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CHAPTER 1

VECTOR SPACES

We will start these lectures with a warmup, reviewing vector and coordinate transforma-
tions and applying them to the three dimensional case (with the known example of Euler
angles).

1.1 Vectors and coordinate transformations

1.1.1 Vector spaces

Let us start by recalling the definition of a vector space.
A vector space is a set of elements E = {~x} with a series of properties, with respect to

a scalar Field, F , (for example the real or the complex numbers).
There are two operations: sum (~x+ ~y) and product with a scalar (α · ~x).
Properties of the sum:

commutative

associative

neutral element

inverse element

Infinite Vector Spaces.
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2 VECTOR SPACES

Properties of the product with a scalar

associative

neutral element in F

distributive

Examples of vector spaces

E = {C}; F = R with +: usual complex sum and ·: usual product by a scalar

E = {Rn} =
{
x1, x2 . . . xn

}
; F = R with +: usual sum and ·: usual product

E = f(x) with f(x) all the real functions defined in (a, b) and F = R. +: usual sum
of functions and ·: usual product. This is an infinite dimension space

1.1.2 Basis and eigenvectors

We can represent a vector, ~x, in a n-dimensional space in terms of its decomposition in the
orthonormal basis ~ei, with i = 1, . . . , n:

~x =

n∑
i=1

~eix
i = ~e1x

1 + ~e2x
2 + . . .+ ~enx

n . (1.1)

The quantities (x1, x2, . . . , xn), or xi for short, are the coordinates and ~ei the vector basis.
The expression above can be written as a matrix product as follows

~x = [~e1, ~e2, . . . ~en]


x1

x2

...
xn

 , (1.2)

where we use row vectors for the basis eigenvectors and column vectors for the coordinates.
Vectors are objects which are independent of the coordinate systems, but their coordi-

nates are not. If we now choose a transformed new basis of orthonormal eigenvectors, ~e ′i,
the new coordinates x′i satisfy

~x =

n∑
i=1

~e ′ix
′i = ~e ′1x

′1 + ~e ′2x
′2 + . . .+ ~e ′nx

′n . (1.3)

The relation between the new basis and the old basis can be written in terms of a set of
coefficients S1

1 as follows

~e ′1 = ~e1S
1
1 + ~e2S

2
1 + . . .+ ~enS

n
1 =

∑
i

~eiS
i
1

~e ′2 = ~e1S
1
2 + ~e2S

2
2 + . . .+ ~enS

n
2 =

∑
i

~eiS
i
2

... (1.4)

~e ′n = ~e1S
1
n + ~e2S

2
n + . . .+ ~enS

n
n =

∑
i

~eiS
i
n (1.5)
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This can also be written in matrix form

~e ′ = [~e ′1, ~e
′
2, . . . ~e

′
n] = [~e1, ~e2, . . . ~en]


S1

1 S1
2 . . . S1

n

S2
1 S2

2 . . . S2
n

...
Sn1 Sn2 . . . Snn

 = ~e S (1.6)

The matrix Sji is used to compute the transformed coordinates for a given vector

~x =

n∑
i=1

~e ′ix
′i =

n∑
i=1

 n∑
j=1

~ejS
j
i

x′i =

n∑
j=1

~ejx
j (1.7)

from where

xj =

n∑
i=1

Sji x
′i (1.8)

or, in matrix notation, 
x1

x2

...
xn

 =


S1

1 S1
2 . . . S1

n

S2
1 S2

2 . . . S2
n

...
Sn1 Sn2 . . . Snn



x′1

x′2

...
x′n

 (1.9)

Notice at this point that we can also use the inverse matrix (S−1)ij ≡ T ij to relate x′i

with xi as follows. 
x′1

x′2

...
x′n

 = [T ]


x1

x2

...
xn

 . (1.10)

1.1.3 Einstein’s Notation (Implicit Summation)

The student might have already noticed that summation symbols are ubiquitous (and of-
ten quite cumbersome). When the range of summation can be inferred from the context,
summation symbols are in fact redundant. Einstein’s notation proposes to get rid of the
summation symbol, thus, for example

m2 = |~p |2 =

4∑
i=1

pip
i = pip

i . (1.11)

The basic set of rules of Einstein’s notation are as follows

Whenever the same index appears twice in an expression, once as a superscript and
once as a subscript, summation over the range of that index is implied.

The range of summation can be inferred from the context (in case of ambiguity, the
summation is written explicitly).
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The index used in implicit summation is a dummy index and may be replaced by any
other that is not already in use, e.g., pipi = pjp

j .

Free indices are not summed on (e.g., pi, T ijx
j , xixj).

It is conventional to place the symbol carrying the summation index as subscript on the
left of the symbol carrying the summation index as superscript, e.g., pipi, or gijxixj .

At this point, it is useful to re-introduce the Kronecker delta symbol, δji , which is defined
as follows

δji =

{
1, i = j

0, i 6= j
(1.12)

which can be interpreted as a representation of the identity matrix

xi = δijx
j (1.13)

Using Einstein notation, we can rewrite the expressions from the previous subsection
that apply to a change of basis in a much more compact form:

~x = ~eix
i = ~e ′ix

′i

~e ′j = ~eiS
i
j

xj = Sji x
′i

x′j = T ji x
i (1.14)

The product of two matrices Ai j and Bj k is also written in a trivial way

(AB)i j = Ai kB
k
j (1.15)

Some identities are very easy to prove using Einstein’s notation. For example,

Tr(AB) = (AB)i i = Ai jB
j
i = Bj iA

i
j = (BA)j j = Tr(BA) (1.16)

EXAMPLE 1.1

3D Rotations as a change of basis: Let us consider vectors in three dimensions and
a given choice of orthonormal basis {~e1, ~e2, ~e3}. Let us assume a new coordinate
system {~e ′1, ~e ′2, ~e ′3} defined by a rotation of angle ϕ around the 3−axis.

The new eigenvectors can be expressed in terms of the old basis as follows

~e ′1 = ~e1 cosϕ+ ~e2 sinϕ

~e ′2 = ~e1(− sinϕ) + ~e2 cosϕ

~e ′3 = ~e3 (1.17)

In matrix language, the change of basis matrix reads

S(~e3, ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (1.18)
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Thus, a given vector ~p, with coordinates p1, p2, p3 in the old basis, would have the
following coordinates in the rotated basis:p

′1

p′2

p′3

 =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


p

1

p2

p3

 ≡ R(~e3, ϕ)

p
1

p2

p3

 (1.19)

such that

p ′1 = p1 cosϕ+ p2 sinϕ

p ′2 = p1(− sinϕ) + p2 cosϕ

p ′3 = p3 (1.20)

One can do the same exercise around the 1− and 2−axis as well, remembering that
rotation of a positive angle is counterclockwise. The rotation matrices around the 1−,
2−, and 3− axis would read, respectively

R(~e1, ϕ) =

1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 (1.21)

R(~e2, ϕ) =

cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ

 (1.22)

R(~e3, ϕ) =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 (1.23)

It is now easy to understand that the consecutive rotation around the 3−axis by
angles ϕ1 and ϕ2 is described by the following matrix:

R(~e3, ϕ1 + ϕ2) =

 cos(ϕ1 + ϕ2) sin(ϕ1 + ϕ2) 0

− sin(ϕ1 + ϕ2) cos(ϕ1 + ϕ2) 0

0 0 1

 (1.24)

Note that we have found a matrix representation of eiϕ1eiϕ2 = ei(ϕ1+ϕ2)

We should note an interesting property of these rotation matrices, RT = R−1 or
equivalently, RTR = 1, which can also be written as (RTR)ji = δji . A matrix with
these properties is called orthogonal matrix.

Any orthogonal 3× 3 matrix, O, can be written as a product of the three R(~ei, ϕi)
and the reflexion matrix

S =

−1 0 0

0 −1 0

0 0 −1

 (1.25)

This is, O = R(~e1, ϕ1)R(~e2, ϕ2)R(~e3, ϕ3). This is equivalent to Euler’s theorem.
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PROBLEMS

1.1 First problem

xi (1.26)

First solution
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1.2 Linear Forms

A linear form (or functional) is an application F that transforms elements of the vector
space E into those of the scalar set K.

F : E −→ K

~x −→ F (~x) (1.27)

Theorem 1.1 All linear form F is fully defined if the following numbers are specified.

F (~ei) = fi , (1.28)

where {~ei} is a basis in E.

Proof :

F (~x) = F

(
n∑
i=1

~eix
i

)
=

n∑
i=1

F (~ei)x
i =

n∑
i=1

fix
i (1.29)

1.3 Dual Space

E∗, dual space with respect to E, is the set of all the linear forms (functionals) that can be
defined in E.

It is easy to show that E∗ is also a vector space: the sum of two linear functionals is
a linear functional; the sums of linear functionals and products by scalars also obey the
properties of a vector space; we can define a neutral element (a zero functional that maps
every vector in E to the number 0) and an additive inverse element.

From now on, we will denote as ~x ∗ the elements (linear forms) of the dual vector space.

1.3.1 Canonical dual basis (in E∗)

Given a basis {~ei} in E, we can define a canonical dual basis in E∗,
{
~e ∗i
}

, which is made
out of linear forms which, acting on the basis of E we obtain the Kronecker delta. This is,

~e ∗i(~ej) = δij (1.30)

It can be shown that these linear forms are linearly independent and that every linear form
can be expressed as a linear combination of

{
~e ∗i
}

. Thus, they form a basis. From now on,
we will omit the ∗ on the dual basis, thus ~e ∗i = ~e i.

From here, it also follows that the components of ~y, yi, can be expressed as yi = ~e i(~y).
Given a linear form (or functional) ~x ∗, we can study how it acts on an element of E, ~y:

~x ∗(~y) = ~x ∗
(
~eiy

i
)

= ~x ∗ (~ei) y
i ≡ x ∗i yi = x ∗i ~e

i(~y) (1.31)

In this expression, ~x ∗i are the components of the linear form in the dual basis (they are just
numbers). From this expression,

~x ∗ = x ∗i~e
i (1.32)
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1.3.2 Covectors

We will refer to the elements of the dual space E∗ as covectors. As we saw above, a
covector ~x ∗ can be expressed as a linear combination of the dual basis members. ~x ∗ =
x∗i~e

i.
It can be shown that, upon a change of basis, the components x∗i transform as

x∗′i = x∗jS
j
i (1.33)

which can be compared to the rest of the transformations in Eq. 1.69. As we can see, cov-
ectors behave differently than vectors under change of basis. Vector bases are transformed
using S and coordinates using T . Covectors bases are transformed using T and coordinates
using S. Covectors are said to be covariant and vectors contravariant.

If the basis vectors are the same i.e. we had orthonormal bases then the contravariant
and covariant components are IDENTICAL. But of course in general they are not.

1.4 Tensors

We will now generalise the objects that we can define in a vector space, introducing the
concept of tensors.

A tensor of type (r, s) over an n−dimensional vector space is an object, Ai1...irj1...js
con-

sisting on nr+s components that obeys the following transformation rule under change of
basis

A′ i1...irj1...js
= T i1m1

. . . T ismsA
m1...mr
n1...ns S

n1
j1
. . . Snsjs (1.34)

The coordinates i1, . . . ir are called contravariant coordinates and j1, . . . js are the co-
variant coordinates, generalising the concept that we introduced above for vectors and
covectors.

Remember that contravariant coordinates appear above and are transformed using T ,
whereas covariant coordinates appear below and are transformed using S.

1.4.1 Examples, Rank ordering, and Transformations

We can classify tensors of different ranks, depending on how they transform under rotations
(orthogonal coordinate transformations) R and coordinate inversions S.

Scalars: for example, the mass

R : φ −→ φ′ = φ

S : φ −→ φ′ = φ

Pseudoscalars: for example, the scalar triple product ρ = a · (~x× ~y)

R : ρ −→ ρ′ = ρ

S : ρ −→ ρ′ = −ρ

Vectors: (or tensors of rank 1) for example, the velocity

R : vi −→ v′i = vjRi
j

S : vi −→ v′i = vjSij = −vi
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Axial vector (pseudovector): a quantity that transforms as a vector under a proper
rotation R but that gains a sign flip under reflections S.

R : vi −→ v′i = (det R)vjRi
j = vjRi

j

S : vi −→ v′i = (det S)vjSij = −vjSij

Consider for example the vector product of two vectors ~x× ~y, which under

Moment of inertia In tensorial notation, the moment of inertia of a rigid body (which
relates the angular momentum and the angular velocity) corresponds to a rank 2 ten-
sor, which, in terms of the position vectors ~rn can be expressed as

Iij =
∑
n

mn

[
r2
nδ
ij − rinrjn

]
(1.35)

The moment of inertia relates the angular momentum ~L and the angular velocity ~w,

Li = wjI
ji = δjkw

kIji (1.36)

Notice that, by definition, it is a symmetric tensor, and therefore it can always be
diagonalised to obtain the principal moments of inertia

I ′ =

I1 0 0

0 I2 0

0 0 I3

 (1.37)

Isotropic tensors are invariant under coordinate rotations.

All rank 0 tensors (scalars and pseudoscalars) are isotropic. No rank 1 tensor is
isotropic (except for the null vector). The unique rank-2 isotropic tensor is the Kro-
necker delta, δij , and the unique rank-3 isotropic tensor is the permutation symbol,
εijk

Kronecker delta

It is easy to prove that the Kronecker delta is an isotropic tensor. We only need to
prove that it is invariant under rotations:

δ′mn = δijR
i
mR

j
n = RjmR

j
n = (RT )mjR

j
n = (RTR)mn = δmn (1.38)

Levi Civita tensor The rank-3 Levi-Civita tensor is defined as follows

εijk =


1 (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1)

−1 (i, j, k) = (1, 3, 2), (2, 1, 3), (3, 2, 1)

0 if any two indices are equal

(1.39)
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1.5 Scalar and vector products

The scalar and vector products can be expressed in terms of tensorial contractions as
follows:

~a ·~b = δija
ibj = aib

i (1.40)

(~a×~b)i = εijka
jbk (1.41)
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PROBLEMS

1.1 First problem

xi (1.42)

First solution
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1.6 Groups and Fields

Let us now introduce some concepts which we are going to need when describing infinite
vector spaces.

1.6.1 Groups

A group G is a set of elements together with an operation, ∗, that assigns every ordered
pair of elements f, g ∈ G another element, h = f ∗ g of group G. We have the following
set of properties

G1 If f, g ∈ G then h = f ∗ g ∈ G

G2 For any f, g, h ∈ G we have f ∗ (g ∗ h) = (f ∗ g) ∗ h

G3 There exists a unique identity element, e, such that f ∗ e = e ∗ f = f

G4 ∀f ∈ G there exists an inverse element f−1 such that f ∗ f−1 = f−1 ∗ f = e. (It can
also be shown that the inverse of f ∗ g is g−1 ∗ f−1).

It is customary to define a multiplication table that show how the given operator acts
on an ordered pair of elements of the group. For example, for a group G with elements
{e, f1, f2, f3 . . .}

(G, ∗) e f1 f2 f3 . . .

e e ∗ e e ∗ f1 e ∗ f2 e ∗ f3 . . .

f1 f1 ∗ e f1 ∗ f1 f1 ∗ f2 f1 ∗ f3 . . .

f2 f2 ∗ e f2 ∗ f1 f2 ∗ f2 f2 ∗ f3 . . .

f3 f3 ∗ e f3 ∗ f1 f3 ∗ f2 f3 ∗ f3 . . .

. . . . . . . . . . . . . . . . . .

1.6.2 Representation of a group

A representation of a group G is a mapping D of the elements of G onto a set of linear
operators. This mapping is not unique. It satisfies the following properties:

For the identity operator D(e) = 1

The group multiplication law ∗ is mapped onto the multiplication of objects in the
representation: D(g1)D(g2) = D(g1 ∗ g2)

EXAMPLE 1.2

Consider the cyclic groupZ3. This is an example of a finite group, with three elements.
Thus the dimension of G is three. We label the three elements as {emamb} We can
see that the group is abelian, this is f ∗g = g∗f (leading to a symmetric multiplication
table).

We can choose different representations. The dimension of the representation
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(Z3, ∗) e a b

e e a b

a a b e

b b e a

Some representations of Z3 in different dimensions

1 Dimensional Rep. D(e) = 1, D(a) = ei2π/3, D(b) = ei4π/3

2 Dimensional Rep. D(e) =

(
1 0

0 1

)
, D(a) =

(
0 −1

1 −1

)
, D(b) =

(
−1 1

−1 0

)
Regular Representationx can be constructed from the multiplication table. In partic-

ular we take the elements of the group and consider that they form an orthonormal
basis. In this case of Z3, using the bra and ket notation, we have the elements |e〉, |a〉,
|b〉 and we define the multiplication rule of the group as follows:

g1 ∗ g1 ≡ D(g1) |g1〉 = |g1g1〉 (1.43)

In such a way that we can construct the matrix

[D(g)]ij = 〈gi|D(g) |gj〉 (1.44)

that corresponds to the matrix for the element g in the regular representation. In the
case of Z3, we are left with

D(e) =

1 0 0

0 1 0

0 0 1



D(a) =

〈e|D(a) |e〉 〈e|D(a) |a〉 〈e|D(a) |b〉
〈a|D(a) |e〉 〈a|D(a) |a〉 〈a|D(a) |b〉
〈b|D(a) |b〉 〈b|D(a) |a〉 〈b|D(a) |b〉



=

〈e| |a〉 〈e| |b〉 〈e| |e〉〈a| |a〉 〈a| |b〉 〈a| |e〉
〈b| |a〉 〈b| |b〉 〈b| |e〉

 =

0 0 1

1 0 0

0 1 0



D(e) =

0 1 0

0 0 1

1 0 0

 (1.45)

1.6.3 Fields

We introduce two operations (+ and ·) on a set of elements F . That satisfy the following
properties

(F,+) is an abelian group (with identity element 0)
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(F, ·) is an abelian group (with neutral element 1)

Examples of fields:

(R,+, ·) the real numbers with the usual definitions of sum and multiplication

(C,+, ·) the complex numbers with the usual definitions of sum and multiplication

1.6.4 Vector spaces

We define a vector space over a field F as a set V with the following operations

+ given v, w ∈ V then v + w = z ∈ V

· given λ ∈ F and v ∈ V then λ · v ∈ V

with the following properties. Given v, w, z ∈ V and α, β ∈ F then the following proper-
ties are fulfiled

(V1) (v + w) + z = v + (w + z)

(V2) Neutral element: ∃0 ∈ V sich that v + 0 = 0 + v = v

(V3) Incense element: ∀v ∈ V , ∃ − v such that v + (−v) = 0

(V4) V is abelian under the + operation, v + w = w + v.

V(5) (α+ β) · v = α · v + β · v

V(6) α · (v + w) = α · v + α · w

V(7) α · (β · v) = (αβ) · v

V(8) 1 · v = v

Let us now end up with some examples of vector spaces

EXAMPLE 1.3

Consider the set of n−tuples, i.e., Rn, where we can define elements such as P =
(p1, p2, . . . pn)

the set of n−tuples with complex numbers Cn, where we can define elements such as
P = (p1, p2, . . . pn) where pi ∈ C.

Set of all complex polynomials of degree≤ n, Pn(t), where elements are of the form
a0 + a1t+ a2t

2 + . . .

Continuous functions (real valued) in the interval [a, b], CR[a, b]

Complex valued functions of a single real variable which are square-integrable in the
interval [a, b], which we refer to as LC

2[a, b].



PROBLEMS 15

PROBLEMS

1.1 First problem

xi (1.46)

First solution
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1.7 Linear Dependence, Basis and dimension of a group

Consider a vector space V with elements ~v and ~w defined over a field F which can be R
or C. A finite set of vectors ~vi with i = 1, 2, 3 . . . k is linearly dependent if there exists a
linear combination

∑k
i=1 αi~vi = 0 (where αi are elements of F ) with at least one αi 6= 0.

If the only way to satisfy
∑k
i=1 αi~vi = 0 is with all αi = 0 then the set of vectors are

said to be linearly independent.

EXAMPLE 1.4

Consider the vector space C3 defined over C. We can check explicity that the set of
vectors

~v1 =

i1
0

 , ~v2 =

0

1

0

 , ~v3 =

k0
0

 , (1.47)

are linearly dependent, as we can construct i~v1 + (−1)~v2 + (1/k)~v3 = 0

A vector space is said to be n−dimensional if there exists a subset of n linearly independent
vectors but there is no subset with n+ 1 linearly independent vectors.

The dimension of a vector space is the maximum number of linearly independent vec-
tors. For example, R3 over R is 3−dimensional.

1.7.1 Basis of a vector space

A subset of n linearly independent vectors {~ei} is a basis iff they are linearly independent
and every vector ~p ∈ V can be constructed as a linear combination of the elements of the
basis ~p = ~eip

i.
If a vector space is n dimensional then the basis consists of n linearly independent

vectors.

EXAMPLE 1.5

Consider C3 as a vector space over R. We can define the following basis

~v1 =

1

0

0

 , ~v2 =

0

1

0

 , ~v3 =

0

0

1

 ,

~v4 =

i0
0

 , ~v5 =

0

i

0

 , ~v6 =

0

0

i

 . (1.48)

Notice that C3 over R is 6 dimensional whereas C3 over C is 3 dimensional (in partic-
ular, ~v1 and ~v4 are linearly independent because i /∈ R).
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1.7.2 Scalar product and orthonormal basis

We can define a scalar product (or inner product). Consider ~p, ~q, ~r ∈ V and α, β ∈ F . The
scalar product assigns an ordered pair of vectors (~p, ~q) an element in F that satisfies

(~p, α~q + β~r) = α(~p, ~q) + β(~p, ~r)

(~p, ~q) = (~q, ~p)∗

(~p, ~p) ≥ 0 with (~p, ~p) = 0 iff ~p = 0

Note that as a consequence of these properties, the scalar product is antilinear in the first
element: (α~q + β~r, ~p) = α∗(~q, ~p) + β∗(~r, ~p).

In what follows, we are going to concentrate on Real Vector Spaces. The scalar product
can be defined in terms of the elements of the basis B = {~ei}. Consider two vectors
~x = ~eix

i and ~y = ~eiy
i.

(~x, ~y) = (~ei, ~ej)x
iyj = gijx

iyj (1.49)

where the metric tensor are n2 numbers, defined as (~ei, ~ej) = gij . (notice that there would
be complex conjugation in the case of complex vector spaces).

1.7.3 Orthonormal basis

Orthonormal basis satisfy gij = δij .

gij = gji in a real vector space (G = GT )

detG 6= 0

We can now define the concept of norm

||~v|| =
√

(~v,~v) (1.50)

which satisfies the following properties

positivity ||α~v|| = |α| ||~v|| ≥ 0

symmetry ||~v − ~w|| = ||~w − ~v||

triangular inequality ||~v + ~w|| ≤ ||~w||+ ||~v||

1.7.4 Gram Schmidt orthogonalisation

Assume that we have a set of n linearly independent vectors {~vi} in an n dimensional
vector space. The Gram Schmidt method allows us to rotate these vectors to form an
orthogonal basis (and ultimately, by dividing by their norm, to construct an orthonormal
basis).

We start constructing the vector of the orthogonal basis {~ui} as follows

~u1 = ~v1

~u2 = ~v2 − proj~u1
~v2

~u3 = ~v3 − proj~u1
~v3 − proj~u2

~v3

. . . (1.51)
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where proj~ui~vj is the projection of vector ~vj onto the vector ~ui, which can be computed
as follows

proj~ui~vj =
(~vj , ~ui)

(~ui, ~ui)
~ui (1.52)

This leads to an orthogonal basis, which obviously can be transformed into an orthonormal
basis {~ei} simply by dividing each vector by its norm.

~ei =
~ui
||~ui||

(1.53)

1.7.5 Isomorphisms

Assume that we have two vector spaces V1 and V2. If we can construct a liner map L that
relates the elements between the two vector spaces then the vector spaces are said to be
isomorphic.

V1 −→ V2

α~p1 + β~p2 −→ L(α~p1 + β~p2) = αL(~p1) + βL(~p2) (1.54)

The map has to be bijective, essentially meaning that we are mapping all the objects in V1

and all the objects on V2 and viceversa.

EXAMPLE 1.6

The complex vector space Cn is isomorphic to the complex vector space of polynomi-
als of order n− 1 with complex coefficients Pn−1.

We only need to find a bijective mapping between the elements of both vector
spaces (there is not just one!). For example, given a vector ~p in Cn:

~p = (p1, p2, . . . , pn) , (1.55)

I can choose a linear map L such that

L(~p) = p1 + p2x+ . . .+ pnxn−1 (1.56)

which is a vector of Pn−1. We can easily convince ourselves that the map is bijective.
The mapping is not unique, of course!

All n dimensional complex vector spaces are isomorphic to Cn (all n dimensional real
vector spaces are isomorphic to Rn).

1.7.6 Tensor product

Consider two vector spaces: V (which is n-dimensional) andW (which ism-dimensional).
I can find a basis in each of these vector spaces:

V : E = {~ei} i = 1 . . . n

V : G = {~gj} j = 1 . . .m

I can now define a new vector space X , which we will call the tensor product of V and
W , in the following way: X = V ⊗W .
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A basis in X will be made out of pairs of elements from each vector space

E ⊗G = {~ei ⊗ ~gj} (1.57)

where indices i and j can run over different dimensions (n and m, respectively)
The vectors in X can thus be understood as tensor products of vectors ~v and ~w in V and

W , respectively, and expanded in terms of these pairs

~x = ~v ⊗ ~w = ~ei ⊗ ~gjviwj (1.58)

Notice that we can simplify to the case where V = W = Rn
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PROBLEMS

1.1 First problem

xi (1.59)

First solution
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1.8 Linear Operators

A linear operator A maps the vector ~x from a given domain in vector space X into its
image ~y = A(~x) of a target (or codomain) in vector space Y .

X
A−−−−−→ Y

~x −−−−→ ~y = A(~x) (1.60)

We will often consider the case X = Y (for example, operators that act as Rn −→ Rn or
Cn −→ Cn). This map is linear and satisfies

A(~x1 + ~x2) = A(~x1) +A(~x2) ∀~x1, ~x2 ∈ X
A(α~x1) = αA(~x) ∀~x ∈ X,∀α ∈ F

Notice that X and Y can in general have different dimensionality and we can choose
different basis on each.

EXAMPLE 1.7

Identity operator

O(~x) = ~x ∀~x ∈ X (1.61)

Null operator

E(~x) = ~0Y ∀~x ∈ X (1.62)

1.8.1 Matrix associated to a linear operator

Every linear operator A in Cn (or Rn) can be represented by an n× n complex (real)
matrix.

Consider the linear operator A, such that

X
A−−−−−→ Y

~x −−−−→ ~y = A(~x) (1.63)

whereX is an n−dimensional vector space with basisBX = ~ei and Y is anm−dimensional
vector space with basis BY = ~εj .

Thus, a vector ~x ∈ X can be expressed in terms of its components as

~x = ~eix
i (1.64)

and a vector ~y ∈ Y can be expressed in the basis BY as

~y = ~εiy
i (1.65)

Thus, we can do the same for the result of the linear operator A acting on ~x

A(~x) = A
(
~ejx

j
)

= A (~ej)x
j = ~εiA

i
jx
j (1.66)
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Thus A(~x) has components Aijx
j in the basis BY with i = 1, . . .m and j = 1, . . . n.

Notice that we can now write this as a matrix equation.

~y = A~x (1.67)

Notice that the matrix A is m × n, it is not a square matrix unless X and Y have the
same dimension. Also, the matrix representation depends on the choice of basis BX
and BY .

As mentioned above, we will often consider applications within the same vector
space. In that case, we would identify X = Y , BX = BY and the matrix A would be
square n× n.

1.8.2 Change of basis

For simplicity, we are going to consider here the case where the domain and codomain
coincide X = Y , and we can choose the same original basis B = BX = BY = ~ei.
Consider an operator A, which in basis B has the components Aij . Consider now the
change of basis, defined by

~e ′j = ~eiS
i
j

xj = Sji x
′i

x′j = (S−1)jix
i = T ji x

i (1.68)

Then, given ~y = A~x, in the old basis we have yj = Ajix
i and in the new basis

y ′j = A ′ji x
′i. Starting from the first expression and transforming the coordinates xi

and yj , we have

yj = Ajix
i

Sjky
′k = AjiS

i
lx
′l

y ′k = (S−1)kjA
j
iS

i
lx
′l (1.69)

which allows us to identify A′kl = (S−1)kjA
j
iS

i
l

A′ = S−1AS (1.70)

or, equivalently,

A′ = TAT−1 (1.71)

1.8.3 Adjoint operators

Given a linear operator A, we define the adjoint operator A† in terms of the scalar
product as follows

(~y,A(~x)) = (A†(~y), ~x) (1.72)

For all linear operators, A, there exists an adjoint operator A†, which is linear and
unique. This can be shown as follows. Notice that, given a vector ~x we can express it
as

~x = ~eix
i = ~ei(~ei, ~x) (1.73)
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Thus, we can use the same expression for A†(~y) as follows

A†(~y) = ~ei(~ei, A
†(~y))

= ~ei(A†(~y), ~ei)

= ~ei(~y,A†(~ei))

= ~ei(A(~ei), ~y) (1.74)

We can also find a matrix representation for A† in terms of those of A. Using

A†(~ei) = ~ej(A(~ei), ~ej) ≡ ~ejBji
A†(~ei) = ~ej(~ej , A(~ei)) ≡ ~ejAii (1.75)

then,

Bij = (A(~ei), ~ej) = (~ej , A(~ei)) = A i
j (1.76)

This is, the matrix A† is the result of transposing and taking the complex conjugate on
A.

A† = AT (1.77)

Some properties of the adjoint operator

(A†)† = A

(A+B)† = A† +B†

(AB)† = B†B†

(αA)† = αA† (1.78)

1.8.4 Hermitian operators

Hermitian (or self-adjoint) operators satisfy A† = A.

1.8.5 Unitary operators

An operator A defined in a real vector space Rn −→ Rn is orthogonal if it preserves
the scalar product. This is,

(A(~x), A(~y)) = (~x, ~y) (1.79)

An operator A defined in a complex vector space Cn −→ Cn is unitary if it pre-
serves the scalar product. This is,

(A(~x), A(~y)) = (~x, ~y) (1.80)

It can be shown that if A is unitary, then A†A = 1, or equivalently, A† = A−1.
Notice that unitary operators preserve the norm of a vector.

1.8.6 Determinants and inverses

The determinant of a matrix can be expressed in terms of the Levi-Civita tensor as
follows

det(A) = εi1,i2,...inA
i1
1 A

i2
2 . . . Ainn (1.81)
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PROBLEMS

1.1 First problem

xi (1.82)

First solution
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1.9 Systems of linear equations and inverse of a matrix

Consider a system of n linear equations with n unknowns,
{
xi
}

.

a1
1x

1 + a1
2x

2 + . . . a1
nx

n = y1

a2
1x

1 + a2
2x

2 + . . . a2
nx

n = y2

...
...

an1x
1 + an2x

2 + . . . annx
n = yn (1.83)

This can be written in matrix form as

A~x = ~y (1.84)

The solution implies inverting A, such that

~x = A−1~y (1.85)

with A−1A = 1, or (a−1)ija
j
k = δik. The question is, of course, does A−1 exist? Or

equivalently, is there a solution to this system of equations?

Theorem 1.2 Let A be a linear operator in Cn. The following statements are all equiva-
lent

A is invertible

A is injective (one-to-one)

A is surjective

detA 6= 0

1.10 Eigenvalues and Eigenvectors

If A(~v) = α~v for a non-null vector ~v 6= ~0, then ~v is an eigenvector of A with eigen-
value α ∈ C.

If ~v is an eigenvector ofA, so is β~v, ∀β ∈ C, with the same eigenvalue. This simply
follows from the linearity of A.

Theorem 1.3 α ∈ C is an eigenvalue of A ⇐⇒ det(A− α1) = 0.

Proof :

⇒ Suppose that α is an eigenvalue of A. This implies that there exists a non-vanishing
eigenvector, ∃~v 6= 0, such that A~v = α~v. Thus, (A − α1)~v = 0. However, we also
have (A − α1)~0 = 0. There are therefore two different vactors ~v 6= ~0 with the same
image under (A − α1), which necessarily means that (A − α1) is not injective and
therefore det(A− α1) = 0

⇐ If det(A − α1) = 0, then it is not injective. This means that there are at least two
different vectors ~v 6= ~y that satisfy (A−α1)~v = (A−α1)~y. Thus, choosing ~z = ~v−~y,
we have (A−α1)~z = 0. ThusA~z = α~z, and ~z is an eigenvector ofAwith eigenvalue
α.
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1.10.1 Computing Eigenvalues

The expression det(A − α1) = 0 is a polynomial in α called characteristic poly-
nomial. To compute the eigenvalues of a linear operator A one can solve the charac-
teristic polynomial. This is a polynomial equation of degree n which therefore has n
complex solutions

if A is real (in a real vector space), and not all the solutions of the characteristic
polynomial are real, then A is not diagonalisable.

if A is complex, there are always n complex solutions αi with i = 1, . . . , n (n eigen-
values). The corresponding eigenvectors are found solving A~vi = αi~vi.

A certain eigenvalue αi may appear more than once, for example j times. We say
that the eigenvalue os j−fold degenerate.

We can choose the n eigenvectors {~xi} as a new basis. Then, for a given vector ~p,

A(~p) = A(~vip
i) = A(~vi)p

i = αi~vip
i (1.86)

The matrix representing the operator A in the basis {~xi} is therefore diagonal, with
the eigenvalues αi along the diagonal elements.

If T is the coordinate transformation from the old (i.e., standard) to the new (eigen-
vectors) basis, such that ~x ′ = T~x, then the operator is transformed as AT = TAT−1

and is diagonal.
The new basis {~vi} is in general not an orthonormal basis (i.e., T is not necessarily

unitary). However, if A is either unitary (A† = A−1) or Hermitian (A† = A), then
the new basis is orthonormal (and T is unitary).

The characteristic polynomial is independent of the basis

P (α) = det(A− α1) = det(A′ − α1) (1.87)

This is easy to prove, using A′ = T−1AT

P ′(α) = det(A′ − α1)

= det(T−1AT − α1)

= det(T−1AT − αT−1T )

= det(T−1(A− α1)T )

= det(T−1)det(A− α1)det(T )

= det(A− α1) (1.88)

1.11 The Spectral Theorem

Lemma: the eigenvalues of a unitary operator are all of the form eiϕ. Eigenvectors to
different eigenvalues are orthogonal.

Let ~v be an eigenvector of U with eigenvalue α

(~v,~v) = (U(~v), U(~v)) = |α|2(~v,~v)⇒ α = eiϕ (1.89)

Thus,

(~v1, ~v2) = (U(~v1), U(~v2)) = α∗1α2(~v1, ~v2) =
α2

α1
(~v1, ~v2) (1.90)
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since α1 6= α2 then α2

α1
6= 1 and then (~v1, ~v2) = 0.

Lemma: the eigenvalues of a Hermitian operator are real. The eigenvectors to
different eigenvalues are orthogonal.

With these premises, the spectral theorem states the following.
If A is unitary or Hermitian, we can find an orthonormal basis {~ai} where all the

basis vectors are eigenvectors of A. The matrix representing the operator in this basis
is diagonal (and the entries are the eigenvalues).

Thus, for all ~p we have ~p = (~ai, ~p)~ai and A(~ai) = αi~ai and A(~p) = (~ai, ~p)αi~ai
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PROBLEMS

1.1 First problem

xi (1.91)

First solution



INFINITE VECTOR SPACES 29

1.12 Infinite Vector Spaces

So far we have considered the case of vector spaces with finite dimensionality, in
which a vector could be expressed in terms of a linear combination of the elements of
the n−dimensional basis

~p ∈ V −→ ~p = ~eip
i (1.92)

This seems to imply that I can do the same if the dimension of the vector space is
infinite, if I find an infinite set of linearly independent vectors {~ei}, i = 1, 2....N with
N →∞.

~p ∈ H −→ ~p = ~eip
i (1.93)

Given that this is an infinite series, there are two questions that are not completely
trivial: Does the series converge? Does it converge to an element of H?

We need to define a concept of distance to test convergence. Thus, Hilbert spaces
are metric spaces.

1.13 Hilbert Spaces

We will define a Hilbert Space, H , as an Euclidean (where we include the concept of
distance or “norm”) vector space which can have infinite dimensionality.
H is a vector space (typically with dimension n = ∞) where we define a scalar

product.

∀f, g ∈ H −→ (f, g) ∈ F (1.94)

which satisfies the following properties

(f, g) = (g, f)

(f, αg) = α(f, g)

(αf, g) = α∗(f, g)

(f, g + h) = (f, g) + (f, h)

(f, f) > 0, ∀f 6= 0

We define the norm of f as the (positively defined) square root of the scalar product

||f || =
√

(f, f) (1.95)

The scalar product satisfies the Schwartz inequality:

|(f, g)| ≤ ||f || ||g|| (1.96)

Proof : If g = 0 the identity is trivially true.
If g 6= 0 then, we consider

(f + αg, f + αg) = ||f ||2 + α(g, f) + α(f, g) + |α|2||g||2 (1.97)
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Taking α = −(g, f)/||g||2 in the expression above,

= ||f ||2 − |(g, f)|2

||g||2
− |(g, f)|2

||g||2
+
|(g, f)|2

||g||2
≥ 0 (1.98)

thus,

|(f, g)| ≤ ||f || ||g|| (1.99)

Triangular inequality

||f + g|| ≤ ||f ||+ ||g|| (1.100)

Hilbert spaces are metric spaces, we can define the concept of distance between
two elements. We do it using the previously defined norm as follows.

d(f, g) ≡ ||f − g|| =
√

(f − g, f − g) (1.101)

which fulfils the three properties for a distance in a metric space

1. d(f, g) = d(g, f)

2. d(f, g) > 0 and it only vanishes for f = g

3. d(f, g) ≤ d(f, h) + d(h, g)

1.13.1 Convergence of sequences

When working on a Hilbert space, the dimensionality can be infinity and this raises
important questions about the convergence of sequences. In particular, we are forced
to work with an infinite basis, which in itself is an interesting concept. It means that
one can choose n linearly independent vectors, with n → ∞. If such a basis exists,
{~ei}, this means that a given vector ~p can be expressed as

~p =

∞∑
i=1

~eip
i (1.102)

Strong convergence criterion : If we have a sequence
{
~f1, ~f2, . . . ~fn

}
, with ~fk =∑k

i=1 ~eip
i ∈ H this sequence converges strongly to ~f if ||~f− ~fn|| → 0 whenN →∞.

Weak convergence criterion : The sequence
{
~fi

}
converges weakly to ~f if the

scalar product converges (~g, ~fn)→ (~g, ~f) when N →∞.
Strong convergence implies weak convergence but not otherwise.
A Hilbert space is complete if all Cauchy sequencies converge in H . Cauchy se-

quences imply ||~fn − ~fm|| → 0 when n,m → ∞. In other words, H contains the
limits of all sequencies.
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1.13.2 Examples of Hilbert Spaces

Consider an infinite column vector, with elements a1, a2...., we can define the space
l2(C) =

{
~f =

{
a1, a2, a3, . . .

}
, ai ∈ C/

∑∞
i |ai|2 <∞

}
All complex Hilbert spaces are isomorphic to l2(C)

The scalar product can be defined in the usual way (f, g) =
∑∞
i |figi| and the norm

is ||f || =
√∑∞

i |fi|2 <∞

L2[a, b] =
{
f(x)/

∫ b
a
|f(x)|2dx <∞

}
where f(x) are complex functions of a real

variable.

The scalar product is defined as (f, g) =
∫ b
a
f∗(x)g(x)dx

1.13.3 Basis in a Hilbert space

It is a complete set in a vector space, meaning that it contains all the linear combina-
tions and all elements in sequencies. In other words, it is a set of objects that allow to
obtain all the elements in the Hilbert space.

A separable Hilbert space is separable if there exists a sequence
{
~fn

}
with a generic

term ~fn = c1 ~f1 + c2 ~f2 + . . . such that ~fn →
vecf when n→∞. Then all elements in H can be expressed as a linera combination

~g =

∞∑
i=1

~fic
i (1.103)

I can now define an orthonormal basis in such a way that the scalar product of the
elements of the basis are the Kronecker delta function (~fi, ~fj) = δij . For two general
vectors, the scalar product is also expressed as a product of the elements of the basis

(~p, ~q) =

( ∞∑
i=1

~fip
i,

∞∑
i=1

~fiq
i

)
= δijp

iqj = piq
i (1.104)
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1.14 Formulation of Quantum Mechanics

We are now ready to address the formulation of Quantum Mechanics.

Rule 1: The states in a quantum mechanical system are represented by unit vectors
|v〉 in a Hilbert Space.

||v|| = 〈v|v〉1/2 = 1

Rule 2: Physical (measurable) quantities (which we will refer to as observables) are
represented by Hermitian operators, A. Whenever a measurement of this quantity is
made, the result is one of the eigenvalues αm ∈ R of A.

If the physical state |ψ〉 is an eigenvector of A then A |m〉 = αm |m〉. If the
physical state is not an eigenvector then it can be expressed in the basis of eigenvector
|m〉.

The probability of measuring αm is given by the projection of the physical state
onto the corresponding eigenvector.

prob(αm)ψ =
∑
αm

| 〈m|Ψ〉 |2 (1.105)

where we su to all eigenvectors with eigenvalue αm.
For example,

|Ψ〉 = Ψm |m〉 (1.106)

The probability of measuring any eigenvalue∑
m

| 〈m|Ψ〉 |2 =
∑
m

〈Ψ|m〉 〈m|Ψ〉 = 〈Ψ|Ψ〉 = 1 (1.107)

since |m〉 〈m| = 1.

1.14.1 Expectation value of an observable

Given the observable A, the average result of a measurement of a given state |Ψ〉 is
given by the expectation value of A as follows

〈A〉Ψ =
∑
i

αiprob(αi)Ψ

=
∑
i

αi| 〈i|Ψ〉 |2

=
∑
i

αi 〈Ψ|i〉 〈i|Ψ〉

=
∑
i

〈Ψ|A |i〉 〈i|Ψ〉

= 〈Ψ|A |Ψ〉 (1.108)
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1.14.2 Example: spin 1/2 particles

What is the corresponding Hilbert space?

We will choose physical states as vectors in C2 (spinors).

Choose a basis

We will represent spins up and down as follows

|↑〉 =

(
1

0

)
; |↓〉 =

(
0

1

)
(1.109)

An arbitrary state is a linear combination of the form |Ψ〉 = v1 |↑〉 + v2 |↓〉 with
v1, v2 ∈ C and a normalisation as ||Ψ|| = 1 which implies |v1|2 + |v2|2 = 1.

What are the physical quantities that we want to describe and define operators on the
Hilbert space

We will represent rotations and measure the components of the spin along each axis.
Thus sx, sy, sz are the operators that represent measurements along each of the axis.
In matrix form

sz =
1

2
σz =

1

2

(
1 0

0 −1

)

sx =
1

2
σx =

1

2

(
0 1

1 0

)

sy =
1

2
σz =

1

2

(
0 −i
i 0

)
(1.110)

It can be checked explicitly that sz |↑〉 = 1
2 |↑〉, and sz |↓〉 = − 1

2 |↓〉 and also that
〈sz〉 = 1

2 (|v1|2 + |v2|2)

1.14.3 Example: Particle in a 1-dimensional potential well

Consider a particle in a 1-dimensional potential well between x = [−L/2, L/2].

What is the corresponding Hilbert space?

We will consider L2
C. States are vectors in this Hilbert space, this is functions Ψ(x)

such that
∫ L/2
−L/2 |Ψ|

2 = 1

Basis in the Hilbert space

We will label the elements with an integer index n = −∞, . . . ,∞ such that

|n〉 =
1√
L
ei

2πn
L x ≡ Ψn(x) (1.111)
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Observables

Position X such that X |Psi〉 = x |Psi〉
Momentum P such that P |Psi〉 = −i ∂∂x |Psi〉

Energy P 2

2m − V (x) where V (x) is the potential

Note that
P |n〉 =

2πn

L
|n〉 (1.112)

1.14.4 Time evolution

Time evolution is determined by Schroedinger equation

−i~ d
dt
|Ψ, t〉 = H |Ψ, t〉 (1.113)

where |Ψ, t〉 represents the physical state at time t. This can be expressed as the
evolved state from t = 0 as

|Ψ, t〉 = U(t, t0) |Ψ, t0〉 (1.114)

where U(t, t0) = e−iH(t−t0) is the time evolution operator. If we expand the state on
a basis of eigenvectors of the Hamiltonian

H |m〉 = Em |m〉 (1.115)

then
|Ψ, t〉 =

∑
m

e−iEm(t−t0) |m〉 〈m| |Ψ, t〉 (1.116)
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