Appendix: Rudiments of
Supersymmetry

In this appendix we provide the basic ideas on the construction of su-
persymmetric field theories. The emphasis is in providing some basic results
to be used in the general lectures. We mainly follow the notation and dis-
cussion in [1], to which we refer the reader interested in more details and
proofs. For useful tables of supermultiplet components, for diverse extended

supersymmetries in diverse dimensions, see [3, 2|.

1 Preliminaries: Spinors in 4d

Before discussing supersymmetry, it is useful to briefly review two-component
4d spinors (Weyl spinors), their properties, some useful notation, and their
relation to the more familiar four-component Dirac spinors. It is important to
realize that the following discussion has nothing to do with supersymmetry,
but just with spinor representations of the 4d Lorentz group, and that two-
component spinors appear in many contexts, for instance in the Standard
Model.

The 4d Lorentz group contains two inequivalent spinor representations,
usually denoted left- and right-handed spinors. These representations are
two-dimensional, so the spinors are denoted two-component, and sometime
Weyl spinors. The two representations are exchanged under (Dirac) conju-
gation (transposition and complex conjugation), namely the conjugate of a
left-handed object transforms as a right-handed spinor.

We use the following notation, we denote a left-handed spinor as 1,, a
right-handed spinor as 1¢. We also denote the conjugate of a right-handed
spinor by 1 and the conjugate of a left-handed spinor by 4.



A Lorentz transformation is represented on spinors in terms of a matrix
M in SL(2,C) (Notice that it contains six independent real parameters).

Spinors transform as

U= M. g Uy = (M) ¥
w/a — w,B(M—l)ﬂa ; 1/_110'4 — q/jﬁ(M*—l)Bd (1)
Namely, 1/, and 9 are rotated by M as column and row vectors, while 1,

and 1% are rotated by M*.

Thus, contractions of the form (...)%(...), and (...)4(...)* are invariant.

Vector representations can be constructed from the spinor representa-

tions. For that purpose, we introduce the matrices o .4

N RN RN RS

Considering linear combinations of the form P = P,o*, the inherited action
of M is

Py = M Pyy(M*)¥ = (MPM")os (3)

Indeed this is a Lorentz transformation on the 4-vector (P,), since the trans-
formation preserves det P = —[—(F)? + (P1)? + (P2)? + (P3)?], which is
precisely (minus) the norm of P,. Hence, any vector can be expressed in
terms of bi-spinor components (and vice-versa).

It is useful to introduce the tensors

@ =20 = (] ) )

(and similarly for dotted indices). They are Lorentz invariant, namely they

satisfy
€ap = Ma" Mg’ €5 5 ¢ = (M), (M71),° (5)
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as may be checked by using their explicit expressions.
These properties imply that the tensors can be used to raise and lower

indices
¢a = eaﬂwﬂ ; % = eaﬂwﬂ (6)

(and similarly for dotted indices). What this means is that e.g. the object
€*#1)# transforms as an object ()¢, (i.e. as a column vector on which M acts),

which we denote ¥®. We introduce the shorthand notation
X =x"a ;X =xa¥* (7)
Using the € tensors, we can also define
(oh)de = edﬂeaﬁa“ﬁﬁ- (8)
They satisfy
(oto” +0"a")P = —2*6,F (oto” + 6“0“)‘5‘3 = —277’“’5‘3‘5 9)

In terms of them, the generators of the Lorentz group are given by
wry B 1 b —vap v —pap . —UV\ G 1 s Uéo v s VAo
(") " = Z[Uao'ﬂ —0a50" ] 5 (0M)% = Z[U 0" 05 — 0V %" 4] (10)

Given two Weyl spinors of opposite chiralities xq, 1% (and equal global and
gauge quantum numbers), one can construct a four-component Dirac spinor

by superposing them as a column vector

o (3)

on which the Dirac matrices are realized as

= ) (12)

ot 0



which satisfy the Clifford algebra relations, as follows from (9). Also, given
a single Weyl spinor, say x,, in a real representation of all all global and
gauge symmetries, one can construct a four-component fermion, by taking

its conjugate to play the role of the right-handed piece, as follows

v = () (13)

X
Such spinors ¥,, are thus subject to a reality condition, and are denoted
Majorana. Notice that Weyl spinors in complex representations of the global
or gauge symmetries cannot be turned into Majorana spinors, since the spinor

and its conjugate cannot belong to the same multiplet.

2 4d N =1 Supersymmetry algebra and rep-

resentations

In this section we discuss the basic structure of 4d N = 1 supersymmetry

algebra, and its realization in terms of fields.

2.1 The supersymmetry algebra

The 4d N = 1 supersymmetry algebra contains two spinorial generators @),
Q, which behave as Grassman variables, and hence obey anticommutation

relations. The algebra is given by

{Qa,Qs} = 20" P,

{Qu:Qs} = {QaQz} =0

{Pu,Qa} = {Pu,Qa}=0 (14)
(in addition, we have the natural commutators that imply that the @Q’s are

in the spinor representations).



OBS: The above algebra is invariant under U(1) transformations rotating

the supercharges Q,, Q4 by opposite phases.
Qa — ei)‘Qa ; Qd — e_i/\Qo'z (15)

This symmetry is known as R-symmetry.

Since the supergenerators ., @4, are Grassman quantities, when re-
alized on quantum fields they relate bosons and fermions. Each multiplet
providing a representation of the supersymmetry algebra (supermultiplet)
thus contains bosons and fermions. Since the operator P?, which is the mass
square operator, commutes with the ()’s, bosons and fermions in the same
multiplet are mass degenerate. Similarly, the supergenerators commute with
any global and gauge symmetry of the theory !, so all fields in a supermul-
tiplet belong to the same representation of global and gauge symmetries.

An important property is that the total number of physical bosonic and
fermionic degrees of freedom is equal within a supermultiplet. To show this,
we define the operator (—1)¥, which is equal to +1 for bosons and —1 for
fermions, and hence satisfies (—1)"Q, = —Q.(—1)". We can then compute,
in two different ways, Tr [(—1)"{Qa, Q4}], where the trace is taken over states

of fixed momentum in a supermultiplet,

) Tr[(-1)"{Qa, Qa}] =Tr[(-1)"QuQs + (=1)"QaQa] =
= Tr[~Qa(-1)"Qa + Qu(-1)"Qa] = 0
2)  Tr[(-1)"{Qa,Qa}] =20"aaPTr[(~1)"]
(16)

Hence Tr[(—1)¥] = 0 in a supermultiplet.

!Except for R-symmetries, see below.



2.2 Structure of supermultiplets

Let us consider the construction of the supermultiplet for massive fields of
mass M. Going to the rest frame for such particles, the relevant piece of the

algebra (14) becomes

{Qa, Qs} = 2Mbgg
{Qa, Qs = {Qa,Q3}=0
(17)

By defining a, = Qu/V2M, al, = Qs/v/2M, these are the anticommutators
for two decoupled fermionic harmonic oscillators. The supermultiplet is built
by starting with a lowest helicity state |2), obeying a,|2) = 0, and appying

operators af, namely

State Helicity
€2) j
UNORVES
adl)

In building a quantum field theory with the corresponding fields, it is
important to notice that CPT flips the chirality (and conjugates the global
and gauge representations), so a CPT-invariant supermultiplet may require
using two of the above basic multiplets.

Two of the most useful supermultiplets are the following:

- The massive scalar supermultiplet is obtained by starting with a 57 =0
state [2). It contains states of helicities 0, £1/2, 0. It thus contains a Weyl
spinor and a complex scalar. This is CPT-invariant if the supermultiplet
belongs to a real representation of the gauge and global symmetries. If not,
two of these basic multiplets, in conjugate representations, must be combined
to form a CPT-invariant set.

- The massive vector multiplet is obtained by starting with a j = 1/2
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state |Q2). It contains states of helicities 1/2, 1, 0, 1/2. Combining it with its
CPT conjugate, the total multiplet contains one massive vector boson, one

real scalar and two Weyl fermions.

Let us now consider the construction of supermultiplets for massless fields.
Since they have light-like momentum P? = 0, they do not have rest frame,
but we may use a reference system where P = (—F, 0,0, E). In this frame,
the supersymmetry algebra is

@ =2(" ) )

Defining the rescaled operators
1 1 =
— . T — .
a4=—= ; o' = —=
Wik Wik

they correspond to a fermionic harmonic oscillator. The multiplet is con-

(19)

structed by starting with a lowest helicity state |Q2), satisfying

alQ2) = Q2[Q2) = Q3/0) =0 (20)

Hence the multiplet contains the states |Q2) and af|2), with helicities j and
j+1/2, respectively. As before, one may need to combine this multiplet with
its CPT conjugate to formulate a quantum field theory.

Some of the most useful massless supermultiplets are:

- The chiral supermultiplet, obtained by taking |2) of helicity j = 0, so
it contains states of helicity j = 0,1/2. This should be combined with its
CPT conjugate, with helicities j = 0, —1/2. This complete chiral supermul-
tiplet contains a complex scalar and a 4d Weyl fermion. This multiplet can
transform in an arbitrary representation of the gauge and global symmetries,
hence contains a chiral fermion, which is necessarily massless. If the multiplet
happens to transform in a real representation, it is possible to write a mass

term for it (see later), so it is equivalent to a massive scalar supermultiplet.
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- The massless vector supermultiplet, obtained by taking |Q2) of helicity
j =1/2, so it contains states of helicities j = 1/2,1. Combined with its CPT
conjugate, with helicities j = —1,—1/2, the multiplet contains a 4d Weyl
spinor and a massless vector boson. The multiplet transforms in the adjoint
representation of the gauge group, which is real, so the 4d Weyl spinor can
be recast as a 4d Majorana spinor.

- The supergravity multiplet, containing states of helicity j = 3/2,2.
Combined with its CPT conjugate, of helicities j = —2, —3/2, it contains a
graviton and a gravitino (a spin 3/2 particle). We will not discuss it in detail,
since interacting theories involving this multiplet have spacetime diffeomor-
phism invariance, and include gravity (and in fact local supersymmetry),
they are known as supergravity theories, and lie beyond the scope of this

lecture

3 Component fields, chiral multiplet

The supersymmetry transformation parameters are anticommuting spinors
£%, &,. Formally, the supersymmetry variation

is 0¢ = £Q + £Q. The supersymmetry algebra can be expressed as
£Q.7Q] = 280" P,
€Q,nQ] = [£Q,7Q] =0 (21)
We would like to construct a representation of the supersymmetry algebra,
using the massive scalar multiplet, which contains as physical degrees of

freedom a 4d Weyl spinor v, and a complex scalar ®. The supersymmetry

transformations of these fields are

5 = V2¢&
Octha = iV20"05E%0,® +V2E,F (22)
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Namely

Qa® =0 Qa® = V2¢5
dea = _i\/io'“adauq) Qawﬂ = \/ieaﬂF (23)

The field F' appearing in the transformation of the fermions is discussed
below.

The transformations acting on ® satisfy the supersymmetry algebra. In
order for the transformations acting on 1 to satisfy the supersymmetry al-
gebra, we have two choices

i) Take F' = —m®*, and use the equation of motion of a free massive

fermion for v, namely —i6%0,1 = ma). Since we are using equations of
motion, the algebra closes on-shell.

ii) Consider F' to be and independent field, and require 6 F' = iﬂf&“@,ﬂ/].
Since the equations of motion are not involved, the algebra closes off-shell.

Notice that the viewpoint i) is disadvantageous, since the equations of
motion are different for different theories, and this complicates the construc-
tion of interacting theories. On the other hand, from the viewpoint ii) the
transformations obey the supersymmetry algebra relations, no matter what
the dynamics of the theory is. It is important to notice that the field F' does
not really describe a new physical degree of freedom. Since the dimension
of &, € is 1/2, F has dimension 2, and it is not possible to write a kinetic
term for it, and it is called an auxiliary field. Hence we still have equality
of the number of bosonic and fermionic physical degrees of freedom in the
supermultiplet.

In principle, one can construct supersymmetry transformations for fields
in other supermultiplets. However it is non-trivial to do so for more com-
plicated supermultiplets. The task is facilitated by a technique, known as

superfield formalism.



4 Superfields

4.1 Superfields and supersymmetry transformations

Let us consider the set of component fields in a supermultiplet. Since they
form an irreducible representation, the whole set can be generated from any
one of them, say A, by acting with the supergenerators. It is useful to

consider the following formal expression
F(z,0,0) = "9t9Q 4 (24)

Different component fields in the supermultiplet arise as coefficients in the
power-expansion of F in 6, f. Since the latter are Grassman variables, the

power-expansion is a finite expression, of the form

F(z,0,0) = f(z) + 06(z) + 0&(z) + 00 m(z) + 00n(z) +
+ 05"0v,(z) + 000X(z) + 000y (z) + 0000d(x) (25)

where all the fields are related to each other by the action of @, Q. Expres-
sions of the form (25), providing a formal sum of the component fields in
a supermultiplet, are refered to as superfields. Formally, they are functions
over a superspace parametrize by the supercoodinates z = (z, 0, 9_). A whole
branch of mathematical physics is the study of the geometry of superspace
(supergeometry), but we will not need much of its machinery.

The use of superfields facilitates the computation of supersymmetry trans-
formations of the component fields. Let us introduce a formal sum of such

variations

5§F(1‘,9, é) = (5§f($) + Oéggb(x) + §5§g($) + 60 55’171(33‘) + 595577/(,%‘) +
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We formally write §;F = (£Q + £Q) x F. The operation (£Q + £Q)x thus
maps a superfield to the superfield constructed using the susy variations of
the component fields. Notice that it does not interfere with the 6, 6.

We would like to represent the action of (€Q-+£Q) x in terms of differential
operators in superspace. The simplest operators in superspace are derivatives
Oy = % and 0, = a%d (in addition to the familiar 0, = %. Using Hausdorff
formula, eAt? = e4ePe~4Bl/2 (for A, B, commuting with [A, B]), we have

gaaa (60Q+5Q % ) — é-aaa eGQeéQe_ague_P“ % —
= (£Q +1i0"08,) x €999 x
£40° R0 o — (€Q — iﬁa“gau) « 0Q+0Q (27)

From this we learn that the action of £Q, £Q on component fields can be
represented in terms of differential operators acting on superfields. By abuse

of notation, these differential operators are also denoted @, and Qg

Qo = 0n—i0",:0%),
Qs = 0s—i0%0",40, (28)

Namely, given a superfield F(z,6,8), we can compute the supersymmetry
variation of its components, which are encoded in the superfield of variations
(26) 6¢F = (£Q +£Q) x F, by computing J¢F using the action of the differ-
ential operators (28), namely 0:F = (£Q + £Q)F. Comparing terms in both
f-expansions leads to the supersymmetry variations.

An important observation is that the component field corresponding to
highest power in 6, 6 in the expansion, always transforms as a total diver-
gence. This is because 0, § have dimension —1/2, so that this component
field is the one of highest dimension in the supermultiplet. On the other
hand, the supergenerators @, Q4, have dimension 1/2. Thus the supersym-

metry variation of the highest-dimension component field is necessarily the
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derivative of a lower-dimension component field. This observation will be the

key idea in the construction of supersymmetric field theory actions.

Superfields are useful since they provide linear representations of the su-
persymmetry algebra. Actually, a completely general superfield corresponds
to a reducible representation. Different irreducible representations corre-
spond to superfields satisfying different constraints, consistent with the ac-
tion of the operators (28). This will be discussed below. For that purpose,

it is useful to define the differential operators

Da = aa + ia“adﬁaau ; Dd = _gd - ieaa“adau (29)
They anticommute with the operators (28)

{DaaQﬂ} = {DaaQB} = {DdaQB} = {DduQﬂ'} =0 (30)

4.2 The chiral superfield

A chiral superfield ®(x,0,0 is characterized by Ds® = 0. It is useful to
describe it in terms of a new position variable y* = z* + i#o*@, in terms of

which the differential operators (29) read

0 0 _ 0
Da = == 21 “ao-ﬁa— ; Dd = — X" 31
gga 27 ea? G 96 (81
Hence a chiral superfield has the expansion
®(y,0,0) = ®(y) + V204(y) + 09F (y) (32)

We can readily identify that this describes a chiral (or scalar) supermultiplet
(by abuse of language, one often uses the same notation for the superfield
and for its complex scalar component field, hoping the context will disentan-

gle any possible ambiguity). Indeed we can reproduce the supersymmetry
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transformations of the component fields, by using the differential operators

(28), which in these coordinates read

9 9
Qo = 20° ; Qs = Erri 210 "“a"’a_w (33)
and comparing
(EQ+EQ) x B(y,0,0) = 5:B(y) + V206c1ba(y) + 005 F(y) (34)
0000068 — 22 0(0,0.8)+ (- 2i80h L 1e8030.5) —
(gQ + gQ)(P(ya 05 0) = g wq)(ya 05 0) + (aﬁ — 210 O-uaa 8:(]“)6 (I)(y: 9, 0) -

= V26 + V20%(—iV20" 1440, + £, F) + 000/ 2€6" 0,1
In terms of the original coordinates, we have
®(z,0,0) = @(z)+i00"00,%(z) + 300 000®(x) +
K
V2

Notice that the highest-dimension component is the same, expressed in terms

V200 () — —=000,3(x)0"0 + 0OF (z) (35)

of = or y.

An antichiral field satisfies the condition that D, annihilates it. Clearly
the the adjoint superfield ®' of a chiral superfield is antichiral. In terms of
z, 0, 0, it reads

_ _ 1 __
®Y(z,0,0) = ®*(z) — i00"0 0, 9" (z) + 700000 " (x) +

V200 (z) + 50000 0,0(2) +00F" () (30)

The supermultiplet has a simpler expression in terms of the variable y# =
z* — o0, it reads

'y, 0,0) = & (y') + V20 (y") + 00F* (y") (37)

An important property of chiral multiplets is that their product is also

a chiral superfield. This is straightforward using the expression in terms of
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y coordinates. By using power-series, one can show that any holomorphic
function of chiral multiplets W (®.(x,0,0) is also a chiral multiplet. For
future convenience, one can show that its highest-dimension component is
given by

o*wW

W (@)oo 0P, 0P,

aw) e OW (38)

Y + F, <@ k5%,

where in the right-hand side ® denotes the scalar component field, not the
superfield.

On the other hand, non-holomorphic functions like ®f® are not chiral
superfields. For future convenience, we list the highest-dimension component
of the latter

_ _ 1 1 1
0! (2,0,0)05(2,0,0)|gp99 = FiFp+ Z(I’TD% + ZD(I’T Dy — 5(9”‘1’?3“@2 +

7 7 -
+§8M1/)16”1b2 - §¢15“5u¢2 (39)

We are now ready to construct supersymmetric lagragians for fields in
chiral supermultiplets. The key idea is that, since the highest-dimensional
component of a supermultiplet (usually a product of basic supermultiplets)
transforms as a total derivative, its spacetime integral is invariant under
supersymmetry transformations. The strategy then is to construct product
superfields whose highest-dimensional component corresponds to kinetic and
interactions terms. Finally, recalling the rules of integration over Grassman

variables,

/dH:O : /d00:1 (40)

an efficient way to extract the highest component of a supermultiplet is to

integrate it over the supercoordinates # and/or f. For instance

/ d200(z,0,0) = F(z) (41)
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A typical supersymmetric action for a set of chiral supermultiplets has the

structure
/d4xd20d29q>f@ +/d4xd20W +/d4xd20W( ) (42)

The first term can be generalized to [ d*z d?0 d26 K (®;, ®}), with K a real
function, known as Kahler potential. Expanding in components, this implies
that the space parametrized by scalars in chiral multiplets is Kahler (in the
geometric sense). We will however stick to the canonical kinetic term above,
but occasionally refer to these more general possible actions.

Using (38), (39), the action in component fields reads (integrating by

parts in certain terms)

. O*wW ow oW
- _ LD 4 bt b — F*F T g
S [au@za ®; + 0" 0, — FF, 59, 9%, i — (8@ ) F; P 9P, ] (43)

We see that the auxiliary fields F; are indeed non-dynamical. We can use
their equations of motion, to obtain F; = —0W/0®;. Replacing in the above
expression, we have

_ oWl Pw
i Bt

1/)#/@] (44)

The first two pieces are standard kinetic terms. The fourth describes

scalar-fermion interactions, and the third is a scalar potential

aw [
V(®;) = — 45
=] @
It is positive-definite, and vanishes for scalar vevs such that
ow
9%, (46)

These are know as F-term constraints, which are a necessary condition for a

supersymmetric vacuum of the theory.

15



An important property of supersymmetric field theories is that the super-
potential is not renormalized in perturbation theory. That is, because of the
relations imposed by supersymmetry, all radiative corrections to the terms
arising from the superpotential vanish to all orders in perturbation theory.
The proof of this statements involves the structure of Feynman diagrams in
superspace, and we will not discuss it. In particular examples (for instance
for the Wess-Zumino model, i.e. a theory with one chiral multiplet and a cu-
bic superpotential), one can show it very explicitly exploiting the holomorphy
of the superpotential, see [?] for detailed discussion. Both arguments show
that there are important non-renormalization theorems involving terms in
the action which involve intergration over half the superspace coordinates.
Another important observation is that the non-renomalization theorem in
general does not hold beyond perturbation theory, hence non-perturbative
corrections to the superpotential may appear. In some situations, they may
be exactly computable using the constraints from supersymmetry and reason-
able assumptions about the field theory dynamics. These non-perturbative
corrections usually have a nice physical interpretation (like instanton effects

or gaugino condensation). See [?] for more complete discussion.

4.3 The vector superfield

A vector superfield V is characterized by the condition V' = V. The expan-

sion in component fields can be expressed as
V(2,0,0) = C(z)+ifx(z)ifx(z) + %HQM(x) - %ééM*(x) — 00"V, (z) + (47)
o . B . . L
+ 000 Mx) + %6“6“5(:5)] — 000 \z) + %0“6“5(30)] + 50000 D(x)

The peculiar choice of components in the 620, %6 and 624> terms, is for

future convenience.
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As we will see, the content of component fields of the vector superfield is
that of a massless vector superfield. Thus, it should describe the supersym-
metric version of a gauge boson. Hence there is a supersymmetric version of
a gauge transformation. For vector multiplets associated to U(1), it is given
by

V—V+ (A+AT) (48)
where A(y,0,0) = A+ /201 + 00F is a chiral superfield. Since

A+ AN = A4+ A+ V20 + 0)) + 00F + 00F* + i00"00, (A — A*) +
Zi_opgion & pmnoha -+ Lo60IaA 4 A°
+ ﬁeeeo O + + ﬂeeea Outp + 7 00000(A + A7) (49)

the transformation of component fields is

V=V, —id(A—A*) 3 C—oC+A+A"
A=A £—&— iV
D—D M — M — 2%F (50)

So one can use the gauge transformation parameters A + A*, ¢, F' to gauge

away C, £ and M. The vector supermultiplet then reduces to 2
_ _ o 1 __
V(z,0,0) = —00"0V, + 600X —i06 0\ + 500 060 D (51)

This partial gauge fixing, known as Wess-Zumino gauge, still allows for stan-
dard gauge transformations V,, — V,, —i0, (A — A*). Hence the vector super-

multiplet provides the supersymmetric generalization of the Yang-Mills gauge

2Notice that supersymmetry transformations do not preserve the WZ gauge. Hence
any supersymmetry transformation should be followed by a compensating gauge transfor-

mation to bring the supermultiplet to the WZ gauge.
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potential V},. In order to build gauge-invariant kinetic terms, we introduce
the field-strength superfields

1 _ 1
Wo=-,DDD.V ; Wa=—_DDD;V (52)

They are chiral superfields, which are invariant under the gauge transfor-

mations (48). In terms of components fields (in coordinates y, 6, ), we

have
W, = —ida(y) + 0D (y) — %(auay)aﬂeﬁ Fu(y) + 000" 050, X% (1) (53)

where F,, = 0;,V,). There is a similar expression for W in terms of y!.
Hence the above superfields provide the supersymmetric completion of the
gauge-invariant field strength.

The gauge and Lorentz invariant expression W*W, has a highest-dimension

component
-1 '
WeWa = ...+ 00 (=2000" 0\ = P By + D+ Seno FVF?) - (54)

precisely of the form of the kinetic term (and theta-term) for the U(1) gauge
boson, and the gauginos. Hence the action for the gauge boson can be

constructed as
S = / d'z 29 WeW, + / d*z 29 W W (55)

OBS: For U(1) gauge group, it is also possible to introduce an additional

term in the action, known as Fayet-Illiopoulos term, of the form
Ser = X1 / d'z / POPOV = / d'z D (56)

where x gy is a constant.
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The discussion of non-abelian gauge bosons is similar, with slightly more
general definitions. Vectors superfields have the same structure, but trans-
form in the adjoint representation. The gauge parameters are given by a set

of chiral multiplets in the adjoint representation of the gauge group G,
Aij =TAq (57)
The gauge transformation is given by
eV = e MeVeit (58)

This also allows for a WZ gauge, leaving V', A%, D* as degrees of free-
dom, with the standard gauge transformations for V. The non-abelian

field-strength superfields are given by
1_ _
W, = —ZDDe_VDaeV (59)
which transforms under (58) as
W, — e MW, et (60)

The supersymmetric Yang-Mills action is given by (55), with an implicit trace

over gauge indices.

4.4 Coupling of vector and chiral multiplets

We would like to discuss the construction of actions describing the interaction
of gauge and chiral supermultiplets. As expected, the coupling of chiral
multiplets to gauge vector multiplets is obtained by a suitable modification
of the chiral multiplet kinetic term so as to make it gauge invariant.

Let us start with the case of a U(1) vector multiplet, and several chiral
multiplets ¢;, transforming under U(1) with charges ¢;. Namely, under a

gauge transformation V — V +i(A — AT),

®; e hp; df s eiih ! (61)
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Hence the expression <I>}L e%V ®; is gauge invariant, and is the gauge-invariant
generalization of ®f®;.

The full lagrangian for the vector and chiral multiplet interactions is
[dwdoww, + [dwddwwe +
+/d4xd29d20q>fewq> +/d4xd20W +/d4 /d20W 62)
In fact, one can generalize the gauge kinetic term to an expression [ d*zd’ f(®)W*W,,
where f is a holomorphic function (known as gauge kinetic function) and @
are chiral multiplets. Notice that this can be regarded as promoting the
gauge coupling to a chiral superfield. In the following we however stick to

the simplest situation of constant f.

The term containing the chiral-vector coupling is
1
/ d'z 20 20 1tV ® = FF* + OOd* + zau¢a“w + 5(aD@"®) + (63)

L 1
+qVu (v + q> 0,0 — a PO) = —=q(PAY — ONp) — ¢V, V 00

\/5

One can integrate out the auxiliary field D, by using its equations of motion.
The field D appears in

1 1

so the equations of motion give D = —1/2 3, ¢;®;®; + xr;. The D-term

lagrangian becomes a potential term
1,1 ,
Vb = 5(5 > 2P — xr1)? (65)
i

The condition D = 0 that it vanishes is a necessary condition for a super-
symmetric vacuum, known as D-term condition.
For non-abelian gauge symmetries, chiral multiplets transform in a rep-

resentation R of the gauge group,

d — e O (66)
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where @ is regarded as a column vector and A;; = (t£);;A® is a matrix acting

on it. The action for the complete system is given by
1 1 o
S = —/d4xd20W"Wa + —/d4xd20WdW“ +
+/d4 /d29d2 0 leté Ve, +/d4xd20W +/d4xd20W( )* (67)

After integrating out the D field, the D-term potential has the explicit ex-

pression
1 Ri)
= —Z 5 2 k() 2)” (68)

where the sum in £ runs over all chiral multiplets in non-trivial representa-

tions (denoted Ry) of the gauge group G.

In conclusion, the most general N = 1 supersymmetric action (up to
two derivatives) for a system of chiral and vector multiplets is specified by
three functions: the Kahler potential K (®, ®'), which is a real function and
defines the chiral multiplet kinetic term, the superpotential W (®), which is
holomorphic and defines chiral multiplet interactions, and the gauge kinetic
functions f(®), which are holomorphic and define the gauge boson kinetic

term.

4.5 Moduli space

Supersymmetric gauge field theories often contain flat directions in the scalar
potential, namely there is a continuous set of (inequivalent) supersymmetric
vacuum states of the theory, parametrized by the vacuum expectation values
(vevs) for scalar fields. The scalars parametrizing flat directions in the scalar
potential are known as moduli (moduli fields in string theory, like the dilaton

etc, are indeed examples of such fields), and are massless. The set of vevs
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corresponding to supersymmetric minima of the theory is known as moduli
space.
The conditions that scalar vevs should satisfy to belong to the moduli

space are that the F-terms and D-terms vanish, namely

ow
od;, 0
S oltfe, = 0 (69)

where i runs through the chiral multiplets in the theory (in a representation
R; of the gauge group) and a runs through the generators of the gauge group.

Notice that supersymmetry is essential in maintaining the direction flat
after quantum corrections. Indeed the F-term conditions are obtained from
the superpotential, which is protected against quantum corrections by su-
persymmetry. On the other hand, the D-term conditions follow from gauge
invariance, and are uncorrected as well. In non-supersymmetric theories,
fields which look like moduli at tree level typically acquire mass terms from
radiative corrections, and moduli space is lifted (a non-trivial scalar potential

develops).

Let us provide some typical examples of theories with flat directions.
Consider a U(1) gauge theory with one neutral chiral multiplet ®, and
two chiral multiplets ®;, &, with charge +1, and two ®;, 5 with charge —1.

We introduce a superpotential
W =09,9| — dD,d;, (70)
The F-term conditions on scalars give
D9 = Py®, ; PP, =0 ; PP, =0 (71)
while the D-term conditions read
(@17 + @ — [@|* — [@5* =0 (72)
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These equations are satisfied for the choice of vevs
(@)=0 ; (@)=v ; (P)=w ; (P)=w ; (Y)=v ; (73)

So the moduli space is parametrized by two complex parameters. There is

a complex two-dimensions manifold of vacuum configurations for this theory
3

Let us provide a second example, with non-abelian gauge symmetry. Con-
sider a U(N) supersymmetric gauge theory with three chiral multiplets ®;

in the adjoint representation (thus regarded as N x N matrices, and super-

potential
W =tr ((I)l(I)Q(bg - (131(133(1)2) (74)

This theory has a very non-trivial moduli space *. The F-term conditions

read

This implies that the matrices of vevs for these fields should be commuting.
Then one can use gauge transformations to simultaneously diagonalize them,

so that the vevs are

(Pi)mn = (V3)nOmn (no sum) (76)

For adjoint multiplets expressed as n X n matrices, the D-term condition is

D (@) (6™ (P) = (P (86 mg(®i)g ] = 0 (77)

%

3As we will see later, this theory is in fact N = 2 supersymmetric, with V and &
forming an N = 2 vector multiplet, and ®;, ®, forming two hypermultiplets. The moduli
space is parametrized by the vevs of a hypermultimplet, given by a combination of the
latter.

4As we will see later, this theory is in fact ' = 4 supersymmetric.
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These are automatically satisfied, upont substitution of the above vevs.
Hence the moduli space is parametrized by the n triples of complex eigen-

values (v;),. Some realizations of this gauge theory in string theory (in terms

of configurations of D-branes) allow for a simple geometric interpretation of

this moduli space.

5 Extended 4d supersymmetry

5.1 Extended superalgebras

N-extended supersymmetry is generated by N Weyl spinor supercharges Q!
Qar1, with T = 1,..., N. Since each supercharge contains two-components,

the number of supercharges is 4N. The algebra that they satisfy is

{Qn, Qasy = 2043P.0";
{Qi: Qé} = 5a,BZIJ
{QdIaQBJ} = EaB(Z*)IJ (78)

with Z!7 antisymmetric in its indices.

This is the most general superalgebra consistent with 4d Lorentz invari-
ance. The Z!7 (and their conjugates Z*) commute with all supercharges @,
Q, and are known as central charges. Each state (each supermultiplet) has
a particular value for the corresponding operators. For the most familiar
supermultiplets, the value of the central charges is zero, so we ignore them
for most of our discussion (however, the supermultiplets describing soliton
states of certain supersymmetric theories have non-trivial central charges.
Thus, we will make some useful comments on this case, towards the end).

Some remarks are in order: Notice that the R-symmetry of the super-
algebra is (for zero central charges) U(NN), where the SU(N) acts on the
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indices I (in the fundamental or antifundamental representation), while the
U(1) acts on supercharges as an overall phase rotation (just like in N = 1
supersymmetry). Notice also the fact that the N-extended supersymmery al-
gebra contains the supersymmetry algebras of M-extended supersymmetry,
for M < N. This implies that the supermultiplets of extended supersymme-

tries naturally decompose as sums of supermultiplets of their subalgebras.

5.2 Supermultiplet structure

Let us start by considering the construction of supermultiplets, in a sector

of zero central charges, so that the superalgebra reads
{Qh, Qas} = 205:P.0",
{QL, Q3 = 0 {Qar,Qzs} =0 (79)
Let us start discussing massless supermultiplets. In the reference frame where

the momentum is (P,) = (—FE,0,0, E), the non-trivial piece of the superal-

gebra reads

_ 2E 0
{Qn: Qs =2 ( > 'y (80)
0 O
As in the N = 1 case, the supercharges Q., Qs are realized as zero, and we
introduce
1 1
I _ I . T _
a = —— : ay = ——=Q; 81
2\/§Q1 1 2\/5@11 ( )

which satisfy
{a';a}} =¢'; ; {d',d’}={a},al} =0 (82)

We construct the supermultiplet by starting with a state €2) of lowest helicity
7, annihilated by the a (and the Qs, @), and applying the operators a} to
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it. The number of states in such multiplet is 2V. As in the N = 1 case,
CPT invariance may require to combine these basic multiplets with their
conjugates to be realized in a local field theory.

We will discuss some explicit examples of massless supermultiplets below.

The construction of massive supermultiplets is also a simple generalization

of the N =1 case. In the rest frame, we have

{inQdJ} = 2M6ad51J
{Qa, @3} = 0 5 {Qar,Qps} =0 (83)

Rescaling the operators as

1 1 =
I _ r . It —
a, = Qy 5 a, = Qs 84
VO A VM ! (84)

we have a set of 2N decoupled fermionic harmonic oscillators, which lead to

a supermultiplet of 22V degrees of freedom.

Finally, let us briefly sketch the construction of massive multiplets in a
sector of non-zero central charges. Using the R-symmetry of the theory, we
may bring the antisymmetric matrix Z” to a block form e.g. for N even (on

which we center in what follows)

Z=5®D:(g 10)> (85)

with D = diag (Z1, ..., Zn/2). Splitting the indices I as (a,m), with a = 1,2
and m = 1,..., N/2, the central charges read Z9™ = ¢%§™" 7 (no sum).

The superalgebra reads

{ Zm’den} == 2M5ad(5ab6mn

{ gm,Q%n — gaﬂgabéngn
{Qdam;@ﬁbn} = Edﬂ'eab(smnzn (86)
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We can define the linear combinations

1 _
Uy %[Qim + €apQp2m]
= QI — 20pQom] (87)

SNG

and their adjoints. They satisfy

{ag agt = {by, b5} = {ag, b5} =0
{al}, (ag)f} = 030" (2M + Z,,)

a

{0, (b2)'} = Gagd™ (2M — Z,) (88)

From this it follows that in a sector of given charges Z,, the masses of the
states satisfy 2M > |Z,|, for all n. This conditions is known as the BPS
bound.

For generic mass M, we have 2x2x N/2 fermionic harmonic oscillators, so
that supermultiplets contain 22V states. On the other hand if 2M = +Z,, for
some 1, then some of the operators anticommute, and are realized as zero, so
there are 2N — 1 harmonic oscillators, and the representation contains 22V~!
states, less than the generic supermultiplet. Supermultiplets saturating the
BPS bound are known as BPS states, and contain less states than generic
supermultiplets. This guarantees that BPS states cannot cease to be BPS,
and their mass is given by the central charge, which is part of the algebra.
Hence, for BPS states the mass is controlled by the symmetry of the theory

and is protected agains quantum corrections by supersymmetry.

5.3 Some useful information on extended supersym-

metric field theories

There is no simple superfield formalism for theories with extended super-

symmetry, hence supersymmetry transformations must be checked on-shell.
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The simplest way to describe the supermultiplets and the supersymmetric
actions is thus to phrase them in terms of the supermultiplets and superfield
formalism of an N = 1 subalgebra.

In the following we discuss some basic features of N = 2,4 supersymmet-
ric theories. N = 8 supersymmetry also appears in some applications, but
the smallest supermultiplet already contains spin-2 particles, namely gravi-
tons. They can be realized in theories describing gravitational interactions,
namely supergravity theories. Their discussion is beyond the scope of this
lecture. Finally, for even higher degree of supersymmetry, even the smallest
massless supermultiplet already contains fields with spin higher than 2. It is
not known how to write interacting theories for such fields, hence they are

not usually considered.

5.3.1 N =2 supersymmetric theories

The basic supermultiplets of N = 2 supersymmetric field theories are most
simply described by specifying their decomposition under a N = 1 subalgebra
of the theory. We describe some useful massless supermultiplets.

- The hypermultiplet: It decomposes as two chiral multiplets (in conjugate
representations of the gauge and global symmetries) of N = 1 supersymme-
try. Hence, one hypermultiplet contains two complex scalars and two Weyl
fermions. Notice that the latter have same chirality and conjugate quantum
numbers, hence the supermultiplet is non-chiral. It is possible to write super-
symmetric mass terms for hypermultiplets, hence the massive hypermultiplet
has the same supermultiplet structure.

- The N = 2 vector multiplet: It decomposes as one N = 1 vector
multiplet, and a chiral multiplet (in the adjoint representation). Hence, it
contains a gauge boson, two Majorana fermions, and one complex scalar.

Let us describe the general action (up to two derivatives) for an N = 2
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supersymmetric theory with hyper- and vector multiplets. For N = 2, the
action is fully determined by the gauge quantum numbers of the hypermul-
tiplets. Let us denote V', ¥ the N = 1 vector and chiral multiplets in the
N = 2 vector multiplets of the gauge group G, and ®;, ®; the two chiral
multiplets in the i hypermultiplet, in the representation R;. The N = 2
action has the standard N = 1 form, with a superpotential fully determined

by gauge symmetry and supersymmetry

W (D;, D7, 5) = ) B % (t5")P; (89)
ia

The N = 2 supersymmetry implies additional non-renormalization theorems
beyond those in the N = 1 theory. For instance, in N = 1 language the
Kahler potential for the chiral multiplets splits in two pieces, K (X, X") and
K(®,®',®" ®'T). This implies that the kinetic terms for scalars in vector
multiplets do not depend on scalars in hypermultiplets, and viceversa. This
implies that the scalar field space (and hence the moduli space) factorizes as
the vector multiplet scalar field space times the hypermultiplet scalar field
space. Moreover, the former is a Kahler space, while the latter is even more

constrained, and is hyperKahler °.

5.3.2 N =4 supersymmetric theories

Let us now describe some facts on N = 4 supersymmetric theories ©.

The smallest supermultiplet is the N = 4 vector multiplet. Under an
N = 2 subalgebra, it contains one N = 2 vector multiplet and one hyper-

multiplet in the adjoint representation. In terms of N = 1, it contains a

5Namely, admits three Kahler forms, with their product obeying the rules of quater-

nionic product.
6The supermultiplet structure and low-energy effective action of N = 3 is exactly as in

N =4, so N = 3 supersymmetry is not so interesting.
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vector multiplet and three chiral multiplets in the adjoint representation.
Finally, in component fields, it contains one gauge boson, four Majorana
fermions, and six real scalars.

Other supermultiplets contain spin-2 particles, namely gravitons, and so
appear only in supergravity theories. Their discussion is beyond the scope
of this lecture.

The general action for an N' = 4 theory is extremely constrained. It
has the structure of an N = 2 theory, but with the gauge representation of
hypermultiplets fixed by the N = 4 supermultiplet structure. Using N =1
language, we denote V, ®;, &5, &5 the vector and chiral multiplets of the
N = 4 vector multiplet. The superpotential is given by

W((bz) =Tr @1@2@3 —Tr q)lq)gq)g (90)

Again, the action is protected by even more powerful non-renomalization
theorem. In particular, the Kahler potential for scalar fields are forced to
be canonical, and the gauge kinetic functions are non-renormalized. This
implies that N = 4 supersymmetric theories are finite (this in fact holds

even non-perturbatively).

6 Supersymmetry in several dimensions

6.1 Some generalities

In this section we sketch the basic structure of supermultiplets in theories
in more than four dimensions. The basic ideas are completely analogous to
those discussed for four-dimensional supersymmetry. The main difference
arises because of the larger number of components of higher-dimensional

spinors, as compared with four-dimensional ones.
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A detailed discussion of the construction of irreducible spinor representa-
tion of the Lorentz group in an arbitrary number of dimensions can be found
in appendix B of [4]. For our present purposes, it will be enough to just
mention that in an even number of dimensions, D = 2n, the representation
of the Clifford algebra has dimension 2".

This spinor representation of SO(2n — 1,1) is reducible into two Weyl
spinor representations, of opposite chiralities, and with 2"~! components
each. Also, for odd n, namely D = 2k + 4 it is possible to define Majorana
spinors, which satisfy a reality condition, and thus have 2" ! components.
In general, Majorana and Weyl conditions are incompatible ( namely, the
conjugation operation flips the chirality, so Majorana spinors contain com-
ponents with opposite chiralities). However, for D = 2k + 8, the conjugation
operation does not flip the chirality, and one can define spinors satisfying
both the Majorana and Weyl conditions, and thus have 2" 2 components.

The basic features of supersymmetric theories in different dimensions
mainly depend only on the total number of supercharges. Indeed, any super-
algebra in a given dimension can be regarded as a superalgebra of lower di-
mensional supersymmetry, simply obtained by decomposing the Lorentz rep-
resentations of supergenerators with respect to the lower-dimensional Lorentz
group. This is usually knows as dimensional reduction. Notice that since
spinor representations in higher dimensions have larger number of compo-
nents than in lower dimensions, the original superalgebra in general descends
to an extended superalgebra in the lower dimension. Clearly, the same kind of
relation follows for representations of the superalgebras. Namely, supermul-
tiplets of the higher-dimensional supersymmetry can be recast as supermulti-
plets of the lower-dimensional one. An important point is that, since higher-
dimensional superalgebras are related to extended superalgebras in 4d, there

is no superfield formalism to describe the structure of higher-dimensional
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supermultiplets.

In each dimension, it is conventional to define N = 1 supersymmetry
as that generated by supercharges in the smallest spinor representation.
Hence, N-extended supersymmetry corresponds to that generated by N su-
percharges in the smallest spinor representation. Since the number of com-
ponents of spinors jumps with dimension in a non-trivial way, it is sometimes
more useful to refer to the theories by its total number of supercharges, al-

though we will use the conventional N-extended susy notation as well.

6.2 Some useful superalgebras and supermultiplets in

higher dimensions

In this section we provide some useful supermultiplets of certain superalge-
bras in six and ten dimensions. It is by no means a complete classification,
but rather a list of some structures which will appear in the main text. A
detailed classification of superalgebras and supermultiplets may be found in
[2] and [3].

6.2.1 Minimal Supersymmetry in six dimensions

In six dimensions D = 6, the Weyl spinor has 23/2 = 4 complex compo-
nents, hence the minimal supersymmetry, denoted N = 1, is generated by 8
supercharges. Thus D = 6 N-extended supersymmetry is generated by 8NV
supercharges.

Let us center on the minimal supersymmetry, with 8 supercharges, de-
noted N =1 (sometimes also N = (1,0) or (0, 1) to indicate the left or right
chirality of the chosen supergenerators; clearly, both such superalgebras are
isomorphic). The R-symmetry of the theory is SU(2)g. Let us describe some

useful massless supermultiplets of this theory, providing their quantum num-
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bers under the Lorentz (massless) little group SO(4), = SU(2) x SU(2) and
the R-symmetry SU(2)..

Vector multiplet: It contains fields transforming under SU(2) x SU(2) x
SU(2)g as

(2,2;1) + (1,2;2) (91)

namely a massless vector boson and a chiral right-handed Weyl spinor.

Hypermultiplet: It contains fields transforming as
(2,1;1) + (1,1;2) (92)

Unless it transforms in a pseudoreal representation of the gauge and global
symmetries, it must be combined with its CPT conjugate to form a physical
field. Then it contains two complex scalar fields, and a chiral left-handed
Weyl spinor.

Tensor multiplet: It contains fields transforming as
(3,1;1) + (L,1;1) + (2,1;2) (93)

namely a self-dual two-form, a real scalar fields and a chiral left-handed Weyl
spinor.

Graviton multiplet: It contains fields transforming as
(3,3;1) + (1,3;1) + (2,3;2) (94)

namely a massless graviton, an anti-selfdual 2-form, and two left-handed
gravitinos.

This superalgebra can be dimensionally reduced to 4d N = 2 supersym-
metry. It is a simple exercise to match the above 6d supermultiplets with

supermultiplets of 4d N = 2 supersymmetry.
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6.2.2 Extended supersymmetry in six dimensions

Let us discuss some features of N = 2 supersymmetry in six dimensions. The
superalgebra is generated by 16 supercharges, organized in two Weyl spinors.
There are two possible inequivalent superalgebras, depending on the relative
chirality of these two spinors. Namely, there is a 6d N = (2, 0) superalgebra,
where both supergenerators have the same chirality, and a 6d N = (1,1)
superalgebra, where they have opposite chiralities. Let us describe some of

their massless multiplets in turn.
The N = (2,0) supersymmetry has a USp(4) = SO(5) R-symmetry.
Some interesting massless supermultiplets are

Tensor multiplet: It contains fields transforming under SU(2) x SU(2) x
SO(5)g as

(3,1;1) + (1,1;5) + (2,1;4) (95)

namely a self-dual two-form, five real scalar fields and two chiral left-handed
Weyl spinors. Notice that it decomposes as a hyper- and a tensor multiplet
with respect to the 6d N = 1 subalgebra.

Graviton multiplet: It contains fields transforming as
(3:3;1) + (1,3;5) + (2,3;4) (96)

namely, a graviton, five anti-selfdual 2-forms and four left-handed gravitinos.

The N = (1,1) supersymmetry has a SO(4) = SU(2) x SU(2) R-
symmetry. Some interesting massless supermultiplets are

Vector multiplet: It contains fields transforming under SU(2) x SU(2) x
[SU(2) x SU(2)]g as

(2,21,1) + (1,1;2,2) + (2,1;1,2) + (1,22, 1) (97)
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namely a massless vector boson, two complex scalars, one chiral left- and one
chiral right-handed Weyl spinors. Notice that it decomposes as a hyper- and
a vector multiplet with respect to the 6d N = 1 subalgebra.

Graviton multiplet: It contains fields transforming as

(3,3;1,1) + (3,1;1,1) + (1,3;1,1) + (1,1;1,1) + (2,2;2,2) +
+(3,2;1,2) + (2,3:2,1) + (1,2;1,2) + (2,1;2,1) (98)

namely, a graviton, a two-form, a real scalar, four vector bosons, two left-

and two right-handed gravitinos, and one left- and one right-handed spinor.

6.2.3 Supersymmetry in ten dimensions

In ten dimensions D = 10, the minimal spinor satisfies the Majorana and
Weyl constraints and has 2°/4 = 8 complex components, hence the minimal
supersymmetry, denoted N = 1, is generated by 16 supercharges. Thus
D = 6 N-extended supersymmetry is generated by 8 NV supercharges. Indeed,
for N > 2 the smallest massless supermultiplet contains fields with spin
higher than two; it is not known how to write interacting theories for such
fields, hence they are not usually considered.

Let us center on the minimal N = 1 supersymmetry, with 16 super-
charges. The R-symmetry of the theory is trivial. Some useful massless
supermultiplets of this theory are

Vector multiplet, containing fields in the 8y + 8¢ of the SO(8) Lorentz
little group. Namely, a massless vector boson and a chiral 10d spinor.

Graviton multiplet, containing fields transforming under SO(8) as
35y + 28y + 1 + 85 + 56¢ (99)

namely, a graviton, a 2-form, a real scalar, a right-handed gravitino and a

right-handed spinor.
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Concerning extended supersymmetry, with 32 supercharges organized in
two Majorana-Weyl spinors, there are two possibilities, according to their
relative chirality. The 10d N = (2,0) supersymmetry is generated by spinors
of same chirality. The R-symmetry is SO(2)g. The only relevant massless

supermultiplet is the graviton multiplet, with fields transforming as

35y + 28y + 1 + 35¢ + 28 + 1+
+2 x (8¢ + 56¢) (100)

Namely, one graviton, two 2-forms, two real scalars, one self-dual 4-form and
two right-handed gravitinos and two right-handed spinors.

The 10d N = (1,1) supersymmetry is generated by spinors of opposite
chirality. The R-symmetry is trivial. The only relevant massless supermulti-

plet is the graviton multiplet, with fields transforming as

35y + 28y + 1 + 8y + 56y +
+ + 8¢ + 56¢ + 85 + 56¢ (101)

Namely, one graviton, one 2-form, one real scalar, one 1-form, one 3-form,
one left- and one right-handed gravitino and one left- and one right-handed

spinor.

Finally, for completeness we provide the basic massless supermultiplet of
11d N = 1 supersymmetry, the gravity multiplet. It contains states trans-
forming as 44 + 84 + 128 under the SO(9) Lorentz little group. Notice that
it maps to the gravity multiplet of 10d N = (1,1) supersymmetry upon
dimensional reduction.

Notice that going to higher dimensions requires introducing more super-
charges, which implies that even the smallest massless supermultiplet already
contains fields with spin higher than 2, so these theories are usually not con-

sidered. This underlies the statement that eleven is the maximal number
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of dimensions allowed by supersymmetry (with the extra assumption of not
having massless fields with spins higher than 2). The maximal amount of

supersymmetry is thus 32 supercharges.
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