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I. MEASURES OF ENTANGLEMENT: VON NEUMANN ENTROPY

Let us consider a pure quantum state ψ〉 of a system that we divide into two parts A and B. The total Hilbert
space of the system H is the tensor product of the Hilbert spaces of the parts, i.e. H = HA⊗HB . The state ψ is said
to be not entangled, respect to the parts A and B, if it can be written as

|ψ〉 = |ψ1〉A ⊗ |ψ2〉B , |ψ〉A,B ∈ HA,B (1)

The problem of how to know that a given state is not entangled can be solved in a neat mathematical manner. Let
us denote by |ei〉 (i = 1, . . . , nA) an orthonormal basis of HA and by |fj〉 (j = 1, . . . , nB) an orthonormal basis of HB .
A generic state ψ〉 can be written as

|ψ〉 =

nA∑
i=1

nB∑
j=1

ψij |ei〉A |fj〉B (2)

where ψij is a nA × nB complex matrices normalized as

〈ψ|ψ〉 = 1 =⇒
nA∑
i=1

nB∑
j=1

|ψij |2 = 1

An important theorem in linear algebra is that a generic m× n complex matrix M can be written as

M = U DV t, U U† = I, V V † = I

where U and V are unitary m×m and n×n unitary matrices respectively and D is a diagonal n×m matrix whose
entries are non negative numbers

D =

 d1 0 . . .
0 d2 . . .
0 0 . . .

 , d1 ≥ d2 ≥ d3 · · · ≥ 0

This result is known as the singular value decomposition (SVD) of the matrix M. Applying this result to a nA×nB
matrix Ψ , whose components are ψij , one gets

Ψ = U DV t =⇒ ψij =
∑
a

Uia da Vja (3)

Plugging this result into the equation for |ψ〉 one finds

|ψ〉 =

nA∑
i=1

nB∑
j=1

∑
a

Uia da Vja |ei〉A |fj〉B

=
∑
a

da

(
nA∑
i=1

Uia |ei〉A

)  nB∑
j=1

Vja|fj〉B
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If nA = nB , the terms in paranthesis define new orthonormal basis of HA,B

ẽa =

nA∑
i=1

Uia |ei〉A, f̃a =

nB∑
j=1

Vja|fj〉B

If nA 6= nB the vectors defined by these equations can be supplemented with additional vectors in order to construct
new orthonormal basis of HA,B . After this change of basis the state |ψ〉 takes the simple form

|ψ〉 =

χ∑
a=1

da |ẽa〉A|f̃a〉B (4)

which is known as the Schmidt decomposition. χ gives the number of non vanishing da and it is called the Schmidt
number, which is bounded by the minimum of nA and nB . The normalization of ψ implies

χ∑
a=1

d2
a = 1, χ ≤ min (dimHA,dimHB)

Recalling the definition of a not entangled state we see that it coincides with a state with Schmidt number χ = 1,
that is, there is only one term in its Schmidt decomposition. Whenever χ > 1 the state will be entangled, i.e.

ψ is entangled⇐⇒ χ > 1

The EPR and Bell states of two spin 1/2 particle correspond to

EPR and Bell states→ χ = 2, d1 = d2 =
1√
2

A. Reduced density matrix

Let us consider a pure state ψ of a quantum system made of two disjoint parts A and B. Tracing over each part
one gets two operators

ρA = TrB |ψ〉 〈ψ|, ρB = TrA|ψ〉 〈ψ|

which satisfy the standard properties of a density matrix

ρ† = ρ, Tr ρ = 1, ρ2 ≤ ρ

and for these reason they are called reduced density matrices. Each of these matrices allow one to compute the
expectation value of an observable defined on the corresponding portion, i.e.

〈OA〉ψ = 〈ψ|OA|ψ〉 = TrA∪B (OA |ψ〉〈ψ|) = TrA (OA TrB |ψ〉〈ψ|) = Tr (OA ρA)

The reduced density matrices take a particular simple form using the Schmidt decomposition (4),

ρA =

χ∑
a=1

d2
a |ẽa〉A A〈ẽa|, ρB =

χ∑
a=1

d2
a |f̃a〉B B〈f̃a| (5)

They are diagonal in the corresponding basis and their eigenvalues coincide with the square of the Schmidt coeffi-
cients. An alternative way to compute these coefficients is as follows. Starting from the general equation (2), the two
density matrices are
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ρA =

nA∑
i,i′=1

ρAii′ |ei〉A A〈ei′ |, ρAii′ =

nB∑
j=1

ψijψ
∗
i′j (6)

ρB =

nB∑
j,j′=1

ρBjj′ |fj〉B B〈fj′ |, ρBjj′ =

nA∑
i=1

ψijψ
∗
ij′ (7)

Using the SVD of Ψ one can write the matrices ρA,B as

ρA = Ψ Ψ† = U D2 U†

ρB = Ψt Ψ∗ = V D2 V †

This shows that the U and V matrices are nothing but the unitary transformations needed to diagonalize the
reduced density matrices in the corresponding subsystems. This way of obtaining d2

a is the standard one in the so
called Density Matrix Renormalization Group Method (DMRG).

B. von Neumann entropy

The von Neumann entropy of a density matrix ρ, is defined as

S = −Tr ρ log ρ

This quantity is non negative and vanishes if and only if ρ corresponds to a pure state, i.e. ρ = |ψ〉〈ψ|. Using this
quantity one can associate an entropy to the reduced density matrices of a pure quantum system. Indeed, one defines
the entropy of entanglement SA as the von Neumann entropy of the reduced density matrix ρA. Since ρA and ρB
have the same eigenvalues one derives that SA = SB , hence

SA = −Tr ρA log ρA = −
∑
a

d2
a log d2

a

It is comfortable to see that SA = 0 if and only if the state ψ is not entangled. On the other hand, for a given
Schmidt number χ the state with highest entropy of entanglement is given by

da =
1
√
χ

=⇒ SA = logχ

This means in particular that the EPR and Bell states have the highest entropy of entanglement. For a two qubit
system the density matrix of the subsystems is two dimensional. hence their two eigenvalues can be taken as cos2 θ
and sin2 θ. So a single parameter serves to characterize the entanglement of a two qubit system, where any pure state
can be written in the form

|ψ〉 = cos θ |0〉A|0〉B + sin θ |1〉A|1〉B
yielding the reduced density matrix

ρA = cos2 θ |0〉A A〈0|+ sin2 θ |1〉A A〈1|

whose entropy is

SA = H(x), x = cos2 θ

where H(x) is the binary entropy

H(x) = −x log x− (1− x) log(1− x) (8)

See fig 1 for a plot of H(x).
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FIG. 1: Plot of the entropy H(x) defined in eq. (8) using log in base two

II. BLACK HOLES AND ENTROPY

In 1973 Bekenstein proposed that a black hole (BH) has an entropy S proportional to the area A of its horizon.

S = γA (9)

He also argueed that the coefficient in (9) is of order one and equal to γ = log 2/8π~, in units G = c = 1. This proposal
appeared somehow in previous papers as in2, and it was based on analogies between formulas in thermodynamics and
BH physics. In particular the expression

dM =
κ

8π
dA+ ΩdJ (10)

where M,κ,Ω, J are respectively the mass, surface gravity, angular velocity and angular momenta of the BH, was put
in correspondence with the thermodynamic relation

dU = TdS + pdV. (11)

In his famous paper in 1975 on black hole evaporation3, Hawking fixed the proportionality value in (9)

SBH =
kA

4`2P
, `P =

√
G~
c3

(12)

This formula became known as the Bekenstein-Hawing law of the black-hole entropy (curiously enough the initials
BH refers either to these authors or to the black-hole itself!). The factor log 2 in the Bekenstein formula came from
considerations of information theory, since it represents the minimal information associated to a bit in Shannon’s
theory. Together with the thermodynamic analogy between eqs.(10) and (11), information theory played a major role
in Bekenstein formulation of the area law, which is stated explicitely as (page 2336 in ??):

It is then natural to introduce the concept of black-hole entropy as the measure of the inaccesibility of informattion
(to an exterior observer) as to which particular internal configuration of the black hole is actually realized in a given
case

To strength the information content of this concept Bekenstein continues saying:

At the outset it should be clear that the black hole entropy we are speaking of is not the thermal entropy inside the
black hole. In fact, our black hole entropy refers to the equivalence class of all black holes which have the same mass,
charge, and angular momentum, not to one particular black hole.
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III. QUANTUM SOURCE OF ENTROPY FOR BLACK HOLES (BOMBELLI ET AL 1986)

Inspired by the Bekenstein-Hawking formula, Bombelli et al4) computed the entropy of the reduced density matrix
of a real scalar field satisfying the Klein-Gordon equation on a fixed background. In4 the ground state of this field
theory was traced over the inner degrees of freedom of a region of the space finding a dependence of the area. Bombelli
et al also obtained a general expression for the entropy of any real Gaussian density matrix.

A. Two harmonic oscillators

As a simple example of the general idea both Bombelli et al compute the reduced density matrix of two harmonic
oscillators coupled through the Hamiltonian (we introduce a simplified notation which makes more clear the results):

H =
1

2

(
p2

1 + p2
2

)
+

1

2

∑
a,b=1,2

Vab(χ) qa qb (13)

where the potential is given by the positive symmetric matrix

V (χ) =

(
coshχ sinhχ
sinhχ coshχ

)
, −∞ < χ <∞ (14)

with eigenvalues e±χ (notice that detV (χ) = 1 and TrV (χ) = 2 coshχ). The normalized ground state wave function
is given by the gaussian

ψ(q1, q2) =
1√
π

exp

−1

2

∑
a,b

Vab

(χ
2

)
qaqb

 =
1√
π

exp

[
−1

2
cosh

χ

2
(q2

1 + q2
2)− sinh

χ

2
q1q2

]
(15)

which has an energy

E0 =
1

2
TrV

(χ
2

)
= cosh

χ

2

If χ = 0 the two oscillators are completely decoupled. Let us now introduce the creation and annihilation operators
for each oscillator

aj =
1√
2

(pj − iqj), a†j =
1√
2

(pj + iqj), [aj , ak] = δjk (j, k = 1, 2) (16)

and the corresponding vacuum states

aj |0〉j = 0, (j = 1, 2) (17)

If χ = 0, the GS of (13) is the product state

χ = 0 =⇒ H |0〉1 ⊗ |0〉2 = |0〉1 ⊗ |0〉2

One can easily prove that (15) satisfies the eqs.

a1 ψ = γ a†2 ψ, a2 ψ = γ a†1 ψ, γ = tanh
χ

4
(18)

so that ψ can be written as
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|ψ〉 = Ceγa
†
1 a
†
2 |0〉1 ⊗ |0〉2 = C

∞∑
n=0

γn |n〉1 ⊗ |n〉2 C =
√

1− γ2 (19)

where C is a normalization constant and |n〉j are the basis of the Hilbert spaces Hj (j = 1, 2) of the harmonic
oscillators,

|n〉j =
(a†j)

n

√
n!
|0〉j , n = 0, . . . ,∞, j = 1, 2 (20)

The expression of ψ, in the basis |n〉j , yields the Schmidt decomposition of that state (see later). The density matrix
ρ in this operator language reads

ρ = |ψ〉〈ψ| = C2
∑
n,m≥0

γnγm (|n〉〈m|)1 ⊗ (|n〉〈m|)2 (21)

and the reduced density matrices for the oscillators 1 and 2 are obtained by tracing over the degrees of freedom of
the other oscillator, namely

ρ(1) = TrH2
ρ =

∞∑
n=0

2〈n|ρ|n〉2 = C2
∑
n≥0

γ2n (|n〉〈n|)1 , (22)

ρ(2) = TrH1
ρ =

∞∑
n=0

1〈n|ρ|n〉1 = C2
∑
n≥0

γ2n (|n〉〈n|)2

The von Neumann entropies of these reduced density matrices coincide and are given by

S(1) = S(2) = −TrH1
ρ(1) = −

∞∑
n=0

C2γ2n log(C2γ2n) = − (1− γ2) log(1− γ2) + γ2 log γ2

1− γ2
(23)

See fig. 2 for a plot of S1) as a function of γ2. When γ → 1, the entropy diverges as − log(1− γ2), which corresponds
to a very strong coupling between the oscillators. The fact that S(1) = S(2) implies that the entropy of the reduced
density matrices describes a property common to both subsystems and it is a general feature of pure states of bipartite
systems.
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FIG. 2: Entropy S(1) for the two coupled harmonic oscillators as a function of γ2 ∈ (0, 1).

Let us now compute the density matrix ρ in the coordinate basis. First we write (15) as
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ψ(q1, q2) =
1√
π

exp

[
−1

2
A(q2

1 + q2
2)−Bq1q2

]
(24)

where

A = cosh
χ

2
=

1 + γ2

1− γ2
, B = sinh

χ

2
=

2γ

1− γ2
(25)

The density matrix ρ is given by

ρ(q1q2, q
′
1q
′
2) = 〈q1q2|ρ|q′1q′2〉 = ψ(q1, q2)ψ∗(q′1, q

′
2) =

1

π
e−

1
2A(q21+q22+q′21 +q′22 )−B(q1q2+q′1q

′
2) (26)

and the reduced density matrix by

ρ(1)(q1, q
′
1) =

∫
dq2 ρ(q1q2, q

′
1q2) =

1

π
e−

1
2A(q21+q′21 )

∫
dq2 e

−Aq22−B(q1+q′1)q2

=
1

π
e−

1
2A(q21+q′21 )

∫
dq2 e

−A(q2+ B
2A (q1+q′1))

2
+B2

4A (q1+q′1)2

=
1√
πA

e−
1
2A(q21+q′21 )+B2

4A (q1+q′1)2

where we have completed the squares. Bombelli et al write this expression as

ρ(1)(q, q′) =

√
M

π
e−

1
2M(q2+q′2)−N4 (q−q′)2 (27)

where

M =
1

A
=

1− µ
1 + µ

, N =
B2

A
=

4µ

1− µ2
, µ = γ2 (28)

Notice that the entropy (23) can be written as

S(1) = H(µ) ≡ −µ logµ+ (1− µ) log(1− µ)

1− µ
(29)

The parameters M and N have dimensions of length−2, but the entropy S(1) is dimensionaless, so it can only
depend on the ratio

λ =
N

M
(30)

which is related to µ by the following relations

µ = 1 +
2M

N
− 2

√
M

N

(
1 +

M

N

)
= 1 + 2λ−1 − 2

√
λ−1(1 + λ−1) (31)

Making the transformation

q → q√
M

the density matrix (27) takes the simple form

ρ(1)(q, q′) =
√
πe−

1
2 (q2+q′2)−λ4 (q−q′)2 (32)
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B. General collection of harmonic oscillators

The previous example can be easily generalized to a general collection of harmonic oscillators whose Lagrangian is
given by

L =
1

2
GMN q̇

M q̇N − 1

2
VMN q

MqN (33)

where qM , q̇M (M = 1, . . . , d) are the coordinates and velocities of d oscillators. GMN and VMN are positive and
symmetric matrices. The matrix GMN plays the role of a metric and its inverse

GMNGNP = δMP

is used to raise indices. The canonical momenta PM is given by

PM =
∂L

dq̇M
= GMN q̇

N

in terms of which the Hamiltonian reads

H =
1

2
GMN PMPN +

1

2
VMN q

MqN (34)

Defining the symmetric matrix

WMAW
A
N = VMN (35)

one can write (34) as

H =
1

2
GMN

(
PM − iWMAq

A
)† (

PN − iWNBq
B
)

+
1

2
Tr W (36)

where one has used the canonical commutation relations

[qM , PN ] = i δMN , PN = −i ∂

∂qN

The ground state of (36) is found by solving the equations

(
PN − iWNBq

B
)
|ψ〉 = 0, ∀N

which in the coordinate basis reads

(
∂

∂qN
+WNBq

B

)
ψ({qA}) = 0, ∀N

and whose solution is

ψ({qA}) =

(
det

W

π

)1/4

exp

(
−1

2
WAB q

AqB
)

(37)

The density matrix is given by
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ρ({qA}, {q′B}) = ψ({qA})ψ∗({qB}) =

(
det

W

π

)1/2

exp

[
−1

2
WAB (qAqB + q′Aq′B)

]
(38)

Next, one splits the d oscillators in two sets of d1 oscillators and d2 oscillators (d = d1 + d2),

A = (a, α), a = 1, . . . , d1, α = d1 + 1, . . . , d1 + d2

and correspondingly the matrix WAB and its inverse WAB split as

WAB =

(
Wab Waβ

Wαb Wαβ

)
, WAB =

(
W ab W aβ

Wαb Wαβ

)
(39)

The matrix WAB is not obtained from WAB raising the indices with GAB . The reduced density matrix for the
oscillators qa is defined as

ρ(1)({qa}, {q′b}) =

∫ ∏
α

dqα ρ({qa, qα}, {q′b, qα}) (40)

=

(
det

WAB

π

)1/2

× exp

[
−1

2
Wab (qaqb + q′aq′b)

] ∫ ∏
α

dqα exp
[
−Wαβ q

αqβ −Waα(qa + q′a)qα)
]

To perform the gaussian integral it is convenient to introduce the inverse of some of tha matrices in (39), namely

Wab W̃
bc = δca, W ab W̃bc = δac , Wαβ W̃

βγ = δγα, Wαβ W̃βγ = δαγ (41)

Then completing squares in (40) one finds

ρ(1)({qa}, {q′b}) =

(
det

W̃ab

π

)1/2

exp

[
−1

2
Wab (qaqb + q′aq′b)

]
exp

[
1

4
W̃αβWαaWβb(q + q′)a(q + q′)b

]
(42)

where one has used the identity

detWAB = det W̃ab detWαβ

that follows from the relation

(
A B
C D

)
=

(
1 B
0 D

)(
A−BD−1C 0

D−1C 1

)
=⇒ det

(
A B
C D

)
= det(A−BD−1C) detD

and

W̃ab = Wab −Waα W̃
αβWβb

This eq. can be proved using the definitions (41)

W ca(Wab −Waα W̃
αβWβb) = W cAWAb −W cγWγb − (W cAWAα −W cγWγα)W̃αβWβb

= δcb −W cγWγb +W cγδβγWβb = δcb

Finally, one defines
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Mab = W̃ab, Nab = Waα W̃
αβWβb (43)

which brings (42) into the form

ρ(1)({qa}, {q′b}) =

(
det

Mab

π

)1/2

exp

[
−1

2
Mab (qaqb + q′aq′b)− 1

4
Nab(q − q′)a(q − q′)b

]
(44)

The W matrices corresponding to the two harmonic oscillators studied previously correspond to (recall eq. (14)

WAB =

(
cosh χ

2 sinh χ
2

sinh χ
2 cosh χ

2

)
, WAB =

(
cosh χ

2 − sinh χ
2

− sinh χ
2 cosh χ

2

)
(45)

and the entries M11 and N11 coincide with M and N defined in (28). To diagonalize (44) one first perform an
orthogonal transformation U which diagonalizes the symmetric matrix Mab,

q → Uq, M = U

 M1 0 . . . 0
0 M2 0 0
...

...
...

...

UT

This brings ρ(1) to

ρ(1)({qa}, {q′b}) =
∏
n

(
Mn

π

)1/2

exp

[
−1

2
Mn (qnqn + q′nq′n)− 1

4
N ′nm(q − q′)n(q − q′)m

]
where N ′ = UTNU . As we did for two harmonic oscillators, we perform the scaling

qn →
qn√
Mn

so that (up to a rescaling of the overall factor to keep the right normalization)

ρ(1)({qa}, {q′b}) =
∏
n

π−1/2exp

[
−1

2
(qnqn + q′nq′n)− 1

4
M−1/2
n N ′nmM

−1/2
m (q − q′)n(q − q′)m

]

Finally one diagonalizes the matrix M
−1/2
n N ′nmM

−1/2
m , or alternatively the matrix

Λab = (M−1)acNcb (46)

which leads to

ρ(1)({qa}, {q′b}) =
∏
n

{π−1/2exp

[
−1

2
(qnqn + q′nq′n)− 1

4
λn(q − q′)n(q − q′)n

]
} (47)

This expression shows that the reduce density matrix is the collection of the density matrices associated to the
eigenvalues λn of decoupled oscillators,

ρ(1) = ⊗nρ(λn) (48)

and consequently the entropy is given by
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S(1) =
∑
n

S[ρ(λn)] =
∑
n

H(µn) (49)

where H(µ) was defined in (29) and µn is related to λ by eq.(31), i.e.

λn =
4µn

(1− µn)2
, µn = 1 + 2λ−1

n − 2

√
λ−1
n (1 + λ−1

n ) (50)

Notice that (49) is a generalization of eq.(29). Using identities involves the W matrices, Bombelli et al show that the
matrix λ positive semidefinite and can be written as

Λab = −W aαWαb (51)

C. Entropy of a free scalar field

The latter general results are next used by Bombelli et al to study the case of a free scalar field in D space dimensions
D = 3 in reference4), making the correspondence

1

2
VAB q

AqB → 1

2
〈φ|∇2 +m2|φ〉 =

1

2

∫
dDx[(∇φ)2 +m2φ2]

In the continuum limit, the oscillator label A represents the position x ∈ IRD, of the scalar field φ(x), so that the
matrix VAB corresponds to the function

V (x, y) =

∫
dDk

(2π)D
(k2 +m2) eik·(x−y) (52)

and the matrices WAB and WAB to

W (x, y) =

∫
dDk

(2π)D
(k2 +m2)1/2 eik·(x−y), W−1(x, y) =

∫
dDk

(2π)D
(k2 +m2)−1/2 eik·(x−y) (53)

Calling Ω ⊂ IRD the region of the space where one takes the trace, the matrix Λ becomes

Λ(x, y) = −
∫

Ω

dDzW−1(x, z)W (z, y) (54)

= −
∫

Ω

dDz

∫
dDk

(2π)D
(k2 +m2)−1/2 eik·(x−z)

∫
dDp

(2π)D
(p2 +m2)1/2 eik·(z−y)

The problem is then to find the eigenvalues of this matrix

∫
Ωc
dDyΛ(x, y) f(y) = λ f(x), (55)

where Ωc is the complement of Ω in IRD. Bombelli et al show that the entropy SΩ that results in the later computation
is infinite even with a finite mass. This entropy is a dimensionless quantity, which can only depend on the linear size
of Ω, say R, and the mass m in the form mR. If m = 0, the entropy can only be ∞ or 0, but as a calculation shows
it is actually infinite. The addition of the mass does not give a finite result, because taking the limit R→ 0, amounts
to taking the limit m → 0, and therefore one gets infinity again. The divergency of the entropy has an ultraviolet
origin and therefore a short distance cutoff is needed in order to get a finite answer. The paper discuss three possible
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regularizations: 1) lattice cutoff, 2) momentum cutoff and 3) distance cutoff separating Ω from the rest of the system.
The choice 3) is the one implemented in4. To show the area law of SΩ, Bombelli et al use a half-space geometry, i.e

Ω = {x | −∞ < xD < −ε}, Ωc = {x | 0 < xD <∞} (56)

where ε > 0 is the short distance cutoff. This choice implies that there is a thin hyperplane of width ε separating Ω
and Ωc. Any D dimensional vector, as the momenta, is decomposed into a perpendicular component v⊥ and D − 1
parallel components v‖ to the hyperplane separating Ω for the other half ( the parallel component is absent for D = 1).

The W and W−1 functions then decomposed as

W (x, y) =

∫
dk⊥
2π

∫
dD−1k‖

(2π)D−1
(k2
⊥ + k2

‖ +m2)1/2 eik⊥(x⊥−y⊥)eik‖·(x‖−y‖),

W−1(x, y) =

∫
dk⊥
2π

∫
dD−1k‖

(2π)D−1
(k2
⊥ + k2

‖ +m2)−1/2 eik⊥(x⊥−y⊥)eik‖·(x‖−y‖),

where the integration of the momenta run over the whole momentum space. Consequently the matrix Λ decomposes
as

Λ(x, y) = −
∫ −ε
−∞

dz⊥

∫
IRD−1

dD−1z‖

∫
dk⊥
2π

∫
dD−1k‖

(2π)D−1
(k2
⊥ + k2

‖ +m2)−1/2eik⊥(x⊥−z⊥)eik‖·(x‖−z‖) (57)

×
∫
dp⊥
2π

∫
dD−1p‖

(2π)D−1
(p2
⊥ + p2

‖ +m2)1/2 eip⊥(z⊥−y⊥)eip‖·(z‖−y‖)

Translational invariance on the parallel plane suggests the following ansatz for the eigenfunctions of Λ,

f(x) = eiν‖·x‖ f(x⊥) (58)

which converts the eigenvalue eq.(55) into

λ f(x⊥) = −
∫ ∞

0

dy⊥

∫ −ε
−∞

dz⊥

∫ ∞
−∞

dk⊥
2π

(k2
⊥ + ν2

‖ +m2)−1/2eik⊥(x⊥−z⊥) (59)

×
∫
dp⊥
2π

(p2
⊥ + ν2

‖ +m2)1/2 eip⊥(z⊥−y⊥) f(y⊥)

For each momenta ν‖, eq.(59) is a one-dimensional problem of a boson with effective mass

me = (ν2
‖ +m2)1/2

which will give rise to a spectrum of eigenvalues λn(meε) n ∈ ZZ, each of then given a contribution to the entropy

Hn(meε) = −µn log µn + (1− µn) log(1− µn)

1− µn

where µn is related to λn by eq.(50). The total entropy associated to the effective mass me will be given by

H(meε) =

∞∑
n=0

Hn(meε)

and the total entropy is obtained integrating over all momenta ν‖. Using the fact that this entropy is proportional to
the area A one finds (for D = 2)
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S =
A

(2π)2

∫
d2ν‖H(meε) =

A

2πε2

∫ √1+ε2m2

ε
√
R−2+m2

dξ ξ H(ξ) (60)

where we also introduce an infrared cutoff R associated to the finite area A. Bombelli et al then show that the integral
over ξ is finite and in this manner they find the area law

S ∼ C A
ε2

(61)

for some constants C. They also discuss the case where the domain Ω is a sphere but they do not compute the final
result which they expect to follow also an area law.

IV. ENTROPY AND AREA (SREDNICKI (1993))

In 1993 Srednicki did a computation similar to that of Bombelli et al5 (at the end of the paper Srednicki acknowledges
reference4 pointing out some difference). Srednicki realized that the entropy of a region Ω does not depend on wether
one traces over the interior or the exterior, i.e.

S = −Tr ρin log ρin = −Tr ρout log ρout (62)

and therefore S could only depend on a common property shared by Ω and its complement Ωc, namely the area that
separates the two domains. For a field theory Srednicki arguee that S must depend on an ultraviolet cutoff M , which
for a crystal would be the inverse of the atomic spacing and an infrared cutoff µ, which would be the inverse of the
linear size. However Srednicki arguees that if in the ground state the correlations fall off fast enough with the distance
from the boundary, then S should be independent on µ and therefore S is expected to satisfy

S = κM2A (63)

where κ is a numerical factor. This law is strikingly similar to the BH law for a black hole

SBH =
1

4
M2

PlA
2 (64)

which is observed as a rather mysterious fact. Srednicki then suggest that the area law is a much more general
formula that has been realized so far, and not particularly tied to black holes, since in particular the region Ω
is enterily imaginary. As in Bombelli et al paper, Srednicki first computed the entropy of two coupled harmonic
oscillators and later on he generalizes the result to a more collection of oscillators, which is then applied to a free
scalar field with Hamiltonian

H =
1

2

∫
d3x

[
π2(x) + (∇φ(x))2

]
(65)

which is discretized on a sphere of radius R using partial waves φlm,j and πlm,j , where l is the total angular momenta,
m its third component, and j = 1, . . . , N are the positions. These fields satisfy the canonical commutation relations

[φlm,j , πl′m′,j′ ] = i δll′ δmm′ δjj′

The total Hamiltonian being is given by

H =
∑
lm

Hlm =
∑
lm

1

2a

N∑
j=1

[
π2
lm,j + (j +

1

2
)2

(
φlm,j
j
− φlm,j+1

j + 1

)2

+
l(l + 1)

j2
φ2
lm,j

]
(66)



14

where a is the lattice spacing. Srednicki then computed numerically the entropy of the first 1 ≤ n ≤ 30 sites for a
system with N = 60, finding

S = 0.30M2R2, (D = 3) (67)

where M = a−1 and R = (n + 1/2)a is the radius of the region Ω. This result was shown to be independent of the
size N of the system. In D = 2 and D = 1 Srednicki finds

S = κM R D = 2 (68)

S = κ1 log(M R) + κ2 log(µR) D = 1

which supports the general area law

S = κMD−1A, D > 1 (69)

except for D = 1 which exhibits a logarithmic dependence with the size of the system.

V. GEOMETRIC ADN RENORMALIZED ENTROPY IN CONFORMAL FIELD THEORY (HOLZHEY
ET AL 1994)

This work is motivated by the area law in black hole physics and the prolem of moving mirrors. It is the first work
where the entropy in a 2D CFT is computed and applied to the latter problems.

The goal is to compute the entropy

S = −Tr ρ log ρ

that describes the correlations between the subsystem and the rest of the universe. Roughly speaking, it is the logarithm
of the number of states of the inacessible part of the universe that are consistent with all the measurements restricted
to the accesible part, together with a apriori knowledge that the universe as a whole is in a pure state8.

The universe U is splitted into an inner and out parts. In a quantum field theory the variables are local and

described by a complete set of commuting observables ξ̂in, ξ̂out. The density matrix of the universe can be written as

ρU = ρU (ξ1
in, ξ

1
out; ξ

2
in, ξ

2
out) (70)

and the density matrix form the inner part is then

ρin(ξ1
in; ξ2

in) =
∑
ξout

ρU (ξ1
in, ξout; ξ

2
in, ξout) (71)

The problem in a QFT is to obtain a finite result for observables, due specially to UV divergences. Concerning the
geometric entropy Holzhey et al solved this problem using a method similar to that of Bombelli et at4. That is to
separate the inner and outer regions by a short distance cutoff.

Let us consider a system S of length L with periodic boundary conditions. To describe it we introduce the complex
variable ζ = σ+iτ , where 0 ≤ σ ≤ L is the spatial coordinate and τ the time coordinate. The system S is splitted into
two subsystems which we take as A = (0, `) and B = (`, L). If one computes the entropy of a given state by tracing
over the degrees of freedom in B the result will be infinite. The reason being that localized excitations arbitrary close
to the boundary of A will correlate it with the subsystem B. This problem is resolved by introducing a short distance
cutoff ε4,8. The system S is now regarded as the union

S = A ∪B (72)

A = (ε, `− ε), B = (`+ ε, L− ε),
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where ε << ` < L, so that A and B are separated by two regions of sizes 2ε. The world sheet of the past before time
τ = 0, is a cylinder with two semidisks of radii ε cut out (see fig 3). Let us denote by C and D the boundaries of
these disks:

C = {ε e−iϕ, 0 ≤ ϕ ≤ π}, D = {`− ε eiϕ, 0 ≤ ϕ ≤ π}

Hence the complete boundary of the world sheet of fig refmaps consists in the union A∪C ∪B ∪D. To simplify this
geometry one first performs the conformal transformation ζ → w:

w = −
sin
(
π(ζ−`)
L

)
sin
(
πζ
L

) , ζ =
L

2πi
log

(
w + eiπ`/L

w + e−iπ`/L

)
(73)

The real ζ-axis is mapped into the real w-axis, in particular the boundaries of the intervals A = (A1, A2), B = (B1, B2)
are mapped into

wA1
=

1

wA2

= − 1

wB1

= −wB1
=

L

πε
sin

(
π`

L

)
≡ R

in the limit where ε << ` < L. If we further take ` << L, then the length of the system L disappears in the previous
equations since they only depend on ±`/ε. Moreover, the point in the infinite past ζ → −i∞ is mapped into

w∞ = eiπ(L−`)/L

Using eq.(73) one can show that the boundary C is mapped into the small semicircle w = 1/R eiϕ (0 ≤ ϕ ≤ π) in the
upper-half w−plane, while the boundary D is mapped into the large semicircle w = Reiϕ (0 ≤ ϕ ≤ π). Hence the
cylinder of fig.1a has been mapped into the half annulus of the upper-half plane of radii R and 1/R. The boundaries
of this half annulus of course corresponds to the original boundaries A,B,C,D.

A B

D C

B A

C

D

CD

A

B

ζ w z

FIG. 3: Riemann surfaces describing the past events in ζ and z. The distinguished point in z is the infinite past ζ∞ = −i∞
(taken from9).

Next one makes the conformal transformation

z = log w

which maps the annulus into a strip of width π and length d (see fig 3)

zA1
=
d

2
, zA2

= −d
2
, zB1

= iπ − d

2
, zB2

= iπ +
d

2
, d = 2 log

[
L

πε
sin

(
π`

L

)]
The point at infinity τ = −∞ is mapped into
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z∞ = iπ

(
1− `

L

)
The interval A is now represented by the lower half of the strip, while the interval B is represented by the upper half.

the intervals C and D corresponds to the other two sides of the strip and one imposes periodic boundary conditions,
which amounts to matching conditions of the fields at the edges of the original subsystems.

We are interested in finding an expression for the entanglement entropy for primary states in a CFT including the
vacuum |0〉 (see references9–11). The latter can be obtained by acting on the vacuum state |0〉 with an primary field
φ(z, z)

|φ〉 = lim
z,z→0

φ(z, z) |0〉 (74)

with conformal weights h, h. Eq. (74) describes an incoming state. The outgoing state can be defined similarly

〈φ| = lim
z,z→0

z−2hz−2h 〈0|φ(
1

z
,

1

z
) (75)

so that the scalar product of these two states is one.

〈φ|φ〉 = lim
z,z→∞

z−2hz−2h 〈0|φ(
1

z
,

1

z
)φ(0, 0)|0〉 = 1 (76)

The wave function associated to the vaccum (i.e the ground state) is given by the path integral

ΨXY (GS) ∝
∫
Dφ e−S(φ) (77)

and the one associated to the primary state is

ΨXY (Υ) ∝
∫
Dφ Υ[φ(z∞)] e−S(φ) (78)

where φ denotes the local field whose action is S(φ). The field Υ will be a functional of φ, and it will be evaluated
at the infinite past z∞, in agreement with eq. (74). In the path integral X and Y denote the values of the field φ in
the subsystems A and B respectively. The density matrix ρ ≡ ρA for the subsystem A is obtained by tracing over the
variables in B

ρXX′(Υ) =

∫
DY ΨXY (Υ) Ψ∗Y X′(Υ) (79)

Plugging (77) and (78) into (79) one finds for the GS and the excited states

ρXX′(GS) =
1

Z(1)

∫
Dφ e−S(φ) (80)

and

ρXX′(Υ) =
1

Z(1)〈Υ(z∞) Υ†(z′∞)〉

∫
Dφ Υ[φ(z∞)] Υ∗[φ(z′∞)] e−S(φ) (81)

where

z′∞ = iπ

(
1 +

`

L

)
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represents to position of the infinite future where the outgoing fields are created.
The functional integral is over a strip of height 2π and boundary conditions φ = X on the lower side and φ = X ′

on the upper side. The normalization factor is determined by the condition tr ρ = 1, which implies that Z(1) is the
function integral with no operator insertion and the top and bottom edges of the strip identified (i.e. a torus partition
function), and 〈Υ Υ†〉 is the two point correlator on the same torus. To compute the entanglement entropy one uses
the replica trick. For the GS one first takes the nth power of (80)

ρnXX′(GS) =
1

Z(1)n

∫
Dφ e−S(φ) (82)

where the path integral is over a strip of height 2πn. Then one identifies X with X ′ obtaining

Tr ρn(GS) =
Z(n)

Z(1)n
(83)

where Z(n) denotes the partition function on a torus of lengths 2πn and d, along the b and a cycles respectively, so
that the moduli parameter is given by τ = 2πin/d. The entropy is finally obtained taking the limit

S = − d

dn
Tr ρn|n=1 (84)

which using eq.(83) yields

SGS = (1− n d

dn
) logZ(n)|n=1 (85)

An alternative formula used to compute this quantity is in terms of the so called Renyi entropies

S(n) =
1

1− n
log Tr ρn (86)

whose n→ 1 limit gives the von Neumann entropy,

S(1) = lim
n→1

S(n) = −Tr ρ log ρ (87)

Similarly for the excited states one finds9–11

tr ρnΥ =
Z(n)

Z(1)n

∏n−1
k=0〈Υ(z∞ + 2iπk) Υ†(z′∞ + 2iπk)〉τn

〈Υ(z∞) Υ†(z′∞)〉τ1
n

(88)

where τn = 2πin/d denotes the moduli of the corresponding torii. Notice that the 2n point correlator of fields Υ, Υ†

depends on the ratio `/L and the moduli parameter τ .

An example: a free boson

The partition function of a massless free boson is given by

Z(τ) =
1

(Im τ)1/2 |η(τ)|2
(89)
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where η(τ) is the Dedekind eta function

η(τ) = q
1
24

∞∏
k=1

(1− qk), q = e2iπτ (90)

which transforms under the modular transformations as follows

η(τ + 1) = eiπ/12 η(τ), η(−1/τ) =
√
−iτ η(τ) (91)

This eqs. imply that Z(τ) is modular invariant

Z(τ + 1) = Z(τ), Z(−1/τ) = Z(τ) (92)

In the previous example the moduli is given by τn = 2πin/d, whose modulus goes to zero as d >> 1. Hence the
gnome q approaches 1, and all the terms in the product defining η(τ) contribute. However the transformed moduli
τ̃n = id/2πn grows with d and correspondingly the gnome q̃ = e2πiτ̃n = e−d/n goes to zero, in which case η(q̃) can be
easily computed,

Z(τn) =
1

|τn|1/2 |η(τn)|2
=

|τn|1/2

|η(−1/τn)|2
→
(

2πn

d

)1/2

e
d

12n =⇒ Tr ρnGS = e
d
12 ( 1

n−n)

Keeping the leading terms one finds

Tr ρnGS = e
d
12 ( 1

n−n) =⇒ S(n) =
n+ 1

12n
d =

n+ 1

6n
log

[
L

πε
log

π`

L

]
(93)

which implies for the von Neumann entropy

S =
1

3
log

[
L

πε
log

π`

L

]
(94)

In fig. 4 plot we plot S(n). Notice the symmetry

S(n)(`) = S(n)(L− `), ∀n

which reflects the fact that eigenvalues of the density matrix does not depend on tracing on a subsystem or its
complement. In a general CFT with central charge c, the partition function Z(n) of the theory is

20 40 60 80 100 {

0.2

0.4

0.6

0.8

1.0

SHnL

FIG. 4: Renyi entropies S(n) for a free boson given by eq.(93) for n = 1 (red), 2 (blue), ∞ (green). The length of the system
is L = 100 and we take ε = 1.
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Z(n) = Z(τ, τ) = Tr qL0− c
24 qL0− c

24

In the limit d >> 1, using again the modular transformation τ → −1/τ one finds

tr ρnGS =
Z(n)

Z(1)n
∼ e c

12 ( 1
n−n) d =

[
L

πε
sin

(
π`

L

)] c
6 ( 1
n−n)

and hence the Renyi entropies and von Neumann entropy are given by

S(n) =
c(n+ 1)

6n
log

[
L

πε
log

π`

L

]
, S =

c

3
log

[
L

πε
log

π`

L

]
(95)

VI. ENTANGLEMENT OF LOW-ENERGY EXCITATIONS IN CONFORMAL FIELD THEORY
(ALCARAZ ET AL, 2011)

Let us now consider the formula (88) for the primary states (see references9–11). The remaining terms of this expres-
sion only depend on the correlators of the fields Υ Υ† on the cylinder. The two-point correlator on the denominator
is computed on a cylinder of radius 2π, while the 2n-point correlator in the numerator is computed on a cylinder of
radius 2πn. It is thus convenient to rescale the fields in the later correlator to have a common radius of 2π. Assuming
that the field Υ has conformal dimensions h, h we can write (88) as

F
(n)
Υ ≡ tr ρnΥ

tr ρnΥ0

= n−2n(h+h)

∏n−1
k=0〈Υ( z∞n + 2iπk

n ) Υ†(
z′∞
n + 2iπk

n )〉τn
〈Υ(z∞) Υ†(z′∞)〉ncyl

(96)

The coordinates of the fields Υ and Υ† are

Υ : zj =
iπ

n
(2j − 1− x), Υ† : zj =

iπ

n
(2j − 1 + x), j = 1, 2, . . . , n

where x = `/L. Doing the shift zj → zj − iπ
n (1 − x), and exchanging the σ and τ variables one can write these

coordinates as

Υ : zj =
2πj

n
, Υ† : zj =

2π

n
(j + x), j = 0, 1, . . . , n− 1

so that F
(n)
Υ becomes

F
(n)
Υ (x) ≡ tr ρn

tr ρnGS
= n−2n(h+h)

〈
∏n−1
j=0 Υ( 2πj

n ) Υ†( 2π
n (j + x))〉cyl

〈Υ(0) Υ†(2πx)〉ncyl

(97)

For n = 2 this is

F
(2)
Υ (x) = 2−4(h+h) 〈Υ(0) Υ†(πx)Υ(π) Υ†(π(1 + x))〉cyl

〈Υ(0) Υ†(2πx)〉2cyl

(98)

The entanglement entropy for the excited state Υ can then be computed using the replica trick

SA(Υ) = − ∂

∂n
tr ρn|n=1 = SA(GS)−

∂F
(n)
Υ

∂n
|n=1 (99)
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Example 1.- Consider a chiral scalar field Υ = Υ† = i∂φ(z). Using the correlator on the cylinder (z12 = z1 − z2)

〈Υ(z1) Υ(z2)〉cyl =
1(

sin z12
2

)2 (100)

and the Wick theorem one obtains

F
(2)
Υ (x) = 2−4 (sinπx)

4

[
1

sin4 πx
2

+
1

cos4 πx
2

+ 1

]
=

1

64
(7 + cos 2πx)

2
(101)

= 1− 2 sin2 πx

2
+ 3 sin4 πx

2
− 2 sin6 πx

2
+ sin8 πx

2

In fig. 5 we plot the value of F
(n)
Υ for n = 2, 3 together with the numerical values for the free fermion model. We

omit the analytic expression for n = 3 which is more lengthly. The small x expansion of F
(n)
Υ for any n can be found

using the OPE formula

Υ(z1) Υ(z2) =
1

sin2 z12
2

+ : Υ(z1) Υ(z2) :, Υ(z) = i∂φ(z) (102)

where : · : denotes normal ordering. In particular one gets

Υ(
2πj

n
) Υ†(

2π

n
(j + x)) ∼ 1(

sin πx
n

)2 + : Υ2(
2πj

n
) : ∼

( n
πx

)2
(

1 +
(πx)2

3n2
+

(πx)2

n2
: Υ2(

2πj

n
) :

)
Plugging this eq. into (97) one finally gets

F
(n)
Υ (x) ∼ 1 +

(πx)2

3

(
1

n
− n

)
, x << 1

For n = 2 this eq. agrees with the expansion of (101). Hence from eq.(99) one finds

SA(Υ)− SA(Υ0) ∼ 2π2x2

3
(103)

which agrees with the numerical results obtained for the free fermion model.

Generalization to all n
Let us compute F

(n)
Υ for generic values of n. Consider the correlator

〈
M∏
j=1

Υ(zj)〉cyl

Making the conformal transformation to the plane w = eiz we get

iMei
∑
j zj 〈

M∏
j=1

Υ(eizj )〉plane

Now using

〈Υ(w1)Υ(w2)〉 =
1

(w1 − w2)2
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FIG. 5: Plot of F
(n)
∂φ for n = 2, 3. The analytic formula for n = 2 is given by eq. (101). The number of sites is L = 500.

and the Wick theorem

〈
M∏
j=1

Υ(eizj )〉plane = Hf
1

(eizj − eizk)2

where Hf is the Haffnian of a 2n× 2n symmetric matrix which is defined as

Hf(A) =
1

2n n!

∑
σ∈S2n

n∏
i=1

Aσ(2i−1),σ(2i)

The Haffnian that appears can actually be computed as a determinant, i.e.

Hf
1

(wj − wk)2
= det

1

wj − wk

Collecting terms one gets:

〈
M∏
j=1

Υ(zj)〉cyl = iM ei
∑
zj det

1

eizj − eizk

In particular we want to compute

〈
n−1∏
j=0

Υ(
2πj

n
) Υ†(

2π

n
(j + x))〉cyl = (−1)ne2πix det

1

eizj − eizk

which finally yields

F
(n)
Υ = (−1)n

(
2

n
sin(πx)

)2n

e2πix det
1

eizj − eizk



22

where the coordinates zj are

zj =
2πj

n
,

2π

n
(j + x), j = 0, 1, . . . , n− 1

In the determinant the diagonal terms are omitted. One can similary write this equation as

F
(n)
Υ = (−1)n

(
2

n
sinπx

)2n

det
1

eizj − eizk
(104)

where

zj =
π

n
(2j − x),

π

n
(2j + x), j = 0, 1, . . . , n− 1 (105)

Example 2.- Consider a chiral vertex operator Υ = eiαφ(z) (Υ† = e−iαφ(z)) with conformal weight h = α2/2. The
correlator of a product of vertex operators is

〈
∏
i

eiαiφ(zi)〉cyl =
∏
i>j

(
sin

zij
2

)αiαj
One can prove that

F
(n)
Y = 1, ∀n

This eq. implies that in the fermionic model all the primary fields have the same entanglement entropy and Renyi
entropy as the ground state.

A. Relation with the trace anomaly

Holzhey at al give an alternative derivation of the entropy in the case ` << L

S =
c

3
log

`

ε
(106)

using the trace anomaly following the Cardy review of CFT12. They want to show that

∂S

∂ log ε
= − c

3
(107)

To do this computation these authors consider the w-coordinates where the wave function ΨX,Y corresponds to the
upper half annulus of radii R,R−1 (with R = `/ε). The positive axis corresponds to the subsystem A and the negative
to the subsystem B. The density matrix ρX,X′ is then given by the path integral over the full disk with a cut along
the positive axis where the field takes values X and X ′. Thus Z(n) ∝ Tr ρn, is the partition function of a annulus
covered n times. Suppose that one makes an analytic extension to n a number slightly less that one. Geometrically
this is a cone whose vertex has an angle 2πn < 2π. The problem is reduced to find the dependence of Z(n) on ε.

The latter problem can be seen as a coarse grain procedure where ε → (1 + α)ε (α > 0). Accordingly R and R−1

will decrease and increase respectively. To simplify the computation one can keep fixed the inner radius and change
the outer radius twice. This amounts to a rescaling xµ → x′µ = (1 − 2α)xµ. The partition function of the annulus
with radius R is defined by the functional integral

Z(R) =

∫
dφ e−S(R) (108)



23

where S(R) is the action of the system. Under a small changes of coordinates R → R′ the partition function must
remain invariant since this is just a RG transformation,

Z(R) =

∫
dφ e−S(R) =

∫
dφ e−S(R′)−δS = Z(R′)〈e−δS〉 ∼ Z(R′)e−〈δS〉 (109)

which implies12

δ logZ = Z(R′)− Z(R) = δS (110)

The action changes as

δS = − 1

2π

∫
d2xTµν(x)

∂x′µ

∂xν
(111)

where Tµν(x) is the energy momentum tensor. Hence

δ logZ = − 1

2π

∫
d2x 〈Tµν(x)〉 ∂x

′µ

∂xν
=
α

π

∫
d2x 〈Tµµ (x)〉 (112)

we have assumed that the path integral measure dφ is invariant under the rescaling. In CFT the expectation value of
the trace of the energy momentum tensor is given by the formula

〈Tµµ (x)〉 = − c

12
R(x) (113)

where R(x) is the scalar curvature. This formula is known as the trace anomaly and it arises purely from quantum
effects since in the classical theory the stress tensor is traceless. Plugging (113) into (112) yields

δ logZ = − αc

12π

∫
d2xR(x) (114)

The curvature tensor R(x) has a delta singularity at the vertex of the cone which explains why (114) does not vanish.
To compute it, one returns to the expression (112) and writes (using the conservation law ∂/∂xνTµν = 0 and the
Stokes theorem)

∫
d2x 〈Tµµ (x)〉 =

∫
d2x 〈Tµν(x)〉 ∂x

µ

∂xν
=

∫
d2x

∂

∂xν
(xµ〈Tµν(x)〉) =

∫
dSν xµ〈Tµν(x)〉 (115)

where the integration is on the outer boundary of the annulus. In complex coordinates this eq. reads

∫
dSν xµ〈Tµν(x)〉 = −i

∫
dww 〈Tcone(w)〉+ h.c. (116)

The coordinate w describes a cone with angular circunference 2πn, provided we identify w = 1 with w = e2πni. We
can now make the conformal transformation to the complex plane w → z = w1/n, so that w = 1 → z = 1 and
w = e2πni → w = e2πi = 1. The energy momentum on the cone Tcone(w) and on the plane Tplane(z) are related by
the eq.

Tcone(w) =

(
dz

dw

)2

Tplane(z(w)) +
c

12
{z;w} (117)

where {z;w} is the Schwarzian derivative
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{z;w} =
z′′′

z′
− 3

2

(
z′′

z′

)2

, z′ =
dz

dw
, etc (118)

Using that 〈Tplane(z)〉 = 0 and z = w1/n one finds

〈Tcone(w)〉 =
c

24w2

(
1− 1

n2

)
(119)

hence

∫
d2x 〈Tµµ (x)〉 =

∫
dSν xµ〈Tµν(x)〉 = −i c

24

(
1− 1

n2

)∫
dw

w
+ h.c. =

c

12

(
1− 1

n2

)
2πn (120)

Notice that
∫
dw/w = 2πin captures the circular angle around the vertex of the cone. Plugging this expression in

(112)

δ logZ =
α c

6

(
n− 1

n

)
(121)

Finally we can compute (106) as follows ( use dε/ε = α).

∂S

∂ log ε
=

(
1− n d

dn

)
∂ logZ

∂ log ε
|n=1 =

(
1− n d

dn

)
δ logZ

α
|n=1 = − c

3
(122)

From this result Holzhey conclude that the divergence of the geometric entropy can be traced directly to the singular
short-distance behaviour of QFT.

VII. ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY (CALABRESE AND CARDY (
2004)

In this paper Calabrese and Cardy (CC) generalized the work of Holzhey et al proposing a systematic approach to
the computation of entanglement entropies in CFT and relativistic 1+1 Quantum Field Theories13. This technical
tool is to reformulate the replica trick in terms of a euclidean field theory on a n-sheeted Riemann surface.

CC first reproduced the Holzhey et al result for the entanglement entropy of a interval A of length ` inside a system
of length L with periodic boundary conditions

SA =
c

3
log

L

πa
sin

π`

L
+ c′1 (123)

where a is the short distance cutoff. For a system with open boundary conditions and A an interval obtained splitting
the system in two parts they CC obtain

SA =
c

6
log

L

πa
sin

π`

L
+ 2g + c′1 (124)

where g is the boundary entropy of Affleck and Ludwig14. Another result is the entropy for the entropy of a thermal
state of an infinite long strip at finite temperature

SA =
c

3
log

β

πa
sinh

π`

β
+ c′1 (125)

In these formulas c′1 is a non universal constant. For a massive 1+1-dimensional relativistic QFT (which corresponds
to an o?-critical quantum spin chain where the correlation length ξ >> a) the entanglement entropy for an infinite
system divided into two semi-infinite pieces is
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SA =
c

6
log

ξ

a
(126)

If there are more intervals the corresponding entropy is given by (126) multiplied by the number of intervals. This
is the 1D analogue of the area law. The result (126) is confirmed with the study of two exactly solvable models, the
Ising model and the XXZ model. The main observation made by CC in this regard is that the density matrix ρA can
be related to the Baxter’ s corner transfer matrix whose eigenvalues are known for the latter models. This observation
was made earlier by Nishino in connection with the Density Matrix Renormalization Group (DMRG)15.

The general set up of the problem is a lattice QFT 1+1 with local commuting observables {φ̂(x)} with eigenvalues

{φ(x)} and Hamiltonian Ĥ. The thermal state ρ at inverse temperature β has matrix elements

〈{φ′′(x′′)}|ρ|{φ′(x′)}〉 =
1

Z(β)
〈{φ′′(x′′)}|e−βĤ |{φ′(x′)}〉 (127)

where

Z(β) = Tr e−βH (128)

is the partition function. Eq.(127) can be expressed in terms of an euclidean path integral as

〈{φ′′(x′′)}|ρ|{φ′(x′)}〉 =
1

Z(β)

∫
[dφ(x, τ)]

∏
x

δ(φ(x, 0)− φ′(x′))
∏
x

δ(φ(x, β)− φ′′(x′′)) e−SE (129)

where SE =
∫ β

0
dτ LE and LE the euclidean Lagrangian. The normalization factor in (127) guarantees that Tr ρ = 1.

The partition function Z(β) is obtained doing the path integral with the identification φ′(x) = φ′′(x) at τ = 0 and
τ = β, and integrating over these variables. The geometry of the integration surface is a cylinder of length β.

Let us now take a system A made of a disjoint union of intervals (u1, v1) . . . (uN , vN ). One wants to compute the
reduced density matrix ρA by tracing over the points not in A. This operation amounts to gluing those points in
(129) and doing the integral over them. The effect is to leave cuts (u1, v1) . . . (uN , vN ) along the τ = 0 line.

To compute Tr ρnA one can use the replica trick. One first makes n copies of (129), labelled by k = 1, . . . , n and
gluing then together cyclically

φ′k(x) = φ′′k+1(x), (k = 1, . . . , n− 1), φ′n(x) = φ′′1(x), ∀x ∈ A (130)

The path integral on this n-sheeted geometry is denoted as Zn(A) and hence

Tr ρnA =
Zn(A)

Zn
(131)

CC then arguee that then LHS of (131) is analytic for all Ren > 1 and that its derivative respect to n in the limit
n→ 1+ gives the entropy

SA = − lim
n→1

∂

∂n

Zn(A)

Zn
(132)

A final remark is that in 2D the log of a general partition function Z of a domain with total area A and boundaries
with length L behaves according to Cardy and Peschel as16

logZ = f1
A
a2

+ f2
L
a

+O(log a) (133)

where f1 and f2 are the non-universal bulk and boundary free energies and the term of order log a arises from points
of non zero curvature and it is universal. Now, taking the log in (131) one sees that the area and boundary lengths
of the n-sheet surface A and the n copies of it are the same, so they cancell and one is left with the result that Tr ρnA
only depends on the conical singularities at the brach points. This is also in agreement with the Holzhey at al results.
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A. Entanglement entropy in 2D CFT

Consider a CFT with central charge c. CC first reproduce the Holzhey et al result for one interval, but the
computation follows a different method.

A. Single interval

Here there is a single interval of length ` in an infinitely long 1D quantum system at zero temperature and no
boundaries. Denote by w the coordinate of the system, so

A = (u, v), B = (−∞, u) ∪ (v,∞), ` = v − u (134)

CC then performs the conformal transformation

w → ζ =
w − u
w − v

(135)

so that the interval A is mapped into the negative real axis ζ < 0 and the subsystem B into the positive one. In
the construction of the density matrix ρA one joins the points along the subsystem B, hence the Riemann surface
associated is the complex plane with a cut along the negative real axis ζ < 0. Then one takes n copies of this cutted
Riemann surface and joining them cyclically as in eq.(130). The result is a n-sheeted surface Rn whose coordinate is
given by

z = ζ1/n =

(
w − u
w − v

)1/n

(136)

The various sheets of Rn correspond to

1− st sheet : −π < arg ζ < π, −π
n
< arg z <

π

n
(137)

2− nd sheet : π < arg ζ < 3π,
π

n
< arg z <

3π

n
. . . . . .

n− th sheet : (2n− 3)π < arg ζ < (2n− 1)π, −3π

n
< arg z < −π

n

Notice that in the z-coordinate the Riemann surface is just the complex plane C. As in Holzhey et al we can related
the energy momentum tensor T (w) of Rn with the energy momentum tensor T (z) on C by the eq. (recall (117))

T (w) =

(
dz

dw

)2

T (z) +
c

12
{z;w} (138)

where {z;w} is the Schwarzian derivative defined in eq.(118). Using that 〈T (z)〉C = 0 and the transformation (136)

one finds

〈T (w)〉Rn =
c

12
{z;w} =

c(1− n−2)

24

(v − u)2

(w − u)2(w − v)2
(139)

This correlator is compared with that a three point correlator on C of T (w) and two primary operators Φn(u) and
Φ−n(v) with conformal dimensions

∆n = ∆n =
c(1− n−2)

24
(140)

which by general CFT is
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〈T (w)Φ(u)nΦ−n(v)〉C =
∆n

(w − u)2(w − v)2(v − u)2∆n−2(v − u)2∆n
(141)

with the normalization

〈Φ(u)nΦ−n(v)〉C = |u− v|−2∆n−2∆n (142)

In eq.(141) the coordinate w is assumed to be in the complex plane, not in Rn. From the latter equations one finds

〈T (w)〉Rn ≡
∫
dφT (w) e−SE(Rn)∫
dφ e−SE(Rn)

=
〈T (w)Φ(u)nΦ−n(v)〉C
〈Φ(u)nΦ−n(v)〉C

(143)

Now CC make an argument similar to the second derivation of the entropy formula by Holzhey et al (see previous
section). The latter authors made a rescaling of the coordinates and study how the partition function of the cone
changes. In the case of the n-sheeted geometry the argument goes as follows. First of all, one makes an infinitesimal
change w → w′ = w + α(w) on C, which acts identically on all the sheets of Rn. Recalling eqs.(110, 111,115,116),
the infinitesimal change induced on Zn(A) is

δ logZn(A) = n

(
1

2πi

∫
C

dw α(w) 〈T (w)〉Rn −
1

2πi

∫
C

dw α(w) 〈T (w)〉Rn
)

(144)

where the contour C encircles the points u and v. The overall factor n arises because the transformation is done on
all the sheets. On the other hand consider the correlator 〈Φ(u)nΦ−n(v)〉C. The Ward identities implies that under

the conformal transformation w → w′ = w + α(w) the change is

δ〈Φ(u)nΦ−n(v)〉C =
1

2πi

∫
C

dw α(w) 〈T (w)Φ(u)nΦ−n(v)〉C −
1

2πi

∫
C

dw α(w) 〈T (w)Φ(u)nΦ−n(v)〉C (145)

so using eq.(143) one gets

δ〈Φ(u)nΦ−n(v)〉C = 〈Φ(u)nΦ−n(v)〉C

(
1

2πi

∫
C

dw α(w) 〈T (w)〉Rn −
1

2πi

∫
C

dw α(w) 〈T (w)〉Rn
)

(146)

Hence, compairing (144) and (146) one derives

δ logZn(A) = n log δ〈Φ(u)nΦ−n(v)〉C =⇒ Zn(A) ∝
(
〈Φ(u)nΦ−n(v)〉C

)n
(147)

Namely, the ratio Zn(A)/Zn behaves under conformal transformations as the nth power of the two point correlator
of the primary operator Φn with ∆n = ∆n = c/24(1− n−2). This implies in particular that

Tr ρnA = cn

(
〈Φ(u)nΦ−n(v)〉C

)n
=

cn

((v − u)/a)2n(∆n+∆n)
= cn

(
v − u
a

)− c6 (n− 1
n )

(148)

The parameter a is the short distance cutoff which makes the expression (148) dimensionless. The constants cn cannot
be determined by this method, but normalization of the trace implies

Tr ρA = 1 =⇒ c1 = 1 (149)

Using now eq. (132) one recover the Holzhey et al formula

SA =
c

3
log

`

a
+ c′1, ` = v − u (150)
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The CC result (148) is generalized to more general situations:

Tr ρnA = cn (〈Φ(u)nΦ−n(v)〉)n (151)

where the correlator of the primary fields Φ±n are computed on the corresponding geometry. Consider first the case of
an infinite strip in the σ direction at finite inverse temperature β. The coordinate w describing the Riemann surface
of integration in the path integral satisfies

w = σ + iτ, −∞ < σ <∞, 0 ≤ τ ≤ β, w = w + i β (152)

where the identification w = w + iβ implements the fact that one is computing a thermal state. To compute the
correlator (152) in this case one maps the strip (152) into the complex plane by means of the map

z = e2πw/β , w =
β

2π
log z (153)

which guarantees that z(w) = z(w + iβ). The correlator on the strip can then be found using the standard transfor-
mation law of primary fields,

〈Φ(w1, w1)nΦ−n(w2, w2)〉 =

∣∣∣∣ dz1

dw1

∣∣∣∣2∆n
∣∣∣∣ dz2

dw2

∣∣∣∣2∆n

〈Φ(z1, z1)nΦ−n(z2, z2)〉 =

∣∣∣∣∣πaβ 1

sinh π(w1−w2)
β

∣∣∣∣∣
4∆n

(154)

which yields

Tr ρnA = cn

(
β

πa
sinh

π`

β

)− c6 (n− 1
n )

(155)

and

SA(β) =
c

3
log

(
β

πa
sinh

π`

β

)
+ c′1 (156)

In the low temperature regime compared to the size of the subsystem one finds

` << β → SA(β) ∼ c

3
log

`

a
(157)

as in the computation done before. In the high temperature regime one gets

` >> β → SA(β) ∼ πc

3

`

β
(158)

where the von Neumann entropy becomes an extensive quantity, i.e. SA ∝ `. It is also in agreement with the Gibbs
entropy of an isolated system obtained in CFT. To show this let us recall the thermodynamic relation (in units of the
Boltzmann constant KB = 1)

S = −∂F
∂T

= β2 ∂F

∂β
, β = T−1 (159)

where F is the free energy, which in CFT is given by

β F = −πc
6

`

β
(160)
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so that (157) can be easily reproduced. The previous results can be easily generalized to the case of a subsystem of
length ` in a circle of length L, which amounts basically to replace β → −iL. The w- domain is given by

w = σ + iτ, 0 ≤ σ ≤ L, −∞ < τ <∞, w = w + L (161)

where the identification w = w + L implements the periodicity of the system. The map to complex plane is given by

z = e2πiw/L, w = − iL
2π

log z (162)

which guarantees that z(w) = z(w + L). The correlator on the strip is now

〈Φ(w1, w1)nΦ−n(w2, w2)〉 =

∣∣∣∣ dz1

dw1

∣∣∣∣2∆n
∣∣∣∣ dz2

dw2

∣∣∣∣2∆n

〈Φ(z1, z1)nΦ−n(z2, z2)〉 =

∣∣∣∣∣πaL 1

sin π(w1−w2)
L

∣∣∣∣∣
4∆n

(163)

which yields

Tr ρnA = cn

(
L

πa
sin

π`

L

)− c6 (n− 1
n )

(164)

and

SA(`, L) =
c

3
log

(
L

πa
sinh

π`

L

)
+ c′1 (165)

which again reproduces the Holzhey et al result.
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