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Why Shells?

An atom with Z electrons is described by the following

Hamiltonian:

H =
∑

i

Ti −
∑

i

Ze2

ri
+

∑

i<j

e2

rij

If we disregard the repulsion between the electrons (third

term), the many body problem is trivial to solve because

we can write:

H =
∑

i

hi
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Why Shells?

Thus, to solve the many body Schrödinger equation

HΨ = EΨ, we only need to solve the one body equation

hψ = ǫψ

The eigenvalues of this equation are ǫ =
−Z 2Ry

n2

and the eigenvectors ψ = Rn′l(r) · Ylm(θ, φ) · χs,sz

with n=1, 2, ....

n′+ l = n

m=-l, -l+1, .... l-1, l

s=1/2, sz=-1/2, +1/2
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Why Shells?

The wave function of the ground state (the state of lowest

energy) of an atom with Z electrons is the anti-symetrized

product of the eigenfunctions of the Z eigenstates of lower

energy (Slater determinant). Because, the electrons being

fermions, they obey the the Pauli principle and only one

electron can occupy a single state characterized by the

quantum numbers (n, l, m, sz). Its energy, the sum of the

ǫ’s of these states.

Notice that the energy of the states (n, l, m, sz) only

depends on n, therefore for a given n all the states with

different values of (l, m, sz) are degenerated, and it is said

that they form a SHELL.

The states with the same values of n and l form an ORBIT
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What Shells?

d = 2 ·

n−1
∑

0

(2l + 1)

.

For n=1 d=2, for n=2, d=8, for n=3, d=18, and so on.

At the Z values which correspond to filling completely a

number of shells plus one electron there is a large drop in

the ionization energies which signal the change from inert

noble gases, Z=2, Helium, Z=10, Neon, etc, to the very

reactive alkalines. However in our model the next noble

gas would have Z=28, Nickel, not a very brilliant prediction!
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What Shells?

What happens is that the approximation we have made

(hidrogen-like behaviour all around) is no longer valid

when we have many electrons. The effect of the electron

repulsion can be incorporated in the one body (mean field)

potential by means of the Hartree-Fock method. In the HF

mean field the grouping of the orbits in shells changes,

and the next shell is 3s-3p d=8 giving Z=18, Argon: the

next 3d-4s-4p, d=18 leads to Z=36 Krypton, etc: now,

indeed, in agreement with the experimental data.
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When does a bound fermionic system show a

shell-like behaviour?

The atom is a very peculiar system in the sense that it has

an external mean field to start with: the attractive potential

provided by the nucleus. This is not the case for the

system that interest us (the nucleus has no nucleus)

neither for others, like the droplets of liquid 3He. Now if we

go back to the Hamiltonian we have:

H =
∑

i

Ti +
∑

i<j

V (rij)
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When does a bound fermionic system show a

shell-like behaviour?

The key point is whether is it possible to find a mean field

U(r), either phenomenologically or via the Hartree-Fock

method, such that if we write:

H =
∑

i

(Ti + Ui) + (
∑

i<j

V (rij)−
∑

i

Ui) = H0 + HR

Condition I. The eigenvalues of H0 produce quasi

degenerated groups of orbits well separated in energy

from one another.

Condition II. HR can be treated somehow in

perturbation theory.
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What do the textbooks tell us about the nucleus?

It is a system composed of Z protons and N neutrons

(A=N+Z)

Whose low energy behavior can described with non

relativistic kinematics

Bound by the strong nuclear interaction; the restriction

of QCD to the space of neutrons and protons

Which has a complicated form: Strong short range

repulsion, spin-spin, spin-orbit and tensor terms, etc
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Basic experimental facts

Which nuclei are stable?

How much they weight? The mass of a nucleus is the

sum of the masses of its constituents minus the

energy due to their mutual interactions (binding

energy), which is the lowest eigenvalue of its

Hamiltonian

For medium and heavy mass nuclei the binding energy

per particle is roughly constant (saturation)

What are their matter densities and radii? The nuclear

radius grows as A1/3, therefore the nuclear density is

constant (saturation)
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The Liquid Drop Model

These properties resemble to those of a classical

liquid drop, thus the binding energies might be

reproduced by a semi empirical mass formula with its

volume and surface terms: B= av A - as A2/3

However the drop is charged and the Coulomb

repulsion -ac Z2/ A1/3 favors drops made only of

neutrons, therefore an extra term has to be included to

reproduce the experimental line of stability: the

symmetry term which favors nuclei with N=Z;

- asym (N-Z)2/ A
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More on Experimental Data

Nuclei are quantal objets which have discrete energy

levels characterized by their total angular momentum J

and their parity.

Each state has a well defined excitation energy and

magnetic and electric moments. It may also have a

size or density distribution different from that of the

ground state

Excited states may decay by coupling to the

electromagnetic field, emitting photons of different

multipolarities, hence they have an associated half life

and different branching ratios to different final states
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More on Experimental Data

The nuclear states couple also to the weak field and

may β-decay to a more bound isobar with one

more/less unit of charge. This is the most frequent

decay mechanism for nuclei in their ground states,

albeit they may also decay by α or proton emission. All

these decays are characterized by their half-lives and

branching ratios. Excited states can have even more

decay modes as for instance one and two neutron

emission.

At the end of the day, the validity of a nuclear model

must be gauged by its success in predicting or

explaining all this body of experimental data
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Beyond the LDM

Even with this addition the LDM cannot explain the

fact that there is an anomalously large fraction of

even-N even-Z nuclei among the stable ones and only

a few odd-odd. Indeed, it cannot produce the splitting

of the mass parabolas for even A. This requires a new

ad hoc addition; the pairing term which is clearly

beyond the liquid drop picture
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Magic Numbers

In addition, when the neutron and proton separation

energies were examined, it was realised that they

showed peaks at very precise (and the same) numbers

of neutrons and protons, reminiscent of the ones

found in the ionisation potentials of the noble gases.

This big surprise gained to these numbers the label

”magic numbers”, not a very scientific one indeed!

In order to explain the magic numbers, (2, 8, 20, 28, 50,

82, 126) the IPM (or naive shell model) of the nucleus

was postulated.
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The Independent Particle Model

The basic idea of the IPM is to assume that, at zeroth order,

the result of the complicated two body interactions among

the nucleons is to produce an average self-binding

potential. Mayer and Jensen (1949) proposed a mean field

consisting in an isotropic harmonic oscillator plus a

strongly attractive spin-orbit potential and an orbit-orbit

term.

H =
∑

i

h(~ri)

h(r) = −V0 + t +
1

2
mω2r2 − Vso

~l · ~s − VB l2
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The Independent Particle Model

Later, other functional forms , which follow better the form

of the nuclear density and have a more realistic asymptotic

behavior, e.g. the Woods-Saxon well, were adopted

V (r) = V0

(

1 + e
r−R

a

)−1

with

V0 =

(

−51 + 33
N − Z

A

)

MeV

and

Vls(r) =
V ls

0

V0

(~l · ~s)
r2

0

r

dV (r)

dr
; V ls

0 = −0.44V0
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The Independent Particle Model

The eigenvectors of the IPM (hφnljm = ǫnljφnljm) are

characterized by the radial quantum number n, the orbital

angular momentum l , the total angular momentum j and its

Z projection m.

φnljm = Rho
n,l (r) · (Yl ,lz (θ, φ)× χs,sz )

j
m

with the choice of the harmonic oscillator. The eigenvalues

are:

ǫnlj = −V0 + ~ω(2n + l + 3/2)

−Vso
~

2

2
(j(j + 1)− l(l + 1)− 3/4)− VB~

2l(l + 1)

In order to reproduce the nuclear radii, ~ω = 41A−1/3

p=(2n+l) is the principal quantum number of the oscillator.
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The IPM, degeneracies and magic numbers

An orbit of total angular momentum has d=2j+1

An harmonic oscillator shell of principal quantum number

p has d=(p+1)(p+2)

Therefore the magic numbers of the HO are (N or Z) =
∑p

0

(p+1)(p+2); 2, 8, 20, 40, 70, 112, etc,

The addition of the spin-orbit term regroups the orbits into

new shells which produce the correct magic numbers:

p=0 d=2 (2)

p=1 d=6 (8)

p=2 d=12 (20)

0f7/2 d=8 (28)

p=3 – 0f7/2 + 0g9/2 d=22 (50)

p=4 – 0g9/2 + 0h11/2 d=32 (82)

p=5 – 0h11/2 + 0i13/2 d=44 (126)
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Vocabulary

STATE: a solution of the Schrödinger equation with a

one body potential; e.g. the H.O. or the W.S. It is

characterized by the quantum numbers nljm and the

projection of the isospin tz

ORBIT: the ensemble of states with the same nlj , e.g.

the 0d5/2 orbit. Its degeneracy is (2j+1)

SHELL: an ensemble of orbits quasi-degenerated in

energy, e.g. the pf shell

MAGIC NUMBERS: the numbers of protons or

neutrons that fill orderly a certain number of shells

GAP: the energy difference between two shells

SPE, single particle energies, the eigenvalues of the

IPM hamiltonian
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Caveat

Condition II does only apply in the immediate

neighbourhood of nuclei with magic proton and

neutron numbers. Hence, in most nuclei, HR , mainly

composed of pairing and quadrupole-quadrupole

interactions, plays a dominant role

Even if this is so, the IPM solutions provide a very

adequate basis to solve non-pertubatively the full

nuclear many body problem
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The wave function of the nucleus in the IPM

The WF of the ground state of a nucleus (N, Z) is the

product of one Slater determinant for the protons and

another for the neutrons, built with the N/Z states φnljm

of lower energy

Except if N and Z are such that they correspond to the

complete filling of a set of orbits, the solution is not

unique. If we have one particle in excess or in defect,

this is not a problem because of the magnetic

degeneracy. In all the remaining cases the many body

solutions of the IPM do not have a well defined total

angular momentum J, as they should due to the

rotation invariance of the Hamiltonian.
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The wave function of the nucleus in the IPM plus

schematic pairing

Thus, already at this stage, it is necessary to

incorporate dynamical effects that go beyond the

spherical mean field obtain physically sound

solutions. The minimal choice is to assume that pairs

of identical particles on top of a filled orbit are always

coupled to total angular momentum zero, due to the

strong residual two body pairing interaction

Lets work out the case of the Calcium isotopes as a

textbook example
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The IPM description of the Calcium isotopes

40Ca is doubly magic. All the orbits of the p=1, 2, and 3

HO shells are filled for neutrons and protons.

Therefore the WF of its ground state is a single Slater

determinant and ”a fortiori” has Jπ=0+ a fact borne out

by experiment. A nice, if trivial, triumph of the IPM.

The next IPM orbit is the 0f7/2 followed by 1p3/2: if we

add a neutron, we have several candidates for the GS,

(j=7/2, m), but all of them are degenerate in energy,

what makes the choice of m irrelevant. Definitely the

IPM prediction for the GS of 41Ca is Jπ=7/2−, and,

trivially its first excited state has Jπ=3/2−. A new

success of the IPM.

Alfredo Poves The Nuclear Shell Model



The IPM description of the Calcium isotopes

Let’s move to 42Ca. Now we have more choices; (j=7/2,

m), (j=7/2, m’). This gives 28 combinations which

correspond to the values of J allowed by the Pauli

principle Jπ=0+, 2+, 4+ and 6+ with M degeneracies

2J+1, 1+5+9+13=28. Within the pure IPM all have the

same energy.

What one should do now is to compute the

expectation value of the residual interaction in these

states, to break the degeneracy. And indeed, the

effective -pairing like- residual neutron neutron

interaction privileges the 0+ over the other couplings.

Again this is what the experiments tell us.

If we disregard the other possible couplings, the GS of
43Ca would be Jπ=7/2−, as it is. We can continue

applying the same recipe as far as we want in neutron

number. What will be your the prediction for 57Ca?
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The IPM description of other observables

Within the IPM some properties of the nucleus stem

just from those of the odd nucleon alone, for instance

their ground state magnetic moments

It is also useful to define the single particle limit of the

γ and β decay transition probabilities. In the former

case these are called Weisskopft units. Transitions

which carry many WU’s indicate the onset of

collectivity.

λ=1 λ=2 λ=3 λ=4

E 1. × 10
14A2/3E3

7.3 × 10
7A4/3E5

34. × A2E7
1.1 × 10

−5A8/3E9

M 5.6 × 10
13E3

3.5 × 10
7A2/3E5

16 × A4/3E7
4.5 × 10

−6A2E9

(energies in MeV)

Allowed and super allowed β decays have reduced

transition probabilities O(1) corresponding to log ft

values 3-5
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The IPM assets

The IPM explains the magic numbers, the spins and

parities of the ground states and some excited states

of doubly magic nuclei plus or minus one nucleon,

their magnetic moments, etc. As we have just seen,

with the addition of an schematic pairing term it can

go a bit further in semi-magic nuclei (Schmidt lines).

What is less well known is that in the large A limit, the

IPM can reproduce the volume, the surface and the

symmetry terms of the semi-empirical mass formula

as well.
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The IPM and the semi-empirical mass formula

Let’s take the IPM with an HO potential and neglect the

spin orbit term. Then:

H =
∑

i

ti − V0 +
1

2
mω2r2

i

the single particle energies are: ǫi = −V0 + ~ω(pi + 3/2)

and < r2

i >= b2(pi + 3/2) with b2 =
~

mω
The degeneracy of each shell is d=(p+1)(p+2) for

protons and for neutrons
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The IPM and the semi-empirical mass formula

Assume N=Z. To accommodate A/2 identical particles

we need to fill the shells up to p=pF

Experimentally, the radius of the nucleus is given by

< r2 >= 3

5
R2 = 3

5
(1.2A1/3)2

And in the IPM by:

< r2 >=
2

A

A/2
∑

i

< r2

i >=
2

A

pF
∑

p=0

b2(p + 3/2)(p + 1)(p + 2)

From

A

2
=

pF
∑

(p + 1)(p + 2)

it obtains at leading order, pF = (3

2
A)1/3
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The IPM and the semi-empirical mass formula

Putting everything together we find, at leading order in

pF ,

b2 = A1/3 and ~ω = 41 · A−1/3

We can now compute the total binding energy as:

B =

A
∑

i=1

(−V0 + ~ω(pi + 3/2)

that gives at leading order

B

A
+V0 = ~ω ·

p4

F

4
·

2

A
= ~ω

(

3A

2

)4/3
1

2A
= ~ωA1/3 1

2

(

3

2

)4/3

Finally we have

B

A
= −V0 + 41 × 0.86

and we recover the volume term of the semi empirical

mass formula for V0 ∼ 50 MeV.Alfredo Poves The Nuclear Shell Model



The IPM and the semi-empirical mass formula

If we go to next to leading order, keeping the terms in

p3

F , we obtain the surface term with the correct

coefficient

We can repeat the calculation at leading order but with

N 6=Z, and obtain

B = −AV0+
~ω

4
((pν

F )
4+(pπ

F )
4) = −AV0+

~ω

4
((3N)4/3+(3Z )4/3)

Making a Taylor expansion around the minimum at N=Z

and using the previously determined values we find an

extra term of the form (N-Z)2/A with a coefficient asym =

16 MeV) which does not agree with the one resulting

from the fit of the semi empirical mass formula to the

experimental binding energies (asym = 23 MeV).
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The symmetry energy in the IPM

This reflects the fact that the nuclear two body

neutron-proton interaction is in average more

attractive than the neutron-neutron and the proton

proton ones, and it is related as well to the

experimental evidence of the near equality of the

neutron and proton radii for N 6=Z . Therefore we should

use different values of ~ω and V0’s for protons and

neutrons in the derivation, which complicates a lot the

calculation because both effects go in opposite

directions.
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The limits of the IPM

When a nucleus is such that it has both neutrons and

protons outside closed shells, the IPM fails completely

This is mainly due to the very strong residual

interaction between neutrons and protons

Dominated by its quadrupole quadrupole components

Which may favor energetically that the nucleus acquire

a permanent deformation and exhibit rotational

spectra. This is a case of spontaneous symmetry

breaking.

In other cases collective states of vibrational type may

also develop
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The limits of the IPM; Doubly magic 40Ca

The single particle orbits around the Fermi level for
40Ca are:

0f5/2

1p1/2

1p3/2

0f7/2

pf -shell

0d3/2

1s1/2

0d5/2

sd -shell

The experimental gap between the sd -shell and the

pf -shell is about 7 MeV
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The IPM predictions for the excitation spectrum of
40Ca are:

0+ ground state

Quasi degenerated 1p-1h states of negative parity at

about 7 MeV of excitation energy

Quasi degenerated 2p-2h states of positive parity at

about 14 MeV of excitation energy

An so on . . .

But nature likes to play tricks!
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Spherical Mean Field vs Correlations

It is evident that the IPM model fails completely in

describing the low energy spectrum of 40Ca, apart

from its ground state

The more so because the excited 0+ at 3.74 MeV is the

head of a triaxial rotational band, corresponding to a

deformed β=0.3 intrinsic state. This band is of 4p-4h

nature and should naively appear at 28 MeV

In addition, the excited 0+ at 5.21 MeV is the head of a

super deformed band, β=0.6. This band is of 8p-8h

nature and should naively appear at 56 MeV

Shouldn’t we speak of doubly magic STATES instead

of doubly magic NUCLEI?

All that brings us to the basic point; The dominance of

correlations in the nuclear many body system
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Collective behaviour in Atomic Nuclei

As we depart from the magic numbers the correlations

take over the IPM and the nucleus shows collective

features

When we have only neutrons or protons on top of a

doubly magic closure, and several quasi degenerated

orbits, the nucleus becomes superfluid.

When we have neutrons and protons on top of a

doubly magic closure, and several quasi degenerated

orbits, most often the nucleus becomes deformed, and

exhibits a level scheme in which the excitation

energies go like J(J+1), as do the spectrum of a

quantum rotor.

In other, less numerous cases, nuclei show spectra

which resemble to that of a quantum vibrator, with

equi-spaced levels
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Spectrum of a deformed heavy nucleus

Alfredo Poves The Nuclear Shell Model



How to deal with deformed nuclei

To describe microscopically deformed nuclei is a very

difficult task as we will see later

Historically, the shortcut was to go semiclassical and

submit that it made sense to move from the laboratory

frame to an intrinsic frame in which the nucleons

behave as independent particles in a (deformed) mean

field. If the mean field is that of the IPM but with an

anisotropic harmonic oscillator, we get the Nilsson

model.

The wave functions in this symmetry breaking mean

field, must be thereafter complemented with the rotor

eigenfunctions in order to restore rotational

invariance, as we shall see soon.

This is the basis of the unified model of Bohr and

Mottelson that earned them the Nobel prize.
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Deformed nuclei: The Nilsson model.

In modern terms, the Nilsson model is an approximation to

the solution of the IPM plus a quadrupole-quadrupole

interaction.

H =
∑

i

h(~ri) + ~ωκ
∑

i<j

Qi · Qj

h(r) = −V0 + t +
1

2
mω2r2 − Vso

~l · ~s − VB l2

Which amounts to linearizing the quadrupole quadrupole

interaction, replacing one of the operators by the

expectation value of the quadrupole moment (or by the

deformation parameter).
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Deformed nuclei; The Nilsson model

Thus, the resulting physical problem is that of the IPM

subject to a quadrupole field, which, obviously breaks

rotational symmetry.

HNilsson =
∑

i

h(~ri)−
1

3
~ωδQ0(i)

In other words to diagonalizw the quadrupole operator

Q0 = r2 Y20 in the basis of the IPM eigenstates. The

resulting (Nilsson) levels are characterized by their

magnetic projection on the symmetry axis m, also denoted

K and the parity. Notice also that in order to keep the

density of the nucleus constant ~ω must depend on δ as:

ω(δ)(1 −
4

3
δ2 −

16

27
δ3)

1

6 = ω0

ω0 being the IPM value for this mass.
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Deformed nuclei; The Nilsson model

Therefore, for δ=0 we recover the eigenvalues and

eigenvectors of the IPM |pljm〉, E(nlj). For δ 6= 0 the

eigenstates of the problem do not have a well defined

value of j, only p, m, and the parity, are good quantum

numbers. The eigenvalues depend on p and m, but also in

some auxiliary labels related to the solutions in the limit in

which the spin-orbit interaction is negligible, the so called

asymptotic quantum numbers. Obviously, these states are

not physical anymore.
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Deformed nuclei; The Nilsson model

The formulae below make it possible to build the relevant

matrices, which upon diagonalization produce the Nilsson

diagrams, which are just the eigenvalues plotted as a

function of the deformation parameter δ.

〈pl|r2|pl〉 = p + 3/2 : 〈pl|r2|pl + 2〉 = −[(p − l)(p + l + 3)]1/2

Q0 = 2r2C2 = 2r2
√

4π/(2l + 1)Y 20 : 〈jm|C2|jm〉 =
j(j + 1)− 3m2

2j(2j + 2)

〈jm|C2|j + 2m〉 =
3

2

{

[(j + 2)2 − m2][(j + 1)2 − m2]

(2j + 2)2(2j + 4)2

}1/2

〈jm|C2|j + 1m〉 = −
3m[(j + 1)2 − m2]1/2

j(2j + 4)(2j + 2)
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Nilsson Diagrams for the p=2 HO shell

-0.4 -0.2 0 0.2 0.4
δ

-8

-6

-4

-2

0

2

4

6

8

10
5/2
3/2
1/2

Diagramas de Nilsson para la capa p=2
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Intrinsic and Laboratory frame wave functions

The intrinsic wave functions provided by the Nilsson

model are Slater determinants built putting the neutrons

and the protons in the lowest Nilsson levels (each one has

degeneracy two, ±m). Therefore:

For even-even nuclei, K=0,

For odd nuclei K is equal to the m-value of the last half

occupied orbit,

For odd-odd, there are different empirical rules, not always

very reliable.
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The intrinsic reference frame
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Intrinsic and Laboratory frame wave functions

The laboratory frame wave functions are obtained rotating

the intrinsic frame with the Wigner matrices, i.e.

correspond to the solutions of the rigid rotor problem. This

leads to the following formula for the excitation energies of

an axial rotor:

E(J) =
∑

i

ǫi(Nilsson) +
~

2

2I
J(J + 1) + a (−1)J+1/2δ(K ,1/2)

where a is the so called decoupling parameter and can be

computed with the Nilsson wave functions.
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Intrinsic and Laboratory frame wave functions

In fact, the hypothesis underlying this formula is that the

hamiltonian can be written in terms of the intrinsic

coordinates ~r ′, which refer to the intrinsic frame of

reference, and by the three Euler angles (θ, ψ, φ) that define

the orientation of the reference frame.

H(~ri) = Hintrinsic(~r ′ i) + Hcoll .(θ, ψ, φ) + Hcoupling

And that Hcoupling can be neglected, which is only the case

for well and rigidly deformed nuclei.

The optimal Hintrinsic can be obtained from the effective

nucleon-nucleon interaction using the Deformed

Hartree-Fock approximation.
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Examples of the use of the Nilsson diagrams.

The Nilsson states maintain a fourfold degeneracy, the

states with ±m have the same energy. And the

neutrons and protons as well, given that we are not

taking into account the Coulomb interaction.

Obviously, all the even-even nuclei have M=K=0 in their

ground states. Curiously, this leads to the prediction

of J=0+ for the ground states of all the deformed

even-even nuclei, the same result that we had obtained

for the superfluid ones due to the pairing interaction.
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Deformed nuclei in the sd-shell

20Ne, has two neutron and two protons more than

doubly magic 16O, and has K=0 and a rotational

spectrum, with excited states 2+, 4+, 6+, 8+, that

follow the J(J+1) formula. For a K=0 band, the states

with odd angular momentum are not allowed by

symmetry requirements.

The lowest state of each J-value is called ”yrast” from

the danish, the one which rotates more rapidly. In the

case of a rotor, the yrast band is the rotational band.

Notice that another fingerprint of nuclear deformation

is that the in-band E2 electromagnetic transitions are

very much enhanced. The Nilsson model can explain

this behaviour trivially.
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Deformed nuclei in the sd-shell

Think now of 19F. In the IPM plus pairing one would

predict that its ground state is 5/2+. On the contrary,

the Nilsson model prediction is K=1/2, and thus a

rotational band J=1/2+, 5/2+, 3/2+, etc. Notice the

effect of the K=1/2 extra term in the energy formula

above. These predictions agree with the experimental

data.

Another example is 21Ne. Now K=3/2 and the ground

state spin J=3/2+. The yrast band should have the

normal J(J+1) behaviour. And indeed it does.
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The yrast band of 21Ne. The 5/2+ state which does not

appear in the plot is at about 400 keV of excitation energy.
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The ultimate goal of nuclear theory

Is to link the theory of quarks and gluons (QCD) with

the spectroscopy of nuclei across the full nuclear chart

By the winding road of Effective Theories

Dealing only with our elementary ”particles”; heavily

dressed protons and nucleons

And to understand the emergence of coherent

(collective) modes in the nuclear many body system

In addition to the complicated structure of the two

body nucleon nucleon interaction, three body terms

seem to be necessary as well, due to the composite

nature of the nucleons. But there is hope that its

influence be limited to the correct making up of the

spherical mean field.
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A Tower of Effective interactions; resolution scales

From quarks and gluons (QCD) to neutrons and

protons in vacuum

From bare nucleons to regularized quasi-nucleons in

the nucleus

From the full Fock space to the Shell Model valence

spaces

In each one of these steps the interaction gets

renormalized

Remember the case of a diatomic non-polar molecule.

When the electronic degrees of freedom are averaged

out, the Coulomb potential is substituted by a

Lennard-Jones one which only depends on the

distance R between the two nuclei

V (R) =
A

R12
−

b

R6
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Indeed,

To have a good microscopic description of the nucleus

is an important scientific goal by itself

In addition, high quality nuclear wave functions are an

essential ingredient in Nuclear Astrophysics

And in other fundamental processes like neutrinoless

ββ decays, direct dark matter searches, etc

And for the description of nuclear reactions, nuclear

fission etc.
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The Nuclear A-body Problem

The challenge is to find Ψ(~r1,~r2,~r3, . . .~rA) such that

HΨ=EΨ, with

H=

A
∑

i

Ti +

A
∑

i ,j

V2b(~ri ,~rj) +

A
∑

i ,j ,k

V3b(~ri ,~rj ,~rk )

The knowledge of the eigenvectors Ψ and the

eigenvalues E make it possible to obtain

electromagnetic moments, transition rates, weak

decays, cross sections, spectroscopic factors, etc.
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Beyond the IPM; The Interacting Shell Model (ISM)

Is an approximation to the exact solution of the nuclear

A-body problem using effective interactions in restricted

spaces

The single particle states (i,j, k, .....), which are the

solutions of the IPM, provide as well a basis in the space of

the occupation numbers (Fock space). The many body

wave functions are Slater determinants:

Φ = a
†
i1
,a†

i2
,a†

i3
, . . . a†

iA
|0〉

We can distribute the A particles in all the possible ways in

the available single particle states. This provides a

complete basis in the Fock space. The number of Slater

determinants will be huge but not infinite because the

theory is no longer valid beyond a certain cutt-off.
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A formal solution to the A-body problem

Therefore, the ”exact” solution can be expressed as a

linear combination of the basis states:

Ψ =
∑

α

Φα

and the solution of the many body Schödinger equation

HΨ = EΨ

is transformed in the diagonalization of the matrix:

〈Φα|H|Φβ〉

whose eigenvalues and eigenvectors provide the

”physical” energies and wave functions
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Beyond the IPM; The Interacting Shell Model (ISM)

A Shell Model calculation amounts to diagonalizing

the effective nuclear hamiltonian in the basis of all the

Slater determinants that can be built distributing the

valence particles in a set of orbits which is called

valence space. The orbits that are always full form the

core.

If we could include all the orbits in the valence space

(a full No Core calculation) we should get the ”exact”

solution.
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Beyond the IPM; The Interacting Shell Model (ISM)

The effective interactions are obtained from the bare

nucleon-nucleon interaction by means of a

regularization procedure aimed to soften the short

range repulsion. In other words, using effective

interactions we can treat the A-nucleon system in a

basis of independent quasi-particles. As we reduce

the valence space, the interaction has to be

renormalized again in a perturbative way.
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