Towards a quantitative understanding of the $\Delta \mathrm{I}=\mathrm{I} / 2$ rule

Carlos Pena

In collaboration with:
L. Giusti
P. Hernández
M. Laine
J.Wennekers
H.Wittig

Phys. Rev. Lett. 98 (2007) 082003

Fermions and Extended Objects on the Lattice
Benasque, (25/02-02/03)/07

Outline

- The (many difficulties of studying the) $\Delta I=1 / 2$ rule:

O Operator product expansion and long distance QCD effects.
O Problems with pions and chirality.
O Our strategy.

- Computational setup:

O Low-energy description: p- vs \in-regime.
O Chiral lattice fermions.

- Computational details:

O Bare results and the approach to the chiral regime.
O Matching to physics: renormalisation and chiral fits.

- Results and conclusions.

Outline

- The (many difficulties of studying the) $\Delta I=1 / 2$ rule.

O Operator product expansion and long distance QCD effects.
O Problems with pions and chirality.
O Our strategy.

- Computational setup.

O Low-energy description: $p-$ vs \in-regime.
O Chiral lattice fermions.

- Computational details.

O Bare results and the approach to the chiral regime.
O Matching to physics: renormalisation and chiral fits.

- Results and conclusions.

$K \rightarrow \pi \pi$ decays in a nutshell

- Hamiltonian for the dynamics of $K^{0}-\bar{K}^{0}$ system determined by hermiticity+CPT:

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right)
$$

- If CP is conserved the eigenstates of the Hamiltonian are $\left|K_{1,2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \pm\left|\bar{K}^{0}\right\rangle\right)$. $C P$ violation in the $S M$ leads to mixing:

$$
\left|K_{S}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{1}\right\rangle+\bar{\varepsilon}\left|K_{2}\right\rangle\right) \quad\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{2}\right\rangle+\bar{\varepsilon}\left|K_{1}\right\rangle\right) \quad \bar{\varepsilon}=\frac{p-q}{p+q}
$$

- CP violation parameters accessible via decay amplitudes into two pions:

$$
-i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{I} e^{i \delta_{I}} \quad T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I}
$$

$K \rightarrow \pi \pi$ decays in a nutshell

- Hamiltonian for the dynamics of $K^{0}-\bar{K}^{0}$ system determined by hermiticity+CPT:

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right)
$$

- If CP is conserved the eigenstates of the Hamiltonian are $\left|K_{1,2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \pm\left|\bar{K}^{0}\right\rangle\right)$. $C P$ violation in the SM leads to mixing:

$$
\left|K_{S}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{1}\right\rangle+\bar{\varepsilon}\left|K_{2}\right\rangle\right) \quad\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\bar{\varepsilon}|^{2}}}\left(\left|K_{2}\right\rangle+\bar{\varepsilon}\left|K_{1}\right\rangle\right) \quad \bar{\varepsilon}=\frac{p-q}{p+q}
$$

- CP violation parameters accessible via decay amplitudes into two pions:

$$
\begin{aligned}
& -i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{I} e^{i \delta_{I}} \quad T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I} \\
\varepsilon= & \frac{T\left[K_{L} \rightarrow(\pi \pi)_{0}\right]}{T\left[K_{S} \rightarrow(\pi \pi)_{0}\right]} \simeq \bar{\varepsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \\
\varepsilon^{\prime} & =\frac{\varepsilon}{\sqrt{2}}\left(\frac{T\left[K_{L} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{L} \rightarrow(\pi \pi)_{0}\right]}-\frac{T\left[K_{S} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{S} \rightarrow(\pi \pi)_{0}\right]}\right) \simeq \frac{1}{\sqrt{2}} e^{i\left(\delta_{2}-\delta_{0}+\pi / 2\right)} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)
\end{aligned}
$$

$K \rightarrow \pi \pi$ decays in a nutshell

Experiment:

The $\Delta I=1 / 2$ rule for kaon decays

$$
T\left(K \rightarrow(\pi \pi)_{\alpha}\right)=i A_{\alpha} e^{i \delta_{\alpha}}, \quad \alpha=0,2 \quad\left|A_{0} / A_{2}\right|=22.1
$$

- Bulk of enhancement in the SM must come from long-distance strong interaction effects ...

Gaillard \& Lee, PRL 33 (1974) I08 Altarelli \& Maiani, PLB 52 (1974) 35 I

- ... that have to be addressed non-perturbatively.

Cabibbo, Martinelli \& Petronzio, NPB 244 (I984) 38। Brower, Maturana, Gavela \& Gupta, PRL 53 (1984) I3I8

- Lattice QCD studies hampered by no-go theorems on chiral fermions and multiparticle decays, almost no activity in the ' 90 s .
- Theoretical breakthroughs in late '90s (mainly chiral lattice fermions) have led to a renewed interest and some "rough" lattice results.

CP-PACS \& RBC Collaborations

- Still far from having an understanding of the mechanism(s) behind the enhancement.

Effective Weak Hamiltonian

$$
\begin{gathered}
\mathcal{A}(i \rightarrow f) \approx\langle f| H_{W}^{\mathrm{eff}}|i\rangle \\
H_{\mathrm{W}}^{\mathrm{eff}}=\frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \sum_{k} f_{k}\left(V_{\mathrm{CKM}}\right) C_{k}\left(\mu / M_{\mathrm{W}}\right) \bar{O}_{k}(\mu)
\end{gathered}
$$

Effective Weak Hamiltonian

$$
\mathcal{A}(i \rightarrow f) \approx\langle f| H_{\mathrm{W}}^{\mathrm{eff}}|i\rangle
$$

CKM parameters

$$
H_{\mathrm{W}}^{\mathrm{eff}}=\frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \sum_{k} f_{k}\left(V_{\mathrm{CKM}}\right) C_{k}\left(\mu / M_{W}\right) \bar{O}_{k}(\mu)
$$

Wilson coefficients — high energy, NLO computation
Composite operators - low energy (hadronic) scales

Effective Weak Hamiltonian

$$
\mathcal{A}(i \rightarrow f) \approx\langle f| H_{\mathrm{W}}^{\mathrm{eff}}|i\rangle
$$

CKM parameters

$$
H_{\mathrm{W}}^{\mathrm{eff}}=\frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \sum_{k} f_{k}\left(V_{\mathrm{CKM}}\right) C_{k}\left(\mu / M_{W}\right) \bar{O}_{k}(\mu)
$$

Wilson coefficients — high energy, NLO computation
Composite operators - low energy (hadronic) scales

Effective Weak Hamiltonian

$$
\begin{gathered}
\mathcal{A}(i \rightarrow f) \approx\langle f| H_{W}^{e f f}|i\rangle \\
H_{W}^{e f f}=\frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{k} f_{k}\left(V_{\mathrm{CKM}}\right) C_{k}\left(\mu / M_{W}\right) \bar{O}_{k}(\mu)
\end{gathered}
$$

With an active charm quark (CP-violating effects neglected):

$$
\begin{gathered}
H_{\mathrm{W}}=\frac{g_{\mathrm{W}}^{2}}{2 M_{W}^{2}}\left(V_{u s}\right)^{*}\left(V_{u d}\right) \sum_{\sigma= \pm}\left\{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+k_{2}^{\sigma} \mathcal{Q}_{2}\right\} \\
\mathcal{Q}_{1}^{ \pm}=\left(\bar{s} \gamma_{\mu} P_{-} u\right)\left(\bar{u} \gamma_{\mu} P_{-} d\right) \pm\left(\bar{s} \gamma_{\mu} P_{-} d\right)\left(\bar{u} \gamma_{\mu} P_{-} u\right)-[u \rightarrow c] \\
\mathcal{Q}_{2}^{ \pm}=\left(m_{u}^{2}-m_{c}^{2}\right)\left\{m_{d}\left(\bar{s} P_{+} d\right)+m_{s}\left(\bar{s} P_{-} d\right)\right\}
\end{gathered}
$$

$\mathcal{Q}_{1}^{ \pm}$transform according to irreps of $\mathrm{d}=84(+)$ and $\mathrm{d}=20(-)$ of $\mathrm{SU}(4)$. $\mathcal{Q}_{2}^{ \pm}$do not contribute to the physical $\mathrm{K} \rightarrow$ min transition.

Effective Weak Hamiltonian

$$
\begin{gathered}
H_{\mathrm{w}}=\frac{g_{\mathrm{w}}^{2}}{2 M_{W}^{2}}\left(V_{u s}\right)^{*}\left(V_{u d}\right) \sum_{\sigma= \pm}\left\{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+k_{2}^{\sigma} \mathcal{Q}_{2}\right\} \\
\mathcal{Q}_{1}^{ \pm}=\left(\bar{s} \gamma_{\mu} P_{-} u\right)\left(\bar{u} \gamma_{\mu} P_{-} d\right) \pm\left(\bar{s} \gamma_{\mu} P_{-} d\right)\left(\bar{u} \gamma_{\mu} P_{-} u\right)-[u \rightarrow c] \\
\mathcal{Q}_{2}^{ \pm}=\left(m_{u}^{2}-m_{c}^{2}\right)\left\{m_{d}\left(\bar{s} P_{+} d\right)+m_{s}\left(\bar{s} P_{-} d\right)\right\} \\
\left|\frac{A_{0}}{A_{2}}\right|=\frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)} \frac{\left\langle(\pi \pi)_{I=0}\right| \hat{Q}_{1}^{-}|K\rangle}{\left\langle(\pi \pi)_{I=2}\right| \hat{Q}_{1}^{+}|K\rangle} \quad \frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)}=2.8 \sim O(1)
\end{gathered}
$$

Enhancement dominated by matrix elements of effective interaction vertices (long-distance regime of the strong interaction).

A flagrant failure of large N_{c}

$$
H_{\mathrm{w}}^{\Delta S=1} \sim G_{\mathrm{F}} J_{\mathrm{w}}^{\mu} J_{\mathrm{w}}^{\mu}
$$

$O\left(N_{C}^{2}\right)$

$O\left(N_{C}\right)$

$O(1)$

$$
\left.T\left(K^{0} \rightarrow \pi^{0} \pi^{0}\right) \sim 0 \Rightarrow \frac{A_{0}}{A_{2}}\right|_{N \rightarrow \infty} \sim \sqrt{2}
$$

Fukugita et al. I977; Chivukula, Flynn, Georgi 1986

Effective Weak Hamiltonian

$$
\begin{gathered}
H_{\mathrm{w}}=\frac{g_{\mathrm{w}}^{2}}{2 M_{W}^{2}}\left(V_{u s}\right)^{*}\left(V_{u d}\right) \sum_{\sigma= \pm}\left\{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+k_{2}^{\sigma} \mathcal{Q}_{2}\right\} \\
\mathcal{Q}_{1}^{ \pm}=\left(\bar{s} \gamma_{\mu} P_{-} u\right)\left(\bar{u} \gamma_{\mu} P_{-} d\right) \pm\left(\bar{s} \gamma_{\mu} P_{-} d\right)\left(\bar{u} \gamma_{\mu} P_{-} u\right)-[u \rightarrow c] \\
\mathcal{Q}_{2}^{ \pm}=\left(m_{u}^{2}-m_{c}^{2}\right)\left\{m_{d}\left(\bar{s} P_{+} d\right)+m_{s}\left(\bar{s} P_{-} d\right)\right\} \\
\left|\frac{A_{0}}{A_{2}}\right|=\frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)} \frac{\left\langle(\pi \pi)_{I=0}\right| \hat{Q}_{1}^{-}|K\rangle}{\left\langle(\pi \pi)_{I=2}\right| \hat{Q}_{1}^{+}|K\rangle} \quad \frac{k_{1}^{-}\left(M_{W}\right)}{k_{1}^{+}\left(M_{W}\right)}=2.8 \sim O(1)
\end{gathered}
$$

Enhancement dominated by matrix elements of effective interaction vertices (long-distance regime of the strong interaction).

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

Maiani \& Testa, PLB 245 (1990) 585

Physical matrix elements can still be extracted by matching QCD at infinite and finite volume - but the volumes required are prohibitively large.

Lellouch \& Lüscher, CMP 219 (2001) 31
Lin, Martinelli, Sachrajda \& Testa, NPB 6 I9 (200I) 467

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

Maiani \& Testa, PLB 245 (1990) 585

Use chiral (low-energy) expansion to relate the physical $K \rightarrow \pi \pi$ amplitudes to computable quantities.

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

Maiani \& Testa, PLB 245 (1990) 585

Use chiral (low-energy) expansion to relate the physical $K \rightarrow \pi \pi$ amplitudes to computable quantities.

```
Bernard et al., PRD 32 (1985) 2343
```

Nielsen-Ninomiya theorem: no ultralocal lattice regularisation of QCD preserves chiral symmetry.

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

Maiani \& Testa, PLB 245 (1990) 585

Use chiral (low-energy) expansion to relate the physical $K \rightarrow \pi \pi$ amplitudes to computable quantities.

Bernard et al., PRD 32 (I985) 2343

Nielsen-Ninomiya theorem: no ultralocal lattice regularisation of QCD preserves chiral symmetry.

$$
\text { Nielsen \& Ninomiya, NPB I85 (I98I) } 20
$$

Absence of chiral symmetry induces operator mixing with (severely) powerdivergent coefficients \rightarrow it is very difficult to construct the renormalised H_{w}.

The realm of no-go theorems

Maiani-Testa theorem: physical $A\left(i \rightarrow f_{1} \ldots f_{n}\right)$ cannot be extracted from Euclidean lattice amplitudes in the infinite volume limit.

Maiani \& Testa, PLB 245 (1990) 585

Use chiral (low-energy) expansion to relate the physical $K \rightarrow \pi \pi$ amplitudes to computable quantities.

```
Bernard et al., PRD 32(I985) 2343
```

Nielsen-Ninomiya theorem: no ultralocal lattice regularisation of QCD preserves chiral symmetry.

Nielsen \& Ninomiya, NPB I85 (198I) 20

Use regularisations with exact chiral symmetry, or with better chiral properties.

$$
\begin{array}{r}
\text { Capitani \& Giusti, PRD } 64(200 \text { I) 0I } 4506 \\
\text { CP, Sint \& Vladikas, JHEP } 09 \text { (2005) } 069 \\
\text { Frezzotti \& Rossi, JHEP } 10(2005) 070
\end{array}
$$

A tale of various scales

$$
\begin{array}{ll}
M_{W} & \mathcal{H}_{S M} \rightarrow \mathcal{H}_{\Delta S=1}^{N_{f}=4}=\sqrt{2} G_{F} V_{u s}^{*} V_{u d}\left(k_{+} Q_{+}+k_{-} Q_{-}\right) \\
& Q_{ \pm} \equiv[\bar{s} u]_{V-A}[\bar{u} d]_{V-A} \pm[\bar{s} d]_{V-A}[\bar{u} u]_{V-A}-(u \leftrightarrow c) \\
& S U(4)_{L} \times S U(4)_{R}: Q_{+} \rightarrow(84,1) \quad Q_{-} \rightarrow(20,1) \\
& \\
m_{c} \quad & \mathcal{H}_{\Delta S=1}^{N_{f}=4} \rightarrow \mathcal{H}_{\Delta S=1}^{N_{f}=3}=\sqrt{2} G_{F} V_{u s}^{*} V_{u d} \sum_{\sigma=1,10} C_{\sigma} Q_{\sigma} \\
& Q_{\sigma}: \ldots,[\bar{s} d]_{V-A}[\bar{q} q]_{V+A}, \ldots \\
& S U(3)_{L} \times S U(3)_{R}:(27,1) \rightarrow A_{2}, A_{0},(8,1) \rightarrow A_{0} \\
&
\end{array}
$$

A tale of various scales

The standard [?] lore:

- Resummation of $O(1 / N) \log \left(\mu / M_{W}\right)$ up to $\mu>m_{c}$ gives a moderate enhancement.
- Charm threshold: $\mu<m_{c} \longrightarrow$ penguins.
- Penguin matrix elements can be large compared to that of left-left operators.

Still to be verified/discarded via an explicit computation ...

Existing results for $\mathrm{A}_{0}, \mathrm{~A}_{2}$?

- Use of XPT for weak decays already developed in the ' 80 s.

Georgi 84; Bernard et al. 85; Kambor et al. 9 I

- Exploratory lattice computations have obtained statistical signals for the relevant matrix elements in the quenched approximation, but suffer from uncontrolled systematic uncertainties.

Kilcup, Pekurovsky 98; Blum et al. 01;Ali Khan et al. 01
O Approximate chiral symmetry.
O Charm integrated out: severe ultraviolet problems (effective Hamiltonian contains 10 operators, ultraviolet-divergent mixing even with exact chiral symmetry).

O Large quark masses.

- Many works rely in models for low-energy strong interactions.

Existing results for $\mathrm{A}_{0}, \mathrm{~A}_{2}$?

Lightest pion mass around 495 MeV .

Our strategy to reveal the role of the charm

Disentangle several possible origins/contributions:

- Physics at the charm scale (via penguins).
- Physics at intrinsic QCD scale $\sim 200-300 \mathrm{MeV}$.
- Final state interactions.
- All of the above (no dominating "mechanism").

Separate "intrinsic QCD" effects from physics at the charm scale:

Consider effective weak Hamiltonian with an active charm and study A_{0}, A_{2} as a function of m_{c}.

$$
\begin{aligned}
& m_{u}=m_{d}=m_{s}=m_{c} \\
& m_{u}=m_{d}=m_{s} \ll m_{c}
\end{aligned}
$$

Our strategy to reveal the role of the charm

Disentangle several possible origins/contributions:

- Physics at the charm scale (via penguins).
- Physics at intrinsic QCD scale $\sim 200-300 \mathrm{MeV}$.
- Final state interactions.
- All of the above (no dominating "mechanism").

Separate "intrinsic QCD" effects from physics at the charm scale:
$\mathrm{SU}(4)_{\mathrm{L}} \times \mathrm{SU}(4)_{\mathrm{R}}$
Consider effective weak Hamiltonian with an active charm and study A_{0}, A_{2} as a function of m_{c}.

$$
\begin{aligned}
& m_{u}=m_{d}=m_{s}=m_{c} \\
& m_{u}=m_{d}=m_{s} \ll m_{c}
\end{aligned}
$$

Outline

- The (many difficulties of studying the) $\Delta \mathrm{I}=\mathrm{I} / 2$ rule.

O Operator product expansion and long distance QCD effects.
O Problems with pions and chirality.
O Our strategy.

- Computational setup.

O Low-energy description: p - vs ϵ-regime.
O Chiral lattice fermions.

- Computational details.

O Bare results and the approach to the chiral regime.
O Matching to physics: renormalisation and chiral fits.

- Results and conclusions.

Effective low-energy description

Dynamics of Goldstone bosons @ LO:

$$
\begin{gathered}
\mathcal{L}_{\mathrm{E}}=\frac{1}{4} F^{2} \operatorname{Tr}\left[\partial_{\mu} U \partial_{\mu} U^{\dagger}\right]-\frac{1}{2} \Sigma \operatorname{Tr}\left[U M^{\dagger} e^{i \theta / N_{\mathrm{f}}}+\text { h.c. }\right] \\
U \in \mathrm{SU}(4), \quad M=\text { mass matrix }
\end{gathered}
$$

Low-energy counterpart of the weak effective Hamiltonian @ LO:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{w}}^{\chi \mathrm{PT}}= & \frac{g_{w}^{2}}{2 M_{W}^{2}}\left(V_{u s}\right)^{*}\left(V_{u d}\right) \sum_{\sigma= \pm} g_{1}^{\sigma}\left\{\left[\widehat{\mathcal{O}}_{1}^{\sigma}\right]_{s u u d}-\left[\widehat{\mathcal{O}}_{1}^{\sigma}\right]_{s c c d}\right\} \\
& {\left[\widehat{\mathcal{O}}_{1}\right]_{\alpha \beta \gamma \delta}=\frac{1}{4} F^{4}\left(U \partial_{\mu} U^{\dagger}\right)_{\gamma \alpha}\left(U \partial_{\mu} U^{\dagger}\right)_{\delta \beta} }
\end{aligned}
$$

Relation of LEC's to $K \rightarrow \pi \pi$ transition amplitudes @ LO in XPT:

$$
\frac{A_{0}}{A_{2}}=\frac{1}{\sqrt{2}}\left(\frac{1}{2}+\frac{3}{2} \frac{g_{1}^{-}}{g_{1}^{+}}\right) \quad \Rightarrow \text { Determine LEC's using lattice } \mathrm{QCD}
$$

Effective low-energy description

Dynamics of Goldstone bosons @ LO:

$$
\begin{gathered}
\mathcal{L}_{\mathrm{E}}=\frac{1}{4} F^{2} \operatorname{Tr}\left[\partial_{\mu} U \partial_{\mu} U^{\dagger}\right]-\frac{1}{2} \Sigma \operatorname{Tr}\left[U M^{\dagger} e^{i \theta / N_{\mathrm{f}}}+\text { h.c. }\right] \\
U \in \mathrm{SU}(4), \quad M=\text { mass matrix }
\end{gathered}
$$

Low-energy counterpart of the weak effective Hamiltonian @ LO:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{w}}^{\chi \mathrm{PT}}= & \frac{g_{w}^{2}}{2 M_{W}^{2}}\left(V_{u s}\right)^{*}\left(V_{u d}\right) \sum_{\sigma= \pm} g_{1}^{\sigma}\left\{\left[\widehat{\mathcal{O}}_{1}^{\sigma}\right]_{s u u d}-\left[\widehat{\mathcal{O}}_{1}^{\sigma}\right]_{s c c d}\right\} \\
& {\left[\widehat{\mathcal{O}}_{1}\right]_{\alpha \beta \gamma \delta}=\frac{1}{4} F^{4}\left(U \partial_{\mu} U^{\dagger}\right)_{\gamma \alpha}\left(U \partial_{\mu} U^{\dagger}\right)_{\delta \beta} }
\end{aligned}
$$

Relation of LEC's to $K \rightarrow \pi \pi$ transition amplitudes @ LO in XPT :

$$
\frac{A_{0}}{A_{2}}=\frac{1}{\sqrt{2}}\left(\frac{1}{2}+\frac{3}{2} \frac{g_{1}^{-}}{g_{1}^{+}}\right) \quad \Rightarrow \text { Determine LEC's using lattice QCD }
$$

Matching QCD to the chiral expansion

$$
R^{ \pm}\left(x_{0}, y_{0}\right)=\frac{C^{ \pm}\left(x_{0}, y_{0}\right)}{C\left(x_{0}\right) C\left(y_{0}\right)}
$$

$$
\begin{aligned}
& C^{ \pm}\left(x_{0}, y_{0}\right)=\sum_{x, y}\left\langle\left[J_{0}(x)\right]_{d u}\left[Q_{1}^{ \pm}(0)\right]\left[J_{0}(y)\right]_{u s}\right\rangle \\
& C\left(x_{0}\right)=\sum_{\mathbf{x}}^{\left\langle\left[J_{0}(x)\right]_{d s}\left[J_{0}(0)\right]_{s d}\right\rangle}
\end{aligned}
$$

QCD

$$
k_{\mathrm{RGI}}^{ \pm}\left[\frac{Z^{ \pm}}{Z_{\mathrm{A}}^{2}}\right]_{\mathrm{RGI}} R^{ \pm}=g^{ \pm} \mathcal{R}^{ \pm}(m, V, \text { LECs })
$$

$$
\begin{array}{ll}
\widehat{\mathcal{C}}^{ \pm}\left(x_{0}, y_{0}\right)=\int \mathrm{d}^{3} x \mathrm{~d}^{3} y\left\langle\mathcal{J}_{0}(x) \mathcal{O}_{1}^{ \pm}(0) \mathcal{J}_{0}(y)\right\rangle & \mathcal{R}^{ \pm}\left(x_{0}, y_{0}\right)=\frac{\widehat{\mathcal{C}}^{ \pm}\left(x_{0}, y_{0}\right)}{\mathcal{C}\left(x_{0}\right) \mathcal{C}\left(y_{0}\right)} \\
\mathcal{C}\left(x_{0}\right)=\int \mathrm{d}^{3} x\left\langle\mathcal{J}_{0}(x) \mathcal{J}_{0}(0)\right\rangle
\end{array}
$$

- p-regime: new LECs appear at NLO
- ϵ-regime: no additional $\Delta S=1$ interaction terms at $\mathrm{O}\left(\epsilon^{2}\right) \Rightarrow$ enables matching at NLO!

$\epsilon-$ vs p-regime of Chiral Perturbation Theory

Gasser, Leutwyler I987; Hansen I990; Hansen, Leutwyler I99I
p-regime: $m \Sigma V \gg 1$
standard XPT in finite $\mathrm{V}: m \sim p^{2} \quad L^{-1}, T^{-1} \sim p$

є-regime: $m \Sigma V \lesssim 1$
reordering of the X expansion: $m \sim p^{4} \sim \epsilon^{4} \quad L^{-1}, T^{-1} \sim \epsilon$

\Rightarrow Constant field configurations (zero modes) are factored out and treated as collective variables.
\leadsto Gauge field topology and the low-lying spectrum of the Dirac operator play a crucial rôle in this regime.
\Rightarrow No additional interactions in the effective chiral theory at $\mathrm{O}\left(\epsilon^{2}\right)$.

$R^{ \pm}$in the ϵ-regime

Hernández, Laine, 2003;
Giusti, Hernández, Laine, Weisz, Wittig 2004

$$
2 \mathcal{R}^{ \pm}\left(x_{0}, y_{0}\right)=1 \pm \frac{2}{(F L)^{2}}\left[\rho^{-1 / 2} \beta_{1}-\rho k_{00}\right]=1 \pm K
$$

with $\rho \equiv T / L$ and β_{1}, k_{00} are shape coefficients of the box.

- same for all ν
- independent of x_{0} and y_{0}
- same in (partially-)quenched theory
- no higher order weak or strong LECS K

$R^{ \pm}$in the p-regime

For these observables the ϵ-regime and ∞-volume results can be smoothly reached from the p-regime expressions

$$
N_{f}=3, L=2 \mathrm{fm}, T / L=2, \Lambda_{+}=500-2000 \mathrm{MeV}:
$$

Deviations from the infinite volume expectation are significant for $M L \leq 5$

Lattice setup: chiral fermions

Breaking of chiral symmetry \Rightarrow less protection against mixing of composite operators under renormalisation.
\Rightarrow Power divergences in mixing with lower dimension operators.
\Rightarrow Mixing with operators in different chiral multiplets.

Bochicchio, Maiani, Martinelli, Rossi, Testa I985
Maiani, Martinelli, Rossi, Testa 1987

Obvious alternatives:"better"Wilson regularisations (tmQCD-based) ...
... or exact chiral symmetry \Rightarrow continuum-like renormalisation.

$$
\begin{aligned}
Q_{1}^{ \pm} & =\mathcal{Z}_{11}^{ \pm} Q_{1}^{ \pm, \text {bare }}+\mathcal{Z}_{12}^{ \pm} Q_{2}^{ \pm, \text {bare }} \\
Q_{2}^{ \pm} & =\mathcal{Z}_{21}^{ \pm} Q_{1}^{ \pm, \text {bare }}+\mathcal{Z}_{22}^{ \pm} Q_{2}^{ \pm, \text {bare }}
\end{aligned}
$$

\Rightarrow exact chiral symmetry \Rightarrow arbitrarily low masses \Rightarrow e-regime.

Lattice setup: chiral fermions

Ginsparg-Wilson fermions:

$$
\gamma_{5} D+D \gamma_{5}=\bar{a} D \gamma_{5} D, \quad \bar{a}=\frac{a}{1+s}
$$

Ginsparg,Wilson 1982
Kaplan; Hasenfratz, Laliena, Niedermayer; Neuberger; ...
Lattice QCD action enjoys an exact chiral symmetry:

$$
\begin{aligned}
& \delta \psi=i \epsilon \hat{\gamma}_{5} \psi, \quad \hat{\gamma}_{5}=\gamma_{5}(\mathbf{1}-\bar{a} D) \\
& \delta \bar{\psi}=i \epsilon \bar{\psi} \gamma_{5}
\end{aligned}
$$

Renormalisation and mixing patterns as in the formal continuum theory, provided:

$$
\psi \rightarrow \tilde{\psi}=\left(\mathbf{1}-\frac{1}{2} \bar{a} D\right) \psi, \quad \bar{\psi} \rightarrow \bar{\psi}
$$

In particular, there is no dangerous mixing with lower dim. operators.

Lattice setup: chiral fermions

Ginsparg-Wilson fermions:

$$
\gamma_{5} D+D \gamma_{5}=\bar{a} D \gamma_{5} D, \quad \bar{a}=\frac{a}{1+s}
$$

Ginsparg,Wilson 1982
Kaplan; Neuberger; Hasenfratz, Laliena, Niedermayer; ...

Our choice: Neuberger-Dirac operator.

$$
D_{\mathrm{N}}=\frac{1}{\bar{a}}\left\{1-\frac{A}{\left(A^{\dagger} A\right)^{1 / 2}}\right\}, \quad A=1-a D_{\mathrm{w}}
$$

Neuberger 1997

Numerical treatment challenging and expensive.

Outline

- The (many difficulties of studying the) $\Delta \mathrm{I}=\mathrm{I} / 2$ rule.

O Operator product expansion and long distance QCD effects.
O Problems with pions and chirality.
O Our strategy.

- Computational setup.

O Low-energy description: p- vs E-regime.
O Chiral lattice fermions.

- Computational details.

O Bare results and the approach to the chiral regime.
O Matching to physics: renormalisation and chiral fits.

- Results and conclusions.

Numerical simulations

$$
R_{ \pm}\left(x_{0}, y_{0}\right)=\frac{\sum_{\vec{x}, \vec{y}}\left\langle J_{0}(x) \hat{Q}_{1}^{ \pm}(0) J_{0}(y)\right\rangle}{\sum_{\vec{x}}\left\langle J_{0}(x) J_{0}(0)\right\rangle \cdot \sum_{\vec{y}}\left\langle J_{0}(0) J_{0}(y)\right\rangle} \propto g_{1}^{ \pm}
$$

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs ϵ-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

Numerical simulations

- p-regime: ratios of correlation functions display plateaux at large enough separations \Rightarrow ratios of physical matrix elements.
- E-regime: expansion performed at fixed topological charge, ratios of correlators fitted to constants and averaged over topological charges (no -dependence at (N)LO in XPT).

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $\quad m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs ϵ-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

Numerical simulations

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs ϵ-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

The origin of statistical fluctuations

$$
S(x, y)=\frac{1}{V} \sum_{k} \frac{\eta_{k}(x) \otimes \eta_{k}(y)^{\dagger}}{\bar{\lambda}_{k}+m}, \quad \bar{\lambda}_{k}=\left(1-\frac{1}{2} \bar{a} m\right) \lambda_{k}
$$

$m \gg 1 / \Sigma V$
\Rightarrow Low-lying spectrum of D_{m} dense near m.
\Rightarrow Contributions from low modes averaged with same weight.
$m \ll 1 / \Sigma V \leadsto$ Sizeable contribution of configurations with very small ev's.
\leadsto Strong dependence on the observable considered.
\Rightarrow Fluctuations reduced by unquenching.
$m \lesssim 1 / \Sigma V \Rightarrow$ Low-lying spectrum of D_{m} discrete: $m \approx \Delta \lambda=1 / \Sigma V$
\Rightarrow A few low modes give sizeable contributions.
\Rightarrow "Bumpy" wave functions can induce large fluctuations.

The origin of statistical fluctuations

$$
S(x, y)=\frac{1}{V} \sum_{k} \frac{\eta_{k}(x) \otimes \eta_{k}(y)^{\dagger}}{\bar{\lambda}_{k}+m}, \quad \bar{\lambda}_{k}=\left(1-\frac{1}{2} \bar{a} m\right) \lambda_{k}
$$

$$
\begin{aligned}
& \left\langle\lambda_{i}\right\rangle_{v}=\frac{\mathcal{O}(1)}{\Sigma V} \\
& \Delta \lambda=\lambda_{i+1}-\lambda_{i} \sim \frac{\mathcal{O}(1)}{\Sigma V} \geq m
\end{aligned}
$$

\Rightarrow Low-lying spectrum of D_{m} discrete.
\Rightarrow "Bumpy" wave functions of few low-lying modes \Rightarrow large fluctuations.

The origin of statistical fluctuations

$$
S(x, y)=\frac{1}{V} \sum_{k} \frac{\eta_{k}(x) \otimes \eta_{k}(y)^{\dagger}}{\bar{\lambda}_{k}+m}, \quad \bar{\lambda}_{k}=\left(1-\frac{1}{2} \bar{a} m\right) \lambda_{k}
$$

$$
\begin{aligned}
& \left\langle\lambda_{i}\right\rangle_{v}=\frac{\mathcal{O}(1)}{\Sigma V} \\
& \Delta \lambda=\lambda_{i+1}-\lambda_{i} \sim \frac{\mathcal{O}(1)}{\Sigma V} \geq m
\end{aligned}
$$

\Rightarrow Low-lying spectrum of D_{m} discrete.
\Rightarrow "Bumpy" wave functions of few low-lying modes \Rightarrow large fluctuations.

Low-mode averaging: treat exactly a few low-modes - full translational invariance enforced in the most fluctuating contribution to the quark propagator.

The origin of statistical fluctuations

$$
S(x, y)=\frac{1}{V} \sum_{k} \frac{\eta_{k}(x) \otimes \eta_{k}(y)^{\dagger}}{\bar{\lambda}_{k}+m}, \quad \bar{\lambda}_{k}=\left(1-\frac{1}{2} \bar{a} m\right) \lambda_{k}
$$

$$
\begin{aligned}
& \left\langle\lambda_{i}\right\rangle_{v}=\frac{\mathcal{O}(1)}{\Sigma V} \\
& \Delta \lambda=\lambda_{i+1}-\lambda_{i} \sim \frac{\mathcal{O}(1)}{\Sigma V} \geq m
\end{aligned}
$$

\Rightarrow Low-lying spectrum of D_{m} discrete.
\rightarrow "Bumpy" wave functions of few low-lying modes \Rightarrow large fluctuations.

Alternative: extract physics from topological zero-mode wave functions.
Giusti, Hernández, Laine, Weisz, Wittig 2004
Hernández, Laine, CP, Torró,Wennekers, Wittig in progress

The origin of statistical fluctuations

$$
\begin{aligned}
& P_{-} S(x, y) P_{+}=P_{-}\left\{\sum_{k=1}^{n} \frac{1}{\alpha_{k}} e_{k}(x) \otimes e_{k}(y)^{+}+S^{h}(x, y)\right\} P_{+} \\
& e_{k}=P_{s} u_{k}+P_{-s} D P_{s} u_{k}, \quad P_{s}\left(D_{m}^{+} D_{m}\right) P_{s} u_{k}=\alpha_{k} u_{k}+r_{k}
\end{aligned}
$$

$$
\begin{gathered}
C_{t}\left(x_{0}\right)=C_{t}^{h h}\left(x_{0}\right)+C_{t}^{h l}\left(x_{0}\right)+C_{t}^{l l}\left(x_{0}\right) \\
C_{t}^{h h}\left(x_{0}\right)=-\sum_{\mathbf{x}}\left\langle\operatorname{Tr}\left[\gamma_{0} P_{-} S^{h}(x, 0)^{\dagger} \gamma_{0} P_{-} S^{h}(x, 0)\right]\right\rangle \\
C_{t}^{l l}\left(x_{0}\right)=-\frac{1}{V} \sum_{k, l=1}^{n} \sum_{y, z} \delta_{x_{0}, y_{0}-z_{0}} \frac{1}{\alpha_{k} \alpha_{l}}\left\langle\left[e_{k}(y)^{\dagger} \gamma_{0} P_{-} e_{l}(y)\right]\left[e_{k}(z)^{\dagger} \gamma_{0} P_{-} e_{l}(z)\right]\right\rangle \\
C_{t}^{h l}\left(x_{0}\right)=-\frac{1}{L^{3}} \sum_{k=1}^{n} \sum_{\mathbf{y}, z} \delta_{x_{0}, y_{0}-z_{0}} \frac{1}{\alpha_{k}}\left\langle e_{k}(y)^{\dagger} \gamma_{0} P_{-} S^{h}(y, z) \gamma_{0} P_{-} e_{k}(z)\right\rangle+[y \leftrightarrow z]
\end{gathered}
$$

Low-mode averaging: treat exactly a few low-modes - full translational invariance enforced in the most fluctuating contribution to the quark propagator.

The origin of statistical fluctuations

Low-mode averaging: treat exactly a few low-modes - full translational invariance enforced in the most fluctuating contribution to the quark propagator.

Giusti, Hernández, Laine, Weisz, Wittig 2004

Numerical simulations: final (bare) results

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs ϵ-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

Numerical simulations: final (bare) results

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs ϵ-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

Numerical simulations: final (bare) results

Expected ϵ-regime features - independence of $R^{ \pm}$on (x_{0}, y_{0}), m and v — are all well reproduced by the data.

Simulation parameters:

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

Quark masses: p-regime $m \sim m_{s} / 2-m_{s} / 6 \quad \mathrm{O}(200)$ cfgs є-regime $m \sim m_{s} / 40, m_{s} / 60 \quad \mathrm{O}(800)$ cfgs

Quenched approximation.

Connecting bare results with physical amplitudes

$$
g_{1}^{ \pm}\left(1+K_{ \pm}\right)=k_{1}^{ \pm}\left(M_{W} / \Lambda_{\mathrm{QCD}}\right) \frac{\hat{\mathrm{Z}}^{ \pm}\left(g_{0}\right)}{\mathrm{Z}_{\mathrm{A}}^{2}\left(g_{0}\right)} R_{ \pm}
$$

\Rightarrow Chiral correction \rightarrow LO/NLO chiPT.
Giusti, Hernández, Laine, Weisz, Wittig 2004
Hernández and Laine 2006
\rightarrow Wilson coefficients \rightarrow NLO QCD PT.
Ciuchini et al. 1998
Buras, Misiak, Urban 2000
\rightarrow Renormalisation \rightarrow QCD PT / nonperturbative result.
Dimopoulos et al. 2006

Renormalisation

Renormalisation factor \hat{Z}^{σ} relates bare and RGI operators:

$$
\begin{gathered}
\hat{Z}^{ \pm}\left(g_{0}\right)=c_{S}^{ \pm}\left(\mu / \Lambda_{\mathrm{QCD}}\right) Z_{S}^{ \pm}\left(g_{0}, a \mu\right) \\
c_{S}^{ \pm}\left(\mu / \Lambda_{\mathrm{QCD}}\right)=\left(2 b_{0} \bar{g}^{2}(\mu)\right)^{\gamma_{0}^{ \pm} /\left(2 b_{0}\right)} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma^{ \pm}(g)}{\beta(g)}+\frac{\gamma_{0}^{ \pm}}{b_{0} g}\right]\right\}
\end{gathered}
$$

\Rightarrow NLO estimate in RI/MOM scheme available.
\Rightarrow Nonperturbative renormalisation of chiral observables possible via a matching procedure to results obtained with Schrödinger Functional techniques.

Renormalisation

Renormalisation factor \hat{Z}^{σ} relates bare and RGI operators:

$$
\begin{gathered}
\hat{Z}^{ \pm}\left(g_{0}\right)=c_{S}^{ \pm}\left(\mu / \Lambda_{\mathrm{QCD}}\right) Z_{S}^{ \pm}\left(g_{0}, a \mu\right) \\
c_{S}^{ \pm}\left(\mu / \Lambda_{\mathrm{QCD}}\right)=\left(2 b_{0} \bar{g}^{2}(\mu)\right)^{\gamma_{0}^{ \pm} /\left(2 b_{0}\right)} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma^{ \pm}(g)}{\beta(g)}+\frac{\gamma_{0}^{ \pm}}{b_{0} g}\right]\right\}
\end{gathered}
$$

	bare P.T.	MFI P.T.	non-perturbative
$\hat{Z}_{1}^{+} / Z_{\mathrm{A}}^{2}$	1.242	1.193	$1.15(12)$
$\hat{Z}_{1}^{-} / Z_{\mathrm{A}}^{2}$	0.657	0.705	$0.561(61)$
$\hat{Z}_{1}^{-} / \hat{Z}_{1}^{+}$	0.525	0.582	$0.584(62)$

Fits to extract LECs

\Rightarrow Choose quantities with smaller mass corrections and statistical errors: $R^{+}, R^{+} R^{-}$
\Rightarrow Fit to NLO XPT to extract $g^{ \pm}$and $\Lambda^{ \pm}$(exploit smooth $\epsilon /$ p-regime transition).

Tension between ϵ - and p-regime may indicate non-negligible higher order corrections \rightarrow systematic error included to account for this.

Outline

- The (many difficulties of studying the) $\Delta \mathrm{I}=\mathrm{I} / 2$ rule.

O Operator product expansion and long distance QCD effects.
O Problems with pions and chirality.
O Our strategy.

- Computational setup.

O Low-energy description: p- vs E-regime.
O Chiral lattice fermions.

- Computational details.

O Bare results and the approach to the chiral regime.
O Matching to physics: renormalisation and chiral fits

- Results and conclusions.

Results: $K \rightarrow \pi \pi$ amplitudes in the chiral limit

Giusti, Hernández, Laine, CP,Wennekers, Wittig 2006

	g^{+}	g^{-}
This work	$0.51(3)(5)(6)$	$2.6(1)(3)(3)$
"Exp"	~ 0.5	~ 10.4
Large N_{c}	1	1

- $\Delta I=3 / 2$ comes in the right ballpark (N.B.: charm effects enter only via quark loops).
- $\Delta I=1 / 2$ channel and amplitude ratio are a factor ~ 4 too small.
- Enhancement of the $\Delta I=1 / 2$ channel already present with an unphysically light charm quark $\left(A_{0} / A_{2} \sim 6\right)$:"pure no-penguin" effect.

Decoupling the charm quark

- Matching between the $S U(3)$ - and $S U(4)$-symmetric low-energy descriptions possible for non-degenerate but light charm masses: additional enhancement predicted to come out in the right direction.
- When the charm is heavy enough the usual $\operatorname{SU}(3)$ chiral expansion is recovered.

$$
\bar{g}_{1}^{ \pm} \rightarrow g_{1}^{ \pm}\left(m_{c}\right) \quad \bar{g}_{2}^{ \pm} \rightarrow g_{2}^{ \pm}\left(m_{c}\right)
$$

- Numerical simulation requires the computation of penguin contractions, much more difficult to deal with. Hope is that low-mode averaging will tame the dominant statistical fluctuations.

Decoupling the charm quark

Giusti, Hernández, Koma, Koma, Necco, CP, Wennekers, Wittig

- Matching between the $\mathrm{SU}(3)$ - and $\mathrm{SU}(4)$-symmetric low-energy descriptions possible for non-degenerate but light charm masses: additional enhancement predicted to come out in the right direction.
$g_{8}\left(m_{c}\right)=\frac{1}{2}\left[\frac{1}{5} g^{+}\left(1+15 \frac{M_{c}^{2}}{(4 \pi F)^{2}} \ln \frac{\Lambda_{\chi}}{M_{c}}\right)+g^{-}\left(1+3 \frac{M_{c}^{2}}{(4 \pi F)^{2}} \ln \frac{\Lambda_{\chi}}{M_{c}}\right)\right]$
$g_{27}\left(m_{c}\right)=\frac{3}{5} g^{+}$
\Rightarrow Logarithmic enhancement of octet.
\leadsto Many unknown LECs.

Hernández, Laine 2004-2006

Decoupling the charm quark

- Matching between the $S U(3)$ - and $S U(4)$-symmetric low-energy descriptions possible for non-degenerate but light charm masses: additional enhancement predicted to come out in the right direction.
- When the charm is heavy enough the usual $\operatorname{SU}(3)$ chiral expansion is recovered.

$$
\bar{g}_{1}^{ \pm} \rightarrow g_{1}^{ \pm}\left(m_{c}\right) \quad \bar{g}_{2}^{ \pm} \rightarrow g_{2}^{ \pm}\left(m_{c}\right)
$$

- Numerical simulation requires the computation of penguin contractions, much more difficult to deal with. Hope is that low-mode averaging will tame the dominant statistical fluctuations.

Conclusions and outlook

- $\operatorname{SU}(4)$ strategy allows to disentangle contributions to the $\Delta I=1 / 2$ enhancement with qualitatively different origins.
- First step: computation of low-energy couplings with an unphysically light charm quark (\rightarrow "pure QCD" contribution):

O Chiral systematics under control via access to ϵ-regime. First time such light masses have been reached in numerical simulations.

O UV effects under control (GW fermions, non-perturbative renormalisation).

- Computation of the couplings completed. Moderate enhancement found. Factor ~ 4 still missing. Main suspect: charm dependence of amplitudes.
- Next step: go to heavier charm masses and monitor amplitudes.

Future: unquenching.

