Las múltiples caras de núcleo

ALFREDO POVES Departamento de Física Teórica e IFT, UAM-CSIC

100 años de Física del Núcleo Atómico Universidad de Salamanca, Julio de 2011

- E - - E -

- Introducción
- Masas, Tamaños, Energías de Ligadura, Fisión y Fusión
- Gotas cuánticas o sistemas planetarios? Los números mágicos
- Colectividad; Núcleos deformados y Superdeformados; Superfluidez Nuclear; Alotropía Nuclear
- Sorpresas; El archipiélago dónde los números mágicos desaparecen
- Exotismos; Núcleos con un halo de neutrones
- Procesos (muy) raros; La desintegración doble beta y la masa y la naturaleza de los neutrinos

(日) (同) (E) (E) (E) (E)

A hombros de gigantes

Hans Geiger (left) and Ernest Rutherford's experimental work revealed the nucleus at the centre of atoms.

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・

Э

No hay un criterio unívoco para determinar si una cierta combinación de neutrones y protones (N+Z=A) puede formar un núcleo. Digamos que si su vida media es menor que 1 ns se empieza a hablar de una resonancia. La mayoría de los núcleos son radiactivos y se desintegran α o β con vidas medias mucho mas largas que este límite. Consideramos estables a aquellos núcleos cuyas vidas medias son comparables con la edad del sistema solar (o del universo).

El descubrimiento de nuevos núcleos

(M. Thoennessen y B. Sherrill, Nature 473 (2011) 25)

イロン イヨン イヨン イヨン

臣

Participación española en el descubrimiento de nuevos núcleos; Ayer

- 1735, Antonio de Ulloa descubre el Platino (Z=78), cuyos isótopos estables son el ¹⁹⁰Pt, ¹⁹²Pt, ¹⁹⁴Pt, ¹⁹⁵Pt, ¹⁹⁶Pt y ¹⁹⁸Pt
- 1783, Fausto y Juan José de Elhúyar descubren el Wolframio (Tungsteno) Z=74, cuyos isótopos estables tienen A=180, 182, 183, 184 y 186
- 1801, Andrés Manuel del Río descubre el Vanadio (Z=23), cuyos dos isótopos estables son el ⁵⁰V y el ⁵¹V

(ロ) (部) (E) (E) (E)

Participación española en el descubrimiento de nuevos núcleos; Hoy

PHYSICAL REVIEW C 82, 041602(R) (2010)

Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of ²³⁸U projectiles at 1A GeV

H. Alvarez-Pol.¹⁴ J. Benlliure, ¹ E. Casarejos,¹⁴ L. Audouin,² D. Cortina-Gil,¹ T. Enqvist,³⁴ B. Fernández-Domfingez,¹ A. R. Junghans,⁴ B. Jurado,² P. Napolitan,²⁵ J. Percien,¹⁴ F. Rejmund,⁴ H. F. B. Schmidt,¹⁴ M. H. Schmidt,¹⁴ and O. Yordanov,³⁴ ¹ Universidade de Santiago de Compositela, F-15782 Santiago de Compositela, Spain ² IPN, IN2P3-CNRS, Université Paris Sud 11, UMR 8608, F-91406 Orsuy, France ³ GSI Helmholtzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany ⁴ Forschungszentrum Dresder-Rossendorf, D-01328 Dresden, Germany ⁴ Sintwersité Borleaux I. (NRNIN2P3, CBNR, DP 120, F-3175 Gradingma, France ¹ GAVIL CEA/DSM-CNRS/M2P3, BP 5502, F-14076 Caen, France (Received 30 July 2010; published 28 October 2010)

The production of heavy neutron-rich nuclei has been investigated using cold-fragmentation reactions of ²¹⁸U projectiles at relativistic energies. The experiment performed at the high-resolving-power magnetic spectrometer Fragment Separator at GSI made it possible to identify 40 new heavy neutron-rich nuclei: ²⁰⁶Pt, ^{210–210}At, ^{210–210}Hg, ^{210–210}

DOI: 10.1103/PhysRevC.82.041602

PACS number(s): 25.70.Mn, 27.80.+w, 27.90.+b, 29.38.Db

The possibility to extend the present limits of the chart of the nuclides provides unique opportunities for investigating the nuclear many-body system with extreme values of isospin and most of the stellar nucleosynthesis processes leading to the production of the haviest elements in our universe [1]. This is the reason why presently, several new-generation in-flight radioactive-beam facilities are being commissioned, built, or designed [2–4]. These facilities will take advantage of two reaction mechanisms, fission and fragmentation, for producing nuclei far from stability.

Fragmentation reactions of ⁴⁸Ca beams have been used to produce light neutron-rich nuclei [5] and reach the heaviest known nuclei at the neutron drin line [6]. Eission reactions of heavy stable projectiles such as ^{38}U or ^{38}Pb at relativistic energies to populate that region of the chart of nuclides [11,12]. The idea behind it was to take advantage of the complete noncorrelation of the nucleons removed from the projectile, leading to a large distribution in N/Z of the projectile prefragments, and the large range in excitation energy gained per abraded nucleon during this process. Both effects should be sufficient to populate cold-fragmentation reaction channels where the incident projectiles lose mostly protons while the excitation energy gained in the process is rather low. The extreme case for these reactions involves the proton-removal channels where the projectiles lose only protons; and the excitation <u>per</u>

Alfredo Poves

Las múltiples caras de núcleo

Participación española en el descubrimiento de nuevos núcleos; Hoy

Sc 46	Sc 47 3.35 d	Sc 48 43.67 h	Sc 49 57.2 m	Sc 50 1.7 m	Sc 51 12.4 s	Sc 52 8.2 s	Sc 53 > 3 s	Sc 54 0.36 s	Sc 55 115 ms	Sc 56 50 ma 35 ma
pr 0.4 + 5000 1121 1121 + 142 + 8.0	8 0.4; 0.6 7 159	β ⁺ 0.7 γ 984; 1312; 1038	μ ^{−−} 2.0 γ (1762; 1623)	β ⁺ 3.7; 4.2 γ 1554; 1121; 524	8 4.3; 5.0 	в ⁼ 7.0 у 1050; 1268, 1032; 1215.	8-	8 ^{~~} 7 1495: 1001; 1021	р" ү 593	1100. 1101. 800. 81. 1109.
Ca 45 163 d	Ca 46 0.004	Ca 47 4.54 d	Ca 48 0.187	Ca 49 8.72 m	Ca 50 13.9 s	Ca 51 10.0 s	Ca 52 4.6 s	Ca 53 90 ms	Ca 54 >300 ns	Ca 55 >300 ns
β ⁺ 0.3 γ(12): e ⁻ α-15	+ 0.70	β ⁺⁺ 0.7; 2.0, γ 1297; 808; 489	a 1.0	g [~] 2.2; 2.9. 7 3084; 4072	р ⁺⁻ 3,1 у 257; 1519; 72; 1591	р ^т у 862; 1394; 1168: 1480.	8 4.1 y 676; 961; 1636; 2070	ត្រ" ជ្	8. ?	BT 9
K 44 22.2 m	K 45 17.8 m	K 46 115 s	K 47 17.5 s	K 48 6.8 s	K 49 1.26 s	K 50 472 ms	K 51 365 ms	K 52 105 ms	K 53 30 ms	K 54 10 ms
р 5.7 у 1157; 2151	β 2.3; 4.2 γ 174; 1706	β 6.4 γ 1347: 3700	β ⁺⁺ 4,1, γ 2013; 586; 565	β 5.3; 8.4 γ 3632; 780 βn 0.23	p 4.0, 10.5. (in 1.38; 1.51; 0.44 y 4272; 2249	β ⁺ 5.3; 14.0 γ 1027; 4030 βn 2.48; 2.83	β 13.9. βn 2.23: 0.84 γ 1027*; 3460; 1970*	β 10.8, 12.7 βn 1.04; 2.22 γ 2563, 2377' β2n	an 0.74, 0.94; 2.31 7 2563*, 2220	8" β0
Ar 43 5.37 m	Ar 44 11.87 m	Ar 45 21.5 s	Ar 46 7.8 s	Ar 47 1.23 s	Ar 48 475 ms	Ar 49 170 ms	Ar 50 85 ms	Ar 51 >200 ns		
8" 7 975; 738; 1440	β γ 183; 1703; 1886	β 3.2, 5.8 γ 1020; 3707; 61	р ^т у 1944.	р ^т 9.8 у 360; 1660; 1742	β	8- 80	8" B0	B- 7		
CI 42 6.9 s	CI 43 3.13 s	Cl 44 0.56 s	CI 45 420 ms	CI 46 223 ms	CI 47 101 ms	CI 48 >200 ns	CI 49 >200 ns		CI 51 >200 ns	
β ⁻ γ 1207	β 6.1; 7.8 γ 762; 1032; 679	β" γ 1158; 853; 2796; 2010 βn	β γ 542 - 2751 βn	8- 80	8" 80.7	p= ?	BT 7		p= ?	
S 41 1.99 s	S 42 1.03 s	S 43 282 ms	S 44 100 ms	S 45 68 ms	S 46 50 ms	S 47 >200 ns	S 48 >200 ns	S 49 <200 ns		
β 7 130 - 1405 80 ?	β 5.1; 6.0 γ 119; 724; 1282; 471	β γ 329 - 2021 βα	ß" Bn	B" Bri	87	8-9	10-7	n ?	34	
P 40 150 ms	P 41 100 ms	P 42 48.5 ms	P 43 36.5 ms	P 44 18.5 ms	P 45 >200 ns	P 46 >200 ns				
β 10.6; 13.9 γ 904; 3235; 3490; 4106	β γ 329 - 1614 βn	B" Bri	ß" Bo	p-	JF 7	β [−] 7	32			51
Si 39 47.5 ms	Si 40 33.0 ms	Si 41 20.0 ms	Si 42 12.5 ms	Si 43 >260 ns					Sn 118.710	Sn 100 0.94 s
at an	B ⁻ Bri	β	8" Bn ?	β [−] ? βn ?	30			50	o 0.61	р+а.4 7

Alfredo Poves Las múltiples caras de núcleo

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

VOLUME 31, NUMBER 6

Beta decay of the new isotopes ⁵²K, ⁵²Ca, and ⁵²Sc; a test of the shell model far from stability

A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, and G. Walter Centre de Recherches Nucléaires, 67037 Strasbourg Cedex, France

A. Poves Departamento de Fisica Teorica, Universidad Autonoma, Madrid 34, Spain

H. L. Ravn

The Isolde Collaboration, CERN 1211 Geneva 23, Switzerland

G. Marguier

Institut de Physique Nucléaire, Université Lyon 1, 69622 Villeurbanne Cedex, France (Received 4 September 1984)

The nuclides 52K, 52Ca, and 52Sc have been produced by fragmentation of a uranium target with a 600 MeV proton beam. The subsequent β decays to the daughter nuclei 52Ca. 52Sc. and 52Ti have been studied by neutron and γ spectroscopy on sources obtained from on-line mass separation. β decay energies have been determined by $\beta \cdot \gamma$ coincidence spectroscopy. In addition to the short halflife of 52 K ($T_{1/2} = 110 \pm 30$ ms), we attributed two different half-lives ($T_{1/2} = 4.6 \pm 0.3$ s and $T_{1/2} = 8.2 \pm 0.2$ s) to ⁵²Ca and ⁵²Sc, respectively. A decay scheme has been established for ⁵²K involving five β branches to delayed neutron emitting states between 6.6 and 10.3 MeV and one β branch to a bound level at $E_{\star} = 2.56$ MeV. The ⁵²Ca decay scheme accounts for β branches to four levels at 1.64, 2.75, 3.46, and 4.27 MeV for which the deduced logft values restrict the angular momentum and parity to $J^{*}=1^{+}$. For the ⁵²Sc ground state, strong β transitions to the 2⁺ (1.05 MeV) and the (4^+) (2.32 MeV) levels in ⁵²Ti strongly favor a $J^{\pi}=3^+$ attribution. The measured Q_{θ} values for the ${}^{52}Ca$ (5.7+0.2 MeV) and ${}^{52}Sc$ (8.02+0.25 MeV) decay are noticeably lower than expected from mass systematics. The energy level diagrams of 52Ca, 52Sc, and 52Ti nuclei have been calculated in the framework of the shell model with a realistic interaction. Good agreement between theory and experiment is achieved as well for excitation energies as for mass excesses, assuring then the applicability of the theory to this region of nuclei far from stability.

I. INTRODUCTION

II. EXPERIMENTAL PROCEDURE

An extension of the known experimental properties of neutron-rich nuclei up to N=32 in the vicinity of the

The very neutron-rich isotopes of the light elements at ISOLDE are produced by bombarding ~ 13 g/cm² urani-

El mapa de los núcleos o la carta de Segré

Los límites de la existencia de los núcleos

- Para que un núcleo "exista" debe pesar menos que cualquier otra combinación de sus constituyentes por separado (N neutrones y Z protones, A=N+Z). No obstante, si los fragmentos en los que se puede dividir están cargados, la desintegración, aunque esté permitida energéticamente, tiene que proceder por efecto túnel a través de una barrera Coulombiana, por lo que la vida media del isotópo puede ser suficientemente larga para darle carta de existencia
- La diferencia entre la masa de un núcleo y la de sus constituyentes se llama energía de ligadura

$$B = Z m_{\pi}c^2 + N m_{\nu}c^2 - M_N(Z,N)c^2$$

(1日) (日) (日)

Los límites de la existencia de los núcleos

• Las energías de separación de un neutrón y de un protón

 $S_n = B(N,Z) - B(N-1,Z) S_p = B(N,Z) - B(N,Z-1)$

juegan un papel similar al de los potenciales de ionización del átomo

- Las curvas S_n=0 y S_p=0 definen las líneas de goteo (drip lines) de neutrones y protones y por lo tanto los límites del territorio nuclear hacia el este y el oeste
- Para valores muy grandes de Z, la desintegración α y la fisión, que pueden ocurrir muy rápidamente, terminan estableciendo la última frontera nuclear
- No está descartado que puedan existir núcleos neutros (más acá de las estrellas de neutrones). De hecho se conocen sistemas fermiónicos (gotas de átomos de ³He) que no forman estados ligados de menos de ~30 componentes

Los núcleos superpesados

・ロン ・回 と ・ ヨン・

æ

Los núcleos superpesados

Alfredo Poves Las múltiples caras de núcleo

Las energías de ligadura nucleares

Alfredo Poves Las múltiples caras de núcleo

La fisión nuclear

Lisa Meitner, un premio Nobel escamoteado

Alfredo Poves Las múltiples caras de núcleo

Gotas cuánticas o sistemas planetarios?

- La energía de ligadura por nucleón es aproximadamente constante y la densidad central de los núcleos también.
 Esta propiedad se llama saturación.
- Las energías de ligadura nucleares y la relación N/Z de los núcleos estables se pueden modelizar considerando el núcleo como una gota cuántica compuesta de dos fluídos fermiónicos, uno cargado y otro neutro

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c Z^2 A^{-1/3} - a_{As} \frac{(N-Z)^2}{A}$$

- El modelo de la gota líquida también proporcionó las primeras explicaciones de la fisión en base a la competencia entre las energías coulombiana y de superficie de una gota deformada
- Pero, esta no era la última palabra

Los isóbaros y sus parábolas

Alfredo Poves Las múltiples caras de núcleo

Los isóbaros y sus parábolas

(本語) (本語) (二)

< 17 ×

æ

Los números mágicos, 2, 8, 20, 28, 50, 82, 126

★ E ► ★ E ►

< 🗇 🕨

æ

Los números mágicos, 2, 8, 20, 28, 50, 82, 126

Alfredo Poves Las múltiples caras de núcleo

El Modelo de Capas Nuclear

La hipótesis básica del modelo de capas nuclear es que a orden cero el resultado de las complicadas interacciones entre los neutrones y los protones es producir un campo promedio autoligante. En 1949, María Goeppert-Mayer y Hans Jensen propusieron como campo medio esférico un oscilador armónico tridimensional mas un término espín órbita muy atractivo y un término órbita órbita que simulaba el comportamiento correcto en la superficie del núcleo. Con ello explicaron los números mágicos, y además de ganar el Premio Nobel, iniciaron el estudio microscópico de la estructura nuclear.

$$H=\sum_i h(\vec{r}_i)$$

$$h(r) = -V_0 + t + \frac{1}{2}m\omega^2 r^2 - V_{so}\vec{l}\cdot\vec{s} - V_B l^2$$

<回> < 回> < 回> < 回>

El Modelo de Capas Nuclear

- El procedimiento para extraer el campo medio óptimo en un sistema de fermiones interactuantes es la aproximación de Hartree y Fock, que es extremadamente exitosa en la descripción de los átomos. Una vez obtenido el campo medio, la función de ondas del sistema no es mas que el producto antisimetrizado de las funciones de onda monoparticulares que son soluciones de la ecuación de Schroedinger para dicho campo medio, *i. e.* determinantes de Slater.
- En el núcleo hay problemas añadidos, porque la interacción nucleón nucleón es fuertemente repulsiva a cortas distancias, lo que hace impracticable utilizar el método de Hartree y Fock directamente. Estos problemas fueron resueltos por la teoría de las interacciones efectivas (Brueckner 1954) basada en la idea de quasipartículas independientes

En un maravilloso experimento de dispersión elástica de electrones por ²⁰⁶Pb y ²⁰⁵Tl realizado en 1982, Cavedon *et al* consiguieron medir la diferencia entre las densidades de carga de ambos núcleos. En la aproximaciíon de campo medio dicha diferencia no es mas que el cuadrado de la función de onda de la órbita $3s_{1/2}$.

Para saber mas de este tema lean el artículo "Independent particle motion and correlations in fermion systems" V. R. Pandharipande, et al., RMP 69 (1997) 981.

<回> < E> < E> < E> = E

El significado del Modelo de Capas

Alfredo Poves Las múltiples caras de núcleo

La interacción entre los nucleones en el núcleo está dominada por tres tipos de términos:

 El campo medio esférico generalizado o Hamiltoniano Monopolar

$$\mathcal{H}_m = \sum n_i \epsilon_i + \sum \frac{1}{(1+\delta_{ij})} \bar{V}_{ij} n_i (n_j - \delta_{ij})$$

- La interacción de emparejamiento (Pairing) responsable de la superfluidez nuclear
- La interacción cuadrupolar, responsable de la existencia de núcleos deformados

< 回 > < 回 > < 回 > … 回

Correlaciones

Los términos responsables de las correlaciones \mathcal{H}_M pueden escribirse en dos representaciones, partícula-partícula y partícula-hueco :

$$\mathcal{H}_{M} = \sum_{r \leq s, t \leq u, \Gamma} W_{rstu}^{\Gamma} Z_{rs\Gamma}^{+} \cdot Z_{tu\Gamma},$$
$$\mathcal{H}_{M} = \sum_{rstu\Gamma} [\gamma]^{1/2} \frac{(1 + \delta_{rs})^{1/2} (1 + \delta_{tu})^{1/2}}{4} \omega_{rtsu}^{\gamma} (S_{rt}^{\gamma} S_{su}^{\gamma})^{0},$$

donde Z_{Γ}^+ (Z_{Γ}) es el producto acoplado de dos operadores de creación (aniquilación) y S^{γ} es el producto acoplado de un operador de creación y otro de aniquilación. Los términos Γ =0 corresponden a la interacción de pairing y los γ =2 a la interacción cuadrupolar

$$Z_{rs\Gamma}^{+} = [a_{r}^{\dagger}a_{s}^{\dagger}]^{\Gamma} \text{ y } S_{rs}^{\gamma} = [a_{r}^{\dagger}a_{s}]^{\gamma}$$

(日) (同) (E) (E) (E) (E)

Cuando el campo medio cerca del nivel de Fermi es tal que la interacción de emparejamiento es dominante, el núcleo se vuelve superfluído

Cuando el campo medio cerca del nivel de Fermi es tal que la interacción cuadrupolar es dominante, el núcleo adquiere una deformación permanente, que es un ejemplo de ruptura espontánea de la simetría rotacional.

Si el hamiltoniano monopolar fuera despreciable, obtendríamos agujas nucleares superfluídas

ロト・日本・モート・モート

Núcleos Deformados

Alfredo Poves Las múltiples caras de núcleo

Núcleos Superdeformados

Alfredo Poves Las múltiples caras de núcleo

æ

Coexistencia; Alotropía Nuclear

Э

El archipiélago dónde unos números mágicos desaparecen

y otros aparecen

・ロン ・回 と ・ ヨン・

æ

Núcleos con Halo

Desintegraciones $\beta\beta$ sin neutrinos

Si los neutrinos tuvieran masa (que la tienen) y fueran partículas de Majorana (es decir sus propias antipartículas) las desintegraciones $\beta\beta$ podrían tener lugar sin que hubiera emisión de neutrinos

Desintegraciones $\beta\beta$ sin neutrinos

Las semividas de estos procesos dependen del valos del $Q_{\beta\beta}$, de los elementos de matriz nucleares y de la escala de masa de los neutrinos. Típicamente las semividas serían del orden de 10^{25} años para una masa de 1 eV, de 10^{27} años para una masa de 100 meV y de 10^{29} años para 10 meV. Para medir esos procesos raros, mejor tener mucha paciencia y mucha tierra encima !!

< 回 > < 回 > < 回 >

Un sistema complejo, con muy distintas escalas

Alfredo Poves Las múltiples caras de núcleo