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WME's with Wilson  fermions

Difficulties induced by the breaking of chiral symmetry:

Additional/worsened mixings under renormalisation, with dire 
consequences for d=6 operators.

Numerical instabilities (exceptional configurations/bad 
algorithmic performance) related to unphysical zero modes of 
the Dirac operator ( SAP?).

Chiral limit not defined at finite lattice spacing ⇒ it is 
difficult to go chiral in a systematically controlled way.

Power of tmQCD: chiral symmetry can be broken in a "smarter" way.

Price: (partial) soft breaking of flavour symmetries  and P,T.



Renormalisation of OΔS=2 with Wilson fermions

Induced by chiral symmetry breaking

Observation: the parity-odd part renormalises multiplicatively, as it is 
protected by discrete symmetries.

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

]− [(s̄γµγ5d)(s̄γµd) + (s̄γµd)(s̄γµγ5d)
︸ ︷︷ ︸

OVA+AV

]

ŌVV+AA(µ) = lim
a→0

ZVV+AA(g2
0, aµ)

[
OVV+AA(a) +

4

∑
k=1

∆k(g2
0)Ok(a)

]



Matrix element without extra mixings

Use an axial WI to relate three-point functions of the parity-even
operator to four-point functions of the parity-odd operator.

Use a tmQCD regularisation which maps three-point functions of 
the VV+AA operator to three-point functions of the VA+AV 
operator.

Bećirević et al., PLB  487 (2000) 74

Frezzotti, Grassi, Sint and Weisz, JHEP 08 (2001) 058
(π/2)-twisted light doublet quark and untwisted s quark.

(π/4)-twisted s-d doublet.

(±π/2)-twisted valence quarks on (π/2)-twisted sea.

Dimopoulos et al., hep-lat/0409026

Frezzotti and Rossi, JHEP 10 (2004) 070

tmQCD bonus: push safely towards lighter quark masses.



Alpha approaches to BK: a bit of comparison

ready for unquenching

quenched: physical MK at ms=md

O(a) improvement

quenched computation cost

Alpha (π/2)

✔ ✘*

✔✘

✘✘

x1x2

Alpha (π/4)



Alpha precision computation of BK in qQCD

tmQCD used to kill operator mixing and avoid exceptional 
configurations.

Bring all systematics (but for quenching) under control:

SF nonperturbative renormalisation.

N.B.: action is O(a) improved, but four-fermion operator is not 
⇒ expected approach to the continuum limit linear in a.

Guagnelli et al., to appear
Palombi, C.P. and Sint, to appear

Dimopoulos et al., in preparation

Two different regularisations → good control of the CL.



Alpha precision computation of BK: layout

Schrödinger Functional framework, nonperturbatively O(a) 
improved action in the bulk, one-loop O(a) improvement on SF 
boundaries.

Computations carried out in the SU(3)V-symmetric limit 
(ms=md). Effect of  ms≠md investigated.

Finite volume effects checked to be under control.

No sign of corrections to MPS
2 dependence when extrapolation 

in the pseudoscalar mass is necessary.



Simulation points (π/4):

β (κ,aμ) r0 MPSL/r0

6.0 (0.134739,0.010412)4.47 1.322(5)

(0.134795,0.009142) 1.247(5)

(0.134828,0.008937) 1.201(5)

6.1 (0.135152,0.008100)3.79 1.376(6)

(0.135190,0.007200) 1.320(6)

(0.135235,0.0061500) 1.251(6)

6.2 (0.135477,0.007595)4.33 1.301(7)

(0.135539,0.006125) 1.180(7)

6.3 (0.135509,0.007600)3.76 1.342(9)

(0.135546,0.006700) 1.263(9)

(0.135584,0.005800) 1.179(9)

6.45 (0.135105,0.014590)3.08 2.055(14)

(0.135218,0.011850) 1.849(11)

(0.135293,0.010020) 1.702(13)



Simulation points (π/2) [N.B.: independent simulations for each mass]:

β (κd,aμd) r0 MPSL/r0

6.0 (0.135169,0.031860)2.98 2.091(6)

(0.135178,0.031520) 1.906(6)

(0.135183,0.027080) 1.782(6)

6.2 (0.135780,0.028324)3.25 2.078(6)

(0.135783,0.025985) 1.982(7)

6.3 (0.135771,0.023639)2.82 2.030(9)

(0.135773,0.021254) 1.916(9)

(0.135776,0.016467) 1.672(10)

κs

0.1335

0.1338

0.1340

(0.135187,0.022610) 1.639(6)0.1342

0.1346

0.1347

(0.135787,0.021290) 1.796(7)0.1349

0.1348

0.1349

0.1351



π/2
π/4 



Preliminary Alpha result vs. rest of the world

 RBC 2004
 RBC 2002
 CP-PACS 2001
 MILC 2003
 BosMar 2003

 ALPHA 2005

 Lee et al. 04
 JLQCD 1997
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Frezzotti-Rossi approach to BK

Set up Nf=4 tmQCD for sea quarks with a non-diagonal twist (⇒ 
fermion determinant is always real).

A different logic:

Set up a valence quark sector with Osterwalder-Seiler action (aka 
singlet chiral rotations allowed in the twist).

Frezzotti and Rossi, JHEP 10 (2004) 070

Use only fully twisted quarks to preserve automatic O(a) improvement.

Key ingredient: tune the structure of the valence sector such that a 
correlation function can be constructed which:
1. Provides the observable of interest in the continuum limit.
2. Exploits maximally the symmetry structure ⇒ simplify renormalisation.



BK: use 6 valence quarks (only 4 enter the relevant 3-point correlation 
function). Adjust signs of OS Wilson term as:

d = + s = + d
′
= + s

′
= −

Spurionic (aka CPS) symmetry protects from mixing ⇒ "chiral" 
renormalisation properties.

Two different (by O(a2)) "kaons" running in the diagram.

No additional complications related to renormalisation (mass-
independent scheme assumed).

Remark: argument can be recast eliminating d'.



Renormalisation of OΔB=2

Difficulties to fit all scales into a lattice computation → specific 
treatment of heavy quarks.

A favourite: HQET.

OVV+AA(µ) = CL(mb, µ)O
HQET

VV+AA
(µ) + CS(mb, µ)O

HQET

SS+PP
(µ) + O(1/mb)

Chiral relativistic fermions: the VV+AA and SS+PP operators 
renormalise multiplicatively (same Z).

Standard Wilson relativistic fermions: the four operators in the 
basis mix.

Bećirević and Reyes, NPB (PS)  129 (2004) 435



Fully twisted relativistic fermion → VV+AA renormalises multiplicatively.

The argument can be generalised to the rest of the operator basis: in 
twisted variables, the relevant operators renormalise as if chiral 
relativistic fermions were employed (CPS in action!).

Della Morte, hep-lat/0409012

Starting point for a full nonperturbative 
renormalisation of the operator basis.

Alpha, work in progress

Technique applied in a quenched computation of bare matrix elements 
for BBs

 by the Orsay group.
Bećirević, private communication



Bare matrix element computed at three values of β, very good 
scaling properties → tentative CL extrapolation.

Status of Orsay computation:

Very small statistical errors thanks to HYP massaging of links.

Excellent agreement with computation performed with overlap 
relativistic fermions at β=6.0.

*Very* preliminary CL estimate:

B̄Bs
(mb) = 0.937(9)(systematics)

TO DO: control CL better, NP renormalisation, NP matching to QCD ...

Very encouraging results  improvement in the control of systematics in 
the computation of this observable is badly needed.



ΔS=1 transitions: K→ππ

The weak Hamiltonian contains several operators, strong 
cancellations between different contributions → very difficult 
problem.

CP-conserving approximation: above the charm threshold and 
neglecting top quark effects the LO effective Hamiltonian 
contains only two operators:

O
±

=

(
s̄γ

L
µd

) (
ūγ

L
µu

)
±

(
s̄γ

L
µu

) (
ūγ

L
µd

)
−

[
u ↔ c

]

Most striking dynamical feature: ΔI=1/2 rule.

AIe
iδI = A(K

0 → (ππ)I)

∣
∣
∣
∣

A0

A2

∣
∣
∣
∣ ≈ 22



K→ππ amplitudes on the lattice

Final state interactions: physical amplitudes can only be 
extracted from Euclidean correlation functions if the volume 
is large enough.

Operator mixing under renormalisation takes place even if 
chiral symmetry is present, but lost of chiral symmetry brings 
in extra mixing and diverging coefficients.

Maiani and Testa, PLB 245 (1990) 585
Lellouch and Lüscher, CMP 219 (2000) 31

Lin, Martinelli, Sachrajda and Testa, NPB 619 (2001) 467

Alternative: use χPT to relate K→π to K→ππ 
amplitudes.

➽

Bernard et al., PRD 32 (1985) 313



Renormalisation of O± with Wilson fermions

Parity-even part: K→π
Parity-odd part: K→ππO

±
= O

±

VV+AA
− O

±

VA+AV

Observation: the parity-odd part exhibits better renormalisation 
properties, as it is protected by discrete symmetries.

Ō±
VA+AV

(µ) = lim
a→0

Z±
VA+AV

(g2
0, aµ)

[
O±

VA+AV
(a)+

c±P (g2
0, am)

a
(mc −mu)(ms −md)s̄γ5d

]

Ō±
VV+AA

(µ) = lim
a→0

Z±
VV+AA

(g2
0, aµ)

[
O±

VV+AA
(a) +

c±S (g2
0, am)

a2
(mc − mu)s̄d +

+
4

∑
k=1

∆±

k (g2
0)Ok(a) + c±σ (mc − mu)s̄σµνFµνd

]



Improving renormalisation properties of O±

Use a tmQCD regularisation which maps three-point functions of the 
VV+AA operator to three-point functions of the VA+AV operator  
preserving  or improving  its renormalisation properties.

C.P., Sint and Vladikas, JHEP 09 (2004) 069
Four-flavour tmQCD.

Custom (±π/2)-twisted valence sector on (π/2)-twisted sea.
Frezzotti and Rossi, JHEP 10 (2004) 070



Nf=4 tmQCD for the ΔI=1/2 rule

S
ph

F
= a

4 ∑
x

(ū, d̄)(x)

[
1

2 ∑
µ

γµ(∇µ + ∇
∗
µ) +

(
Ml 0
0 Ml

)
+

+e
−iαγ5τ3

(
−

ar

2
∑
µ

∇
∗
µ∇µ + Mcr

) ] (
u

d

)
(x) +

+a
4 ∑

x

(s̄, c̄)(x)

[
1

2
∑
µ

γµ(∇µ + ∇
∗
µ) +

(
Ms 0

0 Mc

)
+

+e
−iβγ5τ3

(
−

ar

2
∑
µ
∇

∗
µ∇µ + Mcr

) ] (
s

c

)
(x)

Two different twist angles introduced for the (u,d) and (s,c) doublets:

C.P., Sint and Vladikas, JHEP 09 (2004) 069



In the twisted basis:

S
tm

F = a
4 ∑

x

{
(ū, d̄)(x)

[
DW + ml + iµlγ5τ3

] (
u

d

)
(x) +

+ s̄(x)
[
DW + ms + iµsγ5

]
s(x) + c̄(x)

[
DW + mc + iµcγ5

]
c(x)

}

ml = Ml cos α µl = Ml sin α

ms = Ms cos β µs = Ms sin β

mc = Mc cos β µc = −Mc sin β



Renormalisation proceeds as in the Nf=2 case. Subtleties due to 
Ms≠Mc do not pose particular difficulties.

Remarks:

The fermion determinant is complex for Ms≠Mc, β≠0 → practical 
problem for dynamical simulations.

N.B.: fermion determinant real if a more general axial 
rotation is introduced.

➽

Mapping between renormalised correlation functions proceeds as 
usual.

O(a) improvement of the action in practical cases requires only the 
clover term.

N.B.: in the fully dynamical case there is an additional 
counterterm                    .

➽

(µs + µc)FF̃

Frezzotti and Rossi, JHEP 10 (2004) 070



Renormalisation of O±

Renormalisation pattern of VA+AV:

Ō±
VA+AV

(µ) = lim
a→0

Z±(g2
0; aµ)

[
O±

VA+AV
+ c±P (g2

0, M)s̄γ5d + c±S (g2
0, M)s̄d

]

c±P =
c
± (1)
P (g2

0
)

a
(mc −mu)(ms −md) +

c
± (2)
P (g2

0
)

a
(µc − µu)(µs − µd) +O(aM3)

c±S =
c
± (1)
S (g2

0
)

a
(mc −mu)(µs − µd) +

c
± (2)
S (g2

0
)

a
(µc − µu)(ms −md) +O(aM3)

The divergence in K→π matrix elements is only linear.

〈π|Ō±
VV+AA

(µ)|K〉QCD = −i〈π|Ō±
VA+AV

(µ)|K〉α+β=π

〈ππ|Ō±
VA+AV

(µ)|K〉QCD = 〈ππ|Ō±
VA+AV

(µ)|K〉α+β=0



Low-energy constants from K→π matrix elements

Simplest framework: both doublets maximally twisted.

A(K+(p) → π
+(q)) =

√
2 GF VudV∗

us F2

{(
g8 +

2

3
g27

)
p · q + 2M2

Kg′8
}

A(K0(p) → π
0(q)) = GF VudV∗

us F2
{
(g8 − g27)p · q + 2M2

Kg′8

}

Remark: flavour symmetries broken by twisting isospin 
decomposition of operators not defined in the regularised 
theory → study both K+→π+ and K0→π0 amplitudes.

〈(Pdu)R(x) (O±
VA+AV

)R(y) (Sus)R(z)〉(π/2,π/2)

K→π extracted e.g. from the three-point functions:

〈(A3
0)R(x) (O±

VA+AV
)R(y) (Sds)R(z)〉(π/2,π/2)



cP
± determined by imposing restoration of parity up to O(a):

〈(O±
VA+AV

)R(x) (Pds)R(y)〉(π/2,π/2) = 0 = 〈O±
VA+AV

(x) Pds(y)〉(π/2,π/2)

+c±P 〈Psd(x) Pds(y)〉(π/2,π/2)

+c±S 〈Ssd(x) Pds(y)〉(π/2,π/2)

Pure O(a):

〈(Ssd)R(x) (Pds)R(y)〉(π/2,π/2)
C.L.
= 〈(Ssd)R(x) (Pds)R(y)〉(0,0) = 0

cS
± determined by fixing the unphysical LEC g'8, e.g.:

〈π(q = 0)|(O
±)R|K(p = 0)〉QCD = 0



Getting rid of the power divergence

Observation: the subtraction of P arises from parity breaking, 
and is O(1) [= (1/a) x a]. Is it possible to pair the two 
subtractions into just one with a finite coefficient?

O(a) improved action and quark masses

1. It is enough to subtract Ssd.

2. The subtraction coefficient is finite.

[Study sources of    parity breaking ...]

⇓

"Chiral" renormalisation pattern

[Assumption: gap between 
scalar and pseudoscalar 
channels broad enough.]



Frezzotti-Rossi approach to K→ππ

Same logic as for BK: set up valence sector which allows to construct a 
three- (four-) point function with optimal renormalisation properties.

Frezzotti and Rossi, JHEP 10 (2004) 070

It is possible to kill all undesired mixings via spurionic symmetries ⇒ 
same renormalisation pattern as if chiral fermions were used.

+ac±P (g2
0, am)(m2

c − m2
u)(m2

s − m2
d)s̄γ5d

]

[N.B.: necessary to preserve O(a) improvement!]

Ō±
VV+AA

(µ) = lim
a→0

Z±
VV+AA

(g2
0, aµ)

[
O±

VV+AA
(a) + c±S (g2

0, am)(m2
c − m2

u)(ms + md)s̄d+



Ten valence quark flavours needed:

u = + u
′
= − u

′′
= + u

′′′
= −

c = + c
′
= − c

′′
= + c

′′′
= −

d = + s = ±

K→ππ
K→π

Replication of valence quarks can be reduced in practice.

Remarks:

Determination of mixing coefficients/matching for LEC's can be 
worked out pretty much in the same way as in the PSV framework.

Quark masses entering subtractions have to be treated carefully.

Fermion determinant always real.



tmQCD vs Overlap

Overlap regularisations have a large number of advantages, 
particularly relevant in this context:

Continuum-like renormalisation. (tmQCD almost there.)

Chiral limit well defined in the regularised theory → no lower 
limit on the quark masses that can be reached (essential for 
matching to χPT).

Cutoff effects are O(a2) and checked to be small.

No numerical instabilities due to unphysical quasi-zero modes of 
the Dirac operator (same for tmQCD).

... and an important disadvantage: they remain very expensive, and 
currently are not a viable alternative for dynamical simulations.

[Cf. P. Hernández/A. Shindler's session]



Example of what tmQCD (most likely) cannot do: matching to χPT in 
the ε-regime:

Crucial issue: can tmQCD go down to MPS~300 MeV and below 
without suffering from disruptive cutoff effects?

Giusti, Hernández, C.P., Wittig, Wennekers, in preparation

N.B.: very expensive 
computation, albeit 
quenched: large volume, 
low-mode averaging, ... (cf. 
P. Hernández's talk).

Only in that case it will allow safe matching to χPT in the p-regime  
and hence be a competitive alternative to the overlap!

See M. Papinutto; R. Lewis, C. Michael, A. Shindler 



Conclusions

tmQCD has led to remarkable progress in studies of matrix 
elements of four-fermion operators with Wilson-type quarks.

Power of the approach demonstrated in practice: qualitative 
improvement in (preliminary) results for BK and BBs 

with respect 

to previous Wilson computations.

It is very important to understand to what extent the chiral 
regime can be accessed with good control over cutoff effects.

Work needed to understand the relationship between different 
tmQCD regularisations (particularly in the quenched case).


