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The SU3 symmetry of the harmonic oscillator

The mechanism that produces permanent deformation and

rotational spectra in nuclei is much better understood in

the framework of the SU(3) symmetry of the isotropic

harmonic oscillator and its implementation in Elliott’s

model. The basic simplification of the model is threefold; i)

the valence space is limited to one major HO shell; ii) the

monopole hamiltonian makes the orbits of this shell

degenerated and iii) the multipole hamiltonian only

contains the quadrupole-quadrupole interaction. This

implies (mainly) that the spin orbit splitting and the pairing

interaction are put to zero. Let’s then start with the

spherical HO which in units m=1 ω=1 can be written as:

H0 =
1

2
(p2 + r2) =

1

2
(~p + i~r)(~p − i~r ) +

3

2
~ = ~(~A†~A +

3

2
)
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The SU3 symmetry of the harmonic oscillator

~A† =
1√
2~

(~p + i~r ) ~A =
1√
2~

(~p − i~r)

which have bosonic commutation relations. H0 is invariant

under all the transformations which leave invariant the

scalar product ~A†~A. As the vectors are three dimensional

and complex, the symmetry group is U(3). We can built the

generators of U(3) as bi-linear operators in the A’s. The

anti-symmetric combinations produce the three

components of the orbital angular momentum Lx , Ly and

Lz , which are on turn the generators of the rotation group

O(3). From the six symmetric bi-linears we can retire the

trace that is a constant; the mean field energy. Taking it out

we move into the group SU(3). The five remaining

generators are the five components of the quadrupole

operator:
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The SU3 symmetry of the harmonic oscillator

q(2)
µ =

√
6

2~
(~r ∧~r)(2)µ +

√
6

2~
(~p ∧ ~p)(2)µ

The generators of SU(3) transform single nucleon

wavefunctions of a given p (principal quantum number)

into themselves. In a single nucleon state there are p

oscillator quanta which behave as l=1 bosons. When we

have several particles we need to construct the irreps of

SU(3) which are characterized by the Young’s tableaux (n1,

n2, n3) with n1≥n2≥n3 and n1+n2+ n3=Np (N being the

number of particles in the open shell). The states of one

particle in the p shell correspond to the representation

(p,0,0). Given the constancy of Np the irreps can be labeled

with only two numbers. Elliott’s choice was λ=n1-n3 and

µ=n2-n3. In the cartesian basis we have; nx=a+µ, ny=a, and

nz=a+λ+µ, with 3a+λ+2µ=Np.
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The SU3 symmetry of the harmonic oscillator

The quadratic Casimir operator of SU(3) is built from the

generators

~L =
N∑

i=1

~l(i) Q(2)
α =

N∑
i=1

q(2)
α (i)

as:

CSU(3) =
3

4
(~L · ~L) + 1

4
(Q(2) · Q(2))

and commutes with them. With the usual group theoretical

techniques, it can be shown that the eigenvalues of the

Casimir operator in a given representation (λ, µ) are:

C(λ, µ) = λ2 + λµ+ µ2 + 3(λ+ µ)
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Elliott’s Model

Once these tools ready we come back to the physics

problem as posed by Elliott’s hamiltonian

H = H0 + χ(Q(2) · Q(2))

which can be rewritten as:

H = H0 + 4χCSU(3) − 3χ(~L · ~L)
The eigenvectors of this problem are thus characterized

by the quantum numbers λ, µ, and L. We can choose to

label our states with these quantum numbers because O(3)

is a subgroup of SU(3) and therefore the problem has an

analytical solution:
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Elliott’s Model

E(λ, µ,L) = ~ω(p+
3

2
)+4χ(λ2+λµ+µ2+3(λ+µ))−3χL(L+1)

This final result can be interpreted as follows: For an

attractive quadrupole quadrupole interaction (χ < 0) the

ground state of the problem pertains to the representation

which maximizes the value of the Casimir operator, and

this corresponds to maximizing λ or µ (the choice is

arbitrary). If we look at that in the cartesian basis, this

state is the one which has the maximum number of

oscillator quanta in the Z-direction, thus breaking the

symmetry at the intrinsic level. We can then speak of a

deformed solution even if its wave function conserves the

good quantum numbers of the rotation group, i.e. L and Lz .
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Elliott’s Model

E(λ, µ,L) = ~ω(p+
3

2
)+4χ(λ2+λµ+µ2+3(λ+µ))−3χL(L+1)

For this one (and for every) (λ, µ) representation, there are

different values of L which are permitted, for instance for

the representation (λ,0) L=0,2,4. . . λ. And their energies

satisfy the L(L+1) law, thus giving the spectrum of a rigid

rotor. The problem of the description of deformed nuclear

rotors is thus formally solved.
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Intrinsic States

We can describe the intrinsic states and its relationship

with the physical ones using another chain of subgroups

of SU(3). The one we have used until now is;

SU(3)⊃O(3)⊃U(1) which corresponds to labeling the states

as Ψ([̃f ](λµ)LM). [̃f ] is the representation of U(Ω) conjugate

of the U(4) spin-isospin representation which guarantees

the antisymmetry of the total wave function. For instance,

in the case of 20Ne, the fundamental representation (8,0)

(four particles in p=2) is fully symmetric, [̃f ]=[4], and its

conjugate representation in the U(4) of Wigner [1,1,1,1],
fully antisymmetric.
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Intrinsic States

The other chain of subgroups, SU(3)⊃SU(2)⊃U(1), does not

contain O(3) and therefore the total orbital angular

momentum is not a good quantum number anymore.

Instead we label the wave functions as; Φ([̃f ](λµ)q0ΛK ),
where q0 is a quadrupole moment whose maximum value

is q0 = 2λ+ µ related to the intrinsic quadrupole moment,

Q0=q0+3. K is the projection of the angular momentum on

the Z-axis and Λ is an angular momentum without physical

meaning. Both representations provide a complete basis,

therefore it is possible to write the physical states in the

basis of the intrinsic ones.
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Intrinsic States

Actually, the physical states can be projected out of the

intrinsic states with maximum quadrupole moment as:

Ψ([̃f ](λµ)LM) =
2L + 1

a(λµKL)

∫
DL

MK (ω)Φω([̃f ](λµ)(q0)maxΛK )dω

Remarkably, this is the same kind of expression used in

the unified model; the Wigner functions D being the

eigenfunctions of the rigid rotor and the intrinsic functions

the solutions of the Nilsson model.
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SU3 intrinsic states
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Elliott’s Model

Elliott’s model was initially applied to nuclei belonging to

the sd -shell that show rotational features like 20Ne and
24Mg. The fundamental representation for 20Ne is (8,0) and

its intrinsic quadrupole moment 19 b2 ≈ 60 efm2. For 24Mg

we have (8,4) and 23 b2 ≈ 70 efm2. To compare these

figures with the experimental values we need to know the

transformation rules from intrinsic to laboratory frame

quantities and vice versa. In the Bohr Mottelson model

these are:

Q0(s) =
(J + 1) (2J + 3)

3K 2 − J(J + 1)
Qspec(J), K 6= 1

B(E2, J → J−2) =
5

16π
e2|〈JK 20|J−2,K 〉|2 Q0(t)

2 K 6= 1/2, 1;
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Elliott’s Model

The expression for the quadrupole moments is also valid

in the Elliott’s model. However the one for the B(E2)’s is

only approximately valid for very low spins. Using them it

can be easily verified that the SU(3) predictions compare

nicely with the experimental results

Qspec(2
+)=–23(3) efm2 and B(E2)(2+→0+)=66(3) e2fm4 for

20Ne

Qspec(2
+)=–17(1) efm2 and B(E2)(2+→0+)=70(3) e2fm4 for

24Mg.
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SU3 variants, Pseudo and Quasi-SU3

Besides Elliott’s SU(3) there are other approximate

symmetries related to the quadrupole quadrupole

interaction which are of great interest. Pseudo-SU3 applies

when the valence space consists of a quasi-degenerate

harmonic oscillator shell except for the orbit with

maximum j , we had denoted this space by rp before. Its

quadrupole properties are close to those of SU(3) in the

shell with (p-1). Quasi-SU3 applies in a regime of large

spin orbit splitting, when the valence space contains the

intruder orbit and the ∆j=2, ∆l=2 ;∆j=4, ∆l=4; etc, orbits

obtained from it. Its quadrupole properties are similar to

those of SU3 as well.
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Pseudo-SU3 intrinsic states
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Quasi-SU3 intrinsic states
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The quadrupole interaction in a single orbit

The intrinsic quadrupole moment for n particles in an orbit

j with principal HO quantum number p is given by the

formula:

Q0

b2
=

∑
m

2r2〈jm|C2|jm〉 =
∑

m

(p + 3/2)
j(j + 1)− 3m2

j(j + 1)

If we fill orderly the magnetic sub-states with increasing

|m| we obtain prolate intrinsic states. If we do it the other

way around, we obtain oblate intrinsic states.

Alfredo Poves The Shell Model: An Unified Description of the Structure of the



The quadrupole interaction in a single orbit

In the table, we list the Q0 values for the 0g9/2 orbit and

N=Z (in units of b2). For n<(2j+1) the oblate solutions have

the larger Q0 (and therefore the larger binding if the

quadrupole interaction is dominant). For n>(2j+1) the

prolate solutions lead. For n=(2j+1) both are degenerate.

n 2 4 6 8 10 12 14 16 18

prol 5.3 10.7 14.7 18.7 20 21.3 18.7 16 8

-obl 8 16 18.7 21.3 20 18.7 14.7 10.7 5.3
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Their role far from stability

These symmetries turn out to be at the root of the

appearance of islands of inversion far from stability. They

are more prominent at the neutron rich side and occur

when the configurations which correspond to the neutron

shell closures at N=8, 20, 28 and 40 are less bound than

the intruder ones (more often deformed) built by promoting

neutrons across the Fermi level gap.
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Their role far from stability

The reason of the inversion is that the intruder

configurations maximize the quadrupole correlations and

thus their energy gains. This is only possible when the

orbits around the Fermi level can develop the symmetries

of the quadrupole interaction. For instance, at N=20 the

intruder states in 32Mg have four sd protons in Quasi-SU3,

two sd neutron holes in Pseudo-SU3 and two pf neutrons

in Quasi-SU3. This leads to a huge gain of correlation

energy (typically 12 MeV) which suffices to turn the

intruders into ground states.
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Coexistence: Spherical, Deformed and

Superdeformed states in 40Ca. A full SM-CI

calculation

In the valence space of two major shells
0f5/2

1p1/2

1p3/2

0f7/2

pf -shell
0d3/2

1s1/2

0d5/2

sd-shell

The relevant configurations are:

[sd]24 0p-0h in 40Ca, SPHERICAL

[sd]20 [pf]4 4p-4h in 40Ca, DEFORMED

[sd]16 [pf]8 8p-8h in 40Ca, SUPERDEFORMED
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The correlation energies
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The correlation energies

In the 8p-8h configuration the correlations amount to

18.5 MeV. 5.5 MeV are due to T=1 pairing and 0.5 MeV

to T=0 pairing, thus the neutron-proton pairing

contribution is 2.33 MeV. The remaining 12.5 MeV are

most likely of quadrupole origin.

In the 4p-4h configuration, the correlation energy is

about one half of this.

The physical gound state gains 5 MeV of pairing

energy by mixing with the other np-nh states, the ND

bandhead 2 MeV, and the SD bandhead nothing

The dimension of the basis in the full SM-CI

calculation is 109. The present limit of basis size in our

calculations is 2.5 x 1010 M=0 Slater determinants
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SU(3) predictions

In the 4p-4h intrinsic state of 40Ca, the two neutrons and

two protons in the pf -shell can be placed in the lowest

K=1/2 quasi-SU3 level of the p=3 shell. This gives a

contribution Q0=25 b2. In the pseudo-sd shell, p=1 we are

left with eight particles, that contribute with Q0=7 b2. In the

8p-8h the values are Q0=35 b2 and Q0=11 b2

Using the proper values of the oscillator length it obtains:
40Ca 4p-4h band Q0=125 e fm2 (Q0=148 e fm2)
40Ca 8p-8h band Q0=180 e fm2 (Q0=226 e fm2)

In very good accord with the data (Q0=120 e fm2 and

Q0=180 e fm2 ). The values in blue assume strict SU3

symmetry in both shells. The SM results almost saturate

the quasi-SU3 bounds. The SU3 values are a 25% larger.
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Comparing with experiment
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Deformed nuclei; Intrinsic vs. Laboratory Frame

Approaches

A case where the two approaches could be confronted was
48Cr (four protons and four neutrons on top of 40Ca suffice

to produce a well behaved rotor) where an ISM description

in the full pf -shell was for the first time possible a few

lustra ago.
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The yrast band of 48Cr

48
Cr

0+ 0 0+ 0

2+ 752 2+ 806

4+ 1858 4+ 1823

6+ 3445 6+ 3398

8+ 5189 8+ 5128

10+ 7063 10+ 6978

12+ 8406 12+ 8459

14+ 10277
14+ 10594

16+ 13306

16+ 13885

(16+) 15727

16+ 16268

752  

1106  

1587  

1744  

1874  

1343  

1871  

3029  

5450  

806  

1017  

1575  

1730  

1850  

1481  

2135  

3291  

5674  

exp. theor.
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ISM dialogues with CHFB

The mean field intrinsic description was a Cranked Hartree

Fock Bogolyuvov description using the Gogny force. Both

calculations reproduce the rotor like behavior at low and

medium spin and the backbending at J=12. However, the

CHFB description misses badly the size of the moment of

inertia due to absence of neutron proton pairing

correlations in its wave functions. The Gogny force does

contain the right proton neutron T=0 and T=1 pairing as

shown by the results of the ISM calculation with its two

body matrix elements.
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ISM dialogues with CHFB

0.0 1.0 2.0 3.0 4.0
Eγ (MeV)

2

4

6

8

10

12

14

16

J 

Exp

SM-KB3
CHFB
SM-GOGNY

Alfredo Poves The Shell Model: An Unified Description of the Structure of the



From the laboratory to the intrinsic frame

The transformation rules from the laboratory to the

intrinsic frame quantities and vice versa can be written, in

the Bohr Mottelson model as:

Q0(s) =
(J + 1) (2J + 3)

3K 2 − J(J + 1)
Qspec(J), K 6= 1

B(E2, J → J−2) =
5

16π
e2|〈JK 20|J−2,K 〉|2 Q0(t)

2 K 6= 1/2, 1;

To have a good deformed rotor, the Q’s and the B(2)’s in

the laboratory frame must be consistent with a common

value of the intrinsic quadrupole moment
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ISM dialogues with CHFB

The laboratory frame wave-functions are indeed collective as
can be seen in this table. From the calculated values we can
extract the intrinsic quadrupole moments which are roughly
independent of J below the backbending as in a well behaved
Bohr-Mottelson rotor. From the intrinsic quadrupole moment we
extract a deformation parameter β=0.28 which is in very good
agreement with the CHFB result.

J B(E2)exp B(E2)th Q0(B(E2))

2 321(41) 228 107
4 330(100) 312 105
6 300(80) 311 100
8 220(60) 285 93
10 185(40) 201 77
12 170(25) 146 65
14 100(16) 115 55
16 37(6) 60 40
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The intrinsic state in the CHFB description
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