + Ra'yé)\) +

1 1
+§Raew)\ (Raﬁké + Ra)\éﬁ) + gRae(SA (Raﬂq/)\ + Raw)\ﬂ) +

1
+VUV6RBeo¢7 + vov(iRﬁea(S + Vdv’yRﬂeoza + gR,Bea)\ (R)\’Y(SO' + R/\(Saw) +
+VUV5R'\/6045 + VUV5R766a +
1 1 1
+§R'yea)\ (Ragso + Rrsop) + gR'yeﬁ)\ (Raxso + Rasor) + gRam,\ (Rxgvo + Rayop) +
1 1
+§R5e,3)\ (Ra)\70 + Ra'yo)\) + gRée”/)\ (Raﬂ)\o + Ra)\aﬂ) +
+VeVoRgsay + Vo VyRgsae + VeVyRgsao + Vo VeRysap + Vo VeRyspa +

1 1 1
7R « R oe Rcre o o
+3Rgsar (Bxjoe + Rroey) + 3 3

1
+vaveRﬂ'ya§ + vavéRB'yae + vgvéRﬁyaa + gRB'ya)\ (R)\(?eo + Rkeaé) +

R'y&a/\ (R)\Beo + R)\ecrﬁ) + Rw&ﬁ)\ (Roz)\eo + Rozea)\) +

1 1
+§ (Ruﬁwd + R/r/éﬂ) (Ruaea + Rueaa) + § (Ruﬂve + R;weﬁ) (Ruada + Ruﬁoa) +

1 1
+-= (Ruﬂva + R;waﬁ) (Rua5e + R;u?ea) + § (Ruﬂée + Ruésﬁ) (R,ua'ycr + Ru’yoa) +

9

1 1

§ (Rub’éa + Ruéaﬁ) (R,ua'ye + R,m/eoz) + § (Rub’ea + Rp,eo‘ﬂ) (R,uoz’yJ + R,u'yéoz) +
1 1

9 (Ru'y56 + Ruée'y) (Ruaﬂo + Ru%&) + 9 (RM’Y5U + RMU'Y) (Ruaﬁﬁ + Ruﬁ&&) +
1
9

1
(wa + Ruem) (Ruaﬁﬁ + Ru[%oz) + 9 (Ruéw + Ru605) (Ruaﬁ'y + Ruﬁ'ya” =0

_|_
_|_
_|_

Puttinga =8,y =d,e=0
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1
—6 [0000] = VoVyRoy +VoVyRyy + LR + gRVJa,\ (RAOWU + R)waﬁ) +
1 1 1
+§R'yo'o¢)\ (Ra)\va + Ra'ya)\) + éR'yO'a)\ (R)\a'ya + Rava)\) - 7RJ)\RJ)\ +

3
1 1
+VUVA,RW, +U0OR+ § gR'yJa)\ (Ra)\'ya' + Ra'ya/\) +
1

gR'yoa)\ (Ra)\'yo + Rcw)\'y) -

1
3

1 1 1
ngMRM +0OR+V,V,R +V,V, R + gRMRVA g Rua B +

1
+§ (Ruare + Ruyoa) (Ruare + Ruyoa) +
4 1 1
—l—§ (Ruavo + Runyoa) (Ruave + Ruvoa) + §RWRW + §RWR“0‘ (13.178)

R’yoa)\ (R)\a'ya + R)\'yoa) +

RozR°* +0OR+ V,V, R + V,V, R —

How many scalars are there of the form Riemann??. Let us denote

— vpo
I = Ryype RMP

I = Ryype RFP7Y

I3 = R,praRMJVp (13179)
It is plain that
R“VPURHPUV - RNVPURMO'VP (13180)
so that
I, =13 (13.181)
Bianchi tells us that
R,uupo‘ + Rp,a'up + R/,Lpgy =0 (13182)

Then contracting with R*VP9
L+L+1I3=0 (13.183)

Bianchi squared on the other hand implies

31 + 215+ 215 +2I3=0 (13184)
This means that only one of the three possible contractions are inde-
pendent
1
Ih=13= —51’1 (13.185)

Tis yields
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7
—6[0000] = 7V,V,R°Y +40R + ERWMRWA (13.186)

We need also other scalar combination of six derivatives of o to wit
1
[VAOV,0o]| = [0000] + Rap R (13.187)
because
V,0OV,Oo = 3P0 + V* (R, V,00) (13.188)

e Let us now draw some consequences for the coincidence limits of
derivatives of the van Vleck determinant. Taking covariant derivatives
of the fundamental equation

V. (Act) =nA (13.189)
it results
V,AV 0“4+ AV, Voo +V,0°Vo A+ 0V, Vo A =nV,A (13.190)
At coincidence it follows
A, +[V,0o]+ A, =nA, (13.191)

which implies
[A))=0 (13.192)

One more derivative leads to

Apsog + Aogs + Asog, + Aoy s + 0psAa +
0y Aas + 05 Anp + 0% Anps = nlys

At coincidence

n [Apg] + [VPVUDO'] + 2 [Apg] =n [Apg] (13.193)
so that
1
[Aag] =~ Rap (13.194)
Its trace 1
[OA] = _ER (13.195)

One more derivative leads to

Ap(;/\DO' + Ap(sv,\DO' + Ap,\V5DO' + Apdaap(;)\ + O‘apd)\Aa + O‘O‘p(SAaA +
+A6>\O_aap + A)\O_aapé + Ao_aap(”\ +
+O-ap)\Aoc6 + UapAacS)\ + Ua(”\Aap + O-m;Aap)\ + O-a)\Aocpé + O-aAapcs)\ = nAp(S)\



264 13. GRAVITATION AND QUANTUM FIELD THEORY: POOR MAN’S APPROACH.

At coincidence this yields
[VaAVsV,00] + 3[Ap5x] =0 (13.196)
so that
[Apg,\] = — (V(;Rp)\ =+ 2V)\Rp5 + 2’)/pR)\§) (13197)
Yet one more
A,,MDU + Apg)\vema + AP&V)\DU + ApgvevADG +
Ap)\evé‘ja + Ap)\VEV(;Da + Apeaaapé)\ + Apaaap(D\E +
—|—A5)\50'aap + Ad)\o_aape + A)\Go_ozocpé + A)\O_aocp& + Aeo_aocpék + Aa_aocpéke +
O_ap(s)\eAa + O_apé)\Aae + UapJeAOC)\ + UapéAOC)\e +
JVUQPAEAOAS + Uap)\Aacse + 0 Aasxn + 0P Ansae + O-MD\EAap + Uaa)\Aape +
Ua&Aap)\ + UaéAap)\e + UaAeAapcS + Ua)\Aap(Se + UaeAapcS)\ + UaAap(S)\e = nApE)\e

At coincidence

Ap(;vev/\lja + Ap)\vevé‘:‘a + ApegaapéA + ApaaapzD\e +
+A6/\O_aape + A)\Go_ozap(s + Ao_aapéz\e + Uapé)\Aae + Uap6€Aa)\ +
+0—ap/\€Aa5 + 40P Agsre + Uaé)\EAozp + Ja(sAapAe + UaAAap&e +
0 A sy = 0 (13.198)

Ricci implies
Ape5)\ = A5p)\e + v)\ (RéepUAU) + R)\eéaApU + R)\epUAU(S (13199)

Ape(5/\ = Aép/\e + Vi (R(Sep(SAo) + R/\G&TAUP + R)\EpaA06 (13200)
Axpse = Dsrpe + Ve (Rspra A7) + Ve (Rpnso A7) (13.201)

Making ¢ = p and § = A

_4[00A] = —%RM V,V20o] - %R O00] + [VPOV*Co] — %Raﬂ OV, Vo] -

1 1 1
—ERO‘/\ [V,VaV V0] — EROU\ [V,VAVPV 0] — ERO") [V,0Vao] =
1 1 1 7 2 7
_z o T p2 g af L of _ MR — 2
6RagR gR + 3RagR 6VQV5R 3 R 36RWPU
1 1 1
— of _ of of 13.202
18Ra/3R gRa,BR 18Ra/3R (13.202)

We then get
[00A] = L RBP4 Ry sRY 4 L2y
72 P 144 36
7

1
1 agh
sOR+ 5,V V7 Rag (13.203)
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e Let us now come back towards coincidence limits of the DeWitt-
Schwinger coefficients themselves. From the equation

ot'Va0 =0 (13.204)
by deriving once
ot Va0 + 0"V, Va0 =0 (13.205)
Then
Va0l =0 (13.206)

Deriving again

ot ,,)\V#ao—i—a“ Z,V)\V#ao—l-U“ )\VVV“CL()—I—U“V)\VVV“(ZO =0 (13.207)

Then
as well as
[Cao] =0 (13.209)
This implies that
1
[a1] = 5 R (13.210)
In general the fields will have got indices. Then
[V Vil ¢ = Ry * po” (13.211)
Then
[(v#vl/ - vl/v,u) aO] = R/,Ll/ (13212)
and .
[ViVvao] = SRy (13.213)

Deriving once more

a‘“’)“sa2+0“”/\a25+U“”5a2)\+0“”a2>\5+0“mao +ota 2,,54—0“5 Ol,)\—l—a”agl,)\(; =0
(13.214)
It is got to be derived again

Uul/)\éea() —}—U‘W)‘é 0 +U#V>\€ +U#V>\CL0§ +U;w55 +U;w5 'U)\E_}_
g 0 + " )\ + 0_/0\55 L+ U,ma 0 + O_/v\e O + O.M)\ /ﬂ/cse +

—|—O’M§E + O'M ;uj)\e + ot CLM %) + ot a‘,ul/)\(Se =0 (13215)
Taking traces and using the Ricci identity we learn that

[00ao] =0 (13.216)
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Our former equation [[13.140] tells us that
1
[a1] = ER (13.217)

as well as
1
Vyai] = 21 VR (13.218)

The long equation [13.141] at coincidence limit reads

1 1
3 [V)\V,/(ll] = —TSRH)\RLL 18R,,)\R+ [V)\V DA] (13.219)

Which implies

] 2_7 Q—fDDA 2_7 o 1 af _
[ al} 54R/,1,l/ R [ ] 54R,uy R 144RO¢BR
Lo 7 B+ 8 pas
Lt O aprs _ Lop T gaghpge 13.22
7alt ~ gggltasell Tl 48v ViR (13:220)
Finally
[a]—lR[a]—i-[Da] lp_ L pps_Llpe_
2 gt 12 144" P 72
7 1 7
o afys _ Op — LyevyBRes 13.221
oes st g R gV VR (13.221)



13.8. RECURSION RELATIONS FOR THE COEFFICIENTS OF THE SHORT TIME EXPANSION OF

13.8 Recursion relations for the coefficients of the
short time expansion of the heat kernel.

Let us here consider a system of recursion relations obtained by Gilkey [12] in
a remarkable paper. They greatly simpify the computation of the deWitt-
Schwinger coefficients. We are refering to an operator on a riemannian
manifold, M,

= — (¢"9,0, + P9, + Q) (13.222)

P* and @ are square matrices acting on a vector bundle over M, V', where
the fibers are isomorphic to R¥. When the fibers are isomorphic to a Lie
group, we talk of a primcipal bundle. What mathematicians call a section of
a pbundle is what we call a matter field, and when they talk of a connection
on a principal bundle, we talk of a gauge field.

What this means in practice is that the matrices P* and @ are defined
in the vector space defined by the finite dimensional representations of the
matter fields (including the graviton itself). To be specific, Gilkey’s theory
includes operators of the form

D

- (KA 59" 0,0, + (ﬁ“)A 5O, + Q4 B) =K4- D% (13.223)
where

PAg= (K—l)A c PC g

Qs = (K_1>A cQ%p (13.224)
Gilkey defines the heat kernel K (7, x,y; D) precisely as the kernel of
e~ P (13.225)

The heat kernel is considered as an operator acting on the fibers

Vy = Va (13.226)
Then
e ™PK =0 (13.227)
It is plain that the HK also obeys the heat equation
0
—+D|K=0 (13.228)
or

Defined in that way, the heat kernel vanishes to infinite order for = # y.
When x = y it has an asymptotic expansion when 7 — 0% of the form

K (1,2,y: D) ~ (477) 23" 1", (2, D) (13.229)
p=0
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In the self-adjoint case, and if (\;, ¢;i(z)) is a spectral resolution of D,
the heat kernel is given by

K(r,z,y; D) = Z e_T’\igbi(:U) ® o5 (y) (13.230)

This means that

Tre ™ = Ze_ﬂi = / Tr K (7,x,2; D) d(vol) ~
i M

~ (477) "2 3 ™ [ E,(xz,D) d(vol) = (4nT —n/2 5 ap (D) 7
)™ [ By (@.D) dlood) = (7)™ Y0 (D)

Where we still denote
ap (z,D) =Tr E, (z,D) (13.231)

and
a, (D) E/M ap (z, D) d(vol) (13.232)

which is a spectral invariant of the operator D.

There is a useful scaling relation which stems from the very definition,
since e= ™D = ¢=A*TD

K (7’, T,Y; )\2D> d(Vol)y—2q =K ()\27', T,Y; D) d(Vol)g (13.233)

Where G is the metric induced by the leading symbol of G (that is g,,,£#£").
Now
d(Vol)y—2g = A" d(Vol)g = (13.234)

It follows that

(4r7) 23 TP, (0, 02D) ~ (4ma2r) T2 Y (M7)" B, (2, D) (13.235)
p=0 p=0

so that
E, (2,02D) = X E, (z, D) (13.236)

as well as the integrated version of it
ap (A2D) = X"+ q,, (D) (13.237)

We have now, besides the Levi-Civita connection in 7*(M ) another con-
nection A = dx#* ® A, in V. The reduced laplacian is defined as the operator

Dp=—(VF4A") (V, +A,) = — (gwaua,, + (24 = g°T,) 0, +

+0, A" + A, AP — A)\Fgﬂgaﬁ)
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We define the matrix (endomorphism)
E=Dy—-D (13.238)
The gauge field is univocally defined as
A, = % (P +g°°Thy) (13.239)
and the matrix F is given by
E=Q—0,A" — A A" + A\Th59™" (13.240)

It is not difficult to show that

Ey=1 (13.241)
Dimensional analysis tells us that the general expression for E : 1 is given
by
1
E = 6 (a1€ + blR) (13.242)

and the most general possible expression for s reads

1
Ey(z, D) = 360{d1DR +aR?+ R, + R, + ER+ dy0E +

+e5E% + c6F3V} (13.243)

Lets work out all coefficients by a clever use of consistency requirements.

e It is also the case that when the manifold is a direct product

M, = M,,, x My, (13.244)
and the operator D is
D=D1®1+1® Dy (13.245)
then
Emn(z1,2) = Y Emyny (21, D1) ® Emy oy (w2, D2) - (13.246)

mi1+meo=m
e Another useful relation easily proved just by expanding both members,

En(z,D—el) =Y €"E,_4(z,D) (13.247)

e This shows, in particular, that

s = 180 (13.248)
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e In order to proceed, let us define a first order Dirac-like operator acting
in a n-dimensional conformally flat space with metric

ds* = e M@, datda” (13.249)

It is easy to check that

g™, = ”?_2& NG (13.250)
With my conventions,
Ry, = "2 (aﬁ&ya 4 ;avaaﬁa> 4 (; PR - Z(aua)ﬂ) 55,
(13.251)
R=¢° ((n 1) 8o - ("_2)4("_1) Z(8A0)2> (13.252)
A A
The operator in question is
A=e't Z'yuau " (13.253)
p

Its adjoit is easily obtained from

(2—n)h

(f,Ag) = /d”x e mh p ey Zyuau e 1 g= f/dnzz: e 3 g enTHhauf*vﬂe_%
I

*
=— l/dnx e "3 g ewhzauf'y;e_zhl =— [/d“az e "3 g enTHhZﬂ'aufe_z
1 p

= (g, AT f)" (
with +2 .
At =e "y g0, T (13.255)
m
where we have assumed that
{Vu W} = —20 (13.256)
as well as
Y =— (13.257)
A basis of the Clifford algebra is given by the 2™ matrices
= . 13.2
YA {7/“‘..#] u1<---<uj} (13.258)

There are 2™ of them because

<g) + (T) T (Z) —(1+1)" (13.259)
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We shall assume that the set v, forms an orthonormal basis.

We now define two self-adjoint modifications of the Laplace operator

2
D15A+A:—eh{D—n2 QZhMaM+<”2 2) —”4 20n
(13.260)
where
hy, = 0,h. (13.261)

From the definition itself it follows that
A, =F, =0

€:eh<(n;2>22hi—n;2ﬂh> (13.262)

The second operator reads

2
A+t oh n—2 n* —4n 9 M
Dy = AAT = —¢ {D - > hpdu = Yy + G > ki — 4Dh}
(13.263)
where )
Yur = 5 ['Y;u 'YV] (13.264)
It follows

1
A, = —3 > uha
A
1
F, = f’yk[#ay]h)\ + 5 (’YVM Z hi + Z (’V,uahu - 'Yuahu)>

2
_on(n—4 2_ N
E=e ( T >3 4Dh> (13.265)

where we have used

MwYou = _5)\061/u + 5>\u5ua - 5ua'7)\u + 51/;/7)\0 + 5)@71/;1 - 5)@71/0
(13.266)

The operators are such that
AD; = D5 A (13.267)

This means that if we diagonalize D (which is isomorphic to 2" copies
of the associated scalar operator)

Diyadi = Nivadi (13.268)
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then
AD1yA @i = Ni (Aya¢i) = Do (Aya i) (13.269)

so that Ag; is a set of eingenvectors for Dy with eigenvalues A;. In
order that they are normalized in agreement with the initial basis ¢;
we have to dinite by \/L/\— because

(Ag|Ag) = (AT Aglg) = A(9]¢) (13.270)

Then

d ey
% (tI' K (t,-ﬁ,ﬂ?,Dl) —tr K(tvxax7D2)> = Z@ B (_Ai<7A¢i77A¢i>+
i,A

AP A\ - ‘ ' ‘ o
)"’< NovN >) —;A:e (—(D17a®is YaPi) + (Ayadi, Aadi)) =
—2 o .
="y <¢ZD¢¢ . 1 Ohe; + > dhdh, — (n — 2)dihudl,+
i M
(n —2)? -2 1 nn 2
+nTth>? S 1 Dh¢?> =z zujauaue : hzi:qb? (13.271)

It follows that
(2p — n) {tr B, (z,D1) — trEy (v, D)} = e%h(?,ﬁ,le*nT_Qh tr E,—1 (x, D1)
o
(13.272)
e We need also the following fact. We can write

Ey(2,D) = ap,0P7 € +5,00P7" R+ ... + less derivatives (13.273)

with (n— 1)1
ap = W (13.274)
It is not difficult to prove that theorem in the one-dimensional case,
M = S, where
422
E,(z,D) = apmg + less derivatives (13.275)

and then use the fact that the coefficients of the short time expansion
are dimension-independent.

In order to do that, we can again define

A 8893 + f(z) (13.276)



13.8. RECURSION RELATIONS FOR THE COEFFICIENTS OF THE SHORT TIME EXPANSION OF

whose adjoint reads

0

t__
AT = . + f(x) (13.277)
and define the two self-adjoint operators
D =AtA= O g 13.278
1= =\ o2 +f =7 (13.278)
Dy = AAT = — 8—2—f’—f2 (13.279)
2= Ox? ’

Then explicit calculation shows that

1 9 /0
By, Dy) = Byl Do) = 3 2 4+ 20(2) ) By, D)
(13.280)
Then it is a fact that
(2p-1) 1 0 (0
E,(x,D1) — Ey(x, D) = 2a, f +...= 5y 10z \az +2f(x) ) Ep_1(x, D) =
1
= Gr=1) 4 13.281
ap_12p_1f + (13.281)
This yields the recurrence
ap_1
= 13.282
We known that
ap =1 (13.283)
Then it follows that ( o
p—1)!
= 13.284
ap op— 1)) (13.284)

e Let us now come back to the general dimensional setting. Applying
the general theorem in the case where

2p+2=n (13.285)
we learn that
s > o 5 b Ey(x,D1) =0 (13.286)
This means that
tr E—p(z,D1) =0 (13.287)

Computing it yields
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tr E —p(x, D7) =a, 0" £ +b, 0" " R+ less (13.288)
Now 5
—-n
E(D1) = = "> 0,0,h + less (13.289)
and
R=(n—1)"Y"0,0,h+less (13.290)
(Gilkey’s conventions have a minus sign here). Then
2—-2p—-2
+ap +(1-2p—2)b,=0 (13.291)
which means that
2p p__ (p=1)
= _ = — 13.292
= a1 T 2= 1) (2p— 1) (13.292)
e In particular, a; =1 and b; = —%, so that ,
1
Fi=a0E+b0R=€E— 6 R (13.293)

e Let us now apply the former theorem that asserts
ck
k!

to the case p =2 and k = 1. Then the only term linear in € is c4.

Ey(€+¢) = By () (13.294)

1 1
s (caR - 26sE) = ¢ (5 -3 R) (13.295)

Then
cy = —60 (13.296)

(It was already known that c; = 180).

e Now let us consider a product manifold, M = M7 x Ms. The scalar
curvature is additive,

R(xl, 5132) = R(:Cl) + R(afg) (13.297)
The operator we wish to consider is
D=D1®13®1® Dy (13.298)

Then, using the results obtained up to now,

2
EQ(.’L‘l, x9; D) = Eg(xl, Dl) + EQ(I’Q, DQ) + %R(aﬁ)]{(wg) + other
(13.299)
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Our general formula for product manifolds on the other hand, tells us
that

E2 (.731, T, D) = E2 (.751, D1)+E2(l‘2, D2)+E1 (xl, Dl)El (xg, D2)+other

(13.300)
We learn that .
C1
—_— = — 13.301
180 36 (13.301)
That is,
c1=5 (13.302)

o Let us apply the ur-theorem to the two-dimensional case, n = 2. Then
E(D1)=0
Fuw(D1) =0 (13.303)
Lo
g(DQ) == —56 Oh
1
Flg(Dg) = —5’712|:|h (13304)
Taking into account the dimension of the v matrices (4)
4 n
tr Ei(x, D) = ¢ Uh (13.305)
so that the rhs becomes

rhs = — 2" (9,h)? 4+ more (13.306)

(=2

As for the lhs,

_ 1 2 2 _
lhs = —trg (~60R € + 600 + 18062 + csF2, ) (z, D2) =

4 1
— %ezh (30 +30 — 45 + 2c6> (9%h)? 4+ more (13.307)

The theorem then implies that

8 1 4
— (154 Z¢g) = = 13.
260 ( + 206) c (13.308)

We obtain

6 = 30 (13.309)
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e Finally, apply the ur-theorem to the six-dimensional case, n = 6 with
p = 3, so that again

2p—n =20 (13.310)
and
tr Eo(x,D1) =0 (13.311)
Taking into account that
E(Dr) =" (~Oh+ " h2) (13.312)
and still
Fu(D1)=0 (13.313)
we learn that
—120R +6000€ =0 (13.314)

as well as (always for the operator Dy)

6R* — 60RE + 1802 = 52 (13.315)

562 = 2 (Sh% + Ohlg) + more

15
CQR,QW = 62h (262h%1 + 8C2h%2> -+ more

C3R/2u/p0 =2 (503h%1 + 8C3h%2> + more (13.316)
Then
co+c3=0
10 + 15¢5 + 105 = 0 (13.317)
so that
coy = —2

3 = (13.318)
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13.9 The one-loop effective action of quantum grav-
ity.

Let us consider the Einstein-Hilbert lagrangian with a scalar field minimally
coupled to the gravitational field

1 1
Sy=-5 / &z /7 R+ N + / d"z /G 5 9" 0u00,6.  (13:319)

This computation was first performed by 't Hooft and Veltman [?] in an
epoch-making paper using the background-field method, but without em-
ploying heat-kernel techniques.

The computation will be performed here using deWitt’s backgrund field
technique as well as heat-kernel methods. Both the metric and the scalar
field in the action are expanded in a background field and a per-
turbation

Juo = Guw tK h,uz/
g[l,V — gul/ — k hHv + 52 huahocl/ + 0(53)
¢ = o+ro (13.320)

Where indices are raised with the background metric and geometric quan-
tities (curvature tensors, covariant derivatives...) calculated with respect to
this metric wear a bar. To take into account one-loop effects it is enough to
expand the action up to quadratic order in the perturbations. After expand-
ing, the term linear in the coupling cancels due to the background equations
of motion, namely

Vi = 0
= 1-_ _ le -= - 1. _ 50 —= -
R — §R9uu = AJuw — §v#¢vu¢ T Zguugaﬁva¢vﬁ¢ = (13.321)
Using the known expansion for the scalar curvature the quadratic order
operator is

1 - 1. - -5 1_ _ -5 1_ - = 1. - =
Sg = 5 / d"z \/§ {haﬂ <4goc/39,u1/v2 - Ega,ugBVVQ + igauvﬁvzx - ig;wvozvﬂ

1 - 1. - 1. 1 -1

+§gaﬁRuu - §gauR,Bu - iRa,uBV + igauaﬁ(bay(ﬁ - zgaﬁau¢au¢

1/- | _ v
-3 <R +2)\ — 5gp @,qﬁﬁgqb) (GapIuw — 2gap,ggu)> R +
haﬁ (;gaﬂgpgapd_’aa - 8a<;_385> </> - ;¢V2¢]
(13.322)

At this stage the operator is very cumbersome, but we still have the freedom
to fix the gauge in a way that simplifies the computation. The gauge fixing
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term will be 1 1
Sor =3 / d"z \/g % 9" XXy (13.323)
where the function characterizing the harmonic or de Donder gauge is
_ 1_ _
Xv = VFhu, — §Vl,h — 0, ¢ (13.324)
After expanding can be expressed in the form
mn = (e 1 174
Sor = 5 /d v VG o [h g (gWV V5 — Gop VsV, — gagg,wV2) B
= - 1_ _ .- 1. e = -
+2haﬁ (8a¢aﬁ + vav,8¢ - Egozb’gp 8p(z)acr - igab’gp vpvo(ls) ¢ +
+6 (5%7026056) o] (13.325)

Let us define the following tensor with the desired symmetry properties, i.e.,
symmetric in (uv), (af) and under the interchange (uv) <> (af3)

1

Caﬁ,uu Z (gaugﬁu + gaugﬂu - gaﬁguu)
2
Caﬁ,uu — gaugﬂu + gal/gﬁ,u QQQBQ,U,V
(SR 8)
A (13.326)

the full action can then be written as a quadratic form in the quantum fields,
hyw and ¢.

]‘ m — 1 « v « v
Sy+ S =75 [ @0 VG5 [HMaguh® +h%Dasé + 6B b + 6F9)

(13.327)
where the operators are

_ _ 26— 1 N
Magr = Copp (~5559 + 1225, 7099 + 2250999, 4 ppe)

o P g po D 1 —Q n n o o

Py = —2R?,7, — 25" R7) + <R+ 20— 54 Baaqbam) 0% + G Ry
2 _ 1 _ - _

= po _ 5 =po (p o) 4 ,* P HAT o —

p"(’%(]ﬁf)yqb +

S 010"
Doy = 2(16—5) Cﬂﬂpg@pd—)@a gﬂg

Fo = 2@5%“%0%@

Coppo VPV b

§+1

mY — C‘uypg-v va¢

_ 1 -
=_V24+ Egﬂffaquaggs
(13.328)
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In terms of the combined field
wy
A = <h¢ > (13.329)

and in the Feynman gauge, corresponding to £ = 1, the operator

S — % / w5 %W‘AABWB (13.330)

is minimal, in the sense that it takes a Laplacian form

Aup = —gapV’+Yap (13.331)
with the metric
gap = (C"g“” ?) (13.332)
the inverse metric
g'P = (Cagw (1)> (13.333)

and the term without derivatives

CoppoPLS 2Cappe VPV
Vin — po iy poV_V _ 13.334
4B <2OWVPVU¢ 37V p0V 56 ) (13.334)

The short time expansion coefficients can be found in the literature for
such quadratic minimal operators [I], to wit

11 _ _
= ——— [d'z+/gtr (180Y? — 60RY + 5R*—
T (am)F 360 [aeva ( *
~2Ry B + 2Ry RBP4 30W,,, WH ) (13.335)

where the field strength is defined through
Vi Vil = Wi, 0P (13.336)

Therefore, in order to find the explicit value counterterm we will need a



280 13. GRAVITATION AND QUANTUM FIELD THEORY: POOR MAN’S APPROACH.

few traces
B ~n(n+1)+2
trI=gg)+1= ="
trY = ¢2BYup = 55/’5]35‘,,5 + §p0(9p¢_>8,,gz_5
1) /- 1 - _ -
- ”(”;) (R fon- zgpﬂapqsaa(ﬁ) “nR+ (n— 2)§770,00,6
— - 2
tr Y2 = Yap g% Yop g4 = PRIPLE + 2Dap B CPP + (3770,60,0)
_ _ n?—8n+4- - n+2 - _
_ wv po 1224 2 _
= 3Ryupe R + ——— =R R + —— R — 2R (R + 2
1 - - 1) /= 1 _ o \2 EP
—2gmap¢aa¢) 4 ”(”;) (R +on— ngapwggb) +2V269%%
n? -5 2 n(4d—n)(3n—8) —4(n—2)? - = T
=00 2 _
o (970,0056) + = R"9,6V,6
24+ 4n—16 - - _ 1 - -
R R 000,60+ 2(n = 1) (R 2 = 50770,50,5) 570,056
n?+4n —16 - —n
. T T PRAaPO
(n _ 2)2 Rg p¢80'¢
tr W, WH = —(n + 2) Ry pe R (13.337)

Using the known expression ((13.335|) of the second heat kernel coefficient

11 L
as = 7(4 )g 360 / d"z \/g { (542 + n(n 4+ 1) — 30(n + 2)) Ryppe R*7°

T)2

> —8n+4 = = 2 5 1)+ 107 -
+ [1807171_71; —n(n+1) —2| R, R"™ + [1802 J_r 5+ 60n + ”(”ZH} R?

_ _ _ _ \2
—30n(n + 13)R (R +oA— ;gpgﬁpgﬁ(%qb) +90n(n + 1) (R +oa— ;gpaapgbam) 4

n(4 —n)(3n —8) —4(n —2)% - - 3(n? +4n — 16 -
1 Hy & — = - = -9 po L -
+180 TEE R"™8,,60,¢ — 60 2 +n RG"° 9,00, ¢
_ 1 - - 2 -7 -2
360(n + 1) (R 42N — 2gmap¢ao¢) 500,605 + 18()”n+f”2 (9°70,00,6) " +
360v2$v2<5} (13.33:
This yields, for example in n = 4 dimensions
A
_ 2 a
logdet A = (am)? (A + A1 A + Aslog M) (13.339)

The contribution coming from ghost loops is also needed. The gauge
fixing term mantains background invariance, under which the background
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g transforms as a metric and the fluctuation h,, as a tensor. On the other
hand it has to break the quantum symmetry
0Gur =0
2

Ohyw = ;?(ufl/) + Lehpw

5 =0
5 = %g”% (q@ n ;-egzs) (13.340)

The ghost Lagrangian is obtained performing a variation on the gauge fixing
term

1 /- _ o
v =~ (VG + Ruw = V,6V,0) € (13.341)

plus terms that give operators cubic in fluctuations and therefore are irrel-
evant at one loop (please remember that the ghosts being quantum fields
they do not appear as external states). The ghost Lagrangian then reads

1 1 - _ = m= T
Son = 5 / d"z g5V (fv%a*“’ ~RW 4 V“gf)V”qb) V,  (13.342)
The relevant ghostly traces are

trli=n
trY =—R+ gp"apéagé

o o _ 2
trY? = R, R" — 29" 0,00,¢ + (gpaap¢60¢>

tr Wy WH = — Ry pe RIP7 (13.343)
and the ghostly heat kernel coefficient
1 1 _ _ o
gh _ _ n p _ uvpo _ uv
A= 5T / @' /G {[20 — 30] Ryupo RPP7 4 180 — 2] Ry R

+[60 + 5n] R? — 360R"™ 8,¢0,¢ — 60RG" 9,005 + 180 (gﬂ"a,,anUqE)Q}
(13.344)

Adding the two pieces together and particularizing to the physical dimension
n = 4 o the one-loop counterterm is obtained (please note the factor and
the sign of the ghost contribution)

15 =
“R2
8

1 11 - - 241 - -
= Z(as—2a9") = = OV pwpo _ 222 7z
AS : (a4 24 ) Gy /d x G {6ORWPUR oo R R+

2
—gR (R + 2\ — ;gp"apéag&) +5 (R +2) — ;gp"apéagé) —
8. _ 1 o .
SR 0,00,6 + 5 (R +2\ = 5570,00,0) 70,6056 +

+5 (770,00,0)" + 92677 (13.315)
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There is in the literature a completely equivalent computation by Barvinsky
and collaborators expressed in a different gauge, but using the background
equations of motion one can go from one to the other. This a consequence
of the old theorem asserting that the pieces in the counterterm that do not
vanish on-shell are gauge invariant (Kallosh).

Let us prove that the piece of L., that vanishes on shell is irrelevant.
What this means is that the path integral is invariant under field redefini-
tions

¢; = fi(d5) (13.346)

Now it must be the case that
oS
Lo = —F; 13.34
Y 5o Fi9) (13.347)

for some functions Fj(¢) depending on all the fields. This is the same as a
field redefinition
¢i = ¢i + Fi(9) (13.348)

In case that the cosmological constant vanishes the final result is

11 1 o . f
AS = =—— — [ ds \/§ {426R,pe R"P° — 1446R,,, R* + 435>
¢ (4m)2 360 / x\/g{ nee T i

+60RG”° 0,006 + 360 (g/’”apa)aggﬁ)z + 360V2pV 20 = }

11 43~ o 1o, 1o 2
= —_—— T gl — 1224 _ 2 ~ PRAPO —~po

¢ (47m)2 /d v \/5{ o o B+ o B+ G R 0,00,6 -+ (§770,00,6) +
+v2q3v2q§} (13.349)

which coincides with the result of 't Hooft and Veltman except for the last
term. That term is however irrelevant in this case since it vanishes due to
the background equations of motion. Using them the counterterm can be
written in the form

11 203 -
AS =" e /G == R? 13.
S ()2 /dac\/§ o B (13.350)
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Exercises.

15.1

Consider the totally antisymmetric Levi-Civita tensor in R3.

e Compute

Z €ijkEijk (15.1)

ijk
Z €ijkEijl (15.2)

ij
Z €ijkEilm (15.3)

e Define, given a vector v € T(R3),
(rot v), Ze,]kﬁ Vg, (15.4)
dive = Zaﬂh (155)

Compute

div rot v (15.6)

e Define , for v, w € T(R?)
(v x w), Zewk VjWw (15.7)

Compute the scalar product

(Ul X ’1)2) . ('1}3 X ’U4) (15.8)
e Compute
(1}1 X 1)2) X (Ug X 1)4) (15.9)
Compare with
V1 X (1)2 X (1)3 X 7)4)) (15.10)
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15.2

Consider the totally antisymmetric Levi-Civita tensor in the Minkowski
space M. We choose
€0123 = +1 (1511)

(e"”P? ig defined through Minkowski metric, n*")

e Compute

etre (15.12)
" vpo (15.13)

e Compute
P €upo (15.14)
€uup0€uy>\5 (1515)
euypae;uv\é (1516)
6#Vp067r7'>\5 (1517)

e Define the Kronecker tensor
Ao An A1 An]

i = P0G, 0 (15.18)

Compute
eplhel - pai (15.19)

A Agpi .
€t g1y (15.20)
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15.3

e Demostrar que el espacio bidimensional
ds® = dv® — vidu® (15.21)

es realmente el espacio de Minkowski bidimensional, M escrito en
otras coordenadas (Milne) Demostrar que para una particula libre p,
es constante, pero p, no lo es.

e La métrica en la superficie terrestre viene dada por
ds? = a? (dI* + cos?l dL?) (15.22)

siendo L la latitud y [ la longitud. La metrica de un mapa plano es,
naturalmente,

ds? = dz* + dy* (15.23)

Expresar la métrica de la superficie de la Tierra en las coordenadas
(z,y) para la proyeccién ciulindrica.

e Definamos la proyeccion de Mercator como aquella que hace corre-
spoonder una linea recta en el mapa a una linea de demora constante.
Demostrar que esta definida por

T=¢
0
y = log cot 3 (15.24)
siendo (6, ¢) coordenadas polares. Escribir la métrica de la superficie

terrestre en las coordenadas (x,y). Demostrar que los circulos méaxi-
mos estan dados por la férmula

shy =asin(z+ f) (15.25)
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15.4
e Consider the following lagrangian

L= %(aMAV)(aVAﬂ) (9, A2 (15.26)

1
2

Is it Lorentz invariant?

Is it gauge invariant?

Compute the equations of motion.

How are the results you have got mutually compatible?
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15.5

Show that if hfg,) is an arbitrary configuration, there exists a Fierz-Pauli

gauge parameter

&P (15.27)
such that the gauge transformed field
RO + 8.6, + D€, (15.28)

obeys the harmonic (de Donder) gauge

1
Ol = S0"h (15.29)
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15.6
Consider the interaction energy between two symmetric, conserved sources,
_ 2
W =TINTR) — €T T (15.30)

where £ is an arbitrary parameter. Use conservation of the source in mo-
mentum space, in the Lorentz frame where

Kt = (B,0,0, k) (15.31)
(E = Vk? + m?) to eliminate Tp; and Tyo in terms of T;;. Take now the

massless limit of the expression above. Check that for £ = % (and only for
this value), the energy can be written as

_ 1 11 22 11 22 1212
W= (138 - 1) (18) - 1) + 210318 (15.32)

which would mean that the corresponding particle carries helicity £2 only.(Zee)
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15.7

Consider the flat metric in R? in polar coordinates
ds? = dr? + 12 (d6? +sin® 0 dg?) (15.33)

Write a natural dreibein in terms of differential forms and the corresponding
dual basis of vectors in the tangent space. Compute the Hodge dual of this
basis.

15.8

Do the same things for the Minkowski metric
ds? = di? — dr® —r* (d6® + sin® 0 d¢?) (15.34)

Beware of the signs!
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15.9

e Consider the 1-form
A= gdt (15.35)

Compute
dx F (15.36)

e Consider a different field strength such that now

G= g sin 6dO A do = 2%43 (xdy N dz + ydz N dx + zdx A dy) (15.37)

What sort of field does it represent? Show that the gauge potential

reads L1 ) 9
— oS
ey T(xdy — ydx) = Tdd) (15.38)
whenever
0<6<6; (15.39)
1 1 1+ cos 6
= — - 15.4
55— (xdy — yd) 5 do (15.40)
whenever
o< <m (15.41)

(It is assumed that
Oy < 91) (15.42)

e Evaluate the 1-form J such that

xJ=dxG (15.43)

e Compute the electric and magnetic fields corresponding to this field
strength.

e Compute the fluxes
/ Q% F (15.44)
B(R)

/ d%G (15.45)
B(R)

where B(R) is the surface of a 2-sphere around the origin.
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15.10
Define an adequate vierbein for the metric
2 i\? 2 i g
ds” = (dt — Ajdx ) —a“(t)d;;dx'da’ (15.46)
Using it, compute the spin connection and the two-form of curvature, ( no

need to go back to Christoffel symbols)
What is the condition for a new coordinate T to exist such that

dT = dt — A;dz"? (15.47)

15.11

Same question for the metric

dt\?
ds?> =dt?> — (dr+ p— ) —r2dQ? 15.48
r 2
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15.12

e Compute the equations of motion for the general lagrangian quadratic

in curvature

L = aRu R" + BRyps R*P7 + yR?

where «, 8y are dimensionless constants.

(15.49)

e A particle of negative gravitational mass —|m| is released from rest
at a distance | >> Mk? from another fixed particle of equal positive
mass, |m|. As seen by a static FIDO observer, what is the magnitude

and direction of the acceleration of each particle?

15.13
e Consider the Einstein-Rosen metric.
AN 0 0 0
1453
= 0 - (1 + LS)2 0 0
g - 4P
0 0 —p? 0
0 0 0 —sin?4

By using an appropriate tetrad, compute Riemann’s tensor.

e What is the physical meaning of it?

(15.50)
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15.14
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15.15
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15.16
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15.17
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15.18
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15.19
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15.20
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15.21
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15.22
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15.23
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15.24
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15.25
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15.26
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15.27 Exam 2013. Einstein-Rosen.

e The original Einstein-Rosen metric is obtained from Schwarzschild by

the change
wW=r—rg

(15.51)

What is the advantage of this change over the seemingly more natural

one
u=r—rg?

o Answer. The metric

u u

dt?

ds® = du® — (u+rg)?dQ?

rs +u U+rg

behaves badly when u = 0. For example

s

Rt = ———2
tuut u(rs + u)?

The Einstein-Rosen metric, instead
2

u
rg + u?

ds® = dt* — 4(u? +rg) du® — (u® + rg)2dQ>
is well-behaved at v = 0. For example,

4drg
R = -
fuut (rg + u?)?

(15.52)

(15.53)

(15.54)

(15.55)

(15.56)

e Compute the time to reach u=0 in the Einstein-Rosen space starting
at rest at infinity trough a radial geodesic, measured by a FIDO at

infinity and by a FREFO.

e . Answer.

. n
L=+ — 4702 (u?
Z 1 rs w*(u” +rg)
2
E=i 2u
u“+rg
Normalization:
2 20,2 2 2
5 U . E*(u* +rg) u
L=1=¢ — 4% (u? = —
u? +rg W (urs) ut u?+rg
When u = oo
1= E?

(15.57)

(15.58)

4 (‘Z‘f (u? + r5)>

(15.59)

(15.60)
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The FIDO time

3
dt =2 (u? +r5)’ 5:9 (15.61)
The integrand diverges when v = 0. The FREFO time
u2
dr = e dt (15.62)
is clearly finite.
e Define "radius" as
R= 3V:(l$§) (15.63)

where Vol is the volume of a two-dimensional sphere of constant u,
and A is its surface. Compute the radius in terms of u.

e Answer.
A =dn(u® +rg)? (15.64)

V =dr /OU du(u? + rg)? = % [UVT? +rg (33 + 26rsU2 + 8U") +
15r% log (2 (U + VU +715))] (15.65)

Then

u/U7 47 (33r% — 26rsU? + 8U*) + 1573 log (2 (U + VU2 + 7))

R—
8(U2 + 7"3)2

(15.66)

15.28 Exam 2014. Godel.

In 1949 Kurt Godel discovered a solution of Einstein’s equations that in
some local coordinate patch reads

1
ds? = a® (dt2 — da® + 5e%dy? —d2? + 2e2dtdy> (15.67)

where a is a constant. The nonvanishing Christoffels are easily calculated

F81 =1
1
Iy =Tg = 5696
1
3y = 5623:

T2 = @ (15.68)
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e Consider the congruence defined by

10
= _ 15.69
Y a Ot ( )
It is a fact of life that )
R, = 2 Uy (15.70)

(Please notice the positioning of the indices). There are two ways to
interpret this solution: either with vanishing cosmological constant
and a perfect fluid source with a certain equation of state (what is it?)
or else as a pressureless fluid with a cosmological constant (which is?)

e Solution Start from
1
Rag = 5 (R +2)) gas = 5°Tag (15.71)

which is the same as

1 1 K2
Ry, = Jalalis = K2 Tpp— (2)\ + 2/12T) Gap = K2 (p +p) ugup— <2/\ + ol (p— p)) 9as

(15.72)
This means that
e 1
p p - (12
2
2\ + 3(’0_;0) =0 (15.73)
Either
A=0
_ 11
p= 2k2 a?
p=p (15.74)
or else
p=20
1
p= a?k2
2
A= —Zp (15.75)

e The congruence as above. Is it geodesic? Is it expanding? Is it rotat-
ing? How does the expansion depend on time (Raychaudhuri)?
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e Solution The optical scalars of the geodesic congruence

=0
0=0

6 = (15.76)

e In the same paper Gddel gives another coordinate patch

e* = cosh 2r + cos ¢ sinh 2r
ye® = /2 sin ¢ sinh 2r

¢ t_27-> —2r (;5
t =+ =e “tg -
8 (2 2v2 &9

z=2n
(15.77)

In this patch the metric reads

ds* = 4a® (dT2 —dr? —dn® + (sinh4 r — sinh? 7') d¢? + 2v/2 sinh? rdqde)

(15.78)
(no need to check this; trust Godel).
e Consider the curve
r=R~R
n=20
T=—a¢
(15.79)

(0 < ¢ < 27). This curve. Is it timelike? Is it geodesic? Is it there
some remarkable property after one turn on the axis?

e Solution It is timelike for R big enough, but not a geodesic. It is a
closed timelike curve. After a full turn

T =271 (15.80)

we end up before we started, in spite of the fact that the curve is
everywhere timelike.
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By the way, essentially the same curve

e
=3
T=—a
(15.81)
in Minkowski space is also timelike when |a| > R
i? = (a? = R?) ¢ (15.82)
What happens is that it is past time oriented with respect to

u=(1,0,0,0) (15.83)
w.i = —ag (15.84)

In Goédel spacetime, however the CTC is not only timelike, but also future
oriented for R big enough

ud = (2\/§sinh2 R- a) ¢ (15.85)

This is Godel at his best.
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