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Some basics on Dark Matter Production

Dark matter was present in the Early Universe and it is present now, 
however, there are many different mechanisms to account for its 
correct abundance

- Thermal production (freeze-out)
- Out of equilibrium production (freeze-in)
- Late decays of unstable exotics
- Vacuum misalignment (axions)
- Asymmetry



HEP	School	2015	 27	

Cosmology 101 

Dark Matter and Neutrinos
David G. Cerdeño
September 11, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = p
µ
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For a isotropic homogeneous Universe, the FRW metric reads
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from where the elements of the (diagonal) metric can be readily extracted
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Notice that, being homogeneous and isotropic, there is no dependence on the position x or three-
momentum p. Only the derivatives wrt x0 = t and p

0 = E are di↵erent from zero. Thus, using that we
can write
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Friedmann-Lemaître-Robertson-Walker (FLRW) metric for a homogeneous 
and isotropic universe that is expanding (or contracting) 
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Components of the metric	

a(t) is the scale parameter 	

k = curvature 
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds
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Similarly, most of the elements of the a�ne connection vanish. one can prove that (since the deriva-
tives wrt any index other than zero vanish)
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where hij = I3. Thus we are left with
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where we have defined the Hubble parameter in terms of the derivative of the scale factor

H =
ȧ(t)

a(t)
(8)
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k=0  for a flat Universe 

CHAPTER 1

FREEZE OUT OF MASSIVE SPECIES

Disclaimer: These notes may (and most likely will) contain typographical erorrs and must
be used with care. They are solely meant as a guideline of the materials that will be covered
in the class but by no means can substitute the basic references.

1.1 Preliminaries

The Hubble parameter for a radiation-dominated Universe reads

H = 1.66 g1/2⇤
T

2

MP
. (1.1)

It is customary to define the dimensionless parameter x = m/T and extract the explicit x
dependence from the Hubble parameter to define H(m) as follows

H(m) = 1.66 g1/2⇤
m

2

MP
= Hx

2
. (1.2)

where

MP = 1.22⇥ 1019 GeV/c
2 (1.3)

We define the yield as a fraction of the number density and the entropy density as

Y =
n

s
. (1.4)

Dark Stuff.
By D. G. Cerdeño, IPPP, University of Durham
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46 3. Thermal History

Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6� 109 1 MeV

Electron-positron annihilation 6 s 2� 109 500 keV

Big Bang nucleosynthesis 3 min 4� 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e�+p+ ⇥ H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

HEP	School	2015	
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LECTURE 6 - Thermal history of the Universe I

In the next three lectures we will take a closer look at the thermodynamical evolution of the Universe as it expands
from an initially hot and dense state. The notion of local thermal equilibrium is extremely important in determining
how the temperature, energy density and entropy density of the Universe evolve with the Hubble expansion, so we
will begin by reviewing some of the basic aspects of systems of both relativistic and non-relativistic particles in
thermal equilibrium. On the other hand, departures from thermal equilibrium will allow some species to acquire a
significant cosmological abundance. This is behind the origin of the Cosmic Microwave Background and Big Bang
nucleosynthesis, which we will analyze in more detail later on.

Review of equilibrium thermodynamics

The perfect black body form of the CMB is the best evidence we have for local thermal equilibrium in the early
Universe. In general, thermal equilibrium is the natural state for which a system of interacting particles evolves. By
the time the CMB was “emitted” at photon decoupling, 379 000 years had passed since the initial singularity, which
means that the Universe had more than enough time to reach this state. We expect that in the very early Universe
most particles were also in thermal equilibrium with photons, so it is important to recall the basic properties of
particle distributions in thermal equilibrium.

A system of particles in kinetic equilibrium has a phase space occupancy f given by the familiar Bose-Einstein
or Fermi-Dirac distributions at temperature T :

f(p) =
1

e
E�µ
T ± 1

, (1)

where E = |p|2 +m2 is the energy of the particles, µ the chemical potential and the + sign corresponds to fermions
while the � to bosons. Furthermore, if a species is in chemical equilibrium, its chemical potential is related to the
chemical potentials of the species it interacts with. For example, if a species A interacts with species B, C and D
via scattering processes of the form:

A+B ⇤⌅ C +D , (2)

then chemical equilibrium implies µA + µB = µC + µD. Local thermal equilibrium is achieved for species which are
both in kinetic and chemical equilibrium.

The phase space distribution allows one to compute the associated number density n, energy density ⇤ and
pressure p for a dilute and weakly-interacting gas of particles with g internal degrees of freedom:

n = g

�
d3p

(2⇥)3
f(p) ,

⇤ = g

�
d3p

(2⇥)3
E(p)f(p) ,

p = g

�
d3p

(2⇥)3
|p|2

3E(p)
f(p) . (3)
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A system of particles in kinetic equilibrium has a phase space occupancy f given by the 
Bose-Einstein or Fermi-Dirac distributions at temperature T: 

The phase space distribution allows one to compute the associated number density n, 
energy density � and pressure p for a dilute and weakly-interacting gas of particles 
with g internal degrees of freedom: 

Note that the expression for the pressure agrees with our previous analysis of the energy-momentum tensor, p =
n⌃�mv2⌥/3, with the factor 3 associated with the assumed isotropy of the momentum distribution. Also, the number
of internal degrees of freedom g corresponds to the number of spin states or polarizations of the particle. For example,
an electron has two spin states ±1/2 and similarly a photon has two possible polarizations, so that ge = g� = 2.

Let us now compute the above expressions in two asymptotic limits - relativistic and non-relativistic particles,
which will be su⌅cient for our discussion of how the di⇥erent particle species evolve in an expanding universe. We
will consider the case |µ| ⌅ T and neglect all chemical potentials, since all evidence indicates that this is a good
approximation [1].

(a) Relativistic species

For T ⇧ m, the Bose-Einstein and Fermi-Dirac distributions reduce to:
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where ⇥(z) is the Riemann Zeta-function. For bosons, it is then straightforward to obtain:
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implying nf = (3/4)nb. We can perform similar calculations for the energy density to obtain:
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(b) Non-relativistic species

For T � m, the exponential factor dominates the denominator in both the Bose-Einstein and Fermi-Dirac distribu-
tions in Eq. (1), so that the bosonic or fermionic nature of the particles becomes indistinguishable. Furthermore, we
have:

E = (|p|2 +m2)1/2 = m

�
1 +

|p|2

m2

⇥1/2

⇤ m+
|p|2

2m
. (10)

Defining x = |p|/
⇧
2mT , we have for the number density:

n ⇤ g

2�2
e�m/T (2mT )3/2

⌅ +⇤

0
x2e�x2

dx. (11)

We may then use the following result:

⌅ +⇤

0
xne�x2

dx =
1

2
�

�
1 + n

2

⇥
, (12)

and, taking n = 2 with �(3/2) =
⇧
�/2, we obtain:

n ⇤ g

�
mT

2�

⇥3/2

e�m/T , (13)

which gives the Boltzmann distribution. From Eq. (10) it easy to see that to leading order ⇥ = mn in this case. To
obtain the associated pressure, note that to leading order |p|2/E ⇤ |p|2/m, so that:

p ⇤ g

2�2
e�m/T (2mT )5/2

3m
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0
x4e�x2

dx
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= nT , (14)

where we have used �(5/2) = 3
⇧
�/4. Notice that restoring the missing Boltzmann constant kB this corresponds to

the familar result for a non-relativistic perfect gas, p = nkBT . Since T � m, we have p � ⇥ and the pressure may
be neglected for a gas of non-relativistic particles, as we had anticipated.

Energy and entropy density

Let T denote the temperature of the photon bath in the early universe. If there are other relativistic species in the
early Universe, the total energy density of radiation is given by:

⇥r =
�2

30
g⇥(T )T

4 , (15)

where g⇥(T ) corresponds to the e⇥ective number of relativistic degrees of freedom present in the universe at the
temperature T , including both bosons and fermions. This may receive contributions from two types of species:

1. Thermal bath: relativistic species in thermal equilibrium with the photons Ti = T ⇥ mi:

gth⇥ (T ) =
⇤

bosons

gi +
7

8

⇤

fermions

gi . (16)
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CHAPTER 1

FREEZE OUT OF MASSIVE SPECIES

Disclaimer: These notes may (and most likely will) contain typographical erorrs and must

be used with care. They are solely meant as a guideline of the materials that will be covered

in the class but by no means can substitute the basic references.

1.1 Preliminaries

We define the yield as a fraction of the number density and the entropy density as

Y =

n

s
(1.1)
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in the class but by no means can substitute the basic references.

1.1 Preliminaries

We define the yield as a fraction of the number density and the entropy density as

Y =
n

s
. (1.1)

The evolution of the entropy density as a function of the temperature is given by

s =
2π2

45
g∗sT

3 (1.2)
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The number density of relativistic and non-relativistic species reads

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions
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Then the Yield at equilibrium reads

Yeq =
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non-relativistic species
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(
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Then the Yield at equilibrium reads
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It is customary to define the Yield (equivalent to the number density but in a 
comoving volume) in terms of the entropy density (which scales as a3(t)) 

For relativistic particles, we have	

For non-relativistic particles, we have	



6 Thermal history of the Early Universe

We shall now apply the thermodynamics discussed in the previous section to the
evolution of the early universe.

The primordial soup initially consists of all the different species of elementary
particles. Their masses range from the heaviest known elementary particle, the
top quark (m ∼ 175 GeV) down to the lightest particles, the electron (m = 511
keV), the neutrinos (m = ?) and the photon (m = 0). In addition to the particles
of the standard model, there may be other, so far undiscovered, species. As the
temperature falls, the various particle species become nonrelativistic and annihilate
at different times.

Table 1: The particles in the standard model Particle Data Group, 2006

Quarks t 174.2 ± 3.3GeV t̄ spin=1
2 g = 2 · 2 · 3 = 12

b 4.20 ± 0.07GeV b̄ 3 colors
c 1.25 ± 0.09GeV c̄
s 95 ± 25MeV s̄
d 3–7MeV d̄
u 1.5–3.0MeV ū

72

Gluons 8 massless bosons spin=1 g = 2 16

Leptons τ− 1777.0 ± 0.3MeV τ+ spin=1
2 g = 2 · 2 = 4

µ− 105.658MeV µ+

e− 510.999keV e+

12
ντ < 18.2MeV ν̄τ spin=1

2 g = 2
νµ < 190keV ν̄µ

νe < 2 eV ν̄e

6

Electroweak W+ 80.403 ± 0.029GeV spin=1 g = 3
gauge bosons W− 80.403 ± 0.029GeV

Z0 91.1876±0.0021GeV
γ 0 (< 6 × 10−17eV) g = 2

11

Higgs boson (SM) H0 > 114.4GeV spin=0 g = 1 1

gf = 72 + 12 + 6 = 90
gb = 16 + 11 + 1 = 28

61

Number of relativistic degrees of freedom in the Standard Model 
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7
8 ⇥ 12 = 96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens

roughly at the same time. At T ⇤ 10 GeV, we have g� = 96.26 � (1 + 3 · 3) = 86.25. Next,

the bottom quarks annihilate (g� = 86.25 � 7
8 ⇥ 12 = 75.75), followed by the charm quarks

and the tau leptons (g� = 75.75 � 7
8 ⇥ (12 + 4) = 61.75). Before the strange quarks had

time to annihilate, something else happens: matter undergoes the QCD phase transition. At

T ⇤ 150 MeV, the quarks combine into baryons (protons, neutrons, ...) and mesons (pions, ...).

There are many di�erent species of baryons and mesons, but all except the pions (�±,�0) are

non-relativistic below the temperature of the QCD phase transition. Thus, the only particle

species left in large numbers are the pions, electrons, muons, neutrinos, and the photons. The

three pions (spin-0) correspond to g = 3 · 1 = 3 internal degrees of freedom. We therefore get

g� = 2 + 3 + 7
8 ⇥ (4 + 4 + 6) = 17.25. Next electrons and positrons annihilate. However, to

understand this process we first need to talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g�(T ) assuming the Standard Model particle content.
The dotted line stands for the number of e�ective degrees of freedom in entropy g�S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su⇥ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.
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Adding up all the relativistic species and allowing now for the possibility that some
species may have a kinetic temperature Ti, which differs from the temperature T of
those species which remain in thermal equilibrium, we get

ρ(T ) =
π2

30
g∗(T )T 4

s(T ) =
2π2

45
g∗s(T )T 3 , (9)

where now

g∗(T ) =
∑

bos

gi

(

Ti

T

)4

+
7

8

∑

fer

gi

(

Ti

T

)4

g∗s(T ) =
∑

bos

gi

(

Ti

T

)3

+
7

8

∑

fer

gi

(

Ti

T

)3

, (10)

and the sums are over all relativistic species of bosons and fermions.
If some species are “semirelativistic”, i.e., m = O(T ), ρ(T ) and s(T ) are to be

calculated from the integral formulas in Chapter 5, and Eq. (9) defines g∗(T ) and
g∗s(T ).

For as long as all species have the same temperature and p ≈ 1
3ρ, we have

g∗s(T ) ≈ g∗(T ). (11)

The electron annihilation, however, forces us to make a distinction between g∗(T )
and g∗s(T ).

According to the second law of thermodynamics the total entropy of the universe
never decreases; it either stays constant or increases. It turns out that any entropy
production in various processes in the universe is totally insignificant compared to
the total entropy of the universe1, which is huge, and dominated by the relativistic
species. Thus it is an excellent approximation to treat the expansion of the universe
as adiabatic, so that the total entropy stays constant, i.e.,

d(sa3) = 0. (12)

This now gives us the relation between a and T ,

g∗s(T )T 3a3 = const. (13)

We shall have much use for this formula.
In the electron annihilation g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (14)

γ e± ν

to

g∗s = 2 + 5.25

(

Tν

T

)3

, (15)

1There may be exceptions to this in the very early universe, most notably inflation, where
essentially all the entropy of the universe supposedly was produced.

QCD Phase 
transition 
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Table 2: History of g∗(T )

T ∼ 200 GeV all present 106.75
T ∼ 100 GeV EW transition (no effect)
T < 170 GeV top annihilation 96.25
T < 80 GeV W±, Z0, H0 86.25
T < 4 GeV bottom 75.75
T < 1 GeV charm, τ− 61.75
T ∼ 150 MeV QCD transition 17.25 (u,d,g→ π±,0, 37 → 3)
T < 100 MeV π±, π0, µ− 10.75 e±, ν, ν̄, γ left
T < 500 keV e− annihilation (7.25) 2 + 5.25(4/11)4/3 = 3.36

This table gives what value g∗(T ) would have after the annihilation is over assuming

the next annihilation would not have begun yet. In reality they overlap in many cases.

The temperature value at the left is the approximate mass of the particle in question and

indicates roughly when the annihilation begins. The temperature is much smaller when the

annihilation ends. Therefore top annihilation is placed after the EW transition. The top

quark receives its mass in the EW transition, so annihilation only begins after the transition.

6.2 Neutrino decoupling and electron-positron annihilation

Soon after the QCD phase transition the pions and muons annihilate and for T =
20 MeV → 1 MeV, g∗ = 10.75. Next the electrons annihilate, but to discuss the
e+e−-annihilation we need more physics.

So far we have assumed that all particle species have the same temperature, i.e.,
the interactions among the particles are able to keep them in thermal equilibrium.
Neutrinos, however, feel the weak interaction only. The weak interaction is actually
not so weak when particle energies are close to the masses of the W± and Z0

bosons, which mediate the weak interaction. But as the temperature falls, the weak
interaction becomes rapidly weaker and weaker. Finally, close to T ∼ 1 MeV, the
neutrinos decouple, after which they move practically freely without interactions.

The momentum of a freely moving neutrino redshifts as the universe expands,

p(t2) = (a1/a2)p(t1) . (4)

From this follows that neutrinos stay in kinetic equilibrium. This is true in general
for ultrarelativistic (m ≪ T ⇒ p = E) noninteracting particles. Let us show this:

At time t1 a phase space element d3p1dV1 contains

dN =
g

(2π)3
f(p⃗1)d

3p1dV1 (5)

particles, where

f(p⃗1) =
1

e(p1−µ1)/T1 ± 1

is the distribution function at time t1. At time t2 these same dN particles are in a
phase space element d3p2dV2. Now how is the distribution function at t2, given by

g

(2π)3
f(p⃗2) =

dN

d3p2dV2
,
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Figure 1: The functions g∗(T ) (solid), g∗p(T ) (dashed), and g∗s(T ) (dotted) calcu-
lated for the standard model particle content.

6.1 QCD phase transition

In the middle of the s quark annihilation, something else happens, however: the
QCD phase transition (also called the quark–hadron phase transition). This takes
place at T ∼ 150 MeV, t ∼ 20 µs. The temperature and thus the quark energies have
fallen so that the quarks lose their so called asymptotic freedom, which they have at
high energies. The interactions between quarks and gluons (the strong nuclear force,
or the color force) become important (so that the formulas for the energy density
in Chapter 5 no longer apply) and soon the phase transition takes place. There are
no more free quarks and gluons; the quark-gluon plasma has become a hadron gas.
The quarks and gluons have formed bound three-quark systems, called baryons, and
quark-antiquark pairs, called mesons. The lightest baryons are the nucleons: the
proton and the neutron. The lightest mesons are the pions: π±, π0. Baryons are
fermions, mesons are bosons.

There are very many different species of baryons and mesons, but all except
pions are nonrelativistic below the QCD phase transition temperature. Thus the
only particle species left in large numbers are the pions, muons, electrons, neutrinos,
and the photons. For pions, g = 3, so now g∗ = 17.25.

The temperature and thus the quark energies have fallen so that the quarks 
lose their asymptotic freedom 
 
There are no more free quarks and gluons; the quark-gluon plasma has 
become a hadron gas 
 
The lightest baryons are the nucleons: the proton and the neutron. The 
lightest mesons are the pions 
 
all except pions are nonrelativistic below the QCD phase transition 
temperature. 
 
Thus the only particle species left in large numbers are the pions (g=3), 
muons (4), electrons (4), neutrinos (2x3), and the photons (2). 
 
g*=17.25 
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