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1

Curves and surfaces in R°.

1.1 Curves.

x = x(u)
y = y(u)
z = z(u)
u < u < U (1.1)
or else
=az'(u) i=1,2,3 (1.2)
One example is the circular helix
T =acosu

y =asin u
z=bu
O0<u<w (1.3)

which for b = 0 reduces to a circle of radius » = a in the z = 0 plane.
The arc length is given by Pythagoras’ theorem

ds® = da® + dy? + d2? = dr 2+ dy 2+ dz 2 du® (1.4)
N Y \ \du du du '

Then the arc between two points is given by

we[E @@ e

Let us compute it for a circle

y=+R>—2? (1.6)



2
s = {dsa = S\/dl’Q + ( %RQ‘T_ﬂ) dz? = § ﬁ{éz_xz =
dt

= T = sin~! £ (1.7)
Then
, x
sin. s = — (1.8)

For example, for the helix,

So1 = V a? + b2 (u1 — uo) (1.9)

The tangent vector is defined as

L od7 % 1 d7
d
ds ﬁ <@)2 du
du
For the helix,
o 1
t= (—asin u,a cos u,b) (1.11)

va? + b?

The normal to the tangent at a given point,

tii =0 (1.12)
and normalized such that
i? =1 (1.13)
In our example
1 = + (cos u,sin u,0) (1.14)
It is clear that
2 =1 (1.15)
which implies that .
tt=0 (1.16)
We can write .
dt
o =nii (1.17)

where & is called the curvature at a given point (there is a sign that must
be fixed by some convention); and the radius of curvature is defined by

1
n= (1.18)
In the example
dt a .
y Pl (— cos u, —sin u, 0) (1.19)



so that

(1.20)

which reduces to a when b = 0.
It is clear that

K2 = (?)2 (1.21)

We define the binormal as .
b=1x (1.22)

In the example

b= —— (—bsin u,b cos u, —a 1.23
s ( ) (129

It is clear that the vectors (Z,7, b) form a moving trihedron along the curve.
Consider now

Il
S

s

b —ixA+txi=10xi (1.24)
It is clear that this vector is orthognonal to both # as well as to 5, so that it
must lie in the direction of 7

db

Z=_rq 1.25

=T (1.25)
ahere 7 is called the torsion of the curve at the point considered. For the
helix

b= \/azlﬁ (—bsin u,bcos u,a)) (1.26)
and then .
% = %W (—bcos u, —bsin u,0) (1.27)
and then ;
R (1.28)

which vanishes for b = 0 as it does for any plane curve. Finally, the derivative
of the normal vector has to lie in the plane spanned by (t_: b)

== Chi + Cab (1.29)
We find that
Ci=tii=—iit=—r
Co=bii = —iib=7 (1.30)
conveying the fact that
% — —kt+Th (1.31)



This is the last of Frenet-Serret’s formulas.

Frenet-Serret’s formulas also imply that the acceleration is given by

27 =L, - -,
%Z/ﬂ%—i-lin:—ﬁzt—i—HTb-l-Hn

2= g 7 - 5 -

—flsg=—m%+7%—mt+7b=—(H2+72)n—/€t+7b

(1.32)

Neglecting the derivatives of the curvature and the torsion, this yields the

familiar centripetal acceleration for plane curves, for which 7 = 0.

1.2 Surfaces.
2t =2 (u,v) w <u<uy vy <v<uy
For example, the circular cone 2> = 2% + y?

T =usinv
Y = U COS V

Z=1U

It has a singular point at u = 0. Another example is the cylinder

T = Cos U
Yy = sin u
z=0

The induced metric on the surface by the euclidean metric in R? is

a,b=2 i j
s> = Y 4, O 0 1 adgeb = Bdu? + 2Fdude + Gdv?
A T 0z Oxb

It used to be called the first fundamental form on the surface.
For the cone
ds? = 2du® + udv?

and for the cylinder
ds® = du? + dv?

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

The tangent plane to the surface at a given point is generated by the two

vectors
ty =0, a=1,2.

and normalized in such a way that

t2=1
Foe the unit sphere
ds? = df* + sin® 0dp>

8

(1.39)

(1.40)

(1.41)



tg = (cos 0 cos ¢, cos O sin ¢, sin @)

ty = (—sin ¢,sin cos ¢,0) (1.42)
Again for the cone
ty = % (sin v, cos v,1)
t, = (cos v, —sin v,0) (1.43)

For the cylinder

—

ty = (—sin u, cos u,0)
£, =(0,0,1) (1.44)

The normal vector is uniquely defined as the unit vector proportional to

N= e X% (1.45)
|Zy X T
For the sphere it reads
N = (sin 6 cos ¢,sin 6 sin ¢, cos 0) = & (1.46)
For our cone 1
N = — (sin v,cos v, —1 1.47
73 ( ) (1.47)
And for the cylinder
N = (cos u,sin u,0) (1.48)

Consider now a curve on the surface; its tangent vector surely lies on the
tangent plane. We can project the derivative of the tangent vector with
respect to the arc (the normal curvature vector) on a tangential and a normal
component.

St

kn + Ky (1.49)

=%

where

—

kyp = kpN = <E]\7> N (1.50)

and the tangent or geodesic curvature vector is Et.
Now, the fact that N.t = 0 implies that

. _.dN Z dN
o= Uy _pdN _ 4T AN (1.51)
The second fundamental form is defined as

—dZ.dN = edu® + 2 fdudv + gdv* (1.52)

9



This means that for the sphere the first and second fundamental forms are
the same.

ds? = ds3 (1.53)
For the cone it gives

ds3 = udv? (1.54)
and for the cylinder

ds? = du® (1.55)

For the sphere, the determinant
gp=eg— f>=sin>0>=0 (1.56)
For the other two surfaces, however,
g2=70 (1.57)
It so happens that

edu? + 2fdudv + gdv? e+ 2f\+ g\?

- _ 1.58
" Bdu? + 2Fdudv + Gdv? | E + 2F A + GAZ (1.58)
where p
v
= — 1.
A= (1.59)

This defines a function x,(\). The extrema of this function ara the
directions of principal curvature, k1 and k9. The condition of an extrema
can be written as

[(E+ FX) +ME+GN](f+gX) =[le+ fA+ASf+gN](F+GX) (1.60)

For those A\ we can write

e+ fA+ANf+gN)  fHgh e+ fA

_ _ - 1.61
"N = B AT AF G FrGr E+FA (1.61)
Then
(e —kE)du+ (f — kF)dv =0
(f —kF)du + (g — kG)dv = 0 (1.62)
and eliminating x we get det M = 0 where
dv? —dudv du?
M=|FE F G (1.63)

e f g

from which we get the two directions of principal curvature.
It is also easy to prove ([2]) that they are mutually orthogonal.

10



In terms of those, the mean curvature is defined as

K1 +ke Eg—2fF +eG

M = = 1.64
2 2 (EG — F?) ( )

and the gaussian curvature as

eg — f°
K=k hp=—"= 1.
K1.R2 EG — F2 ( 65)
It is clear that when

g2 =0 (1.66)

the normal chapters are all convex; those points are dubbed elliptic points.
When
g2 =0 (1.67)

there is one direction with x = 0; those are parabolic points. Finally, when
g2 <0 (1.68)

some normal chapters are convex and others are concave; those are hyperbolic
points.
For the cone

M=24=1

2u? u

K =0 (1.69)

Clearly something special happens at the apex of the cone, u = 0, although
the gaussian curvature does not see it.
The three vectors

(;Euzf N‘) (1.70)
onstitute a moving frame (that is, a frame at each point of the surface).
Consequently, we can expand

Tyu =T Ty + T3, &y + e N

Tup = V1o Tu + T3y Ty + [N

Too =T8Ty + T3, %, + g N (1.71)
where the Christoffel sumbols are given by

[l _ GE,2FF,+FE,

117 2(EG-F?)
i = GE,—FGy
12 7= 2(EG—-F?)

Tl — 2GF,—GG,—FG,
22 2(EG—F?)

2 — 2B5 BB, _FE,
11 2(EG—F?)
2., — EGu_FE,
12 ™ 2(EG—F?)

2 _ EG,—2FF,+FG,

I3 = 2(EG-F?) (1.72)

11



Also, from N2 =1 we know that

Nu:plfu"f'pQ-ifU

Ny =q1 Ty + q2 Zy (1'73)

Gauss’ theorema egregium states that the Gaussian curvature depends
onlt on E, F, G, and their first derivatives. This shows that it is a bending
tnvariant, in Struik’s words. This means that those properties are intrinsic
to the surface, and they do not depend on how the surface is imbedded in
euclidean ambient space. The theorem can be proven by demanding that

— =
xuuv - wuvu

Tyou = Tuww (1.74)

12



2

Tensor calculus in vector
spaces

Consider a n-dimensional vector space, V with a basis
n . .
YoeV wv= Z v'e; = v'e; (2.1)
i=1

where we have introduced the summation convention. This only affects
contravariant coupled with covariant indices. Given a nonsingular n x n
matrix, we can change to a different basis, f,

fa = Ale (2.2)
Then the vector v can be expressed in the new basis
v =1"f, =v'e; = v Ale; (2.3)
and owing to the fact the the basis elements are linearly independent,
v =v'A) — % = B&' (2.4)

where the matrix B = A~1 .
Al B¢ = 5! (2.5)

For the time being, indices cannot be raised or lowered. Consider now the
dual space, V*.

eV Ov)eR (2.6)

We can define the dual basis of the basis of V through

E'(ej) = 5;- (2.7)

13



Please note carefully the position of the indices in the Kronecker delta.
Those are the only deltas that are allowed in this course. Any element
w € V* can be expanded in the dual basis

w = w'e; (2.8)
Under a change of basis in V'
wh — Alw® (2.9)

Everybody heard aboud some wild and ferocious animals called tensors.
What are those? Consider bilinear mappings from

VxV* - R (2.10)

T: (v,0) >T(v,0)eR (2.11)

Owing to linearity, it is enough to know the values on the basis, because
T(v,0) =" 0; T(e;, B7) =" 0; T;? (2.12)

The space of those animals is called the tensor product of V* ® V', and its
elements are called (1-covariant 1-contravariant) tensors. Under a change of
basis

Ti9 — A2 Bl T,° (2.13)

The set of all those (1,1) tensors is another vector space, which is calles the
tensor product of V* ® V'

E'®e € V¥V (2.14)
Pleasee note carefully that
VOV £V*QV (2.15)
that is ' ‘
;7 # 17 (2.16)

Ordinary vectors and ordinary dual vectors are particular instances (0,1)
and (1,0) respectiveli. The generalization to

T, e ®...ep QEN@EN € V®...(p)...0VOV*®...(q) (2.1

is immediate. The contravariant or covariant character of the indices is
an absolute property. There is no in general a canonical way of raising or
lowering indices. When there is a metric, there is such a canonical way.

14



But before introducing a metric, let us examine some particularly intere-
sting tensors which are defined independently of the metric. As a matter of
notation, let us define the symmetrization operator

1
T(a1...ap) = ]j Z Ta,,r(l)...aﬂ.)n) (218)

meSy

where the sum extends over all p! elements of the permutation group S; as
well as the antisymmetrization operator

1 P,
T[a1~~~(lp] = H Z (_1) Taﬂ(l)...aﬂ.)n) (219)

TeSp

where P; is the parity of the permutation 7.

2.1 Differential forms.

Let us identify tangent vectors ¥ € T, with directional derivatives of func-
tions defined at a given point

(f) =vtouf (2.20)
A particular basis is given by the vectors
o (2.21)

Given an arbitrary function, its differential is defined as df € T
af (#) = 5(f) (2.22)
Differential forms are antisymmetric linear maps
w; v R > wv)eR (2.23)

A local basis is given by
dz®(0p) = 6 (2.24)

Let us define a p-form A € AP as a tensor with p cpvariant indix, totally
antisymmetric

Aa1...ap = A[ (225)

ai...ap|

Dor examplem w € A?:

wa (v,w) € R" x R" — wa(v,w) € R (2.26)

15



Exterior product. The exterior product of two one-forms yields a
two-form

(w1 A a1)(vi,v2) = det < 51223 Zig;g ) (2.27)

In the general case, the product of a p-form and a g-form is a (p+q)-
form

(Wi Awp) (V1.2 Vpgy) = Z Fwp(viy v )W (Vi - viy,)  (2.28)
The basic identity reads
wp Awg = (—1)P? wy A wy (2.29)
Sometimes we shall write
dxtttr = daht A oA dat'P (2.30)
This means that for every odd degree form
Wop+1 A wapt1 =0 (2.31)
Coordinate basis.

In the basis of the tangent space associated to a local chart, (z%),

Wy = Z Wiy ap AT A LA dath (2.32)
1<...<tk
dz" A dz¥ = dz" @ dz¥ + dx¥ @ dxt (2.33)
We shall write in local coordinates
1
= = p,ddtt AL A dzt (2.34)
p!
It is exceedingly useful to introduce the Kronecker symbols
Al Ap A A
€t = 1! 5[;1 . "6;;] (2.35)

It is a good exercise to prove that
p1---p = pl
€l Xprpy = P Qppyp

6)\1..)\(1 eH1+-HqT1.--0p Al...Aq01...0p

= ¢!
M1 fhq VL. Vpig q: €V1.‘.Vp+q
AL AgP1Pp | AL Ag
6#1--~Nqﬂ1~--ﬂp =p 6#1--#11 (236)

A general formula for the exterior product is given by

anf= o a,\l,__,\pﬁm,,,“qda:Al Ao Adzdat AL A date (2.37)

16



o Exterior differential. The differential of a function is given by a
one-form

df = 0afda" (2.38)
In the general case, the differential of a p-form is a (p+1)-form
dw = Z dw,, ., Adz™t Ao A dat (2.39)
11 <...<tg

A general formula can also be given

(da) 6)‘0)\1"’)"’ 65\004)\1._% (2.40)

HOML---fp (p + 1)! KoM ---pp

The uselfuness of exterior calculus stems essentially from the basic fact
that
d* =0 (2.41)

It is also a fact that the graded Leibnitz rule holds, id est,
d(op A Bg) = doy A Bg + (=1)Pay A dfy (2.42)

e Pullback.
p:xeM,—>yeN, (2.43)

w=a;dy' € A(N) = ¢*w = a;(y(z)) gz; dx® e A(M) (2.44)

It is fact of life that
d(¢*w) = ¢*dw (2.45)

e Poincaré. Everybody knows that in R?
Vxi=0=— 7=V (2.46)
In fact Poncaré was able to show that in R”
dw = 0= w = da (2.47)

This is not true in general, and the number of independent w that fail
to satisfy that is called the Bettti number of the manifold. Let us prove
this theorem. Given a p-form,

1
wp € A(R™) = —Way...ap (T1,. .. xp) dx® A dz® ... Adx  (2.48)
b

, define the homotopy operator, K in two steps. First define a Ajqq
form

1
(¢ *w) = Sway.ap (t21, .- tan) (2% dE + tdz® ) A (a2 dE + tdz®) A A (2P dE + tda®?)
p!
(2.49)

17



Now the operator K is defined in two steps. In those monomials of
¢*w not involving dt
Kw=0 (2.50)

On monomials of ¢*w involving dt

1
(Kw) = <J (p*w)z (tw)dt) dz® (2.51)
0
Let us work out an example in n = 3 dimensions.

w=zxdr Ady+e*dy ndz (2.52)

¢*w =tz (tdr + xdt) A (tdy + ydt) + e* (tdy + ydt) A (tdz + zdt) =
= —t*zydt A do + (22 — €% tz) dt A dy + e'*ty dt A dz + no dt tefths3)

a=Kw= Sé —t2zydt A dx + (t2$2 —el? tz) dt A dy + ety dt A dz =
= —fzydr + (%2 - M) dy + y%dz (2.54)

z

since

fue”du =e'(u—1) (2.55)

And lo and behold,
w = da (2.56)

Hodge dual. Let us introduce the so called volume element defined
as

Muron = V19 €57 (2.57)

" is not a tensor. Let us work it out in two dimensions.

Actually, E}L{... .
Denote the jacobian matrix

Jb _ 6.7)1)

V= (2.58)

and its determinant by J = deth, Also the determinant of the metric
itself does not transform as a true scalar, but rather

g (z') = JPg(x) (2.59)
Then

! / 1 / / / /
Napdz® Adzb = \/ﬁeabjj/Jf/dxa Adz® = j\/gjea/b/dxa Adz? = nyydz® ada®
(2.60)

18



This means that
N (2.61)

is a true tensor. Some properties;

et = j@ el

DA A At ) eg‘gﬂjjjig

Vol =0

d(vol) = Ny, ..y, dx"™ A .o~ dat = Vlgldzt A ... A dz"
dztt A oA datr = pttErd(vol) (2.62)

To verify these formulas is excellent gymnastics.

The Hodge operator maps p-forms into (n-p)-forms.

# 1 AP — A"TP (2.63)

It is defined by
1
(*A) it = ol Mg oo AP (2.64)

It is clear that in R3

xdz = dx A dy

#dy = dz A dx

xdr = dy A dz (2.65)

Its square depends on the dimension of spacetime as well as on the
degree of the form

#2 0 AP — AP (2.66)
First of all
1 bi...b p(n—p) 1 b1...b
(*A)al...an_p = H"?bl...bpal...anpr P= (_1) Hﬁal...an,pbl...pr P
(2.67)
and
(2 A)ey ey = &G ern gy 1B Ay g =
dy...d
= Z%!ecll...c;Adl...dp = Aq...cp (268)
52 = (=1)P(=P) (2.69)

In four dimensions (actually, in any even dimension)

2 = (—1)P (2.70)



In R*
wdr A dy = dz A dw (2.71)

There are then euclidean self-dual two-forms

we =dx Ady +dz A dw (2.72)

In three-dimensions Hodge squared it is always +1

2 = 41, (2.73)

The exterior codifferential is the adjoint of the exterior differential
(a,68) = (dov, B) (2.74)

It is given by
= (—1)Ps+1dx (2.75)

It is possible to give a simple formula

1
(5a)p1...pp_1 = _ﬁ eﬁéi-.'ﬁgp_lvuayl...pp (2.76)

The interior product of a p-form and a vector, X, is the (p-1)-form
given by
(((X)w) (v1 ... vp—1) = wp (X, v1...0p—1) (2.77)

Stokes’ theorem We start from the properties of the volume defined
by an elementary cell of R3

— It vanishes if the vectors are linearly dependent.

— It stays the same when we add to a given vector a linear combi-
nation of the other vectors.

— Depends in a linear way on all vectors.
Al these properties are enjoyed by the elementary formula
V= Eeijkviv%vlg =1 (1, U2, T3) (2.78)
where the volume element is defined by
n=dzt A dz? A da? (2.79)

This leads in a natural way to define volumes through integration. For
example, in R%,

20



— Codimension-1 hypersurfaces dS, =
der for example the hypersurface

Nabeadx?® Consi-

S={ry =T} (2.80)
The normal is the vector
n = (0,0,0,1) (2.81)
The hyprersurface can be paremeterized by
xt = ¢ (2.82)
so that .
dSe = gyn/gles = T)d’¢ (2.83)
— Codimension-2 hypersurfaces dVy = %UabcdeUCd Consi-
der the two-sphere
Sy <> RY (2.84)
x4 =T
>+ +22=R? (2.85)
It can be parameterized by polar coordinates
z' =20, ¢) (2.86)
There are two normal vectors, namely
n1 = (0,0,0,1)
ng = (z,y,2,0) (2.87)
and the volume element is
AV, = nlnis/g(T,0,0)do A dp (2.88)
— Codimension-3 hypersurfaces AVipe = %nabcddxd
For a trivial example, consider
z' = (2.89)
which can be pameterized as
Ty=0 (2.90)



there are now three normals
n; = €; (2.91)
and the volume element reads

AVpe = ninina/g(xh) do (2.92)

Stokes’ theorem in general states that.

va:J;mj (2.93)

The classical theorems of Gauss, Stokes and the divergence are but
particular instamces of this. For example

|- a (2:94)
So C1=0S>
If A; is a 1-form of R3
A; = Ada’ (2.95)
then 1
d@zi(ﬁ%—@&MﬂAﬂj (2.96)

It is customary to define the rotational or curl as

(l"OtA)i = eijkajAk (2.97)
The surface integral
1 . )
f dAQ = J = (GZA] - @Az) dz* A dz? = (298)
s s 2
It is customary to define
i 1 j k
n'dS = 3 eijpda’ A dx (2.99)
so that
Z (rotA), n;dS = Z (0 Ay, — OpAj) dx? A dak (2.100)
i ik

and we recover Stokes’original theorem

f rotA it dS = | Adi (2.101)
S oS

22



Let us now apply it to
J dWQ = J‘ w9
Vs o3

1 . .
w2 =g wijdx' A da’

Write

so that
1 . 1 g
dwy = iﬁkwijda:k Adx' A dr! = 3 8kwijek”dv

Now we define the dual one-form

—_

Odr’ = (#w)1 = 5 CijkWik

then
dLUQ = 6ka = div(2
and we recover Gauss’divergence teorem

fdivﬁdV:J Qi dS
1% oV

Let us work out the integral over a two-sphere

x = Rsin 0 cos ¢
y=R sin 0 sin ¢
z=R cos 6

z is no an independent variable; rather,
z2=/1—2%2—9y?

Y

sin ¢ = Var+y?
sin 0 = /22 +y?

00 _ cos ¢
oxr ~— cos 0
06 _ sin ¢
oy ~ cos 0
9 _ _ _y

ox sin® 6
6 _ _w

oy sin? 0

Exterior normal

T.ds = DU R24in Qdfdg =

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

= R (v"sinf cos ¢+ vYsin 6 sin ¢+ v* cos 6)sin OdOdR.112)
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Assume, for example,

v = z&az (2.113)
(such that
Vi =1) (2.114)
- R By
Vi d(vol) = j r2drjsin 0dde = 2 —| = —mR> (2.115)
S2 0 3 0 3
This equals
R? fsin 0 cos® 0dp = —27R® cos® 0‘3 = %RS (2.116)

Lie derivative. The Lie derivative of a function is defined as the
directional derivative

3(f) = £@)f (2.117)

The Lie derivative of a one-form is defined in a natural way.

£(T)df = di(f) (2.118)

This definition extends to a general case simply by postulating that
Leibnitz’ rule holds true

£(0)aqde™ = (£(7)aq)dE® + o £(T)dE® (2.119)

In the case of vectors we use the dual application

£(0)a, X) = (£(@)a, X) + o, £(0)X) (2.120)

It is a fact that

£(X) =i(X)d + di(X) (2.121)
Diffeomorfisms An active diffeomorphism
E:xeM—oy=¢§x)eM (2.122)

Acting on vectors, given g : y —> R, then go & : & —> R and v € T, we
define a different vector ;v € T}, through

£x(v)(g) = v(go &) (2.123)
In a local coordinate basis
(&xv)"(y) = vP0,EH () (2.124)
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Given a one-form w € Ty we define another form *w € T, through
Erw(v) = w(&) (2.125)

In a local coordinate basis

(§*w)a(®) = wu(y)dal (x) (2.126)
If it were a 2-form
(&*w) (v,w) = w (v,w) (2.127)
that is
(§*W) g () = W (y)0alt 058" (2.128)

2.2 The metric tensor.
The metric tensor in R™ is defined through
ds? = gap(2)da®da® (2.129)

with
g=det gup #0 (2.130)

so that there is the inverse matrix
9"°ger, = 0y (2.131)

For example, in polar coordinates
ds? = dr® + r? dQ? (2.132)

where

dQ? = db? + sin? 0d¢* (2.133)

Then, there is a canonical mapping from

Vo V* (2.134)
V*V)=g(V,V) (2.135)

This is
Va = gacvc Ve = gabe (2136)

Ordinary derivatives of any object more complicated than scalar (id est, a
vector, or any higher rank tensor) are not tensors, not even in R”. This is
because under the change of coordinates

x* — y*(z?) (2.137)
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under which oy
Ve(y) = %Vb(x) (2.138)

derivatives transform as

oV*(y) %y 0x¢ b ay* oV (x) 0x°

= 2.1
oy oxboxe oy (z) oxb  oxc oy (2.139)
Let us lighten the notation a little bit. First of all,
N
oy~
o= -2 (2.140)
b= 0ab i
Er also introduce
Jpt = Wy (2.141)
b7 b ’
Then -
N %%
(T, = %P (2.142)
is the inverse matrix
J =01 J=1 (2.143)
The previous equation reads
«a —1\¢ b « b —1\¢
o0,V = (J )vé’CJg“V + Jy'o.V (J )7 (2.144)

It is conceptually much simpler if we imagine matrices with rows defined
by the covariant indices and columns by the contravariant indices. The
equation then reads

oV(y) = (J N oV +J oV (x)J (2.145)

Let us now ask the question: is it possible to modify the definition of
derivative in such a way that

vV =(JHYvvJ (2.146)

Let us try the ansatz
VV =0V +TV (2.147)

(T" is a three-index beast). In order for that to be true the transformed
covariant derivative

V(y) +T(y)V(y) = (J ) oIV +J'oV(x)] + T(x)V(z)  (2.148)

ought to be equal to
J! (aV(a;) + I‘(:c)V(:c)) J (2.149)
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This would be true provided the I' transform as
T(y)=J o+ J'TJ (2.150)

When such an object exists, there is an invariant concept of derivative.
This is what mathematicians call a connection. The surprising thing is that
whenever there is a metric, there is such a connection, which is called the
Levi-Civita one, and the coefficients, the Christoffel symbols,

1

T, = 59" (=0xgay + 09xy + 019x5) (2.151)

Let us check that
1
rg, - 2J3Jfg“l{ = ox (IS5 g0c) + s (F550e) + 0 (T5Am) } -
1
= QJC?JQQW{ — TG IS goe — JHONTSgve — RIS OAGe +
+55J§\J§glc + Jﬁ\aﬂjﬁglc + JﬁJiaﬁglc +

+0, T4 TN gu + T30, T gw + JgJ,l\é’ngl} (2.152)

The three terms in the right of the rows yield
JO TG JET, (2.153)

If this were all, this would have been a true tensor. But there is more.
Taking into account that

Pads = 05J2, (2.154)

the terms in the paces 11 and 21 cancel, as do the terms 12 and 32. The
rest (22+31) yield

TS T g™ 0, T5Thgu = g** 05T 5T\ gu (2.155)
QED.
The two basic properties of the Levi-Civita connection are
ng - F%
Vagsy =0 (2.156)

2.3 Winding numbers and such.

Spheres are defined as

S=>lal =17 (2.157)

a=1
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The n-dimensional ball is defined as

By: Y a2 < L? (2.158)
a=1
The normal vector is
Ng = C0u S = CTy (2.159)

Let us study the one form in R"™

rdr = 2 aldxt = xldat + 2%d2® + ..+ 2"da" (2.160)

)

It is clear that

srdr = ztda? A oA da —22det AdaP A L oA de" + ... =

—

=Y (=1 tatdat A ..o AdTt AL A da” (2.161)

It so happens that the measure on the S™~! sphere is proportional to this
(n-1)-form
dS, = cng * rdr (2.162)

On the other hand
d s rdr = Z(—l)iildxi Adz' A AdTE AL A da = nn (2.163)
This shows that actually ¢ = 1. You can show as an exercise that

V(By,) = £v(S,-1)

/2
In particular, we recover
V(Bs) = %WLS
V(Sy) = 4nL? (2.165)

Let us denote the volume element in euclidean space by
wp = d(vol) =dz' A ... A dz" (2.166)
In ordinary euclidean space, E?
ws = r2sin Odr A df A de (2.167)
and by ¢’ the volume element on the codimension-one unit sphere
r=1L (2.168)

Consider
rdr = indazi (2.169)
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It is plain that

wrdr = Z(—l)i_lxid:nl Ao ndTi AL A dz, (2.170)
In E?
srdr = zdy — ydx = r*df (2.171)

Again, in E3, it is easy to work out that
srdr = xdy A dz —ydx A dz + zdz A dy = rPsin 0d6 A do (2.172)

It is a fact that

o' = =rdr (2.173)
(on the sphere S,,_1), because
Demonstratio.
d (#rdr) = nwy, (2.174)
and in particular in E3
1
d(srdr) = 2Ws (2.175)
O

Consider now the projection

7 :E\0 — S, (2.176)
Z
m(Z) = — (2.177)
||
We know that
d(r*c") = n*do’ = 0 (2.178)

(because there are no n-forms in S,,_1). Let us show that

e = 2 =71 (2.179)
r
(¢’ is the restriction of o to Sp_1).
Demonstratio. First of all,
1 n n n
dr = T—nda gy (rdr) Ao = YT R s 0 (2.180)

Now, define

o’ = 3= mdmy AL A J;Z A..ondm, =
= Z(—l)i_l%w{l) (rdzy — z1dr) A ... A dmi A ... A (rdz, — xpdr) =

(2.181)
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In EQ

1
o= 2q? — gt = —o0 =df (2.182)
rrooror o r

In Ej3 is clear that it is going to give the same as o without the radial
coordinate. This defines the angular measure, 7. O

Given two closed and oriented manifolds, M and N, and a mapping
f+ M—N (2.183)

then it is a fact that f,NV is an integral multiple on M plus a boundary ([3]).
This is dubbed the degree of f, deg f. When ¥ — E™\0, we can deinne the
projection as above

T N —> S, (2.184)

Then

J T = J o’ = J o = degwf o =degm Ap_1 (2.185)
b)) b)) w(X) Sn_1

We can generalize this a little bit. Consider a closed manifold
M, L5 B\ > S, (2.186)

The winding number of this hypersurface around the origin is given by

1 J N
w= T 2.187
. A{f ( )
In general, given
M, L5 N, (2.188)

and a volume form S in N normalized to 1

f B=1 (2.189)
N

we have

degf = Jf*ﬂ (2.190)

This is essentially the mathematics behind the WZNW lagrangian.
Let us now study the Hopf invariant. Normalize

J on =1 (2.191)
Sn

Consider a map
S5 L5 8, (2.192)
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Then
d(f*72) = f* (doz) = 0 (2.193)

Now, it is known that S5 does not have nontrivial cycles, so that 3 a;
dOtl = f*O'Q (2.194)

It so happens that the integral

Joq A fros (2.195)

is an integar dubbed the Hopf invariant. Represent the sphere S3 as (z, w)
2|2 + |w|? = 1, and the sphere Sy as

25 = rge'®s (2.196)
in such a way that

1
ds® = —————dzgdzg =

— (dr? + r%d¢> 2.197
L+ |zs2)? (1+12) (drs + rsdos) (2.197)

In order to get that we have to rescale

rg
— = 2.1
Ts = 57 (2.198)
so that
_ 2Lx
rs = %L—i—xn
ds? — 412 ds? (2.199)
is now dimensionless.
C 4 drs A do 2Cd ( 1 ) A do (2.200)
09 =C——=5rgdrg g = — —_— .
(1+73)" T
The normalization is
f oy = 87TCJ - —4nC ——| =4nC (2.201)
o (1+12)2 L+7rg],

Then the mapping

. ; ; z1
2 2%+ Zx4) = (rleld’l,rgezdm) € Ss N zg = — € 59
2

(2.202)

(21,22) = (ml +ix
The condition
21> + [P =2l +yf +a3+ys =171 =cosy ry=sine (2.203)
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We shall see in due course that he standard parameterization in terms of
Euler angles of SU(2) is

g (0, ,x) = e3X733071397 (2.204)

where the range of the different angles is

0<f<m
0<o¢<2rm
0<x<dA4r (2.205)

The left-invariant one-forms read

g dg = oqwar
wir = cos ¢ df + sin 0 sin ¢dy
wor, = sin ¢ df — sin @ cos ¢ dy
wsr, = d¢ + cos Odx

(2.206)
It is convenient to define
z = X5 cos %
29 = %22 sin g (2.207)
The round metric in S3 then reads
ds® = ZWZL = dO? + dp* + 2cosOdg dx + dx* (2.208)
The Hopf fibering goes as follows. In the neighborhood z; # 0
p:Ss— So p(z1,22) = z—j =z (2.209)
and if z9 # 0
Z1 1
p:Ss— Sy plz1,29) = — = — (2.210)
Z9 z

Denoting by Hy the two hemispheres of the two-sphere S,

H. :(z,uy) € Sy x S — U+t U+ E<6Z 2 cos 2 €7 sin 7>
+ ( ) +) 2 1 \/1+‘z|2’\/l+‘3|2 92 2 n

Xt iX=¢ . 9
H_:(z,uy)e Sy x S — KIS LIS = <e’ 5 cos 2 €77 sin 7>
( ’ +) 2 1 \/1+\z|2’Z\/l+|z|2 2’ 2)_

Now, start with

o= urdug A dus + ugdus A duy + uzduy A dug) (2.211)

ot
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in such a way that

du;

dr Ao = Z it = 4Ldu1 A dug A dus (2.212)
— 7 0
(2

Using the relationship

> uidu; =0 (2.213)
we get
1d d
_ - du1 At (2.214)
41 U3
Now the sterographic projection of C' P, — Sy < Rj3 reads
" (2) 2x 2y —1 + 2% + 92
z=z+iy— g(z)=(u = ,
Y g Y221+ 22 42 1+ a2 12
(2.215)
The form g*o is given by
g*O' _ _i dz A le _ L (ZleO — Zodzlg AN (d21220 — Zodzl) (2216)
2r (1 + |2]?) 27 (lz0? + |21]?)
Using now real coordinates
12012 + |212 = 1 = 22 + 22 + 22 + o2 (2.217)
we get, after some calculation,
.1 1
ffo=—(dz1 A dxg + dxs A dzy) = —da (2.218)
T T
where .
a = — (r1dzy + w3dxy) (2.219)
T

and finally [7]

) 2) T T 27
H(f) = L ada = ﬁszdwdwdm = 772J0 d@fo d¢f0 désin® € sin® ¢ cos® 0 =1
’ (2.220)

Assuming

29 = 1ge?s
uy = e (2.221)
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This implies on H

1

COS

0
27 Vite?
i 0 —
sin 5 = \/1:7
X =2a+ ¢s
b= —ps (2.222)
On H_
1 1 .
=1 e s (2.223)
mle=_1 __ _r _qn%
sin & = T Vi sin =
- — _rn 1 _ 0+
O = e, T Vi T P2
X =20+ ds =2a— 9N
¢ =—¢ps = oN (2.224)
On the equator
Uy = e = 2] u_ = e 95 y_ = ¢ilatds)emivs (2.225)
z

This is the twist that makes all the difference between the fiber bundle and
the product space.

(2.226)
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3

Gauss’ integral
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4

Surfaces revisited.

Choose a moving frame in such a way that (€7, €3) are a basis for the tangent

plane and €3 is the normal to the surface. On the surface itself

d¥ = 01€1 + 09€5

(4.1)

where o1 and o9 are a couple of 1-forms. For example, in the case of the

two-sphere we can choose

S 10 1 [aL2—a2—y? yy/L2—a2y2 5 5\
'TLw L < \/x2+y2 ’ \/Z2+y2 7_\/m =

_ 1 zz yz —/I2 =22
L\ \/I2-32 \/[2_;2

- 10 1
€2 = Tsino60¢ VIiZ—22 (—y,a:,O)
& =% =1(z,y,2)

Then

o1 = Z\/LL27—z2 (xdz + ydy)
o9 = \/LQleQ (—ydz + zdy)
It is also the case that
b=3
de, = Z Wab€h
b=1



— 2 2
dey = % (x/LQZ,Zz dz + (in];Q)?’/2 dz, \/LszZQ dy + (L'ﬁi?)?’/2 dz, VLQZ2 dz) -
= s (L7 = )da + wL2dz,2(L? — 22)dy + yL2dz, +2( L2 ~ 2%)dz) =

= s (7 (22 + v = B ) do — Bay = (17 - 22 - B ) dy — B2,
,— (L2 = 22) (adz + ydy)) (4.6)
dé:(‘ W — ez, s + dz0>:
VI2—22  (L2-z2)32770 122 T (L2—22)32 7

= m (—(L2 — 22)dy — yzdz, (L? — 2%)dx + xzdz, 0) =
zydr — x2dy, y2dx — xydy, 0) (4.7)

(L2_122)3/2 (

dés = 1 (dz, dy, dz) (4.8)
Then
w19 = €rde] = zm (4.9)
wiz = €3.dé) = ﬁ (2 (wdz + ydy) + (L* + 2?)dz) = Wﬁ (=2 (zdz + ydy) + (L? —
= —z\/ﬁ (xdx + ydy)
(because on the sphere zdz + ydy + zdz = 0)
wog = €3.dey = L (ydx — zdy) (4.11)
LVIZ2 - 22
But we have normalized in such a way that
€q-€p = Ogp (4.12)
so that
dey.ep + €4.déy, =0 (4.13)
that is that the matrix of one-forms
Q= wep (4.14)
is antisymmetric. In fact
wo1 = €1.déy = m (ydx — xzdy) = —w12 (4.15)
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0 w  —Ww1

QO=-0T=|-=w 0 —w (4.16)
w1 w2 0
We can the write in gory detail
dé| = wey — w13
d€y = —weé| — wy€s
dé3 = w1€1 + waés
(4.17)
As a consequence of our definitions we have
A=2 A=2
0=d’F =) doséa—ocadés =0= ) dosés—oawmd  (4.18)
A=1 A=1
This implies
do = o) (4.19)
That is
do| = @ A 09
doy = —w A 07
do3=0=01 Awi + 09 A wy (4.20)
We also deduce
0 =d%0 = doQ) — 0dQ = 0Q* — 0dQ (4.21)
so that
dQ = Q2 (4.22)
0 w —wi —w? — w% —WiWy — W9
dl—-wm 0 —wy|= — W1 —w? — w3 ww1 (4.23)
w1  Wwo 0 —Wo T w1 —w% — w%
To be specific
dw = —wy A Wy
dwi = @ A Wy
dws = —w A wy (4.24)
Let us recap.
o1 = Z\/LL27—z2 (xdx + ydy)
o9 = \/ﬁ (—ydz + xdy)
wy = Z\/Ll27—2’2 (zdz + ydy) = 101
wo = _L\/% (yda — zdy) = +09 (4.25)
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Since there is only one linearly independent 2-form om the two-dimensional
surface X, we have
w1 Awy = Ko1 A o9 (4.26)

where K is our old friend the Gaussian curvature. For the sphere Sy we find

1

It is actually independent on the choice of the basis vectors (€1, €2). Exactly
the same reasoning tells us that

01 Awy —09 Awy =2Ho1 A 09 (4.28)

Here H is the mean curvature of the surface X. For the sphere Sy it reads
H = 7. In order to write the forms (w1, ws) in terms of the forms (o1,02),
we have to be consistent wit the equation

01 AWl +02 Awr =0 (4.29)
The general solution Flanders claims to be

w1 = po1 + qo2
wo = qo1 + 1ro9 (4.30)

Actually, for the sphere, this is satisfied in a trivial way, namely

wy = %01
wy = 1 02 (4.31)
(That isg=0and p=r.)
It follows that
+7
H ==
K=pr—¢ (4.32)
Now the relation
dow +wi Awy=—=dw+ Koy Aoy =0 (4.33)

which determines K in terms of (w, o1, 02). But

doy = w A 09
dog = —w A 01 (4.34)

determine w in terms of (o1, 02); actually
w = aoy + boy (4.35)

Then K is completely determined by (o1, 02). Lo and behold, this is Gauss’
theorema egregium.
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5

Differential Geometry

It is important to be able to pinpoint characteristics that are intrinsic, that
is, independent of the coordinates used in overlaps of open sets in a covering.
The two main ones are

e The contravariant vector interpreted a a directional derivative. Gi-
ven the linear space F(M) of all functions f : M — R, and a local
coordinate system a* : M — U < R"

VeT:FM)—-R (5.1)
V(f)y=V*o,.f (5.2)
It follows that
0 ;0
p_ Yy
Vv pyr Vv s (5.3)

e A covariant vector interpreted as the differential of a function

WeT*: fe F(M)— dF(M) (5.4)
df = 0, f dx" (5.5)
this means that
Of g OF 4w
pr dxt = ET dx (5.6)

Starting with those elements, more complicated transformation laws can be
easily derived.
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5.1 Geodesics

The integral given the distance is extended over the parameterized curve

at = at () (5.7)
and we have denoted by
P = @ (5.8)
=— .
We can normalize the tangent vector
-
w = (5.9)

The extrema of the action are by definition the geodesics of the manifold.
We get

08 = —mcfd)\ {Opgudalata” + 2g,,2'6x"} = —mcfdA (5xp{
OpGuvd™ i — (Oxgup + Ougap) i dH — 29“,,93#} (5.10)

Expressed in the form of four ordinary differential equations for the four
functions of one variable z#(s) they read

d?at dz® dzP
— boo——— = 5.11
ds? T lag ds ds (5-11)
Here the Christoffel symbols are given by
1
Ly = gApFZz/ =0 igpa (—afgw, + augyg + 5ug,,g) (5.12)

This is true insofar as we are parametrizing the curve using the arc length
(which is anyway possible only when the tangent to the curve is everywhere
timelike or spacelike). Assume now we use another parameter,

A= A(s) (5.13)
Then
_ dz® _ dz® d)
w =4 - R
d d2z® (dA\2 | dz® d®)\
G = (B R (5.14)

This means that the geodesic equations now read

d?z™ o dxP dxY dz®

=) o

da” da 1
2 TUBTIN (5.15)
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where the function f()\) is given by

dig\
— _ _ds
c(N) = (@)2 (5.16)
ds
The Christoffel symbols are in a sense the gauge field associated to
diffeomorphisms. An element V' € T behaves as

VH () = o2 VP (x) (5.17)
oxP
or in matrix motation
Vi=JV (5.18)
It is obvious that
0, VH (5.19)

does not transform as a tensor unless the diffeomorphism is a linear one,
because
dV' =dJV + JdV (5.20)

The idea on a connection (= gauge field) is to modify the ordinary detivative
into a covariant derivative

DV =dV +TV (5.21)
To be specific, the gauge fields are defined in such a way that
V, V=0,V + 10,V (5.22)
does transform as a tensor, that is

B ox° oxH
- Oz Ox?

It is easier to vidualize all this in matrix notation

vV, V(2 Ve VA (5.23)

(DVY =dV' +T'V' =d(JV) +T'.JV = dJV + JdV +T".JV =
= JDV = J(dV +TV) (5.24)

It is plain that for this to be true, it is enough that

I'J+dJ=JT (5.25)
that is
I'=JrJt—djJj! (5.26)
In gory detail
o oxN 2t ox®  dx” oxt 4

PM

PN + 0P oxT onP o omd oA (5.27)
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Because of the inhomogeneous term the Christoffel symbols are NOT ten-
sors. Thay are connections, that is, gauge fields. It is useful exercise to
check at least that the Christoffel symbols are a solution of these equations.
Actually they are the unique solution involving the metric tensor alone.

It is also useful to check that for covariant tensors.

Vo, = 0wy — F;\Ww)\ (5.28)
Using this formula, it is plain to check that the metric is covariantly constant
Vagsy = a9y — Lagdny — Tasgrs = 0 (5.29)

e Let us begin by computing geodesics on the plane

ds* = dr® + r2d6? (5.30)

o9 = 59" (—0rgep) = —r

r% = 9% (0r900) = 1 (5.31)
i—rg?=0
6+ 107 =0 (5.32)
First integral
2+ 20 =1 (5.33)

It easier to start from

L= Jdr r2<d9>2 +1 (5.34)

Euler-Lagrange

d 0
- e | =0 (5.35)
RS
9/
Yy (5.36)

()
It is not difficult to check that the equation of a general planar straight
line
rsin(6 4+ 6p) = 7o sin Oy cos b (5.37)

is a solution of the first integral.
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Let us compute now the geodesics on the ordinary two-sphere. The

arc distance is

S = f\/dGQ + sin? 0 d¢?
Let us describe the curve as

¢ = ¢(0)

2
S = Jd@\/l + sin? 6 <;l(§>
Euler-Lagrange

dile (52’ 1 + sin? 0(¢’)2> = ;qb”l +sin? 6 (¢/)2 =0

This means that

Then

sin? 0 ¢’
1+sin? 0(¢/)2
That is
- C
~ sin 4/sin? 0 — C2

b = J df ¢
sin 0+/sin? 6 — C?

Let us change variables

dé

————df
sin? 6

u=cotf, du=

du du
o=-c] ) |

cot 6 = a cos (¢ — ¢p)

qu
= cos™ ! —+¢;
a

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.47)

This equation has got a nice geometric interpretation. Consider a fixed
unit vector defined by (o, ¢o). The plane orthogonal to it is generated

by the vectors such that
sin @ sin Oy cos (¢ — ¢g) + cos 6 cos Gy = 0

(5.48)

The interchapter of this plane with unit sphere yields the desired

geodesic.

The geodesic equation can be written as

Vuu = fu
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(5.49)

that is, the tangent vector to the curve propagates parallel to itself, in the
sense that the tangent component of the covariant derivative is proportional
to the tangent vector itself.



5.2 Covariant derivative and curvature.

In fact the metric connection (Christoffels) is the unique symmetric connec-
tion such that the coveriant derivative of the metric vanishes.

aag,uzl - F()\yug)\u - Fz\wg/\u =0
augozz/ - Fzéug)\oc - Fé\yug)\y =0

Ovgua — Lo g — Toapdra = 0 (5.50)
1-24-3 yields
—2T0, 950 = O + 0y — 0 (5.51)
The commutator of two vectors, X,Y € T is defined as the vector
TxT—>T (5.52)
[X,Y]* = X"0,Y* -YH0,X* = X'V, Y -YHV, X (5.53)
Ths covariant derivative in the direction of a vector V is
Vy:T—->T (5.54)
(VyW)® = VAV, W = V# (auwa + FZ‘AWA) (5.55)
The curvature of the connection V is defines as the operator
R:T3=TxTxT—>T (5.56)
Z — RxyZ =|Vx,Vy]|Z-Vixy|Z (5.57)
Let us slowly work this out
(VyZ)* =Y (0\Z2* +T¢,2°) (5.58)

The commmutator of two covariant derivatives reads

(VxVy2)* = X7 (0,(Vy 2) + T55(Vy 2)° ) =
- Xp{ap (YA0rz% + Y213, 27) + T5 (V00,20 + Y73, 27) } -
= Xp{é’pY’\é’AZo‘ + YO0 Z% + 0,Y TS 27 + YA0,IS, Z7 + YT, 0,27 +
185 (V00,20 + Yors, 2°) } (5.59)
In the opposite order
(VyVxZ)* = Yp{(?pX)‘é’AZO‘ + X202 + 0,X TS 27 + X ,I'$ 27 + XA T'§, 0,27 +
+T9 (Xoagz5 + Xorgﬁzl?) } (5.60)
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On the other hand, the covariant derivative in the direction of the commu-
tator reads

(Vixy) 2)" = (XEV, YA = Y1V, X (02 2% +T%,27)  (5.61)

In the commutator all terms proportional to derivatives of the vector we are
mapping, 0Z disappear, what is left out is a linear mapping

(X,Y,Z) e T?® - (RxyZ)* = R* , 2 Z° XPY? (5.62)

The tensor R%,,) is called the Riemann tensor ans is by construction
antisymmetric in the last two indices

R” op\ — —R” oAp (563)
Its value can be easily read out from the preceding formulas

R* o0 = 0,1'%, — A%, + ngrgA - rg&rgp (5.64)

Lets work out the two-sphere as an example. We shall actually consider a
rugby ball.

5.3 Differential manifolds

Differential manifolds are smoooth objects that locally are similar to R™, but
globally are different. Instead of giving the general theory we shall content
ourselves here with a detailed study of the simplest non-trivial example. Let
us first consider the simpler case of ordinary spheres embedded in euclidean
space.

The sphere S, of radius [ embedded in R, is defined thtough the

equations
A=n+1

> Xi=0 (5.65)
A=1

where a point in R"™! is represented by the (n+1) coordinates (X1, X1, ... Xp41).
We are all used to polar coordinates, a generalization of the polar angles (6, ¢)

for the two-sphere S5. We need n angles to define a point in the n sphere.

We shall call these angles, 6 ...60,, and to be specific,

Xpy1 =1costy

X, =rsinb, cosl,_1

X9 =rsinb,sinb,_1...cosb
X1 =rsinb,sinb,_1...s5inb, (5.66)
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(were we to use r itself as the radial coordinate, those would be polar
coordinates in R, 1, in them the equation of the sphere is simply

r = | = constant (5.67)
here
0<6; <2rm
0<6;<m forj#1 (5.68)

The X, 11 axis is special in those coordinates; any axis however can be taken
as the X, ;1 axis. The metric induced on S™ by the euclidean metric in R,
is

ds? = §,pdXA(0)dXB(9) =
=dO? + sin® 0,d0%_ + ...+ sin? 0, sin? 0,1 ...sin% 02d0? (5.69)

id est, in a recurrent form

ds? = db?
ds? = db? + sin®0,, ds>_, (5.70)

The tangent space is a vector space T,, with the same dimension as the
manifold itself. It can be defined as the set of vectors orthogonal to the
normal vector

nag =Xy (5.71)
In general, given a surface in R, 1 defined by the equation

f(Xa)=0 (5.72)
the normal vector is given by the gradient

na=0oaf (5.73)

To come back to the sphere, the tangent space is defined as those vectors
that obey

Dlwata =0 (5.74)
A

Particularizing to the two-dimensional sphere, the tangent space is now the
tangent plane, that is, the set of vector in Rs such that

ny.sin 6 cos ¢ + na.sin 6 sin ¢ + ngcos 6 =0 (5.75)
In the North or South pole (0 = 0,7) the tangent plane is just the plane

X = +1 (5.76)
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that is, the set of vectors
(0,m1,n2) (5.77)

and in the equator (6 = %)
ny cos ¢ + ngsin ¢ =0 (5.78)

Polar coordinates do not cover the whole sphere (neither do they cover eu-
clidean space). They are not well defined at the two poles. It is interesting
to study other set of coordinates, which are actually close to what carto-
graphers do when drawing maps. The stereographic coordinates are defined
out of one of the poles (either North or South) Northern pole stereographic
projection

Xh="0 (5.79)

(uw = 1...n). Let us choose cartesian coordinates in R, ; with origin in
the South pole itself. This meags tgeat the South pole is represented by
X4 =0, and the norh pole by X4 = (1,0,...,0). One can imagine that one
is projecting a point P(X,4) € Sy, from the South pole into into a point 2/
that one van view as living on the tangent plane at the North pole.

2
1-—Zs
Xo = 1—2 = 1(205 — 1) = 120y + 1) (5.80)
1+ 3%
1
Qg = o (5.81)
1+ 33
2
Tg [ — X()
25 .82
412 I+ Xo (5 8 )
This means that when Xy = [ (the North pole) then
2
s _
2 0 (5.83)
and when Xy = —[ (the South pole) then
X:=w (5.84)
The jacobians of the embedding is
L
0,X0 = —Q%%
o o %z
X = Qs — U= (5.85)
The induced metric
ds* = 6450, X0, X Bdatda” = 0%, dr*dz” (5.86)
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Performing the North pole projection

21

X+
Xo—1

Ty
Uniqueness of Xy means that
208 +1=20g — 1

and uniqueness of X*

I " I
Thy = =g = x
N QN S fﬁ% S
Conversely,
412
I 0
T =——5=
S x%\f N
This leads to )
Qn = — —
N
L+ 3%
The antipodal map
XA PN _XA
is equivalent to
ol ol
and the jacobian is
I 2 In
ory _4rF st 2:135@%
oz xi " 22
S S S

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

Only functions which are invariant under the exchange of North and South

pole stereographic coordinates are well defined on the sphere.

5.4 The two-sphere, S,

Let us work out in detail the two dimensional case. Define dimensionless

corrdinates asd

— x _ =z
{1__Z+l m= -
=Y —
52_z+l n2=1=

It then follows that

(5.95)

(5.96)



and the change N/S now reads

7]1 — E% 51
= ke (5.97)
Then defining the complex variable
2= g2 (5.98)
the change N/S reduces to
1
—w=- 5.99
o w= - (5.99)
Consider now a field of vectors
0 0 1 0 9_p O
n(z) — =2"— = - 1,(2) =— = —w*" — 5.100
(2) oz ° 0z 22 (2) ow Y B ( )

If we want the field to be non-singulkar for all values of z and w, then
n=0 & 2—-n=0 (5.101)

so that the only vector fields globally defined on the two-sphete Sy are

(a + bz + c2?) 5—1 = — (aw® + bw + ¢) % (5.102)

(5.103)
The induced metric on the sphere reads

gs2 = 075 dry (5.104)
- 2 - 2 .
(L+33)?  (L+7%)?

which is conformally flat. This is the main virtue of these coordinates, and
the reason why cartographers are fond of them, We shall call a frame a basis
on the tangent space to the sphere as a manifold. Let us define a frame
through

Sab€l el = Guu (5.105)
The frames are given by
a n 1
(es)y, = o 2z (5.106)
1+ 5%
1
(en)y = —04 ) (5.107)
1+ 7%



It is easy to check that

oo —oZize
b w x2 X
Ly(z) (es), = == N (en)s (5.108)
1+ 4% Ls

where the position dependent rotation is given by

x%xy

Li =680 —2 (5.109)

22
In fact this was the reason for the apparently arbitrary minus sign in front
of the definition of ey, which is unneccessary to reproduce the metric.

There are many reasons to be drawn from this example. First of all,
it is mever possible to cover a non trivial manifold with a single coordinate
system. In this case we need at least two, namely North and South stereogra-
phic coordinates. Second, at each coordinate system, there is a frame in the
tangent space, and if we refer all quantities to this frame formal operations
are similar to the flat space ones.
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6

Moving frames and
curvature.

The analogous to the field strength tensor for gauge theories is then the
Riemann-Christoffel tensor

RY op = aarﬁﬁ — gl + 0,05 — Fgﬁrga (6.1)
The Ricci tensor is defined by contracting indices
R =R 1\, (6.2)
Recall the algebraic Bianchi identity
R oy + RY o+ R gra =0 (6.3)
Clever use of this identity allows to prove that
Rapys = Rysap (6.4)
Let us see it. We start with

Ra)\;u/ + Ra,ul/)\ + Ral//\u =0
R)\ocuu + R)\Vau + R/\,ul/oz =0 (65)

Substracting
2Rz + Rapwr + Ravry — Ryvap — Rapwa =0 (6.6)
The same equation with the indices interchanged
(aX) = (uv) (6.7)
2Rpan + Ruoxw + Ruyva — Ruxpa — Ruary =0 (6.8)

53



conveys the fact that
Ruuo&\ = Ra)\uy (69)

We have then a symmetric tensor R;; where each index is in the antisym-
metric [af] (that is, D = @ values). This yields

D(D +1) n n?(n? —1)
Pl <4> Sl (6.10)

(we withdraw (Z) because of the algebraic Bianchi identity) independent
components. Id est, 20 in n=4 dimensions.
There are also some differential identities, the Bianchi identities

VaoRY gy + VR Jog + VRM 0 =0 (6.11)

Contracting 55
vaRV'y - v'szxa + V“RM vya = 0 (612)

Contracting again g”“
V*Roy = V4R +V,RE =0 (6.13)

We shall derive most of these equations in a short while. Many useful formu-
las of tensor calculus are to be found in Eisenhart’s book, still indispensable.
Also very useful are the Ricci identities that state that

[Va,Vslwy = Rapys &° (6.14)

This can actually be taken as the definition of the Riemann tensor, as is
done in many books.
All this means that the geodesic equations can be written as

u'Vyu® =0 (6.15)

where the four-velocity of the massive particle is given by

dx®
= — 6.16
ut = — (6.16)
In general, the metric
da* = g (z) dat dx” (6.17)

is not flat; to the extent that it differs from the flat metric, it indicates the
presence of a gravitational field. At each point there are tensors (or spinors)
that represent physical observables. For example, the energy momentum
tensor
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This tensor live in the tangent space; the set of all tangent spaces of the
manifold is the tangent bundle. A frame is a basis of the tangent vector
space at a given point of the space-time manifold. This four vectors are
represented by

Ero, (6.19)

where the index a = 0, 1,2, 3 labels the four different vectors. The simplest
possibility is to choose one of them timelike (this is the one labeled Ejy) ,
and the other three spacelike. Furthermore, they can be normalized in such
a way that

g,ul/E(l;EbV = Tab (6'20)

This is the reason why latin indices are dubbed Lorentz indices, whereas
the ordinary spacetime indices are called Einstein indices. Such a frame is
precisely a LIF (where FREFOS live) and the physical observables measured
in the LIF are simply

Tap = TWwELEY (6.21)

The determinant of E considered as a matrix cannot vanish. We can
then define the coframe made out of the dual one-forms

e (Ep) = 63 (6.22)
When indices are put in place, this is equivalent to computing the inverse
matrix
erEy =0y
enky =96, (6.23)

From the normalization condition

g,ul/E(l;EbV = TNab

a
o

and multiplying both members by the dual form e
= e, = gw,nabEl’,’

This means that the dual form is simply the frame with the Einstein indices
lowered with the spacetime metric, and the Lorentz indices raised with the
Lorentz metric. Following most physicists we shall represent both the frame
and the coframe with the same letter, although when neccessary we will
indicate explicitly its nature, as in

g = et
€, =€eho,

e, = equdrt (6.24)

The parallel propagator is defined once frames at different points are
selected by some mechanism

¢ (') = 2 (a)el(a) (6.25)
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Then physical quantities at different points are related through

!

A%(z) = g% gr(z,2")a” (") (6.26)

For n-dimensional spheres in stereographic coordinates

ds? = Q% 6, dz"dz"” (6.27)
where .
0= - (6.28)
1+ 472
and the frame is defined by
ey, = Q0 (6.29)
in such a way that
1
B gk )
o = g% (6.30)
The S,, Christoffels read
(e} Q/B « Q’Y « Qe

Under a local Lorentz transformation
Ey = Ly (2)Ey (6.32)
E*(z) is a nonsingular square n x n matrix. The commutators are given by

[Em Eb] = Cngc

It is a fact that

de® = Jjepda? A dat = % (Ouel — ayeZ) dxt A dx” = % (Ouel — 8yeZ) elelel A el =
= 5 (eelel)el — cale)el) e n e = J (ealelel — elecle)) e n e =
= % [ea, ec]” efe” A ed = f%ngeC A el (6.33)
To be specific, the structure constants read

Cop =€, (eé@,\eff — e,’,\('},\eg) = e, (eéV,\e,’f — ei‘V,\eg) (6.34)

(The Christoffels cancel when taking the antisymmetric part). In our S,

example,
c Qb 50 Qa

@= g2 % g2
Under a local Lorentz transformation the vierbein transforms as

5 (6.35)

e = L% (z)e’ (6.36)
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This is not true of the derivatives of the vierbein, de®, owing to the term
in dL*}, . We would like to introduce a gauge field (connection) in the LIF,
the so called spin connection, such that the two-form

De? = de® + wy A € (6.37)

transforms as

(De®)' = L2bDe" (6.38)
For this to be true we need
a (L) + ()" o n (Eheet) = 1% (de” +wP e a ) (6.39)
This is equivalent to
dL%y A e + (w’)a p ALY ef = L%yl . A e (6.40)
which is kosher provided
dL% o + (W) pLb o = Lyt . (6.41)
Lorentz transformations are such that
L*Lyg =65 = L“Ly, (6.42)

Finally we get the transformation law for the gauge field

(@) a=L% wbe La® — dL" Ly* (6.43)

At the linear level, where
Lap = Nap + €ap (644)
dwpy = —0uw®p + [€,w]" p (6.45)

This should be valid for any field living in the LIF that transforms with a
representation of the Lorentz group. But any field can be so represented.
For example, a vector field, V*# is projected on the LIF by a FREFO as V¢ =
e, V*#. We want that its Lorentz covariant derivative is also the projection
of Einstein’s covariant derivative, that is

Vi (V) = et (VgV)* (6.46)

This physical requirement determines the relationship between Lorentz and
FEinstein connections to be

wpe = eif‘ﬁge’; — e open (6.47)
It is a fact (confer [15]) that the torsion can be defined through the connec-

tion wy by

dea—i—wg/\ebET“Ei 2 eb A et

o7



Demanding that the tangent metric is covariantly constant we learn that
Valhe = 0 = —whde — WieNab = —Welab — Whlac (6.48)
When the torsion vanishes, and in tensor form
Opeg — Og€y + W 5p — w* po =0 (6.49)
it follows that
Walbe = Waleb = (6peag 0 eap) e el = €p0ce, — €.0peq = €,00€c — €,0:€ =
= €48 €] = €,.CiLés = Coppe (6.50)
where we have used the fact that
€p0ce, = —€,0:€p (6.51)

This means that the torsion-free condition completely determines the anti-
symmetric part of the connection. One often is interested in the case when

the connection lies in the Lie algebra of a simple group. For example, if
wy € &9(n))

wMab = —waa (652)
For spheres we have
1 Q.
Walbe = <QZ ab 5(10) (653)
Qb Qa Qb Q Qa Q
2w,u\ab = ﬁéua - ﬁ 5,ub = <Q 5au + Qﬂ dab — Q 6blt> — ﬁ,u Oab (654)

We see that this is equivalent to our physical postulate of FREFOs and
FIDOS. The curvature of the connection is defined through

1
dwy + wé Awp =R, = Rgcdec/\ed

It is asy to check that this a true Lorentz tensor; that is, under a local
Lorentz transformation
R¢ — L .R¢ 4Ly (6.55)

This leads immediately to Bianchi identities
dT® = dwf A e® —wf A de® = (R —wl Awf) Al —wl A (TP —wb A ef) =
=R} A’ —wl AT
dRy = dwy A wy —we A dwy =

(RY—wi Awd) Awf —w? A (R —w§ Awl) =R Awf —w® AR (6.56)
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For a Levi-Civita connection the algebraic Bianchi identity in a natural basis
reads

“ned=0= S daH> (6.57)

~ pa
2 bMV
In gory detail
R® [Apv] = 0=R" Ay T R” w T R“ VAL (658)
Clever use of this identity allows to prove that
Raﬁ'y& = R’yéaﬁ (659)
Let us see it. We start with

Roz/\w/ + Ra,uzl)\ + Rau)\u =0
R)\oz/u/ + R}\I/Otp, + R/\m/a =0 (660)

Substracting
2Ro¢)\uu + Rauw\ + Rau)\u - R)\VOL,U, - R/\,ul/oz =0 (661)

The same equation with the indices interchanged

(a\) = () (6.62)
2R,u,1/a)\ + R,LLa)\V + Ru)\ua - Ru)\,ua - Rua/\u =0 (663)

conveys the fact that
Ruua)\ = Ra)\w/ (664)

We have then a symmetric tensor R;; where each index is in the antisym-
metric [af] (that is, D = w values). This yields

D(D +1) n n?(n?—1)
— 5 (4> ST (6:65)

(we withdraw (’}) because of the algebraic Bianchi identity) independent
components. Id est, 20 in n=4 dimensions. The differential identity in a
natural basis reads

V[QR“ Byo] = Vol gys + Vo RY 50 + VR g0y = 0 (6.66)

where the overline on an index means that this particular index is absent
from the antisymmetrization. Now

— = _ M o
Vialt 5,5) = 01l g + Tl

_ _ 1% g _ _ 10 _
= O R" B10) T ozt Bag) F[aﬁ

Bv9]
R %.5)

[oB
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Using the relationship between wgu and Fgu derived above we are done. On
the other hand

0o R* Bys = Oa (656%Ra 575) = (8ae§) G%Ra b76+€5 (aaelé) R® b75+ege%aaR“ bys
(6.68)
It is a fact of life that

an (Eb) = ngEc
Tl?c = Fgc - gb - Cgc
Ry ca = ELg, — Eal'gy + Tgplce — T lge — Ceal'ey (6.69)

It is nice exercise to check that the scalar curvature for a two-dimensional
surface

R- 5
N=e¢ [eugv —2gu fu ~|—gi] + flgvew + 2fu (2f0 — gu) — v (2f0 + gu)] +
+2f2 [evy — 2fuv + goo] + g [€2 + eu (=20 + gu) — 2€ (€vp + 2fuv + Gov) ]
D=2(f*-eg) (6.70)
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7

The Gauss-Codazzi equations

Consider a codimension one hypersurface given by the embedding

En—l — Mn (71)
2 = 0% () (7.2)

The indiced metric is given by
ds?_| = hijdyidyj = guyﬁia"aja”dyidyj (7.3)

There are then two metric connections: the n-dimensional one, V, and
the (n-1)-dimensional one associated to the induced metric, Dj. From the
definition itself of the induced metric follows

0= thij = 5pga5Dk0pai0a(9jab + gaBDk(aiO'a)(ajOﬁ + gagaanDk(ajUB)
(7.4)
Cyclic permutations

5pgalngO'pakUaaiOﬂ + gang(ékoo‘)émﬁ + gagakUaDj(ﬁiOﬁ) =0
8pga5Di0pﬁjao‘é’kaﬁ + gaﬁDi(ﬁjao‘)ﬁiaﬂ + gagajaaDi(ﬁkaﬁ) =0

Adding 1+2-3 yields
1

0= gangDkUQDiU'B + DkO"ODZ‘UaDjO'Bi ((’)pgag + aggpa — 8agﬁp) =

gangDkao‘Diaﬂ + Dka”Diao‘Djaﬁ{a, Bp} =

— gasDio” (DkD;o" + {§,}D;0° Do) (7.5)
This means that

DyDjo* = —{§,}D;0” Dyo” + Kjn® (7.6)

where the normal component reads

Kji = na (Dijao‘ +{ gp}DjaﬁDkaﬂ) (7.7)
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Taking the D;

0 =D, <9aﬁﬁi0°‘n5 ) = D;9as0i0°n” + gapDjDio*n” + gag Dio® Djn’
(7.8)
On the other hand,

Digap = Djo"0vgap = Djo” ({av; B} + {Br;a}) (7.9)

so that

K, = na{gp}DjaﬁDkap — gangaaDknﬁ — nPDyo” ({ap; B} + {Bp; a}) Djo” =

—gaﬁDjao‘DknB — nﬁDkap{ﬁp;a}Dja“ = —§?Vpna§§-’

This tensor is called the extrinsic curvature, and represents the derivative
of the normal vector, projected on the surface.

Our purpose in life is now to relate the Riemann tensor on the hypersur-
face (computed with the induced metric) with the corresponding Riemann
tensor of the spacetime manifold. Those are the famous Gauss-Codazzi
equations, which we purport now to derive. They were one of the pillars
of Gauss’ theorema egregium, [15] which asserts that If a curved surface is
developed upon any other surface whatever the measure of curvature in each
point remains unchanged.

We start with

(7.10)

0=D, (gagnan/3> = Djo’ ({ap; B} + {pB; }) n°n® + gangno‘nﬂ + gaﬁno‘Djnﬁ =

Gapn’ (Djno‘ + {zV}Dja(“n”)) = gapn’V,n*Djot = 16V, n“EY
On the other hand, the explicit expression for the extrinsic curvature reads
Kij = —fiavpnaff (712)

First of all let us derive some properties of the extrinsic curvature. It is
symmetric, Kij = Kﬂ

—Kij = Vgna&l& = —naVpee! (7.13)
But
&, 7] =0 (7.14)
so that
—Kij = —no&MVpEd = Vana& & = Kj; (7.15)

This symmetry implies a very useful formula for the extrinsic curvature,
namely

—Kij = V(ana) & = £(n)gasle’ (7.16)
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By the way, in the physics jargon when K;; = 0 it is said that it is a moment
of time symmetry.
On the other hand, remembering that

185 = g5 —nng (7.17)
we deduce that
—Kij&, = — (g5 —nny) Vpnall = =V, n,&" (7.18)

(because of [7.11]).
Let us analyze the definition of extrinsic curvature in even more detail.

(DpD;D; — D;DyD;) 0® = &g h™ Ryijp, = Dy, (—{ gp}gfgg’ + K,-jna) —
—D;j (—{%p}fffi + Kz‘kﬂ“) = On{ G100 — {5, 1D €D — (5,16 Dig? +
Dy Kijn® + Ki; Din® + 0;{ gp}gzﬂg,‘; — {gp}ngfglg + {%pfijf;? — DK, — KipDjn®

and using again the defnition of the extrinsic curvature to eliminate the term
with two derivatives,

Emh™ Reiji[h] = —0kd gp}ffff — {5,087 <—{ﬁu}§f§;§ + Kiknﬁ) + D Kijn® + K;jDpn® +
OBl + {5,068 ({0 YELEY + Kiyn®) — DK — Ky Djn® =

n® (Dykij — DiKix) + Ko (Dyn® + {5,0n°€0) = Ko, (Dyn® + {5,07€)) -

676067 (0l B} = At 5k — {5, H D + (53(30) (7.19)

Using again the definition of the extrinsic curvature, as well as the one of
the full Riemann tensor, we get

Enh™ (Rriji[h] + Kij Ky — KipKpj) — n® (DRpKj — DjKyy) = —55557533& Bopld]
This projects into the famous Gauss-Codazzi equations
Ryiji[h] + Ky K, — K K = §f§ff§)ngaﬁpa[9] (7.20)
as well as
DjKi — DKy = =06 €067 Ragoplg] (7.21)

Please note that not all components of the full Riemann tensor can be recove-
red from the knowledge of the Riemann tensor computed on the hypersurface
plus the extrinsic curvature. As a matter of fact,

MR = (DRI omp =D R K2 Kk + 2R, (7.22)
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This means that an explicit computation of (n) Ri nin 18 needed before the
Einstein-Hilbert term could be written in the 14(n-1) decomposition. To
do that, consider Ricci’s identity

V,Vane —VgVing = R o5,n, (7.23)
Now
n? (V,Van? —VV,n) = nPg* RP yp P = R™,,  (7.24)
Besides,
szﬁVgrfY = V,ng <n5n“ + fiﬁﬁ”i) (n”n” + f}ﬁj”) Vun, =
Vg€ €M EI eV iy = — Ky K" (7.25)
Summarizing,

R™ o =PV, Vgn) —nPVV Y =V, (nPVgn?) — V,nPVgn? — Vg (nPVn?) +

+V5nﬂvvn7 =
=V, (nPVgn? —n'Vanf) + K;; K — K> (7.26)
Then -
MR = VR4 KKV — K2 — 0,V (7.27)
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8

Distributions

Dirac introduced a function such that
0(z)=0 x+#0 (8.1)

but

JOO de 6(z) =1 (8.2)

—0

Consider the function ¢(x,¢€) defined in such a way that

d(r,e) =0 r>=ce

€

d(r,e) =e 22 r<e (8.3)

It is clear that

f0) == #0 (8.4)

nevertheless

€ € . 1 1
bz, €) Pz = J e =7 d’x = 4re’ J e 1=2dr = O (8.5)
—€ —€ 0

It is clear that Dirac’s function cannot be a true function. Laurent
Schwartz gave mathematical respectability to Dirac’s ideas by introducing
the concept of distributions. The main idea is to consider the dual of a
convenient function space.

To begin, let us start with the space of test functions K, of real functions
with continuous derivatives to all orders, and with compact support. It is
not empty (actually, our recent friend, the function ¢(z,€) € K).

It can be shown that given any continuous function f(x) with bounded
support, there is always some ¢(z) € K arbitrarily close to it.

Define a distribution d € K’ as a continuous linear functional on K

Vo(x) e K {d,p(x)))eR (8.6)

The two essential properties are
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{d,a101 + azp2) = a1{d, ¢1) + ax{d, p2) (8.7)

e If the sequence {¢,} converges to 0 in K, then the sequence

{{d, dn)} (8.8)

converges to zero.

It is plain that any locally summable function f(x) is a particular case of a
distribution, just by defining

Gor= | o jw) ot (5.9)

those are called regular distributions.
But there are distributions (dubbed singular) which can not be written
in such a way. The most important one is precisely the Dirac delta

(b(z), p(x)) = ¢(0) (8.10)

e It is natural to define the behavior under a translation

{d(z —a),p(x)) = {d(z), p(x + a)) (8.11)
e Under a reflexion

(d(=2), p(x)) = (d(2), ¢(—=)) (8.12)

e Under a rescaling a regular distribution behaves as

| o sa@mota) = x [ do f@) o) (8.13)
In general, we generalize this in n-dimensions to
((Ad) (), ¢(x)) = N(d(), p(Ax)) (8.14)

Let us now introduce the space S (Schwartz) of infinitely differentiable func-
tions which, together with their derivatives, go to zero faster than any power
of % when r — c0. For example

e es (8.15)
It is clear that tempered distributions are a subset of distributions

S c K’ (8.16)
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(the bigger the starting space, the smaller its dual). The derivative of a
distribution is defined as

(d ¢(x))y = —{d, ¢'(x)) (8.17)

This result holds for regular distributions just by neglecting surface terms.
Let us work out some examples

e Consider the Heaviside function

O(x)=0 x<0
Ox)=1 x>0 (8.18)

Let us compute its derivative as a distribution.

O'(x), p(x)) = —(0(x), ¢(z) = — LOO ¢'(z)dx = $(0) (8.19)
This means that in this sense,
0 (x) = 6(x) (8.20)
e Let us find now the derivative of the distribution
) (8.21)
defined for —1 < A <0 as

2y =0 <0

=20 x>0 (8.22)

This is locally summable, which is not the case with the ordinary
derivative
Az (8.23)

We have to regularize the integral
o0
j A dg (8.24)
0
According to the definition

(1) o) = - Jw P () dz = — lim :O P @) de (8.25)

0 e—0

Let us now integrate by parts with

du=dp = wu=¢+C
v =2z (8.26)
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This leads to

o]

— lim <(¢ +C) A

_ f (64 0) dm) (8.27)

€

It is plain that in order for this to have a finite limit it is neccessary
that

C = —¢(0) (8.28)

We are then led to the definition

() o = [ 0@ oot (529

e Let us compute the derivative of

log (z +1i0) = lin[1) log(z + 1y) (8.30)
y—)
Now
log(x + 10) = log |x| + imf(—x) (8.31)
We have seen that
0'(z) = §(x) (8.32)
Now
O(z)+0(-x)=1 = 6O(z)=-d(x) (8.33)
as well as
9 9 x d 1 z 1
= x| = = | - - T =
=kl = dmm || — 4z % = |z| |x] =
(8.34)
Then
L yoge +i0) = + — imb(z) (3.35)
o, log(z +10) = — —imd(z .

e Let us explore %m in the sense of distributions
0
(al' s fy = =(lalf' == Cpaf' = §5 af' =
0
= 2flle =L f+ 5 f—afly =So@)f (8:36)
There is not delta-component of |z|".

e Let is now compute the laplacian of the Newtonian potential.

Al (8.37)

r
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Following the general definition

(AL6)y=( 1, A¢)= Jd%AQZ)_hm it g -

r=e€

lim d*z (vi ( Vigi)) - <vi> vi¢) -
=0 Jrxe r
“tim [t (Vi) i (v0) + (1) o)y

The volume term vanishes because is harmonic on R3/0. The surface
term is

dmar [ F et =
121(1)47‘(’6 ( edn¢+¢e2 = —47¢(0) (8.39)
Then
1
A= —4nd3(x) (8.40)

It is illustrative to repeat this calculation for n=2.

Alog r ¢(z) d*x = J logr A¢ d*z =
r=e€

r=e

—f {V(logr Vo) —Alogr ¢ +V (Vg r qﬁ)} =

=0+0+ JE %271'7" dr ¢ =21 ¢(0) (8.41)
0

The derivative of a convergent sequence of differentiable functions also
converges to the derivative of the limit, in the sense of distributions.
For example, it is a fact that any series of the form

o0

Z an €m® (8.42)

—00
whose coefficients increase no faster that a power of n when |n| — oo
converges in the sense of distributions.

Proof. In fact such a series can always be obtained by sufficient number
of term-by-term derivatives of another series of the type

0 a .
Y e (8.43)
—o0

QED
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e A sequence of distributions
do,ds ... dy (8.44)
is defined to converge to the distribution d if V¢(z) € K
Tim (. 6) = (d. 6) (8.45)

It is a fact that every singular distribution is the limit of a sequence
of regular functionals.

e Let us work out in detail an important example Consider the series

0
n=1

It is quite easy to check that it converges to the function

sin nx (8.46)

SRS

flz) = O<z<2m (8.47)

2

Consider the function over two periods

—2r<zxz<0

T_*r
2 2

. g 0<az<2r (8.48)

b 3

which has a 27 discontinuity at the origin. Its derivative is

o= [araw ¢ = [ e @~ [T

2 0 2
1(° 1 (>
- g¢(o) -3 LO ¢ dx + %¢(0) - QL ¢ da (8.49)
Then .
d=mrdz)— 5 (8.50)

Differentiating the whole series, we get a delta at each discontinuity

1 a0
Z cos ng = —g + W_Zoo d(z —2mn) (8.51)

Euler’s formula now implies that

o0 o0
1+e”+e2”+...+e*i"”+e*2m+...EZ ei”x=2ﬂz5(ﬂf—2m)
—0 —Q0

(8.52)

70



e A delta convergent sequence {f;}, is one such that

— 1.-For any M > 0 and for |a| < M and |b| < M the quantities

f: £i(©) ds‘ <C (8.53)

where C' is independent of a, b, j, but it may depend on M.

— 2.- For any fixed nonvanishing a and b

b
lim ij(g)d§=o a<b<0 or 0<a<bd

J—0

b
lim f fi(©)de=1 a<0<b (8.54)

Jj—o
There are many examples. One of them is

1 €
T x2 4 €2

fi = (8.55)

as € — 0.

8.1 Fourier transform

e The starting point in order to define the Fourier transform (FT) of
distributions is Parseval’s theorem. For regular distributions it asserts

that
| dofe(@igta) do = 5 [k gt (8.56)
where we have defined the FT as
f(k) = J T e f(x) dx (8.57)

This can be used to define a distribution in some space Z’ (to be defined
in a moment) for every distribution in K’. This is by definition the FT
of the original distribution. Fourier transform establishes a one-to-one

mapping
K«—Z (8.58)

where Z is defined as follows. It consists of slowly increasing functions,
that is, all entire functions ¢ (s) (where s = o + i7) such that

|s|9)i(s)] < Ced™l g =0,1,2... (8.59)
where the constants a and C; may depend on 1.
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Let us compute the FT of Dirac’s delta.

(6,6) = 2n(6,¢) = 27¢(0 J<f> = (8.60)

FT[6]=6=1 (8.61)

(1,0) =2n(1,¢) = 27TJ¢(:E) dx = 27¢(0) = 27(3, §) (8.62)

FT[1] =1 =276 (8.63)

Similar computations lead to

FT[5*™ (2)] = (-1)™ &>
FT[@m D ()] = (—=1)mFL jg2m+l (8.64)

Consider now the function

1 sin vz
folz) = — (8.65)
T T
for 0 < v < o0). First of all,
o0
J fo(z) de =1 (8.66)
—0
It is easily done by using Cauchy’s theorem to compute
f S (8.67)
z — i€

Furthermore, for 0 < a < b the integrals

L (@) do = % f b: Sh; y (8.68)

go to zero as v — 0. Moreover, this same integral is bounded uni-
formly Vv. Therefore we are dealing with a delta-convergent sequence.

lim f,(x) =d(z) (8.69)

v—00

Now observe that

sin vz f v gier

=| 5 (8.70)

Zz v
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Then what we have just proved is that

v

VliI%O e*T de = 216 (x) (8.71)

In fact it is a theorem that every integrable function f(x) which does
not grow at infinity faster that some power of |z|, has got a Fourier
transform in the sense of distributions.

Let us recall that the convolution of two ordinary functions (regular
distributions) is defined as

(f * 9, 9(2)) = f F(€)gl — €)dedr = f dednf(€)g(md(E +n) (8.72)

Let us examine the convolution of singular distributions. It is natural
to generalize this last version of convolution to

(tr % b2, ¢) = (@)t2(y), d(x +y)) (8.73)
It is plain that
tl * tg = t2 * tl (874)
as well as
tl * (tg * tg) = (tl * t2) * t3 (875)

Let us now compute the convolution of Dirac’s delta.

@t ) =O(0)t(y), oz +y)) = Hy), oY) =t o) (8.76)

That is, Dirac’s delta acts as a unit with respect to convolutions

Ot =t (8.77)
Also,
O(txs)=(0t)*s=1t=(0s) (8.78)
Indeed
O(txs),d) = =(txs,0¢) = —t(x), (s(y), 0¢(z +y)))) = (0t * 5,0)
(8.79)
Consider a linear differential equation with constant coefficients
P(0) y=J(x) (8.80)
Define an elementary solution or Green function as
P(0) G =4 (8.81)
Then we can write solutions of our PDE as
y=Jx=G (8.82)
because
PO)y=JP0O)G=Jx06=J (8.83)
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Consider the ODE

d? .
Let us first show that the function
() = 2 8.85
t) = .
() =5— (5.85)
is an elementary solution. Indeed
d
dtG( ) = iwG(t).o(t) (8.86)
and
d2
=G = (—w? +iw26(t)) G(t) (8.87)
Incidentalt, the same thing happens with
eiwt
Ggr(t) =0(t 8.88
R(t) = 00— (5.59)
as well as >
ezw
t) = —0(—t .
Grlt) = —0(~1)5— (5.:89)
We have seen previously that
1
= 2
G(z) (n—2)Q, rm—2 (n>2)
1 1
— — " log - -9 )
G)=—5_log = (n=2) (8.90)

is an elementary solution of the laplacian. This leads to Poisson’s
formula for the newtonian potential due to a density p(z)

[vie) = [aerce - (3.91)
That is,
" p(&1, &2, €3)
Viz.y. f¢&_x s dedas
(8.92)

We know that every periodic locally summable fuction f(f) can be

written in the form of a Fourier series
o0

£0) = cn ™ (8.93)

—00
Taking the Fourier transform term by term we easily get

o0

F(k) =) cn 6(k +n) (8.94)

—00

74



e Let us derive the marvelous Poisson summation formula. Starting

8.2

from
Z et — 27?2 d(z —27mn) (8.95)

we easily get
x) = Z einme/l — 2%2 O(mx/L —2mn) = QLZ 0(x —2nL) (8.96)

Its Fourier transform

fdme—%rza:kzcs T — 27”LL—OZ —2mik(2nL) 2L25 ]{:_7

(8. 97)
Now, the transform of a gaussian
g(z)=e " (8.98)
is another gaussian
Flk) = Jme ™" (8.99)

Let us apply Parseval’s theorem to this couple of functions

| r@gtards = | Fo = g-wyar (8.100)

We get Poisson’s formula

2

—4m2L2 1 —zm
dle = EZ@ aL? (8.101)

This has got plentiful physical applications.

Distributions on submanifolds.

Consider

6(f(2)) (8.102)

It is clear that in the simplest case

fé x)dx = Jdté(t)g(a:(t)) (8.103)

where
t=f(z)=dt = f'(v)dx (8.104)

In some case, some care must be taken. For example, consider
§(z* —m?) (8.105)
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Descriptio 8.1: Exmaple.

Then
0 “u gt o gt
do = J 2 f S 8.106
L,o w —24/t+p?  Jop 2t + p? ( )
Then - ( ) ( )
dad(z® — 12 g(z) = LK L I 8.107
| aoser =iy g0 = £ B (sa0m)

Every functional concentrated on a point is a linear combination of
the delta function and its derivatives.

Consider codimension one hypersurfaces given by
P(zy...x,) =0 (8.108)
We sould like to define such things as §(P), etc. Let us assume that
OuPlp #0 (8.109)
Let us first define the Leray form w as such that
dP A w = d(vol) (8.110)

Provided gTPl # 0, there is always some coordinate system such that
the equation of the surface reads

wt=P Wr=2> ... u'=2" (8.111)
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Then

d(vol) = dz' A dz® A ...dz" = det (?) du' A du®... A du™ =

u
1
<5 du' A du®... A du® (8.112)
ozt
Ergo,
1
W= 75 daz® ... A dz" (8.113)
ozt

In fact it can be shown that w has an intrinsic meaning. It is only
natural to define

@PLe=| ol (5.114)
As an example, let us work out
d(zy — ¢) (8.115)

in two dimensions. Using the coordinates

Uy =xYy —C

Uz =y (8.116)
Then P
Yy
w = 8.117
” ( )
because p
(xdy + ydx) A gy =dzr A dy (8.118)
It is a fact

Gy —0) ot = [0 (yy) & (8.119)

Let us work out another example, namely 6(r — R) The Leray form
coincides with the euclidean area element R~ dQ)

O(r—R),¢)= R"—lf ¢ dQ (8.120)

r=R

It is to be noted that this vanishes when R = 0, unless ¢ diverges in
an appropiate way (in which case (§"(%), ¢) would diverge). If it were
instead d(r? — ¢?), we could define

u =1r>— R?

UQ=01

Up = Op_1 (8.121)
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This means that

1 1 n—1

and
<Rn—2

(6(r* = R?),¢) =

If we define a Heaviside function

J ¢ dQ (8.123)
r=R

O(P)=1<= P(z) >0
B(P) =0« P(z) <0 (8.124)
Then it can be shown that
§'(P) = §(P) (8.125)

Let us now introduce a family of forms that depend both on ¢ € K
and on P.

wo(¢) = ¢ w
dwy = dP A w1 (¢)

dwi—1(¢) = dP A wi(¢)

(8.126)
Then we define the derivatives of the delta function as
@9 (P), ) = (~1)* fp (o) (8.127)

For example, let us compute 6*)(r — R). Using the same coordinates
as before, we recover

w=7r""14d0 (8.128)
Then
wo = ¢ "L dQ (8.129)
and .
wi(¢) = 0(¢a7;) dQ) (8.130)
In fact
5k n—1
wi(¢) = (q;;) dQ (8.131)
Then
—1)k ok n—1
W~ R), ) = (Rn_)l f . (927; ) 40 (8.132)
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9
Finite groups.

A group G is a set with a product
GxG—G (9.1)

such that
1-91,92€ G = g192€ G
2.- The composition law is associative: g (g293) = (9192) g3-
3.- There is a unit e € G, such that eg = ge = g Vg € G.
4.- Every element has got an inverse g~ 'g = gg~ ' = e

e A group is finite if the set has a finite number of elements. This is called
the order of the group, |G|. Cyclic groups are particular instances such
that

Vge G, ¢g"=1 (9.2)

for some integer n. For example, Z3 such that a® = b3 = e, has got
the multiplication table

[ [elalb]
ellelal|b (9.3)
alla|b]e
b b|e

An abelian group obeys
gh=hg VYg,heG (9.4)
o A representation is a mapping
ge G — D(g) (9.5)

where D(g) is a linear operator acting in some linear space V" and such
that
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— D(e) =1
— D(g91)D(g2) = D(g192)

The dimension of the representation is the dimension of the linear
space V. For example a three dimensional representation of the cyclic
group Zs in R3 is

e — D(e) =

a— D(a) =

b— D(b) =

—F0 o0 BC o oo
SO LD oo OO
OO com oo

(9.6)

e This is in fact the adjoint representation. We associate the elements
of the group with a basis in Vv, a vector space of dimension equal to
the order of the group. For example,

1
e—ele)=e =0
0
0
a—ela)=e=|1
0
0
beoelb)=e3= |0 (9.7)
1
Then we define
Dad(91)6(92) = e(g9192) (9.8)
With the natural definition
Dij(9) = €] D(g)e; (9.9)
It follows
3
Dij(gh) = e] D(gh)e; = e D(g9)D(h)e; = ¢/ D(g) )| exef D(h)e; =
k=1
= Z Diy(g9)D;(h) (9.10)
k
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If we change the basis of the linear space on which the representation

acts '
e;— > 6 =5 ¢ (9.11)
j
Then
€e; — DZ €;j
1\~ _ k .
(S l)i é — D! (S 1))3‘ ek
é¢—>SDSteé (9.12)
That is
D=SDS™! (9.13)

It is said that D and D are equivalent representations.

It is fact that all representations of finite groups are equivalent to
unitary representations, that is, one such that

DD* =D*D =1 (9.14)

This is easy to show, by considering the positive semidefinite matrix

S=>.D%(g)D(g) =U'AU (9.15)
geG
where
A =diag (A\1...\p) (9.16)

and all eigenvalues A\; > 0. Actually all \; > 0 because if it were one
zero eigenvalue, then there must be a vector such that

Sv=0=0v"Sv= > |[D(g)v|? (9.17)
geG

which is impossible, because in particular D(e) = 1. This means that
there is a matrix

SV2 = y-Ipsy (9.18)

and defining
D(g) = SY2D(g)S~ /2 (9.19)

we are done, because

D*(g)D(9) = S7*[D*(9)SD(g)] §71/* = 5712 [D+(g) (Z D+(h)D(h)> D(g)] §12 =
heG

_ g-1/2 [2 D+(hg)D(hg)] g2 _ g-1/2 [2 D+(/€)D(k‘)] §—1/2 = g-1/2g99-1/2 _ 19.20)
heG keG
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e A representation is reducible if it has an invariant subspace. If P2 = P
is the projector on this subspace, the condition is

Vge G PD(g)P = D(g)P (9.21)

In the case of the regular representation of Zg, there is an invariant
subspace with projector

1 1 11
P= 3 11 1 (9.22)
1 11
Actually what happens is that
VgeZs D(g)P =P (9.23)

The restriction of the representation to the subspace is itself a repre-
sentation (in this case, the trivial representation). When this is not the
case, the representation is irreducible. A representation is completely
reducible if it can be written in block diagonal form as the direct sum
of irreducible subrepresentations

D(g) = D1(g9) ® Da2(g9) ® ... ® Dn(9g) (9.24)

Again, for finite groups, any representation is completely reducible. In
our favorite Zs example, defining

1 1 1 1
S:§ 1 o « (9.25)
1 a o
where
271
a=e3 (9.26)
Then
. 1 00
De)=[0 1 0
0 0 1
. 1 0 O
D(@)=10 a 0
0 0 a?
} 1 0 O
D®b)=10 a*> 0
0 0 «

(9.27)
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9.1

In fact, every representation of a finite group is completely reduci-
ble. Let us work with the unitary form of the representation. It it is
reducible, it means that there is a projector P such that

Vg PD(g)P = D(g)P (9.28)
Taking the adjoint
Vg PD(g)"™P = PD(g)* (9.29)

But D*(g9) = D7!(g) = D(g7!) and ¢! runs over G as well as g does
(because for every g, there is a unique g~!. To summarize, we claim
that

Vg PD(g)P = PD(g) (9.30)

It follows that
Vg (1-P)D(9)(1—P)=D—-PD—-DP+PDP = D(g)(1-P) (9.31)

and 1 — P also projects into an invariant subspace.

Normal subgroups
Given a subgroup H, we define a (left) coset
gH (9.32)
as the set of all elements
gh VYgeG VYheH (9.33)

It is plain that every element in G must be in one (and only one) coset,
because we first pick g1 ¢ H and construct the |H| elements g H those
are all different. Then we pick some go ¢ H, go ¢ g1 H, and so on. This
proves the theorem of Lagrange.

9G| x [H| = |G| (9.34)
There is an equivalence relationship when g1, g2 € g1 H
g1~ g2 g1=gh, heH (9.35)

Then the quotient
G/ ~ (9.36)

is the set of those left cosets.

It is important to distinguish that from another equivalence relatioship

g1~ g2 3heG, hg=g2h (9.37)
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The set of those (conjugacy) classes is

Those subgroups such that

are dubbed normal.

because

(1 H) (92H) = g1 Hgy 'q19:H = Hg192H = 919295 "97 ' Hg192H = q1goHH = g1go H

G/ ~

Yge G gH = Hg

G/H is called the factor group of G by H.

(9.38)

(9.39)

In this case, the coset space is also a group,

(9.40)

e The center of a group, Z is the set of all elements that commute with
all elements of the group,

Z2€ L o 29 =gz

Yge G

The center is an abelian invariant subgroup.

e Consider the permutation group Ss.

(9.41)

Permutation groups are very

important for a variety of reasons. One of them is Cayley’s theorem:
Eevery finite group |G| = n is isomorphic so a subgroup of S,,. The

elements of S3 are

e
a; = (123)
as = (321)
az = (12)
as = (23)
as = (31)
(9.42)
The multiplicaction table is given by
e e | al=(123) | a2=(132) | a3=(12) | a4=(23) | a5=(13)
al=(123) || al a2 e ab a3 ad
a2=(132) || a2 e al ad ab a3 |
a3=(12) || a3 ad ab e al a2
ad=(23) || a4 ab a3 a2 e al
ab=(13) || ab a3 ad al a2 e
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First of all, let us notice that the subset {e, al, a2} is a subgroup, the
alternating group As, consisting on all even premutations, and which
in this case happens to be isomorphic to Zs. Moreover

a3 Az = {as, a4, a5}
as Az = {aq,as,a3}
as A3 = {CL5,CL3,CL4} (9.44)

Coming back to our S3 example, A3 ~ Zs is a normal subgroup,
because

As a3 = {as3, a5, a4}
As as = {aq, a3, a5}
A3 as = {(15,(14,(13} (945)

Note however that there is another subgroup, H = {e, a4} (remember
that a3 = e) which is not normal.

asH = {as, a2} # Has = {as, a1} (9.46)

The conjugacy classes are sets such that if they contain an element s,
they also contain all its conjugates

S={gtsg VYgeG} (9.47)
It is a plain that for such a set
g 'Sg=15 (9.48)

e is always a conjugacy class. In S3, taking into account that

a
ad=dai=ai=e (9.49)
the conjugacy classes are: frist the two three-cycles
{al,ag} (9.50)
and then the three two-cycles
{a3,a4,a5} (951)

We note here a general trend in the symmetric group: conjugate per-
mutations have the same cycle structure; in particular the permuta-
tions in the same class are either all even or else all odd.
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e For fixed g € G, the mapping
heG —ghg™teqG (9.52)
is an inner automorphism. This is plain, because

(99197") (99297") = 991929 (9.53)

Besides, it is 1-1, because if

9919 " = 9929 = g1 = (9.54)

Outer automorphisms are all those automorphisms that are not inner.

9.2 Schur’s lemma

e If there are two inequivalent irreducible representations D1 and Dy of
a group G, such that there is a matrix A that obeys

Di(g)A = ADs(g) Vge @ (9.55)

then it follows that A = 0. In fact, assume there is a vector such that
Av = 0. Then there is a projector P onto the subspace that annihilates
A on the right. This subspace is invariant under Ds, because

ADyP = D1AP =0Vge G (9.56)
But D, is irreducible, so that P =1 and A = 0. If A annihilates one

state, it must annihilate them all.

If no vector annihilates A on either side, then it must be an invertible
square matrix, Then
Dy = ADyA™! (9.57)

and the two representations are equivalent.

Another proof is as follows. Define

D(@l) = eiji (958)
DY Aja = A D}, (9.59)
then
eiDileja = l)1 (ejAja) = eiAibDZa (9.60)
Denoting
Eb = eiAib (961)
this shows that
DY(E,) = EyD3, (9.62)

which is not possible if D is irreducible.
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e On the other hand, it is a fact that if there is a finite dimensional
irreducible representation D such that

D(g)A=AD(g) VgeG (9.63)

then A = 1. This is obvious, because any finite dimensional matrix,
A, has at least one eigenvalue Then

D(g)(A—A)=(A—)\)D (9.64)

and the matrix
A— )1 (9.65)

has a null eigenvector. Then the former argument shows that
A-A1=0 (9.66)

One consequence of Schur’s lemma is that once the form of D is fixed,
there is no further freedom to make nontrivial similarity transforma-
tions on the states.

9.3 Characters

Given an arbitrary matrix, let us say, X, consider the matrix

A=>'D(g) X D(g7") (9.67)
geG

where D(g) is an matrix irrep of G with dimension dg. It is fact of

life that
[D(h),A] =0 VYheG (9.68)
Indeed
D(h)A=D(h) Yye D(9) X D(97") = Yo D(h9)XD(97") = Xyeq D(hg) X D(g~'h ) D(h) =
= Yec P(9) X D(g~")D(h) = AD(h) (9.6

Schur’s now implies that
A=A (9.70)

Let us now choose as starting point the particular matrix
X = (Elm)ij = 52’15]'771 (971)

Then

> Dit(g) Dmj(g™") = Aimi (9.72)
geG
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Taking the trace 6 we learn that

|Glé1m = Nimdr (9.73)
This proves the orthogonality relation

_ G
3 Dalo) Dgls™) = 2 5, (9.74)
geG R

Let us now repeat the same procedure using two different representa-
tions, id est,

B=) D*(g)XD'(g7") (9.75)
geG
It is plain that
D?(h)B = BD'(h) (9.76)
Schur’s tell us that
B=0 (9.77)
and using
X = By, (9.78)
we learn that
>, Dig) Dijlg™) =0 (9.79)
geG

We can characterize both orthonomality relations in the following way.
Consider the set of all irreps

Dt (g) (9.80)

This can be considered as a |G|-dimensional vector for every value of
(11,1, 7). These vectors are orhogonal in the sense that

S [T
> Dh(g) Dii(g™") = |d| M 811 b (9.81)
R
geG

For each irrep, u there are d%{ mutually orthogonal vectors in K|g.
This is possible only provided that

Y <G| (9.82)
o

88



The character of a given irrep is just the trace

x"(g) =Tr D"(g) = Z Dij(g) (9.83)

The character is a class function because
tr D =tr hDh™! (9.84)

From our master relationship we learn that

XM (g™t = a6 (9.85)
geG

Assume the classes of G are K7 ... K¢; that is that there are C classes
with number of elements

C
3 dk, = |G (9.86)

i=1

Then restricting to unitaries

D(g9)"D(g) =1 (9.87)

implies L
x(9) =x(g™") (9.88)
DXEXY di, = dg 0" (9.89)

This means that the number of irreps must be smaller or equal to the
number of classes.

We can use the orthogonality relations to decompose the adjoint re-
presentation.

First of all, assume a reducible representation
D=D1®Dy®...® Dy (9.90)

so that

X = ij (9.91)

The number of times the irrep (i) appears in this decomposition is
equal to

XXy (9.92)

Remember that
D(s)e; = eg (9.93)
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Now if s # 1 then st # t, so that the diagonal terms in the matrix
D(s) just vanish. Then

X(s#e)=0 (9.94)
and
x(e) = da (9.95)
Then .
Oy = = 2 X () = di (9.96)
G teG
Ergo
did = dg (9.97)

Assume now a central function (f(g) = g(hgh™')Vh € G). Define a
matrix in V aasociated to an irrep, D

Df =) f(t)DR(t) (9.98)
teG
It is plain that
[Df,D(h)] =0,YheG (9.99)
Then by Schur’s lemma
D =1 (9.100)
We can compute A
drA = Y f(t)x(t) (9.101)
teG

We now claim that the characters x1 ... xp yield an orthonormal basis
of H, the space of central functions on the group.

We need to prove that any element of H orthogonal to all the characters
is zero.

Assume
I =0 vu (9.102)
This shows that
A=0 (9.103)
for all irreps. Then
D}L =0 (9.104)

for all representations direct sum of irreps. Let us work this out for
the regular representation.

0= D}%er = Yy f(H)D(t)er = Yo f(t)es (9.105)
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It follows that
ft)y=0 VteG (9.106)

QED.
It follows that the number of irreps is equal to the number of classes.

In conclusion,

dldr =G| (9.107)
R
Let us check this in the abelian group Zy =zp =e€,21...2N-1
ZiZj = Zitj(mod N) (9.108)
The irreps are given by
Du(ag) = e (9.109)

The orthogonality relationship means now that

27'rn1k 27Tn2k
= Z = Snino (9.110)

It is actually vary easy to prove that all irreps of an abelian group are
one-dimensional. Every element is a conjugacy class by itself. Then
the number of irreps is equal to the order of the group. Each of them
is got to be one-dimensional

e Let us repeat the former theorem in a different language. Given any
class function, F'(g), we can expand it as

= Y FajD*(9)jk (9.111)
ajk

We can actually write

F(g) |G‘Z (h~tgh) = ZZFajkD“h Lgh)jn

heG hEG ajk
Z D FujeD*(h )5 D*(9)juj D () ok = Y, d*Fajk D*(9)j1jz 05120k =
heG ajk a
- Z d oFajj Digy(g Z d. f*Xalg (9.112)

ajk

This means that the number of irreps is actually equal to the number
of conjugacy classes. If we label conjugacy classes by « , |«| being the
number of elements of the class «, then defining the square matrix

Vaa = Al ’|g|| XDg (goz) (9113)
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the orthogonality relation

> Xb.(9) X0, (9) = |G| Sup (9.114)
geG
means that
vvt=1 .. Viv=1 (9.115)
To be specific
G
2. Xb,(9a)xD. (95) = ,a,’ dap (9.116)

Given any rep, it will containg all irreps D, some number of times,
mP. This can be easily computed using

> xp.(9)*xp(9) = |GIm (9.117)
geG

For example, the characters of the adjoint are

x(e) = |G|
x(g #¢€) =0 (9.118)
Then
my = Xa(e) = |Da| (9.119)

Each irrep appears in the adjoint a number of times equal to its
dimension.

Consider again the case of S3. In this case |G| = 6. We know the one
dimensional irrep

D(g) =1 (9.120)
It is such that
Xo(g) =1 (9.121)
Now
L+ Y n>=6 (9.122)
p#0
This means that
ny = 1,2 (9.123)
Let us try and determine the characters using orthogonality
po|| {e} | {a1, a2} | {as, a4, a5}
0 1 1 1
] T 7 X (9.124)
2 2 -1 0
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Let us prove that given an arbitrary ( in general reducible) represen-
tation, D, the operator

P,=— ) Xp.(9) D(g) (9.125)
G geG

is a projector onto the subspace that transforms under the rep D,.

In fact taking the trace of the first orthogonality relation, we learn
that

d, .
5 Z X*Da (g) D?m(g) =4 bdlm (9126)

gelG

Let us see how this works in the three dimensional rep of S3

1 00
e—>D(e)=[0 1 0
0 01
0 01
ap — D(a;)=1[1 0 0
010
010
ag — D(CLQ) = 0 0 1
1 00
010
as — D(ag) = 1 0 0
0 0 1
1 00
as — D(ag) =10 0 1
010
0 01
as — D(as)= [0 1 0 (9.127)
100
With this notation it is plain that
D(g)ljy = Y, [k)kID(9)|5) = ) [k)Di;(9) (9.128)
k k
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Let us now emply this three-dimensional rep to determine the projec-
tion operators

1 1 1 1 1
Py= - Dg(e) + Z Dg(a]’) =—11 11
6 3 1 1 1

=2 Lf2 -1 -1
Py == <2D3(e) _ Dg(aj)> =2 (-1 2 -1]9129)
-1 -1 2

This makes vary explicit that

D3 = Dy @ Dy (9.130)

e Let us work out the regular representation of Ss

10 00 0O
01 00O0O
001 00O
D(e) = 000100 (9.131)
0 00O0T10O0
00 0O0O01
001000
1 00 000
010000
D(ay) = 000010 (9.132)
0 00O0O01
000100
010000
001000
10 0000
D(az) = 00000 1 (9.133)
000100
00 0O0T1PO0
000100
000010
0 00O0O01
D(a3) = 10000 0 (9.134)
010000
001000

Ne)
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(9.135)

o R OO OO
_ o O O O o
oSO = O OO
[N eNell =]
(e len el el
(=N elelell -

(9.136)

_ o O o oo
OO = O OO
O O O O O
(=l el elal e
OO O = OO
O O OO o

It is the case that

(9.137)

—_
= = e e
I T S SOy
S o Wy S gy S Y
= = e e
I T

P =- (9.138)

2 -1 -1 0 0 0
-1 2 -1 0 0 0
1[-1 -1 2 0o 0o o0
=310 0 0 2 -1 41 (9.139)
0 0 0 -1 2 -1
0 0 0 -1 -1 2

9.4 Partitions and representations of 5,

e Let us recall that a cycle is a cyclic permutation of a subset. An
arbitray permutation has got k; j-cycles, where

Yljki=n (9.140)



e Let us quickly revew a few general properties of cycles.

Every cycle can be written as a product of transpositions, allowing for
an index to appear several times:

(iria . . .in) = (i1i2)(iai3) .. . (in_1in) (9.141)

The number of such transpositions is even for even permutations, and
odd otherwise. The canonical way of writing a permutation is as a
product of cycles without any common element. There are then n;
one-cycles (usually not written down), ny two cycles, ng three-cycles,
ad so on, in such a way that

n==rky +2ko+3ks+...+kyn (9.142)

We say that the set of numbers (n; ...nn, constitute a partition of
the number n.)

The cycle structure is invariant under conjugation. We claim that

12...n S$152...82) _
<5152...sn> (a1...ap)< 12...n > = (b1...bp) (9.143)

The reason is that for the numbers not involved in the cycle (let us
say, 3) the cycle is irrelevant in the sense that

(i) (?) = (s3) (9.144)

so that s3 remains invariant.

For example
(123)(12)(132) = (23) (9.145)

Also
(12)(123)(12) = (132) (9.146)

How many elements are there in each conjugacy class? There are n!
permutations to begin with. But order is immaterial between cycles
of the same length; so we must divide by k;|. Also cyclic order does
not matter within a cycle; this yields a factor j¥i. Altogether we have

n!
==
H]‘J 7 k!

It is useful to represent conjugacy classes by Young frames; columns
of boxes of length j, top justified and arranged in decreasing j from
left to right. For example, in S3, the identity 13(with % = 1 element)

(T[] (9.148)
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The class (2,1) (with 3 = 3 elements)

L (9.149)

and the class 3 (with %‘ = 2 elements)

@ (9.150)

Altogether we recover the 6 elements of the group Ss.

It is a fact that each tableau yields an dirrep of S, with dimension

n!
dp = — 151
R= 7 (9.151)

where H is the hooks factor. To be specific,

3!

dD:l:‘ = 35 =1 (9.152)
|
a1 - % - (9.153)

d@ =25=1 (9.154)

The inequivalent irreducible representations of S,, may be labelled by
the partitions of the integer n. An unlabelled Young diagram or Young
frame corresponds to a partition of the integer n, consisting of n boxes
arranged in r rows

n=>X\ (9.155)
i=1
A== =N\ (9.156)
The usual notation is
{3°1} = {331} = (9.157)
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e A Young tableau, or labelled Young diagram is an assignment of the
numbers 1,2...n to the boxes of a Young frame. The tableau is stan-
dard if the numbers are increasing both along rows from left to right
and along columns from top to bottom.

The Young operator corrresponding to a given tableau is obtained by
first symmetrizing rows (let us call p the horizontal permutations) and
then antisymmetrizing columns (denote by q vertical permutations)

P=C <1;[ 57r7r> <1;[ ﬂ> (9.158)

It is possible to check that this is a projector, and even to compute
the constant C'. We shall do it in some examples. We shall define
a mapping from a given tableau to a state in the adjoint (that is, an
element of S,,) by defining a em lexicografic ordering: from left to right
and then top down, like reading a page in usual latin conventions. For
example

314
112
8

‘@\]C)‘l@

—  (634512789) (9.159)

e Let us now work in gory detail the case of S3 First of all, consider the

frame
[T T] (9.160)

There is only one standard tableau,

—  (123) (9.161)

and six others (all possible permutations). The Young operator maps
(123) — Yg= C(l+(12)+(13)+(23)+(123)+(132)> (9.162)

The projector is

1
Ps= Yo (9.163)

This is a one-dimensional subspace corresponding to the trivial repre-
sentation
T — 1 (9.164)

@ (9.165)

Consider now the frame
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Again, there is only one standard tableau
. (123) (9.166)

The Young operator maps
(123) — Yy = C’(l—(12)—(13)—(23)+(123)+(132)) (9.167)

Again, this is a one-dimensional subspace. It correspomds to the

representation

1
Pa=:Ya (9.168)

T (-7 (9.169)

Let us now turn to the hook.

L (9.170)
There are two standard tableaux. Let us write them with their opera-
tors.
1]2]
13 — (123) — Y1 = C(l — (13)) <1 + (12)) = C’{l —(13) + (12) — (123)}
1]3]

2] — (132) — Yo = C< (1—-(12) (1 + (13))) = C(l +(13) — (12) — (132))
Let us compute

Y2 = (1—(13) + (12) — (123)) [1 — (13) + (12) — (123)] = [1 — (13) + (12) — (123)] +

+[—(13) + 1 —(123) + (12)] + [(12) — (132) + 1 — (23))] + [—(13) + (32) — (13) + (132)] =
—3Y; (9.171)
Also
Y7 = 3Y; (9.172)
This means that
éyl, %Yg (9.173)

are true projectors.

Besides
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PP, = {1 —(13) + (12) — (123)}{1 +(13) — (12) — (132)} = [1—(13) + (12) — (123)

+[+(13) — 1+ (132) — (23)] + [—(12) + (123) — 1 + (13)] + [—(132) +

P.Ps=P1.P4=0
Py.Pg =P, Py =0

Threre is closure, in the sense that

Ps+Pys+P+P =1 (9.175)

There are also four nonstandard ones

23]
1] — (231) — BRB=[1-(12)])

Cl1+(2

21]
3 —  (213) — Py=

| |
Q

1+ (

[1—(@3)][1

2] —  (312) — Py=[1-(23)][1 =C(1+(

1-—

1 — (321) — R=[1-(13)][1 =C

Now by direct inspection we find that

P+ P,=P;+ Py
Ps+P=P + P

(9.176)
In the regular representation the Young operators read
1 0 -1 1 0 -1
-1 1 0 -1 1 0
. 0o -1 1 0 -1 1
Yi=C I -1 0 1 -1 o (9.177)
o 1 -1 0 1 -1
-1 0 1 -1 0 1
The structure of this matrix is
A A
Yi=C <B B) (9.178)

+ 1]

(123)

(132)

(123)

(132)
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with

A=1-1

FEigenvectors read

The structure is

with B as above and

~1 1 -1 0
B=|0 1 -1 (9.179)
1 1 0 1
~1 0\ /0
0 0o]f o
1 o || o
0 L (9.180)
~1 0 1
1 -1/ \ o
1 -1 0 -1 0 1
0 1 -1 1 -1 0
-1 0 1 0 1 -1
-1 1 0 1 0 -1 (9.181)
0 -1 1 -1 1 0
1 0 -1 0 -1 1
B D
Yng(_B _D> (9.182)
1 0 1
D=1 -1 o0 (9.183)
0o 1 -1

Different tableaux corresponding to the same frame yield equivalent,
although not identical representations.

e The dimension of a representation corresponding to a Young frame A
is computed by dividing n! by the factorial of the hook length of each
box in the first column of A and multiply by the difference of each pair
of such hook lengths. For example,

dim {p+2,2} =

o,
dim || = @(4 -1)=3 (9.184)
(p+4)! p+4)(p+1)
T etV T

(9.185)

101



102



10
Lie groups.

Lie groups are particular instances of continuous groups, where each element
g € G depends on a finite number of real continuous pareters

gla)=g(ay...ay) (10.1)
in such a way that
g(a)g(b) = g(c) (10.2)
where the functions
ci = fi(aj,by) (10.3)

are sufficiently regular. The canonical example is the thee-dimensional ro-
tation group, SO(3), where the parameters are the three Euler angles. In is
often convenient to choose the parameters in such a way that

g9(0) =€ (10.4)

Lie groups are n-dimensional manifolds (symmetric spaces). As is the case
for all manifolds, Lie groups can be compact or non compact. (Remember
that in R™ this means that a set is both closed and bounded). Compact
groups (again SO(3) is the simplest nontrivial example) are much simpler,
and in many ways analogous to finite groups.

The Lie magic is that many of the characteristics of a Lie group are
determined by the properties of the neighborhood of the origin (which can
be chose arbitrarily in the group manifold). The tangent space at the origin
is dubbed the Lie algebra, G. The relationship between a Lie group and its
Lie algebra is the exponential mapping

g = el Zist iy (10.5)
Indeed we can define the Lie algebra by analiticity

n%gm6:1+&n+“. (10.6)
o—>
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On the other hand, it is plain that

g((t + s)a’) = g(ta’)g(sa’) (10.7)
Taking the derivative with respect to 7 ’ 1o We get
d . . .
g(sal) = a'T; g(sa) (10.8)
whose solution is the matrix exponential. Please note that
eteP 2 ATB (10.9)

(BCH)

Let us work out the composition law
emiTi ewﬂ'Tj = emi(a,ﬁ)T- _

. g akal . i ,Bkﬂl B
1+l — =TT + ... ) (1 +8'T; — =~TiyT1 + ... ) =
=1+ia'T; +ifIT; — (3’ + 38187 + ' B7) T,T; + .

=1+i(a +B2)TIZ+§(6L +,6’Z) (oﬂ—I—ﬁ]) Tsz—i-i( Zﬁj—oﬂB’)TlTj—k...z
=1+i(al+ 8T+ 5 (o' + 8) (o + B7) T,T; + 50/ 87 [T;T5] + ... (10.10)

The elements T; are a basis for the Lie algebra, which is nothing else than
a vector space with an internal composition law, the commutator.

k=n k=n
(T3, T;] Z = > i fET, (10.11)
k=1 k=1
In this way ' ' ' ‘
Y, B) = o' + B+ fiakpl + ... (10.12)

The constants ij (or Z’j) are denoted the structure constants of the algebra.

A consequence of this is that the generators are traceless
TrT;=0 (10.13)
Jacobi’s identity reads

(10 14)
Let us now define the adjoint representation as

(T,gd); =if}, (10.15)

Let us check that this constitutes a representation. The first member is
equal to

[Tl?d77‘lad] TijJ Tl] fl]fkm fl’é]fljm flm + fj kf]ll -
%
= _szf;‘m = if}, (T39),, (10.16)

104



Let us define a matrix in the algebra, &, the Killing metric as

g = tr TROTP = ~finllh

(10.17)

It can be shown that for compact groups the Killing matrix is definite

positive.

An intrinsic definition [13] is as follows. Consider an endomorphism of

L:
Ad(X):YeL—>[X,Y]eL

and the Killing form as
K(X,Y) = Tr (Ad(X), Ad(Y)) = X'Y'CL CY,
If we change basis in the Lie algebra
T, = M{'T,
the new structure constants are
Gty = (M), (M) Cf My
and the new Killing form
Rap = (M_l)i (M_l)j Kij
Then we can define
Fisie = Figu = fi 1 fha
We known of course, that
T =0
Let us compute
fijk + fing = Tl o + Fhtis fo
But we can write
(£ ) fha = = (Fisly) fla = (Fifho+ Fifis) Sl
as well as

(Fheti) Fha = (Fifh) Flu = = (Sslly+ FiS1) Sl

The structure constants thus are completely antisymmetric.

If is customary to define the quadratic Dynkin index as
tr T,T = 11954,
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We define an invariant subalgebra, A as a set of generators that maps into
itself under commutation with any element of the algebra .That is, it is a
subalgebra which is also an ideal in the algebraic sense. There are always
two trivial invariant subalgebras, namely,e and & itself.

A simple Lie algebra is such that it does not have any nontrivial invariant
subalgebra. This the only type of Lie alegras we are going to study in this
course.

In this case, the adjoint representation is irreducible. (Compare with
finite groups). Assume there is an invariant subspace, generated by T'4.
Call the other generators T,. This means that

6] c¥ — fiaa =0 (10.29)

Then by antisymmetry all structure constants with two indices A (in %) or
with two indices « vanish; the only possibility is to have three A or three «;
so that the algebra is not simple to begin with.

A semisimple algebra is such that there is no any abelian invariant su-
balgebra. They consist of direct products of simple algebras. The necessary
and sufficient condition for an algebra to be semisimple is that the Killing
form is non-degenerate, that is,

det gij # 0 (10.30)

Let us prove the first part. Assume there is an invariant abelian subalgebra,
B generated by T, ( the full set of generators will be denoted by i = (a, A)).
This means that

[3,8] cB — fiaa =0 (10.31)

Then the row of the Killing metric corresponding to the subalgebra, that is,
Gia = fijkfarj = fipkfarpg =0 (10.32)

This means that a whole row of the Killing matrix vanishes, and so does its
determinant.
Semisimple Lie algebras are direct products of simple Lie algebras, such
as
G=G1XG2X... (1033)

where all G; are simple.

10.1 Matrix groups

Most important are matrix groups.

e The group of n-dimensional nonsingular matrices in the field of com-
plex (real) numbers is denoted as GL,(C) (GL,(R)).
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e The group of n-dimensional unimodular (unit determinant) matrices
in the field of complex (real) numbers is denoted as SL,,(C) (SL,(R)).

e The group of n-dimensional unitary (complex matrices in the field of
complex (real) numbers is denoted as SU,(C) (unitary group).

gg=99" =1 (10.34)

The unitary Lie algebra SU(n) is such that

efiaT"' eiaT =1=141a (T _ T+) + O(a2) (1035)

That is, elements of the Lie algebra are hermitian matrices. How many
are those? The condition is

Ty = T3, (10.36)

The n diagonal elements are real; and the "22_ % complex elements
below diagonal are deternined by those above; altogether we have

(deleting the trace)

2—?’L

PO, L L N | (10.37)

real parameters.

e The group of n-dimensional real orthogonal matrices is denoted as
SO(n) (orthogonal group).

g g=gg" =1 (10.38)

The Lie algebra SO(n) is given by

e“T" T — 1 4 io(TT +T) + O(a?) (10.39)
antisymmetric matrices. The number of parameters is then

n(n—1)

5 (10.40)

e The group of matrices the leave invariant the diagonal quadratic form
with p values of +1 and q values of -1

10 ... 0 0
01 ... 0 0
Iy = (10.41)
00 ... -1 0
00 ... 0 -1

is denoted SO(p, q) and they are non-compact as soon as either p or
are non-vanishing. The Lorentz group SO(1, 3) belongs to this class.
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e The group of matrices that leave invariant the quadratic form

(_OI é) (10.42)

where [ is the n x n unit matrix is the symplectic group, Sp(2n).

J

e The group of matruces that leave invariant the quadratic form
ds® = dz1dz) + . .. dzpdZ, (10.43)

is the unitary group U(n) ~ SU(n) x U(1),

10.2 Representations of SU(2) and SO(3) through
tensor methods.

First of all, it is a fact that
M e SU(2) = M e SU(2) (10.44)

Consider u, that transforms with M € SU(2) and u® that does it with
respect to M. It so happens that

5 — My M sy, = (MM™), = 6} (10.45)
also
€ab — €ap M M, = My M, — M M, =
_(MIME— MEML =0 M{M?— MZM} =det M\
- —det M MIM2 — M3M};=0 )
= det M€y = €y (10.46)
as well as
e — eab (10.47)

From an upper and a lower index we can always form a simpler representa-
tion with two indices less

T2 = 268 + h6g (10.48)
where
T =T = 21§ + 1§
T =T)% =t§ + 2t8 (10.49)
Then

5 =1 (21"~ 79)

1
ty =1 (2T —T) (10.50)
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We can then eliminate either contravariant or covariant indices; the only
thing that matters is the difference, which we will write downstairs. Even
then, from say

Top (10.51)

we can form
PTos (10.52)

unless it is totally symmetric. Those we cannot reduce further.

We know that the combinations with repetition of n objects taken m at
a time is the number of ways of combining n — 1 bars and m crosses; such
that the number of crosses to the left of the first bar stands for the number
of times times the first object appears; the number of crosses between the
first and the second bar stands for the number of times the second object

appears and so on. This is % = (”+;Z_1).

In our case n = 2 and the irreps are generated by symmetric covariant
tensors with m indices, of which there are (m;; 1) =m+ 1.
In the case of SO(3) all irreps are real, so we need to consider covariant

indices only. In spite of that

as well as
€ijk — €ijk R? R‘Zn an = detRepmn = €imn (10.54)

So that irreps are generated by symmetric traceless covariant tensors with
j indices. In our case n = 3, so this yields

J+2\ _(G+2)(G+1)
( ; >_2 (10.55)

We have to withdraw all traces, of which there are

(j J 2) = (10.56)

The difference is just the dimension of the representation,
d=2j+1 (10.57)
It is worth remarking that only when
m = 2j (10.58)
(that is, m is an even integer) does the SU(2) irrep be also an irrep of SO(3).
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10.3 Representations of GL(n) through tensor me-
thods.

Weyl’s treatment of finite dimensional group representations rests on a
simple fact. Consider any tensor that under L € GL(n) transforms as

T}ILU,LQ...;,LTL = Li\& c Li\tz T)\l‘../\n (1059)

Assume now that the tensor T is invariant under some permutation w € S,

Trrry Aty = Drioonn (10.60)
Then
/ T An T An S An

Dz = Liay - - Ll Doaeox = Ly - Ll Tayodeiy = Ly -~ Ly Thaa

(10.61)

It follows that
/ /
T#w(l)#w(z)--#ﬂ(n) = THl/.Lz.../.Ln (10.62)

That is, the subspace of tensors invariant under any permutation symm-
metry is invariant under GL(n) transformations. Let us perform now some
elementary checks.

e n = 2. There are only two symmetry classes: antisymmetric

T 10.63
n ( )

and symmetric

T 10.64
( )

The Young projectors are

1+ (p)
_— 10.
5 (10.65)
e 1 = 3. There are now three classes.
T
plv[A]
Ti
ya
4
(A
T 10.66
e (10.66)
A

Let us work out this third case in detail. The Young operator is given
by

Y = PQ = (1- (1) (1+ () = 1+ () — (1A) — (HA0)67)
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(YT)}U/)\ = T,U,l/)\ + Tl/,u,)\ - T)\yu - TV)‘N (1068)
It is clear that

Y?=3Y (10.69)
so that !
=Y (10.70)

is a projector. Any tensor in this class is such that
2Tx = Topx — Ty — Tong (10.71)
But then it is also a fact that

2Tyx = Lhy LY Ly (Typx — Tawp = Tuan) = Torwxr — T — Torw
(10.72)

It is a fact that in general these tensors form a basis for an irreducible
representation of GL(n), without any further ado. Let us compute some
dimensions of those representations. The dimension of the space

a[pl. 18] (r slots) (10.73)

is the numer of combinations with repetition of n objects taken in packs of
r. This can be computed as imagining (n-1) vertical lines and r crosses. The

mmber is (n+r—1)! n+r—1
CR; = m = ( . > (10.74)
For example in the case n = 3, r = 3 this formula yields
D =10 (10.75)
To be specific, the components are

Tinn Tue Tus Tize Ties Tiss Tooe Thog Tazs 1333 (10.76)

In order to count dimension for lower representations, it is useful to consider
outer products. For example

D@D:E@H (10.77)

This just expresses the trivial identity

n2 n(n2~|— 1) N n(n2— 1) (10.78)

One can also work out slightly more complicated examples; for example

|
[T el =TT ]el] (10.79)

112




The dimension of the

n?(n + 1)
2

n+2
= D,
("37)+

and we recover that

10.4 Representations of U(n)

representetion easily follows:

(10.80)

(10.81)

First of all, U(n) ~ SU(n) x U(1). It is plain that all irreps of GL(n) are

also reps of any subgroup; but not necessarily irreps.
the tensor
T[ab] =T eap

As a trivial example,

(10.82)

transforms as a one-dimensional [1%] = H irrep of GL(2):

T[ij] - QZQZT[U] =T €4 det g

(10.83)

It is also the case that the diagram [2"] has only one standard tableau,

11
for example 2|2
projector reads in this case

(P T)

ajaaa3a4

- (T011Ot4013042 + TO!4011013042 + TO!1014012013 - Ta3a4011012

This result can be written as

(P T)a1a2a3a4 =T €ajaz €azay

Under the action of GL(n)

B2 B3 Ba

B1 B2 B3 ,Ba + <gg;galgagga4

(P T)a1a2a3a4 - {galgaggagga4

B2 B3 Ba

g gt + Gos 9o G Ios

+g§§gagga4ga1 b1 B2 B3 B4

) - (galga4gagga2

—gR9 09 — 9 olgtolt) } T, 2561

This condenses into

(P T)

e % Re Yo %Yo 7
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. There is only one basis element.

~ Ta1a2a3a4 + (Ta2a1a3a4 + Ta1a2a4a3) -

— (det g)2 T €ajas €asay

Actually the Young

(Ta3a2a1&4 + Ta2a3a1a4 + Ta3a2a4a1) -

- Ta4013011012 - Ta3a4012011) (10'84)
(10.85)
+ alaaals) — (aba0alals + alalaalgli +
- Gor G G g — G Ges 9 G+
(10.86)

(10.87)



This result is actually quite generic. If we have a rep of GL(n), say [A1 ... An],
and we add to it a column of n boxes to it, the only set of indices in standard
order that can be inserted in the additional column of [A; +1...\, + 1] is
(1,2,...,n).

Thus the number of standard tableaux of the representation [A; + 1... A, + 1]
is the same as this number for [A;...\,]; the only change is a new factor
of det g. This means that thse two patters are equivalent for unimodular
groups.

Then for unimodular groups we need to consider only patters with fewer
than n rows.

M Al =M= A Anet — Anl (10.88)

There is a second equivalence (related to Hodge duality), namely
[1"71] = [1] (10.89)
This can be easily generalized to
[1"7P] = [17] (10.90)
The general theorem is that for unimodular transformations
[A1, A2, oy An] = [A1— Ay AL — A1, -, AL — A2 (10.91)
Which is equivalent to

s 2y spin—1] = M =X =X =1, 3= XN —fin—2,. .., Apm1 =X — 2, Ay = A — 1]
(10.92)

10.5 Representations of O(n)

This is the only case in which the Kronecker delta with two covariant or else
two contravariant indices makes sense, because

ggh =1 « gflgg = §Y (10.93)
Contractions commute with group transformations

8% gigl.. Ty =0 Ty (10.94)

Traceless tensors are transformed into traceless tensors. There is a complete
decomposition of an arbitary tensor into a traceless piece plus other terms
containing Kronecker deltas. For example

1 1 1
Tij = (Tg - T 5117) +-T 8ij =T + ~T bij (10.95)
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where

T =6 Ty (10.96)
Another example
Tiji, = Tiji, + 0ij Ak + Six Bj + 01 Ci (10.97)
Let us denote the three possible traces
TP = 6% Ty
Tp? = 6" Ty (10.98)

This means that

T-23=Ai+Bi+nCi
T13:Aj+nBj+Bj

T2 = n Ay, + By + Cy, (10.99)
then
1
A=———  (TBP+TB_(1 T
s (T (1+n)T")
1
B=——(T%®-(1 T8 + 1713
n2+n—2( (L m T+ T7)
1
C = ()T + T+ T)  (10.100)

It is plain that a permutation of the indices maps a traceless tensor into
another traceless tensor. We can then apply Young operators to a traceless
tensor to obtain traceless tensors of a given symmetry type.

In fact, there is a theorem that states that the traceless tensors corre-
sponding to Young diagrams in which the sum of the lengths of the first two
columns exceeds n must vanish. ‘

Let us work out the hook |_J in n=2 dimensions (its traceless part
should vanish in agreement with the preceding theorem). The action of the
Young projector is proportional to

(PHOOkT> . = tz]k + t]zk _ tk]l — t]kl (10101)

ij
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Let us compute components in gory detail

TH =0

Tily = tiie + tie — tor1 — i

T = tio1 + tor1 — tiz1 —to11 = 0

T{}y = tias + torz — tos1 — tann

T, =0

Tyl, = to11 + tia1r — ti12 — tie

Tyl = to12 + tiae — ta1o — tioe = 0

T3y = toz1 + ta21 — t122 — t212 (10.102)

Of the four non-vanishing components only two are independent because

Ty, = —Ti,
T = -1l (10.103)

Imposing now tracelessness,

Tily + T30 = T, = 0
Ty +T{f = T3 = 0 (10.104)

there is nothing left QED.

Let us define associate diagrams. Assume the length of the first column
in T, say a < n < 2. Then the legth of the first colum of 7" is ¢’ = n — a,
and all othe columns of 7" and 7" have the same length.

Fot example, for n=3

L (10.105)

In n—=4

[T T]
r= [T T[T lor=[] (10.106)

In general the pattern T will contain a given number of indices , r = 1,2, ...
and

pr+pe+ . Uy =1 (10.107)
indices (where as usual 1 > po = ... = p,). When n is an even number,
then

n
v="1 (10.108)
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(in this case diagrams with § rows are self-conjugate) and if n is an odd

number, then
n—1

2

In SO(n) the reps corresponding to associate diagrams T and T’ are
equivalent.For SO(3), v = 1, and irreps are desibed by the diagram

NN (10.110)

(symmetric traceless tensors).
We shall denore by fo(n) the Lie algebra of SO(n).

(10.109)

V=
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11

The rotation group

SO(3) ~ SU(2)/Zs.

Assume we are interested in the matrix that relates two different orthonor-
mal frames
€. = R."&, (11.1)

This a matrix R € SO(3). This means that
RRT =RTR =1 (11.2)
Put it into another form, this is the condition that
z? +y* + 22 (11.3)

remains invariant under such a linear transformation.

Any rotation is always a rotation around an axis, which is the locus of
the fixed points of the rotation. Let us characterize the axis by a unit vector,
fl.

Given any vector, ¥ € R3, it is plain that the component of it in the
direction of the axis, ) = (¢.72) 7 will be unaffected, whereas the orthogonal

component U] =¥ — v} will become a combination of v, and A x v.
- =
Y=
U, =atl + B0 %0 (11.4)

The conservation of the norm implies that

o+ B2 =1 (11.5)
Altogether
T—>at+(1—a)(@n)n+Lnx v (11.6)
and the rotation matrix is
Riy = adij + (1 —a)nmnj + Begn® (11.7)
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It is easy to check that this matrix is orthogonal,

ZRz‘jRjk = Ok (11.8)
J
Choosing
a = cos a
f = sin « (11.9)
n? + (n3 + n3)cos a (1 —cos a)ning —nzsin @ (1 — cos a)ning + ngsin «
R = | ngsin a + ning (1 — cos «) n3 + (n? + n2) cos a (1 — cos a)ngng — nq sin «
—ngsin a + (1 —cosa)nzny (1 — cos a)ngng + nq sin « n3 + (n3 +n?)cos a
(11.10)

All this yields, for 7 = (0,0, 1)

cosa sina 0
R=|—-sina cosa 0 (11.11)
0 0 1

which when o = 7 transforms the positive OX axis, (1,0, 0) into the negative
OY axis, (0,—1,0). The opposite sign corresponds to o < —a.
0
For arbritrary 7 transforms the vector | 0 | into
1

0 (1 —cos a)nins + ngsin «
R, |0]=1(1—cosa)nang—mn;sin a (11.12)
1 n3 + (n3 + n?) cos a

This corresponds to the polar direction

cos © =nj + (1 —n})cos o
tan ® — nans(l—cos a)—n; sin « (1113)

ninz(l—cos a)+ngsin a

sin 0 cos ¢
This depends on three parameters, as it should: two from 7 = | sin 0 sin ¢

cos 0
and another one from oa.

cos © = cos? 0 + (1 — cos? ) cos a
tan ® — sin ¢ cos 0(1—cos a)—cos ¢sin « (11 14)

cos ¢ cos 6(1—cos a)+sin ¢sin «

We can ask, for example, what is the rotation that transforms a given
univ vector, say 7i; into another one, say, fi2. Let us denote

M1y = cos 0 (11.15)
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It is plain that the axis of rotation will be

ﬁlxﬁg

A (11.16)

sin 6

We need R 05
N2 T Cos U (11.17)

o = cos ani + sin « -
sin 0

This clearly needs o = 6.
The groups SO(3) and SU(2)/Zy are intimately related. Indeed any
unitary matrix can be parameterized as

cos o e sin o e
B (—sin a e cosa e_i6> (11.18)
It is clear that the range of the angles is
0<B<2rm
O0<a<sm
0<~vy<2m (11.19)
Consider an arbitrary hermitian matrix
ME<1+12 JU_Zy) (11.20)
z+iy 1—=z2
Its determinant is
det M =1—7? (11.21)
It is plain that the transformation
M — uMu* (11.22)
leaves this determinant unchanged. Then there is a map
ue SU(2) - Re SO(3) (11.23)

It is plain that both +u yield the same rotation; this is the reason for a
factor Zs. To be specific, when  =~v =0

uMut — 1+ zcos2a+xsin2a  —ty+x cos 2a — 2 sin 2«
~ \iy+ 2z cos 2a — 2z sin 2« 1 — z cos 2a — x sin 2«

(11.24)
which means that
x cos 2a¢ 0 —sin 2« x
y | = 0o 1 0 y (11.25)
2 —sin 2a 0 cos 2« z
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It represents a rotation of angle 2« around the y axis, Ro(—2«). This
rotation is negative, because when 2o = 7 this yields

1 0
0]—1(0
0 1
0 —1
ol= [ o (11.26)
1 0
Also, when, o = 0,
x’ cos 23 sin 28 0\ [z
y |=1-sin28 cos258 0|[y (11.27)
2! 0 0 1) \z

namely, R3(—20). It is curious that when

ol

e
B (11.28)
we recover again a rotation R3(—27).

In the general case,

1+2 o -
uMut = <$, ciy 1o ZZ{ (11.29)

1+2' =1+ zcos2a+ (ei(ﬁ_w) (z —iy) + 0 (z + zy)) sin 2«

o — iy = e*P(x — iy)cos® a — 2 (z + iy) sin® a — PV 2 sin 20
o+ iy = e 2P (x +iy) cos? a — e 2 (2 — iy)sin? a — ez sin 20

1—2'=1-—2cos 2a — (ei(ﬁ_” (z —iy) + O (z 4+ zy)) sin 2¢11.30)

That is
cos? o cos 23 —sin®a cos 2y — (0052 asin 283 + sin® a sin 25) —sin 2« cos (B + )
R=| —cos? asin B +sin? asin 2y  cos? a cos 283 + sin? a cos 2y sin 2« sin(B + )
sin 2« cos (8 —7) sin 2« sin (8 — ) cos 2«

(11.31)
This means that in order to go from the unit vector along the third axis, é3
to an arbitrary unit vector corresponding to the polar angles (6, ¢) all we
have to do is identify

—sin 2a cos (B + ) =sin 0 cos ¢
sin 2« sin(f + «y) = sin 6 sin ¢
cos 2a = cos 6 (11.32)
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which can be achieved by letting

0=
B+y=71—¢ (11.33)
in SU(2) language
o= (apie Tn ) (31
Staring again at this formula, we learn that when precisely
B8=0
N = g, (11.35)

we recover a rotation around the first axis, Rj(2«)
=z

y' =y cos 2a + z sin 2o
/

z' = —y sin 2a + z cos 2« (11.36)
Euler showed that every rotation R € SO(3) can be written in the form
R = R3(¢) R1(0) R3(¢) (11.37)

The range of the Euler angles is

0 2
0

N I

¢
0
¥

//\ //\ N

0 27 (11.38)

In our SU(2) language this is

% .. ¢ ¢t . G0
ez 0 <cos g 7 sin g) e’z 0 e’z cos g ie
U= (¥ PN o N e A ;
0 e 'z vsin 5 COs g 0 e 'z 1 e 2 sin % e

It is plain that this covers the whole group manifold, provided

0<op+y <4nm
0<¢—9Y <4r
0<f<m (11.39)
Indeed
v+o=p
T
¢—¢—7—§
0
= — 11.4
o= (11.40)
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Descriptio 11.1: Euler angles
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The relationship with Gel’fand’s notation is

v = =
O )
9 — 0 (11.41)
In SO(3) language this is
cos Y siny 0 1 0 0 cos ¢ sing 0
R=|-sintY cosy 0||0 cosf sinéb —sin¢g cos¢ 0=
0 0 1 0 —sinf cosf 0 0 1

cos 1 cos ¢ —cos 6 sin ¢ sin ¢ sin ¢ cos ¥ + cos 6 sin P cos¢  sin 6 sin P
—cos ¢ sin Y — cos 6 cos 1 sin ¢ —sin 1) sin ¢ + cos 6 cosy cos ¢ sin O cos Y
sin 6 sin ¢ —sin 0 cos ¢ cos 0

Please note that this matriz transforms the unit vector along the third axis
to the vector

0 sin 6 sin
0]— |[sin @ cos ¢ (11.42)
1 cos 0

corresponding to the direction n = (6,5 — v).

11.1 The Lie algebra &11(2)

Start with
TeGUR)=T=T" & trT =0 (11.43)

The most general solotion is
a b
T = (c d> (11.44)

with
a=a
b=c
d=—a (11.45)
That is
T = <x jzy x:;-”) = 201 + Yoo + 203 = T (11.46)
The Puli matrices generate the simplest Clifford algebra.
{oi,05} = 20;; (11.47)
[0,0;] = 2ieiL0% (11.48)
so that
0;0j = 0;j + 1€;10% (11.49)
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11.2 Highest weight representations of &l(2)

Let us review the representations of the SU(2) algebra that you are already
familiar with from quantum mechanics. We shall do it in a way which
generalizes to arbitrary groups. The algebra reads

[JZ‘, Jj] = ’iéiijk (11.50)

Define e
Jy = L= 2 11.51
+ 73 ( )

We are looking for finite dimensional unitary representations. Let us call
j the highest value of Js.

J3lj, @) = jlj, @) (11.52)

First of all, just because it is a highest weight state, we can easoily determine
the value of the casimir

Jr=Jt+ I3+ T3 (11.53)
J_Ji|j, gy = 0= (J> = J5 = J3) |3, 5) (11.54)

then
5,9 = 3G+ V)ld, 5 (11.55)

Were there more than one highest weight state, we normalize as

GaljB) = dap (11.56)
If we define ; J
+ iy
Jt=2"1=""2 11.57
2 ( )
Then
[J3, JE] = £J*
[J*,07] = J; (11.58)
so that
J3JE|my = JEm|m)y + JF|m) = (m + 1)JF|m) (11.59)

We have assumed from the beginning that there is no state with Js = m+1;
then it must be the case that Vo

Jtj,a) =0 (11.60)

as well as
J7lja) = Ny(a)lj — 1, ) (11.61)

126



Let us compute

Nj(B)Nj(a)(j =1, 8lj = 1,00 = Gy al JTT 7 |j,0) = (Goal [JTT 7] |j, 0) =

= <j,Oé|J3 = |]7 Oé> = jéaﬁ (1162)
Then we learn that
Nj(@) = Nj =+/j (11.63)
On the other hand
. 1 . S
TG =Ly = 517771 e = /il @) (11.64)
J
In general
J7lj—k,a)y=N_|lj —k—-1a)
JHj—k—1,a) = Nj_p|j — k) (11.65)
Actually,

Njop =G — k=11 — k)
Njoh =G — kIt j—k—1) = N*, (11.66)

We choose phases in such a way that

Nj_x = Nj & (11.67)

INj_k[2 = G = kyal J*T1j = kya) = G = Kyl [T4T7] [ = kya) + G — kyal J7T*|j — k,a) =

= Nj_ k1P +j—Fk (11.68)
Then we have a series of the type
. . . . . k(k+1
a = ag-1+tj—k=ap2+j—k+j—k+j—(k-1)=...= ao—kj—<2)
(11.69)

that is
k(k+1) k+1

2 2

NP = (k+1)j— (25 — k) (11.70)

in other words,

Nm _ \/(j + m)(jQ_ m+ 1) (1171)

We are looking for finite dimensional representations. This means that
necessarily we must real some m = j — [ such that

Jli—1la)=0 (11.72)
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This is only possible if there is a certain value of k = [ such that

(25— +1)

0=N,;_; = - (11.73)
which means
l=2j (11.74)
We learn that l
j = — 11.75
j=3 ( )

where [ € N, just because it counts the number of times we have applied the
operator J_ . Besides, from now on we can drop the index «a.
We can summarize, in the usual notation

<j7 m/‘J3|ja m> =m 5m’,m

Gl |5 gy = A SO
R e
(11.76)
11.3 Spherical Harmonics
Let us assume there is an action of G in M, that is
GxM-—>M (11.77)
(9,2) > g.@ (11.78)

Then there is a representation of the group in the space of functions on M,
F()
FeFO) — (Tyf) (x) = f (g 'x) € F() (11.79)

It is indeed a representation, because

T, (1f) () = Ty (h"'2) = £ ("9 ™'2) = £ ((gh) " 2) = (Tyuf) (@)
(11.80)
Consider now the two-sphere, M = S;. Let us consider an infinitesimal
(negative) rotation around the axis OZ. It must be so that

(Tof) (0.6) = F(0.6 — a) = £(0.) — agg . (11.81)
Then
Ay=—2 (11.82)
3= "5 .



Now consider the (again, negative) rotation around the axis OX.

¥ =ux
Yy =ycos a+ zsin «

2/ = —ysin a + zcos a

It follows that

3—2 I =0=C080% cos ¢ — sin ¢% sin 6
% = F —cos 0 = cos 9% sin ¢ + sin 6 cos gzbﬁl%
j—;azozy:siDG(zosqb:—sinG%
which yields immediately
% = —sgin ¢
d
2~ 2t cos g
so that
Ay =i qba—i—cotﬁcosgba
! a6 ¢
In an analogous way we get
0 0
Ag = —cos ¢ — + cot 0 sin ¢p —
2 o 0 ¢ 29
The hermiyian generators are
H;, =i4A;

H.=H|+iHy=1A] — Ay = e'? (6% + i cot 9%)
H_=H, —iHy=iA; + Ay = ¢ <_6% + icot 9%)

Hy = idz = —i%

(11.83)

(11.84)

(11.85)

(11.86)

(11.87)

(11.88)

(11.89)

Let us denot the (21 + 1) eigenfunctions corresponding to weight [ by

Vi (0,0) m = —1,...,1

First of all, we want that

e,
H31/2m = _Z%lem = mYzm

Then

Yinl0.6) = —5=e™ F"(0)
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is normalized by

J\Ylm(@,d)ﬂ sin 0dfd¢ =1 (11.93)
provided
f: sin 00 |E™(0)2 = 1 (11.94)
Let us now impose that
H?Y™ = 1(1+ 1)Y;" (11.95)
2
—H? = sii 0;9 (sm 9;0> + Smlze(j& (11.96)

In terms of y1 = cos 6, and defining P/ (u) = F;"(cos 6), the ODE reads

d AP (1) m* N\
m ((1 — %) iiu ) + (za +1)— w) P (p) =0 (11.97)

which defines the (normalized) associated Legendre functions

(I +m)! 2l+11 mdl—m
4/ - 4/ 2lz' 2 dﬂl_m(,ﬂ—nl (11.98)

The functions Pj(p) = P (1) happen to be polynomials; the Legendre
polynomial of order l

/2l+1 1 dl !

11.4 Spinor representations

No all representations of SU(2) are also representations of SO(3), only those
with [ € N qualify for that. The rest, that is, the ones such that [ € 2NT+1 are
the famous spinor representations, sometimes called somewhat confusingly,
bivalued representations of SO(3).

First of all, for the s = % representation

1
v = o (o "5 0” (11.100)

Hy = —%ag (é) - —% (é) (11.101)

(2) (11.102)

In particular



Let us denote

Ca: €= (é) ey = (g) (11.103)

It is easy to find the space of functions for such representations. It is the
space of symmetric spinors with n = 2s indices.

A=alre, ®.. . Qes, a;=1,2. (11.104)

The SU(2) action is given by

a(aﬁ"“és)ea,l@,,_@e% = (al“‘O‘QS)TSl/l@...®7’§2/2;ea1®...®6% (11.105)

Yoo (5 U)aten -

= 2P glaran)e, @ ... ® eq, (11.106)

It is a fact that

1
H3 a(al...an)eal ® . ® 60471 = a(a1...an) <_02

= O
M\H
= O

where p; counts the number of times the value 1 appears amongst the set
of indices, and po likewise for the value 2.

We need
pr=1l—m
po=1+m (11.107)
in order that
Hya e, ®...Qeq, = mal™ e, @...Qeq, (11.108)
e Let us compute J? for s = %
THpg = 5l %3 b = 3% = s(s+ 1)tha (11.109)

e Let us repeat now the computation for s =1

- 6‘?.

(Fv) =T vapy + L b
(i9)
= Fo [ Fu ol
¢>Z|b = % (%djuj + TJwau) +
b *u oU
( D) 7#ub jb'¢ = 21%’ = 8(8 + 1)1/)1'3' (11.110)

We have used repeteadly

&l = 28t6] — 870}, (11.111)
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e Diagonalizing o3
(o)l 3+ = £t (11.112)

An eigenstate pf J3 with eigenvalue j; will be given by

b — (CH)SW (gf—)sfjé (11.113)

We can simplify the notation as shown because all indices are totally
symmetrized anyway.

Denote
G=a G ra ¢ (11.114)

Then

G Gy, = S 0t i (sl (11.115)
Jz

For example, when s = 1/2

i i 11 1 1
a4 Ci; + a_CTipy — alal < ) ¢> falal < _ ‘ ¢>
e For a general direction, n = (6, ¢)

A+ ¢ —g* 2,4+
)6 D) v

with
C = COS g
s=e“sin g (11.118)
Then

PSdn = (Cﬁ,+)5+jﬂ (Cﬁ,—)sfjﬁ _ (C<2,+ _ s(éﬁ_)sﬂ'ﬁ (S* St CCé,—)S*J’ﬁ _
_ qu (sJ;jﬁ) (s—qjﬁ) (CC27+)8+jﬁ_p (—s Cg,_)p (s* €§,+)s—jﬁ—q (ng,_)q —
=3, Ry . (0,0) v (11.119)

where

R;nz (9, g[)) = Z (S + ]ﬁ) <3 - ]ﬁ) Cm+(_8)s+jﬁ—m+ Cs—jﬁ—m, (S*)m*

m4;my+m_=s+j; m+ m—
(11.120)
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e Let us revisit spherical harmonics from the spinor viewpoint. Let us
define as usual

ol =7 = <:hfzy ””:Zzy) (11.121)
AH4 also define
v ek = (T@TW) 2 (11.122)
= Sk T z x + iy ’

in order to build irreps
Chgi . oy ey, = ((C)° (11.123)
Let us choose z as the unit vector with

T + iy = sin He'?

z = cos 0
G = (O“r’a*)
(=€ = (—a_,ay) (11.124)

Now it is a fact that

—s* ¢ % 2 2
(—a_ a+) ( ) (—a_ a_) =—s"a’ —2caya_ + sai

c s
(11.125)
11.5 Product representations
It is possible to construct the tensor product of two irreps.
D(g) = D1 ® D, (11.126)

The basis of the product space is just the tensor product of the two basis
e1 ® ez (11.127)
This is trivally a representation. Its action on the natural basis is given by

Dy (e1®e2) = elad (e1®e2) =e1®eg + (ader) ®ex + 61 ® (hes) + ...
(11.128)
This should be familiar from the addition of angular momentum in
quantum mechanics. It is clear that the generators of

D=(1+T)Q(1+T) (11.129)

are

1T)®(T®1) (11.130)
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In &1(2), since we work in a basis where J3 is diagonal, the values of J3 just
add.

J3 (lj1m1) ® [j2ma)) = (m1 + ma)g [j1m1) @ [j2ma) (11.131)

Consider, for example, the product of the three-dimensional irrep with the
two-dimensional one, 1 ® 1/2. We shall analyze this tensor product by the
familiar highest weight technique.

The highest weight state is unique

13/2,3/2) = [1/2,1/2)® 1,1 (11.132)

Now, remembering that

Tl = \/(j + m)(j2— Mt -1 (11.133)

we get

J713/2,3/2) = \/§|3/2, 1/2) = \/;1/2, /2@ 1,15 + [1/2,1/2)® |1, 0)
(11.134)

13/2,1/2) = \/?1/2, -1/2)®|1,1) + \/31/2, 1/2)®|1,0) (11.135)
There is an state orthogonal
) = \/§|1/2,—1/2>® 1) - @1/2, /D@L (11.136)

This will be later taken as the highest weight of another chain.

J713/2,1/2) = v/2|3/2, —1/2) = \/§|1/2, “1/2)®]1,0) + \/g\@u/z, ~1/2)®[1,0) +
V2,12 @11, -1y = 1 [411/2,-1/2) ® 1,0 + /312, 1/2) ® |1, ~1) (11.137)

then

13/2,—1/2) = \/31/2, ~1/2)®|1,0) + \/gu/z, 1/2)Q |1, —1) =
(11.138)

Here also there is another state orthogonal

) = \/?1/2, ~1/2)® 11,05 — \/?1/27 1/2)®]1,-1) (11.139)
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Let us apply the operator J~ once more

J713/2,-1/2) = |3/2,—-3/2) = \/?1/2, -1/2)®|1, —1>+\/§|1/2, -1/2)®|1,-1) =11/2,-1/2)®|1,—1)
(11.140)

Let us now check that the state ¢ is a good candidate for a highest weight
state. For this to be true it is necessary that

Jtpy=0 (11.141)
then
Ty = /211/2, -1/ @ [1,0) = /51 /11/2. -1/ ® 1,00 — 1 311/2, /D @ 1, 1) =
= \/211/2,-1/2® 1,00~ 1 /111/2, 1/ @ 1,-1) (11.142)
that is, we identify the two orthogonal states we have obtained as
W) =11/2,1/2)
o =11/2,-1/2) (11.143)
That is,
1®1/2=3/201/2 (11.144)
11.6 Wigner-Eckart
A tensor operator Of | = —s...+ s) transforming under the spin-s repre-

sentation of &U(2) is a set of 2s+1 operators such that

[Ja, O] = O, (J3) (11.145)
In the standard basis
(—s < 1,I' < s); so that
[J5,05] = 10} (11.147)

A trivial example is a particle in an spherically symmetric potential. Then
Jo = Lo = €apepPe (11.148)
and
[Ja, 5] = —icaebTe = e (Jgdj>cb (11.149)
To go the canonical basis, first realize that

o = X3 (11150)
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ans then

[JE,20] = 241 = —xliﬁm (11.151)
Twnsor operators have got the interesting property that
JaO; |jmay = Ofljmay (J3)y + Ofljm'ey (J]), ., (11.152)
this is the transformation of the tensor product
S®j (11.153)
Note inprticular that
J307|jma)y = (I + m)Oj|jma) (11.154)

The Wigner-Eckart theorem states that
T,m! BlOV |7, my ) = 8y ipm{ T, L+ mls, 3, 1, m)(T, B]O%|j,a)  (11.155)

Let us work out an example in detail.Let us assume known the matrix

element
( 11
2’92’

and we would like to compute <%, %, oz|x1|%, %, B). First,

11

= 7( T+1 + x_l) (11157)
Starting with the highest weight state
33 11
’2,2>—x+1 > 2> (11.158)
we get
31 2 33 2 11
— = y=Al=J |2, = y=4/=J" -, = 11.1
But using
J xi =20+ T01J (11160)
‘ > \[xo > \[xﬂ > (11.161)
Finally

={3:313,3) = \/7<272|$0|2’2>+\/7<272|$+1‘27 3£11.162)

This implies that

11 1 1
—, = —y=—2A 11.163
<272 T41 2> \/> ( )
and finally
11 1 1
-, = ———>=A 11.164
<2,2‘l‘1 27 2> ( )
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12

Roots and weights

A Cartan subalgebra is a maximal abelian subalgebra; that is, a set of
commuting generators H; = H;" as large as possible

[Hi, H;] =0 (12.1)

The dimension of the Cartan subalgebra is called the rank of the group.
In the case of SU(2), the rank is one and the only H is precisely J3. The
normalization in a given irrep is defined (Georgi) as

tr (HZHJ) = kD(Sij (12.2)
Humphreys defines a symmetric bilinear form as
B(X,Y) = tr (D(X), D(Y)) (12.3)

which then uses to define the dual basis of the Lie algebra ¢. .
In a more intrinsic way, Adg $ is simultaneously diagonalizable. That is,
¢ is the direct sum of the subspaces

¢o={Xec¢ [H X]=a(H)X VHeH} (12.4)

where v € H*. It is plain that ¢y is simply Cg 9, the centralizer of $.
The set of nonzero roots a € H* is denoted by ®. This yields the Cartan
decomposition of the Lie algebra

¢ = Ce9H B Uaco Lo (12.5)

It can be proved that the restriction of k to H is nondegenerate. This allows
to identificate H with H*:

peH+x—>Tye H (12.6)

such that
O(H) = A(Ty, H) (12.7)
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The states of a given irrep will read

Hilp) = pilp (12.8)

The eigenvalues are dubbed weights. They obey
(12.9)

Hi = [
because they are eigenvalues of a hermitian operator. The vector u; € R,

is called a weight vector.
Let us remind ourselves of the adjoint representation. In order to define

it, consider a linear space with an state associated to every generator

Xo — | Xo) (12.10)
with the scalar product defined as
1
(Xo| Xp) = X tr XX, (12.11)
(12.12)

in such a way that
(HilHj) = b

It is plain that
Xa|Xp) = Yo | X)X Xe| Xal| Xp) = X Xe (DGY) , = —ifach| Xe =
= 2.fabc|)(c> = |ifachc> = | [Xa,Xb]> (12.13)

It is plain that for the states corresponding to the Crtan generators the

weight vanishes
H|Hy) = | [Hy, Hy]) = 0 (12.14)
The other states have non zero weight vectors
H;|E,) = «;|Ey) (12.15)
This equivalent to
[H;, Eo] = o Eq (12.16)
This generators cannot be hermitian, because
|Hi, Ef| = —aE} (12.17)
(12.18)

which means that
E_, = E;r

This is the generalization of the well-known elements J in the SU(2) case.

Is it possible to normalize in such a way that
1
(Eo|Eg)y = X tr ESEg = a5 (12.19)
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It is fact of life that the Fy, are lowering and raising operators for the
weights. Starting from

Hilu) = pulis) (12.20)

we get
HiEiolp) = ([His Eval] + ExoHi) 1) = (o + pi) Exalpy  (12.21)

In particular, the state
E.|E_o) (12.22)

has zero weight, so that it must be a linear combination of Cartan generators.
BalE_o) = BilH) = |B.H) = | [Bay E_a]) (12.23)

The constants 3; are given by

1 1 1
Bi = <Hi’Ea’E—a> = X tr (Hz [Eou E—a]) = X tr (E—a [Hu Ea]) = Xai tr E_oEy = oy
(12.24)

We conclude that
[Eo, E_o] = a.H (12.25)

It so happens that for any non-zero pair of root vectors, +«, there is an
SU (2) subalgebra, with generators

J, = ﬁ Eia
Jy = % (12.26)
Indeed,
1 1 H
[WEQ7 ‘a|E—CM:| = aaz
[%’Eia] = Eia (12'27)

From that we can prove, for example, that root vectors correspond
to unique generators.

Demonstratio. Let us assume that there are two, E, and E!, and we shall
get a contradiction. Choose adequate linear combinations in such a way
that

(Bo|EL) = %tr (EXE,) = %tr (E_oE,) =0 (12.28)

We now act with the J_. This has zero weight vector, so that it is in the
Cartan subalgebra. But

CHLLT L) = St (HL [T BL]) = o (- [Ho BL]) = =St (1) = 0
(12.29)
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It follows that
J_|EL) =0 (12.30)

But this is not possible, because
J3|Ey) = |Eq) (12.31)

and the lowest state in a spin 1 representation vcannot hace Js eigenvalue
+1. [

More is true: If « is a root, then no non-zero multiple of o (except
—a) is also a root.

Demonstratio. It is not difficult to stablish a contradiction between the
SU(2) associated to 2« and the SU(2) associated to a. O

Assume now we have a rep D with weights p;. Consider the action of
the SU(2) associated to some root «

aH .l
Jslw) = —5|w = o2 |1y (12.32)

|of?
But we know that the J3 allowed values are either integers or half-integers.
FErgo

20014

02 eZ (12.33)
Now the state |y can always be written as a linear combination of states
transforming according to definite reps of SU(2). Assume the highest spin
state appearing in this linear combination is j. There must necessarily exist
an integer p such that

JV\py #0 (12.34)

but
JIH Ly =0 (12.35)
Then

a.(p+pa) o ,

Likewise, there must be another integer, q such that
Jpy #0 (12.37)
but
J =0 (12.38)
Then
Ap—g0) _ap (12.39)

o? o?
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It follows that
ap  p—gq
One can also consider the « string through « itself. It is clear that in
this case
q—p=2 (12.41)

But we know that p = 0, because 2« is not a root. Then q=2. This just
reexpresses the fact that 0 and —« are also roots.
In [13] ia defined the a-string through [ as the set of roots

B—qa, B—(¢q—Da,....B,...,0+ pa (12.42)

and it is a fact that
B(Hy) = —(p—q) (12.43)

There is a formal identification of H* with H:
a€H* < H,eH suchthat «(H)=~r(Hy, H)VHESH (12.44)

Let us, against the famous Coleman’s advice, belabor this point.
Given a basis H; € $ and the dual basis o in $*

o (Hj) = 6 (12.45)
Then any H € , H = Y, h'H; and a(H) = h’ so that
ht = Ky (H,i)*h! (12.46)

and A A
fw (Hy) =60 = (Hy)" =k (12.47)

«

and the formal identification is explicitly given by
B = ,BiOéi = Hﬁ = ZBZK’“ Hk = Z ﬂk Hk (12.48)
Also, a scalar product in the root space is defined through

(, B) = ki (Ha, Hp) EZai B; (12.49)

One immediate consequence is as follows. Defining the &l(2) algebra

with EF,
a.b 1

X2 (- 12.
= —-0) (12.50)
Defining the &11(2) algebra with Eg yields
B.a L, !
= (p — 12.51
=50 =) (12:51)
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The angle between both roots then is determined by
(.8 _ (p—a)' —d)

2 n_— _
cos” 0 = 04252_ 1

There are only four possibilities

(r—9 —q) 4
0 90 = 2
0 _ =. 21
1 600 = g, g
_ . us
3 30° =%; &
12.1 SU(3)
Let us define the Gell-Mann matrices
010
M=1[1 00
0 0O
0 —i 0
=17 0 O
0O 0 O
1 0 0
AM=[0 -1 0
0 0

>
=
1]
/
= o O
O O O (an)
S O =
N~

>
&
Il
S )

(12.52)

(12.53)

(12.54)

(12.55)

(12.56)

(12.57)

(12.58)

(12.59)

(12.60)

(12.61)



We define the &l(3) generators in such a way that

1
To= 3 (12.62)
and
1
tr 1,1y, = iéab (12.63)
It is clear that
{1, 15, T3} (12.64)

generate an SU(2) subgroup.
Let us choose the Cartan subalgebra to be

{H1=T5 Hy=T1Tz} (12.65)

The weights in the fundamental representation are

3
6
es —> ( _§) (12.66)

Weights for the vertices of an equilateral triangle of side 1 in the (Hy, Hs)
plane

The roots are differences of weights. This often the best way to compute
them.

e1 —ez = (1,0)
er—es = (3,%)
ex —eg = (—1,%%) (12.67)
It is a fact that
Byig = T
Eiep = e
By v = Tﬁ\i/gﬂ (12.68)

Roots form a regular hexagon in the (Hj, Hs) plane.

In an arbitrary Lie algebra (and in some basis) we will say that a given
weight p is positive if its first non-zero component is positive, and negative
if its first non-zero component is negative. This property defines an ordering,
to wit

u>ve=pu—v>0 (12.69)
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( ﬂ?/c (41 ; f‘z{zg)

Descriptio 12.1: Roots and weights of SU(3).
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The highest weight in a representation is then defined in an obvious way.

In the adjoint representation, positive roots will correspond to raising
operators, and negative roots to lowering operators. The highest weight
state must be annihilated by all positive roots.

In the particular case of &WU(3), positive roots are on the right half of
the cartesian (Hp, Hy) plane, and negative roots are on the left hand side of
it.

Again, in a general setting, we define simple roots as positive roots
that cannot be written as sums of other positive roots. Let us call A the
set of all simple roots. It is fact of life that from the geometry of the simple
roots, it is possible to reconstruct the whole Lie algebra. Let us see how.

o If a and § are different simple roots, then o« — § is not a root. Proof.
This is so because otherwise either

a=pF+(a—p) (12.70)

or else
f=a+(f—a) (12.71)

(depending on whether « — > 0 or f — a > 0).

e This implies that
E_|Eg) =E_g|E,) =0 (12.72)

Then using the master formula

o.fp P—4q

FEER (12.73)
we learn that ¢ = 0. Also,

Ba _ p—q

implies that ¢’ = 0. This means that we know the relative length of
the roots, as well as the angle between them.

B _p
/
cos Op 3 = — ]20]9 (12.76)
e A trivial consequence is that
™
5 <bup<m (12.77)

(remember that simple roots are positive).
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Then all simple roots are linearly independent.

Demonstratio. Assume

D Cac=0 (12.78)
«
which can be rewritten as
[ = i (12.79)
with
py= Y, a (12.80)
Ca>0
po= > a (12.81)
Ca<0
But this cannot be, because
(e —p=)® = pd + 4% = 2up e >4 + 2 >0 (12.82)
and pyp— < 0. O

Any positive root can be written as a linear combination of simple
roots with non-negative integer coefficients

¢ =) Koo (12.83)

There are exactly [ (rank) simple roots.

Demonstratio. It this were not true there would be some vector £
orthogonal to all simple roots (and therefore orthogonal to all roots),

Voe®, [£H,Eyl=0 (12.84)
This would mean that the algebra is not simple. O
When we write
B= ) Ksa (12.85)
ael

Call the height of a root the number

ht 3 =) K, (12.86)

If all K, > 0 we say that 3 is positive.
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e Let us spell in detail how to build all roots out of the simple roots in
the simple case of &l(3); this then is easily generalized by induction.
The simple roots are

Q] = (%a ?)
as = (1,-4L) (12.87)
with
a% = a% =1
a].09 = —%
201.00 _ 2a0.01 _
aoléi%az - a;i%m T (12.88)

Thus p=1 for both a; acting on |ag) as well as for as acting on |aq).
Then

a1 + a2 (12.89)

is a root, but neither oy + 2c9 nor as + 2cp are roots.

12.2 Dynkin diagrams

Remember that we found some time ago that

EAp=1]
o _g=—j (12.90)

o2

It could be the case that |u) has lower spin components; but j is the
highest one. The value of j is determined by

ptq=2j (12.91)
In case |y is a root |y = |5) in the adjoint representation, the situa-

tion is simpler, because we know that each root appears only once in
the adjoint, and we conclude that

18y = 17 %’25> (12.92)

which is completely determined up to a phase. Let us check this in
the case of &U(3). The root diagram is built out of

{on, ag, 1 + ag, —ay, —ae, —ag — ag} (12.93)
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To this one has to add the two null roots to get the eight fimensions
of the algebra. Besides, we know that

04% = a% =1
—_1
Q1.9 = D)
araz _ oo 1
o? = a2 T 732 (12.94)

Also, we know how H; commutes with everything, so that the only
thing missing is the
[Hi, Eq] (12.95)
Consider the operator E,, +q,. We know that p =1 and ¢ = 0, so that
p+qg=1=2j (12.96)
We have
J(a1)+|Ea2> = ‘Tlﬂ Eal‘EOé2> = Eq, ’Eaz> = ’ [Ea17E02]> (12.97)

Under the &U(2),,

|Eaz) = ‘; —;> (12.98)
because o .
5 Bay) = %%QIEW = —51Eas) (12.99)
But we know that
Ji ;—;> = \}5 ‘;;> (12.100)

so that we learn that

1 ]11 1

—|=,= Y= —=n|F 12.101
5|53 = 7 Baues) (12.101)
where 7 is a phase, which we can choose equal to 1, as our convention. It

follows that
’Ea1+a2> = \/Q |[Ea17Ea2]> (12.102)

so that
Bartaz = V2 [Bars Bas) (12.103)

The Jacobi identity applied to [E_q,, [Fa;s Eas]] + - . - now determines both
1
V2
(which is part of the &U(2)* algebra, so that it was already known) as well

as

[E—a1) EBaytas] = —= Easy (12.104)
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1

[E—a27Ea1+a2] = _E Eocl

The phase (—1) is fully determined now.

(12.105)

The Dinkin diagram associetes simple roots with open circles. Pairs of
circles are connected by lines, depending on the angle between both roots:

e No line if the angle is 5 = 90° = |a.8] =0

e One line if the angle is %’r = 1200 = la.B] =

e Two lines if the angle is 3@{ = 1350 — || =
e Three lines if the angle is 27 = 150° = |a.3|

—1.]a|8|
—¥2 |a||8]

= — % |allf]

In the figure we have indicated the real compact forms of the complex
Lie algebra. There are also non-compact real forms of the same complex
algebras, for example, a non-compact form of SU(n) is SL(n).

The dynkin diagrams evidences some isomorphisms between lower rank

algebras.

SO(3) ~ SU(2) ~ sp(2)
SO(4) ~ SU(2) x SU(2)
SO(6) ~ SU(4)
SO(5) ~ sp(4)

12.3 The exceptional algebra &,

This algebra has got two simple roots

= (0,1
_ <£ 3)
= 2
It follows that
a?=1
a2 =3
a1.009 = D)
201«
o =3
201 .«
ﬁ =1
. — _ _ /3
foaljas] = €08 th2 = =7
619 = 1500
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Descriptio 12.2: SU(3) simple roots.
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Descriptio 12.3: Allowed angles between roots.
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Descriptio 12.4: The Classification of simple groups.
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The Dynkin diagram is simply two circles united by a triple line.
The «; string through a9 has got p = 3. The ay string going through
«q instead has p = 1. This means that

P2 =01 + ap
¢3 = 201 + g
¢4 =30 + a2 (12.109)

are all roots.
e We known that the ¢3 state is unique because a; + 2as is not a root.

e In order to check whether there is another state at level 4, we have to
check whether 2a; + 2ag is a root (could it be reached by acting on
¢3 with a simple root (aw9)?)

2a2(2a1 + 052)

2
Q3

=2+2=0=—(p—2q) (12.110)

But we already know that ¢ = 0 because 2a; is not a root, so that
p = 0 and 21 + 2a9 is not a root. Another argument is that it is twice
a root, namely a; + a9, and no multiple of a root can ever be a root.

e We know that 4a; + a9 is not a root. The remaining possibility at
level 5 is 3y + 2as.

202(3a1 + ag)

2
Qs

=-34+2=-1 (12.111)

But we know that ¢ = 0 which means that p = 1, so that 3a; + 2as is
a root.

e Also, 3a1 + 3as is not a root, so that at level 6 we only need to check
daq + 20

2011 (31 + 2a9)

2
a7

=6—-6=0 (12.112)
We know that ¢ = 0, so that we are done.

We have uncovered the 12+2 roots of ®s.
In general, in order to keep track of the integers p; and ¢; cooresponding
to the action of a simple root «; on a state |¢), Aassume that the positive

root ¢ = >,k (with k; > 0); then

« (% ;
7 ) j

20.0; 200,04
4 —Pi = 7¢2 = Z k; 32 = Z k;Aj (12.113)
J
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where the Cartan matrix is defined as

L 2005.0
Jr = 2
1

A (12.114)

Qs

Its diagnonal entries are all equal to 2. For &U(3) the Cartan matrix is

A= <_21 _21) (12.115)

A= (_23 _21> (12.116)

Now when we go from ¢ to ¢ + «; by the action of the raising operator F,,,
this changes k; to k; + 1 so that

And for &9

% —pi —> ¢G—Dpi+A; (12.117)

It is now easy to work this out in gory detail in the &U(3) case. The Cartan
matrix gives the ¢; — p;, and we know the value of ¢;, namely ¢; = 2 for the
root «; itself (because it is the J; of an @U(2)), whereas ¢; = 0 for any other
root (because a; — o is not a root). Let us work out Ay = &(3) again in

detail. Cartan’s matrix is
2 -1
A= (_1 9 > (12.118)

e Consider the apg string through «; (in this case q=0 because a3 — ay
is not a root).

A=Ay =—-1=q—p (12.119)

Then a; + a9 is a root; but neither a7 + 2a9 nor as + 2 are. We
have then three roots (plus the negatives) plus two H; these exhaust
the 8 dimensions of the algebra.

In the case of Go, we start with

root q—p
ar | [2,-1] (12.120)
Qa2 [_37 2]

This means, for the as-string through «; (q=0, because a; — ay is nort a
root), that p = 1, so that oy + ay is indeed a root, but a; + 2y is not a
root. «i is then the highest weight of a doublet of SU(2)4,. On the other
hand aq is a triplet under SU(2)qs,: @2 + 2a7 and ag + 3a; are also roots
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(nut this is not the case with ao + 4cy). Consider the as-string through
B = as + 3a1. It so happens that

25.0&2 2 -3
=Z2(3+3(2= =—1=qg— 12.121
T T3 ( + ( 5 )) q—p ( )

Giving the fact that we know that q=0 (because 3a; is not a root), this
means that v = 2as + 3oy is also a root. (f,7) form a doublet under
SU(2)a,-

12.4 Fundamental weights
The highest weight of a rep is such that
L+ ¢ (12.122)

is not a weight for any positive root ¢. This is equivalkent to

20&1.,&
Ealiy=0 & =5==1;>0 (12.123)

i

The integers [; are the Dynkin coefficients. It is useful to introduce the
fundamental weights which are m vectors such that

QOéi.IUj
2

Q;

= bij (12.124)

The highest weight can the be written as

=l (12.125)
For example, for Ay = &lU(3), where the simple roots are
a1 = (%’ @)
az = (3,—%) (12.126)
they read
m=(5%)
po = (3, —%) (12.127)

The defining representation generated by Gell-Mann’s matrices has got 1
as its highest weight. Its Dynkin indices are then (1,0). Start with

Hilpi) = 5l
Holp) = %2 |m) (12.128)
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It is clear that

E—a2|u1> =0 (12129)
because it is a highest weight state, and by definition, pui.a0 = 0.
241
ALOL g (12.130)
a7

This tells us that pu; — a; is a weight, but pu; — 22 is not.

HiE_o,|p1) = E—a,5lm) = (1)1 E—a, 1) = 0
HyE_o|i1) = B, B i) — (01)2 B, 1) = (% - §> ) =

— L) (12.131)
This is then the weight
C = (0,——) (12.132)
M1 1= ) \/g .
Now
QM ~1 (12.133)
@3

This tells us that p; — a3 — a2 must be a weight. We can represent this
procedure as follos

"
- an

(12.134)

The rationale is as follows. The Cartan matrix is

<_21 _01> (12.135)

We start with the highest weight which is the top of an ai-doublet. We
substract the first row of the Cartan matrix, and get to , which
must be the top of an as doublet. We then substract the second row of the

Cartan matric and end up into and we are done
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13

Representations.

Let us rewrite again the SU(3) Cartan matrix in another way (corresponding
to level 0 and level one roots). The boxed numbers represent tha value of

q—p

k=1 [2 -1] [-1 2
k=0 (13.1)

Then we start, knowing that the g-values are

¢=[2 0] (13.2)

because a; — ap is not a root, and each root is in a j = 1 of its own SU(2).
From that, we can go up one step in level

k=2 a1+ a

k=1 2 —1] [-1 2| oq]e
k=0 (13.3)

We know that ¢ = 1 in both case, so that this is telling us that p = 0 and
we are done with the positive roots.

To construct the pg irrep (Dynkin indices (0, 1)) we proceed in a similar
way, and get

o
o
Mo — Gy — q (13.4)

All states in a given irrep can easily be built out of the highest weight
state as
E_qan ... E_qor|p) (13.5)
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Descriptio 13.1: Roots of Gs.
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Descriptio 13.2: Weights of the 3 and 3 of SU(3).
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where

a® e A (13.6)

A scalar product exists in this linear space which is such that given two
subsets of A, @, < A

u|BaB_ g1y~ 0,5 (13.7)

The explicit computation of an orthonormal basis can become easily painful
for large irreps.

13.1 The Weyl group

This is the set of all Weyl reflections. They stem for the fact that the SU(2)
irreps are symmetrical under

J3 — —J3 (13.8)
Remember that 5
Q.

so that

Q. a.fL a.pt
Js [y = ¥|M> — |p—(g—py = —?W—(q—p)fwz —z M

In slightly more formal terms we are multiplying the weigh by the idempo-
tent

. . 9quad
(1) =6 = — (13.10)
It is easy to show that
I2=1 (13.11)
I o= -« (13.12)

In general, we can decompose any vector with respect to the direction of «
v=v] + v (13.13)

then
I%v = v — ’UH (1314)

In the particular case of the 3 = (0,1) of SU(3), all weights are just the
negative of the weights of the 3 = (1,0). This means that the two irreps are
related by complex conjugation.

2

H
«

a2

[Daan] = Z.fabcl)c = [DayDb]* = _ifabcl);k = [_D27 _Dlﬂ* = Z.fabc(_l);k)

(13.15)
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This irrep is usually dubbed D. The irrep D is said to be real if it is
equivalent to its complex conjugate. Otherwise, it is said to be complex.

Given the fact that H;" = H; if u is a weight in D, then —u is a weight
in D. Then the lowest weight of (1,0) is minus the highest weight of (0, 1)
and the other way around.

The highest weight of (n,m) is nu; + mpug, and the lowest weight of
(n,m) is —npe — muq, so that that highest weight of (m,n) is nus + muy.
The irreps (n,m) ans (m,n) are complex conjugates.

Let us work out the (2,0) irrep of SU(3). Remember the SU(3) Cartan

matrix
2 -1
(2 ) 0316

Then the string of weights looks as follows

2
2 — o
-1 2 2/1,1 — 20[1 2/1,1 — 1 — Q2

(13.17)
Let us now look at the Weyl reflections
2a.

I3t 2m) = = 2m) = [2m) (13.18)

Let us begin with the Weyl reflections of pu.

It (,u, = 2/11) =2u1 — 201
I (p=2m) = p
12 (2u1 — 2001) = 21 — 201 — 202

I (21 — 200 — 202) = 201 — 201 — 202 (13.19)

Let is now examine the Weyl reflections of y — a1 = 2u1 — ;. First of all,
191 leaves this weight invariant, because it is orthoginal to ay. Otherwise

142 (2#1 — 011) = 2,[1,1 — Q] — Q9
I (2u1 — o — ag) = 21 — 201 —
I (21 — 200 — ag) = 21 — 201 — Qg (13.20)

Altogether, this is a six-dimensional irrep

(2,0) =6 (13.21)
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Consider now the irrep (1,1). It so happens that
H1+ p1 = o1+ ao (13.22)

which is the highest weight of the adjoint of SU(3), already studied. We
know thet the zero weight is doubly degenerate. Let us check now that the
two ways of getting zero weight ara actually linearly independent.

|01> = E—Q1E—a2 ’Ml + ,U2>

02) = E_a, E_a,|p1 + p2) (13.23)
Our task is to show that

(01]02)* # (01101 )(02|02) (13.24)
Demonstratio. This is easy, because

<01|01> = <:u |Ea2Ea1E*a1E*a2| /L> = <:UJ |Ea2 (E*alEal + Oq.H) E*az| :UJ> =
= {W|Eay (4 E_ayH; — abE_q,) | py = poq — o.cp = % + % =1 (13.25)

<02|02> = <:u |Ea1Ea2E*a2E*a1 | /L> = <:u |Ea1 (E*OQEOZQ + OQ'H) E_q, | :u> =
= (|Ea, (6hE_o,Hi — 04 E_g,)| ) = poag — ag.oq = 3 + 5 =1 (13.26)

<01’02> = <:U’ |Ea2Ea1E—a2E—a1 | :U’> = <:U’ |Ea2E—a2Ea1E—a1 | :U’> =
= (oo Hon H|py = (ag.p) (ar.p) = 2.5 =1 (13.27)
OJ

The (3,0), with highest weight 1 = 3u;. It follows that the string of weights

reads
3p1
31 — a1
1 —ap —an 31 — 2aq
3p1 — 201 — az 3p1 — 3o
31— 201 — 202 [—2 1] 3py — 301 — a2
3pu1 — 3a1 — 20
31 — 201 — 3z (13.28)

All states are obviously unique except the . But this is also unique
because as you can undoubtly prove

E o E_a,E_q, |3:u1> ~E g, B0, E_q, |3/L1> (13'29)
So that (3,0) = 10. Its complex conjugate 10 = (0, 3)
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14

The unitary groups
An_1=SU(N)

Our normalization will be
1
tr (TaTb) = §5ab (141)

The generators of the Cartan subalgebra in the fundamental irrep N are
givenby (A=1,...,N—1; 4,j,k=1...N)

A
1

L0 J S i S VT 14.2

( )Z] 2A(A—|— 1) (k_l kOjk — A04,A4+1 J,A+1> ( )

The N weights (as many as the dimension of the fundamental) are (N —
1)-dimensional vectors, which are the eigenvalues of the H in the Cartan
subalgebra

b=A
1
\N = Oap — Adg 14.3
(1) 4 AT (1;1 ab ,A+1> ( )
For example
1 1 1
pt = (7’ Vi2' VR4’ ’ 2N(N71)) (14.4)
1 1 1 1
MQ _ (_ﬁ’ Vi’ Vel o \/W) (14.5)
2 1 1
NS _ ((), V3 v m) (14.6)
1 1
(14.8)
1
,UN _ ((), 0, 0, ..., 0O, \/W) (14.9)



We can compute the weight length

N—1 1 1 N=1 g 1
1,1
o = Z —_— = - < — > (14.10)
—H2AA+1) 24 \A A+l
Let us dub
N-1 4 N-1 4 1
f(N) = — =1+ _— = — (14.11)
— A = A+1 N
Then N1
1,1 -
= — 14.12
o= o (14.12)
and in fact this results holds for all other weights.
For a < b, for example,
2
pla? = ()" =5 = —35 (14.13)
Again, this results turns out to be generic. We can then write
1 1
a b
o=t = 14.14
o 5 T 50 (14.14)

We shall adopt here a backwards convention: a positive weight is one
such that the last non-zero component is positive. Then

plt> > o> (14.15)

The roots are differences of weights

pt—pu (a#b) (14.16)

Positive roots are
p® — b (a<b) (14.17)

The simple roots are
ot = A — At (14.18)

It so happens that

a®.op = =55 + 30a — (—3x + 30ab+1) = (“zx + 30a410) + (“3x + F0ar1041) =
= 30ab — 300b+1 — 300116 + 30a+1,6+41 = Oab — 30ap+1 — 30a+1p (14.19)

This explains the shape of the Dynkin diagram, the simplest of them all. It
is then plain that the fundamental weights are given by

MA= ) p (14.20)



Indeed
2aPMA = 23507 (uP — pPH) =

= 3= (Gup — 0a.B11) = 0aB

Oeing to the fact that the Cartan generators are traceless,

a=N
2, ni=0
a=1

Then
a=N—-1
MN _ 'ua _ _MN—I
a=1
Then
(15 0 0) = (07 ) 1)
and so on.

165

(14.21)

(14.22)

(14.23)
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15

Orthogonal algebras

The Dynkin diagrams of SO(2n) and SO(2n + 1) are different, and this re-
flects some important differences between the two sets of orthogonoal groups.
Let us first examine the structure of both algebras.

15.1 D, = SO(2n)

The Lie algebra consists on imaginary antisymmetric matrices of dimesion
2n- There are n(2n—1) of those. The Cartan generators in the fundamental
representation can be chosen as

i = —1(052m-10k 2m — Ok 2m—105,2m) (15.1)

(a =1...n, the rank of D,,) For example, for Dy in block form

1 () O
)

H? = (0 0) (15.2)

0 o9

The corresponding eigenvectors are

+eb =i op 1 140,08 (15.3)
For example,
1
+el = Jf)i (15.4)
0
0
+e? = (1) (15.5)
+i
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In general
Hy(+eb) = 68 (+eb) (15.6)

This means that the weight vectors are given by
("), =0y (15.7)
Roots are given by

+e+ e (a#b) (15.8)

There are n(n — 1) of those (= n(2n — 1) —n). The positive roots are given
by

e +e (a<b) (15.9)
Finally, the simple roots are given by
Hoa=1...n-1
4 en (15.10)

€® — ¢

It is plain that

(Ea _ 6a+1)2 -9
(611 _ 6a-i-l) (€a+1 _

€
cos f = —3 (15.11)
On the other hand the two last simple roots are orthogonal

(" t4e)(ent—e")=0 (15.12)

15.2 SO(2n+1) = B,

This algebra has an extra one-dimensional subspace associated with a zero
weight. The dimension of the algebra is n(2n + 1). The Cartan subalgebra
is the same, with one extra row and column. For example

H= (%2 8) (15.13)

There are extra roots connecting the extra dimensional subspace with the
others:

+e (15.14)



Altogether, we have 2n extra roots, which is the difference between the
dimensions of B,, and D,,. The positive roots are just

e@+e (a<b)
e (15.15)

The simple roots

€" (15.16)

What happens is that €?~! + €" is not simple anymore, because it is (¢"~! —

€") + 2¢™. This changes the angle between the two last roots

(vl — ). e = —1
cos 0 = —% (15.17)
The fundamental weights are
1=a )
M=) ¢ a=1..n-1 (15.18)
i=1
1i:n ]
M" = 3 € (15.19)
i=1

Indeed

IME b:Z; Clbez (Eb_€b+1) = 0u
Mt = 22; 71l61( a 6aJrl) —
2Mma” = YT e =1 (15.20)

Weyl reflexions of M on all roots €* yields the set of weights

<MY = (1 —2e"®e€”) Z 726—26 (ielie2-|_-...ie”)

l\')\»i

(15.21)
This is a 2" dimensional representation, the spinor representation. We shall
work in a rep space which the n-th tensor product of the two-dimensional
space S of the spin 1/2 irrep.

S®.."®s (15.22)

Then the Cartan subalgebra is given by one %03 in the j-th position

1 1
szl®...®§03®...®1550§ (15.23)
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Then it can be shown that

1.1 j—1 _j
E.y=305...0% ok (15.24)
To summarize,
1.1 Jj=1_j
M2j—172n+1 = 50’3 ...03 O
_ 1.1 J—1_j
M2j72n+1 = 50'3 ...03 O (1525)

and then all other generators are determined by the algebra

Mab =—1 [Ma,Qn—la Mb,anl] (1526)

In the case of D, 1 = SO(2n + 2) the roots are

ol = — gt

atl = en 4 entl (15.27)

There are two special representations corresponding to the last two
fundamental weights. Let us call them D™ and D"*!

,unE%(el—i-...-i-Gn—EnJrl)
prtt =1 (el 4 et et (15.28)

—_

Under the SO(2n + 1) subgroup generated by
My, jk<2n+1 (15.29)

both representations transform like the spinor representation. It can be
shown that in D™ the extra generator in the Cartan subalgebra reads

1
Hpi1 = Map1,2n42 = —5031) ..oy (15.30)
and in the other representation D™*!
1
Hy11 = Moni12n+2 = 505 ...03 (15.31)
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15.3 Clifford algebras

The simplest definition of a Clifford algebra is through the relations

Given a representation of the Clifford algebra, there is an associated repre-
sentation of SO(N) given by

7

M;; = 1

[Vis 5] (15.33)

The gamma matrices themselves transform with the fundamental D' = N
of SO(N)

[Mjk, ] = i (807 — Oravj) (15.34)

For B, = SO(2n + 1) there is an explicit representation of the Clifford
algenbra that yields precisely the spinor representation of B,.

— 12

Yo = —o0to3 ... 0%
Y3 = 0303 ... 0%
Yy =—0l03 ... 0}
Yon—1 = 0y
o2n = —0F
Yoni1 = 0303 ... 0% (15.35)
It is fact of life that
MY2 - Yont1 = 1" (15.36)

We do jot have enough elements to construct a representation of SO (2n+2);
but we can construct the SO(2n) algebra just by leaving out 72,,+1. This is
a reducible representation; there is a nontrivial matrix that commutes with

all the generator, namely 79,41 itself. There are two projectors. One onto
anl

(1 = 92n+1) (15.37)

N

and another onto D"

(1 +92n+1) (15.38)

N |
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There is a natural SU(N) subgroup of SO(2N). In fact from a Clifford
algebra one can construcy the operators

(V25—1 — i725)

a; =3
al =% (y25-1 + i725) (15.39)

They obey

{aj,ar} = {aj,a,j} =0
{aj,af} = b (15.40)

Then out of the matrix elements in the N of SU(N)

T, =) af (To),; a5 (15.41)
i

In order to show that this is in fact a subalgebra of SO(2N), let us write

+ 1§ + L[+ 1 ; 1
afa; = 3{al a;} + 3 [af, a;] = 30 + 3Mai19j1 + 3Mai-12; —
1 ‘
—5Ma;i2j 1 + 5 Ma; 2; (15.42)

The Fock states generate the representation DV for N even, and DN~! for
Nodd. There is an SO(2N) generator which commutes with the SU(N)
subgroup, namely

N N N
S = ;Mle,Zj = i;a;rai — 5 (1543)

This geberates a U(1) algebra. Actually

18,
S=3 ; oh (15.44)
in such a way that
N
S0y = 5 |0) (15.45)
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16

Automorphisms

We shall dub inner such automorphisms that are equivalent to a conjugation
T, — RT,R™! (16.1)

where

R=¢"Y"Ta (16.2)
All other automorphisms are called outer. Complex conjugation acts as
T, — —TF (16.3)

This means that an algebra can hace complex representations only it it
enjoys nontrivial automorphisms. Sometimes this is trivial, like in the SU(4)
exchanging

Egi o Eo» (16.4)

which exchanges the representation D! with the D3 = D! which are non-
equivalent. In fact all complex conjugations automorphisms can be obtained
from reflexion symmetries of the Dynkin diagram. The opposite is not true:
not all reflecion symmetries correspond to complex conjugation. The cano-
nical example is SO(8). Nontrivial automorphisms allow to classify all real
forms of complex Lie algebras. Let us see how thos work for the complex al-
gebra Ay. In order to do that it is better to forget about physicist’s notation
and wrote

o1 (16.5)

<
Il
)

This algebra is generated by
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(16.6)
Restriction to real matrices leaves the algebra of &¢(2, R). The algebra is

[T1 = T+,T2 = T,] = T3
(75, T4 ] = 2T
[T3,T_] = 27- (16.7)

This is exactly what we have been advocating for SU(2). But were we to
stick to real generators the algebra would really have been

[Ji, Jj] = iﬁiijk — [HZ,HJ] = fiijk (169)

Defining
Hy = H, + H, (16.10)
[Hg,HJ_r] =TFH, ]HJF,H,] = —2Hj3 (1611)

This algebra is almost the same as &¢(2,R). They differ only in
Ty — —Hj (16.12)
This can be interpresed as dua to the existence of an involutive automosphi-
sm in &¢(2,R)
¢ (Ty) = T4

o(T3) = T3 (16.13)
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Now Weyl’s unitary trick intruct to consider the algebra
Ty — iHy (16.14)

and this is the real compact form of the complex Lie algebra. In this case,
SU(2) < &¢(2,C). A complex Lie algebra includes menay real forms in
general, although only one of them is compact.
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