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1

Curves and surfaces in R3.

1.1 Curves.

x “ xpuq

y “ ypuq

z “ zpuq

u1 ď u ď u2 (1.1)

or else
xi “ xipuq i “ 1, 2, 3. (1.2)

One example is the circular helix

x “ a cos u
y “ a sin u

z “ b u

0 ď u ď 8 (1.3)

which for b “ 0 reduces to a circle of radius r “ a in the z “ 0 plane.
The arc length is given by Pythagoras’ theorem

ds2 ” dx2 ` dy2 ` dz2 “

˜

ˆ

dx

du

˙2
`

ˆ

dy

du

˙2
`

ˆ

dz

du

˙2
¸

du2 (1.4)

Then the arc between two points is given by

s01 ”

ż u1

u0

d

ˆ

dx

du

˙2
`

ˆ

dy

du

˙2
`

ˆ

dz

du

˙2
du (1.5)

Let us compute it for a circle

y “
a

R2 ´ x2 (1.6)
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s “
ş

dsa “
ş

c

dx2 `
´

x?
R2´x2

¯2
dx2 “

ş

dx?
R2´x2 “

“
ş

dt?
1´t2 “ sin´1 x

R (1.7)

Then
sin s “

x

R
(1.8)

For example, for the helix,

s01 “
a

a2 ` b2 pu1 ´ u0q (1.9)

The tangent vector is defined as

~t ”
d~x

ds
”

d~x
du
ds
du

”
1

c

´

d~x
du

¯2

d~x

du
(1.10)

For the helix,
~t “

1
?
a2 ` b2

p´a sin u, a cos u, bq (1.11)

The normal to the tangent at a given point,

~t.~n “ 0 (1.12)

and normalized such that
~n2 “ 1 (1.13)

In our example
~n “ ˘pcos u, sin u, 0q (1.14)

It is clear that
~t2 “ 1 (1.15)

which implies that
~t 9~t “ 0 (1.16)

We can write
d~t

ds
” κ~n (1.17)

where κ is called the curvature at a given point (there is a sign that must
be fixed by some convention); and the radius of curvature is defined by

κ ”
1
R

(1.18)

In the example
d~t

ds
“

a

a2 ` b2
p´ cos u,´ sin u, 0q (1.19)
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so that
R “

a2 ` b2

a
(1.20)

which reduces to a when b “ 0.
It is clear that

κ2 “
´

9~t
¯2

(1.21)

We define the binormal as
~b ” ~tˆ ~n (1.22)

In the example
~b “

1
?
a2 ` b2

p´b sin u, b cos u,´aq (1.23)

It is clear that the vectors p~t, ~n,~bq form a moving trihedron along the curve.
Consider now

9~b ”
d~b

ds
“

9~tˆ ~n` ~tˆ 9~n “ ~tˆ 9~n (1.24)

It is clear that this vector is orthognonal to both ~t as well as to ~b, so that it
must lie in the direction of ~n

d~b

ds
” ´τ ~n (1.25)

ahere τ is called the torsion of the curve at the point considered. For the
helix

~b “
1

?
a2 ` b2

p´b sin u, b cos u, aqq (1.26)

and then
d~b

ds
“

1
a2 ` b2

p´b cos u,´b sin u, 0q (1.27)

and then
τ “ ¯

b

a2 ` b2
(1.28)

which vanishes for b “ 0 as it does for any plane curve. Finally, the derivative
of the normal vector has to lie in the plane spanned by p~t,~bq

d~n

ds
“ C1~t` C2~b (1.29)

We find that

C1 “ ~t. 9~n “ ´~n.
9~t “ ´κ

C2 “ ~b. 9~n “ ´~n.
9~b “ τ (1.30)

conveying the fact that
d~n

ds
“ ´κ~t` τ ~b (1.31)
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This is the last of Frenet-Serret’s formulas.
Frenet-Serret’s formulas also imply that the acceleration is given by

d2~t
ds2 “ κd~nds ` 9κ~n “ ´κ2~t` κτ~b` 9κ~n

d2~n
ds2 “ ´κ

d~t
ds ` τ

d~b
ds ´ 9κ~t` 9τ~b “ ´

`

κ2 ` τ2˘~n´ 9κ~t` 9τ~b (1.32)

Neglecting the derivatives of the curvature and the torsion, this yields the
familiar centripetal acceleration for plane curves, for which τ “ 0.

1.2 Surfaces.
xi “ xi pu, vq u1 ď u ď u2 v1 ď v ď v2 (1.33)

For example, the circular cone z2 “ x2 ` y2

x “ u sin v

y “ u cos v
z “ u (1.34)

It has a singular point at u “ 0. Another example is the cylinder

x “ cos u
y “ sin u

z “ v (1.35)

The induced metric on the surface by the euclidean metric in R3 is

ds2 ”
a,b“2
ÿ

a,b“1
δij
Bxi

Bxa
Bxj

Bxb
dxadxb ” Edu2 ` 2Fdudv `Gdv2 (1.36)

It used to be called the first fundamental form on the surface.
For the cone

ds2 “ 2du2 ` u2dv2 (1.37)

and for the cylinder
ds2 “ du2 ` dv2 (1.38)

The tangent plane to the surface at a given point is generated by the two
vectors

~ta ” Ba~x a “ 1, 2. (1.39)

and normalized in such a way that

~t2a “ 1 (1.40)

Foe the unit sphere

ds2
1 “ dθ2 ` sin2 θdφ2 (1.41)
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~tθ “ pcos θ cos φ, cos θ sin φ, sin θq
~tφ “ p´ sin φ, sin cos φ, 0q (1.42)

Again for the cone

~tu ”
1?
2 psin v, cos v, 1q

~tv ” pcos v,´ sin v, 0q (1.43)

For the cylinder

~tu ” p´ sin u, cos u, 0q
~tv ” p0, 0, 1q (1.44)

The normal vector is uniquely defined as the unit vector proportional to

~N ”
~xu ˆ ~xv
|~xu ˆ ~xv|

(1.45)

For the sphere it reads

~N “ psin θ cos φ, sin θ sin φ, cos θq ” ~x (1.46)

For our cone
~N ”

1
?

2
psin v, cos v,´1q (1.47)

And for the cylinder
~N ” pcos u, sin u, 0q (1.48)

Consider now a curve on the surface; its tangent vector surely lies on the
tangent plane. We can project the derivative of the tangent vector with
respect to the arc (the normal curvature vector) on a tangential and a normal
component.

d~t

ds
” ~kn ` ~kt (1.49)

where
~kn ” κn ~N ”

´

~k. ~N
¯

~N (1.50)

and the tangent or geodesic curvature vector is ~kt.
Now, the fact that ~N.~t “ 0 implies that

κn ”
d~t

ds
. ~N “ ´~t.

d ~N

ds
“ ´

d~x

ds
.
d ~N

ds
(1.51)

The second fundamental form is defined as

´d~x.d ~N ” edu2 ` 2fdudv ` gdv2 (1.52)
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This means that for the sphere the first and second fundamental forms are
the same.

ds2
1 “ ds2

2 (1.53)

For the cone it gives
ds2

2 “ udv2 (1.54)

and for the cylinder
ds2

2 “ du2 (1.55)

For the sphere, the determinant

g2 ” eg ´ f2 “ sin2 θ ě 0 (1.56)

For the other two surfaces, however,

g2 “ 0 (1.57)

It so happens that

κn “
edu2 ` 2fdudv ` gdv2

Edu2 ` 2Fdudv `Gdv2 “
e` 2fλ` gλ2

E ` 2Fλ`Gλ2 (1.58)

where
λ ”

dv

du
(1.59)

This defines a function κnpλq. The extrema of this function ara the
directions of principal curvature, κ1 and κ2. The condition of an extrema
can be written as

rpE ` Fλq ` λpF `Gλqs pf`gλq “ rpe` fλ` λpf ` gλqs pF `Gλq (1.60)

For those λ we can write

κpλq “
e` fλ` λpf ` gλq

E ` Fλ` λpF `Gλq
“

f ` gλ

F `Gλ
“

e` fλ

E ` Fλ
(1.61)

Then

pe´ κEqdu` pf ´ κF qdv “ 0
pf ´ κF qdu` pg ´ κGqdv “ 0 (1.62)

and eliminating κ we get detM “ 0 where

M ”

¨

˝

dv2 ´dudv du2

E F G
e f g

˛

‚ (1.63)

from which we get the two directions of principal curvature.
It is also easy to prove ([2]) that they are mutually orthogonal.
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In terms of those, the mean curvature is defined as

M ”
κ1 ` κ2

2 “
Eg ´ 2fF ` eG

2 pEG´ F 2q
(1.64)

and the gaussian curvature as

K ” κ1.κ2 “
eg ´ f2

EG´ F 2 (1.65)

It is clear that when
g2 ě 0 (1.66)

the normal chapters are all convex; those points are dubbed elliptic points.
When

g2 “ 0 (1.67)
there is one direction with κ “ 0; those are parabolic points. Finally, when

g2 ď 0 (1.68)

some normal chapters are convex and others are concave; those are hyperbolic
points.

For the cone

M “ 2u
2u2 “

1
u

K “ 0 (1.69)

Clearly something special happens at the apex of the cone, u “ 0, although
the gaussian curvature does not see it.

The three vectors
´

~xu, ~xv, ~N
¯

(1.70)

onstitute a moving frame (that is, a frame at each point of the surface).
Consequently, we can expand

~xuu ” Γ1
11 ~xu ` Γ2

11 ~xv ` e
~N

~xuv ” γ1
12 ~xu ` Γ2

12 ~xv ` f
~N

~xvv ” Γ1
22 ~xu ` Γ2

22 ~xv ` g
~N (1.71)

where the Christoffel sumbols are given by

Γ1
11 “

GEu´2FFu`FEu
2pEG´F 2q

Γ1
12 “

GEv´FGu
2pEG´F 2q

Γ1
22 “

2GFv´GGu´FGv
2pEG´F 2q

Γ2
11 “

2EFu´EEv´FEu
2pEG´F 2q

Γ2
12 “

EGu´FEv
2pEG´F 2q

Γ2
22 “

EGv´2FFv`FGu
2pEG´F 2q (1.72)
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Also, from ~N2 “ 1 we know that

~Nu “ p1 ~xu ` p2 ~xv
~Nv “ q1 ~xu ` q2 ~xv (1.73)

Gauss’ theorema egregium states that the Gaussian curvature depends
onlt on E, F, G, and their first derivatives. This shows that it is a bending
invariant, in Struik’s words. This means that those properties are intrinsic
to the surface, and they do not depend on how the surface is imbedded in
euclidean ambient space. The theorem can be proven by demanding that

~xuuv “ ~xuvu

~xvvu “ ~xuvv (1.74)
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2

Tensor calculus in vector
spaces

Consider a n-dimensional vector space, V with a basis

@v P V v “
n
ÿ

i“1
viei ” viei (2.1)

where we have introduced the summation convention. This only affects
contravariant coupled with covariant indices. Given a nonsingular n ˆ n
matrix, we can change to a different basis, fa

fa ” Aiaei (2.2)

Then the vector v can be expressed in the new basis

v “ vafa “ viei “ vaAjaej (2.3)

and owing to the fact the the basis elements are linearly independent,

vj “ vaAja ÝÑ va “ Ba
i v

i (2.4)

where the matrix B “ A´1

AjaB
a
i “ δji (2.5)

For the time being, indices cannot be raised or lowered. Consider now the
dual space, V ˚.

θ P V θpvq P R (2.6)

We can define the dual basis of the basis of V through

Eipejq ” δij (2.7)

13



Please note carefully the position of the indices in the Kronecker delta.
Those are the only deltas that are allowed in this course. Any element
ω P V ˚ can be expanded in the dual basis

ω ” ωiεi (2.8)

Under a change of basis in V

ωi Ñ Aiaω
a (2.9)

Everybody heard aboud some wild and ferocious animals called tensors.
What are those? Consider bilinear mappings from

V ˆ V ˚ Ñ R (2.10)

T : pv, θq Ñ T pv, θq P R (2.11)

Owing to linearity, it is enough to know the values on the basis, because

T pv, θq “ vi θj T pei, E
jq ” vi θj Ti

j (2.12)

The space of those animals is called the tensor product of V ˚ b V , and its
elements are called (1-covariant 1-contravariant) tensors. Under a change of
basis

Ti
j Ñ Aai B

j
b Ta

b (2.13)

The set of all those (1,1) tensors is another vector space, which is calles the
tensor product of V ˚ b V

El b ei P V ˚ b V (2.14)

Pleasee note carefully that

V b V ˚ ‰ V ˚ b V (2.15)

that is
Ti

j ‰ T j i (2.16)

Ordinary vectors and ordinary dual vectors are particular instances (0,1)
and (1,0) respectiveli. The generalization to

T i1...ip j1...jq ei1 b . . . eip b E
j1 b Ejq P V b . . . ppq . . .b V b V ˚ b . . . pqq . . . V ˚(2.17)

is immediate. The contravariant or covariant character of the indices is
an absolute property. There is no in general a canonical way of raising or
lowering indices. When there is a metric, there is such a canonical way.
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But before introducing a metric, let us examine some particularly intere-
sting tensors which are defined independently of the metric. As a matter of
notation, let us define the symmetrization operator

Tpa1...apq ”
1
p!

ÿ

πPSp

Taπp1q...aπqnq (2.18)

where the sum extends over all p! elements of the permutation group Sp; as
well as the antisymmetrization operator

Tra1...aps ”
1
p!

ÿ

πPSp

p´1qPπ Taπp1q...aπqnq (2.19)

where Pπ is the parity of the permutation π.

2.1 Differential forms.

Let us identify tangent vectors ~v P Tx with directional derivatives of func-
tions defined at a given point

~vpfq ” vµBµf (2.20)

A particular basis is given by the vectors

Bµ (2.21)

Given an arbitrary function, its differential is defined as df P T ˚x

df p~vq ” ~v pfq (2.22)

Differential forms are antisymmetric linear maps

ω1 : v P Rn Ñ ωpvq P R (2.23)

A local basis is given by
dxapBbq “ δab (2.24)

Let us define a p-form A P Λp as a tensor with p cpvariant indix, totally
antisymmetric

Aa1...ap ” Ara1...aps (2.25)

Dor examplem ω P Λ2:

ω2 pv, wq P Rn ˆ Rn Ñ ω2pv, wq P R (2.26)
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• Exterior product. The exterior product of two one-forms yields a
two-form

pω1 ^ α1qpv1, v2q ” det
ˆ

ω1pv1q α1pv1q
ω1pv2q α1pv2q

˙

(2.27)

In the general case, the product of a p-form and a q-form is a (p+q)-
form

pωk ^ ωlq pv1 . . . vk`lq ”
ÿ

˘ωkpvi1 . . . vikqωlpvik`1 . . . vik`lq (2.28)

The basic identity reads

ωp ^ ωq “ p´1qpq ωq ^ ωp (2.29)

Sometimes we shall write

dxµ1...µp ” dxµ1 ^ . . .^ dxµp (2.30)

This means that for every odd degree form

ω2p`1 ^ ω2p`1 “ 0 (2.31)

• Coordinate basis.
In the basis of the tangent space associated to a local chart, pxαq,

ωk ”
ÿ

ι1ă...ăιk

ωι1...ιkdx
ι1 ^ . . .^ dxιk (2.32)

dxµ ^ dxν “ dxµ b dxν ` dxν b dxµ (2.33)

We shall write in local coordinates

α ”
1
p!αµ1...µpdx

µ1 ^ . . .^ dxµp (2.34)

It is exceedingly useful to introduce the Kronecker symbols

ελ1...λp
µ1...µp ” p! δλ1

rµ1
. . . δ

λp
µps

(2.35)

It is a good exercise to prove that

ερ1...ρp
µ1...µpαρ1...µp “ p! αµ1...µp

ελ1...λq
µ1...µqε

µ1...µqσ1...σp
ν1...νp`q “ q! ελ1...λqσ1...σp

ν1...νp`q

ελ1...λqρ1...ρp
µ1...µqρ1...ρp “ p! ελ1...λq

µ1...µq (2.36)

A general formula for the exterior product is given by

α^ β “
1
p!

1
q! αλ1...λpβµ1...µqdx

λ1 ^ . . .^ dxλpdxµ1 ^ . . .^ dxµq (2.37)
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• Exterior differential. The differential of a function is given by a
one-form

df ”
ÿ

Bafdx
a (2.38)

In the general case, the differential of a p-form is a (p+1)-form

dω ”
ÿ

ι1ă...ăιk

dωι1...ιk ^ dx
ι1 ^ . . .^ dxιk (2.39)

A general formula can also be given

pdαqµ0µ1...µp
”

1
pp` 1q! ε

λ0λ1...λp
µ0µ1...µpBλ0αλ1...λp (2.40)

The uselfuness of exterior calculus stems essentially from the basic fact
that

d2 “ 0 (2.41)

It is also a fact that the graded Leibnitz rule holds, id est,

d pαp ^ βqq “ dαp ^ βq ` p´1qpαp ^ dβq (2.42)

• Pullback.
φ : x PMp Ñ y P Nq (2.43)

ω “ ai dy
i P ΛpNq Ñ φ˚ω ” aipypxqq

Byi

Bxa
dxa P ΛpMq (2.44)

It is fact of life that
d pφ˚ωq “ φ˚dω (2.45)

• Poincaré. Everybody knows that in R3

~∇ˆ ~v “ ~0 ùñ ~v “ ~∇φ (2.46)

In fact Poncaré was able to show that in Rn

dω “ 0 ùñ ω “ dα (2.47)

This is not true in general, and the number of independent ω that fail
to satisfy that is called the Bettti number of the manifold. Let us prove
this theorem. Given a p-form,

ωp P ΛpRnq ” 1
p!ωa1...ap px1, . . . xnq dx

a1 ^ dxa2 . . .^ dxap (2.48)

, define the homotopy operator, K in two steps. First define a Λp`1
form

pφ ˚ ωq ”
1
p!ωa1...ap ptx1, . . . , txnq px

a1dt` tdxa1q^pxa2dt` tdxa2q^. . .^pxapdt` tdxapq

(2.49)
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Now the operator K is defined in two steps. In those monomials of
φ˚ω not involving dt

Kω “ 0 (2.50)

On monomials of φ˚ω involving dt

pKωq ”

ˆ
ż 1

0
pφ˚ωq~a ptxqdt

˙

dx~a (2.51)

Let us work out an example in n “ 3 dimensions.

ω “ xdx^ dy ` ezdy ^ dz (2.52)

φ˚ω “ tx ptdx` xdtq ^ ptdy ` ydtq ` etz ptdy ` ydtq ^ ptdz ` zdtq “

“ ´t2xy dt^ dx`
`

t2x2 ´ etz tz
˘

dt^ dy ` etzty dt^ dz ` no dt terms(2.53)

α ” Kω “
ş1
0 ´t

2xy dt^ dx`
`

t2x2 ´ etz tz
˘

dt^ dy ` etzty dt^ dz “

“ ´1
3xydx`

´

x2

3 ´
ezpz´1q`1

z

¯

dy ` y e
zpz´1q`1

z2 dz (2.54)

since
ż

ueudu “ eupu´ 1q (2.55)

And lo and behold,
ω “ dα (2.56)

• Hodge dual. Let us introduce the so called volume element defined
as

ηµ1...µn ”
a

|g| ε1...nµ1...µn (2.57)

Actually, ε1...nµ1...µn is not a tensor. Let us work it out in two dimensions.
Denote the jacobian matrix

Jba1 ”
Bxb

Bxa1
(2.58)

and its determinant by J ” detJba1 Also the determinant of the metric
itself does not transform as a true scalar, but rather

g1px1q ” J2gpxq (2.59)

Then

ηabdx
a^dxb “

?
gεabJ

a
a1J

b
b1dx

a1^dxb
1

“
1
J

a

g1Jεa1b1dx
a1^dxb

1

“ ηa1b1dx
a1^dxb

1

(2.60)
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This means that
?
g εab (2.61)

is a true tensor. Some properties;

ηµ1...µn “
1

a

|g|
εµ1...µn
1...n

ηλ1...λpλp`1...λnη
λ1...λpµp`1...µn “ p! εµp`1...µn

λp`1...λn

∇ρηµ1...µn “ 0
dpvolq ” ηµ1...µndx

µ1 ^ . . .^ dxµn “
a

|g|dx1 ^ . . .^ dxn

dxµ1 ^ . . .^ dxµn “ ηµ1...µndpvolq (2.62)

To verify these formulas is excellent gymnastics.
The Hodge operator maps p-forms into (n-p)-forms.

˚ : Λp Ñ Λn´p (2.63)

It is defined by

p˚Aqµp`1...µn
”

1
p! ηµ1...µnA

µ1...µp (2.64)

It is clear that in R3

˚dz “ dx^ dy

˚dy “ dz ^ dx

˚dx “ dy ^ dz (2.65)

Its square depends on the dimension of spacetime as well as on the
degree of the form

˚2 : Λp Ñ Λp (2.66)

First of all

p˚Aqa1...an´p “
1
p!ηb1...bpa1...an´pA

b1...bp “ p´1qppn´pq 1
p!ηa1...an´pb1...bpA

b1...bp

(2.67)
and

p˚2Aqc1...cp “
1
p!

1
pn´pq!ηc1...cpb1...bn´pη

b1...bn´pd1...dpAd1...dp “

“ 1
p!ε

d1...dp
c1...cpAd1...dp “ Ac1...cp (2.68)

˚2 “ p´1qppn´pq (2.69)

In four dimensions (actually, in any even dimension)

˚2 “ p´1qp (2.70)
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In R4

˚dx^ dy “ dz ^ dw (2.71)

There are then euclidean self-dual two-forms

ω2 ” dx^ dy ` dz ^ dw (2.72)

In three-dimensions Hodge squared it is always +1

˚2 “ `1. (2.73)

The exterior codifferential is the adjoint of the exterior differential

pα, δβq ” pdα, βq (2.74)

It is given by
δ ” p´1qp ˚´1 d˚ (2.75)

It is possible to give a simple formula

pδαqρ1...ρp´1
“ ´

1
p! ε

µ1...µp
νρ1...ρp´1∇

ναµ1...µp (2.76)

The interior product of a p-form and a vector, X, is the (p-1)-form
given by

pipXqωq pv1 . . . vp´1q ” ωp pX, v1 . . . vp´1q (2.77)

• Stokes’ theorem We start from the properties of the volume defined
by an elementary cell of R3

– It vanishes if the vectors are linearly dependent.
– It stays the same when we add to a given vector a linear combi-

nation of the other vectors.
– Depends in a linear way on all vectors.

Al these properties are enjoyed by the elementary formula

V “
ÿ

εijkv
i
1v
j
2v
k
3 “ η p~v1, ~v2, ~v3q (2.78)

where the volume element is defined by

η ” dx1 ^ dx2 ^ dx3 (2.79)

This leads in a natural way to define volumes through integration. For
example, in R4,
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– Codimension-1 hypersurfaces dSa ”
1
3!ηabcddx

bcd Consi-
der for example the hypersurface

S ” tx4 “ T u (2.80)

The normal is the vector

n “ p0, 0, 0, 1q (2.81)

The hyprersurface can be paremeterized by

xi “ ξi (2.82)

so that
dSa ”

1
3! n

a

gpx4 “ T q d3ξ (2.83)

– Codimension-2 hypersurfaces dVab ”
1
2!ηabcddx

cd Consi-
der the two-sphere

S2 ãÑ R4 (2.84)

x4 “ T

x2 ` y2 ` z2 “ R2 (2.85)

It can be parameterized by polar coordinates

xi “ xipθ, φq (2.86)

There are two normal vectors, namely

n1 “ p0, 0, 0, 1q
n2 “ px, y, z, 0q (2.87)

and the volume element is

dVab “ n1
an

2
b

a

gpT, θ, φq dθ ^ dφ (2.88)

– Codimension-3 hypersurfaces dVabc ”
1
3!ηabcddx

d

For a trivial example, consider

xi “ xi0 (2.89)

which can be pameterized as

x4 “ σ (2.90)
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there are now three normals

ni ” ei (2.91)

and the volume element reads

dVabc “ n1
an

2
bn

3
c

b

gpxi0q dσ (2.92)

Stokes’ theorem in general states that.
ż

BV
ω “

ż

V
dω (2.93)

The classical theorems of Gauss, Stokes and the divergence are but
particular instamces of this. For example

ż

S2

dA1 “

ż

C1”BS2

A1 (2.94)

If A1 is a 1-form of R3

A1 ” Aidx
i (2.95)

then
dA2 “

1
2 pBiAj ´ BjAiq dx

i ^ dxj (2.96)

It is customary to define the rotational or curl as

protAqi ” εijkBjAk (2.97)

The surface integral
ż

S
dA2 “

ż

S

1
2 pBiAj ´ BjAiq dx

i ^ dxj “ (2.98)

It is customary to define

nidS ”
1
2 εijkdx

j ^ dxk (2.99)

so that
ÿ

i

protAqi nidS “
ÿ

jk

pBjAk ´ BkAjq dx
j ^ dxk (2.100)

and we recover Stokes’original theorem
ż

S

~rot ~A ~n dS “

ż

BS

~A d~x (2.101)
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Let us now apply it to
ż

V3

dω2 “

ż

BV3

ω2 (2.102)

Write
ω2 ”

1
2 ωijdx

i ^ dxj (2.103)

so that

dω2 ”
1
2Bkωijdx

k ^ dxi ^ dxj “
1
2 Bkωijε

kijdV (2.104)

Now we define the dual one-form

Ωidx
i ” p˚ω2q1 ”

1
2 εijkωjk (2.105)

then
dω2 “ BkΩk ” div~Ω (2.106)

and we recover Gauss’divergence teorem
ż

V
div ~Ω dV “

ż

BV

~Ω ~n dS (2.107)

Let us work out the integral over a two-sphere

x “ R sin θ cos φ

y “ R sin θ sin φ

z “ R cos θ (2.108)

z is no an independent variable; rather,

z ”
a

1´ x2 ´ y2 (2.109)

sin φ “ y?
x2`y2

sin θ “
a

x2 ` y2 (2.110)

Bθ
Bx “

cos φ
cos θ

Bθ
By “

sin φ
cos θ

Bφ
Bx “ ´

y
sin2 θ

Bφ
By “

x
sin2 θ

(2.111)

Exterior normal

~v. ~ds “ xvx`yvy`zvz

R R2 sin θdθdφ “

“ R pvx sin θ cos φ` vy sin θ sin φ` vz cos θq sin θdθdφ(2.112)
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Assume, for example,
v “ z

B

Bz
(2.113)

(such that
~∇~v “ 1q (2.114)

ż

S2

~∇~v dpvolq “
ż R

0
r2dr

ż

sin θdθdφ “ 2π r3

3

ˇ

ˇ

ˇ

ˇ

R

0
“

4
3πR

3 (2.115)

This equals

R3
ż

sin θ cos2 θdφ “ ´2πR3 cos3 θ
ˇ

ˇ

π

0 “
4π
3 R3 (2.116)

• Lie derivative. The Lie derivative of a function is defined as the
directional derivative

~vpfq “ £p~vqf (2.117)

The Lie derivative of a one-form is defined in a natural way.

£p~vqdf ” d~vpfq (2.118)

This definition extends to a general case simply by postulating that
Leibnitz’ rule holds true

£p~vqaadξa “ p£p~vqaaqdξa ` αa£p~vqdξa (2.119)

In the case of vectors we use the dual application

£p~vqxα, ~Xy “ x£p~vqα, ~Xy ` xα,£p~vq ~Xy (2.120)

It is a fact that

£p ~Xq~Y “ r ~X, ~Y s
£p ~Xq “ ip ~Xqd` dip ~Xq (2.121)

• Diffeomorfisms An active diffeomorphism

ξ : x PM Ñ y “ ξpxq PM (2.122)

Acting on vectors, given g : y Ñ R, then g ˝ ξ : xÑ R and v P Tx, we
define a different vector ξ˚v P Ty through

ξ˚pvqpgq ” vpg ˝ ξq (2.123)

In a local coordinate basis

pξ˚vq
µpyq “ vρBρξ

µpxq (2.124)
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Given a one-form ω P T ˚y we define another form ξ˚ω P Tx through

ξ˚ωpvq ” ωpξ˚vq (2.125)

In a local coordinate basis

pξ˚ωqαpxq “ ωµpyqBαξ
µpxq (2.126)

If it were a 2-form
pξ˚ωq pv, wq “ ω pv, wq (2.127)

that is
pξ˚ωqαβ pxq “ ωµνpyqBαξ

µBβξ
ν (2.128)

2.2 The metric tensor.
The metric tensor in Rn is defined through

ds2 “ gabpxqdx
adxb (2.129)

with
g ” det gab ‰ 0 (2.130)

so that there is the inverse matrix

gacgcb “ δab (2.131)

For example, in polar coordinates

ds2 “ dr2 ` r2 dΩ2 (2.132)

where
dΩ2 ” dθ2 ` sin2 θdφ2 (2.133)

Then, there is a canonical mapping from

V Ñ V ˚ (2.134)

V ˚pV q ” gpV, V q (2.135)

This is
Va “ gacV

c V a “ gabVb (2.136)

Ordinary derivatives of any object more complicated than scalar (id est, a
vector, or any higher rank tensor) are not tensors, not even in Rn. This is
because under the change of coordinates

xa Ñ yαpxaq (2.137)
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under which
V αpyq ”

Byα

Bxb
V bpxq (2.138)

derivatives transform as

BV αpyq

Byγ
“

B2yα

BxbBxc
Bxc

Byγ
V bpxq `

Byα

Bxb
BV bpxq

Bxc
Bxc

Byγ
(2.139)

Let us lighten the notation a little bit. First of all,

Bα ”
B

Byα

Bb ”
B

Bxb
(2.140)

Er also introduce
Jαb ”

Byα

Bxb
(2.141)

Then
`

J´1˘a
β
”
Bxa

Byβ
(2.142)

is the inverse matrix
J

`

J´1˘ “
`

J´1˘ J “ 1 (2.143)

The previous equation reads

BγV
α “

`

J´1˘c
γ
BcJ

α
b V

b ` Jαb BcV
b
`

J´1˘c
γ

(2.144)

It is conceptually much simpler if we imagine matrices with rows defined
by the covariant indices and columns by the contravariant indices. The
equation then reads

BV pyq “
`

J´1˘ BJV ` J´1BV pxqJ (2.145)

Let us now ask the question: is it possible to modify the definition of
derivative in such a way that

∇V “
`

J´1˘∇V J (2.146)

Let us try the ansatz
∇V “ BV ` ΓV (2.147)

(Γ is a three-index beast). In order for that to be true the transformed
covariant derivative

BV pyq ` ΓpyqV pyq “
`

J´1˘ BJV ` J´1BV pxqJ ` ΓpxqV pxq (2.148)

ought to be equal to

J´1
ˆ

BV pxq ` ΓpxqV pxq
˙

J (2.149)
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This would be true provided the Γ transform as

Γpyq “ J´1 BJ ` J´1ΓJ (2.150)

When such an object exists, there is an invariant concept of derivative.
This is what mathematicians call a connection. The surprising thing is that
whenever there is a metric, there is such a connection, which is called the
Levi-Civita one, and the coefficients, the Christoffel symbols,

Γαβγ ”
1
2g

αλ p´Bλgβγ ` Bβgλγ ` Bγgλβq (2.151)

Let us check that

Γαβγ “
1
2J

α
a J

λ
l g

al

"

´ Bλ

´

JbβJ
c
γgbc

¯

` Bβ

´

J lλJ
c
γglc

¯

` Bγ

´

JbβJ
l
λgbl

¯

*

“

“
1
2J

α
a J

λ
u g

au

"

´ BλJ
b
βJ

c
γgbc ´ J

b
βBλJ

c
γgbc ´ J

b
βJ

c
γBλgbc `

`BβJ
l
λJ

c
γglc ` J

l
λBβJ

c
λglc ` J

l
λJ

c
γBβglc `

`BγJ
b
βJ

l
λgbl ` J

b
βBγJ

l
λgbl ` J

b
βJ

l
λBγgbl

*

(2.152)

The three terms in the right of the rows yield

Jαa J
b
βJ

c
γΓabc (2.153)

If this were all, this would have been a true tensor. But there is more.
Taking into account that

BαJ
a
β “ BβJ

a
α, (2.154)

the terms in the paces 11 and 21 cancel, as do the terms 12 and 32. The
rest (22+31) yield

Jαa J
λ
u g

auBγJ
b
βJ

l
λgbl “ gaλBγJ

b
βJ

l
λgbl (2.155)

QED.
The two basic properties of the Levi-Civita connection are

Γαβγ “ Γαγβ
∇α gβγ “ 0 (2.156)

2.3 Winding numbers and such.
Spheres are defined as

S ”
n
ÿ

a“1
x2
a “ L2 (2.157)
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The n-dimensional ball is defined as

Bn :
n
ÿ

a“1
x2
a ď L2 (2.158)

The normal vector is
na “ cBa S “ c xa (2.159)

Let us study the one form in Rn

rdr ”
ÿ

i

xidxi “ x1dx1 ` x2dx2 ` . . .` xndxn (2.160)

It is clear that

˚rdr “ x1dx2 ^ . . .^ dxn ´ x2dx1 ^ dx3 ^ . . .^ dxn ` . . . “

“
ř

p´1qi´1xidx1 ^ . . .^ xdxi ^ . . .^ dxn (2.161)

It so happens that the measure on the Sn´1 sphere is proportional to this
(n-1)-form

dSa “ cna ˚ rdr (2.162)

On the other hand

d ˚ rdr “
ÿ

p´1qi´1dxi ^ dx1 ^ . . .^ xdxi ^ . . .^ dxn “ nη (2.163)

This shows that actually c “ 1. You can show as an exercise that

V pBnq “
L
nV pSn´1q

V pBnq “
πn{2

Γpn{2`1q (2.164)

In particular, we recover

V pB3q “
4
3πL

3

V pS2q “ 4πL2 (2.165)

Let us denote the volume element in euclidean space by

ωn ” dpvolq ” dx1 ^ . . .^ dxn (2.166)

In ordinary euclidean space, E3

ω3 “ r2 sin θ dr ^ dθ ^ dφ (2.167)

and by σ1 the volume element on the codimension-one unit sphere

r “ L (2.168)

Consider
rdr “

ÿ

xidxi (2.169)
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It is plain that

˚rdr “
ÿ

p´1qi´1xidx
1 ^ . . .^ xdxi ^ . . .^ dxn (2.170)

In E2

˚rdr “ xdy ´ ydx “ r2dθ (2.171)

Again, in E3, it is easy to work out that

˚rdr “ xdy ^ dz ´ ydx^ dz ` zdx^ dy “ r3 sin θ dθ ^ dφ (2.172)

It is a fact that
σ1 “ ˚rdr (2.173)

(on the sphere Sn´1), because

Demonstratio.
d p˚rdrq “ nωn (2.174)

and in particular in E3

dp˚rdrq “
1
r2ω3 (2.175)

Consider now the projection

π : Enz0 ÝÑ Sn´1 (2.176)

πp~xq ”
~x

|x|
(2.177)

We know that
d
`

π˚σ1
˘

“ π˚dσ1 “ 0 (2.178)

(because there are no n-forms in Sn´1). Let us show that

π˚σ1 “
σ

rn
” τ (2.179)

(σ1 is the restriction of σ to Sn´1).

Demonstratio. First of all,

dτ “
1
rn
dσ ´

n

rn`1 prdrq ^ σ “
n

rn
ω ´

n

rn
ω “ 0 (2.180)

Now, define

π˚σ1 “
ř

p´1qi´1πidπ1 ^ . . .^ xdπi ^ . . .^ dπn “

“
ř

p´1qi´1 xi
r

1
r2pn´1q prdx1 ´ x1drq ^ . . .^ xdπi ^ . . .^ prdxn ´ xndrq “

(2.181)
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In E2

π˚σ “
x

r
d
y

r
´
y

r
d
x

r
“

1
r2σ “ dθ (2.182)

In E3 is clear that it is going to give the same as σ without the radial
coordinate. This defines the angular measure, τ .

Given two closed and oriented manifolds, M and N, and a mapping

f : M ÝÑ N (2.183)

then it is a fact that f˚N is an integral multiple on M plus a boundary ([3]).
This is dubbed the degree of f, deg f . When Σ ãÑ Enz0, we can deinne the
projection as above

π : Σ Ñ Sn´1 (2.184)

Then
ż

Σ
τ “

ż

Σ
π˚σ1 “

ż

πpΣq
σ1 “ degπ

ż

Sn´1

σ1 “ degπ An´1 (2.185)

We can generalize this a little bit. Consider a closed manifold

Mn´1
f
ÝÑ Enz0 π

ÝÑ Sn´1 (2.186)

The winding number of this hypersurface around the origin is given by

w ”
1

An´1

ż

M
f˚ τ (2.187)

In general, given
Mn

f
ÝÑ Nn (2.188)

and a volume form β in N normalized to 1
ż

N
β “ 1 (2.189)

we have
degf “

ż

f˚β (2.190)

This is essentially the mathematics behind the WZNW lagrangian.
Let us now study the Hopf invariant. Normalize

ż

Sn

σn “ 1 (2.191)

Consider a map
S3

f
ÝÑ S2 (2.192)
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Then
dpf˚σ2q “ f˚ pdσ2q “ 0 (2.193)

Now, it is known that S3 does not have nontrivial cycles, so that Dα1

dα1 “ f˚σ2 (2.194)

It so happens that the integral
ż

α1 ^ f
˚σ2 (2.195)

is an integar dubbed theHopf invariant. Represent the sphere S3 as pz, wq
|z|2 ` |w|2 “ 1, and the sphere S2 as

zS ” rSe
iφS (2.196)

in such a way that

ds2 ”
1

p1` |zS |2q2
dzSdz̄S “

1
`

1` r2
S

˘2
`

dr2
S ` r

2
Sdφ

2
S

˘

(2.197)

In order to get that we have to rescale

xS Ñ
xS
2L (2.198)

so that

xS ”
1

2L
2Lx
L`xn

ds2 Ñ 4L2 ds2 (2.199)

is now dimensionless.

σ2 “ C
4

`

1` r2
S

˘2 rS drS ^ dφS “ ´2Cd
ˆ

1
1` r2

S

˙

^ dφ (2.200)

The normalization is
ż

σ2 “ 8πC
ż 8

0

rdr

p1` r2q2
“ ´4πC 1

1` r2
S

ˇ

ˇ

ˇ

ˇ

8

0
“ 4πC (2.201)

Then the mapping

pz1, z2q ”
`

x1 ` ix2, x3 ` ix4˘ ” pr1e
iφ1 , r2e

iφ2q P S3
f
ÝÑ zS ”

z1
z2
P S2

(2.202)
The condition

|z1|
2 ` |z2|

2 ” x2
1 ` y

2
1 ` x

2
2 ` y

2
2 “ 1 ðñ r1 ” cos ψ r2 ” sin ψ (2.203)
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We shall see in due course that he standard parameterization in terms of
Euler angles of SU(2) is

g pθ, φ, χq ” e
i
2χσ3e

i
2 θσ1e

i
2φσ3 (2.204)

where the range of the different angles is

0 ď θ ď π

0 ď φ ď 2π
0 ď χ ď 4π (2.205)

The left-invariant one-forms read

g´1dg “ i
2σaωaL

ω1L “ cos φdθ ` sin θ sin φdχ

ω2L “ sin φdθ ´ sin θ cos φdχ
ω3L “ dφ` cos θ dχ

(2.206)

It is convenient to define

z1 ” ei
χ`φ

2 cos θ
2

z2 ” ei
χ´φ

2 sin θ
2 (2.207)

The round metric in S3 then reads

ds2 ”
ÿ

ω2
aL “ dθ2 ` dφ2 ` 2 cos θ dφ dχ` dχ2 (2.208)

The Hopf fibering goes as follows. In the neighborhood z1 ‰ 0

p : S3 Ñ S2 ppz1, z2q ”
z2
z1
” z (2.209)

and if z2 ‰ 0
p : S3 Ñ S2 ppz1, z2q ”

z1
z2
”

1
z

(2.210)

Denoting by H˘ the two hemispheres of the two-sphere S2,

H` : pz, u`q P S2 ˆ S1 Ñ

ˆ

u`?
1`|z|2

, zu`?
1`|z|2

˙

”

´

ei
χ`φ

2 cos θ
2 , e

iχ´φ2 sin θ
2

¯

`

H´ : pz, u`q P S2 ˆ S1 Ñ

ˆ

|z|u´?
1`|z|2

, |z|u´

z
?

1`|z|2

˙

”

´

ei
χ`φ

2 cos θ
2 , e

iχ´φ2 sin θ
2

¯

´

Now, start with

σ ”
1

4π pu1du2 ^ du3 ` u2du3 ^ du1 ` u3du1 ^ du2q (2.211)
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in such a way that

dr ^ σ ”
ÿ

i

uidui
r

^ σ “
r

4πdu1 ^ du2 ^ du3 (2.212)

Using the relationship
ÿ

uidui “ 0 (2.213)

we get

σ “
1

4π
du1 ^ du2

u3
(2.214)

Now the sterographic projection of CP1 ÝÑ S2 Ă R3 reads

z ” z ` iy ÝÑ gpzq ”

ˆ

u1 “
2x

1` x2 ` y2 ,
2y

1` x2 ` y2 ,
´1` x2 ` y2

1` x2 ` y2

˙

(2.215)
The form g˚σ is given by

g˚σ “ ´
i

2π
dz ^ dsz

p1` |z|2q “
i

2π
pz1dz0 ´ z0dz1q ^ pdsz1sz0 ´ sz0dsz1q

p|z0|2 ` |z1|2q
(2.216)

Using now real coordinates

|z0|
2 ` |z1|

2 “ 1 “ x2
1 ` x

2
2 ` x

2
3 ` x

2
4 (2.217)

we get, after some calculation,

f˚σ “
1
π
pdx1 ^ dx2 ` dx3 ^ dx4q “

1
π
dα (2.218)

where
α ”

1
π
px1dx2 ` x3dx4q (2.219)

and finally [?]

Hpfq “

ż

S3

αdα “
2
π2

ż

x2dx2^dx3^dx4 “
2
π2

ż π

0
dθ

ż π

0
dφ

ż 2π

0
dξ sin4 ξ sin3 φ cos2 θ “ 1

(2.220)

Assuming

zS “ rS e
iφS

u` “ eiα (2.221)
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This implies on H`

cos θ
2 ”

1?
1`r2

sin θ
2 ”

r?
1`r2

χ “ 2α` φS
φ “ ´φS (2.222)

On H´
zN ”

1
zS
“

1
r
e´iφS (2.223)

sin θ´
2 ” 1?

1`r2
N

“ r?
1`r2 “ sin θ`

2

cos θ´
2 ”

rN?
1`r2

N

“ 1?
1`r2 “ cos θ`

2

χ “ 2α` φS “ 2α´ φN
φ “ ´φS “ φN (2.224)

On the equator

u` ” eiα “
|z|

z
u´ ” e´iφS u´ ” eipα`φSqe´iφS (2.225)

This is the twist that makes all the difference between the fiber bundle and
the product space.

(2.226)
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3

Gauss’ integral
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4

Surfaces revisited.

Choose a moving frame in such a way that p~e1, ~e2q are a basis for the tangent
plane and ~e3 is the normal to the surface. On the surface itself

d~x “ σ1~e1 ` σ2~e2 (4.1)

where σ1 and σ2 are a couple of 1-forms. For example, in the case of the
two-sphere we can choose

~e1 “
1
L
B
Bθ “

1
L

ˆ

x
?
L2´x2´y2
?
x2`y2 ,

y
?
L2´x2´y2
?
x2`y2 ,´

a

x2 ` y2
˙

“

“ 1
L

´

xz?
L2´z2 ,

yz?
L2´z2 ,´

?
L2 ´ z2

¯

~e2 “
1

L sin θ
B
Bφ “

1?
L2´z2 p´y, x, 0q

~e3 “
B
Br “

1
L px, y, zq (4.2)

Then

d~x “
´

dx, dy,´xdx`ydy
z

¯

“

“ Lx
z
?
L2´z2

`

~e1 ´
yz
Lx~e2

˘

dx` Ly

z
?
L2´z2

´

~e1 `
xz
Ly~e2

¯

dy (4.3)

This determines the one-forms

σ1 “
L

z
?
L2´z2 pxdx` ydyq

σ2 “
1?

L2´z2 p´ydx` xdyq (4.4)

It is also the case that

d~ea “
b“3
ÿ

b“1
ωab~eb (4.5)
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We find

d~e1 “
1
L

´

z?
L2´z2dx`

xL2

pL2´z2q3{2
dz, z?

L2´z2dy `
yL2

pL2´z2q3{2
dz, z?

L2´z2dz
¯

“

“ 1
LpL2´z2q3{2

`

zpL2 ´ z2qdx` xL2dz, zpL2 ´ z2qdy ` yL2dz,`zpL2 ´ z2qdz
˘

“

“ 1
LpL2´z2q3{2

´

z
´

x2 ` y2 ´ L2x2

z2

¯

dx´ L2xy
z dy, z

´

L2 ´ z2 ´ L2y2

z2

¯

dy ´ L2xy
z dx,

,´
`

L2 ´ z2˘ pxdx` ydyq
˘

(4.6)

d~e2 “
´

´
dy?
L2´z2 ´

yz
pL2´z2q3{2

dz, dx?
L2´z2 `

xz
pL2´z2q3{2

dz, 0
¯

“

“ 1
pL2´z2q3{2

`

´pL2 ´ z2qdy ´ yzdz, pL2 ´ z2qdx` xzdz, 0
˘

“

“ 1
pL2´z2q3{2

`

xydx´ x2dy, y2dx´ xydy, 0
˘

(4.7)

d~e3 “
1
L pdx, dy, dzq (4.8)

Then
ω12 ” ~e2d~e1 “ z

xdy ´ ydx

LpL2 ´ z2q
(4.9)

ω13 “ ~e3.d~e1 “
1

L2
?
L2´z2

`

z pxdx` ydyq ` pL2 ` z2qdz
˘

“ 1
L2
?
L2´z2

`

´z pxdx` ydyq ` pL2 ´ z2qdz
˘

“

“ ´ 1
z
?
L2´z2 pxdx` ydyq (4.10)

(because on the sphere xdx` ydy ` zdz “ 0)

ω23 “ ~e3.d~e2 “
1

L
?
L2 ´ z2 pydx´ xdyq (4.11)

But we have normalized in such a way that

~ea.~eb “ δab (4.12)

so that
d~ea.~eb ` ~ea.d~eb “ 0 (4.13)

that is that the matrix of one-forms

Ω ” ωab (4.14)

is antisymmetric. In fact

ω21 “ ~e1.d~e2 “
z

LpL2 ´ z2q
pydx´ xdyq “ ´ω12 (4.15)
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Ω “ ´ΩT ”

¨

˝

0 $ ´ω1
´$ 0 ´ω2
ω1 ω2 0

˛

‚ (4.16)

We can the write in gory detail

d~e1 “ $~e2 ´ ω1~e3

d~e2 “ ´$~e1 ´ ω2~e3

d~e3 “ ω1~e1 ` ω2~e2

(4.17)

As a consequence of our definitions we have

0 “ d2~x “
A“2
ÿ

A“1
dσA~eA ´ σAd~eA “ 0 “

A“2
ÿ

A“1
dσA~eA ´ σAωAb~eb (4.18)

This implies
dσ “ σΩ (4.19)

That is

dσ1 “ $ ^ σ2

dσ2 “ ´$ ^ σ1

dσ3 ” 0 “ σ1 ^ ω1 ` σ2 ^ ω2 (4.20)

We also deduce

0 “ d2σ “ dσΩ´ σdΩ “ σΩ2 ´ σdΩ (4.21)

so that
dΩ “ Ω2 (4.22)

d

¨

˝

0 $ ´ω1
´$ 0 ´ω2
ω1 ω2 0

˛

‚“

¨

˝

´$2 ´ ω2
1 ´ω1ω2 ´$ω2

´ω2ω1 ´$2 ´ ω2
2 $ω1

´ω2$ ω1$ ´ω2
1 ´ ω

2
2

˛

‚ (4.23)

To be specific

d$ “ ´ω1 ^ ω2

dω1 “ $ ^ ω2

dω2 “ ´$ ^ ω1 (4.24)

Let us recap.

σ1 “
L

z
?
L2´z2 pxdx` ydyq

σ2 “
1?

L2´z2 p´ydx` xdyq

ω1 “
1

z
?
L2´z2 pxdx` ydyq “

1
Lσ1

ω2 “ ´
1

L
?
L2´z2 pydx´ xdyq “

1
Lσ2 (4.25)

39



Since there is only one linearly independent 2-form om the two-dimensional
surface Σ, we have

ω1 ^ ω2 “ Kσ1 ^ σ2 (4.26)
where K is our old friend the Gaussian curvature. For the sphere S2 we find

K “
1
L2 (4.27)

It is actually independent on the choice of the basis vectors p~e1, ~e2q. Exactly
the same reasoning tells us that

σ1 ^ ω2 ´ σ2 ^ ω1 “ 2Hσ1 ^ σ2 (4.28)

Here H is the mean curvature of the surface Σ. For the sphere S2 it reads
H “ 1

L . In order to write the forms pω1, ω2q in terms of the forms pσ1, σ2q,
we have to be consistent wit the equation

σ1 ^ ω1 ` σ2 ^ ω2 “ 0 (4.29)

The general solution Flanders claims to be

ω1 “ pσ1 ` qσ2

ω2 “ qσ1 ` rσ2 (4.30)

Actually, for the sphere, this is satisfied in a trivial way, namely

ω1 “
1
L σ1

ω2 “
1
L σ2 (4.31)

(That is q “ 0 and p “ r.)
It follows that

H “
p`r

2
K “ pr ´ q2 (4.32)

Now the relation

d$ ` ω1 ^ ω2 ùñ d$ `Kσ1 ^ σ2 “ 0 (4.33)

which determines K in terms of p$,σ1, σ2q. But

dσ1 “ $ ^ σ2

dσ2 “ ´$ ^ σ1 (4.34)

determine $ in terms of pσ1, σ2q; actually

$ “ aσ1 ` bσ2 (4.35)

Then K is completely determined by pσ1, σ2q. Lo and behold, this is Gauss’
theorema egregium.
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5

Differential Geometry

It is important to be able to pinpoint characteristics that are intrinsic, that
is, independent of the coordinates used in overlaps of open sets in a covering.
The two main ones are

• The contravariant vector interpreted a a directional derivative. Gi-
ven the linear space FpMq of all functions f : M Ñ R, and a local
coordinate system xµ : M Ñ U Ă Rn

V P T : FpMq Ñ R (5.1)

V pfq ” V µBµf (5.2)

It follows that

V µ B

Bxµ
“ V µ1 B

Bxµ1
(5.3)

• A covariant vector interpreted as the differential of a function

W P T ˚ : f P FpMq Ñ dFpMq (5.4)

df ” Bµf dx
µ (5.5)

this means that
Bf

Bxµ
dxµ “

Bf

Bxµ1
dxµ

1 (5.6)

Starting with those elements, more complicated transformation laws can be
easily derived.
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5.1 Geodesics
The integral given the distance is extended over the parameterized curve γ

xµ “ xµpλq (5.7)

and we have denoted by
9xµ ”

dxµ

dλ
(5.8)

We can normalize the tangent vector

uµ ”
9xµ
?

9x2
(5.9)

The extrema of the action are by definition the geodesics of the manifold.
We get

δS “ ´mc

ż

dλ tBρgµνδx
ρ 9xµ 9xν ` 2gµν 9xµδ 9xνu “ ´mc

ż

dλ δxρ
"

Bρgµν 9xµ 9xν ´ pBλgµρ ` Bµgλρq 9xλ 9xµ ´ 2gµρ:xµ
*

(5.10)

Expressed in the form of four ordinary differential equations for the four
functions of one variable xµpsq they read

d2xµ

ds2 ` Γµαβ
dxα

ds

dxβ

ds
“ 0 (5.11)

Here the Christoffel symbols are given by

Γλ,µν ” gλρΓρµν ” gλρ
1
2g

ρσ p´Bσgµν ` Bµgνσ ` Bµgνσq (5.12)

This is true insofar as we are parametrizing the curve using the arc length
(which is anyway possible only when the tangent to the curve is everywhere
timelike or spacelike). Assume now we use another parameter,

λ “ λpsq (5.13)

Then

uα ” dxα

ds “
dxα

dλ
dλ
ds

duα

ds “
d2xα

dλ2

`

dλ
ds

˘2
` dxα

dλ
d2λ
ds2 (5.14)

This means that the geodesic equations now read

d2xα

dλ2 ` Γαβγ
dxβ

dλ

dxγ

dλ
“ fpλq

dxα

dλ
(5.15)
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where the function fpλq is given by

cpλq ” ´
d2λ
ds2

`

dλ
ds

˘2 (5.16)

The Christoffel symbols are in a sense the gauge field associated to
diffeomorphisms. An element V P T behaves as

V µ1px1q ”
Bxµ

1

Bxρ
V ρ pxq (5.17)

or in matrix motation
V 1 “ J.V (5.18)

It is obvious that
BαV

µ (5.19)

does not transform as a tensor unless the diffeomorphism is a linear one,
because

dV 1 “ dJ.V ` JdV (5.20)

The idea on a connection (” gaugefield) is to modify the ordinary detivative
into a covariant derivative

DV ” dV ` ΓV (5.21)

To be specific, the gauge fields are defined in such a way that

∇ρV µ ” BρV
µ ` Γµρσ V σ (5.22)

does transform as a tensor, that is

∇ρ1V µ1px1q “
Bxσ

Bxρ1
Bxµ

1

Bxλ
∇σV λ (5.23)

It is easier to vidualize all this in matrix notation

pDV q1 “ dV 1 ` Γ1V 1 “ dpJ.V q ` Γ1.J.V “ dJ.V ` J.dV ` Γ1.J.V “
“ JDV “ J pdV ` ΓV q (5.24)

It is plain that for this to be true, it is enough that

Γ1J ` dJ “ JΓ (5.25)

that is
Γ1 “ JΓJ´1 ´ dJ.J´1 (5.26)

In gory detail

Γµ
1

ρ1λ1
Bxλ

1

Bxλ
`

B2xµ
1

BxλBxσ
Bxσ

Bxρ1
“
Bxσ

Bxρ1
Bxµ

1

Bxδ
Γδσλ (5.27)
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Because of the inhomogeneous term the Christoffel symbols are NOT ten-
sors. Thay are connections, that is, gauge fields. It is useful exercise to
check at least that the Christoffel symbols are a solution of these equations.
Actually they are the unique solution involving the metric tensor alone.

It is also useful to check that for covariant tensors.

∇µων ” Bµων ´ Γλµνωλ (5.28)

Using this formula, it is plain to check that the metric is covariantly constant

∇αgβγ “ Bαgβγ ´ Γλαβgλγ ´ Γλαγgλβ “ 0 (5.29)

• Let us begin by computing geodesics on the plane

ds2 “ dr2 ` r2dθ2 (5.30)

Γrθθ “ 1
2g
rr p´Brgθθq “ ´r

Γθrθ “ 1
2g
θθ pBrgθθq “

1
r (5.31)

:r ´ r 9θ2 “ 0
:θ ` 1

r
9θ 9r “ 0 (5.32)

First integral
9r2 ` r2 9θ2 “ 1 (5.33)

It easier to start from

L “

ż

dr

d

r2
ˆ

dθ

dr

˙2
` 1 (5.34)

Euler-Lagrange

d

dr

¨

˝r2 θ1
b

r2
`

dθ
dr

˘2
` 1

˛

‚“ 0 (5.35)

6 r2 θ1
b

r2
`

dθ
dr

˘2
` 1

“ C (5.36)

It is not difficult to check that the equation of a general planar straight
line

r sinpθ ` θ0q “ r0 sin θ0 cos θ0 (5.37)

is a solution of the first integral.
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• Let us compute now the geodesics on the ordinary two-sphere. The
arc distance is

S ”

ż

a

dθ2 ` sin2 θ dφ2 (5.38)

Let us describe the curve as

φ “ φpθq (5.39)

Then

S ”

ż

dθ

d

1` sin2 θ

ˆ

dφ

dθ

˙2
(5.40)

Euler-Lagrange
d

dθ

ˆ

B

Bφ1

b

1` sin2 θ pφ1q2
˙

“
B

Bφ

b

1` sin2 θ pφ1q2 “ 0 (5.41)

This means that
sin2 θ φ1

a

1` sin2 θ pφ1q2
“ C (5.42)

That is
φ1 “

C

sin θ
?

sin2 θ ´ C2
(5.43)

φ “

ż

dθ
C

sin θ
?

sin2 θ ´ C2
(5.44)

Let us change variables

u “ cot θ, du “ ´
dθ

sin2 θ
dθ (5.45)

φ “ ´C

ż

du
a

1´ C2p1` u2q
“ ´

ż

du
?
a2 ´ u2 “ cos´1 u

a
`φ0; a ”

?
1´ C2

C

(5.46)

cot θ “ a cos pφ´ φ0q (5.47)
This equation has got a nice geometric interpretation. Consider a fixed
unit vector defined by pθ0, φ0q. The plane orthogonal to it is generated
by the vectors such that

sin θ sin θ0 cos pφ´ φ0q ` cos θ cos θ0 “ 0 (5.48)

The interchapter of this plane with unit sphere yields the desired
geodesic.

The geodesic equation can be written as

∇uu “ fu (5.49)

that is, the tangent vector to the curve propagates parallel to itself, in the
sense that the tangent component of the covariant derivative is proportional
to the tangent vector itself.
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5.2 Covariant derivative and curvature.
In fact the metric connection (Christoffels) is the unique symmetric connec-
tion such that the coveriant derivative of the metric vanishes.

Bαgµν ´ Γλαµgλν ´ Γλανgλµ “ 0
Bµgαν ´ Γλνµgλα ´ Γλαµgλν “ 0
Bνgµα ´ Γλανgλµ ´ Γλαµgλα “ 0 (5.50)

1-2+3 yields
´2 Γλανgλµ “ Bα ` Bν ´ Bµ (5.51)

The commutator of two vectors, X,Y P T is defined as the vector

T ˆ T Ñ T (5.52)

rX,Y sα ” XµBµY
α ´ Y µBµX

α “ Xµ∇µY α ´ Y µ∇µXα (5.53)
Ths covariant derivative in the direction of a vector V is

∇V : T Ñ T (5.54)

p∇VW qα ” V µ∇µWα ” V µ
´

BµW
α ` ΓαµλW λ

¯

(5.55)

The curvature of the connection ∇ is defines as the operator

R : T 3 ” T ˆ T ˆ T Ñ T (5.56)

Z Ñ RXY Z ” r∇X ,∇Y sZ ´∇rX,Y s Z (5.57)
Let us slowly work this out

p∇Y Zqα “ Y λ pBλZ
α ` ΓαλσZσq (5.58)

The commmutator of two covariant derivatives reads

p∇X∇Y Zqα ” Xρ
´

Bρp∇Y Zqα ` Γαρδp∇Y Zqδ
¯

“

“ Xρ

"

Bρ
`

Y λBλZ
α ` Y λΓαλσZσ

˘

` Γαρδ
´

Y σBσZ
δ ` Y σΓδσβZβ

¯

*

“

“ Xρ

"

BρY
λBλZ

α ` Y λBρλZ
α ` BρY

λΓαλσZσ ` Y λBρΓαλσZσ ` Y λΓαλσBρZσ `

`Γαρδ
´

Y σBσZ
δ ` Y σΓδσβZβ

¯

*

(5.59)

In the opposite order

p∇Y∇XZqα ” Y ρ

"

BρX
λBλZ

α `XλBρλZ
α ` BρX

λΓαλσZσ `XλBρΓαλσZσ `XλΓαλσBρZσ `

`Γαρδ
´

XσBσZ
δ `XσΓδσβZβ

¯

*

(5.60)
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On the other hand, the covariant derivative in the direction of the commu-
tator reads

`

∇rX,Y s Z
˘α
“

`

Xµ∇µY λ ´ Y µ∇µXλ
˘

pBλZ
α ` ΓαλσZσq (5.61)

In the commutator all terms proportional to derivatives of the vector we are
mapping, BZ disappear, what is left out is a linear mapping

pX,Y, Zq P T 3 Ñ pRXY Zq
α
” Rα σρλZ

σXρY λ (5.62)

The tensor Rα σρλ is called the Riemann tensor ans is by construction
antisymmetric in the last two indices

Rα σρλ “ ´R
α
σλρ (5.63)

Its value can be easily read out from the preceding formulas

Rα σρλ ” BρΓαλσ ´ BλΓαρσ ` ΓαδρΓδσλ ´ ΓαδλΓδσρ (5.64)

Lets work out the two-sphere as an example. We shall actually consider a
rugby ball.

5.3 Differential manifolds
Differential manifolds are smoooth objects that locally are similar to Rn, but
globally are different. Instead of giving the general theory we shall content
ourselves here with a detailed study of the simplest non-trivial example. Let
us first consider the simpler case of ordinary spheres embedded in euclidean
space.

The sphere Sn of radius l embedded in Rn`1 is defined thtough the
equations

A“n`1
ÿ

A“1
X2
A “ l2 (5.65)

where a point in Rn`1 is represented by the (n+1) coordinates pX1, X1, . . . Xn`1q.
We are all used to polar coordinates, a generalization of the polar angles pθ, φq
for the two-sphere S2. We need n angles to define a point in the n sphere.
We shall call these angles, θ1 . . . θn, and to be specific,

Xn`1 “ r cos θn

Xn “ r sin θn cos θn´1

. . .

X2 “ r sin θn sin θn´1 . . . cos θ1

X1 “ r sin θn sin θn´1 . . . sin θ1 (5.66)
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(were we to use r itself as the radial coordinate, those would be polar
coordinates in Rn`1, in them the equation of the sphere is simply

r “ l “ constant (5.67)

here

0 ď θ1 ď 2π
0 ď θj ď π for j ‰ 1 (5.68)

The Xn`1 axis is special in those coordinates; any axis however can be taken
as the Xn`1 axis. The metric induced on Sn by the euclidean metric in Rn`1
is

ds2
n “ δABdX

ApθqdXBpθq “

“ dθ2
n ` sin

2 θndθ
2
n´1 ` . . .` sin

2 θn sin
2 θn´1 . . . sin

2 θ2dθ
2
1 (5.69)

id est, in a recurrent form

ds2
1 “ dθ2

1

ds2
n “ dθ2

n ` sin
2θn ds

2
n´1 (5.70)

The tangent space is a vector space Tn with the same dimension as the
manifold itself. It can be defined as the set of vectors orthogonal to the
normal vector

nA “ XA (5.71)

In general, given a surface in Rn`1 defined by the equation

fpXAq “ 0 (5.72)

the normal vector is given by the gradient

nA ” BAf (5.73)

To come back to the sphere, the tangent space is defined as those vectors
that obey

ÿ

A

xAtA “ 0 (5.74)

Particularizing to the two-dimensional sphere, the tangent space is now the
tangent plane, that is, the set of vector in R3 such that

n1.sin θ cos φ` n2.sin θ sin φ` n0cos θ “ 0 (5.75)

In the North or South pole (θ “ 0, πq the tangent plane is just the plane

X0 “ ˘l (5.76)
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that is, the set of vectors
p0, n1, n2q (5.77)

and in the equator (θ “ π
2 )

n1 cos φ` n2sin φ “ 0 (5.78)

Polar coordinates do not cover the whole sphere (neither do they cover eu-
clidean space). They are not well defined at the two poles. It is interesting
to study other set of coordinates, which are actually close to what carto-
graphers do when drawing maps. The stereographic coordinates are defined
out of one of the poles (either North or South) Northern pole stereographic
projection

xµS ”
2l

X0 ` l
Xµ ”

Xµ

ΩS
(5.79)

(µ “ 1 . . . n). Let us choose cartesian coordinates in Rn`1 with origin in
the South pole itself. This meags tgeat the South pole is represented by
XA “ 0, and the norh pole by XA “ pl, 0, . . . , 0q. One can imagine that one
is projecting a point P pXAq P Sn from the South pole into into a point xµS
that one van view as living on the tangent plane at the North pole.

X0 “ l
1´ x2

S
4l2

1` x2
S

4l2
“ lp2ΩS ´ 1q “ lp2ΩN ` 1q (5.80)

ΩS ”
1

1` x2
S

4l2
(5.81)

x2
S

4l2 “
l ´X0
l `X0

(5.82)

This means that when X0 “ l (the North pole) then

x2
S

4l2 “ 0 (5.83)

and when X0 “ ´l (the South pole) then

X2
S “ 8 (5.84)

The jacobians of the embedding is

BµX
0 “ ´Ω2

S

xµ

l

BµX
α “ ΩSδ

α
µ ´ Ω2

S

xαxµ
2l2 (5.85)

The induced metric

ds2 “ δABBµX
ABνX

Bdxµdxν “ Ω2
Sδµνdx

µdxν (5.86)
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Performing the North pole projection

xµN ”
2l

X0 ´ l
Xµ (5.87)

Uniqueness of X0 means that

2ΩN ` 1 “ 2ΩS ´ 1 (5.88)

and uniqueness of Xµ

xµN “
ΩS

ΩN
xµS “ ´

4l2

x2
S

xµS (5.89)

Conversely,

xµS “ ´
4l2

x2
N

xµN (5.90)

This leads to
ΩN “ ´

1

1` x2
N

4l2
(5.91)

The antipodal map
XA Ø ´XA (5.92)

is equivalent to
xµS Ø xµN (5.93)

and the jacobian is

BxµN
BxνS

“ ´
4l2

x2
S

ˆ

δµν ´ 2x
µ
Sx

ν
S

x2
S

˙

(5.94)

Only functions which are invariant under the exchange of North and South
pole stereographic coordinates are well defined on the sphere.

5.4 The two-sphere, S2

Let us work out in detail the two dimensional case. Define dimensionless
corrdinates asd

ξ1 ” ´
x
z`l η1 “

x
l´z

ξ2 ”
y
z`l η2 “

y
l´z (5.95)

It then follows that
z “ L

1´ ξ2

1` ξ2 “ l
η2 ´ 1
η2 ´ 1 (5.96)
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and the change N/S now reads

η1 “ 1
ξ2 ξ

1

η2 “ ´ 1
ξ2 ξ

2 (5.97)

Then defining the complex variable

z ” ξ1 ` iξ2 (5.98)

the change N/S reduces to
z Ñ w ”

1
z

(5.99)

Consider now a field of vectors

lnpzq
B

Bz
“ zn

B

Bz
“ ´

1
z2 lnpzq

B

Bw
“ ´w2´n B

Bw
(5.100)

If we want the field to be non-singulkar for all values of z and w, then

n ě 0 & 2´ n ě 0 (5.101)

so that the only vector fields globally defined on the two-sphete S2 are

`

a` bz ` cz2˘ B

Bz
“ ´

`

aw2 ` bw ` c
˘ B

Bw
(5.102)

(5.103)

The induced metric on the sphere reads

ds2 “
dx2

S

p1` x2
S

4l2 q
2
“

dx2
N

p1` x2
N

4l2 q
2

(5.104)

which is conformally flat. This is the main virtue of these coordinates, and
the reason why cartographers are fond of them, We shall call a frame a basis
on the tangent space to the sphere as a manifold. Let us define a frame
through

δabe
a
µe
b
ν “ gµν (5.105)

The frames are given by

peSq
a
µ “ δµa

1

1` x2
S

4l2
(5.106)

peN q
a
µ “ ´δ

µ
a

1

1` x2
N

4l2
(5.107)
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It is easy to check that

Lab pxq peSq
b
µ ”

δaµ ´ 2x
µ
Sx

S
a

x2
S

1` x2
S

4l2
“
BxνN
BxµS

peN q
a
ν (5.108)

where the position dependent rotation is given by

Lab ” δab ´ 2x
axb
x2 (5.109)

In fact this was the reason for the apparently arbitrary minus sign in front
of the definition of eN , which is unneccessary to reproduce the metric.

There are many reasons to be drawn from this example. First of all,
it is never possible to cover a non trivial manifold with a single coordinate
system. In this case we need at least two, namely North and South stereogra-
phic coordinates. Second, at each coordinate system, there is a frame in the
tangent space, and if we refer all quantities to this frame formal operations
are similar to the flat space ones.
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6

Moving frames and
curvature.

The analogous to the field strength tensor for gauge theories is then the
Riemann-Christoffel tensor

Rµ ναβ ” BαΓµνβ ´ BβΓµνα ` ΓµσαΓσνβ ´ ΓµσβΓσνα (6.1)

The Ricci tensor is defined by contracting indices

Rµν ” Rλ µλν (6.2)

Recall the algebraic Bianchi identity

Rµ αβγ `R
µ
γαβ `R

µ
βγα “ 0 (6.3)

Clever use of this identity allows to prove that

Rαβγδ “ Rγδαβ (6.4)

Let us see it. We start with

Rαλµν `Rαµνλ `Rανλµ “ 0
Rλαµν `Rλναµ `Rλµνα “ 0 (6.5)

Substracting

2Rαλµν `Rαµνλ `Rανλµ ´Rλναµ ´Rλµνα “ 0 (6.6)

The same equation with the indices interchanged

pαλq Ñ pµνq (6.7)

2Rµναλ `Rµαλν `Rµλνα ´Rνλµα ´Rναλµ “ 0 (6.8)
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conveys the fact that
Rµναλ “ Rαλµν (6.9)

We have then a symmetric tensor RIJ where each index is in the antisym-
metric rαβs (that is, D ” npn´1q

2 values). This yields

DpD ` 1q
2 ´

ˆ

n

4

˙

“
n2pn2 ´ 1q

12 (6.10)

(we withdraw
`

n
4
˘

because of the algebraic Bianchi identity) independent
components. Id est, 20 in n=4 dimensions.

There are also some differential identities, the Bianchi identities

∇αRµ νβγ `∇γRµ ναβ `∇βRµ νγα “ 0 (6.11)

Contracting δβµ
∇αRνγ ´∇γRνα `∇µRµ νγα “ 0 (6.12)

Contracting again gνα

∇αRαγ ´∇γR`∇µRµγ “ 0 (6.13)

We shall derive most of these equations in a short while. Many useful formu-
las of tensor calculus are to be found in Eisenhart’s book, still indispensable.

Also very useful are the Ricci identities that state that

r∇α,∇βsωγ “ Rαβγδ ω
δ (6.14)

This can actually be taken as the definition of the Riemann tensor, as is
done in many books.

All this means that the geodesic equations can be written as

uµ∇µuα “ 0 (6.15)

where the four-velocity of the massive particle is given by

uα ”
dxα

ds
(6.16)

In general, the metric

da2 “ gµνpxq dx
µ dxν (6.17)

is not flat; to the extent that it differs from the flat metric, it indicates the
presence of a gravitational field. At each point there are tensors (or spinors)
that represent physical observables. For example, the energy momentum
tensor

Tµνpxq (6.18)
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This tensor live in the tangent space; the set of all tangent spaces of the
manifold is the tangent bundle. A frame is a basis of the tangent vector
space at a given point of the space-time manifold. This four vectors are
represented by

Eµa Bµ (6.19)
where the index a “ 0, 1, 2, 3 labels the four different vectors. The simplest
possibility is to choose one of them timelike (this is the one labeled E0) ,
and the other three spacelike. Furthermore, they can be normalized in such
a way that

gµνE
µ
aE

ν
b “ ηab (6.20)

This is the reason why latin indices are dubbed Lorentz indices, whereas
the ordinary spacetime indices are called Einstein indices. Such a frame is
precisely a LIF (where FREFOS live) and the physical observables measured
in the LIF are simply

Tab ” TµνE
µ
aE

ν
b (6.21)

The determinant of E considered as a matrix cannot vanish. We can
then define the coframe made out of the dual one-forms

ea pEbq “ δaβ (6.22)

When indices are put in place, this is equivalent to computing the inverse
matrix

eaµE
µ
b ” δab

eaµE
ν
a “ δνµ (6.23)

From the normalization condition

gµνE
µ
aE

ν
b “ ηab

and multiplying both members by the dual form eaσ

ñ eaµ “ gµνη
abEνb

This means that the dual form is simply the frame with the Einstein indices
lowered with the spacetime metric, and the Lorentz indices raised with the
Lorentz metric. Following most physicists we shall represent both the frame
and the coframe with the same letter, although when neccessary we will
indicate explicitly its nature, as in

~ea ” eµaBµ

ea ” eaµdx
µ (6.24)

The parallel propagator is defined once frames at different points are
selected by some mechanism

gα β1px, x
1q ” eαa pxqe

a
α1px

1q (6.25)
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Then physical quantities at different points are related through

Aαpxq ” gα β1px, x
1qaα

1

px1q (6.26)

For n-dimensional spheres in stereographic coordinates

ds2 “ Ω2 δµνdx
µdxν (6.27)

where
Ω ” 1

1` x2

4L2

(6.28)

and the frame is defined by
eaµ “ Ωδaµ (6.29)

in such a way that
eµa “

1
Ωδ

µ
a (6.30)

The Sn Christoffels read

Γαβγ “
Ωβ

Ω δαγ `
Ωγ

Ω δαβ ´
Ωα

Ω δβγ (6.31)

Under a local Lorentz transformation

Ea1 “ La1
bpxqEb (6.32)

Eµa pxq is a nonsingular square nˆn matrix. The commutators are given by

rEa, Ebs “ CcabEc

It is a fact that

dea “ Brµe
a
ρsdx

ρ ^ dxµ “
1
2
`

Bµe
a
ν ´ Bνe

a
µ

˘

dxµ ^ dxν “
1
2
`

Bµe
a
ν ´ Bνe

a
µ

˘

eµc e
ν
de
c ^ ed “

“
1
2
`

ecpe
a
νqe

ν
d ´ edpe

a
µqe

µ
c

˘

ec ^ ed “
1
2
`

edpe
µ
c qe

a
µ ´ e

a
νecpe

ν
dq
˘

ec ^ ed “

“
1
2 red, ecs

µ eaµe
c ^ ed “ ´

1
2C

a
cde

c ^ ed (6.33)

To be specific, the structure constants read

Ccab “ ecµ

´

eλaBλe
µ
b ´ e

λ
b Bλe

µ
a

¯

“ ecµ

´

eλa∇λe
µ
b ´ e

λ
b∇λeµa

¯

(6.34)

(The Christoffels cancel when taking the antisymmetric part). In our Sn
example,

Ccab “
Ωb

Ω2 δca ´
Ωa

Ω2 δcb (6.35)

Under a local Lorentz transformation the vierbein transforms as

ea
1

“ La bpxqe
b (6.36)
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This is not true of the derivatives of the vierbein, dea, owing to the term
in dLa b . We would like to introduce a gauge field (connection) in the LIF,
the so called spin connection, such that the two-form

Dea ” dea ` ωa b ^ e
b (6.37)

transforms as
pDeaq1 “ La bDeb (6.38)

For this to be true we need

d
´

La be
b
¯

`
`

ω1
˘a

b ^

´

Lb ce
c
¯

“ La b

´

deb ` ωb c ^ e
c
¯

(6.39)

This is equivalent to

dLa b ^ e
b `

`

ω1
˘a

b ^ L
b
ce
c “ La bω

b
c ^ e

c (6.40)

which is kosher provided

dLa c `
`

ω1
˘a

bL
b
c “ La bω

b
c (6.41)

Lorentz transformations are such that

LacLad “ δcd “ LcaLda (6.42)

Finally we get the transformation law for the gauge field
`

ω1
˘a

d “ La b ω
b
c Ld

c ´ dLa cLd
c (6.43)

At the linear level, where
Lab ” ηab ` εab (6.44)

δωa bµ “ ´Bµω
a
b ` rε, ωs

a
b (6.45)

This should be valid for any field living in the LIF that transforms with a
representation of the Lorentz group. But any field can be so represented.
For example, a vector field, V µ is projected on the LIF by a FREFO as V a ”

eaµV
µ. We want that its Lorentz covariant derivative is also the projection

of Einstein’s covariant derivative, that is

∇L pV aq “ eaµ p∇EV q
µ (6.46)

This physical requirement determines the relationship between Lorentz and
Einstein connections to be

ωa bσ “ eaλΓλµσe
µ
b ´ e

ρ
bBρe

a
σ (6.47)

It is a fact (confer [15]) that the torsion can be defined through the connec-
tion ωab by

dea ` ωab ^ e
b ” T a ”

1
2T

a
bce

b ^ ec
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Demanding that the tangent metric is covariantly constant we learn that

∇aηbc “ 0 “ ´ωdabηdc ´ ωdacηdb ” ´ωc|ab ´ ωb|ac (6.48)

When the torsion vanishes, and in tensor form

Bρe
a
σ ´ Bσe

a
ρ ` ω

a
σρ ´ ω

a
ρσ “ 0 (6.49)

it follows that

ωa|bc ´ ωa|cb “ pBρeaσ ´ Bσeaρq e
σ
b e
ρ
c ” ~ebBcea ´ ~ecBbea “ eaBb~ec ´ eaBc~eb “

“ ea . r~eb, ~ecs “ ea.C
d
bc~ed ” Ca|bc (6.50)

where we have used the fact that

~ebBcea “ ´eaBc~eb (6.51)

This means that the torsion-free condition completely determines the anti-
symmetric part of the connection. One often is interested in the case when
the connection lies in the Lie algebra of a simple group. For example, if
ωµ P SOpnqq

ωµ|ab “ ´ωµ|ba (6.52)

For spheres we have

ωa|bc “
1
2

ˆ

Ωc

Ω2 δab ´
Ωb

Ω2 δac

˙

(6.53)

2ωµ|ab “
Ωb

Ω δµa ´
Ωa

Ω δµb “

ˆ

Ωb

Ω δaµ `
Ωµ

Ω δab ´
Ωa

Ω δbµ

˙

´
Ωµ

Ω δab (6.54)

We see that this is equivalent to our physical postulate of FREFOs and
FIDOS. The curvature of the connection is defined through

dωab ` ω
a
c ^ ω

c
b ” Ra b ”

1
2R

a
bcde

c ^ ed

It is asy to check that this a true Lorentz tensor; that is, under a local
Lorentz transformation

Rab Ñ La cR
c
dLb

d (6.55)

This leads immediately to Bianchi identities

dT a “ dωab ^ e
b ´ ωab ^ de

b “ pRab ´ ω
a
c ^ ω

c
bq ^ e

b ´ ωab ^ pT
b ´ ωbc ^ e

cq “

“ Rab ^ e
b ´ ωab ^ T

b

dRab “ dωac ^ ω
c
b ´ ω

a
c ^ dω

c
b “

pRac ´ ω
a
d ^ ω

d
c q ^ ω

c
b ´ ω

a
c ^ pR

c
b ´ ω

c
d ^ ω

d
b q “ Rac ^ ω

c
b ´ ω

a
c ^R

c
b (6.56)
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For a Levi-Civita connection the algebraic Bianchi identity in a natural basis
reads

Rab ^ e
b “ 0 “ 1

2R
a
bµνe

b
λdx

µνλ (6.57)

In gory detail

Rα rλµνs “ 0 “ Rα λµν `R
α
µνλ `R

α
νλµ (6.58)

Clever use of this identity allows to prove that

Rαβγδ “ Rγδαβ (6.59)

Let us see it. We start with

Rαλµν `Rαµνλ `Rανλµ “ 0
Rλαµν `Rλναµ `Rλµνα “ 0 (6.60)

Substracting

2Rαλµν `Rαµνλ `Rανλµ ´Rλναµ ´Rλµνα “ 0 (6.61)

The same equation with the indices interchanged

pαλq Ñ pµνq (6.62)

2Rµναλ `Rµαλν `Rµλνα ´Rνλµα ´Rναλµ “ 0 (6.63)

conveys the fact that
Rµναλ “ Rαλµν (6.64)

We have then a symmetric tensor RIJ where each index is in the antisym-
metric rαβs (that is, D ” npn´1q

2 values). This yields

DpD ` 1q
2 ´

ˆ

n

4

˙

“
n2pn2 ´ 1q

12 (6.65)

(we withdraw
`

n
4
˘

because of the algebraic Bianchi identity) independent
components. Id est, 20 in n=4 dimensions. The differential identity in a
natural basis reads

∇rαRµ βγδs ” ∇αR
µ
βγδ `∇γRµ βδα `∇δRµ βαγ “ 0 (6.66)

where the overline on an index means that this particular index is absent
from the antisymmetrization. Now

∇rαRµ βγδs ” BrαR
µ
βγδs ` Γµ

rασR
σ
βγδs ´ Γσ

rαβ
Rµ σγδs ´ ΓσrαγR

µ
βsσδs ´ ΓσαδRµ βγσs “

“ BrαR
µ
βγδs ` Γµ

rασR
σ
βγδs ´ Γσ

rαβ
Rµ σγδs (6.67)
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Using the relationship between ωabµ and Γαβµ derived above we are done. On
the other hand

BαR
µ
βγδ “ Bα

´

eµae
b
βR

a
bγδ

¯

“ pBαe
µ
aq e

b
βR

a
bγδ`e

µ
a

´

Bαe
b
β

¯

Ra bγδ`e
µ
ae
b
βBαR

a
bγδ

(6.68)
It is a fact of life that

∇EapEbq ” ΓcabEc
T abc “ Γabc ´ Γacb ´ Cabc
Rab,cd “ EcΓadb ´ EdΓacb ` ΓedbΓace ´ ΓecbΓade ´ CecdΓaeb (6.69)

It is nice exercise to check that the scalar curvature for a two-dimensional
surface

R “ N
D

N ” e
“

eugv ´ 2gvfu ` g2
u

‰

` f rgveu ` 2fu p2fv ´ guq ´ ev p2fv ` guqs `
`2f2 revv ´ 2fuv ` gvvs ` g

“

e2
v ` eu p´2fv ` guq ´ 2e pevv ` 2fuv ` gvvq

‰

D ” 2
`

f2 ´ eg
˘

(6.70)
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7

The Gauss-Codazzi equations

Consider a codimension one hypersurface given by the embedding

Σn´1 ãÑMn (7.1)

xα “ σαpyiq (7.2)
The indiced metric is given by

ds2
n´1 “ hijdy

idyj “ gµνBiσ
µBjσ

νdyidyj (7.3)

There are then two metric connections: the n-dimensional one, ∇g and
the (n-1)-dimensional one associated to the induced metric, Dh. From the
definition itself of the induced metric follows

0 “ Dkhij “ BρgαβDkσ
ρBiσ

αBjσ
b ` gαβDkpBiσ

αqBjσ
β ` gαβBiσ

αDkpBjσ
βq

(7.4)
Cyclic permutations

BρgαβDjσ
ρBkσ

αBiσ
β ` gαβDjpBkσ

αqBiσ
β ` gαβBkσ

αDjpBiσ
βq “ 0

BρgαβDiσ
ρBjσ

αBkσ
β ` gαβDipBjσ

αqBiσ
β ` gαβBjσ

αDipBkσ
βq “ 0

Adding 1+2-3 yields

0 “ gαβDjDkσ
αDiσ

β `Dkσ
ρDiσ

αDjσ
β 1

2 pBρgαβ ` Bβgρα ´ Bαgβρq “

gαβDjDkσ
αDiσ

β `Dkσ
ρDiσ

αDjσ
βtα, βρu “

“ gαβDiσ
β
´

DkDjσ
α ` t αβρuDjσ

βDkσ
ρ
¯

(7.5)

This means that

DkDjσ
α “ ´t αβρuDjσ

βDkσ
ρ `Kjkn

α (7.6)

where the normal component reads

Kjk ” nα

´

DkDjσ
α ` t αβρuDjσ

βDkσ
ρ
¯

(7.7)
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Taking the Dj

0 “ Dj

´

gαβBiσ
αnβ

¯

“ DjgαβBiσ
αnβ ` gαβDjDiσ

αnβ ` gαβDiσ
αDjn

β

(7.8)
On the other hand,

Djgαβ “ Djσ
νBνgαβ “ Djσ

ν ptαν;βu ` tβν;αuq (7.9)

so that

Kjk “ nαt
α
βρuDjσ

βDkσ
ρ ´ gαβDjσ

αDkn
β ´ nβDkσ

ρ ptαρ;βu ` tβρ;αuqDjσ
α “

´gαβDjσ
αDkn

β ´ nβDkσ
ρtβρ;αuDjσ

α “ ´ξαi ∇ρnαξ
ρ
j (7.10)

This tensor is called the extrinsic curvature, and represents the derivative
of the normal vector, projected on the surface.

Our purpose in life is now to relate the Riemann tensor on the hypersur-
face (computed with the induced metric) with the corresponding Riemann
tensor of the spacetime manifold. Those are the famous Gauss-Codazzi
equations, which we purport now to derive. They were one of the pillars
of Gauss’ theorema egregium, [15] which asserts that If a curved surface is
developed upon any other surface whatever the measure of curvature in each
point remains unchanged.

We start with

0 “ Dj

´

gαβn
αnβ

¯

“ Djσ
ρ ptαρ;βu ` tρβ;αuqnαnβ ` gαβDjn

αnβ ` gαβn
αDjn

β “

gαβn
β
´

Djn
α ` t αµνuDjσ

pµnνq
¯

“ gαβn
β∇µnαDjσ

µ “ nα∇µnαξµj (7.11)

On the other hand, the explicit expression for the extrinsic curvature reads

Kij “ ´ξ
α
i ∇ρnαξ

ρ
j (7.12)

First of all let us derive some properties of the extrinsic curvature. It is
symmetric, Kij “ Kji.

´Kij “ ∇βnαξαi ξ
β
j “ ´nα∇βξ

α
i ξ

β
j (7.13)

But
”

ξβj , ξ
α
i

ı

“ 0 (7.14)

so that
´Kij “ ´nαξ

α
i ∇βξαj “ ∇βnαξ

β
i ξ

α
l “ Kji (7.15)

This symmetry implies a very useful formula for the extrinsic curvature,
namely

´Kij “ ∇pβnαqξαi ξ
β
j “ £pnqgαβξαi ξ

β
j (7.16)
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By the way, in the physics jargon when Kij “ 0 it is said that it is a moment
of time symmetry.

On the other hand, remembering that

ξαi ξ
i
β “ gαβ ´ n

αnβ (7.17)

we deduce that

´Kijξ
i
µ “ ´

`

gαµ ´ n
αnµ

˘

∇ρnαξρj “ ´∇ρnµξ
ρ
j (7.18)

(because of [7.11]).
Let us analyze the definition of extrinsic curvature in even more detail.

pDkDjDi ´DjDkDiqσ
α “ ξαmh

mhRhijk “ Dk

´

´t αβρuξ
β
i ξ

ρ
j `Kijn

α
¯

´

´Dj

´

´t αβρuξ
β
i ξ

ρ
k `Kikn

α
¯

“ Bkt
α
βρuξ

β
i ξ

ρ
j ´ t

α
βρuDkξ

β
i ξ

ρ
j ´ t

α
βρuξ

β
i Dkξ

ρ
j `

DkKijn
α `KijDkn

α ` Bjt
α
βρuξ

β
i ξ

ρ
k ´ t

α
βρuDjξ

β
i ξ

ρ
k ` t

α
βρξ

β
i Djξ

ρ
k ´DjKik ´KikDjn

α

and using again the defnition of the extrinsic curvature to eliminate the term
with two derivatives,

ξαmh
mrRrijkrhs “ ´Bkt

α
βρuξ

β
i ξ

ρ
j ´ t

α
βρuξ

ρ
j

´

´t βµνuξ
µ
i ξ

ν
k `Kikn

β
¯

`DkKijn
α `KijDkn

α `

Bjt
α
βρuξ

β
i ξ

ρ
k ` t

α
βρuξ

ρ
k

´

´t βµνuξ
µ
i ξ

ν
j `Kijn

β
¯

´DjKikn
α ´KikDjn

α “

nα pDkKij ´DjKikq `Kij

´

Dkn
α ` t αβρun

βξρk

¯

´Kik

´

Djn
α ` t αβρn

βξρj

¯

´

´ξβi ξ
ρ
j ξ
σ
k

´

Bσt
α
βρu ´ Bρt

α
βσu ´ t

α
λρut

λ
βσ ` t

α
λσut

λ
βρ

¯

(7.19)

Using again the definition of the extrinsic curvature, as well as the one of
the full Riemann tensor, we get

ξαmh
mr pRrijkrhs `KijKrk ´KikKrjq ´ n

α pDkKij ´DjKikq “ ´ξ
β
i ξ

ρ
j ξ
σ
kR

α
βσρrgs

This projects into the famous Gauss-Codazzi equations

Rlijkrhs `KilKjk ´KikKlj “ ξαl ξ
β
i ξ

ρ
j ξ
σ
kRαβρσrgs (7.20)

as well as

DjKik ´DkKij “ ´n
αξβi ξ

ρ
j ξ
σ
kRαβσρrgs (7.21)

Please note that not all components of the full Riemann tensor can be recove-
red from the knowledge of the Riemann tensor computed on the hypersurface
plus the extrinsic curvature. As a matter of fact,

pnqR “ pn´1qRij ij ` 2 pnqRi nin “pn´1q R`K2´Kijk
ij ` 2 pnqRi nin (7.22)
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This means that an explicit computation of pnqRi nin is needed before the
Einstein-Hilbert term could be written in the 1+(n-1) decomposition. To
do that, consider Ricci’s identity

∇γ∇βnα ´∇β∇γnα “ Rρ αβγnρ (7.23)

Now

nβ p∇γ∇βnγ ´∇β∇γnγq “ nβgαγRρ αβγn
ρ ” Rnα nα (7.24)

Besides,

∇γnβ∇βnγ “ ∇γnβ
´

nβnµ ` ξβi ξ
µi
¯´

nγnν ` ξγj ξ
jν
¯

∇µnν “

∇γnβξβi ξ
µiξγj ξ

jν∇µnν “ ´KijK
ij (7.25)

Summarizing,

Rnα nα “ nβ∇γ∇βnγ ´ nβ∇β∇γnγ “ ∇γ
`

nβ∇βnγ
˘

´∇γnβ∇βnγ ´∇β
`

nβ∇γnγ
˘

`

`∇βnβ∇γnγ “
“ ∇γ

`

nβ∇βnγ ´ nγ∇βnβ
˘

`KijK
ij ´K2 (7.26)

Then
pnqR “ pn´1qR`KijK

ij ´K2 ´ BαV
α (7.27)
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8

Distributions

Dirac introduced a function such that

δpxq “ 0 x ‰ 0 (8.1)

but
ż 8

´8

dx δpxq “ 1 (8.2)

Consider the function φpx, εq defined in such a way that

φpx, εq “ 0 r ě ε

φpx, εq “ e
´ ε2
ε2´r2 r ď ε (8.3)

It is clear that
fp0q “ 1

e
‰ 0 (8.4)

nevertheless
ż ε

´ε
φpx, εq d3x “

ż ε

´ε
e
´ ε2
ε2´r2 d3x “ 4πε3

ż 1

0
e
´ 1

1´r2 dr “ Cε3 (8.5)

It is clear that Dirac’s function cannot be a true function. Laurent
Schwartz gave mathematical respectability to Dirac’s ideas by introducing
the concept of distributions. The main idea is to consider the dual of a
convenient function space.

To begin, let us start with the space of test functions K, of real functions
with continuous derivatives to all orders, and with compact support. It is
not empty (actually, our recent friend, the function φpx, εq P K).

It can be shown that given any continuous function f(x) with bounded
support, there is always some φpxq P K arbitrarily close to it.

Define a distribution d P K 1 as a continuous linear functional on K

@φpxq P K xd, φpxqqy P R (8.6)

The two essential properties are
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•
xd, a1φ1 ` a2φ2y “ α1xd, φ1y ` a2xd, φ2y (8.7)

• If the sequence tφnu converges to 0 in K, then the sequence

txd, φnyu (8.8)

converges to zero.

It is plain that any locally summable function fpxq is a particular case of a
distribution, just by defining

xf, φy ”

ż 8

´8

dx fpxq φpxq (8.9)

those are called regular distributions.
But there are distributions (dubbed singular) which can not be written

in such a way. The most important one is precisely the Dirac delta

xδpxq, φpxqy ” φp0q (8.10)

• It is natural to define the behavior under a translation

xdpx´ aq, φpxqy “ xdpxq, φpx` aqy (8.11)

• Under a reflexion

xdp´xq, φpxqy “ xdpxq, φp´xqy (8.12)

• Under a rescaling a regular distribution behaves as
ż

dx fpx{λqφpxq “ λ

ż

dx fpxq φpλxq (8.13)

In general, we generalize this in n-dimensions to

xpλdq pxq, φpxqy ” λnxdpxq, φpλxqy (8.14)

Let us now introduce the space S (Schwartz) of infinitely differentiable func-
tions which, together with their derivatives, go to zero faster than any power
of 1

r when r Ñ8. For example

e´r
2
P S (8.15)

It is clear that tempered distributions are a subset of distributions

S 1 Ă K 1 (8.16)
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(the bigger the starting space, the smaller its dual). The derivative of a
distribution is defined as

xd1, φpxqy ” ´xd, φ1pxqy (8.17)

This result holds for regular distributions just by neglecting surface terms.
Let us work out some examples

• Consider the Heaviside function

θpxq “ 0 x ă 0
θpxq “ 1 x ą 0 (8.18)

Let us compute its derivative as a distribution.

xθ1pxq, φpxqy ” ´xθpxq, φ1pxq ” ´

ż 8

0
φ1pxqdx “ φp0q (8.19)

This means that in this sense,

θ1pxq “ δpxq (8.20)

• Let us find now the derivative of the distribution

xλ` (8.21)

defined for ´1 ă λ ă 0 as

xλ` “ 0 x ď 0
xλ` “ xλ x ą 0 (8.22)

This is locally summable, which is not the case with the ordinary
derivative

λxλ´1 (8.23)

We have to regularize the integral
ż 8

0
λxλ´1 dx (8.24)

According to the definition

x

´

xλ`

¯1

, φpxqy “ ´

ż 8

0
xλφ1pxq dx ” ´ lim

εÑ0

ż 8

ε
xλφ1pxq dx (8.25)

Let us now integrate by parts with

du “ dφ ùñ u “ φ` C

v “ xλ (8.26)
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This leads to

´ lim
εÑ0

ˆ

pφ` Cqλxλ´1
ˇ

ˇ

ˇ

ˇ

8

ε

´

ż 8

ε
λxλ´1 pφ` Cq dx

˙

(8.27)

It is plain that in order for this to have a finite limit it is neccessary
that

C “ ´φp0q (8.28)

We are then led to the definition

x

´

xλ`

¯1

, φpxqy ”

ż 8

0
pφpxq ´ φp0qqλxλ´1 dx (8.29)

• Let us compute the derivative of

log px` i0q ” lim
yÑ0

logpx` iyq (8.30)

Now
logpx` i0q “ log |x| ` iπθp´xq (8.31)

We have seen that
θ1pxq “ δpxq (8.32)

Now
θpxq ` θp´xq “ 1 ùñ θ1pxq “ ´δpxq (8.33)

as well as

x2 “ |x|2 ùñ
d

dx
|x| “

x

|x|
ùñ

d

dx
log |x| “ 1

|x|

x

|x|
“

1
x
(8.34)

Then
d

dx
logpx` i0q “ 1

x
´ iπδpxq (8.35)

• Let us explore d
dx |x| in the sense of distributions

x|x|1, fy ” ´
ş

|x|f 1 ““
ş0
´8

xf 1 ´
ş8

0 xf 1 “

“ xf |0´8 ´
ş0
´8

f `
ş8

0 f ´ xf |80 “
ş

σpxqf (8.36)

There is not delta-component of |x|1.

• Let is now compute the laplacian of the Newtonian potential.

∆1
r

(8.37)
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Following the general definition

x ∆1
r
, φ y “ x

1
r
,∆φ y “

ż

d3x
1
r

∆φ ” lim
εÑ0

ż

rěε
d3x

1
r

∆φ “

lim
εÑ0

ż

rěε
d3x

ˆ

∇i
ˆ

1
r
∇iφ

˙

´

ˆ

∇i
1
r

˙

∇iφ
˙

“

“ lim
εÑ0

ż

rěε
d3x

ˆ

∇i
ˆ

1
r
∇iφ

˙

´∇i
ˆ

∇i 1
r
φ

˙

`

ˆ

∆1
r

˙

φ

˙

(8.38)

The volume term vanishes because 1
r is harmonic on R3{0. The surface

term is

´ lim
εÑ0

4πε2
ˆ

1
ε

d

dn
φ` φ

1
ε2

˙

“ ´4πφp0q (8.39)

Then
∆1
r
“ ´4πδ3pxq (8.40)

• It is illustrative to repeat this calculation for n=2.
ż

rěε
∆ log r φpxq d2x ”

ż

rěε
log r ∆φ d2x “

“

ż

rěε

"

∇ plog r ∇φq ´∆ log r φ`∇ p∇ log r φq

*

“

“ 0` 0`
ż ε

0

1
r

2πr dr φ “ 2π φp0q (8.41)

• The derivative of a convergent sequence of differentiable functions also
converges to the derivative of the limit, in the sense of distributions.
For example, it is a fact that any series of the form

8
ÿ

´8

an e
inx (8.42)

whose coefficients increase no faster that a power of n when |n| Ñ 8

converges in the sense of distributions.

Proof. In fact such a series can always be obtained by sufficient number
of term-by-term derivatives of another series of the type

8
ÿ

´8

an
pinqk

einx (8.43)

QED
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• A sequence of distributions

da, d2 . . . dn (8.44)

is defined to converge to the distribution d if @φpxq P K

lim
nÑ8

xdn, φy “ xd, φy (8.45)

It is a fact that every singular distribution is the limit of a sequence
of regular functionals.

• Let us work out in detail an important example Consider the series
8
ÿ

n“1

1
n

sin nx (8.46)

It is quite easy to check that it converges to the function

fpxq ”
π ´ x

2 0 ă x ă 2π (8.47)

Consider the function over two periods

´
π

2 ´
x

2 ´ 2π ă x ă 0
π

2 ´
x

2 0 ă x ă 2π (8.48)

which has a 2π discontinuity at the origin. Its derivative is

xd1, φy ” ´

ż

dx dpxq φ1pxq “

ż 0

´8

dx
π ` x

2 φ1pxq ´

ż 8

0

π ´ x

2 φ1 “

“
π

2φp0q ´
1
2

ż 0

´8

φ dx`
π

2φp0q ´
1
2

ż 8

0
φ dx (8.49)

Then
d1 “ π δpxq ´

1
2 (8.50)

Differentiating the whole series, we get a delta at each discontinuity

ÿ

cos nx “ ´
1
2 ` π

8
ÿ

´8

δpx´ 2πnq (8.51)

Euler’s formula now implies that

1` eix ` e2ix ` . . .` e´ix ` e´2ix ` . . . ”
8
ÿ

´8

einx “ 2π
8
ÿ

´8

δpx´ 2πnq

(8.52)
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• A delta convergent sequence tfiu, is one such that

– 1.-For any M ą 0 and for |a| ďM and |b| ďM the quantities
ˇ

ˇ

ˇ

ˇ

ż b

a
fjpξq dξ

ˇ

ˇ

ˇ

ˇ

ď C (8.53)

where C is independent of a, b, j, but it may depend on M .
– 2.- For any fixed nonvanishing a and b

lim
jÑ8

ż b

a
fjpξq dξ “ 0 a ă b ă 0 or 0 ă a ă b

lim
jÑ8

ż b

a
fjpξq dξ “ 1 a ă 0 ă b (8.54)

There are many examples. One of them is

fj “
1
π

ε

x2 ` ε2
(8.55)

as εÑ 0.

8.1 Fourier transform

• The starting point in order to define the Fourier transform (FT) of
distributions is Parseval’s theorem. For regular distributions it asserts
that

ż

dxf˚pxqgpxq dx “
1

2π

ż

dk f̃˚pkqg̃pkq (8.56)

where we have defined the FT as

f̃pkq ”

ż 8

´8

eikx fpxq dx (8.57)

This can be used to define a distribution in some space Z 1 (to be defined
in a moment) for every distribution in K 1. This is by definition the FT
of the original distribution. Fourier transform establishes a one-to-one
mapping

K ÐÑ Z (8.58)

where Z is defined as follows. It consists of slowly increasing functions,
that is, all entire functions ψpsq (where s ” σ ` iτ) such that

|s|q|ψpsq| ď Cea|τ | q “ 0, 1, 2 . . . (8.59)

where the constants a and Cq may depend on ψ.
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• Let us compute the FT of Dirac’s delta.

pδ̃, φ̃q ” 2πpδ, φq “ 2πφp0q “
ż

φ̃pkq ” p1, φ̃q (8.60)

Ergo,
FT rδs “ δ̃ “ 1 (8.61)

Also

p1̃, φ̃q “ 2πp1, φq “ 2π
ż

φpxq dx “ 2πφ̃p0q “ 2πpδ, φq (8.62)

FT r1s “ 1̃ “ 2πδ (8.63)

Similar computations lead to

FT rδp2mqpxqs “ p´1qm k2m

FT rδp2m`1qpxqs “ p´1qm`1 ik2m`1 (8.64)

• Consider now the function

fνpxq ”
1
π

sin νx

x
(8.65)

for 0 ă ν ă 8). First of all,
ż 8

´8

fνpxq dx “ 1 (8.66)

It is easily done by using Cauchy’s theorem to compute
ż

eiz

z ´ iε
“ 2πieε (8.67)

Furthermore, for 0 ă a ă b the integrals
ż b

a
fνpxq dx “

1
π

ż bν

aν

sin y

y
(8.68)

go to zero as ν Ñ 8. Moreover, this same integral is bounded uni-
formly @ν. Therefore we are dealing with a delta-convergent sequence.

lim
νÑ8

fνpxq “ δpxq (8.69)

Now observe that
sin νx

x
“

ż ν

ν

eiξx

2π dξ (8.70)
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Then what we have just proved is that

lim
νÑ8

ż ν

´ν
eiξx dξ “ 2πδpxq (8.71)

In fact it is a theorem that every integrable function fpxq which does
not grow at infinity faster that some power of |x|, has got a Fourier
transform in the sense of distributions.

• Let us recall that the convolution of two ordinary functions (regular
distributions) is defined as

xf ˚ g, φpxqy ”

ż

fpξqgpx´ ξqdξdx “

ż

dξdηfpξqgpηqφpξ ` ηq (8.72)

Let us examine the convolution of singular distributions. It is natural
to generalize this last version of convolution to

xt1 ˚ t2, φy ” xt1pxqt2pyq, φpx` yqy (8.73)

It is plain that
t1 ˚ t2 “ t2 ˚ t1 (8.74)

as well as
t1 ˚ pt2 ˚ t3q “ pt1 ˚ t2q ˚ t3 (8.75)

Let us now compute the convolution of Dirac’s delta.

xδ ˚ t, φy “ xδpxqtpyq, φpx` yqy “ xtpyq, φpyqy “ xt, φy (8.76)

That is, Dirac’s delta acts as a unit with respect to convolutions

δ ˚ t “ t (8.77)

Also,
B pt ˚ sq “ pBtq ˚ s “ t ˚ pBsq (8.78)

Indeed

xB pt ˚ sq , φy “ ´xt ˚ s, Bφy ” ´xtpxq, pxspyq, Bφpx` yqyqy “ xBt ˚ s, φy
(8.79)

• Consider a linear differential equation with constant coefficients

P pBq y “ Jpxq (8.80)

Define an elementary solution or Green function as

P pBq G “ δ (8.81)

Then we can write solutions of our PDE as

y “ J ˚G (8.82)

because
P pBq y “ J P pBq G “ J ˚ δ “ J (8.83)
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• Consider the ODE
ˆ

d2

dt2
` ω2

˙

xptq “ jptq (8.84)

Let us first show that the function

Gptq ”
eiω|t|

2iω (8.85)

is an elementary solution. Indeed
d

dt
Gptq “ iωGptq.σptq (8.86)

and
d2

dt2
Gptq “

`

´ω2 ` iω2δptq
˘

Gptq (8.87)

Incidentalt, the same thing happens with

GRptq “ θptq
eiωt

2iω (8.88)

as well as
GRptq “ ´θp´tq

eiωt

2iω (8.89)

• We have seen previously that

Gpxq “ ´
1

pn´ 2qΩn

1
rn´2 pn ą 2q

Gpxq “ ´
1

2π log 1
r

pn “ 2q (8.90)

is an elementary solution of the laplacian. This leads to Poisson’s
formula for the newtonian potential due to a density ρpxq

ż

V pxq “

ż

dξρpξqGpx´ ξq (8.91)

That is,

V px, y, zq “ ´
1

4π

ż

ρpξ1, ξ2, ξ3q
a

pξ1 ´ xq2 ` pξ2 ´ yq2 ` pξ3 ´ zq2
dξ1dξ2dξ3

(8.92)

• We know that every periodic locally summable fuction fpθq can be
written in the form of a Fourier series

fpθq “
8
ÿ

´8

cn e
inθ (8.93)

Taking the Fourier transform term by term we easily get

f̃pkq “
8
ÿ

´8

cn δpk ` nq (8.94)
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• Let us derive the marvelous Poisson summation formula. Starting
from

ÿ

einx “ 2π
ÿ

δpx´ 2πnq (8.95)

we easily get

fpxq ”
ÿ

einπx{L “ 2π
ÿ

δpπx{L´ 2πnq “ 2L
ÿ

δpx´ 2nLq (8.96)

Its Fourier transform

f̃pkq ”

ż

dxe´2πixk
ÿ

δpx´2nL “ 0
ÿ

n

e´2πikp2nLq “
1

2L
ÿ

δpk´
n

2Lq

(8.97)
Now, the transform of a gaussian

gpxq ” e´x
2 (8.98)

is another gaussian
f̃pkq ”

?
πe´π

2x2 (8.99)

Let us apply Parseval’s theorem to this couple of functions
ż

fpxqgpxqdx “

ż

f̃pk “ g̃p´kqdk (8.100)

We get Pôisson’s formula

ÿ

e´4m2L2
“

1
2L

ÿ

e´
π2m2
4L2 (8.101)

This has got plentiful physical applications.

8.2 Distributions on submanifolds.

• Consider
δpfpxqq (8.102)

It is clear that in the simplest case
ż

δpfpxqqgpxqdx “

ż

dtδptqgpxptqq (8.103)

where
t ” fpxq ñ dt “ f 1pxqdx (8.104)

In some case, some care must be taken. For example, consider

δpx2 ´m2q (8.105)
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Descriptio 8.1: Exmaple.

Then
ż 8

´8

dx “

ż ´µ

8

dt

´2
a

t` µ2
`

ż 8

´µ

dt

2
a

t` µ2
(8.106)

Then
ż 8

´8

dxδpx2 ´ µ2q gpxq “
gp´µq

2µ `
gpµq

2µ (8.107)

• Every functional concentrated on a point is a linear combination of
the delta function and its derivatives.

• Consider codimension one hypersurfaces given by

P px1 . . . xnq “ 0 (8.108)

We sould like to define such things as δpP q, etc. Let us assume that

BµP |P ‰ 0 (8.109)

Let us first define the Leray form ω as such that

dP ^ ω “ dpvolq (8.110)

Provided BP
Bx1 ‰ 0, there is always some coordinate system such that

the equation of the surface reads

u1 “ P u2 “ x2 . . . un “ xn (8.111)
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Then

dpvolq ” dx1 ^ dx2 ^ . . . dxn “ det
ˆ

Bx

Bu

˙

du1 ^ du2 . . .^ dun “

1
BP
Bx1

du1 ^ du2 . . .^ dun (8.112)

Ergo,
ω “

1
BP
Bx1

dx2 . . .^ dxn (8.113)

In fact it can be shown that ω has an intrinsic meaning. It is only
natural to define

xδpP q, φy ”

ż

P“0
φpxq ω (8.114)

As an example, let us work out

δpxy ´ cq (8.115)

in two dimensions. Using the coordinates

u1 “ xy ´ c

u2 “ y (8.116)

Then
ω “

dy

y
(8.117)

because
pxdy ` ydxq ^

dy

y
“ dx^ dy (8.118)

It is a fact
xδ pxy ´ cq , φpx, yqy “

ż

φ

ˆ

c

y
, y

˙

dy

y
(8.119)

Let us work out another example, namely δpr ´ Rq The Leray form
coincides with the euclidean area element Rn´1 dΩ

xδpr ´Rq, φy “ Rn´1
ż

r“R
φ dΩ (8.120)

It is to be noted that this vanishes when R “ 0, unless φ diverges in
an appropiate way (in which case pδnp~xq, φq would diverge). If it were
instead δpr2 ´ c2q, we could define

u1 “ r2 ´R2

u2 “ θ1

. . .

un “ θn´1 (8.121)
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This means that

ω “
1
2r dΩ “ 1

2R Rn´1dΩ (8.122)

and
xδpr2 ´R2q, φy “

Rn´2

2

ż

r“R
φ dΩ (8.123)

If we define a Heaviside function

θpP q “ 1 ðñ P pxq ě 0
θpP q “ 0 ðñ P pxq ă 0 (8.124)

Then it can be shown that

θ1pP q “ δpP q (8.125)

• Let us now introduce a family of forms that depend both on φ P K
and on P.

ω0pφq ” φ ω

dω0 ” dP ^ ω1pφq

. . .

dωk´1pφq ” dP ^ ωkpφq

. . . (8.126)

Then we define the derivatives of the delta function as

xδpkqpP q, φy ” p´1qk
ż

P“0
ωkpφq (8.127)

For example, let us compute δpkqpr ´Rq. Using the same coordinates
as before, we recover

ω “ rn´1 dΩ (8.128)
Then

ω0 “ φ rn´1 dΩ (8.129)
and

ω1pφq “
B
`

φ rn´1˘

Br
dΩ (8.130)

In fact

ωkpφq “
Bk

`

φ rn´1˘

Brk
dΩ (8.131)

Then

xδpkqpr ´Rq, φy “
p´1qk

Rn´1

ż

r“R

Bk
`

φ rn´1˘

Brk
dΩ (8.132)
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9

Finite groups.

A group G is a set with a product

GˆGÑ G (9.1)

such that
1.- g1, g2 P GÑ g1g2 P G
2.- The composition law is associative: g1 pg2g3q “ pg1g2q g3.
3.- There is a unit e P G, such that eg “ ge “ g @g P G.
4.- Every element has got an inverse g´1g “ gg´1 “ e

• A group is finite if the set has a finite number of elements. This is called
the order of the group, |G|. Cyclic groups are particular instances such
that

@g P G, gn “ 1 (9.2)

for some integer n. For example, Z3 such that a3 “ b3 “ e, has got
the multiplication table

e a b
e e a b
a a b e
b b e a

(9.3)

An abelian group obeys

gh “ hg @g, h P G (9.4)

• A representation is a mapping

g P GÑ Dpgq (9.5)

where Dpgq is a linear operator acting in some linear space V and such
that
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– Dpeq “ 1
– Dpg1qDpg2q “ Dpg1g2q

The dimension of the representation is the dimension of the linear
space V . For example a three dimensional representation of the cyclic
group Z3 in R3 is

eÑ Dpeq ”

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

aÑ Dpaq ”

¨

˝

0 0 1
1 0 0
0 1 0

˛

‚

bÑ Dpbq ”

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

(9.6)

• This is in fact the adjoint representation. We associate the elements
of the group with a basis in VN , a vector space of dimension equal to
the order of the group. For example,

eØ epeq ” e1 ”

¨

˝

1
0
0

˛

‚

aØ epaq ” e2 ”

¨

˝

0
1
0

˛

‚

bØ epbq ” e3 ”

¨

˝

0
0
1

˛

‚ (9.7)

Then we define
Dadpg1qepg2q ” epg1g2q (9.8)

With the natural definition

Dijpgq ” eTi Dpgqej (9.9)

It follows

Dijpghq ” eTi Dpghqej “ eTi DpgqDphqej “ eTi Dpgq
3
ÿ

k“1
eke

T
kDphqej “

“
ÿ

k

DikpgqDkjphq (9.10)
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If we change the basis of the linear space on which the representation
acts

ei Ñ
ÿ

j

ẽi ” Sji ej (9.11)

Then

ẽi Ñ D̃j
i ẽj

ei Ñ Dj
i ej

`

S´1˘l
i
ẽl Ñ Dl

i

`

S´1q
˘k

j
ẽk

ẽÑ SDS´1 ẽ (9.12)

That is
D̃ “ SDS´1 (9.13)

It is said that D and D̃ are equivalent representations.

• It is fact that all representations of finite groups are equivalent to
unitary representations, that is, one such that

DD` “ D`D “ 1 (9.14)

This is easy to show, by considering the positive semidefinite matrix

S ”
ÿ

gPG

D`pgqDpgq “ U´1ΛU (9.15)

where
Λ “ diag pλ1 . . . λnq (9.16)

and all eigenvalues λi ě 0. Actually all λi ą 0 because if it were one
zero eigenvalue, then there must be a vector such that

Sv “ 0 “ v`Sv “
ÿ

gPG

||Dpgqv||2 (9.17)

which is impossible, because in particular Dpeq “ 1. This means that
there is a matrix

S1{2 ” U´1Λ
1
2U (9.18)

and defining
D̃pgq ” S1{2DpgqS´1{2 (9.19)

we are done, because

D̃`pgqD̃pgq “ S´1{2 “D`pgqSDpgq
‰

S´1{2 “ S´1{2

«

D`pgq

˜

ÿ

hPG

D`phqDphq

¸

Dpgq

ff

S´1{2 “

“ S´1{2

«

ÿ

hPG

D`phgqDphgq

ff

S´1{2 “ S´1{2

«

ÿ

kPG

D`pkqDpkq

ff

S´1{2 “ S´1{2SS´1{2 “ 1(9.20)
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• A representation is reducible if it has an invariant subspace. If P 2 “ P
is the projector on this subspace, the condition is

@g P G PDpgqP “ DpgqP (9.21)

In the case of the regular representation of Z3, there is an invariant
subspace with projector

P “
1
3

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚ (9.22)

Actually what happens is that

@g P Z3 DpgqP “ P (9.23)

The restriction of the representation to the subspace is itself a repre-
sentation (in this case, the trivial representation). When this is not the
case, the representation is irreducible. A representation is completely
reducible if it can be written in block diagonal form as the direct sum
of irreducible subrepresentations

Dpgq “ D1pgq ‘D2pgq ‘ . . .‘Dnpgq (9.24)

Again, for finite groups, any representation is completely reducible. In
our favorite Z3 example, defining

S “
1
3

¨

˝

1 1 1
1 α2 α
1 α α2

˛

‚ (9.25)

where
α “ e

2πi
3 (9.26)

Then

D̃peq “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

D̃paq “

¨

˝

1 0 0
0 α 0
0 0 α2

˛

‚

D̃pbq “

¨

˝

1 0 0
0 α2 0
0 0 α

˛

‚

(9.27)

82



In fact, every representation of a finite group is completely reduci-
ble. Let us work with the unitary form of the representation. It it is
reducible, it means that there is a projector P such that

@g PDpgqP “ DpgqP (9.28)

Taking the adjoint

@g PDpgq`P “ PDpgq` (9.29)

But D`pgq “ D´1pgq “ Dpg´1q and g´1 runs over G as well as g does
(because for every g, there is a unique g´1. To summarize, we claim
that

@g PDpgqP “ PDpgq (9.30)

It follows that

@g p1´P qDpgqp1´P q “ D´PD´DP`PDP “ Dpgqp1´P q (9.31)

and 1´ P also projects into an invariant subspace.

9.1 Normal subgroups
• Given a subgroup H, we define a (left) coset

gH (9.32)

as the set of all elements

gh @g P G @h P H (9.33)

It is plain that every element in G must be in one (and only one) coset,
because we first pick g1 R H and construct the |H| elements g1H those
are all different. Then we pick some g2 R H, g2 R g1H, and so on. This
proves the theorem of Lagrange.

|gG| ˆ |H| “ |G| (9.34)

There is an equivalence relationship when g1, g2 P g1H

g1 „ g2 ô g1 “ g2h, h P H (9.35)

Then the quotient
G{ „ (9.36)

is the set of those left cosets.
It is important to distinguish that from another equivalence relatioship

g1 „ g2 ô Dh P G, hg1 “ g2h (9.37)
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The set of those (conjugacy) classes is

G{ „ (9.38)

Those subgroups such that

@g P G gH “ Hg (9.39)

are dubbed normal. In this case, the coset space is also a group,
because

pg1Hq pg2Hq “ g1Hg
´1
1 g1g2H “ Hg1g2H “ g1g2g

´1
2 g´1

1 Hg1g2H “ g1g2HH “ g1g2H
(9.40)

G{H is called the factor group of G by H.

• The center of a group, Z is the set of all elements that commute with
all elements of the group,

z P Z Ø zg “ gz @g P G (9.41)

The center is an abelian invariant subgroup.

• Consider the permutation group S3. Permutation groups are very
important for a variety of reasons. One of them is Cayley’s theorem:
Eevery finite group |G| “ n is isomorphic so a subgroup of Sn. The
elements of S3 are

e

a1 ” p123q
a2 ” p321q
a3 ” p12q
a4 ” p23q
a5 ” p31q

(9.42)

The multiplicaction table is given by

e e a1=(123) a2=(132) a3=(12) a4=(23) a5=(13)
a1=(123) a1 a2 e a5 a3 a4
a2=(132) a2 e a1 a4 a5 a3
a3=(12) a3 a4 a5 e a1 a2
a4=(23) a4 a5 a3 a2 e a1
a5=(13) a5 a3 a4 a1 a2 e

(9.43)
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First of all, let us notice that the subset te, a1, a2u is a subgroup, the
alternating group A3, consisting on all even premutations, and which
in this case happens to be isomorphic to Z3. Moreover

a3 A3 “ ta3, a4, a5u

a4 A3 “ ta4, a5, a3u

a5 A3 “ ta5, a3, a4u (9.44)

• Coming back to our S3 example, A3 „ Z3 is a normal subgroup,
because

A3 a3 “ ta3, a5, a4u

A3 a4 “ ta4, a3, a5u

A3 a5 “ ta5, a4, a3u (9.45)

Note however that there is another subgroup, H ” te, a4u (remember
that a2

4 “ e) which is not normal.

a5H “ ta5, a2u ‰ Ha5 “ ta5, a1u (9.46)

• The conjugacy classes are sets such that if they contain an element s,
they also contain all its conjugates

S ” tg´1sg @g P Gu (9.47)

It is a plain that for such a set

g´1Sg “ S (9.48)

e is always a conjugacy class. In S3, taking into account that

a´1
1 “ a2

a2
3 “ a2

4 “ a2
5 “ e (9.49)

the conjugacy classes are: frist the two three-cycles

ta1, a2u (9.50)

and then the three two-cycles

ta3, a4, a5u (9.51)

We note here a general trend in the symmetric group: conjugate per-
mutations have the same cycle structure; in particular the permuta-
tions in the same class are either all even or else all odd.
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• For fixed g P G, the mapping

h P GÑ ghg´1 P G (9.52)

is an inner automorphism. This is plain, because
`

gg1g
´1˘ `gg2g

´1˘ “ gg1g2g
´1 (9.53)

Besides, it is 1-1, because if

gg1g
´1 “ gg2g

´1 ñ g1 “ g2 (9.54)

Outer automorphisms are all those automorphisms that are not inner.

9.2 Schur’s lemma
• If there are two inequivalent irreducible representations D1 and D2 of

a group G, such that there is a matrix A that obeys

D1pgqA “ AD2pgq @g P G (9.55)

then it follows that A “ 0. In fact, assume there is a vector such that
Av “ 0. Then there is a projector P onto the subspace that annihilates
A on the right. This subspace is invariant under D2, because

AD2P “ D1AP “ 0@g P G (9.56)

But D2 is irreducible, so that P “ 1 and A “ 0. If A annihilates one
state, it must annihilate them all.
If no vector annihilates A on either side, then it must be an invertible
square matrix, Then

D1 “ AD2A
´1 (9.57)

and the two representations are equivalent.
Another proof is as follows. Define

Dpeiq ” ejDji (9.58)

D1
ijAja “ AibD

2
ba (9.59)

then
eiD

1
ijAja “ D1 pejAjaq “ eiAibD

2
ba (9.60)

Denoting
Eb ” eiAib (9.61)

this shows that
D1pEaq “ EbD

2
ba (9.62)

which is not possible if D1 is irreducible.
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• On the other hand, it is a fact that if there is a finite dimensional
irreducible representation D such that

DpgqA “ ADpgq @g P G (9.63)

then A “ 1. This is obvious, because any finite dimensional matrix,
A, has at least one eigenvalue Then

Dpgq pA´ λ1q “ pA´ λqD (9.64)

and the matrix
A´ λ1 (9.65)

has a null eigenvector. Then the former argument shows that

A´ λ1 “ 0 (9.66)

One consequence of Schur’s lemma is that once the form of D is fixed,
there is no further freedom to make nontrivial similarity transforma-
tions on the states.

9.3 Characters

Given an arbitrary matrix, let us say, X, consider the matrix

A ”
ÿ

gPG

Dpgq X Dpg´1q (9.67)

where Dpgq is an matrix irrep of G with dimension dR. It is fact of
life that

rDphq, As “ 0 @h P G (9.68)

Indeed

DphqA ” Dphq
ř

gPGDpgq X Dpg´1q “
ř

gPGDphgqXDpg
´1q “

ř

gPGDphgqXDpg
´1h´1qDphq “

“
ř

gPGDpgq X Dpg´1qDphq ” ADphq (9.69)

Schur’s now implies that
A “ λ1 (9.70)

Let us now choose as starting point the particular matrix

X ” pElmqij ” δilδjm (9.71)

Then
ÿ

gPG

DilpgqDmjpg
´1q “ λlmδij (9.72)
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Taking the trace δij we learn that

|G|δlm “ λlmdR (9.73)

This proves the orthogonality relation

ÿ

gPG

DilpgqDmjpg
´1q “

|G|

dR
δlmδij (9.74)

Let us now repeat the same procedure using two different representa-
tions, id est,

B ”
ÿ

gPG

D2pgqXD1pg´1q (9.75)

It is plain that
D2phqB “ BD1phq (9.76)

Schur’s tell us that

B “ 0 (9.77)

and using
X ” Elm (9.78)

we learn that
ÿ

gPG

D2
ilpgq D

1
mjpg

´1q “ 0 (9.79)

We can characterize both orthonomality relations in the following way.
Consider the set of all irreps

Dµ
ijpgq (9.80)

This can be considered as a |G|-dimensional vector for every value of
pµ, i, jq. These vectors are orhogonal in the sense that

ÿ

gPG

Dµ
ilpgq D

ν
mjpg

´1q “
|G|

dR
δµνδlmδij (9.81)

For each irrep, µ there are d2
R mutually orthogonal vectors in K|G|.

This is possible only provided that
ÿ

µ

d2
µ ď |G| (9.82)
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• The character of a given irrep is just the trace

χµpgq ” Tr Dµpgq ”
ÿ

i

Dijpgq (9.83)

The character is a class function because

tr D “ tr hDh´1 (9.84)

From our master relationship we learn that
ÿ

gPG

χµpgqχνpg´1q “ |G| δµν (9.85)

Assume the classes of G are K1 . . .KC ; that is that there are C classes
with number of elements

C
ÿ

i“1
dKi “ |G| (9.86)

Then restricting to unitaries

Dpgq`Dpgq “ 1 (9.87)

implies
χpgq “ χpg´1q (9.88)

ÿ

i

χµi χ
ν
i dKi “ dG δµν (9.89)

This means that the number of irreps must be smaller or equal to the
number of classes.
We can use the orthogonality relations to decompose the adjoint re-
presentation.
First of all, assume a reducible representation

D “ D1 ‘D2 ‘ . . .‘Dk (9.90)

so that
χ “

ÿ

χj (9.91)

The number of times the irrep piq appears in this decomposition is
equal to

xχ|χiy (9.92)

Remember that
Dpsqet ” est (9.93)
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Now if s ‰ 1 then st ‰ t, so that the diagonal terms in the matrix
Dpsq just vanish. Then

χps ‰ eq “ 0 (9.94)

and
χpeq “ dG (9.95)

Then
xχad|χiy ”

1
dG

ÿ

tPG

χadpt´1qχiptq “ di (9.96)

Ergo
ÿ

i

d2
i “ dG (9.97)

Assume now a central function (fpgq “ gphgh´1q@h P G). Define a
matrix in V aasociated to an irrep, DR

DR
f ”

ÿ

tPG

fptqDRptq (9.98)

It is plain that
rDR

f , Dphqs “ 0,@h P G (9.99)

Then by Schur’s lemma
DR
f “ λ1 (9.100)

We can compute λ
dRλ “

ÿ

tPG

fptqχptq (9.101)

We now claim that the characters χ1 . . . χh yield an orthonormal basis
of H, the space of central functions on the group.
We need to prove that any element of H orthogonal to all the characters
is zero.
Assume

xf |χµy “ 0 @µ (9.102)

This shows that
λ “ 0 (9.103)

for all irreps. Then
Dµ
f “ 0 (9.104)

for all representations direct sum of irreps. Let us work this out for
the regular representation.

0 “ Dad
f e1 ”

ř

tPG fptqDptqe1 “
ř

tPG fptqet (9.105)
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It follows that
fptq “ 0 @t P G (9.106)

QED.
It follows that the number of irreps is equal to the number of classes.
In conclusion,

ÿ

R

d2
R “ |G| (9.107)

Let us check this in the abelian group ZN ” z0 ” e, z1 . . . zN´1

zizj “ zi`jpmod Nq (9.108)

The irreps are given by

Dnpakq “ e
2πk
N
i (9.109)

The orthogonality relationship means now that

1
N

N´1
ÿ

k“0
e´

2πn1k
N

ie
2πn2k
N

i “ δn1n2 (9.110)

It is actually vary easy to prove that all irreps of an abelian group are
one-dimensional. Every element is a conjugacy class by itself. Then
the number of irreps is equal to the order of the group. Each of them
is got to be one-dimensional

• Let us repeat the former theorem in a different language. Given any
class function, F pgq, we can expand it as

F pgq “
ÿ

ajk

FajkD
apgqjk (9.111)

We can actually write

F pgq “
1
|G|

ÿ

hPG

F ph´1ghq “
1
|G|

ÿ

hPG

ÿ

ajk

FajkD
aph´1ghqjk “

“
1
|G|

ÿ

hPG

ÿ

ajk

FajkD
aph´1qjj1 D

apgqj1j2 D
aphqj2k “

ÿ 1
da
Fajk D

apgqj1j2 δj1j2δjk “

“
ÿ

ajk

1
da

daFajj D
a
kkpgq “

ÿ

aj

1
da
faχapgq (9.112)

This means that the number of irreps is actually equal to the number
of conjugacy classes. If we label conjugacy classes by α , |α| being the
number of elements of the class α, then defining the square matrix

Vαa ”

d

|α|

|G|
χDa pgαq (9.113)
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the orthogonality relation
ÿ

gPG

χ˚Dapgq χDbpgq “ |G| δab (9.114)

means that
V V ` “ 1 6 V `V “ 1 (9.115)

To be specific
ÿ

a

χ˚DapgαqχDapgβq “
|G|

|α|
δαβ (9.116)

Given any rep, it will containg all irreps Da some number of times,
mD
a . This can be easily computed using

ÿ

gPG

χDapgq
˚χDpgq “ |G|m

D
a (9.117)

For example, the characters of the adjoint are

χpeq “ |G|

χpg ‰ eq “ 0 (9.118)

Then
mD
a “ χapeq “ |Da| (9.119)

Each irrep appears in the adjoint a number of times equal to its
dimension.
Consider again the case of S3. In this case |G| “ 6. We know the one
dimensional irrep

Dpgq “ 1 (9.120)

It is such that
χ0pgq “ 1 (9.121)

Now
1`

ÿ

µ‰0
n2
µ “ 6 (9.122)

This means that
nµ “ 1, 2 (9.123)

Let us try and determine the characters using orthogonality

µ {e} ta1, a2u ta3, a4, a5u

0 1 1 1
1 1 1 -1
2 2 -1 0

(9.124)
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Let us prove that given an arbitrary ( in general reducible) represen-
tation, D, the operator

Pa ”
da
dG

ÿ

gPG

χ̄Dapgq Dpgq (9.125)

is a projector onto the subspace that transforms under the rep Da.

In fact taking the trace of the first orthogonality relation, we learn
that

da
dG

ÿ

gPG

χ˚Dapgq D
b
lmpgq “ δabdlm (9.126)

Let us see how this works in the three dimensional rep of S3

eÑ Dpeq “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

a1 Ñ Dpa1q “

¨

˝

0 0 1
1 0 0
0 1 0

˛

‚

a2 Ñ Dpa2q “

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

a3 Ñ Dpa3q “

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

a4 Ñ Dpa4q “

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚

a5 Ñ Dpa5q “

¨

˝

0 0 1
0 1 0
1 0 0

˛

‚ (9.127)

With this notation it is plain that

Dpgq|jy “
ÿ

k

|kyxk|Dpgq|jy ”
ÿ

k

|kyDkjpgq (9.128)
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Let us now emply this three-dimensional rep to determine the projec-
tion operators

P0 “
1
6

˜

D3peq `
j“5
ÿ

j“1
D3pajq

¸

“
1
3

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

P1 “
1
6

˜

D3peq `
j“2
ÿ

j“1
D3pajq ´

j“5
ÿ

j“3
D3aj

¸

“ 0

P2 “
1
6

˜

2D3peq ´
j“2
ÿ

j“1
D3pajq

¸

“
1
3

¨

˝

2 ´1 ´1
´1 2 ´1
´1 ´1 2

˛

‚(9.129)

This makes vary explicit that

D3 “ D0 ‘D2 (9.130)

• Let us work out the regular representation of S3

Dpeq “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(9.131)

Dpa1q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(9.132)

Dpa2q “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‚

(9.133)

Dpa3q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(9.134)
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Dpa4q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(9.135)

Dpa5q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(9.136)

It is the case that

P0 “
1
6

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‚

(9.137)

P1 “
1
6

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 ´1 ´1 ´1
1 1 1 ´1 ´1 ´1
1 1 1 ´1 ´1 ´1
´1 ´1 ´1 1 1 1
´1 ´1 ´1 1 1 1
´1 ´1 ´1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‚

(9.138)

P2 “
1
3

¨

˚

˚

˚

˚

˚

˚

˝

2 ´1 ´1 0 0 0
´1 2 ´1 0 0 0
´1 ´1 2 0 0 0
0 0 0 2 ´1 ´1
0 0 0 ´1 2 ´1
0 0 0 ´1 ´1 2

˛

‹

‹

‹

‹

‹

‹

‚

(9.139)

9.4 Partitions and representations of Sn

• Let us recall that a cycle is a cyclic permutation of a subset. An
arbitray permutation has got kj j-cycles, where

j“n
ÿ

j“1
jkj “ n (9.140)
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• Let us quickly revew a few general properties of cycles.
Every cycle can be written as a product of transpositions, allowing for
an index to appear several times:

pi1i2 . . . inq “ pi1i2qpi2i3q . . . pin´1inq (9.141)

The number of such transpositions is even for even permutations, and
odd otherwise. The canonical way of writing a permutation is as a
product of cycles without any common element. There are then n1
one-cycles (usually not written down), n2 two cycles, n3 three-cycles,
ad so on, in such a way that

n “ k1 ` 2k2 ` 3k3 ` . . .` knn (9.142)

We say that the set of numbers (n1 . . . nnn constitute a partition of
the number n.)
The cycle structure is invariant under conjugation. We claim that

ˆ

12 . . . n
s1s2 . . . sn

˙

pa1 . . . apq

ˆ

s1s2 . . . sn
12 . . . n

˙

“ pb1 . . . bpq (9.143)

The reason is that for the numbers not involved in the cycle (let us
say, 3) the cycle is irrelevant in the sense that

ˆ

3
s3

˙ˆ

s3
3

˙

“ ps3q (9.144)

so that s3 remains invariant.
For example

p123qp12qp132q “ p23q (9.145)

Also
p12qp123qp12q “ p132q (9.146)

How many elements are there in each conjugacy class? There are n!
permutations to begin with. But order is immaterial between cycles
of the same length; so we must divide by kj |. Also cyclic order does
not matter within a cycle; this yields a factor jkj . Altogether we have

Nj “
n!

ś

j j
kj kj !

(9.147)

It is useful to represent conjugacy classes by Young frames; columns
of boxes of length j, top justified and arranged in decreasing j from
left to right. For example, in S3, the identity 13(with 3!

3! “ 1 element)
is

(9.148)
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The class (2,1) (with 3!
2 “ 3 elements)

(9.149)

and the class 3 (with 3!
3 “ 2 elements)

(9.150)

Altogether we recover the 6 elements of the group S3.

It is a fact that each tableau yields an dirrep of Sn with dimension

dR “
n!
H

(9.151)

where H is the hooks factor. To be specific,

d “
3!
3.2 “ 1 (9.152)

d “
3!
3 “ 2 (9.153)

d “
3!
3.2 “ 1 (9.154)

• The inequivalent irreducible representations of Sn may be labelled by
the partitions of the integer n. An unlabelled Young diagram or Young
frame corresponds to a partition of the integer n, consisting of n boxes
arranged in r rows

n “
r
ÿ

i“1
λj (9.155)

λ1 ě λ2 ě . . . ě λr (9.156)

The usual notation is

 

321
(

“ t331u “ (9.157)
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• A Young tableau, or labelled Young diagram is an assignment of the
numbers 1, 2 . . . n to the boxes of a Young frame. The tableau is stan-
dard if the numbers are increasing both along rows from left to right
and along columns from top to bottom.
The Young operator corrresponding to a given tableau is obtained by
first symmetrizing rows (let us call p the horizontal permutations) and
then antisymmetrizing columns (denote by q vertical permutations)

P “ C

˜

ź

q

δππ

¸˜

ź

p

π

¸

(9.158)

It is possible to check that this is a projector, and even to compute
the constant C. We shall do it in some examples. We shall define
a mapping from a given tableau to a state in the adjoint (that is, an
element of Sn) by defining a em lexicografic ordering: from left to right
and then top down, like reading a page in usual latin conventions. For
example

6 3 4
5 1 2
7 8
9 ÝÑ p634512789q (9.159)

• Let us now work in gory detail the case of S3 First of all, consider the
frame

(9.160)

There is only one standard tableau,

1
2
3 ÝÑ p123q (9.161)

and six others (all possible permutations). The Young operator maps

p123q ÝÑ YS ” C

ˆ

1`p12q`p13q`p23q`p123q`p132q
˙

(9.162)

The projector is
PS ”

1
6Y0 (9.163)

This is a one-dimensional subspace corresponding to the trivial repre-
sentation

π ÝÑ 1 (9.164)

Consider now the frame

(9.165)
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Again, there is only one standard tableau

1 2 3 ÝÑ p123q (9.166)

The Young operator maps

p123q ÝÑ YA ” C

ˆ

1´p12q´p13q´p23q`p123q`p132q
˙

(9.167)

Again, this is a one-dimensional subspace. It correspomds to the
representation

PA ”
1
6YA (9.168)

π ÝÑ p´1qπ (9.169)

Let us now turn to the hook.

(9.170)

There are two standard tableaux. Let us write them with their opera-
tors.

1 2
3 ÝÑ p123q ÝÑ Y1 ” C

ˆ

1´ p13q
˙ˆ

1` p12q
˙

“ C

"

1´ p13q ` p12q ´ p123q
*

1 3
2 ÝÑ p132q ÝÑ Y2 ” C

ˆ

p1´ p12qq p1` p13qq
˙

“ C

ˆ

1` p13q ´ p12q ´ p132q
˙

Let us compute

Y 2
1 “ p1´ p13q ` p12q ´ p123qq r1´ p13q ` p12q ´ p123qs “ r1´ p13q ` p12q ´ p123qs `

` r´p13q ` 1´ p123q ` p12qs ` rp12q ´ p132q ` 1´ p23qqs ` r´p13q ` p32q ´ p13q ` p132qs “
“ 3Y1 (9.171)

Also
Y 2

2 “ 3Y2 (9.172)

This means that
1
3Y1,

1
3Y2 (9.173)

are true projectors.

Besides
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P1.P2 “

"

1´ p13q ` p12q ´ p123q
*"

1` p13q ´ p12q ´ p132q
*

“ r1´ p13q ` p12q ´ p123qs `

` r`p13q ´ 1` p132q ´ p23qs ` r´p12q ` p123q ´ 1` p13qs ` r´p132q ` p23q ´ p13q ` 1s “ 0
P1.PS “ P1.PA “ 0
P2.PS “ P2.PA “ 0 (9.174)

Threre is closure, in the sense that

PS ` PA ` P1 ` P2 “ 1 (9.175)

There are also four nonstandard ones

2 3
1 ÝÑ p231q ÝÑ P3 ” r1´ p12qs r1` p23qs “ C

ˆ

1` p23q ´ p12q ´ p123q
˙

2 1
3 ÝÑ p213q ÝÑ P4 ” r1´ p23qs r1` p12qs “ C

ˆ

1` p12q ´ p23q ´ p132q
˙

3 1
2 ÝÑ p312q ÝÑ P5 ” r1´ p23qs r1` p13qs “ C

ˆ

1` p13q ´ p23q ´ p123q
˙

3 2
1 ÝÑ p321q ÝÑ P6 ” r1´ p13qs r1` p23qs “ C

ˆ

1´ p13q ` p23q ´ p132q
˙

Now by direct inspection we find that

P1 ` P2 “ P3 ` P4

P6 ` P5 “ P1 ` P2

(9.176)

In the regular representation the Young operators read

Y1 ” C

¨

˚

˚

˚

˚

˚

˚

˝

1 0 ´1 1 0 ´1
´1 1 0 ´1 1 0
0 ´1 1 0 ´1 1
1 ´1 0 1 ´1 0
0 1 ´1 0 1 ´1
´1 0 1 ´1 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(9.177)

The structure of this matrix is

Y1 “ C

ˆ

A A
B B

˙

(9.178)

100



with

A ”

¨

˝

1 0 ´1
´1 1 0
0 ´1 1

˛

‚ B ”

¨

˝

1 ´1 0
0 1 ´1
´1 0 1

˛

‚ (9.179)

Eigenvectors read
¨

˚

˚

˚

˚

˚

˚

˝

1
´1
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

´1
0
1
0
´1
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
1
0
´1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
´1
1
0

˛

‹

‹

‹

‹

‹

‹

‚

(9.180)

Y2 ” C

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 ´1 0 1
0 1 ´1 1 ´1 0
´1 0 1 0 1 ´1
´1 1 0 1 0 ´1
0 ´1 1 ´1 1 0
1 0 ´1 0 ´1 1

˛

‹

‹

‹

‹

‹

‹

‚

(9.181)

The structure is
Y2 “ C

ˆ

B D
´B ´D

˙

(9.182)

with B as above and

D ”

¨

˝

´1 0 1
1 ´1 0
0 1 ´1

˛

‚ (9.183)

Different tableaux corresponding to the same frame yield equivalent,
although not identical representations.

• The dimension of a representation corresponding to a Young frame λ
is computed by dividing n! by the factorial of the hook length of each
box in the first column of λ and multiply by the difference of each pair
of such hook lengths. For example,

dim “
4!

4!1!p4´ 1q “ 3 (9.184)

dim tp`2, 2u ” . . . “
pp` 4q!
pp` 3q!2!pp`1q “ pp` 4qpp` 1q

2

(9.185)
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10

Lie groups.

Lie groups are particular instances of continuous groups, where each element
g P G depends on a finite number of real continuous pareters

gpaq ” gpa1 . . . anq (10.1)

in such a way that
gpaqgpbq “ gpcq (10.2)

where the functions
ci “ fi paj , bkq (10.3)

are sufficiently regular. The canonical example is the thee-dimensional ro-
tation group, SOp3q, where the parameters are the three Euler angles. In is
often convenient to choose the parameters in such a way that

gp0q “ e (10.4)

Lie groups are n-dimensional manifolds (symmetric spaces). As is the case
for all manifolds, Lie groups can be compact or non compact. (Remember
that in Rn this means that a set is both closed and bounded). Compact
groups (again SO(3) is the simplest nontrivial example) are much simpler,
and in many ways analogous to finite groups.

The Lie magic is that many of the characteristics of a Lie group are
determined by the properties of the neighborhood of the origin (which can
be chose arbitrarily in the group manifold). The tangent space at the origin
is dubbed the Lie algebra, G. The relationship between a Lie group and its
Lie algebra is the exponential mapping

g “ ei
ři“n
i“1 aiTi (10.5)

Indeed we can define the Lie algebra by analiticity

lim
αÑ0

gpαiq “ 1` αiTi ` . . . (10.6)

103



On the other hand, it is plain that

gppt` sqαiq “ gptαiqgpsαiq (10.7)

Taking the derivative with respect to d
dt

ˇ

ˇ

t“0 we get

d

ds
gpsαiq “ αiTi gpsα

iq (10.8)

whose solution is the matrix exponential. Please note that

eAeB ‰ eA`B (10.9)

(BCH)
Let us work out the composition law

eiα
iTieiβ

jTj ” eiγ
ipα,βqTi “

´

1` iαiTi ´ αkαl

2 TkTl ` . . .
¯´

1` iβiTi ´ βkβl

2 TkTl ` . . .
¯

“

“ 1` iαiTi ` iβjTj ´
`1

2α
iαj ` 1

2β
iβj ` αiβj

˘

TiTj ` . . .

“ 1` i
`

αi ` βi
˘

Ti `
1
2
`

ai ` βi
˘ `

αj ` βj
˘

TiTj `
1
2
`

αiβj ´ αjβi
˘

TiTj ` . . . “

“ 1` i
`

αi ` βi
˘

Ti `
1
2
`

ai ` βi
˘ `

αj ` βj
˘

TiTj `
1
2α

iβj rTiTjs ` . . . (10.10)

The elements Ti are a basis for the Lie algebra, which is nothing else than
a vector space with an internal composition law, the commutator.

rTi, Tjs “
k“n
ÿ

k“1
CkijTk “

k“n
ÿ

k“1
i fkijTk (10.11)

In this way
γipα, βq “ αi ` βi ` f iklα

kβl ` . . . (10.12)
The constants Ckij (or fkij) are denoted the structure constants of the algebra.
A consequence of this is that the generators are traceless

Tr Ti “ 0 (10.13)

Jacobi’s identity reads

rTi, rTj , Tks`rTk, rTi, Tjs`rTj , rTk, Tis “ 0 ðñ Cmil C
l
jk`C

m
kl C

l
ij`C

m
jl C

l
ki “ 0

(10.14)
Let us now define the adjoint representation as

´

T adk

¯i

j
” if ikj (10.15)

Let us check that this constitutes a representation. The first member is
equal to

“

T adk , T adl
‰

“ T ikjT
j
lm ´ T

i
ljT

j
km “ f iljf

j
km ´ f

i
kjf

j
lm “ f jlmf

i
jk ` f

j
mkf

i
jl “

“ ´f jklf
i
jm “ if jkl

`

T adj
˘i

m
(10.16)
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Let us define a matrix in the algebra, G, the Killing metric as

gkl ” tr T adk T adl ” ´f qkpf
p
lq (10.17)

It can be shown that for compact groups the Killing matrix is definite
positive.

An intrinsic definition [13] is as follows. Consider an endomorphism of
L:

AdpXq : Y P LÑ rX,Y s P L (10.18)

and the Killing form as

κpX,Y q ” Tr pAdpXq, AdpY qq “ XiY lCkij C
j
lk (10.19)

If we change basis in the Lie algebra

Ti ”Ma
i T̃a (10.20)

the new structure constants are

C̃wuv “
`

M´1˘i
u

`

M´1˘j
v
CkijM

w
k (10.21)

and the new Killing form

κ̃ab ”
`

M´1˘i
a

`

M´1˘j
b
κij (10.22)

Then we can define

fijk ” f lijglk “ f lijf
a
lbf

b
ka (10.23)

We known of course, that
fkpijq “ 0 (10.24)

Let us compute

fijk ` fikj “ f lijf
a
lbf

b
ka ` f

l
ikf

a
lbf

b
ja (10.25)

But we can write
´

falbf
l
ij

¯

f bka “ ´
´

fablf
l
ij

¯

f bka “
´

failf
l
jb ` f

a
jlf

l
bi

¯

f bka (10.26)

as well as
´

f likf
a
lb

¯

f bja “
´

fablf
l
ki

¯

f bja “ ´
´

fakif
l
ib ` f

a
ilf

l
bk

¯

f bja (10.27)

The structure constants thus are completely antisymmetric.
If is customary to define the quadratic Dynkin index as

tr TaTb ” I
p2q
R δab (10.28)
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Descriptio 10.1: Antisymmetry of the structure constants.
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We define an invariant subalgebra, A as a set of generators that maps into
itself under commutation with any element of the algebra G.That is, it is a
subalgebra which is also an ideal in the algebraic sense. There are always
two trivial invariant subalgebras, namely,e and G itself.

A simple Lie algebra is such that it does not have any nontrivial invariant
subalgebra. This the only type of Lie alegras we are going to study in this
course.

In this case, the adjoint representation is irreducible. (Compare with
finite groups). Assume there is an invariant subspace, generated by TA.
Call the other generators Tα. This means that

rA,Gs Ă A ÝÑ fiAα “ 0 (10.29)

Then by antisymmetry all structure constants with two indices A (in A) or
with two indices α vanish; the only possibility is to have three A or three α;
so that the algebra is not simple to begin with.

A semisimple algebra is such that there is no any abelian invariant su-
balgebra. They consist of direct products of simple algebras. The necessary
and sufficient condition for an algebra to be semisimple is that the Killing
form is non-degenerate, that is,

det gij ‰ 0 (10.30)

Let us prove the first part. Assume there is an invariant abelian subalgebra,
B generated by Tα ( the full set of generators will be denoted by i “ pα,Aq).
This means that

rB,Gs Ă B ÝÑ fiαA “ 0 (10.31)

Then the row of the Killing metric corresponding to the subalgebra, that is,

giα “ fijkfαkj “ fiβkfαkβ “ 0 (10.32)

This means that a whole row of the Killing matrix vanishes, and so does its
determinant.

Semisimple Lie algebras are direct products of simple Lie algebras, such
as

G “ G1 ˆG2 ˆ . . . (10.33)

where all Gi are simple.

10.1 Matrix groups
Most important are matrix groups.

• The group of n-dimensional nonsingular matrices in the field of com-
plex (real) numbers is denoted as GLnpCq (GLnpRq).
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• The group of n-dimensional unimodular (unit determinant) matrices
in the field of complex (real) numbers is denoted as SLnpCq (SLnpRq).

• The group of n-dimensional unitary (complex matrices in the field of
complex (real) numbers is denoted as SUnpCq (unitary group).

g`g “ gg` “ 1 (10.34)

The unitary Lie algebra SUpnq is such that

e´iaT
`

eiaT “ 1 “ 1` ia
`

T ´ T`
˘

`Opa2q (10.35)

That is, elements of the Lie algebra are hermitian matrices. How many
are those? The condition is

Tij “ T ˚ji (10.36)

The n diagonal elements are real; and the n2´n
2 complex elements

below diagonal are deternined by those above; altogether we have
(deleting the trace)

n` 2n
2 ´ n

2 ´ 1 “ n2 ´ 1 (10.37)

real parameters.

• The group of n-dimensional real orthogonal matrices is denoted as
SOpnq (orthogonal group).

gT g “ ggT “ 1 (10.38)

The Lie algebra SOpnq is given by

eiaT
T
eiaT “ 1` iapT T ` T q `Opa2q (10.39)

antisymmetric matrices. The number of parameters is then

npn´ 1q
2 (10.40)

• The group of matrices the leave invariant the diagonal quadratic form
with p values of +1 and q values of -1

Ip,q ”

¨

˚

˚

˚

˚

˝

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . ´1 0
0 0 . . . 0 ´1

˛

‹

‹

‹

‹

‚

(10.41)

is denoted SOpp, qq and they are non-compact as soon as either p or q
are non-vanishing. The Lorentz group SOp1, 3q belongs to this class.
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• The group of matrices that leave invariant the quadratic form

J ”

ˆ

0 I
´I 0

˙

(10.42)

where I is the nˆ n unit matrix is the symplectic group, Spp2nq.

• The group of matruces that leave invariant the quadratic form

ds2 “ dz1dz̄1 ` . . . dzndz̄n (10.43)

is the unitary group Upnq „ SUpnq ˆ Up1q,

10.2 Representations of SUp2q and SOp3q through
tensor methods.

First of all, it is a fact that

M P SUp2q ùñ ĎM P SUp2q (10.44)

Consider ua that transforms with M P SUp2q and ua that does it with
respect to ĎM . It so happens that

δab Ñ
ĎMa
v M

w
b δ

v
w “

`

MM`
˘a

b
“ δab (10.45)

also

εab ÝÑ εabM
a
v M

b
w “M1

v M
2
m ´M

2
v M

1
w “

“

ˆ

M1
1M

2
1 ´M

2
1M

1
1 “ 0 M1

1M
2
1 ´M

2
1M

1
2 “ det M

´detM M1
2M

2
2 ´M

2
2M

1
2 “ 0

˙

“

“ det M εvw “ εvw (10.46)

as well as
εab ÝÑ εab (10.47)

From an upper and a lower index we can always form a simpler representa-
tion with two indices less

Tαβγ “ tαδβγ ` h
βδαγ (10.48)

where

Tα ” Tαγγ “ 2tα1 ` tα2
T .β ” T γβγ “ tα1 ` 2tα2 (10.49)

Then

tα1 “
1
3
`

2Tα ´ T .β
˘

tα2 “
1
3
`

2T .β ´ Tα
˘

(10.50)
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We can then eliminate either contravariant or covariant indices; the only
thing that matters is the difference, which we will write downstairs. Even
then, from say

Tαβ (10.51)

we can form
εαβTαβ (10.52)

unless it is totally symmetric. Those we cannot reduce further.
We know that the combinations with repetition of n objects taken m at

a time is the number of ways of combining n ´ 1 bars and m crosses; such
that the number of crosses to the left of the first bar stands for the number
of times times the first object appears; the number of crosses between the
first and the second bar stands for the number of times the second object
appears and so on. This is pn`m´1q!

m!pn´1q! “
`

n`m´1
m

˘

.
In our case n “ 2 and the irreps are generated by symmetric covariant

tensors with m indices, of which there are
`

m`1
m

˘

“ m` 1.
In the case of SOp3q all irreps are real, so we need to consider covariant

indices only. In spite of that

δij ÝÑ δij R
i
k R

j
l “ δkl (10.53)

as well as
εijk ÝÑ εijk R

i
l R

j
mR

k
m “ detR εlmn “ εlmn (10.54)

So that irreps are generated by symmetric traceless covariant tensors with
j indices. In our case n “ 3, so this yields

ˆ

j ` 2
j

˙

“
pj ` 2qpj ` 1q

2 (10.55)

We have to withdraw all traces, of which there are
ˆ

j

j ´ 2

˙

“
jpj ´ 1q

2 (10.56)

The difference is just the dimension of the representation,

d “ 2j ` 1 (10.57)

It is worth remarking that only when

m “ 2j (10.58)

(that is, m is an even integer) does the SUp2q irrep be also an irrep of SOp3q.
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10.3 Representations of GLpnq through tensor me-
thods.

Weyl’s treatment of finite dimensional group representations rests on a
simple fact. Consider any tensor that under L P GLpnq transforms as

T 1µ1µ2...µn “ Lλ1
µ1 . . . L

λn
µn Tλ1...λn (10.59)

Assume now that the tensor T is invariant under some permutation π P Sn

Tλπp1q...λπpnq “ Tλ1...λn (10.60)

Then

T 1µ1µ2...µn “ Lλ1
µ1 . . . L

λn
µn Tλ1...λn “ Lλ1

µ1 . . . L
λn
µn Tλπp1q...λπpnq “ Lλ1

µπp1q
. . . Lλnµπpnq Tλ1...λn

(10.61)
It follows that

T 1µπp1qµπp2q...µπpnq “ T 1µ1µ2...µn (10.62)

That is, the subspace of tensors invariant under any permutation symm-
metry is invariant under GLpnq transformations. Let us perform now some
elementary checks.

• n “ 2. There are only two symmetry classes: antisymmetric

T
µ
ν

(10.63)

and symmetric
T
µ ν

(10.64)

The Young projectors are
1˘ pµνq

2 (10.65)

• n “ 3. There are now three classes.

T
µ ν λ

T
µ
ν
λ

T
µ ν
λ

(10.66)

Let us work out this third case in detail. The Young operator is given
by

Y ” PQ ” p1´ pµλqq p1` pµνqq “ 1` pµνq ´ pµλq ´ pµλνq(10.67)
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pY T qµνλ “ Tµνλ ` Tνµλ ´ Tλνµ ´ Tνλµ (10.68)

It is clear that
Y 2 “ 3Y (10.69)

so that
P ”

1
3Y (10.70)

is a projector. Any tensor in this class is such that

2Tµνλ “ Tνµλ ´ Tλνµ ´ Tνλµ (10.71)

But then it is also a fact that

2Tµ1ν1λ1 “ Lµµ1L
ν
ν1L

λ
λ1 pTνµλ ´ Tλνµ ´ Tνλµq “ Tν1µ1λ1 ´ Tλ1ν1µ1 ´ Tν1λ1µ1

(10.72)

It is a fact that in general these tensors form a basis for an irreducible
representation of GLpnq, without any further ado. Let us compute some
dimensions of those representations. The dimension of the space

α β . . . δ pr slotsq (10.73)

is the numer of combinations with repetition of n objects taken in packs of
r. This can be computed as imagining (n-1) vertical lines and r crosses. The
number is

CRnr “
pn` r ´ 1q!
r!pn´ 1q! “

ˆ

n` r ´ 1
r

˙

(10.74)

For example in the case n “ 3, r “ 3 this formula yields

D “ 10 (10.75)

To be specific, the components are

T111 T112 T113 T122 T123 T133 T222 T223 T233 T333 (10.76)

In order to count dimension for lower representations, it is useful to consider
outer products. For example

b “ ‘ (10.77)

This just expresses the trivial identity

n2 “
npn` 1q

2 `
npn´ 1q

2 (10.78)

One can also work out slightly more complicated examples; for example

b “ ‘ (10.79)
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The dimension of the representetion easily follows:

n2pn` 1q
2 “

ˆ

n` 2
3

˙

`D (10.80)

and we recover that
D “

npn2 ´ 1q
3 (10.81)

10.4 Representations of Upnq

First of all, Upnq „ SUpnq ˆ Up1q. It is plain that all irreps of GL(n) are
also reps of any subgroup; but not necessarily irreps. As a trivial example,
the tensor

Trabs ” T εab (10.82)

transforms as a one-dimensional r12s ” irrep of GLp2q:

Trijs Ñ giag
j
bTrijs “ T εab det g (10.83)

It is also the case that the diagram r2ns has only one standard tableau,

for example
1 1
2 2 . There is only one basis element. Actually the Young

projector reads in this case

pP T qα1α2α3α4
„ Tα1α2α3α4 ` pTα2α1α3α4 ` Tα1α2α4α3q ´ pTα3α2α1α4 ` Tα2α3α1α4 ` Tα3α2α4α1q ´

´ pTα1α4α3α2 ` Tα4α1α3α2 ` Tα1α4α2α3 ´ Tα3α4α1α2 ´ Tα4α3α1α2 ´ Tα3α4α2α1q (10.84)

This result can be written as

pP T qα1α2α3α4
“ T εα1α3 εα2α4 (10.85)

Under the action of GL(n)

pP T qα1α2α3α4
Ñ

"

gβ1
α1g

β2
α2g

β3
α3g

β4
α4 `

´

gβ1
α2g

β2
α1g

β3
α3g

β4
α4 ` g

β1
α1g

β2
α2g

β3
α4g

β4
α3

¯

´

´

gβ1
α3g

β2
α2g

β3
α1g

β4
α4 ` g

β1
α2g

β2
α3g

β3
α1g

β4
α4`

`gβ1
α3g

β2
α2g

β3
α4g

β4
α1

¯

´

´

gβ1
α1g

β2
α4g

β3
α3g

β4
α2 ` g

β1
α4g

β2
α1g

β3
α3g

β4
α2 ` g

β1
α1g

β2
α4g

β3
α2g

β4
α3 ´ g

β1
α3g

β2
α4g

β3
α1g

β4
α2`

´gβ1
α4g

β2
α3g

β3
α1g

β4
α2 ´ g

β1
α3g

β2
α4g

β3
α2g

β4
α1

¯

*

Tβ1β2β3β4 (10.86)

This condenses into

pP T qα1α2α3α4
Ñ pdet gq2 T εα1α3 εα2α4 (10.87)
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This result is actually quite generic. If we have a rep of GL(n), say rλ1 . . . λns,
and we add to it a column of n boxes to it, the only set of indices in standard
order that can be inserted in the additional column of rλ1 ` 1 . . . λn ` 1s is
p1, 2, . . . , nq.

Thus the number of standard tableaux of the representation rλ1 ` 1 . . . λn ` 1s
is the same as this number for rλ1 . . . λns; the only change is a new factor
of det g. This means that thse two patters are equivalent for unimodular
groups.

Then for unimodular groups we need to consider only patters with fewer
than n rows.

rλ1 . . . λns “ rλ1 ´ λn . . . λn´1 ´ λns (10.88)

There is a second equivalence (related to Hodge duality), namely
“

1n´1‰ “ r1s (10.89)

This can be easily generalized to
“

1n´p
‰

“ r1ps (10.90)

The general theorem is that for unimodular transformations

rλ1, λ2, . . . , λns “ rλ1 ´ λn, λ1 ´ λn´1, . . . , λ1 ´ λ2s (10.91)

Which is equivalent to

rµ1, µ2, . . . , µn´1s “ rλ1 ” λ, λ2 ” λ´ µn´1, λ3 ” λ´ µn´2, . . . , λn´1 ” λ´ µ2, λn ” λ´ µ1s
(10.92)

10.5 Representations of Opnq

This is the only case in which the Kronecker delta with two covariant or else
two contravariant indices makes sense, because

g.gT “ 1 ðñ δab giag
j
b “ δij (10.93)

Contractions commute with group transformations

δab giag
j
b . . . Tij... “ δij . . . Tij... (10.94)

Traceless tensors are transformed into traceless tensors. There is a complete
decomposition of an arbitary tensor into a traceless piece plus other terms
containing Kronecker deltas. For example

Tij “

ˆ

Tij ´
1
n
T δij

˙

`
1
n
T δij ” T 0

ij `
1
n
T δij (10.95)
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where

T ” δij Tij (10.96)

Another example

Tijk ” T 0
ijk ` δij Ak ` δik Bj ` δjk Ci (10.97)

Let us denote the three possible traces

T 23
i ” δjk Tijk

T 13
j ” δik Tijk

T 12
k ” δij Tijk (10.98)

This means that

T 23
i “ Ai `Bi ` n Ci

T 13
j “ Aj ` nBj `Bj

T 12
k “ n Ak `Bk ` Ck (10.99)

then

A “ ´
1

n2 ` n´ 2
`

T 23 ` T 13 ´ p1` nqT 13˘

B “ ´
1

n2 ` n´ 2
`

T 23 ´ p1` nqT 13 ` T 13˘

C “ ´
1

n2 ` n´ 2
`

´p1` nqT 23 ` T 13 ` T 13˘ (10.100)

It is plain that a permutation of the indices maps a traceless tensor into
another traceless tensor. We can then apply Young operators to a traceless
tensor to obtain traceless tensors of a given symmetry type.

In fact, there is a theorem that states that the traceless tensors corre-
sponding to Young diagrams in which the sum of the lengths of the first two
columns exceeds n must vanish.

Let us work out the hook in n=2 dimensions (its traceless part
should vanish in agreement with the preceding theorem). The action of the
Young projector is proportional to

´

PHookT
¯

ijk
” tijk ` tjik ´ tkji ´ tjki (10.101)
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Let us compute components in gory detail

TH111 “ 0
TH112 “ t112 ` t112 ´ t211 ´ t121

TH121 “ t121 ` t211 ´ t121 ´ t211 “ 0
TH122 “ t122 ` t212 ´ t221 ´ t221

TH222 “ 0
TH211 “ t211 ` t121 ´ t112 ´ t112

TH212 “ t212 ` t122 ´ t212 ´ t122 “ 0
TH221 “ t221 ` t221 ´ t122 ´ t212 (10.102)

Of the four non-vanishing components only two are independent because

TH211 “ ´T
H
112

TH221 “ ´T
H
122 (10.103)

Imposing now tracelessness,

TH112 ` T
H
222 “ TH112 “ 0

TH122 ` T
H
111 “ TH122 “ 0 (10.104)

there is nothing left QED.
Let us define associate diagrams. Assume the length of the first column

in T, say a ă n ď 2. Then the legth of the first colum of T 1 is a1 ” n ´ a,
and all othe columns of T and T 1 have the same length.

Fot example, for n=3

T ” Ñ T 1 ” (10.105)

In n=4

T ” Ñ T 1 ” (10.106)

In general the pattern T will contain a given number of indices , r “ 1, 2, . . .
and

µ1 ` µ2 ` . . .` µν ” r (10.107)

indices (where as usual µ1 ě µ2 ě . . . ě µν). When n is an even number,
then

ν ”
n

2 (10.108)
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(in this case diagrams with n
2 rows are self-conjugate) and if n is an odd

number, then
ν ”

n´ 1
2 (10.109)

In SO(n) the reps corresponding to associate diagrams T and T 1 are
equivalent.For SO(3), ν “ 1, and irreps are desibed by the diagram

. . . (10.110)

(symmetric traceless tensors).
We shall denore by so(n) the Lie algebra of SO(n).
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11

The rotation group
SOp3q „ SUp2q{Z2.

Assume we are interested in the matrix that relates two different orthonor-
mal frames

~ea “ Ra
b~eb (11.1)

This a matrix R P SOp3q. This means that

RRT “ RTR “ 1 (11.2)

Put it into another form, this is the condition that

x2 ` y2 ` z2 (11.3)

remains invariant under such a linear transformation.
Any rotation is always a rotation around an axis, which is the locus of

the fixed points of the rotation. Let us characterize the axis by a unit vector,
n̂.

Given any vector, ~v P R3, it is plain that the component of it in the
direction of the axis, ~v‖ ” p~v.n̂q n̂ will be unaffected, whereas the orthogonal
component ~vK ” ~v ´ ~v‖ will become a combination of ~vK and n̂ˆ ~v.

~v1‖ “ ~v‖

~v1K “ α~vK ` β n̂ˆ ~vK (11.4)

The conservation of the norm implies that

α2 ` β2 “ 1 (11.5)

Altogether
~v Ñ α~v ` p1´ α q p~v.n̂q n̂` β n̂ˆ ~vK (11.6)

and the rotation matrix is

Rn̂ “ α δij ` p1´ αqninj ` β εikjnk (11.7)
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It is easy to check that this matrix is orthogonal,
ÿ

j

RijRjk “ δik (11.8)

Choosing

α ” cos α
β ” sin α (11.9)

R “

¨

˝

n2
1 ` pn

2
2 ` n

2
3q cos α p1´ cos αqn1n2 ´ n3 sin α p1´ cos αqn1n3 ` n2 sin α

n3 sin α` n1n2 p1´ cos αq n2
2 ` pn

2
1 ` n

2
3q cos α p1´ cos αqn2n3 ´ n1 sin α

´n2 sin α` p1´ cosαqn3n1 p1´ cos αqn3n2 ` n1 sin α n2
3 ` pn

2
2 ` n

2
1q cos α

˛

‚

(11.10)
All this yields, for n̂ ” p0, 0, 1q

R “

¨

˝

cos α sin α 0
´ sin α cos α 0

0 0 1

˛

‚ (11.11)

which when α “ π
2 transforms the positive OX axis, p1, 0, 0q into the negative

OY axis, p0,´1, 0q. The opposite sign corresponds to αØ ´α.

For arbritrary n̂ transforms the vector

¨

˝

0
0
1

˛

‚ into

Rn

¨

˝

0
0
1

˛

‚“

¨

˝

p1´ cos αqn1n3 ` n2 sin α
p1´ cos αqn2n3 ´ n1 sin α

n2
3 ` pn

2
2 ` n

2
1q cos α

˛

‚ (11.12)

This corresponds to the polar direction

cos Θ “ n2
3 ` p1´ n2

3q cos α
tan Φ “ n2n3p1´cos αq´n1 sin α

n1n3p1´cos αq`n2 sin α (11.13)

This depends on three parameters, as it should: two from n̂ ”

¨

˝

sin θ cos φ
sin θ sin φ

cos θ

˛

‚

and another one from α.

cos Θ “ cos2 θ ` p1´ cos2 θq cos α
tan Φ “ sin φ cos θp1´cos αq´cos φ sin α

cos φ cos θp1´cos αq`sin φ sin α (11.14)

We can ask, for example, what is the rotation that transforms a given
univ vector, say n̂1 into another one, say, n̂2. Let us denote

n̂1n̂2 ” cos θ (11.15)
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It is plain that the axis of rotation will be

n̂ ”
n̂1 ˆ n̂2

sin θ
(11.16)

We need
n̂2 “ cos α n̂1 ` sin α

n̂2 ´ cos θ n̂1
sin θ (11.17)

This clearly needs α “ θ.
The groups SOp3q and SUp2q{Z2 are intimately related. Indeed any

unitary matrix can be parameterized as

u “

ˆ

cos α eiβ sin α eiγ
´sin α e´iγ cosα e´iβ

˙

(11.18)

It is clear that the range of the angles is

0 ď β ď 2π
0 ď α ď π

0 ď γ ď 2π (11.19)

Consider an arbitrary hermitian matrix

M ”

ˆ

1` z x´ iy
x` iy 1´ z

˙

(11.20)

Its determinant is
det M “ 1´ r2 (11.21)

It is plain that the transformation

M Ñ uMu` (11.22)

leaves this determinant unchanged. Then there is a map

u P SUp2q Ñ R P SOp3q (11.23)

It is plain that both ˘u yield the same rotation; this is the reason for a
factor Z2. To be specific, when β “ γ “ 0

uMu` “

ˆ

1` z cos 2α` x sin 2α ´i y ` x cos 2α´ z sin 2α
i y ` x cos 2α´ z sin 2α 1´ z cos 2α´ x sin 2α

˙

(11.24)
which means that

¨

˝

x1

y1

z1

˛

‚“

¨

˝

cos 2α 0 ´sin 2α
0 1 0

´sin 2α 0 cos 2α

˛

‚

¨

˝

x
y
z

˛

‚ (11.25)
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It represents a rotation of angle 2α around the y axis, R2p´2αq. This
rotation is negative, because when 2α “ π

2 this yields
¨

˝

1
0
0

˛

‚Ñ

¨

˝

0
0
1

˛

‚

¨

˝

0
0
1

˛

‚Ñ

¨

˝

´1
0
0

˛

‚ (11.26)

Also, when, α “ 0,
¨

˝

x1

y1

z1

˛

‚“

¨

˝

cos 2β sin 2β 0
´sin 2β cos 2β 0

0 0 1

˛

‚

¨

˝

x
y
z

˛

‚ (11.27)

namely, R3p´2βq. It is curious that when

α “
π

2
β “ 0 (11.28)

we recover again a rotation R3p´2γq.
In the general case,

uMu` “

ˆ

1` z1 x1 ´ iy1

x1 ` iy1 1´ z1
˙

(11.29)

1` z1 ” 1` z cos 2α`
´

eipβ´γqpx´ iyq ` eipγ´βqpx` iyq
¯

sin 2α

x1 ´ iy1 ” e2iβpx´ iyqcos2 α´ e2iγpx` iyq sin2 α´ eipβ`γqz sin 2α
x1 ` iy1 ” e´2iβpx` iyq cos2 α´ e´2iγpx´ iyqsin2 α´ e´ipβ`γqz sin 2α

1´ z1 ” 1´ z cos 2α´
´

eipβ´γqpx´ iyq ` eipγ´βqpx` iyq
¯

sin 2α(11.30)

That is

R “

¨

˝

cos2 α cos 2β ´ sin2 α cos 2γ ´
`

cos2 α sin 2β ` sin2 α sin 2β
˘

´ sin 2α cos pβ ` γq
´ cos2 α sin β ` sin2 α sin 2γ cos2 α cos 2β ` sin2 α cos 2γ sin 2α sinpβ ` γq

sin 2α cos pβ ´ γq sin 2α sin pβ ´ γq cos 2α

˛

‚

(11.31)
This means that in order to go from the unit vector along the third axis, ~e3
to an arbitrary unit vector corresponding to the polar angles pθ, φq all we
have to do is identify

´ sin 2α cos pβ ` γq ” sin θ cos φ
sin 2α sinpβ ` γq ” sin θ sin φ

cos 2α ” cos θ (11.32)
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which can be achieved by letting

α “ θ
2

β ` γ “ π ´ φ (11.33)

in SUp2q language

u “

ˆ

cos θ
2 ´ sin θ

2e
´iφ

sin θ
2 e

iφ cos θ
2

˙

(11.34)

Staring again at this formula, we learn that when precisely

β “ 0
γ “

π

2 (11.35)

we recover a rotation around the first axis, R1p2αq

x1 “ x

y1 “ y cos 2α` z sin 2α
z1 “ ´y sin 2α` z cos 2α (11.36)

Euler showed that every rotation R P SOp3q can be written in the form

R “ R3pψq R1pθq R3pφq (11.37)

The range of the Euler angles is

0 ď φ ď 2π
0 ď θ ď π

0 ď ψ ď 2π (11.38)

In our SUp2q language this is

u “

˜

ei
ψ
2 0

0 e´i
ψ
2

¸

ˆ

cos θ
2 i sin θ

2
i sin θ

2 cos π
2

˙

˜

ei
φ
2 0

0 e´i
φ
2

¸

“

˜

ei
φ`ψ

2 cos θ
2 i ei

ψ´φ
2 sin θ

2
i ei

φ´ψ
2 sin θ

2 e´i
φ`ψ

2 cos θ
2

¸

It is plain that this covers the whole group manifold, provided

0 ď φ` ψ ď 4π
0 ď φ´ ψ ď 4π

0 ď θ ď π (11.39)

Indeed

ψ ` φ “ β

ψ ´ φ “ γ ´
π

2

α “
θ

2 (11.40)
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Descriptio 11.1: Euler angles
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The relationship with Gel’fand’s notation is

ψ Ñ ´φ1

φ Ñ ´φ2

θ Ñ ´θ (11.41)

In SOp3q language this is

R “

¨

˝

cos ψ sin ψ 0
´sin ψ cos ψ 0

0 0 1

˛

‚

¨

˝

1 0 0
0 cos θ sin θ
0 ´sin θ cos θ

˛

‚

¨

˝

cos φ sin φ 0
´sin φ cos φ 0

0 0 1

˛

‚“

¨

˝

cos ψ cos φ´ cos θ sin φ sin ψ sin φ cos ψ ` cos θ sin ψ cosφ sin θ sin ψ
´cos φ sin ψ ´ cos θ cos ψ sin φ ´sin ψ sin φ` cos θ cosψ cos φ sin θ cos ψ

sin θ sin φ ´sin θ cos φ cos θ

˛

‚

Please note that this matriz transforms the unit vector along the third axis
to the vector

¨

˝

0
0
1

˛

‚Ñ

¨

˝

sin θ sin ψ
sin θ cos ψ

cos θ

˛

‚ (11.42)

corresponding to the direction n “ pθ, π2 ´ ψq.

11.1 The Lie algebra SUp2q
Start with

T P SUp2q ðñ T “ T` & trT “ 0 (11.43)
The most general solotion is

T “

ˆ

a b
c d

˙

(11.44)

with

a “ ā

b “ c̄

d “ ´a (11.45)

That is

T “

ˆ

z x´ iy
x` iy ´z

˙

” xσ1 ` yσ2 ` zσ3 ” ~x~σ (11.46)

The Puli matrices generate the simplest Clifford algebra.

tσi, σju “ 2δij (11.47)

rσi, σjs “ 2iεijkσk (11.48)
so that

σiσj “ δij ` iεijkσk (11.49)
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11.2 Highest weight representations of SUp2q

Let us review the representations of the SU(2) algebra that you are already
familiar with from quantum mechanics. We shall do it in a way which
generalizes to arbitrary groups. The algebra reads

rJi, Jjs “ iεijkJk (11.50)

Define
J˘ ”

J1 ˘ J2
?

2
(11.51)

We are looking for finite dimensional unitary representations. Let us call
j the highest value of J3.

J3|j, αy “ j|j, αy (11.52)

First of all, just because it is a highest weight state, we can easoily determine
the value of the casimir

J2 ” J2
1 ` J

2
2 ` J

2
3 (11.53)

J´J`|j, jy “ 0 “
`

J2 ´ J2
3 ´ J3

˘

|j, jy (11.54)

then
J2|j, jy “ jpj ` 1q|j, jy (11.55)

Were there more than one highest weight state, we normalize as

xjα|jβy “ δαβ (11.56)

If we define
J˘ ”

J1 ˘ iJ2
?

2
(11.57)

Then

rJ3, J
˘s “ ˘J˘

rJ`, J´s “ J3 (11.58)

so that
J3J

˘|my “ J˘m|my ˘ J˘|my “ pm˘ 1qJ˘|my (11.59)

We have assumed from the beginning that there is no state with J3 “ m`1;
then it must be the case that @α

J`|j, αy “ 0 (11.60)

as well as
J´|jαy “ Njpαq|j ´ 1, αy (11.61)
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Let us compute

NjpβqNjpαqxj ´ 1, β|j ´ 1, αy “ xj, α|J`J´|j, αy “ xj, α| rJ`J´s |j, αy “
“ xj, α|J3 “ |j, αy “ jδαβ (11.62)

Then we learn that
Njpαq “ Nj “

a

j (11.63)

On the other hand

J`|j ´ 1, αy “ 1
Nj
|J`J´|j, αy “

a

j|j, αy (11.64)

In general

J´|j ´ k, αy “ Nj´k|j ´ k ´ 1, αy
J`|j ´ k ´ 1, αy “ sNj´k|j ´ k, αy (11.65)

Actually,

Nj´k “ xj ´ k ´ 1|J´|j ´ ky
sNj´k “ xj ´ k|J

`|j ´ k ´ 1y “ N˚j´k (11.66)

We choose phases in such a way that

Nj´k “ sNj´k (11.67)

|Nj´k|
2 “ xj ´ k, α|J`J´|j ´ k, αy “ xj ´ k, α| rJ`J´s |j ´ k, αy ` xj ´ k, α|J´J`|j ´ k, αy “

“ |Nj´k´1|
2 ` j ´ k (11.68)

Then we have a series of the type

ak “ ak´1`j´k “ ak´2`j´k`j´k`j´pk´1q “ . . . “ a0´kj´
kpk ` 1q

2
(11.69)

that is
N2
j´k “ pk ` 1qj ´ kpk ` 1q

2 “
k ` 1

2 p2j ´ kq (11.70)

in other words,

Nm “

c

pj `mqpj ´m` 1q
2 (11.71)

We are looking for finite dimensional representations. This means that
necessarily we must real some m ” j ´ l such that

J´|j ´ l, αy “ 0 (11.72)
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This is only possible if there is a certain value of k “ l such that

0 “ Nj´l “

c

p2j ´ lqpl ` 1q
2 (11.73)

which means
l “ 2j (11.74)

We learn that
j “

l

2 (11.75)

where l P N, just because it counts the number of times we have applied the
operator J´ . Besides, from now on we can drop the index α.

We can summarize, in the usual notation

xj,m1|J3|j,my “ m δm1,m

xj,m1|J`|j,my “

b

pj`m`1qpj´m
2 δm1,m`1

xj,m1|J´|j,my “

b

pj`mqpj´m`1q
2 δm1,m´1

(11.76)

11.3 Spherical Harmonics

Let us assume there is an action of G in M , that is

GˆM ÑM (11.77)

pg, xq Ñ g.x (11.78)

Then there is a representation of the group in the space of functions on M ,
FpMq

f P FpMq Ñ pTgfq pxq ” f
`

g´1x
˘

P FpMq (11.79)

It is indeed a representation, because

Tg pThfq pxq “ Tgf
`

h´1x
˘

“ f
`

h´1g´1x
˘

“ f
´

pghq´1 x
¯

“ pTghfq pxqq

(11.80)
Consider now the two-sphere, M ” S2. Let us consider an infinitesimal
(negative) rotation around the axis OZ. It must be so that

pTgfq pθ, φq ” fpθ, φ´ αq “ fpθ, φq ´ α
Bf

Bφ
` . . . (11.81)

Then
A3 ” ´

B

Bφ
(11.82)
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Now consider the (again, negative) rotation around the axis OX.

x1 “ x

y1 “ y cos α` z sin α

z1 “ ´y sin α` z cos α (11.83)

It follows that
dx
dα

ˇ

ˇ

α“0 “ 0 “ cos θ dθ
dα cos φ´ sin φ dφ

dα sin θ

dy
dα

ˇ

ˇ

ˇ

α“0
“ ´z “ ´ cos θ “ cos θ dθdα sin φ` sin θ cos φ dφ

dα

dz
dα

ˇ

ˇ

α“0 “ y “ sin θ cos φ “ ´ sin θ dθ
dα (11.84)

which yields immediately
dθ
dα “ ´ sin φ

dφ
dα “

cos θ
sin θ cos φ (11.85)

so that
A1 “ sin φ

B

Bθ
` cot θ cosφ B

Bφ
(11.86)

In an analogous way we get

A2 “ ´ cos φ B
Bθ
` cot θ sin φ

B

Bφ
(11.87)

The hermiyian generators are

Hi ” iAi (11.88)

H` ” H1 ` iH2 ” iA1 ´A2 “ eiφ
´

B
Bθ ` i cot θ B

Bφ

¯

H´ ” H1 ´ iH2 ” iA1 `A2 “ e´iφ
´

´ B
Bθ ` i cot θ B

Bφ

¯

H3 “ iA3 “ ´i
B
Bφ (11.89)

Let us denot the p2l ` 1q eigenfunctions corresponding to weight l by

Ylm pθ, φq m “ ´l, . . . , l (11.90)

First of all, we want that

H3Ylm “ ´i
B

Bφ
Ylm “ mYlm (11.91)

Then
Ylmpθ, φq “

1
?

2π
eimφ Fml pθq (11.92)
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is normalized by
ż

|Y m
l pθ, φq| sin θ dθ dφ “ 1 (11.93)

provided
ż π

0
sin θ dθ |Fml pθq|

2
“ 1 (11.94)

Let us now impose that

H2Y m
l “ lpl ` 1qY m

l (11.95)

´H2 “
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
1

sin2 θ

B2

Bφ2 (11.96)

In terms of µ ” cos θ, and defining Pml pµq ” Fml pcos θq, the ODE reads

d

dµ

ˆ

p1´ µ2q
dPml pµq

dµ

˙

`

ˆ

lpl ` 1q ´ m2

1´ µ2

˙

Pml pµq “ 0 (11.97)

which defines the (normalized) associated Legendre functions

Pml pµq ”

d

pl `mq!
pl ´mq!

c

2l ` 1
2

1
2ll!

`

1´ µ2˘´m
2 dl´m

dµl´m
pµ2 ´ 1ql (11.98)

The functions Plpµq ” P 0
l pµq happen to be polynomials; the Legendre

polynomial of order l.

Plpµq ”

c

2l ` 1
2

1
2ll!

dl

dµl
`

µ2 ´ 1
˘l (11.99)

11.4 Spinor representations

No all representations of SUp2q are also representations of SOp3q, only those
with l P N qualify for that. The rest, that is, the ones such that l P 2N`1

2 are
the famous spinor representations, sometimes called somewhat confusingly,
bivalued representations of SOp3q.

First of all, for the s “ 1
2 representation

vα Ñ
1
2 pσ

aq
α
β v

β (11.100)

In particular

H3 ” ´
1
2σ3

ˆ

1
0

˙

“ ´
1
2

ˆ

1
0

˙

(11.101)

H3 ” ´
1
2σ3

ˆ

0
1

˙

“
1
2

ˆ

0
1

˙

(11.102)
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Let us denote
eα : e1 ”

ˆ

1
0

˙

; e2 ”

ˆ

0
1

˙

(11.103)

It is easy to find the space of functions for such representations. It is the
space of symmetric spinors with n “ 2s indices.

A “ apα1...αnqeα1 b . . .b eαn ai “ 1, 2. (11.104)

The SUp2q action is given by

apα
1
1...α

1
2sqeα11b . . .beα1n ” apα1...α2sqτ

α11
α1 b . . .b τ

α12s
α2s eα1b . . .beαn (11.105)

It is a fact that

H3 a
pa1...anqeα1 b . . .b eαn ” apa1...anq

ˆ

´1
2 0

0 1
2

˙

b . . .b

ˆ

´1
2 0

0 1
2

˙

apa1...anq “

“
p2´p1

2 apa1...anqeα1 b . . .b eαn (11.106)

where p1 counts the number of times the value 1 appears amongst the set
of indices, and p2 likewise for the value 2.

We need

p1 “ l ´m

p2 “ l `m (11.107)

in order that

H3 a
pa1...anqeα1 b . . .b eαn “ mapa1...anqeα1 b . . .b eαn (11.108)

• Let us compute ~J2 for s “ 1
2 .

~J2ψa ”
~σla
2
~σjl
2 ψj “

1
43ψa “ sps` 1qψa (11.109)

• Let us repeat now the computation for s “ 1
´

~Jψ
¯

pijq
”

~σa
pi

2 ψa|jq `
~σb
pj

2 ψi|b

´

~J2ψ
¯

pijq
”

~σa
pi

2

´

~Jψ
¯

a|jq
`

~σb
pj

2

´

~Jψ
¯

i|b
“

~σai
2

´

~σua
2 ψuj `

σuj
2 ψau

¯

`

`
σbj
2

´

~σui
2 ψub `

σub
2 ψiu

¯

“ 2ψij “ sps` 1qψij (11.110)

We have used repeteadly

~σji ~σ
l
k “ 2δliδ

j
k ´ δ

j
i δ
l
k (11.111)
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• Diagonalizing σ3
pσ3q

j
i ζ

ẑ˘
j ” ˘ζ z̄˘i (11.112)

An eigenstate pf J3 with eigenvalue jẑ will be given by

ψsjẑ “
´

ζ ẑ`
¯s`jẑ

´

ζ ẑ´
¯s´jẑ

(11.113)

We can simplify the notation as shown because all indices are totally
symmetrized anyway.

Denote
ζi ” α`ζ

ẑ`
i ` α´ζ

ẑ´
i (11.114)

Then
ζi1 . . . ζi2sψi1...i2s “

ÿ

jẑ

αs`jẑ` αs´jẑl xsjẑ|ψy (11.115)

For example, when s “ 1{2

α`ζ
`iψi ` α´ζ

´iψi “ α1
`α

0
´

B

1
2

1
2

ˇ

ˇ

ˇ

ˇ

ψ

F

` α0
`α

1
´

B

1
2 ´

1
2

ˇ

ˇ

ˇ

ˇ

ψ

F

(11.116)

• For a general direction, n̂ ” pθ, φq

ˆ

ζ n̂,`

ζ n̂,´

˙

“

ˆ

c ´s˚

s c

˙

˜

ζ ẑ,`

ζ k̂,´

¸

(11.117)

with

c ” cos θ
2

s ” eiφ sin θ
2 (11.118)

Then

ψs,jn̂ “
`

ζ n̂,`
˘s`jn̂

`

ζ n̂,´
˘s´jn̂

“
`

c ζ ẑ,` ´ s ζ ẑ,´
˘s`jn̂

`

s˚ ζ ẑ,` ` c ζ ẑ,´
˘s´jn̂

“

“
ř

pq

`

s`jn̂
p

˘ `

s´jn̂
q

˘ `

cζ ẑ,`
˘s`jn̂´p

`

´s ζ ẑ,´
˘p `

s˚ ζ ẑ,`
˘s´jn̂´q

`

c ζ ẑ,´
˘q
”

”
ř

jẑ
Rsjn̂,ẑ pθ, φq ψ

s,jẑ (11.119)

where

Rsjn̂,ẑ pθ, φq ”
ÿ

m˘;m``m´“s`jẑ

ˆ

s` jn̂
m`

˙ˆ

s´ jn̂
m´

˙

cm`p´sqs`jn̂´m` cs´jn̂´m´ ps˚qm´

(11.120)
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• Let us revisit spherical harmonics from the spinor viewpoint. Let us
define as usual

xji ” ~x~σji “

ˆ

z x´ iy
x` iy ´z

˙

(11.121)

AH4 also define

xij ” εikx
k
j “

ˆ

´px´ iyq z
z x` iy

˙

(11.122)

in order to build irreps

ζi1ζj1 . . . ζisζjsxi1j1 . . . xisjs ” pζζxq
s (11.123)

Let us choose x as the unit vector with

x` iy “ sin θeiφ

z ” cos θ
ζi “ pα`, α´q

ζi ” εijζj “ p´α´, α`q (11.124)

Now it is a fact that
`

´α´ α`
˘

ˆ

´s˚ c
c s

˙

`

´α´ α´
˘

“ ´s˚α2
´ ´ 2cα`α´ ` sα2

`

(11.125)

11.5 Product representations
It is possible to construct the tensor product of two irreps.

Dpgq ” D1 bD2 (11.126)

The basis of the product space is just the tensor product of the two basis

e1 b e2 (11.127)

This is trivally a representation. Its action on the natural basis is given by

Dg pe1 b e2q “ eiαA pe1 b e2q “ e1 b e2 ` pαAe1q b e2 ` e1 b pαAe2q ` . . .
(11.128)

This should be familiar from the addition of angular momentum in
quantum mechanics. It is clear that the generators of

D ” p1` T q b p1` T q (11.129)

are
p1b T q ‘ pT b 1q (11.130)
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In SU(2), since we work in a basis where J3 is diagonal, the values of J3 just
add.

J3 p|j1m1y b |j2m2yq “ pm1 `m2q3 |j1m1y b |j2m2y (11.131)

Consider, for example, the product of the three-dimensional irrep with the
two-dimensional one, 1 b 1{2. We shall analyze this tensor product by the
familiar highest weight technique.

The highest weight state is unique

|3{2, 3{2y ” |1{2, 1{2y b |1, 1y (11.132)

Now, remembering that

J´|j,my “

c

pj `mqpj ´m` 1q
2 |j,m´ 1y (11.133)

we get

J´|3{2, 3{2y “
c

3
2 |3{2, 1{2y “

c

1
2 |1{2,´1{2y b |1, 1y ` |1{2, 1{2y b |1, 0y

(11.134)

|3{2, 1{2y “
c

1
3 |1{2,´1{2y b |1, 1y `

c

2
3 |1{2, 1{2y b |1, 0y (11.135)

There is an state orthogonal

|ψy “

c

2
3 |1{2,´1{2y b |1, 1y ´

c

1
3 |1{2, 1{2y b |1, 0y (11.136)

This will be later taken as the highest weight of another chain.

J´|3{2, 1{2y “
?

2|3{2,´1{2y “
b

1
3 |1{2,´1{2y b |1, 0y `

b

2
3

b

1
2 |1{2,´1{2y b |1, 0y `

b

2
3 |1{2, 1{2y b |1,´1y “

b

4
3 |1{2,´1{2y b |1, 0y `

b

1
3 |1{2, 1{2y b |1,´1y (11.137)

then

|3{2,´1{2y “
c

2
3 |1{2,´1{2y b |1, 0y `

c

1
3 |1{2, 1{2y b |1,´1y “

(11.138)

Here also there is another state orthogonal

|χy ”

c

2
3 |1{2,´1{2y b |1, 0y ´

c

1
3 |1{2, 1{2y b |1,´1y (11.139)
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Let us apply the operator J´ once more

J´|3{2,´1{2y “ |3{2,´3{2y “
c

2
3 |1{2,´1{2yb|1,´1y`

c

1
3 |1{2,´1{2yb|1,´1y “ |1{2,´1{2yb|1,´1y

(11.140)
Let us now check that the state |ψ is a good candidate for a highest weight
state. For this to be true it is necessary that

J`|ψy ” 0 (11.141)

then

J´|ψy “
b

2
3 |1{2,´1{2y b |1, 0y ´

b

1
3

b

1
2 |1{2,´1{2y b 1, 0y ´

b

1
3 |1{2, 1{2y b |1,´1y “

“

b

2
3 |1{2,´1{2y b 1, 0y ´

b

1
3 |1{2, 1{2y b |1,´1y (11.142)

that is, we identify the two orthogonal states we have obtained as

ψy ” |1{2, 1{2y
|χy ” |1{2,´1{2y (11.143)

That is,
1b 1{2 “ 3{2‘ 1{2 (11.144)

11.6 Wigner-Eckart

A tensor operator Osl l “ ´s . . .` s) transforming under the spin-s repre-
sentation of SU(2) is a set of 2s+1 operators such that

rJa,Osl s “ Osm pJsaqml (11.145)

In the standard basis
pJs3qll1 “ lδll1 (11.146)

(´s ď l, l1 ď s); so that
rJ3,Osl s “ lOsl (11.147)

A trivial example is a particle in an spherically symmetric potential. Then

Ja “ La ” εabcxbpc (11.148)

and
rJa, xbs “ ´iεacbxc “ xc

´

Jadja

¯

cb
(11.149)

To go the canonical basis, first realize that

x0 “ x3 (11.150)
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ans then
rJ˘, x0s ” x˘1 “ ¯

x1 ˘ ix2
?

2
(11.151)

Twnsor operators have got the interesting property that

JaOsl |jmαy “ Osl1 |jmαy pJsaql1l `Osl |jm1αy
`

J ja
˘

m1m
(11.152)

this is the transformation of the tensor product

sb j (11.153)

Note inprticular that

J3Osl |jmαy “ pl `mqOsl |jmαy (11.154)

The Wigner-Eckart theorem states that

xJ,m1, β|Osl |j,m, αy “ δm1,l`mxJ, l `m|s, j, l,myxJ, β|Os|j, αy (11.155)

Let us work out an example in detail.Let us assume known the matrix
element

x
1
2 ,

1
2 , α|x3|

1
2 ,

1
2 , βy ” A (11.156)

and we would like to compute x1
2 ,

1
2 , α|x1|

1
2 ,

1
2 , βy. First,

x1 ”
1
?

2
p´x`1 ` x´1q (11.157)

Starting with the highest weight state
ˇ

ˇ

ˇ

ˇ

3
2 ,

3
2

F

” x`1

ˇ

ˇ

ˇ

ˇ

1
2 ,

1
2

F

(11.158)

we get
ˇ

ˇ

ˇ

ˇ

3
2 ,

1
2

F

“

c

2
3J

´

ˇ

ˇ

ˇ

ˇ

3
2 ,

3
2

F

“

c

2
3J

´x`1

ˇ

ˇ

ˇ

ˇ

1
2 ,

1
2

F

(11.159)

But using
J´x`1 “ x0 ` x`1J

´ (11.160)
ˇ

ˇ

ˇ

ˇ

3
2 ,

1
2

F

“

c

2
3x0

ˇ

ˇ

ˇ

ˇ

1
2 ,

1
2

F

`

c

1
3x`1

ˇ

ˇ

ˇ

ˇ

1
2 ,´

1
2

F

(11.161)

Finally

0 “
@1

2 ,
1
2 |

3
2 ,

1
2
D

“

b

2
3
@1

2 ,
1
2 |x0|

1
2 ,

1
2
D

`

b

1
3
@1

2 ,
1
2 |x`1|

1
2 ,´

1
2
D

(11.162)

This implies that
B

1
2 ,

1
2

ˇ

ˇ

ˇ

ˇ

x`1

ˇ

ˇ

ˇ

ˇ

1
2 ,´

1
2

F

“ ´
?

2A (11.163)

and finally
B

1
2 ,

1
2

ˇ

ˇ

ˇ

ˇ

x1

ˇ

ˇ

ˇ

ˇ

1
2 ,´

1
2

F

“ A (11.164)
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12

Roots and weights

A Cartan subalgebra is a maximal abelian subalgebra; that is, a set of
commuting generators Hi “ H`i as large as possible

rHi, Hjs “ 0 (12.1)

The dimension of the Cartan subalgebra is called the rank of the group.
In the case of SUp2q, the rank is one and the only H is precisely J3. The
normalization in a given irrep is defined (Georgi) as

tr pHiHjq ” kDδij (12.2)

Humphreys defines a symmetric bilinear form as

βpX,Y q ” tr pDpXq, DpY qq (12.3)

which then uses to define the dual basis of the Lie algebra L. .
In a more intrinsic way, AdL H is simultaneously diagonalizable. That is,

L is the direct sum of the subspaces

Lα ” tX P L rH,Xs “ αpHqX @H P Hu (12.4)

where α P H˚. It is plain that L0 is simply CL H, the centralizer of H.
The set of nonzero roots α P H˚ is denoted by Φ. This yields the Cartan

decomposition of the Lie algebra

L “ CL H ‘ YαPΦ Lα (12.5)

It can be proved that the restriction of κ to H is nondegenerate. This allows
to identificate H with H˚:

φ P H˚ Ñ Tφ P H (12.6)

such that
φpHq “ κpTφ, Hq (12.7)
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The states of a given irrep will read

Hi|µy “ µi|µy (12.8)

The eigenvalues are dubbed weights. They obey

µi “ µ̄i (12.9)

because they are eigenvalues of a hermitian operator. The vector µi P Rm
is called a weight vector.

Let us remind ourselves of the adjoint representation. In order to define
it, consider a linear space with an state associated to every generator

Xa ÐÑ |Xay (12.10)

with the scalar product defined as

xXa|Xby ”
1
λ
tr X`a Xb (12.11)

in such a way that
xHi|Hjy “ δij (12.12)

It is plain that

Xa|Xby “
ř

c |XcyxXc|Xa|Xby “
ř

cXc

`

Dadj
a

˘

cb
” ´ifacb|Xc “

“ ifabc|Xcy “ |ifabcXcy “ | rXa, Xbsy (12.13)

It is plain that for the states corresponding to the Crtan generators the
weight vanishes

Hi|Hjy “ | rHi, Hjsy “ 0 (12.14)

The other states have non zero weight vectors

Hi|Eαy “ αi|Eαy (12.15)

This equivalent to
rHi, Eαs “ αiEα (12.16)

This generators cannot be hermitian, because
“

Hi, E
`
α

‰

“ ´αiE
`
α (12.17)

which means that
E´α “ E`α (12.18)

This is the generalization of the well-known elements J˘ in the SUp2q case.
Is it possible to normalize in such a way that

xEα|Eβy “
1
λ
tr E`αEβ “ δαβ (12.19)
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It is fact of life that the E˘α are lowering and raising operators for the
weights. Starting from

Hi|µy “ µi|µy (12.20)

we get

HiE˘α|µy “ prHi, E˘αs ` E˘αHiq |µy “ p˘αi ` µiqE˘α|µy (12.21)

In particular, the state
Eα|E´αy (12.22)

has zero weight, so that it must be a linear combination of Cartan generators.

Eα|E´αy “ βi|Hiy “ |β.Hy “ | rEα, E´αsy (12.23)

The constants βi are given by

βi “ xHi|Eα|E´αy “
1
λ
tr pHi rEα, E´αsq “

1
λ
tr pE´α rHi, Eαsq “

1
λ
αi tr E´αEα “ αi

(12.24)
We conclude that

rEα, E´αs “ α.H (12.25)

It so happens that for any non-zero pair of root vectors, ˘α, there is an
SUp2q subalgebra, with generators

J˘ ”
1
|α| E˘α

J3 ”
α.H
|α|2 (12.26)

Indeed,
”

1
|α|Eα,

1
|α|E´α

ı

“ α.H
α2

”

α.H
|α|2 , E˘α

ı

“ E˘α (12.27)

From that we can prove, for example, that root vectors correspond
to unique generators.

Demonstratio. Let us assume that there are two, Eα and E1α and we shall
get a contradiction. Choose adequate linear combinations in such a way
that

xEα|E
1
αy ”

1
λ
tr
`

E`αE
1
α

˘

“
1
λ
tr
`

E´αE
1
α

˘

“ 0 (12.28)

We now act with the J´. This has zero weight vector, so that it is in the
Cartan subalgebra. But

xHi|J´|E
1
αy “

1
λ
tr
`

Hi

“

J´, E
1
α

‰˘

“ ´
1
λ
tr
`

J´
“

Hi, E
1
α

‰˘

“ ´
αi
λ
tr
`

J´E
1
α

˘

“ 0
(12.29)
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It follows that
J´|E

1
αy “ 0 (12.30)

But this is not possible, because

J3|E
1
αy “ |E

1
αy (12.31)

and the lowest state in a spin 1 representation vcannot hace J3 eigenvalue
`1.

More is true: If α is a root, then no non-zero multiple of α (except
´α) is also a root.

Demonstratio. It is not difficult to stablish a contradiction between the
SU(2) associated to 2α and the SU(2) associated to α.

Assume now we have a rep D with weights µi. Consider the action of
the SU(2) associated to some root α

J3|µy ”
α.H

|α|2
|µy “

α.µ

α2 |µy (12.32)

But we know that the J3 allowed values are either integers or half-integers.
Ergo

2α.µ
α2 P Z (12.33)

Now the state |µy can always be written as a linear combination of states
transforming according to definite reps of SUp2q. Assume the highest spin
state appearing in this linear combination is j. There must necessarily exist
an integer p such that

Jp`|µy ‰ 0 (12.34)

but
Jp`1
` |µy “ 0 (12.35)

Then
α.pµ` pαq

α2 “
α.µ

α2 ` p “ j (12.36)

Likewise, there must be another integer, q such that

Jq´|µy ‰ 0 (12.37)

but
Jq`1
´ |µy “ 0 (12.38)

Then
αpµ´ qαq

α2 “
α.µ

α2 ´ q “ ´j (12.39)
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It follows that
a.µ

α2 “ ´
p´ q

2 (12.40)

One can also consider the α string through α itself. It is clear that in
this case

q ´ p “ 2 (12.41)

But we know that p “ 0, because 2α is not a root. Then q=2. This just
reexpresses the fact that 0 and ´α are also roots.

In [13] ia defined the α-string through β as the set of roots

β ´ qα, β ´ pq ´ 1qα, . . . , β, . . . , β ` pα (12.42)

and it is a fact that
βpHαq “ ´ pp´ qq (12.43)

There is a formal identification of H˚ with H:

α P H˚ ðñ Hα P H such that αpHq “ κ pHα, Hq @H P H (12.44)

Let us, against the famous Coleman’s advice, belabor this point.
Given a basis Hi P H and the dual basis αi in H˚

αipHjq ” δij (12.45)

Then any H P H, H “
ř

hiHi and αpHq “ hi so that

hi “ κklpHαiq
khl (12.46)

and
κkl pHαiq

k
“ δil ñ pHαiq

k
“ κki (12.47)

and the formal identification is explicitly given by

β “ βiα
i ñ Hβ “

ÿ

βiκ
kiHk ”

ÿ

βkHk (12.48)

Also, a scalar product in the root space is defined through

pα, βq ” κ pHα, Hβq ”
ÿ

i

αi βi (12.49)

One immediate consequence is as follows. Defining the SU(2) algebra
with Eα

α.β

α2 “ ´
1
2pp´ qq (12.50)

Defining the SU(2) algebra with Eβ yields

β.α

β2 “ ´
1
2pp

1 ´ q1q (12.51)
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The angle between both roots then is determined by

cos2 θ ”
pα.βq2

α2β2 “
pp´ qqpp1 ´ q1q

4 (12.52)

There are only four possibilities

pp´ qqpp1 ´ q1q θ

0 900 “ π
2

1 600 “ π
3 ;

2π
3

2 450 “ π
4 ;

3π
4

3 300 “ π
6 ;

5π
6

(12.53)

12.1 SU(3)
Let us define the Gell-Mann matrices

λ1 ”

¨

˝

0 1 0
1 0 0
0 0 0

˛

‚ (12.54)

λ2 ”

¨

˝

0 ´i 0
i 0 0
0 0 0

˛

‚ (12.55)

λ3 ”

¨

˝

1 0 0
0 ´1 0
0 0 0

˛

‚ (12.56)

λ4 ”

¨

˝

0 0 1
0 0 0
1 0 0

˛

‚ (12.57)

λ5 ”

¨

˝

0 0 ´i
0 0 0
i 0 0

˛

‚ (12.58)

λ6 ”

¨

˝

0 0 0
0 0 1
0 1 0

˛

‚ (12.59)

λ7 ”

¨

˝

0 0 0
0 0 ´i
0 i 0

˛

‚ (12.60)

λ8 ”
1
?

3

¨

˝

1 0 0
0 1 0
0 0 ´2

˛

‚ (12.61)
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We define the SU(3) generators in such a way that

Ta ”
1
2 λa (12.62)

and
trTaTb “

1
2δab (12.63)

It is clear that
tT1, T2, T3u (12.64)

generate an SU(2) subgroup.
Let us choose the Cartan subalgebra to be

tH1 ” T3; H2 ” T8u (12.65)

The weights in the fundamental representation are

e1 Ñ
´

1
2 ,
?

3
6

¯

e2 Ñ
´

´1
2 ,
?

3
6

¯

e3 Ñ
´

0,´
?

3
3

¯

(12.66)

Weights for the vertices of an equilateral triangle of side 1 in the pH1, H2q
plane

The roots are differences of weights. This often the best way to compute
them.

e1 ´ e2 “ p1, 0q
e1 ´ e3 “ p

1
2 ,
?

3
2 q

e2 ´ e3 “ p´
1
2 ,
?

3
2 q (12.67)

It is a fact that

E˘1,0 ”
T1˘iT2?

2

E
˘ 1

2 ,˘
?

3
2
” T4˘iT5?

2

E
¯ 1

2 ,˘
?

3
2
” T6˘iT7?

2 (12.68)

Roots form a regular hexagon in the pH1, H2q plane.
In an arbitrary Lie algebra (and in some basis) we will say that a given

weight µ is positive if its first non-zero component is positive, and negative
if its first non-zero component is negative. This property defines an ordering,
to wit

µ ą ν ðñ µ´ ν ą 0 (12.69)
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Descriptio 12.1: Roots and weights of SUp3q.
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The highest weight in a representation is then defined in an obvious way.
In the adjoint representation, positive roots will correspond to raising

operators, and negative roots to lowering operators. The highest weight
state must be annihilated by all positive roots.

In the particular case of SU(3), positive roots are on the right half of
the cartesian pH1, H2q plane, and negative roots are on the left hand side of
it.

Again, in a general setting, we define simple roots as positive roots
that cannot be written as sums of other positive roots. Let us call ∆ the
set of all simple roots. It is fact of life that from the geometry of the simple
roots, it is possible to reconstruct the whole Lie algebra. Let us see how.

• If α and β are different simple roots, then α´ β is not a root. Proof.
This is so because otherwise either

α “ β ` pα´ βq (12.70)

or else
β “ α` pβ ´ αq (12.71)

(depending on whether α´ β ą 0 or β ´ α ą 0).

• This implies that
E´α|Eβy “ E´β|Eαy “ 0 (12.72)

Then using the master formula

α.β

α2 “ ´
p´ q

2 (12.73)

we learn that q “ 0. Also,

β.α

β2 “ ´
p1 ´ q1

2 (12.74)

implies that q1 “ 0. This means that we know the relative length of
the roots, as well as the angle between them.

β2

α2 “
p

p1
(12.75)

cos θα,β “ ´
?
pp1

2 (12.76)

• A trivial consequence is that
π

2 ď θα,β ď π (12.77)

(remember that simple roots are positive).
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• Then all simple roots are linearly independent.

Demonstratio. Assume
ÿ

α

Cαα “ 0 (12.78)

which can be rewritten as

µ` “ µ´ (12.79)

with
µ` “

ÿ

Cαą0
α (12.80)

µ´ “
ÿ

Cαă0
α (12.81)

But this cannot be, because

pµ` ´ µ´q
2
“ µ2

` ` µ
2
´ ´ 2µ`.µ´ ě µ2

` ` µ
2
´ ě 0 (12.82)

and µ`µ´ ď 0.

• Any positive root can be written as a linear combination of simple
roots with non-negative integer coefficients

φ “
ÿ

α

Kαα (12.83)

• There are exactly l (rank) simple roots.

Demonstratio. It this were not true there would be some vector ξ
orthogonal to all simple roots (and therefore orthogonal to all roots),

@φ P Φ, rξ.H,Eφs “ 0 (12.84)

This would mean that the algebra is not simple.

• When we write
β “

ÿ

αP∆
Kαα (12.85)

Call the height of a root the number

htβ ”
ÿ

Kα (12.86)

If all Kα ě 0 we say that β is positive.
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• Let us spell in detail how to build all roots out of the simple roots in
the simple case of SU(3); this then is easily generalized by induction.
The simple roots are

α1 “ p
1
2 ,
?

3
2 q

α2 “ p
1
2 ,´

?
3

2 q (12.87)

with

α2
1 “ α2

2 “ 1
α1.α2 “ ´

1
2

2α1.α2
α2

1
“ 2α2.α1

α2
2
“ ´1 (12.88)

Thus p=1 for both α1 acting on |α2y as well as for α2 acting on |α1y.
Then

α1 ` α2 (12.89)

is a root, but neither α1 ` 2α2 nor α2 ` 2α1 are roots.

12.2 Dynkin diagrams

Remember that we found some time ago that

α.µ
α2 ` p “ j

α.µ
α2 ´ q “ ´j (12.90)

It could be the case that |µy has lower spin components; but j is the
highest one. The value of j is determined by

p` q “ 2j (12.91)

In case |µy is a root |µy “ |βy in the adjoint representation, the situa-
tion is simpler, because we know that each root appears only once in
the adjoint, and we conclude that

|βy “ |j; α.β

α2 y (12.92)

which is completely determined up to a phase. Let us check this in
the case of SUp3q. The root diagram is built out of

tα1, α2, α1 ` α2,´α1,´α2,´α1 ´ α2u (12.93)
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To this one has to add the two null roots to get the eight fimensions
of the algebra. Besides, we know that

α2
1 “ α2

2 “ 1
α1.α2 “ ´

1
2

α1.α2
α2

1
“ α1.α2

α2
2
“ ´1

2 (12.94)

Also, we know how Hi commutes with everything, so that the only
thing missing is the

rHi, Eαs (12.95)

Consider the operator Eα1`α2 . We know that p “ 1 and q “ 0, so that

p` q “ 1 “ 2j (12.96)

We have

Jpα1q
`|Eα2y ”

1
|α1|

Eα1 |Eα2y “ Eα1 |Eα2y “ | rEa1 , Eα2sy (12.97)

Under the SUp2qα1

|Eα2y “

ˇ

ˇ

ˇ

ˇ

1
2 ,´

1
2

F

(12.98)

because
Jα1

3 |Eα2y “
α1.α2
α2

1
|Eα2y “ ´

1
2 |Eα2y (12.99)

But we know that
Jα1
`

ˇ

ˇ

ˇ

ˇ

1
2 ,´

1
2

F

“
1
?

2

ˇ

ˇ

ˇ

ˇ

1
2 ,

1
2

F

(12.100)

so that we learn that

1
?

2

ˇ

ˇ

ˇ

ˇ

1
2 ,

1
2

F

“
1
?

2
η |Eα1`α2y (12.101)

where η is a phase, which we can choose equal to 1, as our convention. It
follows that

|Eα1`α2y “
?

2 |rEα1 , Eα2sy (12.102)

so that
Eα1`α2 “

?
2 rEα1 , Eα2s (12.103)

The Jacobi identity applied to rE´α2 , rEα1 , Eα2ss` . . . now determines both

rE´α1 , Eα1`α2s “
1
?

2
Eα2 (12.104)

(which is part of the SUp2qα1 algebra, so that it was already known) as well
as
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rE´α2 , Eα1`α2s “ ´
1
?

2
Eα1 (12.105)

The phase p´1q is fully determined now.
The Dinkin diagram associetes simple roots with open circles. Pairs of

circles are connected by lines, depending on the angle between both roots:

• No line if the angle is π
2 “ 900 ùñ |α.β| “ 0

• One line if the angle is 2π
3 “ 1200 ùñ |α.β| “ ´1

2 .|α||β|

• Two lines if the angle is 3π
4 “ 1350 ùñ |α.β| “ ´

?
2

2 .|α||β|

• Three lines if the angle is 5π
6 “ 1500 ùñ |α.β| “ ´

?
3

2 .|α||β|

In the figure we have indicated the real compact forms of the complex
Lie algebra. There are also non-compact real forms of the same complex
algebras, for example, a non-compact form of SUpnq is SLpnq.

The dynkin diagrams evidences some isomorphisms between lower rank
algebras.

SOp3q „ SUp2q „ spp2q
SOp4q „ SUp2q ˆ SUp2q

SOp6q „ SUp4q
SOp5q „ spp4q (12.106)

12.3 The exceptional algebra G2

This algebra has got two simple roots

α1 ” p0, 1q

α2 ”
´?

3
2 ,´

3
2

¯

(12.107)

It follows that

α2
1 “ 1
α2

2 “ 3
α1.α2 “ ´

3
2

2α1.α2
α2

1
“ ´3

2α1.α2
α2

2
“ ´1

α1.α2
|α1|.|α2|

” cos θ12 “ ´
?

3
2

θ12 “ 1500 (12.108)
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Descriptio 12.2: SU(3) simple roots.
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Descriptio 12.3: Allowed angles between roots.
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Descriptio 12.4: The Classification of simple groups.
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The Dynkin diagram is simply two circles united by a triple line.
The α1 string through α2 has got p “ 3. The α2 string going through

α1 instead has p “ 1. This means that

φ2 ” α1 ` α2

φ3 ” 2α1 ` α2

φ4 ” 3α1 ` α2 (12.109)

are all roots.

• We known that the φ3 state is unique because α1 ` 2α2 is not a root.

• In order to check whether there is another state at level 4, we have to
check whether 2α1 ` 2α2 is a root (could it be reached by acting on
φ3 with a simple root (α2)?)

2α2p2α1 ` α2q

α2
2

“ ´2` 2 “ 0 “ ´pp´ qq (12.110)

But we already know that q “ 0 because 2α1 is not a root, so that
p “ 0 and 2α1`2α2 is not a root. Another argument is that it is twice
a root, namely α1 ` α2, and no multiple of a root can ever be a root.

• We know that 4α1 ` α2 is not a root. The remaining possibility at
level 5 is 3α1 ` 2α2.

2α2p3α1 ` α2q

α2
2

“ ´3` 2 “ ´1 (12.111)

But we know that q “ 0 which means that p “ 1, so that 3α1` 2α2 is
a root.

• Also, 3α1 ` 3α2 is not a root, so that at level 6 we only need to check
4α1 ` 2α2

2α1p3α1 ` 2α2q

α2
1

“ 6´ 6 “ 0 (12.112)

We know that q “ 0, so that we are done.

We have uncovered the 12+2 roots of G2.
In general, in order to keep track of the integers pi and qi cooresponding

to the action of a simple root αi on a state |φy, Aassume that the positive
root φ “

ř

kiαi (with ki ą 0); then

qi ´ pi “
2φ.αi
α2
i

“
ÿ

j

kj
2αj .αi
α2
i

”
ÿ

j

kjAji (12.113)
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where the Cartan matrix is defined as

Aji ”
2αj .αi
α2
i

(12.114)

Its diagnonal entries are all equal to 2. For SU(3) the Cartan matrix is

A “

ˆ

2 ´1
´1 2

˙

(12.115)

And for G2

A “

ˆ

2 ´1
´3 2

˙

(12.116)

Now when we go from φ to φ`αl by the action of the raising operator Eαl ,
this changes kl to kl ` 1 so that

qi ´ pi ÝÑ qi ´ pi `Ali (12.117)

It is now easy to work this out in gory detail in the SU(3) case. The Cartan
matrix gives the qi ´ pi, and we know the value of qi, namely qi “ 2 for the
root αi itself (because it is the J` of an SU(2)), whereas qi “ 0 for any other
root (because αi ´ αj is not a root). Let us work out A2 “ SUp3q again in
detail. Cartan’s matrix is

A “

ˆ

2 ´1
´1 2

˙

(12.118)

• Consider the α2 string through α1 (in this case q=0 because α1 ´ α2
is not a root).

A12 “ A21 “ ´1 “ q ´ p (12.119)

Then α1 ` α2 is a root; but neither α1 ` 2α2 nor α2 ` 2α1 are. We
have then three roots (plus the negatives) plus two H; these exhaust
the 8 dimensions of the algebra.

In the case of G2, we start with

root q ´ p
α1 r2,´1s
α2 r´3, 2s

(12.120)

This means, for the α2-string through α1 (q=0, because α1 ´ α2 is nort a
root), that p “ 1, so that α1 ` α2 is indeed a root, but α1 ` 2α2 is not a
root. α1 is then the highest weight of a doublet of SUp2qα2 . On the other
hand α2 is a triplet under SUp2qα1 : α2 ` 2α1 and α2 ` 3α1 are also roots
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(nut this is not the case with α2 ` 4α1). Consider the α2-string through
β ” a2 ` 3α1. It so happens that

2β.α2
α2

2
“

2
3

ˆ

3` 3
ˆ

´3
2

˙˙

“ ´1 “ q ´ p (12.121)

Giving the fact that we know that q=0 (because 3α1 is not a root), this
means that γ ” 2α2 ` 3α1 is also a root. pβ, γq form a doublet under
SUp2qα2 .

12.4 Fundamental weights
The highest weight of a rep is such that

µ` φ (12.122)

is not a weight for any positive root φ. This is equivalkent to

Eαi |µy “ 0 ô
2αi.µ
α2
i

“ li ě 0 (12.123)

The integers li are the Dynkin coefficients. It is useful to introduce the
fundamental weights which are m vectors such that

2αi.µj
α2
i

“ δij (12.124)

The highest weight can the be written as

µ “
ÿ

liµi (12.125)

For example, for A2 ” SUp3q, where the simple roots are

α1 “ p
1
2 ,
?

3
2 q

α2 “ p
1
2 ,´

?
3

2 q (12.126)

they read

µ1 “ p
1
2 ,
?

3
6 q

µ2 “ p
1
2 ,´

?
3

6 q (12.127)

The defining representation generated by Gell-Mann’s matrices has got µ1
as its highest weight. Its Dynkin indices are then p1, 0q. Start with

H1|µ1y “
1
2 |µ1y

H2|µ1y “
?

3
6 |µ1y (12.128)
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It is clear that
E´α2 |µ1y “ 0 (12.129)

because it is a highest weight state, and by definition, µ1.α2 “ 0.

2µ1.α1
α2

1
“ 1 (12.130)

This tells us that µ1 ´ α1 is a weight, but µ1 ´ 2α2 is not.

H1E´α1 |µ1y “ E´α1
1
2 |µ1y ´ pα1q1E´α1 |µ1y “ 0

H2E´α1 |µ1y “ E´α1

?
3

6 |µ1y ´ pα1q2E´α1 |µ1y “
´?

3
6 ´

?
3

2

¯

|µ1y “

“ ´ 1?
3 |µ1y (12.131)

This is then the weight

µ1 ´ α1 “ p0,´
1
?

3
q (12.132)

Now
2pµ1 ´ α1q.α2

α2
2

“ 1 (12.133)

This tells us that µ1 ´ α1 ´ α2 must be a weight. We can represent this
procedure as follos

1 0 µ1

´1 1 µ1 ´ α1

0 ´ 1 µ1 ´ α1 ´ α2

(12.134)

The rationale is as follows. The Cartan matrix is
ˆ

2 ´1
´1 0

˙

(12.135)

We start with the highest weight which is the top of an α1-doublet. We
substract the first row of the Cartan matrix, and get to ´1 1 , which
must be the top of an α2 doublet. We then substract the second row of the
Cartan matric and end up into 0 ´ 1 and we are done
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13

Representations.

Let us rewrite again the SU(3) Cartan matrix in another way (corresponding
to level 0 and level one roots). The boxed numbers represent tha value of
q ´ p

k “ 1 2 ´ 1 ´1 2
k “ 0 0 0 (13.1)

Then we start, knowing that the q-values are

q “ 2 0 0 2 (13.2)

because α1 ´ α2 is not a root, and each root is in a j “ 1 of its own SUp2q.
From that, we can go up one step in level

k “ 2 1 1 α1 ` α2

k “ 1 2 ´ 1 ´1 2 α1|α2

k “ 0 0 0 (13.3)

We know that q “ 1 in both case, so that this is telling us that p “ 0 and
we are done with the positive roots.

To construct the µ2 irrep (Dynkin indices p0, 1q) we proceed in a similar
way, and get

0 1 µ2

1 ´ 1 µ2 ´ α2

´1 0 µ2 ´ α2 ´ α1 (13.4)

All states in a given irrep can easily be built out of the highest weight
state as

E´αan . . . E´αa1 |µy (13.5)
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Descriptio 13.1: Roots of G2.
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Descriptio 13.2: Weights of the 3 and 3̄ of SUp3q.
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where
αai P ∆ (13.6)

A scalar product exists in this linear space which is such that given two
subsets of ∆, ~α, ~β Ă ∆

xµ
ˇ

ˇ

ˇ
E~αE´~β

ˇ

ˇ

ˇ
µy „ δ

~α,~β
(13.7)

The explicit computation of an orthonormal basis can become easily painful
for large irreps.

13.1 The Weyl group
This is the set of all Weyl reflections. They stem for the fact that the SU(2)
irreps are symmetrical under

J3 Ñ ´J3 (13.8)

Remember that
q ´ p “

2α.µ
α2 (13.9)

so that

J3 |µy “
α.µ

α2 |µy ÝÑ |µ´ pq ´ pqαy “ ´
α.µ

α2 |µ´ pq ´ pqαy ” ´
α.µ

α2

ˇ

ˇ

ˇ

ˇ

µ´
2α.µ
α2 α

F

In slightly more formal terms we are multiplying the weigh by the idempo-
tent

pIαqji ” δji ´
2αiαj

α2 (13.10)

It is easy to show that
I2
α “ 1 (13.11)

Iα.α “ ´α (13.12)

In general, we can decompose any vector with respect to the direction of α

v “ vK ` v‖ (13.13)

then
Iα.v “ vK ´ v‖ (13.14)

In the particular case of the 3̄ ” p0, 1q of SU(3), all weights are just the
negative of the weights of the 3 ” p1, 0q. This means that the two irreps are
related by complex conjugation.

rDa, Dbs “ ifabcDc ùñ rDa, Dbs
˚
“ ´ifabcD

˚
c ùñ r´D˚a ,´D

˚
b s
˚
“ ifabcp´D

˚
c q

(13.15)
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This irrep is usually dubbed D̄. The irrep D is said to be real if it is
equivalent to its complex conjugate. Otherwise, it is said to be complex.

Given the fact that H`i “ Hi if µ is a weight in D, then ´µ is a weight
in D̄. Then the lowest weight of p1, oq is minus the highest weight of p0, 1q
and the other way around.

The highest weight of pn,mq is nµ1 ` mµ2, and the lowest weight of
pn,mq is ´nµ2 ´mµ1, so that that highest weight of pm,nq is nµ2 `mµ1.
The irreps pn,mq ans pm,nq are complex conjugates.

Let us work out the p2, 0q irrep of SU(3). Remember the SUp3q Cartan
matrix

ˆ

2 ´1
´1 2

˙

(13.16)

Then the string of weights looks as follows

2 0 2µ1

0 1 2µ1 ´ α1

´1 2 2µ1 ´ 2α1 1 ´ 1 2µ1 ´ α1 ´ α2

(13.17)

Let us now look at the Weyl reflections

Jα1
3 |2µ1y “

2α.µ1
α2 |2µ1y “ |2µ1y (13.18)

Let us begin with the Weyl reflections of µ.

Iα1 pµ ” 2µ1q “ 2µ1 ´ 2α1

Iα2 pµ ” 2µ1q “ µ

Iα2 p2µ1 ´ 2α1q “ 2µ1 ´ 2α1 ´ 2α2

Iα1 p2µ1 ´ 2α1 ´ 2α2q “ 2µ1 ´ 2α1 ´ 2α2 (13.19)

Let is now examine the Weyl reflections of µ´ α1 ” 2µ1 ´ α1. First of all,
Iα1 leaves this weight invariant, because it is orthoginal to α1. Otherwise

Iα2 p2µ1 ´ α1q “ 2µ1 ´ α1 ´ α2

Iα1 p2µ1 ´ α1 ´ α2q “ 2µ1 ´ 2α1 ´ α2

Iα2 p2µ1 ´ 2α1 ´ α2q “ 2µ1 ´ 2α1 ´ α2 (13.20)

Altogether, this is a six-dimensional irrep

p2, 0q “ 6 (13.21)
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Consider now the irrep p1, 1q. It so happens that
µ1 ` µ1 “ α1 ` α2 (13.22)

which is the highest weight of the adjoint of SU(3), already studied. We
know thet the zero weight is doubly degenerate. Let us check now that the
two ways of getting zero weight ara actually linearly independent.

|01y ” E´α1E´α2 |µ1 ` µ2y

|02y ” E´α2E´α1 |µ1 ` µ2y (13.23)
Our task is to show that

x01|02y
2 ‰ x01|01yx02|02y (13.24)

Demonstratio. This is easy, because
x01|01y ” xµ |Eα2Eα1E´α1E´α2 |µy “ xµ |Eα2 pE´α1Eα1 ` α1.HqE´α2 |µy “

“ xµ
ˇ

ˇEα2

`

αi1E´α2Hi ´ α
i
2E´α2

˘
ˇ

ˇµy “ µ.α1 ´ α1.α2 “
1
2 `

1
2 “ 1 (13.25)

x02|02y ” xµ |Eα1Eα2E´α2E´α1 |µy “ xµ |Eα1 pE´α2Eα2 ` α2.HqE´α1 |µy “

“ xµ
ˇ

ˇEα1

`

αi2E´α1Hi ´ α
i
1E´α1

˘ˇ

ˇµy “ µ.α2 ´ α2.α1 “
1
2 `

1
2 “ 1 (13.26)

x01|02y ” xµ |Eα2Eα1E´α2E´α1 |µy “ xµ |Eα2E´α2Eα1E´α1 |µy “

“ xµ |α2.Hα1.H|µy “ pα2.µq pα1.µq “
1
2 .

1
2 “

1
4 (13.27)

The p3, 0q, with highest weight µ “ 3µ1. It follows that the string of weights
reads

3 0 3µ1

1 1 3µ1 ´ α1

´1 2 3µ1 ´ α1 ´ α2 2 ´ 1 3µ1 ´ 2α1

0 0 3µ1 ´ 2α1 ´ α2 ´3 3 3µ1 ´ 3α1

1 ´ 2 3µ1 ´ 2α1 ´ 2α2 ´2 1 3µ1 ´ 3α1 ´ α2

´1 1 3µ1 ´ 3α1 ´ 2α2

0 ´ 3 3µ1 ´ 2α1 ´ 3α2 (13.28)

All states are obviously unique except the 0 0 . But this is also unique
because as you can undoubtly prove

E´α1E´α2E´α1 |3µ1y „ E´α2E´α1E´α1 |3µ1y (13.29)
So that p3, 0q “ 10. Its complex conjugate Ď10 “ p0, 3q
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14

The unitary groups
AN´1 “ SUpNq

Our normalization will be

tr pTaTbq “
1
2δab (14.1)

The generators of the Cartan subalgebra in the fundamental irrep N are
given by (A “ 1, . . . , N ´ 1; i, j, k “ 1 . . . N)

`

HA
˘

ij
“

1
a

2ApA` 1q

˜

A
ÿ

k“1
δikδjk ´ aδi,A`1δj,A`1

¸

(14.2)

The N weights (as many as the dimension of the fundamental) are pN ´

1q-dimensional vectors, which are the eigenvalues of the H in the Cartan
subalgebra

pµaqA ”
1

a

2ApA` 1q

˜

b“A
ÿ

b“1
δab ´Aδa,A`1

¸

(14.3)

For example

µ1 “
´ 1?

4 ,
1?
12 ,

1?
24 , . . . , 1?

2NpN´1q

¯

(14.4)

µ2 “
´

´ 1?
4 ,

1?
12 ,

1?
24 . . . , 1?

2NpN´1q

¯

(14.5)

µ3 “
´

0, ´ 2?
12 ,

1?
24 , . . . , 1?

2NpN´1q

¯

(14.6)

µ4 “
´

0, 0, ´2 1?
24 , . . . , 1?

2NpN´1q

¯

(14.7)

. . . (14.8)

µN “
´

0, 0, 0, . . . , 0, 1?
2NpN´1q

¯

(14.9)
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We can compute the weight length

µ1.µ1 “
N´1
ÿ

A“1

1
2ApA` 1q “

1
2

N´1
ÿ

A“1

ˆ

1
A
´

1
A` 1

˙

(14.10)

Let us dub

fpNq ”
N´1
ÿ

A“1

1
A
“ 1`

N´1
ÿ

A“1

1
A` 1 ´

1
N

(14.11)

Then
µ1.µ1 “

N ´ 1
2N (14.12)

and in fact this results holds for all other weights.
For a ă b, for example,

µ1.µ2 “
`

µ1˘2
´ 1

2 “ ´
1

2N (14.13)

Again, this results turns out to be generic. We can then write

µa.µb “ ´
1

2N `
1
2δab (14.14)

We shall adopt here a backwards convention: a positive weight is one
such that the last non-zero component is positive. Then

µ1 ą µ2 ą . . . ą µN (14.15)

The roots are differences of weights

µa ´ µb pa ‰ bq (14.16)

Positive roots are
µa ´ µb pa ă bq (14.17)

The simple roots are
αA ” µA ´ µA`1 (14.18)

It so happens that

αa.αb “ ´
1

2N `
1
2δab ´

`

´ 1
2N `

1
2δa,b`1

˘

´
`

´ 1
2N `

1
2δa`1,b

˘

`
`

´ 1
2N `

1
2δa`1,b`1

˘

“

“ 1
2δab ´

1
2δa,b`1 ´

1
2δa`1,b `

1
2δa`1,b`1 “ δab ´

1
2δa,b`1 ´

1
2δa`1,b (14.19)

This explains the shape of the Dynkin diagram, the simplest of them all. It
is then plain that the fundamental weights are given by

MA ”

a“A
ÿ

a“1
µa (14.20)
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Indeed

2αBMA “ 2
řa“A
a“1 µ

a
`

µB ´ µB`1˘ “

“
řa“A
a“1 pδaB ´ δa,B`1q “ δAB (14.21)

Oeing to the fact that the Cartan generators are traceless,

a“N
ÿ

a“1
µa “ 0 (14.22)

Then

µN “ ´
a“N´1
ÿ

a“1
µa “ ´µN´1 (14.23)

Then
p1, 0 . . . 0q “ p0, . . . , 1q (14.24)

and so on.
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15

Orthogonal algebras

The Dynkin diagrams of SOp2nq and SOp2n` 1q are different, and this re-
flects some important differences between the two sets of orthogonoal groups.
Let us first examine the structure of both algebras.

15.1 Dn “ SOp2nq

The Lie algebra consists on imaginary antisymmetric matrices of dimesion
2n- There are np2n´1q of those. The Cartan generators in the fundamental
representation can be chosen as

Ha
jk ” ´i pδj,2m´1δk,2m ´ δk,2m´1δj,2mq (15.1)

(a “ 1 . . . n, the rank of Dn) For example, for D2 in block form

H1 “

ˆ

σ2 0
0 0

˙

H2 “

ˆ

0 0
0 σ2

˙

(15.2)

The corresponding eigenvectors are

˘ek ” δj,2k´1 ˘ iδj,2k (15.3)

For example,

˘e1 ”

¨

˚

˚

˝

1
˘i
0
0

˛

‹

‹

‚

(15.4)

˘e2 “

¨

˚

˚

˝

0
0
1
˘i

˛

‹

‹

‚

(15.5)
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In general
Hap˘e

bq “ δbap˘e
bq (15.6)

This means that the weight vectors are given by

pεaqb ” δab (15.7)

Roots are given by

˘εa ˘ εb pa ‰ bq (15.8)

There are npn´ 1q of those (“ np2n´ 1q ´ n). The positive roots are given
by

εa ˘ εb pa ă bq (15.9)

Finally, the simple roots are given by

εa ´ εa`1 a “ 1 . . . n´ 1
εn´1 ` εn (15.10)

It is plain that
`

εa ´ εa`1˘2
“ 2

`

εa ´ εa`1˘ `εa`1 ´ εa`2˘ “ ´1
cos θ “ ´1

4 (15.11)

On the other hand the two last simple roots are orthogonal
`

εn´1 ` εn
˘ `

εn´1 ´ εn
˘

“ 0 (15.12)

15.2 SOp2n` 1q ” Bn

This algebra has an extra one-dimensional subspace associated with a zero
weight. The dimension of the algebra is np2n` 1q. The Cartan subalgebra
is the same, with one extra row and column. For example

H “

ˆ

σ2 0
0 0

˙

(15.13)

There are extra roots connecting the extra dimensional subspace with the
others:

˘εa ˘ εb

˘εa (15.14)
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Altogether, we have 2n extra roots, which is the difference between the
dimensions of Bn and Dn. The positive roots are just

εa ˘ εb pa ă bq

εa (15.15)

The simple roots

εa ´ εa`1 pa “ 1 . . . n´ 1q
εn (15.16)

What happens is that εn´1` εn is not simple anymore, because it is pεn´1´
εnq ` 2εn. This changes the angle between the two last roots

pεn´1 ´ εnq.εn “ ´1
cos θ “ ´1

2 (15.17)

The fundamental weights are

Ma ”

i“a
ÿ

i“1
εi a “ 1 . . . n´ 1 (15.18)

Mn ”
1
2

i“n
ÿ

i“1
εi (15.19)

Indeed

2Maαb “
ři“a
i“1 ε

i
`

εb ´ εb`1˘ “ δab

2Mnαa “ 1
2
ři“n
j“1 ε

i
`

εa ´ εa`1˘ “ 0

2Mnαn “
ři“n
j“1 ε

i.εn “ 1 (15.20)

Weyl reflexions of MN on all roots εa yields the set of weights

Iε
a
MN “ p1´ 2εa b εaq .12

ÿ

c

εc “
1
2
ÿ

c

pεc ´ 2εaq Ñ 1
2
`

˘ε1 ˘ ε2 ˘ . . .˘ εn
˘

(15.21)
This is a 2n dimensional representation, the spinor representation. We shall
work in a rep space which the n-th tensor product of the two-dimensional
space S of the spin 1{2 irrep.

S b . . .pn b S (15.22)

Then the Cartan subalgebra is given by one 1
2σ3 in the j-th position

Hj ” 1b . . .b 1
2σ3 b . . .b 1 ” 1

2σ
j
3 (15.23)
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Then it can be shown that

E˘ε1 “
1
2σ

1
˘

E˘ε2 “
1
2σ

1
3σ

2
˘

. . .

E˘εj “
1
2σ

1
3 . . . σ

j´1
3 σj˘ (15.24)

To summarize,

M2j´1,2n`1 “
1
2σ

1
3 . . . σ

j´1
3 σj1

M2j,2n`1 “
1
2σ

1
3 . . . σ

j´1
3 σj2 (15.25)

and then all other generators are determined by the algebra

Mab ” ´i rMa,2n´1,Mb,2n´1s (15.26)

In the case of Dn`1 ” SOp2n` 2q the roots are

αj “ εj ´ εj`1

αn`1 ” εn ` εn`1 (15.27)

There are two special representations corresponding to the last two
fundamental weights. Let us call them Dn and Dn`1

µn ” 1
2
`

ε1 ` . . .` εn ´ εn`1˘

µn`1 ” 1
2
`

ε1 ` . . .` εn ` εn`1˘ (15.28)

Under the SOp2n` 1q subgroup generated by

Mjk j, k ď 2n` 1 (15.29)

both representations transform like the spinor representation. It can be
shown that in Dn the extra generator in the Cartan subalgebra reads

Hn`1 ”M2n`1,2n`2 “ ´
1
2σ

1
3 . . . σ

n
3 (15.30)

and in the other representation Dn`1

Hn`1 ”M2n`1,2n`2 “
1
2σ

1
3 . . . σ

n
3 (15.31)
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15.3 Clifford algebras

The simplest definition of a Clifford algebra is through the relations

tγi, γju “ 2δij i, j “ 1, . . . , N (15.32)

Given a representation of the Clifford algebra, there is an associated repre-
sentation of SOpNq given by

Mij ” ´
i

4 rγi, γjs (15.33)

The gamma matrices themselves transform with the fundamental D1 ” N
of SOpNq

rMjk, γls “ i pδjlγk ´ δklγjq (15.34)

For Bn ” SOp2n ` 1q there is an explicit representation of the Clifford
algenbra that yields precisely the spinor representation of Bn.

γ1 ” σ1
2σ

2
3 . . . σ

n
3

γ2 ” ´σ
1
1σ

2
3 . . . σ

n
3

γ3 ” σ2
2σ

3
3 . . . σ

n
3

γ4 ” ´σ
2
1σ

3
3 . . . σ

n
3

. . .

γ2n´1 ” σn2

σ2n ” ´σ
n
1

γ2n`1 ” σ1
3σ

2
3 . . . σ

n
3 (15.35)

It is fact of life that
γ1γ2 . . . γ2n`1 “ in (15.36)

We do jot have enough elements to construct a representation of SOp2n`2q;
but we can construct the SOp2nq algebra just by leaving out γ2n`1. This is
a reducible representation; there is a nontrivial matrix that commutes with
all the generator, namely γ2n`1 itself. There are two projectors. One onto
Dn´1

1
2 p1´ γ2n`1q (15.37)

and another onto Dn

1
2 p1` γ2n`1q (15.38)
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There is a natural SUpNq subgroup of SOp2Nq. In fact from a Clifford
algebra one can construcy the operators

aj ”
1
2 pγ2j´1 ´ iγ2jq

a`j ”
1
2 pγ2j´1 ` iγ2jq (15.39)

They obey

taj , aku “
!

a`j , a
`
k

)

“ 0
 

aj , a
`
k

(

“ δjk (15.40)

Then out of the matrix elements in the N of SUpNq

Ta ”
ÿ

ij

a`i pTaqij aj (15.41)

In order to show that this is in fact a subalgebra of SOp2Nq, let us write

a`i aj “
1
2
 

a`i , aj
(

` 1
2
“

a`i , aj
‰

“ 1
2δij `

i
2M2i´1,2j´1 `

1
2M2i´1,2j ´

´1
2M2i,2j´1 `

i
2M2i,2j (15.42)

The Fock states generate the representation DN for N even, and DN´1 for
Nodd. There is an SOp2Nq generator which commutes with the SUpNq
subgroup, namely

S ”
N
ÿ

j“1
M2j´1,2j “

N
ÿ

i“1
a`i ai ´

N

2 (15.43)

This geberates a Up1q algebra. Actually

S “
1
2

N
ÿ

i“1
σi3 (15.44)

in such a way that
S |0y “ ´N2 |0y (15.45)
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16

Automorphisms

We shall dub inner such automorphisms that are equivalent to a conjugation

Ta Ñ RTaR
´1 (16.1)

where

R ” eiθ
aTa (16.2)

All other automorphisms are called outer. Complex conjugation acts as

Ta Ñ ´T ˚a (16.3)

This means that an algebra can hace complex representations only it it
enjoys nontrivial automorphisms. Sometimes this is trivial, like in the SUp4q
exchanging

Eα1 Ø Eα3 (16.4)

which exchanges the representation D1 with the D3 ” D1 which are non-
equivalent. In fact all complex conjugations automorphisms can be obtained
from reflexion symmetries of the Dynkin diagram. The opposite is not true:
not all reflecion symmetries correspond to complex conjugation. The cano-
nical example is SOp8q. Nontrivial automorphisms allow to classify all real
forms of complex Lie algebras. Let us see how thos work for the complex al-
gebra A1. In order to do that it is better to forget about physicist’s notation
and wrote

g ” eα.T (16.5)

This algebra is generated by
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T3 ”

ˆ

1 0
0 ´1

˙

T1 ”

ˆ

0 1
0 0

˙

T2 ”

ˆ

0 0
1 0

˙

I3 ”

ˆ

i 0
0 ´i

˙

I1 ”

ˆ

0 i
0 0

˙

I2 ”

ˆ

0 0
i 0

˙

(16.6)

Restriction to real matrices leaves the algebra of SLp2, Rq. The algebra is

rT1 ” T`, T2 ” T´s “ T3

rT3, T`s “ 2T`
rT3, T´s “ 2T´ (16.7)

This is exactly what we have been advocating for SUp2q. But were we to
stick to real generators the algebra would really have been

Ji ” iHi (16.8)

rJi, Jjs “ iεijkJk Ñ rHi, Hjs “ εijkHk (16.9)

Defining
H˘ ” H1 ˘H2 (16.10)

rH3, H˘s “ ¯H˘ sH`, H´s “ ´2H3 (16.11)

This algebra is almost the same as SL(2,R). They differ only in

T3 Ñ ´H3 (16.12)

This can be interpresed as dua to the existence of an involutive automosphi-
sm in SL(2,R)

φ pT˘q “ ´T˘

φpT3q “ T3 (16.13)
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Now Weyl’s unitary trick intruct to consider the algebra

T˘ Ñ iH˘ (16.14)

and this is the real compact form of the complex Lie algebra. In this case,
SUp2q Ă SLp2, Cq. A complex Lie algebra includes menay real forms in
general, although only one of them is compact.
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