Quantum Computation of Prime Number Functions

Germán Sierra
In collaboration with José Ignacio Latorre and Alex Monras
IFT-UAM-CSIC and UB, Singapore
Joint workshop:
Quantum Physics: from fundamental questions to applications
22-24 May 2013, Barcelona, Spain

CLASSICAL PHYSICS

MATHEMATICS

\mathbb{R}

QUANTUM PHYSICS

Fundamental building blocks

NATURE

NUMBERS

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

In some sense quantum theory is a bending of physics towards number theory. However, deep facts of number theory play no role in questions of quantum mechanics....

In particular we do not know of any fundamental physical theories that are based on deep facts in number theory.

I would think that quantum mechanics will be completely reformulated and that number theory will play a key role in this formulation.
C. Vafa (2000)

While we wait for this reformulation let us see if Quantum Mechanics can do something for Number Theory

ıəұnduos unłuenరે

$\left({ }_{u} 乙\right) \mathbb{U}$

әłels əس!ıd əપ」

Número de primos menores que N

$\pi(x)$

меן әрриәбәך - ssneэ
x oł ןenb
$\stackrel{\odot}{\circ}$
$\varsigma \zeta=(00 I) u$

$\frac{x u 1}{1} \sim \frac{x p}{(x)\langle p}$

 If the Riemann hypothesis (RH) is correct, fluctuations are bounded

$\frac{\left.z^{(x \mathrm{on}}\right)}{x}$

Z+d 'd : səm!̣d U!̣」

Finitely correlated states
away from criticality

suo!suəu!p-p и! меן еəлヲ

səŋణŋs mopuey
7SUOว - и ~S

$$
\mathcal{E} \not L L \angle \vdash^{\prime} \mathcal{E}=\frac{\rho}{n^{\prime}-{ }^{\mathrm{xew}} S} \quad \div \mathcal{E} 6 Z \vdash 8100^{\circ} 0=\rho \quad \div \angle 0 \mathcal{E} Z L \cdot \mathrm{~S}=n
$$

w

$\langle\tau|\left\langle\tau+\left.d\right|^{\text {saulud } d z \tau+d} Z+\langle 0|\left\langle\tau+\left.d\right|^{\text {sumuld } d z+d^{d} d} Z=\langle 0|\left\langle\left.(u) d\right|^{\tau+} \Omega^{\text {finpuutd }} \Omega\right.\right.\right.$

$\langle(u) d|={ }^{f} \not \subset \mid$

$x>b>I$
e ssəuน̣MM əsoouว
Łモ૫ł પэns (ppo) p pue s pu!

$x>b>I$
e ssəuน̣MM əsoouว
Łモ૫ł પэns (ppo) p pue s pu!

s pue p 6u!pu!」

$\underset{\frac{0}{6}}{\substack{6}}$
sıə!uеэ łรə

v

sıəqunu əw!̣d Ło бu!̣unoכ mıłuenర̀

W~ әłеш!̣!Sə uе моия әМ

Quantum Simulation of Arithmetics
uOISn|JUOつ

еиоəэлед

