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2 FREEZE OUT OF MASSIVE SPECIES
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relativistic species
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non-relativistic species
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Yield at equilibrium for massive particles: 

Boltzmann suppression at late times

The abundance is rapidly decreasing and is 
soon negligible
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2 FREEZE OUT OF MASSIVE SPECIES
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relativistic species

n =
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⇣(3)T 3
(1.5)

where geff = g for bosons and geff = 3
4g for fermions Then the Yield at equilibrium

reads
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geff
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⇡ 0.278
geff
g⇤s

(1.6)

non-relativistic species

n = geff

✓
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Then the Yield at equilibrium reads
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EXAMPLE 1.1

It is easy to estimate the value of the Yield that we need in order to reproduce the

correct DM relic abundance, ⌦h2 ⇡ 0.1, since

⌦h2 =
⇢�
⇢c

h2 =
m�n�h2

⇢c
=

m�Y0s0h2

⇢c
, (1.9)

where Y0 corresponds to the DM Yield today and s0 is today’s entropy density.

We can assume that the Yield did not change since DM freeze-out and therefore

⌦h2 =
m�Yfs0h2

⇢c
. (1.10)

Using the measured value s0 = 2970 cm�3
and the value of the critical density

⇢c = 1.054 ⇥ 10�5h2 GeV cm�3
, as well as Planck’s result on the DM relic

abundance we arrive at

Yf ⇡ 3.55⇥ 10�10

✓
1 GeV

m�

◆
. (1.11)

Some useful quantities

s0 = 2970 cm�3

⇢c = 1.054⇥ 10�5h2 GeV cm�3
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For non-relativistic particles,  
the “magic number  

is x~20	
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For DM masses in the  
range 1 GeV – 1 TeV	
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TIME EVOLUTION OF THE NUMBER DENSITY 3

1.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covari-
ant form of Liuville’s operator to the corresponding phase space distribution function.

Formally speaking, we have
L̂[f ] = C[f ] , (1.12)

where L̂ is the Liouville operator

L̂ =
d

d⌧
= p

µ @

@xµ
� �µ

�⇢p
�
p
⇢ @

@pµ
(1.13)

and C[f ] is the collisional operator, which takes into account processes which change
the number of particles (e.g., annihilations or decays). Gravity enters through the
affine connection �µ

�⇢.

One can show that in the case of a FRW Universe, for which f(xµ
, p

µ) = f(t, E),
we have

L̂ = E
@

@t
� �0

�⇢p
�
p
⇢ @

@E

= E
@

@t
�H|p|2 @

@E
(1.14)
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The time evolution of the phase space distribution function is dictated by 
Liouville’s operator (which ensures conservation of density in the phase space) 
and the Collisional operator, which encodes number changing processes 

The Liouville operator can be written in a covariant way  	

Where the affine connection is related to derivatives of the metric as follows 	

Dark Matter and Neutrinos
David G. Cerdeño
September 11, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = p
µ

@

@xµ
� �µ

�⇢
p
�
p
⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

For a isotropic homogeneous Universe, the FRW metric reads

ds
2 = dt

2 � a
2(t)

✓
dr

2

1� kr2
+ r

2(d✓2 + sin2 ✓d�2)

◆
(2)

from where the elements of the (diagonal) metric can be readily extracted

g00 = 1

g11 =
�a(t)2

1� kr2

g22 = �r
2
a(t)2

g33 = �r
2 sin2 ✓a(t)2 (3)

The a�ne connection tensor, reads in general

�µ

⌫�
=

1

2
g
µ�(g�⌫,� + g��,⌫ � g⌫�,�) (4)

Notice that, being homogeneous and isotropic, there is no dependence on the position x or three-
momentum p. Only the derivatives wrt x0 = t and p

0 = E are di↵erent from zero. Thus, using that we
can write

L̂ = p
µ

@

@xµ
� �µ

�⇢
p
�
p
⇢

@

@pµ

= E
@

@t
� �0

�⇢
p
�
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⇢
@

@E

(5)

1

Notice that this terms incorporates gravity and the actual geometry of space-time. 	
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If we apply this to the FRW metric, which only depends on t and E  

We find that Liouville operator can be greatly simplified 

Exercise 1	

Ultimately, we are interested in the time evolution of the number density 

2 FREEZE OUT OF MASSIVE SPECIES

The evolution of the entropy density as a function of the temperature is given by1
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✓
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The phase space distribution function f describes the occupancy number in phase space
for a given particle, and distinguishes between fermions and bosons.

f =
1

e(E�µ)/T ± 1
, (1.8)

where the (�) sign corresponds to bosons and the (+) sign to fermions. E is the enery and
µ the chemical potential.

Using the expression of the phase space distribution function (1.8), and integrating in
phase space, we can compute a series of observables in the Unverse. In particular, the
number density of particles, n, the energy density, ⇢, and pressure, p, for a dilute and
weakly-interacting gas of particles with g internal degrees of freedom

n =
g

2⇡3

Z
f(p)d3p (1.9)

⇢ =
g

2⇡3

Z
E(p) f(p)d3p (1.10)

p =
g
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Z |p|2

3E(p)
f(p)d3p (1.11)

(1.12)

Solving these integrals explicitly for relativistic and non-relativistic particles yields

relativistic species
n =

geff

⇡2
⇣(3)T 3 (1.13)

where geff = g for bosons and geff = 3
4g for fermions Then the Yield at equilibrium

reads
Yeq =

45

2⇡4
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geff

g⇤s
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geff

g⇤s
(1.14)

non-relativistic species

n = geff

✓
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◆3/2

e
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Then the Yield at equilibrium reads
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1To arrive at this equation, one can calculate s = (p + ⇢)/T for fermions and bosons, using the corresponding
expression for the phase space distribution function.
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Exercise 2	

Dark Matter and Neutrinos
David G. Cerdeño
September 9, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = p
µ

@

@xµ
� �µ

�⇢
p
�
p
⇢

@

@pµ

= E
@

@t
�H|~p|2 @
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(1)

Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded

g

(2⇡)3

Z
d
3
~p

E


E
@f

@t
�H|~p|2 @f

@E

�
=

dn

dt
+ 3Hn (2)

Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y

2 � Y
2
eq

�
, (3)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x
2

2�h�vi , 1 < x ⌧ xf (4)

�Y1 = Y1 =
xf

�

⇣
a+ b

3 x
2
f

⌘ , x � xf (5)

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5
�+ gbb̄�

5
b
�
A

1

Prove the following relation  	

4 FREEZE OUT OF MASSIVE SPECIES

Integrating over the phase space we can relate this to the time evolution of the number
density

g

2⇡3

Z
L̂[f ] d3p =

g

2⇡3

Z
C[f ] d3p , (1.23)

EXAMPLE 1.2

Show that
g

2⇡3

Z
L̂[f ]

E
d
3p =

dn

dt
+ 3Hn (1.24)

Regarding the collisional operator, it encodes the microphysical description in terms of
Particle Physics, and incorporates all number-changing processes that create or deplete
particles in the thermal bath. For simplicity, let us concentrate in annihilation processes,
where SM particles (A, B) can annihilate to form a pair of DM particles (labelled 1, 2), or
viceversa (A,B $ 1, 2). The phase space corresponding to each particle is defined as

d⇧i =
gi

2⇧3

d
3pi

2Ei
(1.25)

and then

g

2⇡3

Z
C[f ]

E
d
3p =

g

2⇡

3
Z

d⇧Ad⇧Bd⇧1d⇧2(2⇡)
4
� (pA + pB � p1 � p2)

h
|M12!AB |2 f1f2 � |MAB!12|2 fAfB

i

Assuming no CP violation in the DM sector (T invariance) |M12!AB |2 = |MAB!12|2.
Also, energy conservation allow us to write

fAfB = f
eq
A f

eq
B = e

�EA+EB
T = e

�E1+E2
T = f

eq
1 f

eq
2 (1.26)

This eventually leads to

g

2⇡3

Z
C[f ]

E
d
3p = �h�vi

�
n
2 � n

2
eq

�

where we have defined the thermally-averaged cross-section as

h�vi ⌘ 1

n2
eq

Z
d⇧Ad⇧Bd⇧1d⇧2(2⇡)

4
� (pA + pB � p1 � p2) |M|2 feq

1 f
eq
2 (1.27)

We are thus left with the familiar form of Boltzmann equation

dn

dt
+ 3Hn = �h�vi

�
n
2 � n

2
eq

�
(1.28)

It is also customary to define the dimensionless variable

x =
m

T
(1.29)

Thus, we integrate Liouville’s operator in the momentum space  

Where we have divided by E for convenience 
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1.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covari-
ant form of Liuville’s operator to the corresponding phase space distribution function.
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and C[f ] is the collisional operator, which takes into account processes which change
the number of particles (e.g., annihilations or decays). Gravity enters through the
affine connection �µ

�⇢.
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Integrating over the phase space we can relate this to the time evolution of the number
density

g
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Z
L̂[f ] d3p =

g

2⇡3

Z
C[f ] d3p , (1.15)

EXAMPLE 1.2

Show that
g

2⇡3

Z
L̂[f ]

E
d
3p =

dn

dt
+ 3Hn (1.16)

Regarding the collisional operator, it encodes the microphysical description in terms
of Particle Physics, and incorporates all number-changing processes that create or
deplete particles in the thermal bath. For simplicity, let us concentrate in annihilation
processes, where SM particles (A, B) can annihilate to form a pair of DM particles
(labelled 1, 2), or viceversa (A,B $ 1, 2). The phase space corresponding to each
particle is defined as

d⇧i =
gi

2⇧3

d
3pi

2Ei
(1.17)

and then

g
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Z
C[f ]
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d
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4
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[M12!ABf1f2 �MAB!12fAfB ]
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Assuming no CP violation in the DM sector (T invariance) |M12!AB |2 = |MAB!12|2
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Also, energy conservation allow us to write
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where we have defined the thermally-averaged cross-section as
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It is customary to Taylor-expand this expression for small T/m

The thermally averaged annihilation cross section can be 
expressed as 
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Assuming no CP violation in the DM sector (T invariance) |M12!AB |2 = |MAB!12|2.
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We are thus left with the familiar form of Boltzmann equation
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds
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Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded
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Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads
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define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as
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Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian
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�
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5
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EXAMPLE 1.3

Using the yield defined in equation (1.4) we can simplify Boltzmann’s equation. No-
tice that
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3a2ȧn+ a

3 dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a
3
s

remains constant. Also we use the definition of the Hubble parameter H = ȧ
a . This

allows us to rewrite Boltzmann equation as follows

dY

dt
= �s < �v >

�
Y

2 � Y
2
eq

�
. (1.31)

Now,

d

dt
(a3s) = 0 ! d

dt
(aT ) = 0 ! d

dt

⇣
a

x

⌘
= 0 (1.32)

which in turn leads to

dx

dt
= Hx (1.33)

and thus

dY

dt
=

dY

dx

dx

dt
=

dY

dx
Hx (1.34)

Using the results of Example 1.3 we can express Boltzmann equation (1.28) as
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where we have used the expression of the entropy density (1.5) in the last line and defined
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1.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (1.14) has no
dependence on xf . Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads

Yeq ⇡ 0.278
geff

g⇤s
. (1.37)
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Integrating over the phase space we can relate this to the time evolution of the number
density
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Regarding the collisional operator, it encodes the microphysical description in terms of
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We are thus left with the familiar form of Boltzmann equation
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It is also customary to define the dimensionless variable

x =
m

T
(1.29)
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3a2ȧn+ a

3 dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a
3
s

remains constant. Also we use the definition of the Hubble parameter H = ȧ
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = p
µ
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Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded
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Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY
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= ��h�vi
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�
, (3)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as
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2�h�vi , 1 < x ⌧ xf (4)

�Y1 = Y1 =
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Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5
�+ gbb̄�

5
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EXAMPLE 1.3

Using the yield defined in equation (1.4) we can simplify Boltzmann’s equation. No-
tice that
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3a2ȧn+ a

3 dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a
3
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remains constant. Also we use the definition of the Hubble parameter H = ȧ
a . This

allows us to rewrite Boltzmann equation as follows
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where we have used the expression of the entropy density (1.5) in the last line and defined
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1.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (1.14) has no
dependence on xf . Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads
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The term 1/�Yf can generally be ignored (we can check this using the previously
derived (1.41) for xf ⇡ 20), leading to
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The relic density can now be expressed in terms of this result as follows
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60 )

⇡ 10�27 cm3 s�1

(a+ b
60 )

(1.46)

1.2.3 WIMPs

Equation (1.46) implies that in order to reproduce the correct relic abundance, dark mat-
ter particles must have a thermally averaged annihilation cross section (from now on we
will shorten this to simply annihilation cross section when referring to h�vi) of the order
h�vi ⇡ 10�26 cm3 s�1.

We can now consider a simple case in which dark matter particles self-annihilate into
Standard Model ones through the exchange (e.g., in an s-channel) of a gauge boson. It is
easy to see that if the annihilation cross section is of order h�vi ⇠ G

2
Fm

2
WIMP then the

correct relic density is obtained.

1.2.4 Special cases

The derivation of equation (1.46) relied on the expansion of h�vi in terms of plane waves.
This expansion can only be done when h�vi varies slowly with the energy (we can express
this in terms of the centre of mass energy s). However, there are some special cases in
which this does not happen and which deserve further attention.

Annihilation thresholds
Resonances
Finally

1.3 Non-thermal dark matter production

Non-thermal dark matter production

This leads to :	

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y

2 � Y
2
eq

�
, (15)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x
2

2�h�vi , 1 < x ⌧ xf (16)

�Y1 = Y1 =
xf

�

⇣
a+ b

3 xf

⌘ , x � xf (17)

We can define the quantity:
�Y ⌘ Y � Yeq (18)

Equation (??) is now easier to solve, at least qualitatively.

• For early times, 1 < x ⌧ xf , the yield follows closely its equilibrium, Y ⇡ Yeq and we can assume
that d�Y /dx = 0, we find

�Y = �
dYeq

dx

Yeq

x
2

2�h�vi (19)

�Yf ⇡
x
2
f

2�h�vi (20)

where in the last line we have used that for large enough x, using (??) implies dYeq

dx
⇡ �Yeq

• For late times, x � xf , we can assume that Y � Yeq and thus �Y1 ⇡ Y1, leading to the following
equation

d�Y

dx
⇡ ��h�vi

x2
�2

Y
, (21)

This is a separable equation that we integrate from the freeze-out time up to nowadays. In doing
so, it is customary to expand the thermally averaged annihilation cross section in powers of x�1

as h�vi = a+ b

x
.

Z �Y1

�Yf

d�Y

�2
Y

= �
Z

x1

xf

�h�vi
x2

dx , (22)

4
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relativistic species

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions Then the Yield at equilibrium

reads

Yeq =
45

2π4
ζ(3)

geff

g∗s
(1.6)

non-relativistic species

n = geff

(

mT

2π

)3/2

e−m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π

8

)1/2 geff

g∗s

(m

T

)3/2
e−m/T (1.8)

DM particles fall out of equilibrium at some point 
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Thus, at freeze-out we obtain

�Yf ⇡
x
2
f

2�h�vi , (2.45)

where in the last line we have used that for large enough x, using eq. (2.18) implies
dYeq

dx ⇡ �Yeq .

For late times, x � xf , we can assume that Y � Yeq , and thus �Y1 ⇡ Y1, leading
to the following expression,

d�Y

dx
⇡ ��h�vi

x2
�2

Y , (2.46)

This is a separable equation that we integrate from the freeze-out time up to nowa-
days. In doing so, it is customary to expand the thermally averaged annihilation cross
section in powers of x�1 as h�vi = a+ b

x .

Z �Y 1

�Yf

d�Y

�2
Y

= �
Z x1

xf

�h�vi
x2

dx . (2.47)

Taking into account that x1 � xf , this leads to

1

�Y1

=
1

�Yf

+
�

xf

✓
a+

b

2xf

◆
. (2.48)

The term 1/�Yf is generally ignored (if we are only aiming at a precision up to a few
per cent [18]) . We can check that this is a good approximation using the previously
derived (2.45) for xf ⇡ 20 (which, as we saw in Fig. 2.2 is the value for which the
equilibrium Yield has the right value). This leads to

�Y1 = Y1 =
xf

�

⇣
a+ b

2xf

⌘ . (2.49)

The relic density can now be expressed in terms of this result as follows

⌦h2 =
m� Y1 s0h

2

⇢c

⇡ 10�10 GeV�2

a+ b
40

⇡ 3⇥ 10�27 cm3
s
�1

a+ b
40

. (2.50)

This expression explicitly shows that for larger values of the annihilation cross sec-
tion, smaller values of the relic density are obtained.

2.2.3 WIMPs

Equation (2.50) implies that in order to reproduce the correct relic abundance, dark matter
particles must have a thermally averaged annihilation cross section (from now on we will
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tion, smaller values of the relic density are obtained.

2.2.3 WIMPs

Equation (2.50) implies that in order to reproduce the correct relic abundance, dark matter
particles must have a thermally averaged annihilation cross section (from now on we will

Increase

The relic density reads

It is related to their 
interaction scale!

Typical DM-SM coupling

g~ 0.01

ELECTROWEAK scale
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The WIMP paradigm is extremely convenient

• It is “easy” to fit in BSM models (both minimal and complete)

- Or it can be tuned with coannihilation or resonance effects

• It gives us hopes that DM can be observed in direct or indirect searches

• … or produced at the LHC

However WIMPs (may*) have not been observed yet
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Freeze-in paradigm

If the DM-SM coupling is extremely small, the 
annihilation rate is insufficient for thermal 
equilibrium.

However, annihilations or decays of particles in the 
bath can produce DM particles (that are out of 
equilibrium) 

One can solve the associated Boltzmann equation

B2

B1

DM

See e.g. Hall et al. 0911.1120
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relativistic species

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions Then the Yield at equilibrium

reads

Yeq =
45

2π4
ζ(3)

geff

g∗s
(1.6)

non-relativistic species

n = geff

(

mT

2π

)3/2

e−m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π

8

)1/2 geff

g∗s

(m

T

)3/2
e−m/T (1.8)

The abundance of FIMPs builds up and eventually stabilises
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2.4.1 DM production from decays of heavier bath particles

Consider the decay of a heavy bath particle into a lighter one and a DM particle, B2 !
B1�. If mB2 > mB1 + m� this process will dominate DM production. The collisional
operator is easy to write,

dn

dt
+ 3Hn =

g

(2⇡)3

Z
C[f ]

E
d
3p

=

Z
d⇧B1d⇧B2d⇧� (2⇡)4�4 (pB2 � pB1 � p�)⇥

h
|MB2!B1�|

2
fB2(1± fB1)(1± f�)� |MB1�!B2 |

2
fB1f�(1± fB2)

i

=

Z
d⇧B2�B22gB2mB2fB2 . (2.64)

In the last line we have assumed no Pauli blocking to approximate (1 ± fB1) ⇡ 1 and we
have neglected the initial abundance of DM particles, f� ⇡ 0. We have also expressed
|MB2!B1�|

2 in terms of the decay width, �B2, the number of degrees of freedom ob
B2 and its mass. If we write the phase space element explicitly, and we consider that for
particles in thermal equilibrium we can approximate fB2 = 1/(eEB2/T ± 1) ⇡ e

�EB2/T ,
we are left with

dn

dt
+ 3Hn = gB2

Z 1

mB2

d
3
pB2

(2⇡)3
fB2�B2mB2

EB2

. (2.65)

The integral on the right-hand side is easy to solve, as it can be reduced to the first modified
Bessel function of the second kind, K1(mB2/T ), resulting in

dn

dt
+ 3Hn =

gB2�B2m
2
B2

2⇡2
T K1(mB2/T ) . (2.66)

As we did in the previous section, it is much simpler to rewrite this expression in terms of
the derivative of the yield Y = n/s in terms of the dimensionless variable x = mB2/T ,
which leads to

Y =
45gB2Mp�B2

4⇡4(1.66)m2
B2

gS⇤
p
g⇤

Z 1

xmin

K1(x)x
3
dx . (2.67)

Finally, solving for xmin = 0, yields

Y ⇡ 135 gB2

8⇡3(1.66)gS⇤
p
g⇤

✓
�B2Mp

m
2
B2

◆
. (2.68)

The function K1(x)x3 has a maximum around x ⇡ 2.4 and its integral
R xmax

0 K1(x)x3
dx

stabilises above xmax ⇡ 8, we have plotted this behaviour in Fig. 2.5. As we can observe,
the final yield is proportional to the bath’s particle partial decay width. This is very interest-
ing, as the decay width is directly proportional to the DM coupling square. Thus, the final
yield (and DM relic abundance) increases if the DM coupling increases. This behaviour is
the opposite as observed for WIMPs in eq.(2.49). This behaviour holds as long as the DM
coupling is small. If we increase the DM coupling, there comes a point at which the DM
particles produced reach thermal equilibrium and then we have to go back to the freeze-out
computation of the previous section.

The relic density is proportional 
to the SM particle decay rate.

Increase
DM coupling

Depending on the actual 
process, the correct relic 
abundance can be obtained 
for
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Figure 2.5 Yield of a freeze-in species (in arbitrary units) as a function of x = m/T .

Finally, from eq.(2.68) we can use the explicit expression for the partial decay width
in a two-body final state and compute the resulting relic density. It can be seen that in
order to reproduce the correct relic abundance, the coupling needed is of the order of
� ⇡ 10�13. Interestingly, the final value of the Yield is also sensitive to the initial value of
xmin from which we integrate. Notice that xmin will be given by the temperature at which
the Universe reheated after inflation. Thus, the frreeze-in mechanism has a very interesting
connection to inflation.

A similar computation can be made for other possible production channels, for example,
scattering of bath particles B1B2 ! B3�. In this case, the Boltzmann equation (2.64) has
to be modified accordingly taking into account the matrix elements of the process and the
number densities of the particles involved.

The freeze in mechanism has been used for example to argue that gravitinos (the super-
symmetric companion of the graviton) and axinos (the supersymmetric companion of the
axion) can be viable candidates for DM.

2.5 Late decays of unstable particles

As we have just seen in the freeze-in mechanism of the previous section, it is conceivable
that particles with a small coupling to SM ones are produced out of equilibrium due to
either scattering or decays of particles in the thermal bath. The frozen-in particles need
not be absolutely stable, but given their small couplings their lifetime can be large. If the
lifetime is larger than the age of the Universe (1017 s), we should not worry as the compu-
tation of the relic density is not altered and this simply corresponds to a case of decaying
DM (very interesting from the point of view of indirect detection). However, if the lifetime
is smaller, then it is obvious that this particle cannot be the DM. Late-decaying particles
can however contribute to the (non-thermal) production of DM. A possible scenario is as
follows.

Consider a canonical WIMP DM candidate, �1, which decoupled at x = m�1/T ⇡ 20
via a freeze-out mechanism as described in Section 2.2.2, which leads to to a thermal
relic abundance Y th

�1
. Simultaneously, a semi-stable particle �2, with very small couplings,

freezes-in via the mechanism explained in Section 2.4, with a yield Y�2 . If particle �2
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One can also have “mixed” scenarios in which a particle that has 
decoupled decays (late) into the DM

The relic density of species B2 is 
“transferred” to the DM 
(conserving number density)

The DM therefore can have 
“thermal” and “non-thermal” 
contributions

�LSPh
2 = �G̃h

2mLSP

mG̃
DM

DM
B2

B2
B2

DM
B2

B1

DM


