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Yield at equilibrium for massive particles:
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Boltzmann suppression at late fimes

The abundance is rapidly decreasing and is
soon negligible
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EXAMPLE 1.1

It 1s easy to estimate the value of the Yield that we need in order to reproduce the
correct DM relic abundance, Qh? ~ 0.1, since

0R2 = Pxp2 _ myny h? _ meOSOm) (1.9)
Pc Pc Pc

where Y| corresponds to the DM Yield today and sg is today’s entropy density.
We can assume that the Yield did not change since DM freeze-out and therefore

My Y¢S0 h? |
Pc

Oh? = (1.10)

Using the measured value sg = 2970 cm ™2 and the value of the critical density
pe = 1.054 x 107°h% GeV cm ™ >, as well as Planck’s result on the DM relic
abundance we arrive at

(1.11)

1
Yy, ~ 3.55x107" (ﬂ)
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The time evolution of the phase space distribution function is dictated by
Liouville's operator (which ensures conservation of density in the phase space)
and the Collisional operator, which encodes number changing processes

The Liouville operator can be written in a covariant way

4 9 9
H__N
L= =r o Fpppa

I

Where the affine connection is related to derivatives of the metric as follows

1
Ty = 59" (Govr + gorw = Guro)

Notice that this terms incorporates gravity and the actual geometry of space-time.



If we apply this to the FRW metric, which only depends on f and E

flzt,pt) = f(t, E)

We find that Liouville operator can be greatly simplified

Exercise | . ) o
L = E——-TY p°
ot~ LoeP P HE
9, 9,
= E— —Hlp|
o Pl 5

Ultimately, we are interested in the fime evolution of the number density
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Thus, we integrate Liouville's operator in the momentum space

g = 3 g 3
2 [ B ate = 2 [ ot ap

Exercise 2

Prove the following relafion

9 d’p ﬂ_ 26f _d_n
(277)3/ E [Eat Hip = T

Where we have divided by E for convenience
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g; d°p; No CP violation in DM sector
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>< (Missapl® = [Mapoil
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Energy Conservation

a,b=WIMP eq peq _Ea+Ep By +Ey eq req
1,2=SM (light) particles fafs=fafg = T =e T =f0f
C
ziS/ l[gf] é’p = - /dHAdHBdﬂldH2(27T)45(pA +pB —p1— D2)

[’M12—>AB\2 fifa — IMapoizl’ fAfB]
= —(ov) (n —neq)

We have defined the thermally averaged annihilation cross section

1

2
neq

(ov) = /dHAdHBdH1dH2(27T)45 (pa +pB — D1 — p2) M| f19f5]
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The thermally averaged annihilation cross section can be
expressed as

(oMo (1) = 8m§1<TKi2(mX/T) Am? Bnaelie — b, vk (%)

X
It is customary to Taylor-expand this expression for small T/m
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Non-relaftivistic species

dn 5 5
E—l—SHn—(av} (n® —ng,)
dY d /ny\ d (a*n\ 9. zdn) 1 dn
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° m
r=—
T
d . d d ra dz
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. 272 Mp gas
Exercise 3 B = e

dY Mov) 5 o 45 1.66 g,/
w = e oY)
Z&}f =Y };q
Yeq 2
A — dx , 1 <
Y Yeq 2X(0ov) TS LS
i
Ay, =Y = L o>
A (a - 3L>
T f
. an? — mXYOOSth
This leads to : - P
C
N 10710 GeV 2
~ b
(CL + @)
~ 10727 ¢m3 s~ 1
~ b
(CL + @)
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DM particles fall out of equilibrium at some point
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The relic density reads
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interaction scale!

Typical DM-SM coupling

g~ 0.01

ELECTROWEAK scale
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e Very different scales conjure up to lead to the electroweak scale

A typical electroweak scale cross section for a non-relativistic particle

A WIMP f
m*
oV~ o — G%mQ y
A’IW h'e
~ 10—5 2 B
Gp ~ 10 GeV WIMP -
5 1 1
Notice that this implies Qh® ~ R ey

5 (non-relativistic particle)
(Cav) m

Imposing <1 — m<340TeV

(Griest, Kamionkowski '90)
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Special cases

e The low-temperature expansion for the annihilation cross section

b
oAV =a+ —
&I
is not valid in some cases:

Resonant annihilation

Thresholds
(Gondolo, Gelmini '91)

Coannihilations with other particles close in mass

(Griest, Seckel '91)

IPPP 2015
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Special cases

e Resonant annihilation:

WIMP
f
(2 mw:mp)zz(mx) ’ Mx
A |
o K‘ WIMP f
|
|
: The resonant increase in the cross
:\ section implies a sharp decrease in
: - the relic abundance.
S = (2 mvwwp)2

General expression for thermal average of annihilation cross section
(Gondolg, Gelmini '91)
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Special cases

* Resonant annihilation

The annihilation cross section is significantly increased in the pole of the
propagator.

T Y'_IT\T:TT_T—'T—T—T_T“] r“r—r—‘r—r—r-r—‘r—r—i'—r—rﬁ

As a consequence, the relic

o1 density decreases rapidly.

001 k Thermal motion allows resonant

annihilation when

—. This is not possible for
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Vu = 2m|/ll.. (Griest, Seckel '91)
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The WIMP paradigm is extremely convenient

« Itis Yeasy” to fit in BSM models (both minimal and complete)
- Or it can be tuned with coannihilation or resonance effects
« |t gives us hopes that DM can be observed in direct or indirect searches

« ...o0rproduced at the LHC

However WIMPs (may*) have not been observed yet
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Freeze-in paradigm

If the DM-SM coupling is extremely small, the
annihilation rate is insufficient for thermal
equilibrium.

However, annihilations or decays of particles in the
bath can produce DM particles (that are out of
equilibrium)

See e.g. Hallet al. 0911.1120

One can solve the associated Boltzmann equation
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dn g [C[f]
E+3H72 = (271_)3/ 5 d?

DM

/dHBldHBQdHX (27‘-)454 (sz — PB, _px) X
[IMBQ—>31X|2 fBQ(]‘ cia fB1)(1 ¥+ fx) — |MB1X—>BQ|2 fBle(l + fBz)]

/dHBQFBQQQBQTnmeQ ; (2.64)

¥ = St b Ky o) a® dee

474(1.66) mB 92D Jwmin




The abundance of FIMPs builds up and eventually stabilises
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One can also have "mixed” scenarios in which a particle that has
decoupled decays (late) into the DM
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The relic density of species B, is 5 o MpMm
“tfransferred” to the DM Q DM h* = QBﬁ
(conserving number density)

The DM therefore can have
“thermal” and “non-thermal”
conftributions
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