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1 The singlet chiral anomaly.

Consiser a set of left and right fermions in an external gauge field

L = ψ̄i /D(A)ψ = ψ̄Li /D(A)ψL + ψ̄Ri /D(A)ψR (1.1)

When necessary, we shall use Weyl’s representation of Dirac’s gamma matrices

γ0 =

(
0 1

1 0

)
(1.2)

and

γi =

(
0 −~σ
~σ 0

)
(1.3)

In this form, the operator i/∂ reads

/∂ =

(
0 i∂0 + i~σ~∇

i∂0 − i~σ~∇ 0

)
(1.4)

Finally

γ5 ≡ iγ0γ1γ2γ3 =

(
1 0

0 −1

)
(1.5)

In that way the left and right projectors

PL ≡
1

2
(1 + γ5) (1.6)

as well as PR ≡ 1− PL. To be specific

ψ =

(
ψL
ψR

)
(1.7)

It is plain that
ψ̄L ≡ (PLψ)+γ0 = ψ+PLγ0 = ψ̄PR (1.8)

Kinetic energy terms do not mix chiralities

L = ψ̄i /Dψ = ψ̄Li /DψL + ψ̄Ri /DψR (1.9)

which is not the case with either masses or Yulawa couplings

Lm ≡ ψ̄mψ = ψ̄LmψR + ψ̄RmψL (1.10)

Charge conjugates are defined by

ψc = −γ2ψ
∗ =

(
σ2ψ

∗
R

−σ2ψ
∗
L

)
(1.11)
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Let us also recall the well-known fact that the whole action cal be expressed in terms of
left-handed fields

(ψ̄c)L = (0, ψTRσ2) (1.12)

Also
(ψ̄c)R = (−ψTLσ2, 0) (1.13)

In fact

(ψ̄c)Li /D(ψc)L = ψRσ2(i∂0 − i~σ~∇)σ2ψ
∗
R =

ψTR(i∂0 + i~σ∗~∇)ψ∗R = −i∂0ψ
+
RψR − i~∇ψ

+
R~σψR (1.14)

Integrating by parts this yields

iψ+
R∂0ψR + iψ+

R~σ
~∇ψR (1.15)

which is precisely
ψ̄Ri /DψR (1.16)

All this holds independently of the structure of any non-spinorial indices the fermions may
have

For example, if we have a Dirac spinor with a flavor index i = 1 . . . N , we can always define
a 2N left component spinor

Ψ ≡

(
ψL
ψcL

)
(1.17)

The kinetic energy piece reads
L = Ψ̄i /DΨ (1.18)

and is U(2N) invariant under
δΨ = iUΨ (1.19)

Majorana spinors ara self-conjugate ψ = ψc. Then

ψM =

(
ψL
−σ2ψ

∗
L

)
(1.20)

Both Weyl and Majorana spinors have only two complex independent components, which
is half those of a Dirac spinor.

Majorana masses are couplings of the form

Mψ̄MψM (1.21)

and they violate fermion number conservation.

This lagrangian is invariant under two different global transformations. This first is the
vector one
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δψ = iεψ (1.22)

that is

δψL = iεψL

δψR = iεψR (1.23)

The corresponding Noether current is fermion number conservation

jµ = ψ̄γµψ (1.24)

The second symmetry is the axial or chiral

δψ = iεγ5ψ (1.25)

that is

δψL = iεψL (1.26)

δψR = −iεψR (1.27)

The corresponding Noether current reads

jµ5 ≡ ψ̄γ5γ
µψ (1.28)

It is plain that

ψ̄γµψ = ψLγ
µψL + ψ̄Rγ

µψR

ψ̄γ5γ
µψ = ψLγ

µψL − ψ̄RγµψR (1.29)

What happens is that in quantum mechanics there is an anomaly in the latter current.

∂µj
µ
5 ≡ A =

g2

16π2
tr εαβµνFαβFµν (1.30)

(the trace is irrelevant in the abelian case).

The fact that we keep conservation of the vector current implies that the left anomaly is
equal and opposite in sign from the right anomaly.

∂µj
µ
L ≡ ∂µ(ψ̄Lγ

µψL) = −∂µjµR ≡ −∂µ(ψ̄Rγ
µψR) =

1

2
A (1.31)

Is this simple fact that allows for cancellation of anomalies between different species of
fermions to be possible at all.
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1.1 Anomalies as due to non-invariante of the functional integral measure.

This way of looking to the anomaly is due to Fujikawa [25]. The starting point is the formal
definition of Berezin’s functional integral measure∏

x

Dψ̄(x)Dψ(x) (1.32)

Giving the fact that ∫
dψψ = 1, (1.33)

then ∫
d(λψ)λψ = 1 (1.34)

which implies

d(λψ) =
1

λ
dψ. (1.35)

The infinitesimal version of the jacobian of the transformation (1.26)

ψ′(x) = eiεγ5ψ(x)

ψ̄′ = ψ̄eiεγ5

Dψ′Dψ̄′ = e−2iεγ5DψDψ̄ (1.36)

will then be
J ≡ det (1− 2iε(x)γ5) (1.37)

id est
log J = −2 i tr ε(x)γ5δ(x− y) (1.38)

The only thing that remains is to give some precise sense to the above expression. In order
to perform the trace, we shall use a complete set of eigenfunctions of Dirac’s operator

/Dφn(x) ≡ ( /D − ig /A)φn(x) = λnφn(x). (1.39)

Let us regularize as follows

i

2
log J =

∑
n

∫
d4x d4y φn(x)+ ε(x) γ5 δxyφn(y) ≡

lim
Λ→∞

∫
d4x ε(x)

∑
n

φ+
n (x) γ5 e

−λ
2
n

Λ2 φn(x) =

lim
Λ→∞

∫
d4x ε(x)

∑
n

φ+
n (x) γ5 e

− /D2

Λ2 φn(x) =

lim
Λ→∞

∫
d4x ε(x) tr

∫
d4k

(2π)4
e−ikx γ5 e

− /D2

Λ2 eikx (1.40)

where in the last line we have changed to a plane wave basis.
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It is not difficult to check the following facts

/D
2

Λ2
=

1

Λ2

(
DµDµ +

1

4
[γµ, γν ][Dµ, Dν ]

)
(1.41)

Dµe
ikx = (∂µ − igAµ)eikx = (ikµ − igAµ)eikx (1.42)

DµDµe
ikx = (−k2 − ig∂.A+ 2gk.A− g2AαA

α)eikx (1.43)

[Dµ, Dν ]eikx = igFµνe
ikx (1.44)

What is left to compute is precisely

lim
Λ→∞

Tr

∫
d4k

(2π)4
e−ikx γ5 e

1
Λ2 [−k2−ig∂.A+2gk.A−g2AαAα+ i

4
gγµνFµν ]eikx. (1.45)

where
γµν ≡ [γµ, γν ]. (1.46)

Rescaling k = pΛ and keeping the exponential of momenta in the integral, the only surviving
term after tracing and regulating is∫

d4p

(2π)4
e−p

2 1

2!
Tr
−g2

16
(Fµνγ

µν)2 =
ig2

32π2
Tr εµνρσ Fµν Fρσ (1.47)

given that the volume of the unit three-sphere is V (S3) = 2π2, the integral
∫∞

0 p3dpe−p
2

= 1
2

and Tr γ5γµνγρσ = −16iεµνρσ.

All this means that taking into account the jacobian, the axial current is not conserved
anymore, but rather

∂µ〈ψ̄γµγ5ψ〉 =
g2

8π2
Tr

∫
d4x ∗ Fµν Fµν (1.48)

where the dual field strength has been defined

∗ Fµν ≡
1

2
εµνρσF

ρσ (1.49)

The preceding analysis is related to the index theorem (cf. [22]). What we are evaluating
is actually con la cantidad ∑

φ+
n γ5φn = n(+) − n(−) (1.50)

namely the difference between the number of positive and negative chirality eigenmodes of
Dirac’s operator. Neverteless it is fact that only zero modes can be chiral, because,

/Dφ(+)
n = λnφ

(+)
n (1.51)

acting with γ5

− λn = λn (1.52)
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In a similar way, starting from
/D φ(−)

n = λnφ
(−)
n (1.53)

and acting again with γ5,
λn = −λn (1.54)

This means that nonvanishing eigenvalues just come in pairs with opposite sign, and the
only difference can only stem from the zero modes, for which our arguments do not apply.
The quantity (1.50) is exactly what mathematicians call the index of the Dirac operator,
and what Fujikawa just proved with physicist’s techniques, is that

ind /D = − 1

16π2
Tr

∫
d4x ∗ Fµν Fµν (1.55)

1.2 The Adler-Bell-Jackiw computation.

Let us now perform a perturbative calculation in QED with external vector and axial
sources. Define

∆λµν(k1, k2) ≡ F〈0|TJ5
λ(0)Jµ(x1)Jν(x2)|0〉 (1.56)

∆µν(k1, k2) ≡ F〈0|TJ5(0)Jµ(x1)Jν(x2)|0〉 (1.57)

The diagrams give

∆λµν(k1, k2) = i

∫
d4p

(2π)4
Tr γλγ5

1

/p− /k1 − /k2
γν

1

/p− /k1
γµ

1

/p
+

+γλγ5
1

/p− /k1 − /k2
γµ

1

/p− /k2
γν

1

/p
(1.58)

and

∆µν(k1, k2) = i

∫
d4p

(2π)4
Tr γ5

1

/p− /k1 − /k2
γν

1

/p− /k1
γµ

1

/p
+

+γλγ5
1

/p− /k1 − /k2
γµ

1

/p− /k2
γν

1

/p
(1.59)

Ward’s identity for the vector current implies

kµ1 ∆λµν = kν2∆λµν = 0 (1.60)

and the axial Ward identity

qµ∆λµν ≡ (k1 + k2)µ∆λµν = 0 (1.61)
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Using the expression just derived for the correlators, we can write

kµ1 ∆λµν = i

∫
d4p

(2π)4
Tr γλγ5

1

/p− /k1 − /k2
γν

1

/p− /k1
/k1

1

/p
+

γλγ5
1

/p− /k1 − /k2
/k1

1

/p− /k1
γν

1

/p
(1.62)

We can now make in the first integral the change

/k1 = /p− (/p− /k1) (1.63)

and in the second integral
/k2 = (/p− /k2)− (/p− /q) (1.64)

This yields

kµ1 ∆λµν = i

∫
d4p

(2π)4
Tr γλγ5

1

/p− /q
γν

(
1

/p− /k1
− 1

/p

)
+(

1

/p− /q
− 1

/p− /k2

)
γν

1

/p
=

i

∫
d4p

(2π)4
Tr γλγ5

1

/p− /q
γν

1

/p− /k1
− 1

/p− /k2
γν

1

/p
(1.65)

This would vanish if we could make the change of integration variable

p→ p− k1 (1.66)

But this is not kosher, because the integral does not converge. Let us be careful and define

kµ1 ∆λµν(a, k1, k2) = i

∫
d4p

(2π)4
tr γλγ5

1

/p+ /a− /q
γν

1

/p+ /a− /k1
− 1

/p+ /a− /k2
γν

1

/p+ /a

We shall compute the difference

δ [k1∆]λν ≡ k
µ
1

(
∆λµν(a, k1, k2)−∆λµν(a = 0, k1, k2)

)
(1.67)

Using Stokes’theorem ,∫
dnp
(
f(p+ a)− f(p)

)
=

∫
dnp aµ∂µf(p) + . . . = lim

k→∞
aµ
kµ
k
f(k) Sn−1(k) (1.68)

Our function is given by

f(p) ≡ Tr

(
γλγ5

1

/p− /k2
γν

1

/p

)
(1.69)

What we actually have to compute is the difference between doing that with a1 = a and
doing it with a2 = a− k1
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This is

k1
µ lim
k→∞

kµ

k
(2π2k3)

γλγ5(/k − /k2)γν/k

(k − k2)2k2
= −i2π2k1

µ lim
k→∞

kµ

k
k3 1

k4
ελρνσk

ρ
2k

σ =

= −i2π2k1
µελρνσk

ρ
2η
µσ (1.70)

This yields a nonvanishing value for the vector Ward identity.

kµ1 ∆λµν = 2iπ2 1

(2π)4
kµ1k

ρ
2ελρνµ (1.71)

It looks that there is no possible way to keep vector symmetry in the quantum theory. In
order to clarify the issue, let us go back to basics and define yet another correlator

∆λµν(a, k1, k2) = i

∫
d4p

(2π)4
Tr γλγ5

1

/p+ /a− /k1 − /k2
γν

1

/p+ /a− /k1
γµ

1

/p+ /a
+

γλγ5
1

/p+ /a− /k1 − /k2
γµ

1

/p+ /a− /k2
γν

1

/p+ /a
+ (µν)(12) (1.72)

Here (µν)(12) means the result of exchanging the two indices µν as well as the labels (12).
Let us compute again the object δ∆. The function we have to analyze is now

f(p) ≡ Tr γλγ5
1

/p− /q
γν

1

/p− /k1
γµ

1

/p
= Tr

γλγ5(/p− /q)γν(/p− /k1)γµ/p

(p− q)2(p− k1)2p2
(1.73)

Traces are easily computed

Tr
(
γλγ5/pγν/pγµ/p

)
= Tr γλγ5(2ηνµ1 − γνγµ1)γµ2(2ηµ3ν − γµ3γν)pµ1pµ2pµ3 =

= Tr γλγ5γνp
2γµ3γµp

µ3 (1.74)

This leads to the expression

− 4i
pα

p4
εaνµλ (1.75)

δ∆ =
4i

8π2
lim

kαkβ
k2

εβνµλ + (µ, k1 → νk2) =
i

8π2
aαε

ανµλ + (µ, k1 → νk2) (1.76)

Let us write a linear combination of the momenta k1 and k2

a ≡ x(k1 + k2) + y(k1 − k2) (1.77)

leading to

∇δ =
iy

4π2
ελµνσ(k1 − k2)σ (1.78)

(the piece linear in q disappears when symmetrizing)-

Imposing now conservation of the vector current we get

kα1 ∆λαν(k1, k2) =
i

8π2
ελντσk

τ
1k

σ
2 (1.79)
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namely

y = −1

2
(1.80)

Reexamine now the axial current

(k1 + k2)λ∆λµν(a, k1, k2) = (k1 + k2)λδ
λµν(k1, k2) +

i

4π2
εµνλσk

λ
1k

σ
2 (1.81)

The last part of the computation reads

(k1 + k2)λδ
λµν(k1, k2) = i

∫
d4p

(2π)4
tr /qγ5

1

/p− /k1 − /k2
γν

1

/p− /k1
γµ

1

/p
+

/qγ5
1

/p− /k1 − /k2
γµ

1

/p− /k2
γν

1

/p
= i

∫
d4p

(2π)4
tr γ5

1

/p− /k1 − /k2
γν

1

/p− /k1
γµ −

γ5
1

/p− /k2
γν

1

/p
γµ + (µ, k1 → νk2) =

i

4π2
εµνλσk

λ
1k

σ
2 (1.82)

namely exactly the same trace we got already when checking the vector Ward identity.

(k1 + k2)λδ
λµν(a, k1, k2) =

i

2π2
εµνλσk

λ
1k

σ
2 (1.83)

The anomaly can be written as a total derivative:

A =
1

4π2
εµνρσ∂µTr

(
Aν∂ρAσ −

2

3
iAνAρAσ

)
(1.84)

1.3 Pauli-Villars regularization.

The Pauli-Villars regularization is a gauge invariant way of introducing a cutoff. The main
idea stems from the fact that the difference of two propagators behaves much better at
infinity than each one separately.

1

p2 −m2
− 1

p2 −M2
=

m2 −M2

(p2 −m2)(p2 −M2)
(1.85)

Of course the minus sign in from of the propagator is not physical, and indicates that the
corresponding particle is a ghost. One must make sure that all unwanted ghostly efects
are gone when M → ∞. This regularization works best with fermion loops (like the one
appearing in the abelian vacuum polarization diagram), which can be understood as the
determinant of Dirac’s operator

det i /Dm (1.86)

where
i /Dm ≡ i/∂ − e /A−m (1.87)

Then we substitute instead of the determinant the quantity

det i /Dm

i=n∏
i=i

(
det i /DMi

)ci (1.88)
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or what is the same,

Tr log i /Dm +
i=n∑
i=i

ciTr log
(
i /DMi

)
(1.89)

The coefficients ci cannot be all positive, because they have to obey∑
ci + 1 = 0∑

i

ciM
2
i +m2 = 0 (1.90)

This means that in general the regulators will violate the spin-statistics theorem,id est ,
they are ghosts.

In order to compute the j-th determinant we write

Tr log i /DMj
= Tr log

(
i/∂ −Mj

) (
1− e(i/∂ −Mj)

−1 /A
)

=

= Tr log
(
i/∂ −Mj

)
+ Tr log

(
1− e(i/∂ −Mj)

−1 /A
)

=

N +

∞∑
n1

(−e)n

n
Tr

∫
d4x1d

4x2 . . . d
4xn /A(x1)Sj(x1 − x2) /A(x2) . . . /A(xn)Sj(xn − x1)

where N is a divergent constant and(
i/∂ −Mj

)−1 ≡ Sj(x− y) (1.91)

(we can include as well the physical mass as M0 ≡ m). The Pauli-Villars’regulator loop in
momentum space is proportional to∫

d4k1 . . . d
4kn

∫
d4p

Tr
(
γµ1(/p+Mj)γµ2(/p+ /k1 +Mj) . . . γµn(/p+ /kn−1 +Mj)

)
(p2 −m2)((p+ k1)2 −M2

j ) . . . ((p+ kn−1)2 −M2
j )

×

×Aµ1(k1) . . . Aµn(kn) δ(4)(k1 + k2 + . . . kn) (1.92)

Given the fact that the numerator of the integrand has mass dimension n whereas the
denominator has mass dinension 2n, the superficial degree of divergence of this diagram is

D = 4− n (1.93)

This means that all terms with n ≤ 4 will be divergent. We can represent the integrand as
a power series in the masses (Pλ(p) represents a polynomial in p of degree λ).

Pn(p) +M2
j Pn−2(p) + . . .+Mn

j

P2n(p) +M2
j P2n−2(p) + . . .+M2n

j

=
Pn(p)

(
1 +M2

j
Pn−2(p)
Pn(p) + . . .+Mn

j
1

Pn(p)

)
P2n(p)

(
1 +M2

j
P2n−2(p)
P2n(p) + . . .+M2n

j
1

P2n(p)

) =

Pn(p)

P2n(p)

(
M2
j

(
Pn−2(p)

Pn(p)
− P2n−2(p)

P2n(p)

)
+ . . .

)
(1.94)

The net contribution of the regulators is the sum of all this terms weighted with cj . The
coefficient ofMλ

j behaves at large momenta as p−n−λ. If the weights are chosen to obey the
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conditions as above, this cancels the terms in M0
j (behaving as Λ4−n) and M2

j (behaving
as Λ2−n). This is enough in or case. In other situations, we maight have to impose extra
conditions to the coefficients cj .

For our purposes, it is enough to consider a single regulator of mass M . The physical limit
will be m→ 0 andM →∞. In the regularized theory, with finiteM , we can safely perform
changes of variables in the finite integrals

∆PV
λµν(k1, k2) ≡ ∆λµν(m)−∆λµν(M) (1.95)

The axial Ward identity reads

qλ∆λµν ≡ lim
M→∞

[2m∆µν(m)− 2M∆µν(M)] (1.96)

Let us compute the diagram corresponding to the regulator

∆µν(M) = −i
∫

d4p

(2π)4
tr

(
i

/p−M + iε
γ5

i

/p− /q −M + iε
γν

i

/p− /k1 −M + iε
γµ −

i

/p−M + iε
γ5

i

/p− /q −M + iε
γµ

i

/p− /k2 −M + iε
γν

)
(1.97)

Introducing Feynman parameters,

δµν(M) = −
∫

d4p

(2π)4
2

∫ 1

0
dx1

∫ 1−x1

0
dx2

Tr (/p+M)γ5(/p− /q +M)γν(/p− /k1 +M)γµ

[(p2 −M2)x2 + ((p− q)2 −M2)(1− x1 − x2) + ((p− k1)2 −M2)x1]3
−

(k1 ↔ k2)(µ↔ ν) (1.98)

The only way we cab get a nonvanishing trace is with four Dirac matrices besides the γ5.
The full set of terms in the numerator reads

/pγ5/qγνMγµ + /pγ5Mγν(/p− /k1)γµ +Mγ5(/p− /q)γν(/p− /k1)γµ −Mγ5/pγν /k1γµ (1.99)

All those terms cancel but one.

MTr γ5/qγν /k1γµ = M4iεβναµk
µ
2k

α
1 + (k1 ↔ k2)(µ↔ ν) (1.100)

ending up with

∆µν =

∫
d4p

(2π)4
2

∫ 1

0
dx1

∫ 1−x1

0
dx2

2M4iεµναβk
α
1 k

β
2

[p2 − 2pk −N2]3
(1.101)

where
k ≡ q(1− x1 − x2) + k1x1 (1.102)

and
N2 ≡M2 − q2(1− x1 − x2)− k2

1x1 (1.103)
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The momentum integral is a particular instance of∫
dnp

(p2 − 2pk −N2)a
= i1−2aπn/2

Γ(a− n/2)

Γ(a)

1

(k2 +N2)a−n/2
(1.104)

The final result is then

lim
M→∞

2M∆µν(M) = lim
M→∞

1

(2π)4

π2

2i

1

M2
2M2M4iεµναβk

α
1 k

β
2 2

∫ 1

0
dx1

∫ 1−x1

0
dx2 =

1

2π2
εµναβk

α
1 k

β
2 (1.105)

From this viewpoint, all the anomaly comes from the regulator.

1.4 Dimensional Regularization.

It is nowadays clear that the best definition of γ5 in dimensional regularization is the one
initially proposed by ’t Hooft y Veltman [? ]:

{γ5, γµ} = 0 (µ = 0 . . . 3)

[γ5, γµ] = 0 (µ = 4 . . . n− 1) (1.106)

The diagram we have to consider is

δλµν = −
∫

d4p

(2π)4

dn−4P

(2π)n−4
tr

1

/p+ /P
γλγ5

1

/p+ /P − /q
γν

1

/p+ /P − /k1
γµ

−(k1 ↔ k2)(µ↔ ν) (1.107)

where we have been careful in distinguishing

/p ≡
3∑
0

γµp
µ (1.108)

from the extra components

/P ≡
n−1∑

4

Pµγµ (1.109)

Again, once the theory is regularized, we can translate the integration variables

p→ p+ k1 (1.110)

The axial Ward identity reads

qλ∆λµν = −
∫

d4p

(2π)4

dn−4P

(2π)n−4

tr (/p+ /P + /k1)/qγ5(/p+ /P − /k2)γν(/p+ /P )γµ

[(p+ k1)2 − P 2][(p− k2)2 − P 2][p2 − P 2]

+(k1 ↔ k2)(µ↔ ν) (1.111)
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The rules of the game mean that

/p/p = p2

/P /P = −P 2

/p/P + /P/p = 0

(/p+ /P )(/a+ /P ) = p2 − P 2 (1.112)

There are 18 different terms in the numerator. The computation simplifies using

Tr γ5γαγβγµγνγργσ =
i

2

(
ηρσεαβµν − ηνσεαβµρ + ησµεαβνρ − ηβσεαµνρ + ησαεβµνρ

)
(1.113)

The only surviving terms after taking the trace are the ones proportional to /P /P :

4 Tr γ5γµγν /k1/p

∫
d4p

(2π)4

dn−4P

(2π)n−4

P 2

[p2 − P 2][(p+ k1)2 − P 2][(p− k2)2 − P 2]
(1.114)

Introducing Feynman parameters and performing the momentum integral we get

16iεµναβk
α
1 k

β
2

1

(2π)4

π2

2i
2

∫ 1

0
dx1

∫ 1−x1

0
dx2

dn−4P

(2π)n−4

P 2

P 2 + f(x1, x2)
(1.115)

The last integral is a particular instance of∫
dnP

(2π)n
(P 2)a

(P 2 + f)b
=
fa+b+n/2

(2
√
π)n

Γ(a+ n/2)Γ(b− a− n/2)

Γ(n/2)Γ(b)
(1.116)

so that the physical four-dimensional limit

lim
n→4

∫
dn−4P

(2π)n−4

P 2

P 2 + f(x1, x2)
= −1 (1.117)

where the finite value is the result of a cancellation

0×∞ (1.118)

due to the product
Γ(−ε)
Γ(ε)

(1.119)

These operators are often dubbed evanescent operators.

Finally we recover the result

qλ∆λµν = − 1

2π2
εµναβk

α
1 k

β
2 (1.120)
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1.5 Reminder of differential forms.

Consider an n-dimensional vector space ~v ∈ V :

~v(f) ∈ R (1.121)

1-Forms live in the dual space, θ ∈ V ∗:

θ(~v) ∈ R (1.122)

To any function there is an canonical differential form defined as

df(~v) ≡ ~v(f) (1.123)

To any local frame we define vectors as operators on functions, namely directional deriva-
tives

~eα(f) ≡ ∂αf (1.124)

The dual basis
θβ(~eα) ≡ δβα (1.125)

In a local system of coordinates

dxα(∂β) = ∂βx
α = δαβ (1.126)

Direct products are naturally defined

Πr
s ≡ V ∗ × . . .× V ∗︸ ︷︷ ︸

rfactors

×V × . . .× V︸ ︷︷ ︸
sfactors

(1.127)

Tensors are just multilineal applications

T : Πr
s → R (1.128)

We define the tensor space in a natural way

T rs ∈ V ⊗ . . .⊗ V︸ ︷︷ ︸
rfactors

×V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
sfactors

(1.129)

T 1
0 = V (1.130)

T 0
1 = V ∗ (1.131)

A basis in the tensor space is given by

~v1 ⊗ . . . ~vr ⊗ ω1 ⊗ . . .⊗ ωs(η1, . . . ηr, ~w1 . . . ~ws) ≡ η1(~v1) . . . ηs(~vs) (1.132)

A general tensor is defined as a linear combination of those objects,

T = Tα1...αr
β1...βs~eα1 ⊗ . . . ~eαr ⊗ θβ1 . . .⊗ θβs (1.133)
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It is useful to define Kronecker’s tensor:

δ
λ1...λq
µ1...µq ≡ q!δ[λ1

µ1
. . . δ

λq ]
µq (1.134)

Differential forms are just covariant completely antisymmetric tensors

α = aλ1...λqθ
λ1 ⊗ . . .⊗ θλq =

∑
αι1...ιq

∑
δ
ι1...ιq
λ1...λq

θλ1 ⊗ . . .⊗ θλq (1.135)

(with ι1 < . . . < ιq).

It is a fact that the product of two Kronecker tensors is another Kronecker tensor

δ
λ1...λq
µ1...µqδ

µ1...µqν1...νq′
σ1...σq+q′ = q!δ

λ1...λqν1νq′
σ1...σq+q′ (1.136)

The exterior product of a q-form and a q′-form is a (q + q′)-form defined by:

(α ∧ β)ν1...νq+q′ ≡
1

q!q′!
δ
λ1...λqµ1...µq′
ν1...νq+q′ αλ1...λqbµ1...µq′

(1.137)

It is easy to prove that
α ∧ β = (−1)qq

′
β ∧ α (1.138)

as well as
θα ∧ θβ = θα ⊗ θβ − θβ ⊗ θα (1.139)

We shall write
α = aαβθ

α ⊗ θβ =
1

2
aαβθ

α ∧ θβ (1.140)

or else in the natural basis associated to a local system of coordinates

α =
1

q!
aα1...αqdx

α1 ∧ . . . ∧ dxαq (1.141)

The exterior differential of a q-form is a (q + 1)-form defined as:

dα =
1

(q + 1)!

1

q!
δ
λ0λ1...λq
µ0...µq ∂λ0αλ1...λqdx

µ0 ∧ . . . dxµq (1.142)

We shall denote
dxα1...αp ≡ dxα1 ∧ . . . ∧ dxαp (1.143)

It can be easily shown that

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) (1.144)

as well as the fundamental nilpotency

d2 = 0 (1.145)
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1.6 Gauge fields as one-forms.

Gauge fields can be considered as Lie algebra valued one-forms.

A ≡ −iAµdxµ (1.146)

and the field strencgth ris represented by the two-form

F = dA+A ∧A (1.147)

It is customary in this context to supress the wedge symbol, which is implicit in all products
of forms. Let us check that

Tr A2n = 0 (1.148)

By cyclically permuting indices, we get a minus sign from the differentials, while the rest
of the expression remains invariant. Let us spell this in detail in the case n = 2

TrAabcdµνρσTabcddx
µνρσ = trAabcdµνρσTdabcdx

µνρσ = TrAbcdaµνρσTabcddx
µνρσ = trAabcdνρσµTabcddx

νρσµ

(1.149)
which is equal to minus the original expression, which then has to vanish. The fact the the
anomaly is a total derivative reads in the present language

Tr F ∧ F ≡ TrF 2 = d Tr (A ∧ dA+
2

3
A ∧A ∧A) = d Tr

(
AdA+

2

3
A3

)
(1.150)

As a warmup, we can check that defining

Tr TaTbTc ≡ Tabc (1.151)

where for the fundamental of SU(N)

Tabc =
1

4
(ifabc + dabc) (1.152)

Tr BA2 = TabcB
a
µA

b
νA

c
ρdx

µνρ = Ba
µA

b
νA

c
ρTabcdx

µνρ =

= −Ba
µA

b
νA

c
ρTabcdx

µρν = −Ba
µA

b
ρA

c
νTabcdx

µνρ = −Ba
µA

c
νA

b
ρTabcdx

µνρ =

= −Ba
µA

b
νA

c
ρTacbdx

µνρ = Ba
µA

c
νA

b
ρ

1

2
(Tabc − Tacb)dxµνρ (1.153)

In arbitrary dimension n the equivalent of the four-dimensional triangle diagram is a dia-
gram with N = 1 + n

2 legs, because in order to compite the divergence, we saturate one
polarization with one momentum, which means that there are exactly n

2 momenta and po-
larizations to be contracted with the n-dimensional Levi-Civita tensor. In n=10 dimensions
this yields the hexagon diagram.

The abelian anomaly is related with the Chern character (cf. [42],[22])

ch F ≡ Tr e
i

2π
F (1.154)
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which is understood as a direct sum of dimension 2n forms proportional to

Tr Fn ≡ Tr F ∧ . . . ∧ F︸ ︷︷ ︸
n times

≡ Tr Fn (1.155)

which can be integrated in a manifold of dimension 2n.

For example, the four-dimensional abelian anomaly, in particular, is proportional to

Tr F 2 (1.156)

All those forms are closed (and then locally exact, by Poincaré’s theorem)

Tr Fn = dω2n−1 (1.157)

where ω2n−1, is the formChern-Simons, is given by ([42])

ω2n−1 = n

∫
Tr dtA ∧ Fn−1

t (1.158)

where
Ft = F (tA) ≡ tdA+ t2A ∧A. (1.159)

Again in four dimensions d = 4 the Chern-Simons three-form reads

ω3 = tr(A ∧ F − 1

3
A3). (1.160)

dω3 = Tr
(
dAF − dAA2

)
= Tr

((
F −A2

)
F − dAA2

)
=

= Tr
(
F 2 −A2dA−A4 − dAA2

)
= Tr F 2 (1.161)

(where we have used the facts that Tr A4 = 0 and Tr A2dA = −tr dAA2). This fact allows
to express the anomaly as a total divergence. Indeed

ω3 ≡
1

3!
ωµνρdx

µνρ (1.162)

implies

dω3 =
1

4!

1

3|
δλ0λ1λ2λ3
µ0µ1µ2µ3

∂λ0ωλ1λ2λ3dx
µ0µ1µ2µ3 (1.163)

and using the fact that
dxλ0λ1λ2λ3 = ελ0λ1λ2λ3 d(vol) (1.164)

where the volume element four form is represented as

d(vol) ≡ dx0123 (1.165)

Then

dω3 =
1

4!

1

3!
δλ0λ1λ2λ3
α0α1α2α3

εα0α1α2α3∂λ0ωλ1λ2λ3 =

=
1

3!
δλ0λ1λ2λ3∂λ0ωλ1λ2λ3τ = ∂λ0(∗ω3)λ0τ (1.166)
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where
(∗ω3)λ0 ≡ 1

3!
ελ0λ1λ2λ3ωλ1λ2λ3 (1.167)

Recall now that the anomaly reads

∂µj
µ
5 =

g2

16π2
Tr εµνρσ Fµν Fρσ (1.168)

as well as

F ∧ F =
1

4!

1

2

1

2
δαβγλµνρσ Fαβ Fγλdx

µνρσ =
1

4!

1

4
4!εαβγλ Fαβ Fγλd(vol) (1.169)

we are ledto write

∂µj
µ
5 τ =

g2

4π2
Tr F ∧ F =

g2

4π2
∂µ(∗ω3)µ d(vol) (1.170)

Let us allow for possible higher order contributions by defining

a(g) ≡ 1

4π2
(1.171)

This function is such that to one loop order, a(g) = 1. Then

∂µj
µ
5 = a(g)g2∂µ (∗ω3)µ (1.172)

It will be seen in due moment that the Chern-Simons current is not gauge invariant, but
rather picks a total derivative under a gauge transformation

δ(∗ω3)µ = 2εµνρσ∂ν Tr (g2Λ∂ρAσ) (1.173)

This fact in turn means that besides the gauge invariant but anomalous current jµ5 we have
been considering up to now, there is a conserved, but not gauge invariant modified current,
to wit

kµ5 ≡ j
µ
5 − a(g) g2(∗ω3)µ (1.174)

On the other hand, (cf.[35]) in four dimensiona there are self-dual solutions of the euclidean
Yang-Mills equations such that the integral of the abelian anomaly is non vanishing (in spite
of it being locally a total derivative). Properly normalized, this integral is an integer, dubbed
the instanton number by physicists, and the second Chern number by mathematicians (cf.
[22]). ∫

d4xF 2 = 8π2k = −8π2C2 (1.175)

This euclidean configurations generate transition amplitudes between states with different
fermion number. In the WKB approximation, those are proportional to

e−Sclas ∼ e−
8π2k
g2 (1.176)

which is very small, although the fact that it is nonvanishing is quite important physically.
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1.7 The Adler-Bardeen theorem of the non-renormalization of the anomaly.

The formula (1.30) due to Adler-Bell-Jackiw is exact in the sense that it is possible to
renormalize the theory in such a way that it is preserved by quantum corrections.

• Let us study an approach due to Breitenlohner, Maison and Stelle [10]. We have to
study the renormalization of the composite operator kµ5 . Owing to the fact that the
current jµ5 is gauge invariant, the matrix of anomalous dimensions must be of the
form

γ =

(
jµ5
kµ5

)
=

(
γj 0

γKJ γK

)(
jµ5
kµ5

)
(1.177)

Let us start from the anomalous Ward identity

∂µ〈0|T
(
jµ5 (x)−a(g)(∗ω3)µ(x)

)
X|0〉+〈0|T δX

δψ(x)
γ5ψ(x)|0〉+〈0|T ψ̄(x)γ5

δX

δψ̄(x)
|0〉 = 0

(1.178)
where

X ≡
∏
i

gAµi(xi)
∏
j

ψ(yj)
∏
k

ψ̄(zk) (1.179)

The renormalization group operator

D ≡ µ ∂

∂µ
+ β

∂

∂g
+ δ

∂

∂α
+ γψNψ (1.180)

(where Nψ counts the total number of factors ψ or ψ̄) leaves invariant the Green
functions, so that

D〈0|TX|0〉 = 0 (1.181)

When there are current insertions

(D + γJ) 〈0|Tjµ5 (x)X|0〉 = 0 (1.182)

as well as
(D + γK) 〈0|(∗ω3)µ(x)X|0〉+ γKJ〈0|jµ5 (x)X|0〉 = 0 (1.183)

Choose now X ≡ g2Aµ(y)Aν(z). Then

∂µ〈0|T (jµ5 (x)− a(g)(∗ω3)µ(x)) g2Aµ(y)Aν(z)|0〉 = 0 =

∂µ
(
−γJ〈0|Tjµ5 g

2AA|0〉 − Da(g)〈0|T (∗ω3)µg2AA|0〉
−a(g)[−γK〈0|T (∗ω3)µg2AA|0〉 − γKJ〈0|Tjµ5 g

2AA|0〉]
)

(1.184)

which can also be written as

(a(g)γKJ − γJ)〈0|T∂µjµ5 g
2AA|0〉+ (a(g)γK −Da(g))〈0|T∂µ(∗ω3)µg2AA|0〉 = 0

(1.185)
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Choosing instead X = ψ(y)ψ̄(z) we get

∂µ〈0|T (jµ5 (x)− a(g)(∗ω3)µ(x))ψ(y)ψ̄(z)|〉+∇(x− y)〈0|ψ̄γ5ψ|0〉+∇(x− z)〈0|ψ̄γ5ψ|0〉 = 0 =

∂µ
(
−γJ〈0|Tjµ5ψ(y)ψ̄(z)|0〉 − Da(g)〈0|T (∗ω3)µψ(y)ψ̄(z)

|0〉 − a(g)[−γK〈0|T (∗ω3)µg2AA|0〉 − γKJ〈0|Tjµ5ψ(y)ψ̄(z)|0〉]
)

(1.186)

we conclude that
γJ − a(g)γKJ = 0 (1.187)

and
(β

∂

∂g
− γK)a(g) = 0 (1.188)

Owing to the topological meaning of the Chern-Simons current, it is natural to renor-
malize in such a way that

γK = 0 (1.189)

implying that the coefficient a(g) is actually independent of the coupling constant.

• It is also useful to recall the original proof (cf. [3]). Regularizing with a Pauli-Villars
field ARµ of mass M the lagrangian reads

L = ψ̄(i /D −m0)ψ − 1

4
FµνF

µν +
1

4
FRµνF

µν
R −

M2

2
ARµA

R
µ

−e0ψ̄γµψ(Aµ +ARµ) + C[Fµν + FRµν ][FRµν + Fµν ] (1.190)

In the original reference [3] it was found useful to distinguish two different cases. The
first is when the axial current hooks outside a loop. Those terms are not anomalous.

The second case, which is the real origin of the anomaly, is when the axial current
hooks to a fermion loop of the type

Tµ1...µkµµk+1...µ2n ≡
∫
d4pTr

2n∑
k=1

k−1∏
j=1

γµj
1

(/p+ /pj)−m0
.

γµk
1

(/p+ /pk)−m0
γ5γ

µ 1

(/p+ /pk − /q)−m0

2n∏
j=k+1

γµj
1

(/p+ /pj − /q)−m0
(1.191)

where the gauge insertion carries momentum q. Compute now the divergence

qµT
µ1...µkµµk+1...µ2n (1.192)

by using the identity

1

(/p+ /pk)−m0
/qγ5

1

(/p+ /pk − /q)−m0
=

1

(/p+ /pk)−m0
2m0γ5

1

(/p+ /pk − /q)−m0
+

1

(/p+ /pk)−m0
γ5 + γ5

1

(/p+ /pk − /q)−m0
(1.193)
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This identity actuay stems from the obvious one

/qγ5 = 2m0γ5 + γ5((/p+ /pk − /q)−m0) + ((/p+ /pk)−m0)γ5 (1.194)

Let us forget all terms proportional to m0, because we are going to be interested
anyway in the massless chiral limit

qµT
µ1...µkµµk+1...µ2n =

∫
d4pTr

2n∑
k=1

k−1∏
j=1

γµj
1

γ.(p+ pj)−m0
.

γµk [
1

(/p+ /pk)−m0
γ5 + γ5

1

(/p+ /pk − /q)−m0
]

2n∏
j=k+1

γµj
1

(/p+ /pj − /q)−m0
(1.195)

In this expression we have terms of the type

γ5γk+1 + γk+1γ5 = 0 (1.196)

for all values of the index k except the first k = 1 and the last, k = 2n. Using the
cyclic property the result is proportional to

qµT
µ1...µkµµk+1...µ2n ∼

∫
d4pTr γ5

2n∏
j=1

γµj
1

(/p+ /pj)−m0
.

−γ5

2n∏
j=1

γµj
1

(/p+ /pj − /q)−m0
(1.197)

These integrals cancel if n ≥ 2 (when they are convergent); whereas when n = 2 they
correspond to the one loop anomaly already computed.

2 The Wess-Zumino consistency conditions and the gauge anomaly

Γ[A] is the generator of 1PI Green functions. This fact implies some consistency conditions,
which are almost enough to determine the form of the anomalies. The proper setup for those
consistency conditions is the algebraic BRST symmetry as worked out by Stora and Zumino.

Write first the gauge variations as

TΛA
a
µ = −(DµΛ)a = −(∂µΛ− i[Aµ,Λ]) = −(∂µΛa + fabcA

b
µΛc) (2.1)

as well as
TΛF

a
µν = −i([Fµν ,Λ])a (2.2)
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They in turn determine the variation of all functionals of gauge fields

TΛΓ[A] =

∫
dnx

δΓ

δAaµ
TΛA

a
µ (2.3)

Denoting Jµa ≡ δΓ
δAaµ

we can write

TΛΓ[A] = −
∫
dnxJµa (DµΛ)a =

∫
x
DµJ

µ
a Λa =

∫
x

Λa(x)Ga(x) (2.4)

where
Ga(x) ≡ Xa(x)Γ[A] (2.5)

where
Xa ≡ Dµ

δ

δAaµ
= ∂µ

δ

δAaµ
+ fabcA

b
µ

δ

δAcµ
(2.6)

These operators represent the Lie algebra of the gauge group

[Xa(x), Xb(y)] = if cabXc(x)δn(x− y) (2.7)

This is in fact equivalent to

(TΛTΛ′ − TΛ′TΛ) Γ[A] = T[Λ,Λ′]Γ[A] (2.8)

The consistency conditions for the quantities Ga stem from the fact that they come from a
single generating functional Γ[A], and can be expressed as

Xa(x)Gb(y)−Xb(y)Ga(x) = (XaXb −XbXa)Γ = if cabGcδxy (2.9)

It is plain than any expression of the type

Ga(x) = Xa(x)F [A] (2.10)

where F [A] is an arbitrary local functional is a solution of (2.9). Those are the so called
trivial solutions. They represent physically the addition to the action of finite local coun-
terterms, that is, a change in the renormalization conditions.

We define the comsistent anomalies as any nontrivial solution of the consistency conditions.
The fact that they cannoy be eliminated by a local coumnterterm means that they are
independent of the ultraviolet physics.

Let us rewrite all this in BRST language. Define

cX ≡
∑
a

∫
dnxca(x)Xa(x) (2.11)

Then
(cX)(cG)− 1

2
fabcc

bccGa = 0 (2.12)
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Even more consise is Slavnov’s form

s (cG) = 0 (2.13)

Just emember that BRST variations can be expressed as

sAµ = (cX)Aµ (2.14)

and
sca = −1

2
fabcc

bcc (2.15)

What has to vanish is really the integral, so we can allow the variation of the integrand to
become an exact differential

sTr cG = dχ (2.16)

The anomaly that appears in the chiral current

jµa ≡ iψ̄γ5γ
µTaψ (2.17)

is usually called the gauge anomaly because this current is the one that couples to the
non-abelian gauge field. It is easier to work with the chiral currents

jµa(L) ≡ iψ̄Lγ
µTaψL (2.18)

jµa(R) ≡ iψ̄Rγ
µTaψR (2.19)

The result is

DL
µJ

µ
a(L) = Ca(AL) =

1

24π2
εµνρσTr Ta∂µ

(
ALν ∂ρA

L
σ −

1

2
iALνA

L
ρA

L
σ

)
(2.20)

and with a change of sign

DR
µ J

µ
a(R) = −Ca(AR) = − 1

24π2
εµνρσTr Ta∂µ

(
ARν ∂ρA

R
σ −

1

2
iARν A

R
ρ A

R
σ

)
(2.21)

The non-abelian anomaly is also a total derivative

Ca(A) = dTr Ta(A ∧ dA+
1

2
A ∧A ∧A) (2.22)

The covariant form of the anomaly reads

DµJ̃
µ
a =

3

2
A(R)dabcF

b
µνF

c
ρσε

µνρσ (2.23)

where the representation-dependent coefficients are defined from

Tr {Ta, Tb}Tc ≡ A(R)dabc (2.24)
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2.1 The Stora-Zumino algebraic formalism.

The cohomological analysis of Stora and Zumino (cf. [42]) is by far the simplest way to find
solutions to the consistency conditions. The starting point is a characteristic polynomial,
that is, an invariant symmetric polynomial which by definition obeys

P (F1, . . . , Fn) (2.25)

such that
P (Fp(1), . . . , Fp(n)) = P (F1, . . . , Fn) (2.26)

for any permutation p ∈ Sn, and

P (g−1F1g, . . . , g
−1Fng) = P (F1, . . . , Fn) (2.27)

This imput must be external; that is, it is not provided by the algebraic analysis itself. The
simplest example is of course the abelian anomaly

P ≡ Tr Fn (2.28)

We shall see in a moment that we can get the non-abelian anomaly in dimension d = 2n−2

out of the abelian anomaly in dimension d = 2n.

Define the exterior differential acting on polynomia containing A and F , P (A,F ) such that
P (0, 0) = 0 starting with

dA = F −A2

dF = FA−AF (2.29)

It is plain that
d2 = 0. (2.30)

Actually,

d2A = FA−AF − (F −A2)A+A(F −A2) = 0

d2F = (FA−AF )A+ F (F −A2)− (F −A2)F +A(FA−AF ) (2.31)

Every invariant polynomial is closed

dP (Fn) = 0 (2.32)

and locally exact. For example, in the case of the abelian anomaly

Tr d (Fn) = nTr
(
dFFn−1

)
= nTr

(
(FA−AF )Fn−1

)
= 0 (2.33)

owing to the cyclic property of the trace.
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There is a generalization of the Chern-Simons form

P (Fn) = dω2n−1(A,F ) (2.34)

namely

ω2n−1(A,F ) = n

∫ 1

0
dtP (A,Fn−1

t ) (2.35)

Let us see how this comes about.

In order to do that, let us define formally ([6]) three operators l, δ and the BRST s through

lA = 0 δA = B sA = −Dc ≡ −dc−Ac− cA
lF = B δF = dB +BA+AB sF = Fc− cF
lc = 0 δc = 0 sc = −c2

lB = 0 δB = 0 sB = −cB −Bc

(2.36)

The derivations s, l and d are odd, whereas δ is even. It is easy to check that

l2 = δ2 = s2 = 0

{l, d} = δ

{s, d} = {l, s} = 0. (2.37)

Let us check for example the middle property. Acting on A,

(ld+ dl)A = ldA = l(F −A2) = B = δA. (2.38)

Acting on F

(ld+ dl)F = l(FA−AF ) + dδA = δAA+AδA+ dδA ≡ δF. (2.39)

Here we have used that [d, δ] = 0.

It is easy to define families of fields that interpolate betweenA = 0 and a given configuration;
for example

At ≡ tA (2.40)

for 0 ≤ t ≤ 1.

To that it corresponds a field strength

Ft = tdA+ t2A2 = tF + (t2 − t)A2 (2.41)

For this type of one-parameter families we define in an analogous way

ltAt = 0

ltFt = δAt ≡ δt
∂At
∂t

(2.42)
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We shall now state a particular instance of the extended Cartan homotopy formula

{d, lt} = δ ≡ δt ∂
∂t

(2.43)

(In the sequel we shall always define the operator δ in this explicit way, from the derivative
with respect to whatever parameters the second member depends on.)

Let us check this last result. Indeed, acting on At,

(ltd+ dlt)At = ltdAt = lt(Ft −A2
t ) = δAt (2.44)

Acting on Ft,

(ltd+ dlt)Ft = lt(FtAt −AtFt) + dδAt = δAtAt +AtδAt + dδAt ≡ δFt (2.45)

as a result of our previous definition [2.37].

Now we introduce yet another operator, the homotopy operator through

kP ≡
∫ 1

0
ltPt (2.46)

Let us show that in the particular case when P = d(AF ), then

k d(AF ) =
1

2
(AF + FA) (2.47)

This follows from

ltd(AtFt) = lt(dAtFt −AtdFt) = lt
(
(Ft −A2

t )Ft −At(FtAt −AtFt)
)

=

= δAtFt + FtδAt −A2
t δAt +AtδAtAt +A2

t δAt = δt
(
AFt + FtA+ t2A3

)
(2.48)

in such a way that∫ 1

0
ltd(AtFt) =

∫ 1

0
δt

{
A
(
tF + (t2 − t)A2

)
+
(
tF + (t2 − t)A2

)
A+ t2A3

}
=

=
1

2
AF +

(
1

3
− 1

2

)
A3 +

1

2
FA+

(
1

3
− 1

2

)
A3 +

1

3
A3 =

1

2
(AF + FA) (2.49)

Owing to (2.43), this operator obeys

{k, d} = 1 (2.50)

Let us check this fact for the particular polynomial P = AF . Indeed l(AF ) = −AδA so
that

lt(AtFt) = −AtδAt = −δttA2 (2.51)

and

k (AF ) =

∫ 1

0
lt(AtFt) = −A2/2 (2.52)
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Then

d k(AF ) = −1

2
dAA+

1

2
AdA = −1

2
(F −A2)A+

1

2
A(F −A2) = −1

2
(FA−AF ) (2.53)

We can also check on the same polynomial that

k2 = 0. (2.54)

Indeed

k2 (AF ) = k

(
−A

2

2

)
= 0 (2.55)

This is a useful fact, because

Tr Fn = (dk + kd) Tr Fn = d (kTr Fn) (2.56)

which yields an explicit formula for the Chern-Simons form in arbitrary dimension

ω0
2n−1 = kTr Fn =

∫ 1

0
dt lt Tr Fnt =

∫ 1

0
dt Tr

(
AFn−1

t + . . .+ Fn−1
t A

)
= n

∫ 1

0
dt Tr

(
AFn−1

t

)
(2.57)

When n = 2 we recover the well-known formula

ω3 = 2

∫ 1

0
dt Tr A

(
tdA+ t2A2

)
= Tr

(
AdA+

2

3
A3

)
(2.58)

It is interesting to study the behavior of the Chern-Simons forms under gauge transforma-
tions

Ag = g−1Ag + g−1dg (2.59)

and
Fg = g−1Fg (2.60)

We shall prove that the desired behavior is

ω0
2n−1(Ag, Fg) = ω0

2n−1(A,F ) + dα2n−2 + ω0
2n−1(g−1dg, 0) (2.61)

Let us denote
V ≡ dgg−1 (2.62)

the right invariant one-form, in such a way that

dV = V 2 (2.63)

By construction we have

ω0
2n−1(Ag, Fg) = ω0

2n−1(g−1Ag + g−1dg, g−1Fg) = n

∫ 1

0
dt Tr

(
g−1Agg−1Fn−1

t g + g−1dgg−1Fn−1
t g

)
=

= ω0
2n−1(A+ V, F ) (2.64)
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Consider now the object

Ω ≡ ω0
2n−1(A+ V, F )− ω0

2n−1(V, 0)− ω0
2n−1(A,F ) (2.65)

It is possible to check in general that is a closed form

dΩ = 0 (2.66)

Let us verify this fact in ther particular case when n = 2:

Ω3 = Tr

(
(A+ V )F − 1

3
(A+ V )3 +

1

3
V 3 −AF +

1

3
A3

)
=

= Tr

(
V F − 1

3
(A2V +AV A+AV 2 + V A2 + V AV + V 2A)

)
=

= Tr
(
V F −A2V −AV 2

)
(2.67)

In order to take the exterior differential, we take into account that

dA = F −A2

dV = V 2

dF = FA−AF (2.68)

It follows that

dΩ = Tr

(
V 2F − V (FA−AF )−

(
F −A2

)
AV +A

(
F −A2

)
V −A2V 2 −

(
F −A2

)
V 2 +

+A
(
V 3 − V 3

))
= 0 (2.69)

We can repeat now the same trick used before

(kd+ dk) Ω = Ω = d (kΩ) ≡ d α2n−2 (2.70)

where to be specific
α2n−2 = kω0

2n−1(A+ V, F ) (2.71)

which proves the desired formula.

Another useful formula which we shall not prove is

α2n−2 = −n(n− 1)

∫ 1

0
δλ

∫ 1−λ

0
δµ Str

(
V AFn−2

λ,µ

)
(2.72)

where we have used the notation

Fλ,µ ≡ λA− µV (2.73)
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and denoted the symmetrized trace as

StrM1 . . .Mp ≡
∑
π∈Sp

Tr
(
Mπ(1) . . .Mπ(p)

)
(2.74)

The proof is simple although some labor is needed. It can be easily checked that

α2 = −Str (V A) (2.75)

as well as
α4 = −Str (V AdA) +

1

2
Tr

(
V A3 − V 3A− 1

2
V AV A

)
(2.76)

All this certainly means that the Chern-Simons form is not gauge invariant, but rather its
variation is an exact differential that we shall compute in a more explicit way in the next
paragraph.

2.2 The Stora-Zumino descent equations.

This is the algebraic way to recover the anomaly, given the appropiate starting point, that
is, the invariant polynomial. It is duly credited to Stora and Zumino, although they never
published a joint paper on this. It is to be found however in Zumino’s les Houches lectures
[? ]. Let us dubb

A = A+ c (2.77)

and define the field strength
F = (d+ s)A+A2 (2.78)

It is plain that

F = (d+ s)(A+ c) + (A+ c)2 = dA−Dc+ dc− c2 +A2 + cA+Ac+ c2 = F (2.79)

This is the famous Russian formula. This means that the relationship of the operator d+ s

with the gauge field A+ c is exactly the same as the one of the exterior differential d with
the ordinary gauge field, A.

It follows that we can write

Tr Fn = Tr Fn = dω0
2n−1(A,F ) = (d+ s)ω0

2n−1(A+ c, F ) (2.80)

The Chern-Simons ω0
2n−1(A+ c, F ) can now be expanded in powers of the ghost field

We shall use such a notation that the superindex indicates the ghost number, whereas the
subindex indicates the degree as a differential form.

ω0
2n−1(A+ c, F ) = ω0

2n−1(A,F ) + ω1
2n−2(A,F ) + . . .+ ω2n−1

0 (A,F ) (2.81)

Now, owing to the equality (2.80)

(d+ s)
(
ω0

2n−1 + . . .+ ω2n−1
0

)
= dω0

2n−1 (2.82)
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Just by identifying terms with the same ghost number we bet the Stora-Zumino descent
equations

sω0
2n−1 + dω1

2n−2 = 0

sω1
2n−2 + dω2

2n−3 = 0

. . .

sω2n−2
1 + dω2n−1

0 = 0

sω2n−1
0 = 0 (2.83)

To start with, these equations imply the gauge variation of the Chern-Simons For example,

sω0
3 = −dω1

2 (2.84)

Not only that, but we also obtain a solution to the consistency relations; that is a consistent
anomaly. In particular, something linear in ghosts, ω1

2n−2, obeys the equations (2.16),with

χ = −ω2
2n−3 (2.85)

Let us summarize. We started with the abelian anomaly in d = 2n dimensions

TrFn (2.86)

and we expressed it as a differential of the corresponding Chern-Simons form

Tr Fn = dω0
2n−1 (2.87)

The BRST variation of the Chern-Simons is the differential of the non-abelian anomaly in
dimension d = 2n− 2; we have descended two dimensiona.

sω0
2n−1 = −d ω1

2n−2 (2.88)

An explicit calculation leads to [42])

ω1
2n−2 = n(n− 1)

∫
δt (1− t)Str c d

(
AFn−2

t

)
. (2.89)

In other circumstances, the integrand needs to be replaced by an invariant symmetric
polynomial to be determined by a diagrammatic calculation, or else by the index theorem.

It is possible to check that
ω1

2 = IR ca ∂µA
a
νε
µνd(vol). (2.90)

as well as the formula for the four-dimensional gauge anomaly

ω1
4 = εµνρσStr c ∂µ

(
Aν∂ρAσ +

1

2
AνAρAσ

)
d(vol) (2.91)
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Although it might seem from the formula that the anomaly depends on the symmetrized
trace of the product of three and four gauge generators, this is a delusion, as shown in the
basic formula (2.89).

In general the quantity
C3(R) ≡ gabcT aT bT c (2.92)

where the tensor gabc is defined out of the symmetrized traces in the fundamental represen-
tation

gabc ≡ StrTFa T
F
b T

F
c =

1

6
Tr
(
TFa T

F
b T

F
c + TFc T

F
a T

F
b + TFb T

F
c T

F
a + TFb T

F
a T

F
c + TFa T

F
c T

F
b + TFc T

F
b T

F
a

)
is a Casimir operator, which is constant in every representation. Actually, all Casimir
operators can be obtained by expending the expression

D(λ) ≡ det (λ−DR (XaTa)) (2.93)

(cf. [38]). Let us define an index

1

2
tr Ta{Tb, Tc} ≡ I3(R)gabc (2.94)

Consistency with our previous definition implies that

gabc = 2I3(F )gabc (2.95)

which means that we have normalized

I3(F ) =
1

2
(2.96)

The knowledge of this index leads directly to the anomaly, because

C3(R)dR = gabcI3(R)gabc (2.97)

It is a fact that
I3(R1 ⊕R2) = I3(R1) + I3(R2) (2.98)

as well as
I3(R1 ⊗R2) = dR1I3(R2) + dR2I3(R1) (2.99)

which implies that
I3(R̄) = −I3(R) (2.100)

Those formulas are very useful for explicit calculations.

When working in general space-time dimension, and remembering that the anomaly changes
sign for left versus right fermions it is clear that the condition for a theory to be anomaly
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free (which is necessary for consistency of the d = 2n − 2 dimensional quantum theory) is
just ∑

L

Str (Ta1 . . . Tan) =
∑
R

Str (Ta1 . . . Tan) (2.101)

where the sum runs over all fermions that couple to the gauge field

In d=4 dimensional this leads to (cf. [27])∑
L

A(RL) =
∑
R

A(RR) (2.102)

Now, given some matrix representation of a group G

g → D(g) (2.103)

its complex conjugate is also a representation

g → D∗(g) (2.104)

This looks in the Lie algebra
− T ∗a = −T Ta (2.105)

The representation is pseudoreal if it is equivalent to its complex conjugate

− T Ta = STaS
−1 (2.106)

In this case
Aabc ≡ Tr

(
{Ta, Tb}Tc

)
= Tr

(
T Tc {T Ta , T Tb }

)
= −Aabc = 0 (2.107)

For the abelian anomaly this is the same as demanding that

∑
Q3
L =

∑
Q3
R (2.108)
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2.3 Anomaly cancellation in the Standard Model.

When there is an anomaly in a current that couples to a gauge field, gauge invariance is
spoiled and the resulting theory is non renormalizable.

In the standard model there is a curious anomaly cancellation which takes place generation
by generation.

Quarks up left are a SU(2) doublet,

qL =

(
uL
dL

)
(2.109)

and they transform with the representation of the gauge group

G ≡ SU(3)× SU(2)× U(1) (2.110)

as
qi ∈ (3⊗ 2⊗ 1/6) (2.111)

Here each representation is characterized by its dimension, except in the case of hypercharge
U(1)Y , where we indicate the abelian charge, which is half of the value of the hypercharge.
This is normalized by

Q = T3 +
Y

2
(2.112)

so that for example

Q(uL) =
1

2
+

1

6
=

2

3

Q(dL) = −1

2
+

1

6
= −1

3
. (2.113)

Turning now to quarks right
uR ∈ (3̄⊗ 1⊗ 2/3) (2.114)

Then
Q(uR) = 0 +

2

3
=

2

3
. (2.115)

dR ∈ (3̄⊗ 1⊗−1/3) (2.116)

The lepton doublet reads

li ≡

(
ν̄L
eL

)
(2.117)

The electric charges read

Q(ν̄ =
1

2
− 1

2
= 0

Q(e) = −1

2
− 1

2
= −1 (2.118)
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lL ∈ (1⊗ 2⊗−1/2) (2.119)

Finally there is the singlet
eR ∈ (1⊗ 1⊗−1) (2.120)

The charge is
Q(e) = 0− 1 = −1 (2.121)

Let us see in detail how anomaly cancellation proceeds in this case. We have to take different
signs for left and right fermions. In gory detail

SU(3)3 : real

SU(3)2 × U(1) : A =
∑
color

Y = 6(−1/6) + 3(2/3)− 3(1/3) = 0

SU(2)3 : pseudoreal

SU(2)2 × U(1) : A =
∑
weak

Y = 6(−1/6) + 2(1/2) = 0

U(1)3 : A =
∑
all

Y 3 = 6(−1/216) + 3(8/27)− 3(1/27) + 2(1/8)− 1 = 0

E2 × U(1) : A =
∑
all

Y = 6(−1/6) + 3(2/3) + 3(−1/3) + 2(1/2)− 1 = 0 (2.122)

The last line corresponds to the Einstein anomaly, whose cancellation is a bonus, since
is not necessary for renormalizability. As has been already mensioned, the fact that this
cancellation takes place in each family independently of the others means that anomaluy
cancellation is not likely to be the reason for the existence of different families.

– 35 –



2.4 Consistent versus covariant anomalies.

It is a fact of life that consistent anomalies (those that satisfy the consistency conditions)
are not always Lorentz invariant. The gauge current is then not a Lorentz vector. Now
there is a counterterm that transforms the consistent anomaly in a covariant one, where
the gauge current is a true vector. The covariant anomaly however does not fulfill the
consistency conditions.

To begin with, let us study some properties of the non-abelian current

Jaµ =
δΓ

δAµa
(2.123)

Recall the definition of the operator δ en (2.36)

δAaµ = Ba
µ (2.124)

so that from now on
δΓ[A] =

∫
x

δΓ

δAµa
δAaµ ≡ Jµa .Ba

µ (2.125)

Recall that
TΛA

c
λ(x) = −∂λΛc + ΛafabcA

b
λ (2.126)

whereas we do not yet know what
TΛB

c
λ(x) (2.127)

stands for.

It is s a fact that
δBTΛ − TΛδB = δ[B,Λ]−TΛB (2.128)

Let us work this out in detail, acting on the left on the effective action

δB

∫
δΓ

δAaµ
TΛA

a
µ −

∫
TΛ

δΓ

δAcσ
Bc
σ =∫

δ2Γ

δAaµδA
c
σ

Bc
σTΛA

a
µ +

∫
δΓ

δAaµ

δ(TΛA
a
µ)

δAcσ
Bc
σ −

∫
δ2Γ

δAcσδA
a
µ

TΛA
a
µB

c
σ −

∫
δΓ

δAcσ
TΛB

c
σ =∫

δΓ

δAaµ
facdΛ

bBc
µ −

∫
δΓ

δAcσ
TΛB

c
σ = −δ[Λ,B]+TΛB (2.129)

QED. Using this property, when acting on Γ[A], and taking into account that δBΛ = 0,
and independently of what is going to be the value of TΛB

(δBTΛ − TΛδB)W = δ[B,Λ]−TΛBΓ =

δB

∫
ΛaGa − TΛ

∫
JaµB

µ
a =

∫
Jµa [B,Λ]a −

∫
JµTΛB =∫

(δBGa)Λ
a −

∫
(TΛJ

µ
a )Ba

µ −
∫
JµTΛB (2.130)
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that is to say, a relationship between the gauge transform of the current in terms of the
anomaly. Actually the second term of the second member would be the adjoint transfor-
mation would it not be for the gauge anomaly.

(TΛJ
µ
a ).Ba

µ = (δBGa).Λ
a − Jµa .[B,Λ]a = (δBGa).Λ

a − [Λ, Jµ]aBµ
a (2.131)

If now we decide that B transforms with the adjoint, that is TΛB = [B,Λ] then this is
equivalent to

TΛ

∫
(B.J) = δB

∫
(Λ.G) (2.132)

It is then clear that in order to find the covariant current we have to find a local polynomial
on the gauge fields, say Q such that

(TΛQ
µ
a).Ba

µ = −(δBGa).Λ
a − [Λ, Qµ]aB

a
µ (2.133)

or what is the same thing,

TΛ

∫
(B.Q) = −δ

∫
(Λ.G) (2.134)

If we ever suceed, then
Jµa(cov) ≡ J

µ
a +Qµa (2.135)

indeed would transform as a vector in the adjoint

TΛJ
µ
a(cov) = −[Λ, Jµ(cov)]a (2.136)

Let us examine this condition (2.134) a bit more closely. Remembering that the anomaly
is δBG, v.G[A;F ] =

∫
ω1

2n−2(v,A, F )) we can rewrite it as

s(B.Q) = δB

∫
ω1

2n−2(Λ, A, F ) (2.137)

Recall now the algebra (2.36) and the first descent equation sω0
2n−1 = −dω1

2n−2,

δω1
2n−2 = (dl + ld)ω1

2n−2 = d(lω1
2n−2)− l sω0

2n−1 (2.138)

and using now {s, l} = 0 we get up to a total derivative

δ

∫
ω1

2n−2 = s

∫
lω0

2n−1 (2.139)

This means that we have found a quantity that has the property (2.134)

B.Q =

∫
l ω0

2n−1 = n(n− 1)

∫ ∫ 1

0
dt t P (A,B, Fn−2

t ) (2.140)

where we have used the expression for the Chern-Simons term as well as l Ft = l
(
tF + (t2 − t)A2

)
=

tB. This means that the Bardeen-Zumino counterterm is given by the operator l acting on
the abelian anomaly in a space with two extra dimensions.
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Starting in four dimensions d = 4 with P (F 3) = λTr F 3, we can show that

Q = λ

(
dAA+AdA+

3

2
A3

)
(2.141)

This is plain, because

ω5 = λTr

(
F 2A− 1

2
FA3 +

1

10
A5

)
(2.142)

Then

lω5 = λTr B

(
FA+AF − 1

2
A3

)
= λTr B

(
dAA+AdA+

3

2
A3

)
(2.143)

Since the covariant current is a true vector, then its divergence must be a true scalar. This
can be written as (using integration by parts because this is going to be integrated) (2.140):

c.DQ = Dc.Q = n(n− 1)

∫ 1

0
t dt

∫
P
(
dc+ {A, c}, A, Fn−2

t

)
(2.144)

On the other hand

c.DJ = Dc.J = sW [A] = c.G =

∫
ω1

2n−2 = n(n− 1)

∫ 1

0
dt (1− t)

∫
P
(
dc,A, Fn−2

t

)
(2.145)

Adding both expressions

c.DJcov = n(n− 1)

∫ 1

0
dt P

(
dc+ t{A, c}, A, Fn−2

t

)
(2.146)

which is equivalent to

c.DJcov = n(n−1)

∫ 1

0
dt P

(
c, dA+ t{A,A}, Fn−2

t

)
= n

∫ 1

0
dt

d

dt
P
(
c, Fn−1

t

)
= n

∫
P
(
c, Fn−1

)
(2.147)

This means that the dominant terms in the covariant anomaly is n times bigger than the
dominant term on the consistent anomaly in d = 2n− 2 dimensions.

In d = 4 dimensions the covariant anomaly is given by

DµJ
µ
a (cov) =

3

2
A(R)dabcF

b
µνF

c
ρσε

µνρσ (2.148)

2.5 The Wess-Zumino effective lagrangian

The fermion-gauge boson coupling in d = 2n− 2 dimensions reads

L = iψ̄
(
/∂ − iTa

(
/V
a

+ γ5 /A
a))

ψ (2.149)
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Where the gauge fields acting on chiral fermions are

AL ≡ V +A

AR ≡ V −A (2.150)

where as usual PL ≡ (1−γ5)
2 . We shall also denote

V+ = V + γ5A

V− = V − γ5A (2.151)

The action is invariant under
ψ → eiTa(βa+αaγ5)ψ (2.152)

We shall denote as vector transformations the subset where α = 0; and as axial transfor-
mations when β = 0.

Elements of the group g ∈ GL ×GR will be denoted by

g = ev = eβ+αγ5 = ePR(β+α)+PL(β−α) ≡ PRgR + PLgL (2.153)

That is, vector transformations do not distinguish left from right gL = gR, whereas axial
ones do, gL = −gR.

The effective lagrangian of Wess-Zumino is to write a local lagrangian such that its variation
is precisely the anomaly. If the anomaly is non trivial, this means that in order for this
to be possible at all, we have to include extra fields in the physical lagrangian, namely the
goldstone bosons.

A trivial solution would have been to write

Γ′[A] = Cn

∫
D2n−1

ω0
2n−1(A) (2.154)

as long as the integral runs over a (2n−1)-dimensional disk whose boundary is an (2n−2)-
sphare

∂D2n−1 = S2n−2, (2.155)

and Cn be a dimension dependent constant, namely Cn ≡ 1
n!

in

(2π)n−1 .

This is so because the descent equations tell us that

δΓ′ = Cn

∫
D2n−1

sω0
2n−1 = Cn

∫
D2n−1

dω1
2n−2(A, v) = Cn

∫
S2n−2

ω1
2n−2(A, v) =

∫
S2n−2

vaGa

(2.156)
This is not satisfactory though because even though Γ′ is local as an integral over the disk
D2n−1, it becomes nonlocal when expressed in the physical euclidean compactified space
S2n−2.
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This expression can be much improved by recalling the transfomation law of the Chern-
Simons term

Tgω
0
2n−1(A,F ) ≡ ω0

2n−1(Ag, Fg) = ω0
2n−1(A,F ) + ω0

2n−1(g−1dg, 0) + dα2n−2(A, g) (2.157)

From the group property TgTh = Thg (because TgAh = Ahg) we learn

Tgω
0
2n−1(A) = Th−1gThω

0
2n−1(A) = Th−1gω

0
2n−1(Ah) (2.158)

that is the quantity Tgω0
2n−1(A) is gauge invariant under the transformation A → Ah and

g → h−1g. It is then natural to define

Γ[A, g] = Cn

∫
D2n−1

(
ω0

2n−1(A)− Tgω0
2n−1(A)

)
(2.159)

in such a way that, as a consequence of the fresh gauge invariance we have just discovered

δΓ = δΓ′ = vaG
a(A) (2.160)

To be specific,

Γ[A, g] = −Cn
∫
D2n−1

(Λ2n−1(g) + dα2n−2(A, g)) =

= −Cn
∫
D2n−1

Λ2n−1(g)− Cn
∫
S2n−2

α2n−2(A, g) (2.161)

where we have denoted Λ(g) ≡ ω0
2n−1(g−1dg, 0).

This solves our problem. It is often useful however, to treat left and right fields indepen-
dently.

Γ[AR, AL, gR, gL] = Γ[AR, gR]− Γ[AL, gL] (2.162)

It is possible to add a counterterm (the Bardeen counterterm) which makes this invariant
under vector transformations.

What we want is a modified Chern-Simons with the addition of a total derivative dS2n−2,

ω̃0
2n−1(AR, AL) = ω0

2n−1(AR, AL) + dS2n−2(AR, AL) (2.163)

in such a way that
δβω̃

0
2n−1(AR, AL) = 0 (2.164)

Besides, the Bardeen counterterm should be a finite polynomial in the gauge fields. This
leads to
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Γ̃(AR, AL, gR, gL) = Cn

∫
D2n−1

{
ω0

2n−1(AR, AL)− TgRgLω̃
0
2n−1(AR, AL)

}
=

Cn

∫
D2n−1

{
ω0

2n−1(AR, AL)− TgRgL(ω0
2n−1(AR, AL) + dS2n−2(AR, AL))

}
=

Γ(AR, AL, gR, gL)− Cn
∫
S2n−2

TgRgLS2n−2(AR, AL) (2.165)

The counterterm is clearly invariant under

AR → AhRR

AL → AhLL

gR → h−1
R gR

gL → h−1
L gL (2.166)

because then the gauge transformation factorizes as

Th−1
R gRh

−1
L gL

= TgLTh−1
L
.TgR .Th−1

R
= TgRgL .Th−1

R h−1
L

(2.167)

This ensures that this new WZ reproduces the anomaly

δΓ̃

δvL
=
δW

δvL
= GL

δΓ̃

δvR
=
δW

δvR
= GR (2.168)

We can use now the group property to combine gL y gR in an unique field

TgR|gLω̃
0
2n−1(AR, AL) = TgR|gRTe|gLg−1

R
ω̃0

2n−1(AR, AL) = TgR|gRω̃
0
2n−1(AR, A

gLg
−1
R

L ) (2.169)

This last transformation is a vector one (under which ω̃0 is invariant by construction). Then

ω̃0
2n−1(AR, A

gLg
−1
R

L ) = Te|gLg−1
R
ω̃0

2n−1(AR, AL) (2.170)

and defining
U ≡ gLg−1

R ∈ G (2.171)

it is a fact that
TgR|gLω̃

0
2n−1(AR, AL) = Te|U ω̃

0
2n−1(AR, AL) (2.172)

The new U field transforms as

U → h−1
L gLg

−1
R hR = h−1

L UhR (2.173)

On the other hand

Te|U ω̃
0
2n−1(AR, AL) = Te|U

{
ω0

2n−1(AR, AL) + dS2n−2(AR, AL)

}
= ω0

2n−1(AR, AL) +

Λ2n−1(e|U) + dα2n−2(AR, A
U
L ) + dS2n−2(AR, A

U
L )] (2.174)
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Now

Λ2n−1(e|U) = 0− Λ2n−1(U) (2.175)

and

dα2n−2(AR|ALU) = dα2n−2(AR|e)− dα2n−2(ALU) = −dα2n−2(ALU) (2.176)

because dα2n−2(AR|e) = 0.

Summarizing, the final expression for the Wess-Zumino term is

W (AR, AL, U) = Cn

{∫
D2n−1

Λ2n−1(U)+

∫
S2n−2

(α2n−2(AL, U)−S2n−2(AR, A
U
L )

}
(2.177)

where U(x) ≡ eiξ(x) ∈ G.

The first integral contains the WZ proper; the second is the result of the gauging we have
made.

Adding now Bardeen’s counterterm, then the vector current anomaly disappears. To be
specific, by defining

Γ̃(AR, AL, U) ≡ Γ(AR, AL, U) +

∫
S2n−2

S2n−2(AR, AL) (2.178)

then
δ

δβ
Γ̃(AR, AL, U) = 0 (2.179)

(where let us recall that β ≡ αL+αR
2 ).

All this is nicely proven in ([31]) where also an explicit formula for the counterterm can be
found. The formula reads

S2n−2 =
n(n− 1)

d

∫ ∫
Str γ5V−V+F

n−2
λµ (2.180)

where we consider a one-parameter family of connections

Aλµ ≡ λV+ + µV− (2.181)

with 0 ≤ λ, µ ≤ 1.

In can be proven that in d=4 dimensions.

Γ(AR, AL, U) = − i

240π2

∫
D5

(tr U−1dU)5 − i

48π2

∫
S4

Z (2.182)
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where

Z = tr [−UL(ALdAL + dALAL +A3
L) + U3

LAL − UR(ARdAR + dARAR +A3
R) +

U3
RAR − U−1ALUA

3
R + UARU

−1A3
L +

1

2
ULALULAL − U−1ALU(ARdAR + dARAR)−

1

2
URARURAR + UARU

−1(ALdAL + dALAL)− UARU−1ALULAL −

U−1ALUARURAR +ALUU
2
RARU

−1 −ARU−1U2
LALU −

dALULUARU
−1 − dARURU−1ALU +

1

2
ARU

−1ALUARU
−1ALU ] (2.183)

This lagrangian was first obtained by Edward Witten. A systematic approach is to be found
in cf. [31].
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3 Gravitational anomalies.

Consider a frame field in spacetime

ηabe
a
µe
b
ν = gµν , (3.1)

We shall follow Bardeen and Zumino by calling latin indices a, b, c . . . Lorentz. They trans-
form with the fundamental vector represesentation of the tangent group acting on a real
frame with one timelike basis vector and three spacelike basis vactors namely, SO(1, 3):

e′a µ(x) ≡ La beb µ(x) (3.2)

where
ηacL

a
bL

c
d = ηbd. (3.3)

Greek indices, on the other hand µ, ν, ρ . . ., will be dubbed Einstein, and transform in a
tensorial way under diffeomorphisms

e′a µ(x′) ≡ ∂xν

∂x′µ
ea ν(x) (3.4)

Anomalies in both these transformations are related. They were discovered by Luis Álvarez-
Gaumé y Edward Witten ([4]).

An Einstein transformation (a diffeomorphism) reads

δxµ ≡ x′µ − xµ ≡ −ξµ(x) (3.5)

Geoemetric objects transform with the Lie derivative. For example

Eξφ ≡ φ′(x)− φ(x) = £(ξ)φ ≡ ξα∂αφ (3.6)

For the metric itself

Eξgµν = £(ξ)gµν ≡ ξα∂αgµν + ∂µξ
αgαν + ∂νξ

αgµα (3.7)

The commutator of two Einstein transformations reads

T1x ≡ x′ ≡ x− ξ1(x)

T2T1x ≡ x′′ ≡ x′ − ξ2(x′) = x− ξ1(x)− ξ2 (x− ξ1(x)) = x− ξ1(x)− ξ2(x) + ξ1(x).∂ξ2(x)

[T2, T1]x = ∂αξ2(x).ξα1 (x)− ∂αξ1(x).ξα2 (x) ≡ [ξ1, ξ2] (3.8)

That is,
[Eξ1 , Eξ2 ] = E[ξ2,ξ1] (3.9)

The Einstein tranformation of a connection reads

EξΓ
ρ
λµ = £ξΓ

ρ
λµ + ∂λ∂µξ

ρ (3.10)
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It is often useful to look at the connection as a matrix of one-forms

(Γ)µ
ρ ≡ Γρλµdx

λ (3.11)

The curvature is then a two-form

(R)µ
ρ ≡ (dΓ + Γ2)µ

ρ =
1

2
Rνλµ

ρdxν ∧ dxλ (3.12)

It is a fact that

EξΓ = £ξΓ + TΛΓ (3.13)

where Λαβ ≡ ∂βξ
α and TΛΓ ≡ DΛ ≡ dΛ + [Γ,Λ] can be viewed as a gauge transformation

of Γ with respect to the remaining indices on which the Lie derivative did not act. This
transformation consists in adding the covariant derivative of Λ with respect to the connec-
tion Γ. On the other hand £(ξ)Γ refers to the Lie derivative considering the connection as
a one-form, that is

£(ξ)Γρλµ = ξα∂αΓρλµ + ∂λξ
αΓραµ (3.14)

and

[TΛΓ]ρλµ = ∂λΛρµ + Λσµ(Γλ)ρσ − (Γλ)σµΛρσ (3.15)

This decomposition (3.13) might look unwieldly but it is useful. It is also easy to prove
that

Eξ R = £(ξ)R+ TΛR (3.16)

Recall that the Lie derivative acting on differential forms can be written as

£ξ = diξ + iξd (3.17)

where the inner product iξ is given by

iξ(Γ
ρ
λµdx

λ) ≡ Γρλµξ
λ (3.18)

This means in particular that the integral of a Lie derivative of a form of the maximal rank
(equal to the dimension of spacetime) should vanish

∫
£ξωd =

∫
d(iξωd) = 0 (3.19)

It is easy to check that indeed

[
£ξω(d)

]
α1...αd

= ∂µ(ξµω(d)α1...αd) (3.20)
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3.1 The consistent gravitational anomaly.

Consider now the connected generating functional W [gµν ] representing the effective ac-
tion of chiral fermions in an external nondynamical gravitational field. Under an Einstein
transformation

EξW [gαβ] ≡ Hξ (3.21)

The algebra just discussed implies consistency conditions

Eξ1Hξ2 − Eξ2Hξ1 = H[ξ2,ξ1] (3.22)

Now the gauge anomaly yields immediatly a candidate for the consistent Einstein anomaly
just by identifying A ≡ Γ and F ≡ R. It reads

Hξ = ΛG(Γ, R) = −
∫
∂ρξ

µGρµ(Γ, R) (3.23)

Let us check that it is indeed consistent

Eξ1Hξ2 = (£ξ1 + TΛ1)Λ2.G = −
∫
∂ρξ

ν
2∂λ(ξλ1G

ρ
ν) + TΛ1Λ2G (3.24)

because the Lie derivative does not act on the parameter Λ2. After integration by parts

Eξ1Hξ2 − Eξ2Hξ1 =

∫ (
ξλ1∂λ∂ρξ

ν
2 − ξλ2∂λ∂ρξν1

)
Gρν + [Λ1,Λ2] .G (3.25)

taking into account that

[Λ1,Λ2]σρ = ∂ρξ
λ
1∂λξ

σ
2 − ∂ρξλ2∂λξσ1 (3.26)

as well as

ξλ1∂λ∂ρξ
ν
2 − ξλ2∂λ∂ρξν1 = ∂ρ

(
ξλ1∂λξ

ν
2 − ξλ2∂λξν1

)
− ∂ρξλ1∂λξν2 + ∂ρξ

λ
2∂λξ

ν
1 (3.27)

we end up with

Eξ1Hξ2 − Eξ2Hξ1 = −∂ρ[ξλ2∂λξν1 − ξλ1∂λξν2 ]Gρν = H[ξ2,ξ1] (3.28)

QED.

It is a fact that this anomaly can only exist in dimensions such that d ∈ 4Z+2, that is, d =

2, 6, 10, etc. This follows from the fact that the curvature two-form is also antisymmetric
in the two extra indices. Then the invariant symmetric polynomial, which in dimension
d = 2n− 2 corresponds to P (F1 . . . Fn), vanishes whenever n is odd. This is necause

P (F1 . . . Fn) = P
(
F T1 . . . F Tn

)
= (−1)n P (F1 . . . Fn) (3.29)

This forces n ∈ 2Z, which is just what we wanted to prove.

To be specific, in two dimensions the consistent gravitational anomaly is given by

∂ρξ
µ∂νΓρλµε

νλ (3.30)
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3.2 The physical meaning of the gravitational anomaly.

Let us define provisionally the energy-momentum tensor as

θµν ≡ 2
δW

δgµν
(3.31)

It so happens that the Einstein anomaly as derived is equivalent to the non-conservation of
the energy-momentum tensor. This in turn leads to an inconsistency in Einstein’s equations.

Recall the definition of Eξ

Eξ ≡
∫
dx(Eξgµν)

δ

δgµν
(3.32)

from where it follows (after partial integrations) that

EξW =
1

2

∫
Eξgµνθ

µν = −
∫
ξρDµθ

µρ (3.33)

Then ∫
ξαDβθ

βα = −Hξ = −Λ.G (3.34)

The previous emphasis in the word tensor is due to the fact that the anomaly is the origin
of another evil, namely that the quantity θµν does not transform as a tensor.

To see that, let us compute in two different ways the commutator of an Eisntein transfor-
mation with an arbitrary variation of the metric

δφ ≡
∫
φµν

δ

δgµν
(3.35)

Write

(Eξδφ − δφEξ)W [gµν ] = Eξ

∫
φµν

δW

δgµν
− δφ

∫
Eξgµν

δW

δgµν
=∫

Eξgαβ
δ

δgαβ

(
φµν

δW

δgµν

)
−
∫
φαβ

δ

δgαβ

(
Eξgµν

δW

δgµν

)
=

∫
Eξφαβ

1

2
θαβ (3.36)

A different way of writing the commutator is∫
φαβEξ

δW

δgαβ
− δφHξ (3.37)

They both must be equal, so that

Eξ

∫
θαβφαβ = 2δφHξ (3.38)

so that the first member is not Einstein invariant.
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It is natural to think that there must exist a counterterm such that the modified energy-
momentum is a true tensor. That is we need to find a local symmetric tensor Y µν , such
that θ̃µν ≡ θµν + Y µν behaves as a true tensor, that is,

Eξ

∫
φαβ θ̃

αβ = 0 (3.39)

The transformation rule (3.38) means that

Eξ

∫
φµνY

µν = −2δφHξ (3.40)

It is not difficult to check that the work we did previously for the gauge anomaly in (2.140)
yields a solution to our problem. Details can be found in Bardeen and Zumino’s paper [?
].

3.3 Lorentz anomalies.

Lorentz transformations live in L ∈ SO(1, d − 1). In our current euclidean setting, L ∈
SO(d),

e′aµ ≡ Lbaebµ (3.41)

We do not transform the point, neither the vector Einstein index.

Linealizing
Lab = δab + θab (3.42)

(with θ(ab) = 0)
Lθeµa ≡ e′µa − eµa = eµbθba (3.43)

Under Einstein transformations,

Eξeµa = ξλ∂λeµa + ∂µξ
λeλa (3.44)

It is possible to check that Einstein and Lorentz close

[Lθ1 , Lθ2 ] = L[θ1,θ2] (3.45)

[Lθ, Eξ] = Lξ.∂θ (3.46)

If there were to exist any Lorentz anomaly, that is in case

LθW = Kθ (3.47)

they necessarily have to obey the corresponding consistency conditions.
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Lθ1Kθ2 − Lθ2Kθ1 = K[θ1,θ2]

LθHξ − EξKθ = Kξ.∂θ (3.48)

It is consistent to assume Kθ = 0; it is also consistent to assume Hξ = 0. A consistent
varion of the Lorentz anomaly stems immediatly from the gauge potential

ωab = −ωba ≡ ωµabdxµ (3.49)

and the field strength

Rab = −Rba ≡ dω + ω ∧ ω =
1

2
Rµνabdx

µ ∧ dxν (3.50)

In that way we reach the conclusion that

Kθ =

∫
ω1

2n−2(θ, ω,R) = θ.G[ω,R] (3.51)

Here we have a situation analogous to what was the case with Einstein’s anomaly Given
the fact that R(ab) = 0, P (Rn) = (−1)nP (Rn), so that P = 0 unless n ∈ 2Z, which in turn
means that d = 2n− 2 = 4m− 2.

Bardeen y Zumino ([6]) found a functional denoted by S such that its Einstein variation is
equal to the Einstein anomaly, whereas its Lorentz variation is the Lorentz anomaly.

EξS = −Hξ

LθS = Kθ (3.52)

It is then clear that using this counterterm we can move from one anomaly to the other;
by changing W by W + S we cancel Einstein’s anomaly; whereas by trading W by WS is
the Lorentz anomaly that is cancelled.

3.4 The Green-Schwartz mechanism.

This ten-dimensional exercise had a tremendous historical importance in the establishing
the status of string theory as a candidate theory for all fundamental interactions. Either a
diagrammatic calculation, or else through the index theorem, we can get the 12-form that
characterizes the anomaly of N = 1 supergravity coupled to a Yang-Mills supermultiplet
in d = 10 dimensions.

Î12 = − 1

720
TrA F

6 +
1

24.48
TrA F

4Tr F R
2 − 1

256
TrA F

2

[
1

45
Tr F R

4 +
1

36

(
Tr F R

2
)2]

+
n− 496

64

[
1

2.2835
Tr F R

6 +
1

4.1080
Tr F R

2Tr F R
4 +

1

8.1296
(Tr F R

2)3

]
+

1

384
Tr F R

2Tr F R
4 +

1

1536
(Tr F R

2)3 (3.53)
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Here traces over gauge fields (TrA) are traces in the adjoint, whereas traces over curvatures
(Tr F ) are traces on the fundamental of SO(1, 9)

The only possibility for the field V to cancel this anomaly is that there is some factorization
of the type

I12 =
(
Tr F R

2 + kTrA F
2
)
X8 (3.54)

We have to determine when this is possible at all.

The first condition is that the dimension of the group has to be

n = 496 (3.55)

because SO(10) has an independent sixth-order Casimir which contributes to Tr R6, and
this term cannot be cancelled any other way

This means that already we are restricted to G = SO(32), G = E8 × E8, G = U(1)496, or
else G = E8 × U(1)248.

Working in SO(n), for example, it is not difficult to show that

TrA F 2 = (n− 2)Tr FF
2

TrAF
4 = (n− 8)Tr F F 4 + 3

(
Tr F F 2

)2
TrA F 6 = (n− 32)Tr F F 6 + 15Tr F F 2Tr F F 4 (3.56)

We also need that the trace over gauge fields can be rewritten as

Tr F 6 =
1

48
trF 2Tr F 4 − 1

14400
(trF 2)3 (3.57)

(which corresponds to k = − 1
30), Then

X8 =
1

24
trF 4 − 1

7200
(trF 2)2 − 1

240
trF 2Tr R2 +

1

8
Tr R4 +

1

32
(Tr R2)2 (3.58)

Now, for the group G = SO(32)

TrA F
2 =

1

30
Tr F F

2 (3.59)

The fact that there is factorization

I12 =
(
Tr R2 − Tr F 2

)
X8 (3.60)

where now all traces are in the fundamental has far reaching consequences. To begin with,
given that

I12 = dI11 (3.61)
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necessarily X8 must be exact, that is X8 = dX7. The most general possible choice is

I11 =
1

3
(ω3L − ω3Y ) X8 +

2

3

(
Tr R2 − Tr F 2

)
X7 + αd

(
(ω3L − ω3Y ) X7

)
(3.62)

Define as usual
δI11 ≡ dI1

10 (3.63)

and
δX7 ≡ dX1

6 (3.64)

We get
I1

10 = (2/3 + α)(Tr R2 − Tr F 2)X1
6 + (1/3− α)

(
ω1

2L − ω1
2Y

)
X8 (3.65)

which leads to the anomaly

G = (2/3 + α)

∫
(ω3L − ω3Y ) dX1

6 + (1/3− α)

∫ (
ω1

2L − ω1
2Y

)
X8 (3.66)

Green and Schwartz’s idea [28]) is that if one is willing to change the transformation law
of the two-forms

δB = ω1
2Y − ω1

2L (3.67)

then the putative anomaly can be cancelled by a counterterm

δS = −ξ1

∫
BX8 − ξ2

∫
(ω3L − ω3Y ) X7 (3.68)

Given that

δB = ω1
23Y − ω1

2L

δX8 = δ(dX7) = d(dX1
6 ) = 0

δ(ω3L − ω3Y ) = d(ω1
2L − ω1

2Y )

δX7 = dX1
6 (3.69)

we get

δ(δS) = −ξ1

∫
(ω1

2L − ω1
2Y )X8 + ξ2

∫
(ω1

2L − ω1
2Y )X8 − ξ2

∫
(ω3L − ω3Y )dX1

6 (3.70)

which determines

ξ2 = 2/3 + α

ξ1 − ξ2 = 1/3− α (3.71)

The three form must then be redefined as

H = dB + ω3L − ω3Y (3.72)

which means that
dH = Tr R2 − Tr F 2 (3.73)
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