03

Dark Matter cosmological production

Dark Matter cosmological production

Freeze-out and WIMPs

DAVID G. CERDEÑO

Yield at equilibrium for massive particles:

$$
Y_{e q}=\frac{45}{2 \pi^{4}}\left(\frac{\pi}{8}\right)^{1 / 2} \frac{g_{e f f}}{g_{* s}}\left(\frac{m}{T}\right)^{3 / 2} e^{-m / T}
$$

The abundance is rapidly decreasing and is soon negligible

It is easy to estimate the value of the Yield that we need in order to reproduce the correct DM relic abundance, $\Omega h^{2} \approx 0.1$, since

$$
\begin{equation*}
\Omega h^{2}=\frac{\rho_{\chi}}{\rho_{c}} h^{2}=\frac{m_{\chi} n_{\chi} h^{2}}{\rho_{c}}=\frac{m_{\chi} Y_{0} s_{0} h^{2}}{\rho_{c}} \tag{1.9}
\end{equation*}
$$

where Y_{0} corresponds to the DM Yield today and s_{0} is today's entropy density. We can assume that the Yield did not change since DM freeze-out and therefore

$$
\begin{equation*}
\Omega h^{2}=\frac{m_{\chi} Y_{f} s_{0} h^{2}}{\rho_{c}} . \tag{1.10}
\end{equation*}
$$

Using the measured value $s_{0}=2970 \mathrm{~cm}^{-3}$ and the value of the critical density $\rho_{c}=1.054 \times 10^{-5} h^{2} \mathrm{GeV} \mathrm{cm}^{-3}$, as well as Planck's result on the DM relic abundance we arrive at

$$
\begin{equation*}
Y_{f} \approx 3.55 \times 10^{-10}\left(\frac{1 \mathrm{GeV}}{m_{\chi}}\right) \tag{1.11}
\end{equation*}
$$

$$
Y_{e q}=\frac{45}{2 \pi^{4}}\left(\frac{\pi}{8}\right)^{1 / 2} \frac{g_{e f f}}{g_{* s}}\left(\frac{m}{T}\right)^{3 / 2} e^{-m / T}
$$

For DM masses in the range $1 \mathrm{GeV}-1 \mathrm{TeV}$

The time evolution of the phase space distribution function is dictated by Liouville's operator (which ensures conservation of density in the phase space) and the Collisional operator, which encodes number changing processes

$$
\hat{L}[f]=C[f]
$$

The Liouville operator can be written in a covariant way

$$
\hat{L}=\frac{d}{d \tau}=p^{\mu} \frac{\partial}{\partial x^{\mu}}-\Gamma_{\sigma \rho}^{\mu} p^{\sigma} p^{\rho} \frac{\partial}{\partial p^{\mu}}
$$

Where the affine connection is related to derivatives of the metric as follows

$$
\Gamma_{\nu \lambda}^{\mu}=\frac{1}{2} g^{\mu \sigma}\left(g_{\sigma \nu, \lambda}+g_{\sigma \lambda, \nu}-g_{\nu \lambda, \sigma}\right)
$$

Notice that this terms incorporates gravity and the actual geometry of space-time.

If we apply this to the FRW metric, which only depends on t and E

$$
f\left(x^{\mu}, p^{\mu}\right)=f(t, E)
$$

We find that Liouville operator can be greatly simplified

Exercise 1

$$
\begin{aligned}
\hat{L} & =E \frac{\partial}{\partial t}-\Gamma_{\sigma \rho}^{0} p^{\sigma} p^{\rho} \frac{\partial}{\partial E} \\
& =E \frac{\partial}{\partial t}-H|\mathbf{p}|^{2} \frac{\partial}{\partial E}
\end{aligned}
$$

Ultimately, we are interested in the time evolution of the number density

$$
n=\frac{g}{2 \pi^{3}} \int f(\mathbf{p}) d^{3} p
$$

Thus, we integrate Liouville's operator in the momentum space

$$
\frac{g}{2 \pi^{3}} \int \hat{L}[f] d^{3} \mathbf{p}=\frac{g}{2 \pi^{3}} \int C[f] d^{3} \mathbf{p}
$$

Exercise 2

Prove the following relation

$$
\frac{g}{(2 \pi)^{3}} \int \frac{d^{3} \vec{p}}{E}\left[E \frac{\partial f}{\partial t}-H|\vec{p}|^{2} \frac{\partial f}{\partial E}\right]=\frac{d n}{d t}+3 H n
$$

Where we have divided by E for convenience

No CP violation in DM sector

$$
\left|\mathcal{M}_{12 \rightarrow A B}\right|^{2}=\left|\mathcal{M}_{A B \rightarrow 12}\right|^{2}
$$

Energy Conservation

a,b=WIMP
$1,2=$ SM (light) particles

$$
f_{A} f_{B}=f_{A}^{e q} f_{B}^{e q}=e^{-\frac{E_{A}+E_{B}}{T}}=e^{-\frac{E_{1}+E_{2}}{T}}=f_{1}^{e q} f_{2}^{e q}
$$

$$
\begin{aligned}
\frac{g}{2 \pi^{3}} \int \frac{C[f]}{E} d^{3} \mathbf{p}= & -\int d \Pi_{A} d \Pi_{B} d \Pi_{1} d \Pi_{2}(2 \pi)^{4} \delta\left(p_{A}+p_{B}-p_{1}-p_{2}\right) \\
& {\left[\left|\mathcal{M}_{12 \rightarrow A B}\right|^{2} f_{1} f_{2}-\left|\mathcal{M}_{A B \rightarrow 12}\right|^{2} f_{A} f_{B}\right] } \\
= & -\langle\sigma v\rangle\left(n^{2}-n_{e q}^{2}\right)
\end{aligned}
$$

We have defined the thermally averaged annihilation cross section

$$
\langle\sigma v\rangle \equiv \frac{1}{n_{e q}^{2}} \int d \Pi_{A} d \Pi_{B} d \Pi_{1} d \Pi_{2}(2 \pi)^{4} \delta\left(p_{A}+p_{B}-p_{1}-p_{2}\right)|\mathcal{M}|^{2} f_{1}^{e q} f_{2}^{e q}
$$

The thermally averaged annihilation cross section can be expressed as

$$
\left\langle\sigma v_{\mathrm{M} \varnothing \supset}\right\rangle(T)=\frac{1}{8 m_{\chi}^{4} T K_{2}^{2}\left(m_{\chi} / T\right)} \int_{4 m_{\chi}^{2}}^{\infty} d s \sigma(s)\left(s-4 m_{\chi}^{2}\right) \sqrt{s} K_{1}\left(\frac{\sqrt{s}}{T}\right)
$$

It is customary to Taylor-expand this expression for small T/m

$$
\begin{gathered}
\langle\sigma v\rangle_{i j} \approx a_{i j}+b_{i j} x . \\
a_{i j}=\frac{1}{m_{\chi}^{2}}\left(\frac{N_{c}}{32 \pi} \beta\left(s, m_{i}, m_{j}\right) \frac{1}{2} \int_{-1}^{1} d \cos \theta_{C M}\left|\mathcal{M}_{\chi \chi \rightarrow i j}\right|^{2}\right)_{s=4 m_{\chi}^{2}} \\
\beta\left(s, m_{i}, m_{j}\right)=\left(1-\frac{\left(m_{i}+m_{j}\right)^{2}}{s}\right)^{1 / 2}\left(1-\frac{\left(m_{i}-m_{j}\right)^{2}}{s}\right)^{1 / 2}
\end{gathered}
$$

Non-relativistic species

$$
\frac{d n}{d t}+3 H n-\langle\sigma v\rangle\left(n^{2}-n_{e q}^{2}\right)
$$

- $\quad \frac{d Y}{d t}=\frac{d}{d t}\left(\frac{n}{s}\right)=\frac{d}{d t}\left(\frac{a^{3} n}{a^{3} s}\right)=\frac{1}{a^{3} s}\left(3 a^{2} \dot{a} n+a^{3} \frac{d n}{d t}\right)=\frac{1}{s}\left(3 H n+\frac{d n}{d t}\right)$
- $\quad x=\frac{m}{T}$

$$
\begin{aligned}
& \frac{d}{d t}\left(a^{3} s\right)=0 \rightarrow \frac{d}{d t}(a T)=0 \rightarrow \frac{d}{d t}\left(\frac{a}{x}\right)=0 \quad \longrightarrow \quad \frac{d x}{d t}=H x \\
& \frac{d Y}{d t}=\frac{d Y}{d x} \frac{d x}{d t}=\frac{d Y}{d x} H x
\end{aligned}
$$

$$
\frac{d Y}{d x}=-\frac{\lambda\langle\sigma v\rangle}{x^{2}}\left(Y^{2}-Y_{e q}^{2}\right) \quad \lambda \equiv \frac{2 \pi^{2}}{45} \frac{M_{P} g_{* s}}{1.66 g_{*}^{1 / 2}} m
$$

Exercise 3

$$
\frac{d Y}{d x}=-\frac{\lambda\langle\sigma v\rangle}{x^{2}}\left(Y^{2}-Y_{e q}^{2}\right)
$$

$\lambda \equiv \frac{2 \pi^{2}}{45} \frac{M_{P} g_{* s}}{1.66 g_{*}^{1 / 2}} m$

$$
\Delta_{Y} \equiv Y-Y_{e q}
$$

$$
\Delta_{Y}=-\frac{\frac{d Y_{e q}}{d x}}{Y_{e q}} \frac{x^{2}}{2 \lambda\langle\sigma v\rangle}, \quad 1<x \ll x_{f}
$$

$$
\Delta_{Y_{\infty}}=Y_{\infty}=\frac{x_{f}}{\lambda\left(a+\frac{b}{3 x_{f}}\right)}, \quad x \gg x_{f}
$$

This leads to :

$$
\begin{aligned}
\Omega h^{2} & =\frac{m_{\chi} Y_{\infty} s_{0} h^{2}}{\rho_{c}} \\
& \approx \frac{10^{-10} \mathrm{GeV}^{-2}}{\left(a+\frac{b}{60}\right)} \\
& \approx \frac{10^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left(a+\frac{b}{60}\right)}
\end{aligned}
$$

DM particles fall out of equilibrium at some point

The relic density reads

$$
\Omega h^{2} \approx \frac{3 \times 10^{-27} \mathrm{~cm}^{3} s^{-1}}{\langle\sigma v\rangle}
$$

It is related to their interaction scale!

Typical DM-SM coupling

$$
g \sim 0.01
$$

ELECTROWEAK scale

02

Dark Matter cosmological production

Special Cases

- Very different scales conjure up to lead to the electroweak scale

A typical electroweak scale cross section for a non-relativistic particle

$$
\begin{aligned}
\sigma v & \approx \alpha^{2} \frac{m^{2}}{M_{W}}=G_{F}^{2} m^{2} \\
G_{F} & \approx 10^{-5} \mathrm{GeV}^{-2}
\end{aligned}
$$

Notice that this implies

$$
\Omega h^{2} \sim \frac{1}{\left\langle\sigma_{A} v\right\rangle} \sim \frac{1}{m^{2}}
$$

(non-relativistic particle)

Imposing

$$
\Omega \leq 1 \quad \rightarrow \quad m \leq 340 \mathrm{TeV}
$$

(Griest, Kamionkowski '90)

Special cases

- The low-temperature expansion for the annihilation cross section
is not valid in some cases:

$$
\sigma_{A} v=a+\frac{b}{x}
$$

Resonant annihilation
Thresholds
(Gondolo, Gelmini '91)

Coannihilations with other particles close in mass
(Griest, Seckel '91)

Special cases

- Resonant annihilation:

The resonant increase in the cross section implies a sharp decrease in the relic abundance.

General expression for thermal average of annihilation cross section

Special cases

- Resonant annihilation

The annihilation cross section is significantly increased in the pole of the propagator.

As a consequence, the relic density decreases rapidly.

Thermal motion allows resonant annihilation when

$$
m_{W}<\frac{m_{A}}{2}
$$

This is not possible for

$$
m_{W}>\frac{m_{A}}{2}
$$

The WIMP paradigm is extremely convenient

- It is "easy" to fit in BSM models (both minimal and complete)
- Or it can be tuned with coannihilation or resonance effects
- It gives us hopes that DM can be observed in direct or indirect searches
- ... or produced at the LHC

However WIMPs (may*) have not been observed yet

Dark Matter cosmological production

Freeze-in Dark Matter

DAVID G. CERDEÑO

Freeze-in paradigm

If the DM-SM coupling is extremely small, the annihilation rate is insufficient for thermal equilibrium.

However, annihilations or decays of particles in the bath can produce DM particles (that are out of equilibrium)

One can solve the associated Boltzmann equation

$=\int d \Pi_{B_{1}} d \Pi_{B_{2}} d \Pi_{\chi}(2 \pi)^{4} \delta^{4}\left(p_{B_{2}}-p_{B_{1}}-p_{\chi}\right) \times$

$$
\begin{equation*}
\left[\left|\mathcal{M}_{B_{2} \rightarrow B_{1} \chi}\right|^{2} f_{B_{2}}\left(1 \pm f_{B_{1}}\right)\left(1 \pm f_{\chi}\right)-\left|\mathcal{M}_{B_{1} \chi \rightarrow B_{2}}\right|^{2} f_{B_{1}} f_{\chi}\left(1 \pm f_{B_{2}}\right)\right] \tag{2.64}
\end{equation*}
$$

$=\int d \Pi_{B 2} \Gamma_{B 2} 2 g_{B 2} m_{B 2} f_{B 2}$.

$$
Y=\frac{45 g_{B_{2}} M_{p} \Gamma_{B_{2}}}{4 \pi^{4}(1.66) m_{B_{2}}^{2} g_{*}^{S} \sqrt{g_{*}}} \int_{x_{m i n}}^{\infty} K_{1}(x) x^{3} d x
$$

The abundance of FIMPs builds up and eventually stabilises

$$
Y \approx \frac{135 g_{B_{2}}}{8 \pi^{3}(1.66) g_{*}^{S} \sqrt{g_{*}}}\left(\frac{\Gamma_{B 2} M_{p}}{m_{B_{2}}^{2}}\right)
$$

The relic density is proportional to the SM particle decay rate.

Depending on the actual process, the correct relic abundance can be obtained for

$$
\lambda \approx 10^{-13}
$$

One can also have "mixed" scenarios in which a particle that has decoupled decays (late) into the DM

