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K→ππ decays in a nutshell

Hamiltonian for the dynamics of           system determined by hermiticity+CPT:

If CP is conserved the eigenstates of the Hamiltonian are                                 . 
CP violation in the SM leads to mixing:

CP violation parameters accessible via decay amplitudes into two pions:
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iδI T[(ππ)I → (ππ)I ]l=0 = 2e
iδI sin δI
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K→ππ decays in a nutshell

Experiment:
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Experimental results

∆I = 1/2 rule
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Indirect CP violation

|ε| = (2.282 ± 0.017) × 10−3

Direct CP violation
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L. Giusti – Valencia November 2005 – p.5/33



The ΔI=1/2 rule for kaon decays

Bulk of enhancement in the SM must come from long-distance strong 
interaction effects ...

... that have to be addressed non-perturbatively.

Lattice QCD studies hampered by no-go theorems on chiral fermions and 
multiparticle decays, almost no activity in the ‘90s.

Theoretical breakthroughs in late ‘90s (mainly chiral lattice fermions) have led 
to a renewed interest and some “rough” lattice results.

Still far from having an understanding of the mechanism(s) behind the 
enhancement. 

Gaillard & Lee, PRL 33 (1974) 108 
Altarelli & Maiani, PLB 52 (1974) 351

Cabibbo, Martinelli & Petronzio, NPB 244 (1984) 381 
Brower, Maturana, Gavela & Gupta, PRL 53 (1984) 1318

CP-PACS & RBC Collaborations

T(K → (ππ)α) = iAαe
iδα , α = 0, 2 |A0/A2| = 22.1



A(i → f ) ≈ 〈 f |Heff
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Effective Weak Hamiltonian



CKM parameters

Wilson coefficients  high energy, NLO computation
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    do not contribute to the physical K→ππ transition.
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A flagrant failure of large Nc

H∆S=1
w ∼ GF J

µ
w J

µ
w

T(K
0 → π

0
π

0) ∼ 0 ⇒ A0

A2

∣
∣
∣
∣

N→∞

∼
√

2

Fukugita et al. 1977; Chivukula, Flynn, Georgi 1986



Effective Weak Hamiltonian
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Well, let’s compute the matrix elements ...



The realm of no-go theorems

Maiani-Testa theorem: physical A(i→f1...fn) cannot be extracted from Euclidean 
lattice amplitudes in the infinite volume limit.

Maiani & Testa, PLB 245 (1990) 585



The realm of no-go theorems

Maiani-Testa theorem: physical A(i→f1...fn) cannot be extracted from Euclidean 
lattice amplitudes in the infinite volume limit.

Physical matrix elements can still be extracted by matching QCD at infinite and 
finite volume  but the volumes required are prohibitively large.

Lellouch & Lüscher, CMP 219 (2001) 31

Lin, Martinelli, Sachrajda & Testa, NPB 619 (2001) 467

Maiani & Testa, PLB 245 (1990) 585
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The realm of no-go theorems

Maiani-Testa theorem: physical A(i→f1...fn) cannot be extracted from Euclidean 
lattice amplitudes in the infinite volume limit.

Use chiral (low-energy) expansion to relate the physical K→ππ amplitudes to 
computable quantities.

Nielsen-Ninomiya theorem: no ultralocal lattice regularisation of QCD preserves 
chiral symmetry.

Absence of chiral symmetry induces operator mixing with (severely) power-
divergent coefficients → it is very difficult to construct the renormalised Hw.

Bochicchio et al., NPB 262 (1985) 331
Maiani, Martinelli, Rossi & Testa, NPB 289 (1987) 505

Maiani & Testa, PLB 245 (1990) 585

Bernard et al., PRD 32 (1985) 2343
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The realm of no-go theorems

Maiani-Testa theorem: physical A(i→f1...fn) cannot be extracted from Euclidean 
lattice amplitudes in the infinite volume limit.

Use chiral (low-energy) expansion to relate the physical K→ππ amplitudes to 
computable quantities.

Nielsen-Ninomiya theorem: no ultralocal lattice regularisation of QCD preserves 
chiral symmetry.

Use regularisations with exact chiral symmetry, or with better chiral properties.
Capitani & Giusti, PRD 64 (2001) 014506

CP, Sint & Vladikas, JHEP 09 (2005) 069
Frezzotti & Rossi, JHEP 10 (2005) 070

Maiani & Testa, PLB 245 (1990) 585

Bernard et al., PRD 32 (1985) 2343

Nielsen & Ninomiya, NPB 185 (1981) 20



A tale of various scales



A tale of various scales

Resummation of                                   up to               gives a 
moderate enhancement.

Charm threshold:                        penguins.

Penguin matrix elements can be large compared to that of left-left 
operators.

The standard [?] lore:

Still to be verified/discarded via an explicit computation ...

Shifman, Vainshtein, Zakharov 1977; Bardeen, Buras, Gerard 1986

O(1/N) log(µ/MW) µ > mc

µ < mc



Existing results for A0, A2?

Use of χPT for weak decays already developed in the ‘80s.

Exploratory lattice computations have obtained statistical signals for 
the relevant matrix elements in the quenched approximation, but 
suffer from uncontrolled systematic uncertainties.

Approximate chiral symmetry.

Charm integrated out: severe ultraviolet problems (effective 
Hamiltonian contains 10 operators, ultraviolet-divergent mixing 
even with exact chiral symmetry).

Large quark masses.

Many works rely in models for low-energy strong interactions.

Georgi 84; Bernard et al. 85; Kambor et al. 91

Kilcup, Pekurovsky 98; Blum et al. 01; Ali Khan et al. 01

See reviews in Bertolini et al. 00, Pallante et al. 01



Existing results for A0, A2?

Lightest pion mass around 495 MeV.

CP-PACS Collaboration (Ali Khan et al.) 01



Our strategy to reveal the role of the charm

Physics at the charm scale (via penguins).

Physics at intrinsic QCD scale ~200-300 MeV.

Final state interactions.

All of the above (no dominating “mechanism”).

Disentangle several possible origins/contributions:

Separate “intrinsic QCD” effects from physics at the charm scale:

Consider effective weak Hamiltonian with an active 
charm and study A0, A2 as a function of mc.

mu = md = ms! mc

mu = md = ms= mc

Giusti, Hernández, Laine, Weisz & Wittig, JHEP 11 (2004) 016
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Final state interactions.

All of the above (no dominating “mechanism”).
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☚
SU(4)L × SU(4)R

Consider effective weak Hamiltonian with an active 
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Dynamics of Goldstone bosons @ LO:

LE = 1
4
F

2Tr
[
∂µU∂µU

†
]
− 1

2 ΣTr
[
UM

†
e

iθ/Nf + h.c.
]

U ∈ SU(4) , M = mass matrix

Low-energy counterpart of the weak effective Hamiltonian @ LO:

Relation of LEC’s to K→ππ transition amplitudes @ LO in χPT:
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2
+
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)
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Effective low-energy description
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QCD

χPT

• p-regime: new LECs appear at NLO

• ε-regime: no additional ΔS=1 interaction terms at O(ε2) ⇒ enables 
matching at NLO!

Matching QCD to the chiral expansion

R±(x0, y0) =
C±(x0, y0)
C(x0)C(y0)

C±(x0, y0) = ∑
x,y

〈[J0(x)]du[Q±
1 (0)][J0(y)]us〉

C(x0) = ∑
x

〈[J0(x)]ds[J0(0)]sd〉

k±RGI

[
Z±

Z2
A

]
RGI

R± = g±R±(m, V, LECs)

R
±(x0, y0) =

Ĉ±(x0, y0)
C(x0)C(y0)

Ĉ±(x0, y0) =
∫

d3
x d3

y 〈J0(x)O±
1 (0)J0(y)〉

C(x0) =
∫

d
3
x 〈J0(x)J0(0)〉



➼ Constant field configurations (zero modes) are factored out and treated as collective 
variables.
➼ Gauge field topology and the low-lying spectrum of the Dirac operator play a crucial rôle 
in this regime.
➼ No additional interactions in the effective chiral theory at O(ε2).

ε- vs p-regime of Chiral Perturbation Theory
Gasser, Leutwyler 1987; Hansen 1990; Hansen, Leutwyler 1991

mΣV ! 1p-regime:

standard χPT in finite V: m ∼ p2 L−1, T−1
∼ p

ε-regime:

reordering of the χ expansion:

mΣV ! 1

m ∼ p4
∼ ε

4 L−1, T−1
∼ ε



R± in the ε-regime
Hernández, Laine,  2003; 
Giusti, Hernández, Laine, Weisz, Wittig 2004



R± in the p-regime
Hernández, Laine 2006



Lattice setup: chiral fermions

Breaking of chiral symmetry ⇒ less protection against mixing of composite 
operators under renormalisation.

Bochicchio, Maiani, Martinelli, Rossi, Testa 1985
Maiani, Martinelli, Rossi, Testa 1987

Obvious alternatives: “better” Wilson regularisations (tmQCD-based) ...

➼ exact chiral symmetry ⇒ arbitrarily low masses ⇒ ε-regime.

➼  Power divergences in mixing with lower dimension operators.

➼  Mixing with operators in different chiral multiplets.

CP, Sint, Vladikas 2005
Frezzotti, Rossi 2005

... or exact chiral symmetry ⇒ continuum-like renormalisation.



Ginsparg-Wilson fermions:

Renormalisation and mixing patterns as in the formal continuum theory, 
provided:

ψ → ψ̃ = (1 −
1
2 aD) ψ , ψ̄ → ψ̄

In particular, there is no dangerous mixing with lower dim. operators.

γ5D + Dγ5 = a Dγ5D , a =
a

1 + s

Lattice QCD action enjoys an exact chiral symmetry:

δψ̄ = iεψ̄γ5

δψ = iεγ̂5ψ , γ̂5 = γ5(1 − aD)

Ginsparg, Wilson 1982

Kaplan; Hasenfratz, Laliena, Niedermayer; Neuberger; ...

Lüscher 1998

Lattice setup: chiral fermions



Ginsparg-Wilson fermions:

γ5D + Dγ5 = a Dγ5D , a =
a

1 + s

Our choice: Neuberger-Dirac operator.

Lattice setup: chiral fermions

DN =
1

a

{
1 −

A

(A† A)1/2

}
, A = 1 − aDw

Neuberger 1997

Giusti, Hoelbling, Lüscher, Wittig 2002

Ginsparg, Wilson 1982

Kaplan; Neuberger; Hasenfratz, Laliena, Niedermayer; ...

Numerical treatment challenging and expensive.
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Numerical simulationsNumerical computation of ḡ±
1 in quenched QCD [L.G., P. Hernández, M. Laine, C. Pena, J. Wennekers, H. Wittig in preparation]
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1 in quenched QCD [L.G., P. Hernández, M. Laine, C. Pena, J. Wennekers, H. Wittig in preparation]
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1 (0)J0(y)〉P
!x〈J0(x)J0(0)〉 · P

!y〈J0(0)J0(y)〉

In the ε-regime the NLO QChPT prediction is
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In the p-regime corresponding QChPT formula in finite volume
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Simulation parameters:

Quark masses: p-regime                                   O(200) cfgs
                         ε-regime                                   O(800) cfgs

m ∼ ms/2 – ms/6

m ∼ ms/40, ms/60

Quenched approximation.



Numerical simulations

p-regime: ratios of correlation functions display plateaux at large enough 
separations ⇒ ratios of physical matrix elements.

ε-regime: expansion performed at fixed topological charge, ratios of 
correlators fitted to constants and averaged over topological charges (no 
-dependence at (N)LO in χPT).
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➼ Low-lying spectrum of Dm discrete: 
➼ A few low modes give sizeable contributions.
➼ “Bumpy” wave functions can induce large fluctuations.

m ! 1/ΣV m ≈ ∆λ = 1/ΣV

S(x, y) =
1

V ∑
k

ηk(x) ⊗ ηk(y)†

λ̄k + m
, λ̄k = (1 − 1

2 am)λk

m ! 1/ΣV ➼ Sizeable contribution of configurations with very small ev’s.
➼ Strong dependence on the observable considered.
➼ Fluctuations reduced by unquenching.

➼ Low-lying spectrum of Dm dense near m.
➼ Contributions from low modes averaged with same weight.

m ! 1/ΣV

The origin of statistical fluctuations



S(x, y) =
1

V ∑
k

ηk(x) ⊗ ηk(y)†

λ̄k + m
, λ̄k = (1 − 1

2 am)λk

The origin of statistical fluctuations

∆λ = λi+1 − λi ∼
O(1)
ΣV

≥ m

〈λi〉ν =
O(1)
ΣV

➼ Low-lying spectrum of Dm discrete. 
➼ “Bumpy” wave functions of few low-lying
     modes ⇒ large fluctuations.
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ηk(x) ⊗ ηk(y)†

λ̄k + m
, λ̄k = (1 − 1

2 am)λk

The origin of statistical fluctuations

∆λ = λi+1 − λi ∼
O(1)
ΣV

≥ m

〈λi〉ν =
O(1)
ΣV

➼ Low-lying spectrum of Dm discrete. 
➼ “Bumpy” wave functions of few low-lying
     modes ⇒ large fluctuations.

Low-mode averaging: treat exactly a few low-modes  full translational 
invariance enforced in the most fluctuating contribution to the quark 
propagator. Giusti, Hernández, Laine, Weisz, Wittig 2004

Giusti, Hernández, Laine, CP, Wennekers, Wittig 2005



S(x, y) =
1

V ∑
k

ηk(x) ⊗ ηk(y)†

λ̄k + m
, λ̄k = (1 − 1

2 am)λk

The origin of statistical fluctuations

∆λ = λi+1 − λi ∼
O(1)
ΣV

≥ m

〈λi〉ν =
O(1)
ΣV

➼ Low-lying spectrum of Dm discrete. 
➼ “Bumpy” wave functions of few low-lying
     modes ⇒ large fluctuations.

Alternative: extract physics from topological zero-mode wave functions. 

Giusti, Hernández, Laine, Weisz, Wittig 2004
Hernández, Laine, CP,  Torró, Wennekers, Wittig in progress



P−S(x, y)P+ = P−

{
n

∑
k=1

1

αk
ek(x) ⊗ ek(y)† + Sh(x, y)

}
P+

ek = Psuk + P
−sDPsuk , Ps(D

†
mDm)Psuk = αkuk + rk

C
hh
t (x0) = −∑

x

〈Tr[γ0P−S
h(x, 0)†
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h(x, 0)]〉

Cll
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〈[ek(y)†γ0P−el(y)][ek(z)†γ0P−el(z)]〉
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hh
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hl
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αk
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The origin of statistical fluctuations

Low-mode averaging: treat exactly a few low-modes  full translational 
invariance enforced in the most fluctuating contribution to the quark 
propagator. Giusti, Hernández, Laine, Weisz, Wittig 2004

Giusti, Hernández, Laine, CP, Wennekers, Wittig 2005
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Simulation parameters:

Quark masses: p-regime                                   O(200) cfgs
                         ε-regime                                   O(800) cfgs

m ∼ ms/2 – ms/6

m ∼ ms/40, ms/60

Quenched approximation.

Numerical simulations: final (bare) results



Numerical simulations: final (bare) results
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ε-regime computation
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Numerical simulations: final (bare) results
Expected ε-regime features  independence of R± on (x0,y0), m and ν  are 
all well reproduced by the data.
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Simulation parameters:

Quark masses: p-regime                                   O(200) cfgs
                         ε-regime                                   O(800) cfgs

m ∼ ms/2 – ms/6

m ∼ ms/40, ms/60

Quenched approximation.



➼ Chiral correction → LO/NLO chiPT.

➼ Wilson coefficients → NLO QCD PT. 

➼ Renormalisation → QCD PT / nonperturbative result.

Ciuchini et al. 1998
Buras, Misiak, Urban 2000

Giusti, Hernández, Laine, Weisz, Wittig 2004
Hernández and Laine 2006

Dimopoulos et al. 2006

Connecting bare results with physical amplitudes

g±1 (1 + K±) = k±1 (MW/ΛQCD)
Ẑ±(g0)

Z2
A(g0)

R±



c±S (µ/ΛQCD) = (2b0g 2(µ))γ±

0 /(2b0) exp

{
−

∫ g (µ)

0
dg

[
γ±(g)
β(g)

+
γ±

0

b0g

]}Ẑ±(g0) = c±S (µ/ΛQCD) Z±

S (g0, aµ)

➼ NLO estimate in RI/MOM scheme available.

➼ Nonperturbative renormalisation of chiral observables possible via a 
matching procedure to results obtained with Schrödinger Functional 
techniques.

Capitani, Giusti 2000

Renormalisation

Dimopoulos et al. 2006

Renormalisation factor        relates bare and RGI operators:Ẑ
σ



Renormalisation factor        relates bare and RGI operators:Ẑ
σ

c±S (µ/ΛQCD) = (2b0g 2(µ))γ±

0 /(2b0) exp

{
−

∫ g (µ)

0
dg

[
γ±(g)
β(g)

+
γ±

0

b0g

]}Ẑ±(g0) = c±S (µ/ΛQCD) Z±

S (g0, aµ)

Renormalisation

bare P.T. MFI P.T. non-perturbative

Ẑ+
1 /Z2

A 1.242 1.193 1.15(12)
Ẑ−

1 /Z2
A 0.657 0.705 0.561(61)

Ẑ−
1 /Ẑ+

1 0.525 0.582 0.584(62)

Table 2: Perturbative and non-perturbative estimates for Neuberger fermions RGI
renormalisation factors at β = 5.8485.

the RGI renormalisation factors

Ẑ±
1

Z2
A

∣∣∣∣∣
β=5.8485

=
R̂±

Rov
±

,
Ẑ−

1

Ẑ+
1

∣∣∣∣∣
β=5.8485

=
Rov

+ /Rov
−

R̂+/R̂−

. (4.4)

The results are collected in the last column of Table 2, together with the correspond-
ing perturbative estimates, which will be discussed in the next section.

5 Perturbative estimates of renormalisation factors

In this section we will determine the RGI renormalisation factors of interest in
perturbation theory. This provides a handle on the systematics related to their
non-perturbative determination.

The anomalous dimensions γ± of the operators Q±
1 are known at two loops

for several schemes. For discretisations based on the Neuberger-Dirac operator,
the renormalisation factors Zs(g0, aµ) have been computed for s = RI/MOM in
perturbation theory at one loop in [18]. The ratios of renormalisation constants we
are interested in, computed with Neuberger fermions and in the RI/MOM scheme,
can be written as

Z±
RI(g0, aµ)

Z2
A
(g0)

= 1 + (1 ∓ 3)
g2
0

16π2

{
2 ln(4µa) − 1

3
(BS − BV)

}
+ O(g4

0) ,

Z−
RI(g0, aµ)

Z+
RI(g0, aµ)

= 1 +
g2
0

16π2
{12 ln(4µa) − 2(BS − BV)} + O(g4

0) .

(5.1)

It is also possible to perform the expansion using “mean-field improvement” (MFI)
[19], which aims at improving the convergence of the perturbative series. At the
level of the ratios in Eq. (5.1), it is easy to check that the implementation of MFI
simply amounts to replacing the bare coupling g2

0 by a “continuum-like” coupling
g̃2, which we set to be g 2

MS
.

The coefficients BS and BV in Eq. (5.1) are listed in Table 1 of [18]. In order to
obtain the corresponding RGI renormalisation factors, it is enough to multiply the

9



Fits to extract LECs

➼ Choose quantities with smaller mass corrections and statistical errors:

➼ Fit to NLO χPT to extract        and        (exploit smooth ε/p-regime transition). 

R
+

, R
+

R
−

g
± Λ

±

Tension between ε- and p-regime may indicate non-negligible higher order 
corrections → systematic error included to account for this.



Outline

The (many difficulties of studying the) ΔI=1/2 rule.

Operator product expansion and long distance QCD effects.

Problems with pions and chirality.

Our strategy.

Computational setup.

Low-energy description: p- vs ε-regime.

Chiral lattice fermions.

Computational details.

Bare results and the approach to the chiral regime.

Matching to physics: renormalisation and chiral fits

Results and conclusions.



Results: K→ππ amplitudes in the chiral limit
3

am aMP R+, bare R−, bare

ε-regime
0.002 - 0.569(44) 2.43(15)
0.003 - 0.572(43) 2.41(14)

p-regime
0.020 0.1960(28) 0.636(40) 2.20(12)
0.030 0.2302(25) 0.691(33) 1.93(9)
0.040 0.2598(24) 0.723(31) 1.75(8)
0.060 0.3110(24) 0.772(30) 1.51(7)

TABLE I: Results for aMP and R±,bare

for a smooth extrapolation to the chiral limit. It is also
important to notice that at this volume and for these
masses finite volume corrections are visible and taken
into account in the formulas (10) and (11)...

FITTING STRATEGY

At the kaon mass or heavier, where finite volume correc-
tions can be safely neglected, the continuum-limit renor-
malization group-invariant (RGI) ratios R±,RGI can be
extracted from Refs. [35, 36]. By defining the reference
values

R±,RGI
ref ≡ R±,RGI

∣∣∣
r2

0M2
P =r2

0M2
K

(13)

at the pseudoscalar mass r2
0M2

K = 1.573, we obtain
R+,RGI

ref = 0.954(52) and R−,RGI
ref = 0.910(76). Since

Wilson coefficients are computed in a mass independent
renormalization scheme

R±,RGI = R±,bare
[
R±,bare

∣∣∣
r2

0M2
K

]−1
R±,RGI

ref (14)

for any value of the quark mass.

IV. PHYSICS DISCUSSION

We can now combine our results for R±,RGI with the
Wilson coefficients in Eq. (3) to obtain

g+
1 = 0.50(?) , g−

1 = 2.9(?) ,
g−

1

g+
1

= 5.8(??) , (15)

where errors take into account uncertainties on k±
1 ,

R±,RGI
ref and statistical errors on R±,bare. A solid esti-

mate of discretization effects would require simulations
at several lattice spacing, which is beyond the scope
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FIG. 1: Dependence of R±,bare on am

of this exploratory study. However, computations of
R± at different lattice spacings and for masses close
to ms/2 [5, 34, 38] indicate that discretization effects
may be already comparable or smaller than our statis-
tical errors. In this respect it is interesting to notice
that quenched computations of various physical quan-
tities carried out with Neuberger fermions show small
discretization uncertainties at this lattice spacing [37].

Our values of g±
1 in Eq.(15) reveal a clear hierarchy

among the low-energy constants, g−
1 " g+

1 , which in turn
implies the presence of a ∆I = 1/2 rule in this corner of
the parameter space of (quenched) QCD.

Assuming that QCD reproduces the experimental am-
plitudes, the LECs of the ∆S = 1 effective Hamiltonian
can be extracted from a combination of LO ChPT and
experimental results [39]

g+, exp
1 ∼ 0.50 , g−, exp

1 ∼ 10.4 ,
g−, exp

1

g+, exp
1

∼ 20.8 . (16)

Apart for quenching effects, these LECs differ from the
ones we have computed due to higher order effects in
ChPT and/or due to contributions arising when the
charm mass is heavier. A comparison of the values in
Eqs. (15) and (16) suggests the presence of a large con-
tribution to the ∆I = 1/2 rule from physics at the intrin-
sic QCD scale. Barring accidental cancellations among
quenching effects and higher order ChPT corrections, our
value of g+

1 points to the fact that higher order ChPT cor-
rections in |A2| may be relatively small. In this case, in
fact, the charm mass dependence is expected to be mild
(only via the determinant). On the contrary our value for
g−

1 is off by more than a factor three with respect to the
experimental value. Apart from possible large quench-
ing artifacts, this suggests that the charm mass depen-
dence and/or higher order effects in ChPT are large for
|A0|. These two contributions can be disentangled by im-
plementing the second step of the strategy proposed in
Ref. [5].

All the above speculations are, of course, invalidated
if it turns out that quenching affects these correlation
functions in a significant way. In this respect it is im-

ΔI=3/2 comes in the right ballpark (N.B.: charm effects enter only via 
quark loops).

ΔI=1/2 channel and amplitude ratio are a factor ~4 too small.

Enhancement of the ΔI=1/2 channel already present with an 
unphysically light charm quark (A0/A2 ~ 6): “pure no-penguin” effect.

Giusti, Hernández, Laine, CP, Wennekers, Wittig 2006



Decoupling the charm quark
Giusti, Hernández, Koma, Koma, 

Necco, CP,  Wennekers, Wittig

Matching between the SU(3)- and SU(4)-symmetric low-energy 
descriptions possible for non-degenerate but light charm masses: 
additional enhancement predicted to come out in the right direction.

When the charm is heavy enough the usual SU(3) chiral expansion is 
recovered.

Numerical simulation requires the computation of penguin 
contractions, much more difficult to deal with. Hope is that low-mode 
averaging will tame the dominant statistical fluctuations.

Matching to SU(3) and K → ππ at LO in ChPT

Matching SU(4) −→ SU(3) in ChPT for values of mc in the chiral regime
[L.G. et al. 04; Hernández, Laine 04]

SU(3) ChPT when mc is heavy enough to decouple

ḡ±1 → g±1 (mc) ḡ±2 → g±2 (mc)

At leading order in ChPT

˛̨̨ A0

A2

˛̨̨
=

1

2
√

2

(
1 + 3

g−1
g+
1

)

and if compared with experimental results g−
1 /g+

1 ≈ 20.5

L. Giusti – Valencia November 2005 – p.12/33

Computing low-energy constants

J0

u

d

Q̂±
1

s

u
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d

J0

Q̂±
1

u - c

s

J0

u

Lecs determined by matching suitable quantities in massless QCD with ChPT

A possible choice is

〈π+|k±
1

bQ±
1 + k±

2
bQ±
2 |K+〉 = ḡ±1

F̄ 2M̄KM̄π

2
− ḡ±2 (m2

u − m2
c)M̄2

K

〈0|k±
1

bQ±
1 + k±

2
bQ±
2 |K0〉 =

i√
2

ḡ±2 (m2
u − m2

c)F̄ (M̄2
K − M̄2

π)

Computing ḡ±
1 requires eight-diagrams only

Penguin diagrams needed for g±
1 (mc)

L. Giusti – Valencia November 2005 – p.13/33

L. Giusti – Valencia November 2005 – p.27/33



Decoupling the charm quark
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Necco, CP,  Wennekers, Wittig

Matching between the SU(3)- and SU(4)-symmetric low-energy 
descriptions possible for non-degenerate but light charm masses: 
additional enhancement predicted to come out in the right direction.

L. Giusti – Valencia November 2005 – p.27/33

➼ Logarithmic enhancement of octet.

➼ Many unknown LECs.

Hernández, Laine 2004-2006
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Conclusions and outlook

SU(4) strategy allows to disentangle contributions to the ΔI=1/2 enhancement 
with qualitatively different origins.

First step: computation of low-energy couplings with an unphysically light 
charm quark (→ “pure QCD” contribution):

Chiral systematics under control via access to ε-regime. First time such light 
masses have been reached in numerical simulations.

UV effects under control (GW fermions, non-perturbative renormalisation).

Computation of the couplings completed. Moderate enhancement found. 
Factor ~4 still missing. Main suspect: charm dependence of amplitudes.

Next step: go to heavier charm masses and monitor amplitudes.

Future: unquenching.


