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Introduction

The Hubbard model has been the subject of many research in the last years mainly related to its relevance to high
Tc superconductors, heavy fermion materials, etc. These are systems of fermions with short range repulsive on site
interactions. The Hamiltonian is

H = −t
∑
〈i,j〉,σ

(c†i,s cj,s + c†j,s ci,s) + U
∑
i

ni,+ni,−

where ci,s, c
†
i,s are fermionic creation and annihilation operators at the site i and spin s = + (up), s = − (down).

The parameter t is the hopping amplitude and U > 0 is the on-site Coulomb repulsion.
This model was solved exactly in 1D by Lieb and Wu, using the Bethe ansatz. The elementary excitations were

shown to consist of exotic objects called spinons which carry the spin degrees of freedom and holons which carry the
charge degrees of freedom. Hence the elementary excitations are not quasiparticles, that is renormalized electrons
with an effective mass meff , charge −e and spin 1/2 as described by the Landau Liquid Theory. In 1D the electron
breaks into

electron→ spinon + holon

This phenomena is called the spin-charge separation. These particles have relativistic dispersion relations, and they
are described by the Luttinger Liquid Theory (LLT), which is the Cond-Mat version Conformal Field Theory. The
CFTs used in connection to the LLT are gaussians models with a boson (c = 1), and eventually Wess-Zumino-Witten
models, specially SU(2) at level k = 1 which also has c = 1.

In 2D the model has not been solved exactly but has been the subject of many investigations. In particular it is
not clear the existence of exotic particles or the spin-charge separation as in 1D.

From the numerical viewpoint the Hubbard model is difficult to study numerically. One of the reasons is that the
Hilbert space of each site is four dimensional:

Hubbard site : |0〉, c†i,+|0〉, c†i,−|0〉, c†i,+c
†
i,−|0〉

where |0〉 is the vacuum states. In the limit where U >> t, there will be a huge energy cost for two electrons, with
spin up and down, to occupy the same site. It is then possible to obtain an effective model where the doubly occupied
sites have been ”integrated out” leaving and effective Hamiltonian
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Ht−J = −t
∑
〈i,j〉,σ

(c̃†i,s c̃j,s + c̃†j,s c̃i,s) + J
∑
〈i,j〉

(~Si · ~Sj +
1

4
ninj) + three body term

where c̃j,s are the projection of the fermionic operators to the on site Hilbert space

t− J site : |0〉, c̃†i,+|0〉, c̃†i,−|0〉,

Si is the spin 1/2 operator at the site i = 1, . . . , N built from the fermionic ops as

~Si =
1

2
c̃†i,s ~σs,s′ c̃i,s,

ni is the number of electrons at site i

ni = ni,+ + ni,−, ni,s = c†i,sci,s, 0 ≤ 〈ni〉 ≤ 1

and J is a coupling constant related to U and t as

J =
t2

4U

This model has also been the subject of many investigations specially in connection to high-Tc superconductors,
where it has become the standard model. In 1D it is exactly solvable provided J = 2t and commutes with the
generators of the superalgebra SU(1|2).

In the Hubbard and tJ model an important quantity is the so called filling fraction defined as

x =
Ne
N
,

{
0 ≤ x ≤ 2 Hubbard model
0 ≤ x ≤ 1 tJ model

where Ne is the total number of electrons which is a conserved quantity:

Ne =
∑
i

ni,

At x = 1 in the tJ model there is an electron per site. Electrons cannot move since doubly occupied sites are
forbidden, so the only available degree of freedom is the spin one. This case is refereed to as half filling, and the
Hamiltonian is reduces to

HH = J
∑
〈i,j〉

~Si · ~Sj

up to a constant. This is the famous spin 1/2 antiferromagnetic Heisenberg model which describes the dynamics
of the spin degrees of freedom. The charge degrees of feedom have been frozen. The Hilbert space on one site is then
given

Heisenberg site : | ↑〉 = c†i,+|0〉, | ↓〉 = c†i,−|0〉,

We have the chain of models

Hubbard model
U>>t
=⇒ tJ model

x=1
=⇒ Heisenberg model

with the corresponding reduction of degrees of freedom of the total Hilbert space
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4N =⇒ 3N =⇒ 2N

One can also go directly from the Hubbard to the Heisenberg model :

Hubbard model
U/t→∞,x=1

=⇒ = Heisenberg model

In particular the ground state (GS) of both models will be related by

lim
U/t→∞,x=1

|GS,Hubbard〉 = |GS,Heisenberg〉

This relation is valid in any dimension. In 2D the cuprate superconductors are characterized by a dopping factor
x which is related to the filling fraction defined above. The undoped compounds, which are called parent materials,
correspond to filling fraction x = 1. These compounds are fairly well described by the 2D AF Heisenberg model
(AFH) , which exhibits AF long rangle order and whose excitations are magnons with spin ±1. This 2D model has
been analized using the spin wave theory (which is a mean field theory), the O(3) non linear sigma model, numerical
methods, MonteCarlo, etc.

The spin 1/2 AFH model in 1D was solved by Bethe in 1991 using the famous Bethe ansatz, which marked the
beginning of the many body exactly solvable models, together the Onsager solutions of the 2D Ising model in 1944.

A. The antiferromagnetic Heisenberg model in 1D

The Hamiltonian of Heisenberg model for a chain with N spins with periodic boundary conditions is (~SN+1 = ~S1)

H = J

N∑
i=1

~Si · ~Si+1

where J is called the exchange coupling constant which is positive for antiferromagnetic interactions which favor
that the nearest neighbour (NN) spins are antiparallel, while negative values correspond to ferromagnetic interactions
wich favors parallel NN spins. The ferromagnetic case is much more easier to analyze than the AF case.

The Bethe ansatz (BA) is a choice of the eigenstates of the Hamiltonian H which consist in the linear superposition
of plane waves of magnons. The starting point of the BA is the fully ferromagnetic state with all the spins up:

|F 〉 = |+,+, . . . ,+〉

which is an eigenstate of H with energy

EF0 =
JN

4

This is the GS of the ferromagnetic Heisenberg model (J < 0) and has third component of the spin Sz = N/2. In
the sector with Sz = N/2− 1 there are N states. The eigenstates of H can be build from the plane waves

|k〉 =

N∑
x=1

eikx|x〉, |x〉 = S−x |F 〉

|x〉 is the state with all spins up expect at the site x where the spin is down, due to the application of the lowering
operator S−x = S1

x − iS2
x. Writting H as

H = J

N∑
i=1

(
Szi S

z
i+1 +

1

2
(S+
i S−i+1 + S−i S+

i+1)

)
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one easily finds

H|x〉 = (E0 − J)|x〉+
J

2
(|x+ 1〉+ |x− 1〉)

and

H|k〉 = (E0 + εmag(k))|k〉

where

εmag(k) =
J

2
(cos k − 1) = −J sin2 k

2
,

is the magnon dispersion relation for the momentum k whose quantization follows from the periodicity of the
magnon wave function

eikN = 1→ k =
2πn

N
, 0 ≤ k < 2π

In the F case the magnon dispersion energy are positive and in the vecinity of k = 0, π behaves has the non
relativistic form εmag ∼ Jk2/4. In the AF case the energy of the magnons is negative meaning that the F state is a
false vacuum. The two body magnon states are given by

|k1, k2〉 =
(
A(k1, k2)ei(k1x1+k2x2) +A(k2, k1)ei(k2x1+k1x2)

)
|x1, x2〉

where the amplitudes A are related by the so called S matrix scattering amplitude

S(k1, k2) =
A(k2, k1)

A(k1, k2)
= −1− 2eik2 + ei(k1+k2)

1− 2eik1 + ei(k1+k2)

The positions of the magnons are ordered as x1 < x2. A state with M magnons is a linear superposition of plane
waves with momenta k1, . . . , kM :

|k1, . . . , kM 〉 =
∑
P

A(kP1, . . . , kPM )ei(kP1x1+···+kPMxM )|x1, . . . , xM 〉

where one sums over the M! permutations P of the coordinates of the magnons and

|x1, . . . , xM 〉 = S−x1
. . . S−xM |F 〉, x1 < · · · < xM .

The amplitudes AP can be factorized into the product of two body S-matrices, e.g.

A(k3, k2, k1) = S(k1, k2)A(k3, k1, k2) = S(k1, k2)S(k1, k3)A(k1, k3, k2)

= S(k1, k2)S(k1, k3)S(k2, k3)A(k1, k2, k3)

The momenta which correspond to eigenstates of H satisfy the Bethe ansatz equation

eiki =
∏
j(6=i)

S(ki, kj), i = 1, . . . ,M

which means that the total phase shift of a mangon after crossing all the other ones is equal to one, for the wave
function to be single valued. This is a complicate set of non linear differential eqs. that can be solved analytically in
the thermodynamic limit N >> 1. The main results that one obtains for the AF case are
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• The GS has total spin equal to zero Stot = 0 for a chain with an even number of sites and Stot = 1/2 for a chain
with an odd number of sites. These states are constructed with M = N/2 (N even) magnons and M = (N−1)/2
(N odd) magnons respectively.

• The elementary excitations are spin 1/2 particles with dispersion relation

εsp(k) = vs sin k, vs =
πJ

2
, 0 < k < π

which near k ∼ 0 and π can be linearized, i.e. εsp ∼ vsk or εsp ∼ vs|k − π| which corresponds to a relativistic
dispersion relation. vs is the spinon velocity which plays the role of the speed of light in a Quantum Field
Theory. Notice that the range of the momenta of the spinons is half of the Brillouin zone (0, 2π). For a long
time it was stated in the physical literature, that spin waves of the antiferromagnetic chain of spin 1/2 magnets
has spin 1. Indeed, spin wave, i.e. magnon, corresponds to a turn of one spin, amounting to spin 1/2 + 1/2 =
1. However, Faddeev and Taktajan showed that turn of a spin corresponds to 2 spinons, so that the momentum
of this state runs through the whole Brillouin zone 0 ≤ k ≤ 2π. This is a non perturbative phenomena:

magnon (Sz = 1) = spinon (Sz = 1/2) + spinon (Sz = 1/2)

• The spin susceptibility at zero temperature and zero magnetic field is

χ0 =
1

Jπ2

The product of χ0 and the spinon velocity vs is a dimensionaless quantity which plays the role of Wilson ratio

vs χ0 =
1

2π

• The low energy spectrum can be described by a CFT given by a SU(2) Wess-Zumino-Witten model at level 1.
The Virasoro central charge of this model is c = 1, which coincides with that of a free massless boson. Indeed
this CFT can be constructed from a massless boson.

Guzwiller proyection

The connection between the Hubbard and Heisenberg models implied that

lim
U/t→∞,x=1

|GS,Hubbard〉 = |GS,Heisenberg〉

Let us define the Guztwiller proyector as the operator that projects out the states where a site is double occupied

PG =

N∏
i=1

(1− ni,+ ni,−)

PG|0〉 = |0〉, PG c†i,s|0〉 = c†i,s|0〉, PG c†i,+c
†
i,−|0〉 = 0

The limit U/t→∞ enforces that the operator PG is effectively realized on the Hubbard GS and in particular

PG lim
U/t→∞,x=1

|GS,Hubbard〉 = lim
U/t→∞,x=1

PG |GS,Hubbard〉 = |GS,Heisenberg〉
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One may wonder which are the properties of the state obtained by Gutzwiller projection, not of the GS at U/t =∞,
but the GS at U/t = 0, namely the non interacting Fermi sea.

|ψG〉 = PG |FS〉, |FS〉 =
∏
|k|<kF

c†k,+ c†k,−|0〉

where the Fermi momenta is choosen to guarantee that there is an electron per site, so that the state has only spin
degrees of freedom.

kF =
π

2
→ 〈ψG|ni|ψG〉 = 1, ∀i

In the state |ψG〉, the electrons are free to move along the lattice but they are forced not to occupy the same state,
which is in a way equivalent to the U/t =∞ limit.

Gebhard and Vollhardt computed in 1987 the exact expression of the spin-spin correlation function14

〈Szi Szi+j〉 ≡
〈ψG|Szi Szi+j |ψG〉
〈ψG|ψG〉

=
Si(πj)

π

(−1)j

j
, j > 0

where Si(x) is the sine integral

Si(x) =

∫ x

0

dy
sin y

y

The alternating sign, (−1)j , and the algebraic decay of the spin-spin correlations, 1/j, are similar to the behaviour
of this correlator in the GS of the nearest neighbour AFH model. A comparison of the exact NN and NNN of these
correlators between the two models shows also their proximity:

〈Szi Szi+j〉 =

 j ψG ψAFH
1 −0.589490 −0.5908623
2 0.225706 0.242719

These results suggested that the state ψG have properties rather close to those of the AFH model, so a natural
question was: what is the Hamiltonian for which ψG is the exact GS. The answer was given independently by Haldane
and Shastry in 1988.

Haldane-Shastry model

The Guzwiller projected state in the spin basis

Let us first define the Klein operators

an,+ = cn,+, an,− = cn,−e
iπN+ , N+ =

∑
i

ni,+

which commute among themselves

[an,+, am,−] = 0, ∀n,m

while they satisfy canonical anticommutations relations between operators with the same spin

{an,s, a†m,s} = δn,m, {an,s, am,s} = 0, ∀n,m
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Now let us consider the state

|φ〉 =
∏
k∈K

a†k,+

∏
q∈Q

a†q,−|0〉

where Q is the set of momenta of the M spins down and K the set of the momenta of the N −M spins up (so that
Sz = N/2−M). Now we perform a particle-hole transformation on the up spins:

|0〉 ↔ a†n |0〉

in terms of the unitary transformation a†m + am which satisfies

(a†m,+ + am,+)nm,+ = (1− nm,+)(a†m,+ + am,+)

The operator that performs this transformation on all sites is

U = (a†N,+ + aN,+) . . . (a†1,+ + a1,+)

One considers the transform state

|ψ〉 = UPG|φ〉 = PG U |φ〉, PG = UPGU
† =

N∏
m=1

(1− nm,− + nm,+nm,−)

The action of U can be simply computed finding

|ψ〉 = PG
∏
k∈−K

a†k,+

∏
q∈Q

a†q,−|0〉

where −K is the set complementary of K. Expanding the momentum operator in terms of the position operators

a†k,s =
1√
N

∑
n

eikna†n,s

The number of momenta in the sets Q and −K is equal to M (recall that K contains N−M momenta). Introducing
the above eq in ψ one finds (up to an overall constant)

|ψ〉 = PG a†p1,+ . . . a
†
pM ,+a

†
q1,− . . . a

†
qM ,+|0〉

=
∑

n1,...,nM

∑
n′
1,...,n

′
M

ei(p1n1+···+pMnM )ei(q1n
′
1+···+qMn′

M )PG a†n1,+ . . . a
†
nM ,+a

†
n′
1,−

. . . a†n′
M ,−
|0〉

=
∑

n1,...,nM

det(eipinj ) det(eiqinj ) b†n1
. . . b†nM |0〉

where pj (j = 1, . . . ,M) label the momenta in −K and qj (j = 1, . . . ,M) the momenta in Q. The antisymmetric

character of the fermion operators leads to the product of the two determinants, while the proyector PG forces that
every time there is a spin down fermion there is also an spin up, and they appear in the same amount. b†n is the hard
core boson operator

b†n = a†n,+ a†n,−

This operator gives rise to a spin 1/2 representation at the nth- site
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S+
n = bn, S−n = b†n, Szn =

1

2
− b†nbn

so that the state ψ is equivalent to the spin state

|ψ〉 =
∑

n1,...,nM

det(eipinj ) det(eiqinj ) S−n1
. . . S−nM |F 〉

where |F 〉 is the ferromagnetic state used in the Bethe ansatz construction.
Let us come back to the Gutzwiller state at half filling M = N/2. Choosing for simplicity antiperiodic BCs for the

fermions, the momenta of the particles are (N/2 an even number)

kn =
2π

N
(n+

1

2
), n = −N

4
, . . . ,

3N

4
− 1

The momenta corresponding to the FS (i.e. set Q) and its complementary (i.e. set −K) correspond to the values

qn : n = −N
4
, . . . ,

N

4
− 1, pn = π − qn =⇒ eipinj = eiπni e−iqinj

Hence the two determinants became the same, up to a phase, and the wave function of the spin deviations is

ψ(n1, . . . , nM ) = eiπ
∑
i ni |det(eiqinj )|2

where we recall that the coordinates n1, . . . , nM denotes the position of the hard core bosons or equivalent, the
down spins. Defining the phase

z = e2πi/N −→ eiqjnl = z(j+1/2)nl

the determinant becomes

det(eiqjnl) = z
∑
l nl/2 det(zjnl)

Since we are interested in the absolute value of this determinant, the overall phase does not matter and the range
of j can be taken from 0 to M − 1. Using the variables zj = znj , one obtains a Vardemonde determinant for the
M ×M matrix

det(zjnl) = det


1 1 . . . 1
z1 z2 . . . zM
z2

1 z2
2 . . . z2

M
. . . . . . . . . . . .

zM−1
1 zM−1

2 . . . zM−1
M

 = (−1)M(M−1)/2
∏
i<j

(zi − zj)

and since

|zi − zj | = |e2πini − e2πinj | = 2| sin
(
π(ni − nj)

N

)
|

one finally finds the wave function

ψ(n1, . . . , nM ) ∝ eiπ
∑
i ni
∏
i<j

sin2

(
π(ni − nj)

N

)
Comments:
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• The wave function has the typical Jastrow form

ψ(r1, . . . , rN ) =
∏
i<j

f(ri − rj)

• The term eiπ
∑
i ni satisfies the sign Marshall rule:

eiπ
∑
i ni =

{
1
∑
i ni : even

−1
∑
i ni : odd

so that the sign of the wave function is 1 if the number of down spins in the odd sites is even, and −1 it that
number is odd. This rule also applies to the GS of the AFH Hamiltonian. Its origin is the Perron-Frobenius
theorem, which states that the eigenvector with highest eigenvalue of an irreducible symmetric matrix Ai,j with
non-negative entries, can be choosen with all its entries non negative real numbers:

Ai,j ≥ 0, ∀i, j,
∑
j

Ai,jvj = λmax vj ,=⇒ vi ≥ 0

Consider now the operator

V =
∏
i

σz2i+1

where σzi is the Pauli matrix that gives 1 (-1) if the site i has a spin up (down). Acting on the wave function ψ
one obtains

V |ψ〉 =
∑

n1,...,nM

eiπ
∑
i ni ψ(n1, . . . , nM ) S−n1

. . . S−nM |F 〉

so that the new wave function has all its entries positive as a Perron-Frobenius vector. In the AFH model, the GS
satisfies the Marshall rule because the operator V generates a unitary transformation of the AFH Hamiltonian

V HHV
† = J

∑
i

(
Szi S

z
i+1 −

1

2
(S+
i S
−
i+1 + S−i S

+
i+1)

)

which, up to an overall constant, is a matrix with negative entries. Hence the vector with lowest eigenvalue, i.e.
the GS, can be choosen with all its components positive.

• Using zi = zni , the wave function can also be written as

ψ(n1, . . . , nM ) ∝
∏
i

zni

∏
i<j

(zni − znj )2, zn = e2πin/N

• Consider the following wave function for a spin system with N spin variables, sn = ±1 (n = 1, . . . , N), and total
spin zero,

∑
n sn = 0:

|Φ〉 =
∑

s1,...,sN

Φ(s1, . . . , sN ) |s1, . . . , sN 〉
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where

Φ(s1, . . . , sN ) = eiπ/2
∑
n:odd(sn−1)

N∏
n>m

[
sin

(
π(n−m)

N

)]snsm/2

The integers n denotes the position of the spins, regardeless they are up or down. This wave function is
proportional to the HS wave function shown above. To show this connection, let us define the variable an as

sn = 1− 2an =⇒ an = 0 (1), sn = 1 (−1)

Plugging this into the previous eq. one finds, up to overall constants

Φ(s1, . . . , sN ) ∝ eiπ
∑
n:odd an

N∏
n<m

[
sin

(
π(n−m)

N

)]2anam−an−am

The term proportional to an + am gives an overall constant using translational invariance and the fact that∑
n an = N/2. The last equation is a consequence of the eq.

∑
sn = 0. One is left with

Φ(s1, . . . , sN ) ∝ eiπ
∑
n:odd an

N∏
n<m

[
sin

(
π(n−m)

N

)]2anam

Finally, the sites n where the spins are up, contribute with 1, so the wave function only depends on the positions
ni os the spins down, i.e. ani = 1, i.e.

Φ(s1, . . . , sN ) ∝ eiπ
∑
i ni

N/2∏
i<j

[
sin

(
π(ni − nj)

N

)]2

which coincides with the HS wave function. The wave function expressed in terms of the spin variables sn will
be later used to relate the HS model with the WZW model.

The Haldane-Shastry Hamiltonian

Haldane and Shastry found in 19881,2 that the Gutwiller wave function is the exact eigenstate of the Hamiltonian
with long range exchange couplings

H =
Jπ2

N2

∑
n<m

~Sn · ~Sm
sin2(π(n−m)/N)

Their work was motivated by previous results of Sutherland for a continuum bose gas model that we shall review
later on. The coupling constant between two spins has an interesting geometrical meaning. It is inversely proportional
to the square of the distance between two arbitrary sites on the ring,

d(zn, zm) = |zn − zm| = 2| sin
(
π(n−m)

N

)
|, n,m = 1, . . . , N

Following Shastry we perform the unitary V transformation to the Hamiltonian which becomes
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H = J0

∑
n 6=m

1

sin2(π(n−m)/N)

[
SznS

z
m +

(−1)n+m

2
(S+
n S
−
m + S−n S

+
m)

]
,

where J0 = Jπ2/(2N2). Next we express the spin operators in terms of the hard core boson operators in the
subspace of M bosons (i.e. M =

∑
n〈b†nbn〉):

H = −1

2

∑
n 6=m

Jzn−m(b†nbm +H.C.) +
∑
n 6=m

J⊥n−mb
†
nbnb

†
mbm + E′0(N,M)

where

Jzn =
J0

sin2(πn/N)
, J⊥n = (−1)n+1Jzn

and

E′0(N,M) = (
N

4
−M)

N−1∑
n=1

Jzn = J0
N2 − 1

3
(
N

4
−M)

In the last expression we have used

N∑
n=1

1

sin2(πn/N)
=

1

3
(N2 − 1)

which is a particular case of the general identity found by Haldane1

S00(J) =

N−1∑
n=1

zJn

(1− zn)(1− z−n)
=

1

12
(N2 − 1)− 1

2
J(N − J), z = e2πi/N , 0 ≤ J ≤ N

The ferromagnetic state, M = 0, has an energy equal to

EF0 ≡ E0(N, 0) = E′0(N, 0) = J0
N2 − 1

3

N

4
=
Jπ2

24
(N − 1

N
)

which grows linearly with the size of the systems and has a 1/N correction.
The one magnon state with momentum k is given by

|k〉 =
∑
n

eikn S−n |F 〉 =
∑
n

eikn b†n|0〉

It is not difficult to show that this is an eigenstate of H

H |k〉 = (EF0 + εmag(k))|k〉

where the magnon dispersion relation is

εmag(k) =
J

4
(k2 − π2), |k| ≤ π

In the AF situation, J > 0, this quantity is negative as in the AFH model. However the dependence of the momenta
is quadratic while in the latter model is cos k − 1. In Haldane’ s derivation the dispersion relation is K(K − 2π)/4.
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The difference, as compared with Shastry result is that in the latter the Hamiltonian has been V−transformed which
adds a momentum π to all the momenta, i.e. K = π + k.

The HS state with two magnon, M = 2, is given by

|ψ〉 =
∑
n1,n2

ψ(n1, n2)b†n1
b†n2
|0〉, ψ(n1, n2) = sin2(π(n1 − n2)/N)

Employing Haladane’ s identity for S00(J) one can show that this is an eigenstate state of H with eigenvalue

E0(N, 1) = EF0 +
Jπ2

2
(−1 +

4

N2
)

The case with M = 3 is already quite involved to prove. The basic identity which is needed is1

cot(θ1 − θ2) cot(θ2 − θ3) + (cyclic permutation of 1, 2, 3) = 1

The GS of the HS for general values of M ≤ N/2 is

E0(N,M) = EF0 + Jπ2M(
M2 − 1

3N2
− 1

4
)

which reproduces the previous results for M = 1 with k = 0 and M = 2. The minimun value of E0(N,M) in the
interval 0 ≤M ≤ N/2, corresponds to half filling

M =
N

2
→ EHS0 (N) ≡ E0(N,

N

2
) = −Jπ

2

24
(N +

5

N
)

Spin susceptibility

Let us add to the HS Hamiltonian a magnetic field h the the z-direction

H = HHS + h Sztot

The energy of a state with M magnons will be

E(N,M, h) = E0(N,M) + h(
N

2
−M)

Minimizing this energy respect toM , gives the magnetic field h = h(m) as a function of the magnetizationm = M/N

dE(N,M, h)

dM
= 0 =⇒ h(m) =

dE0(N,M)

dM
= Jπ2

(
m2 − 1

4

)
The spin susceptibility at zero temperature is defined as

χ(h) =
dm

dh
=

(
dh

dm

)−1

=
1

2Jπ2m

which at zero field h = 0, i.e. m = 1/2 is

χ(0) =
1

Jπ2

This value coincides with the spin susceptibility of the AFH chain.
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Pair correlation function

The pair correlation function of the state

|ψ〉 =
∑

n1,...,nM

ψ(n1, . . . , nM )b†n1
. . . b†nM |0〉

is defined as

〈b†n bm〉 =
〈ψ|b†n bm|ψ〉
〈ψ|ψ〉

and it coincides with the spin correlator 〈S−n S+
m〉, and its expression is given by

〈b†n bm〉 = M(M − 1)C−1/2
∑

n2,...,nM

ψ(n, n2, . . . , nM )ψ(m,n2, . . . , nM )

where C is the normalization of ψ. The sum over the integers can be quite complicated to do directly however
one can replace these sums by integrals and the use the results obtained by Sutherland of the pair correlator in the
continuous bose model. To explain why this happens, let us consider the determinant form of the wave function that
we obtained earlier:

ψ(n1, . . . , nM ) = eiπ
∑
i ni |det(eikinj )|2

where

kn =
2π

N
(n+

1

2
), n = −N

4
, . . . ,

N

4
− 1, |kn| <

π

2

Expanding the determinants one has

det(eikinj ) =
∑
P∈SM

εP e
i(kP1n1+···+kPMnM )

where P are the permutations of the symmetric group SM and εP the their sign. The wave function is then

ψ(n1, . . . , nM ) = eiπ
∑
i ni

∑
P,Q∈SM

εP εQ ei((kP1−kQ1)n1+···+(kPM−kQM )nM )

and

ψ(n, n2, . . . , nM )ψ(m,n2, . . . , nM ) = eiπ(n+m)
∑
P,Q,P ′,Q′∈SM εP εQ εP ′ εQ′

×ei[(kP1−kQ1)n+(kP ′1−kQ′1)m+(kP2−kQ2+kP ′2−kQ′2)n2+···+(kPM−kQM+kP ′M−kQ′M )nM ]

The pair correlator involves M − 1 sums over the integers n2, . . . , nM of the form

N∑
n=1

eiKn, K = ka − kb + kc − kd =
2π × integer

N
, |K| < 2π,

where the bound on K follows from the condition |k| < π/2. It is then a simple matter to check that under these
conditions
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N∑
n=1

eiKn =

{
N, if K = 0
0, if K 6= 0

where the zero result follows from the eq. eiKN = 1. On the other hand, treating n as a continous variable between
(0, N) one has

∫ N

0

dn eiKn =

{
N, if K = 0
0, if K 6= 0

Hence, to compute the pair correlator one can make the replacement

N∑
n=1

→
∫ N

0

dn

so that the real-space (N point) correlations of the lattice model are identical to those of the equivalent state of the
continuum Bose gas model.

Haldane considered a more general form of the wave function

ψ(n1, . . . , nN ) ∝ e2πiJ
∑
i ni/N

N/2∏
i<j

[
sin

(
π(ni − nj)

N

)]2

where J belongs to the range

M − 1 ≤ J ≤ N −M + 1

The case considered by Shastry corresponds to J = N/2. In the thermodynamic limit with

M

N
→ m,

J

N
→ j, m < j < 1−m

the longitudinal and transverse spin correlations

C‖(x) = 〈Szn Szn′〉 − 〈Szn〉〈 Szn′〉
C⊥(x) = 〈Sxn Sxn′〉 = 〈Syn S

y
n′〉

with x = 2π(n− n′), are given by

C‖(x) =
m

x
Si(mx) cos(mx)− 1

x2
[Si(mx) + sin(mx)] sin(mx)

C⊥(x) =
m

x
Si(mx) cos(jx)

where Si(x) is the sine integral. The dominant decay is algebraic with an exponent η = 1, which is independent of
m and without logaritmic corrections. These two features are different from the AFH model where the exponent η
is renormalized for m 6= 1/2. The absence of log corrections indicates that there is no a backscattering process (spin
umkalpp), which are associated to a marginal irrelevant operator of the fixed point WZW model. In this regard it is
interesting to observe that a Hamiltonian with NN and NNN couplings where the backscattering term is also absent
is

HJ1,J2 =
∑
i

(J1
~Si · ~Si+1 + J2

~Si · ~Si+2),
J2

J1
∼ .241
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In the HS model the ratio of NN and NNN couplings is rather close to that value

J(2)

J(1)
=

(
sin(π/N)

sin(2πN)

)2

=
1

4 cos2(πN)
→ 1

4

Following Haldane, the states with M ≤ J ≤ N−M are states at the top of their multiplets, i.e. Sz = S = N/2−M .
If one takes m = j = 1/2 the correlations become isotropic

〈San Sb0〉 = δa,b
(−1)n

4πn
Si(πn)

and coincide with the result obtained by Gebhard and Vollhardt14.

The trigonometric Sutherland model

The Haldane-Shastry model is closely related to the Sutherland model of M particles moving on a circle of length
N and Hamiltonian

HSuth = −
M∑
i=1

∂2

∂x2
i

+ 2
( π
N

)2

λ(λ− 1)
∑
i<j

1

sin2(π(xi − xj)/N

where x1, . . . , xM are the positions of the coordinates of the particles.
The GS of this Hamiltonian is

ψ(x1, . . . , xM ) =

M∏
i<j

[
sin

(
π(xi − xj)

N

)]λ
which for λ = 2 is a continuous version of the HS wave function, except for the Marshall sign which is absent in

the later wave function. To prove this result let us first consider the derivative

∂

∂xn
ψ =

λπ

N

∑
m( 6=n)

cot
πxn,m
N

ψ

where xn,m = xn − xm. Taking another derivative and summing over n one finds

∆ψ

ψ
= −λ

( π
N

)2 ∑
n 6=m

1

sin2(πxn,m/N)

+

(
λπ

N

)2∑
n

∑
m( 6=n)

∑
l( 6=n)

cot
πxn,m
N

cot
πxn,l
N

The last term we split as

∑
n

∑
m( 6=n)

∑
l(6=n)

=
∑
n 6=m

δl,m +
∑

n 6=m6=l 6=n

obtaining

∆ψ

ψ
= −λ

( π
N

)2 ∑
n 6=m

1

sin2(πxn,m/N)
+

(
λπ

N

)2 ∑
n6=m

cot2 πxn,m
N

+

(
λπ

N

)2 ∑
n 6=m 6=l 6=n

cot
πxn,m
N

cot
πxn,l
N
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Using the identity (θi,j = θi − θj)

cot θ1,2 cot θ2,3 + cot θ2,3 cot θ3,1 + cot θ3,1 cot θ1,2 = 1

one gets

∑
n 6=m 6=l 6=n

cot
πxn,m
N

cot
πxn,l
N

= −M(M − 1)(M − 2)

3

while

∑
n 6=m

cot2 πxn,m
N

=
∑
n 6=m

1

sin2(πxn,m/N)
−M(M − 1)

Hence

∆ψ

ψ
= −λ(λ− 1)

( π
N

)2 ∑
n 6=m

1

sin2(πxn,m/N)
−
(
λπ

N

)2
M(M2 − 1)

3

Which shows that

HSuth ψ = E0(N,M, λ) ψ

with

E0(N,M, λ) =

(
λπ

N

)2
M(M2 − 1)

3

Excitations

To find the excitations of the Sutherland Hamiltonian one make the ansatz

ψ(x1, . . . , xM ) = Φ(x1, . . . , xM ) ψ0(x1, . . . , xM )

where ψ0 is the GS wave function derived above and Φ a trial wave function which one wants to find. Let us first
make the change of variables

θj =
2πxj
N

, 0 ≤ θj ≤ 2π

The Hamiltonian can be written in this variables as

H =

(
2π

N

)2
− M∑

i=1

∂2

∂θ2
i

+
λ(λ− 1)

2

∑
i<j

1

sin2(θi − θj)/2


The Schroedinger eq.

Hψ = E ψ
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after replacing the ansatz ψ = Φ ψ0 and using that ψ0 is an eigenstate of H, becomes

H ′Φ = ε Φ, ε =

(
N

2π

)2

(E − E0)

where

H ′ = −
M∑
i=1

∂2

∂θ2
i

− 2

M∑
i=1

∂ logψ0

∂θi

∂

∂θi

which can be written as

H ′ = H1 +H2

H1 = −
M∑
i=1

∂2

∂θ2
i

H2 = −iλ
∑
j>l

eiθj + eiθl

eiθj − eiθl

(
∂

∂θj
− ∂

∂θl

)
The operator H ′ in general will not be hermitean. To solve this eq. one first defines a basis of plane waves

characterized by a collection of integers {nj}

{nj} = {n1, n2, . . . , nM}, n1 ≤ n2 · · · ≤ nM

Φ{nj} =
∑
P∈SM

M∏
j=1

einjθPj = ei(n1θ1+···+nMθM ) + Permutations θj

This functions is a symmetric polynomial in the variables zj = eiθj of degree deg Φ =
∑
j nj . The action of H1 on

this basis is diagonal

H1Φ{nj} = ε1 Φ{nj}, ε1 =

M∑
j=1

n2
j

while the action of H2 will be shown below to be upper triangular. Let’ s act with H2 on the wave function
{n1, . . . ,m, . . . , n, . . . , nM} and consider the term

A ≡ −iλei
∑′ θjnPj eiθ+eiφ

eiθ−eiφ

(
∂
∂θ −

∂
∂φ

)
(ei(nθ+mφ) + ei(mθ+nφ))

= λ(n−m)ei
∑′ θjnPj eim(θ+φ) eiθ+eiφ

eiθ−eiφ (eikθ − eikφ)

where k = n−m ≥ 0. The prime over the sum indicates the exclusion of the terms corresponding to θ and φ. Next
one uses the fundamental identity

(eiθ + eiφ)
eikθ − eikφ

eiθ − eiφ
= (eiθ + eiφ)ei(k−1)θ 1− eik(φ−θ)

1− ei(φ−θ)

= (eiθ + eiφ)ei(k−1)θ (1 + ei(φ−θ) + · · ·+ ei(k−1)(φ−θ)) = eikθ + eikφ + 2

k−1∑
l=1

ei[(k−l)θ+lφ]

to get
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A = λ(n−m) ei
∑′ θjnPj

[
ei(nθ+mφ) + ei(mθ+nφ) + 2

n−m−1∑
l=1

ei[(n−l)θ+(m+l)φ]

]

The first two terms contribute to the energy of the state as

ε2 = λ
∑
l>j

(nl − nj) = −λ
M∑
l=1

nl (M + 1− 2l)

The third term corresponds to a sum of vectors labelled by different values of the integers {nj}, where two of them,
m ≤ n, have been shifted as m → m + l, n → n− l. The factor of 2 accounts for the permutation of these integers.
This motivates the definition of squeezing. A partition {n′j} is obtained by squeezing a partition {nj} if

{n1, . . . , nj , . . . , nk, . . . , nM} → {n1, . . . , nj′ , . . . , nk′ , . . . , nM}

where the pair nj < nk has been changed as

nj → nj′ = nj + l, nk → nk′ = nk − l, 0 ≤ l ≤ nk − nj
2

An example with l = 1 is

n1 n2 n3 n4 n5

1 3 4 6 9
↑ +1 ↑ −1

=⇒
n1 n2 n3 n4 n5

1 4 4 5 9

Notice that after que squeezing the integers may not be in proper order. Two partitions related as above imply
that 〈n′|H2|n〉 pick up a term 2λ(nk − nj). The squeezing operation implies

{nj}
squeezing→ {n′j} =⇒ 〈n′|H2|n〉 6= 0 and 〈n|H2|n′〉 = 0

The squeezing allows one to introduce an ordering of the basis

{nj} > {n′j} if {nj}
squeezing→ {n′j}

so that H ′ becomes upper triangular

H ′ =


∗ ∗ ∗ . . .
0 ∗ ∗ . . .
0 0 ∗ . . .
...

...
...


The diagonal elements give the eigenvalues of H ′, namely ε = ε1 + ε2 with

ε =

M∑
j=1

n2
j + λ

∑
l>j

(nl − nj) =

M∑
j=1

(n2
j − λnj(M + 1− 2j)

Sutherland also gives an algorithm to find the eigenvectors of H ′.
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FIG. 1: Spectrum of the HS Hamiltonian for (N,M) = (6, 3) and (8,4). N is the number of sites and M the number of down
spins, idim is the dimension of the Hilber space.
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FIG. 2: Spectrum of the AFH model with NN interactions.
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FIG. 3: Spectrum of the J1 − J2 AFH model with J2/J1 = 1/4.

Spectrum of the Heisenberg, HS and J1 − J2 models

Excitations of the HS model from the Sutherland model: from discrete to continuum

Let us write the Sutherland Hamiltonian H ′ using complex variables

zj = eiθj , zj
∂

∂zj
= −i ∂

∂θj
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We get H ′ = H1 +H2 with

H1 =

M∑
j=1

(
zj

∂

∂zj

)2

H2 = λ
∑
j>l

zj + zl
zj − zl

(
zj

∂

∂zj
− zl

∂

∂zl

)
On the other hand, using

1

sin2(π(i− j)/N)
= −4

zizj
(zi − zj)2

, zj = e2πij/N

one can write the HS Hamiltonian as

H =
Jπ2

2N2

∑
i 6=j

~Si · ~Sj
sin2(π(i− j)/N)

= −2Jπ2

N2

∑
i 6=j

zizj
(zi − zj)2

~Si · ~Sj

and we split it as

H =
2Jπ2

N2
(H̃1 + H̃2)

H̃1 = −
∑
i 6=j

zizj
(zi − zj)2

Szi S
z
j

H̃2 = −
∑
i 6=j

zizj
(zi − zj)2

1

2

(
S+
i S−j + S−i S+

j

)
Now let us consider the wave function

ψ = φ ψ0

where ψ0 is the GS of the HS Hamiltonian. We want to consider the action of these operators on the state ψ. First
of all recall that the basis we are working with is

|n1, . . . , nM 〉 = S−n1
. . . S−nM |F 〉

where |F 〉 is the ferromagnetic state |F 〉 = | ↑, . . . , ↑〉. The operator H̃1 is diagonal in these basis, hence

〈n1, . . . , nM |H̃1|φψ0〉 = φ(n1, . . . , nM ) 〈n1, . . . , nM |H̃1|ψ0〉

To compute the action of H̃2 on ψ consider the term

S−i S+
nj |n1, . . . , nM 〉 = S−n1

. . . S−i . . . S
−
nm |F 〉 = |n1, . . . , nj−1, i, nj+1, . . . nM 〉

where i 6= nj . This implies that

〈n1, . . . , nM |S+
i S−nj |ψ〉 = 〈n1, . . . , nj−1, i, nj+1, . . . nM |ψ〉 = ψ(n1, . . . , nj−1, i, nj+1, . . . nM )

and hence
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〈n1, . . . , nM |H̃2|φψ0〉 =

= −
∑M
j=1

∑N
i 6=nj

ziznj
(zi−znj )2 φ(n1, . . . , nj−1, i, nj+1, . . . nM )ψ0(n1, . . . , nj−1, i, nj+1, . . . nM )

To go further one needs the following identity

N∑
n( 6=m)

znzm
(zn − zm)2

P (zn) =

{
−1

2
(zm∂zm)2 +

N

2
zm∂zm −

N2 − 1

12

}
P (zm)

where P (zn) is a polynomial of degree < N in every variable. This formula can be checked using the Haldane
formula for S00 with zn = zn, z = e2πi/N . Now, since

ψ0 =

M∏
i<j

(zni − znj )2
M∏
i=1

zni

each variable zni appears to a power which is less or equal to 2(M − 1) + 1, so that the degree of φ must be less or
equal to N − 2M to guarantee that deg (φψ0) ≤ N − 1, in which case we can apply the later formula, which leads to

N∑
i(6=nj)

ziznj
(zi − znj )2

ψ(z′s) =

{
−1

2
(znj∂znj )2 +

N

2
znj∂znj −

N2 − 1

12

}
ψ(z′s)

and so

〈n1, . . . , nM |H̃2|φψ0〉 = −
M∑
j=1

{
−1

2
(znj∂znj )2 +

N

2
znj∂znj −

N2 − 1

12

}
φψ0

Applying the Leibniz rule we get

〈n1, . . . , nM |H̃2|φψ0〉 = φ

M∑
j=1

{
1

2
(znj∂znj )2 − N

2
znj∂znj +

N2 − 1

12

}
ψ0

+ ψ0

M∑
j=1

{
1

2
(znj∂znj )2 − N

2
znj∂znj + z2

nj

∂ logψ0

∂znj
∂znj

}
φ

After some algebra one finds

〈n1, . . . , nM |H̃2|φψ0〉 = 〈n1, . . . , nM |H̃2|ψ0〉+ 〈n1, . . . , nM |H̃ ′2|φ0〉

where

H̃ ′2 =

M∑
j=1

1

2
(znj∂znj )2 +

∑
j>l

znj + znl
znj − znl

(
znj

∂

∂znj
− znl

∂

∂znl

)
+ (M − N

2
)

M∑
j=1

znj∂znj

The state ψ0 is an eigenstate of H1 +H2 with eigenvalue

(H1 +H2)|ψ0〉 = ε0(M)|ψ0〉, ε0(M) =
1

6
M(4M2 − 1)− 1

2
M2N



22

On the other hand using Sutherland solution for λ = 2 with φ a homogenous polynomial

φ =
∑
P∈SM

M∏
i=1

z
rP (i)
ni , 0 ≤ r1 ≤ r2 · · · ≤ N − 2M

one finds that

H̃ ′2|φ〉 =

 M∑
j=1

1

2
(r2
j − 2rj(M + 1− 2j)) + (M − N

2
)rj

 |φ〉
And the total energy of the state ψ is

E =
2Jπ2

N2

ε0(M) +

M∑
j=1

1

2
(r2
j − 2rj(M + 1− 2j)) + (M − N

2
)rj


A more convenient form to write this expression is using the so called quasimomenta

mj = rj + 2j − 1, 0 < mj < N

so that

E({mj}) =
2Jπ2

N2

M∑
j=1

1

2
mj(mj −N) =

Jπ2

N2

M∑
j=1

mj(mj −N)

Notice that in units J(π/N)2 the energies of the states are integers!! Other normalization is in units of J(2π/N)2,
where the energies goes as 1

4mi(mi−N). The previous energy is measured with the convention that the fully polarised
state has zero energy. Otherwise we have to add the term

EF0 =
Jπ2

24N2
N(N2 − 1)

The integers mj (j = 1, . . . ,M) satisfy the following constraint

mj+1 −mj = rj+1 − rj + 2 =⇒ mj+1 ≥ mj + 2

In the GS , i.e. M = N/2 (N even), these numbers are

GS : (m1,m2, . . . ,mM ) = (1, 3, . . . , N − 1)

The momenta defined as

ki =
2πmi

N
, 0 < ki < 2π

satisfy the following BAE

kiN = 2πIi + π

M∑
j=1

sign(ki − kj)
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where Ii are a set of distinct quantum numbers that take the values in the range I0 + 1, I0 + 2, . . . , IM+1− 1 where

I0 =
M − 1

2
, IM+1 = N − I0

To show this, let us write the BAE as

2mi = 2Ii +

M∑
j=1

sign(mi −mj)

Using the identity

M∑
j=1

sign(mi −mj) = 2i− 1−M

one gets

2mi = 2Ii + 2i− 1−M

The conditions of the m′is imply

m1 ≥ 1 =⇒ I1 ≥
M + 1

2
= I0 + 1

mM ≤ N − 1 =⇒ IM ≤ N −
M + 1

2
= IM+1 + 1

mj+1 −mj ≥ 2 =⇒ Ij+1 − Ij ≥ 1

The total number of possible I ′s is given by

NI = IM+1 − I0 − 1 = N −M

If we define the number of spinons Nsp as

Sz =
N

2
−M =

Nsp
2

we get

NI = M +Nsp

Each excited state is specified by the choice of M values of the I ′s, hence the total number of excited states
constructed above is given by

g(M,Nsp) =
(M +Nsp)!

M ! Nsp!

In particular, for the GS with N even one has g(M = N/2, 0) = 1, so that the state is unique. However if N is
odd, one must have at least one spinon such that g(M, 1) = M + 1. Notice that the number of one spinon states is a
half of the number of sites. This implies that the spinons are semions, which are particles with a statistics between
bosons and fermions.
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An example: N = 6

The numerical diagonalization of the Hamiltonian gives the following spectrum of eigenvalues (the state M = 0 has
zero energy). The number is parenthesis give the degeneracy (0 means that there is not such a state in the spectrum).

M = 3, E = −19(1), −16(2), −14(2), −13(4), −10(1), −9(3), −8(4), −5(2), 0(1)

M = 2, E = −19(0), −16(1), −14(2), −13(2), −10(1), −9(2), −8(4), −5(2), 0(1)

M = 1, E = −19(0), −16(0), −14(0), −13(0), −10(0), −9(1), −8(2), −5(2), 0(1)

M = 0, E = −19(0), −16(0), −14(0), −13(0), −10(0), −9(0), −8(0), −5(0), 0(1)

The total number of states, taking into account those with Sz < 0 is 26 = 64 and they are organized into SU(2)
multiplets as follows

(
1

2

)⊗ 6

= 0(5)⊕ 1(9)⊕ 2(5) +⊕3(1)

These states can be obtained from the previous construction:

M Ij Occupation m′s E spin deg

3 (2,3,4) (1,1,1) (1,3,5) -19 0 1

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (1,1,0,0) (1,3) -14 1 3

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (1,0,1,0) (1,4) -13 1

2 ⊗
1
2 = 0⊕ 1 1 + 3

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (1,0,0,1) (1,5) -10 1 3

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (0,1,1,0) (2,4) -16 1

2 ⊗
1
2 = 0⊕ 1 1 + 3

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (0,1,0,1) (2,5) -13 1

2 ⊗
1
2 = 0⊕ 1 1 + 3

2 ( 3
2 ,

5
2 ,

7
2 ,

9
2 ) (0,0,1,1) (3,5) -14 1 3

1 (1,2,3,4,5) (1,0,0,0,0) (1) - 5 2 5

1 (1,2,3,4,5) (0,1,0,0,0) (2) - 8 1
2 ⊗

3
2 = 1⊕ 2 3 + 5

1 (1,2,3,4,5) (0,0,1,0,0) (3) - 9 1⊗ 1 = 0⊕ 1⊕ 2 1 + 3 + 5

1 (1,2,3,4,5) (0,0,0,1,0) (4) - 8 1
2 ⊗

3
2 = 1⊕ 2 3 + 5

1 (1,2,3,4,5) (0,0,0,0,1) (5) - 5 2 5

0 ( 1
2 , . . . ,

11
2 ) (0,0,0,0,0,0) - 0 3 7

Table .- Eigenstates of the HS Hamiltonian for N = 6.

HS with dimerization

If we add a dimerization to the model the energies break as (change the sign)

M = 3, |E| = 19(1), 16(1 + 1), 14(2), 13(2 + 2), 10(1), 9(1 + 2), 8(2 + 2), 5(2), 0(1)

M = 2, |E| = 19(0), 16(1), 14(2), 13(2), 10(1), 9(1 + 1), 8(2 + 2), 5(2), 0(1)

M = 1, |E| = 19(0), 16(0), 14(0), 13(0), 10(0), 9(1), 8(2), 5(2), 0(1)

M = 0, |E| = 19(0), 16(0), 14(0), 13(0), 10(0), 9(0), 8(0), 5(0), 0(1)

Missing states

The states constructed through the maping onto the Sutherland model are the top of their spin multiplets, i.e.
S = Sz. This can be seen acting with S+. Acting with S− we can recover the rest of the multiplet. The total number
of multiplets with Sz = N/2−M is g(M,Nsp) which is equal or smaller than the number of irreps
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g(M,Nsp) =

(
N −M
M

)
≤

(
N

M

)
−

(
N

M − 1

)
, M ≤

[
N

2

]
The missing states must be of non polynomial form. Haldane observed from numerical diagonalization that the

”missing” states have energies already contained in the set of energies of polynomial-type states. This implies that
there is a degeneracy beyond the regular SU(2), which also suggest the existence of a hidden symmetry generated
by operators commuting with the Hamiltonian. This symmetry is given by the Yangian. Before constructing the
Yangian Haldane found an empirical rule to explain the whole spectrum using the spinons. The rule is the following.

Using the the occupancy description of the I ′s quantum numbers, one associates an isolated 0 with a spin 1/2 state.
If there are n consecutive 0’ s separated by 1’ s one associate a spin S = n/2. The total spin is obtained by the tensor
product decomposition of this spins, e.g.

(1, 0, 1, 0)→ 1

2
⊗ 1

2
= 0⊕ 1, (1, 0, 0, 1)→ 2, (0, 0, 1, 0, 0)→ 1⊗ 1 = 0⊕ 1⊕ 2

In this manner one is able to obtained the whole Hilbert space of states.

The Yangian and conserved quantities

In 1990 Inozemtsev found two invariants commuting with the HS Hamiltonian. At third order they are given by

H3 =
∑
ijk

zizjzk
zijzjkzki

~Si · ~Sj × ~Sk

where the prime indicates the exclusion of coincident indices and zij = zi − zj . The other one is

I3 =
∑
i,j,k

′ (wij + wjk + wki) ~Si · ~Sj × ~Sk

∝ ~S ·

∑
i,j

wij~Si × ~Sj

 = ~S · ~Λ

where wij = (zi + zj)/(zi − zj). ~Λ is called the rapidity vector. Indeed Λz measures the total rapidity of the

polynomial type states, i.e.
∑
jmj . The operator ~Λ commutes with the Hamiltonian but not with ~S2. Both operators

~S and ~Lambda generates the so called Yangian Y2 Hopf algebra associated to the group SU(2). The highest weight
vectors of Y2 are the polynomial eigenstates constructed above. The missing states in the spectrum are obtained
applying the remaining generators of Y2.

CFT and the HS model

In reference21 the HS model is derived from the WZW model SU(2)k at level k = 1. The HS wave function is shown
to be proportional to the chiral conformal block of the primary fields of spin label j = 1/2 and conformal weights
h = 1/4. The fusion rules

φ0 × φ0 = φ0, φ0 × φ1/2 = φ1/2, φ1/2 × φ1/2 = φ0,

where φ0 is the primary field of the identity, show that there is only one conformal block at genus 0 for the N point
correlator (N even)

ψs1,...,sN (z1, . . . , zN ) = 〈φ1/2,s1(z1) . . . φ1/2,sN (zN )〉,
∑

si = 0

where si = ±1 is twice the third component of the spin. The HS Hamiltonian is derived from the KZ equation
satisfied by these conformal blocks.
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Derivation of the GS

Let us denote by ψ the conformal block of N primary fields of the SU(2)k=1 WZW model. The KZ eq. is

k + 2

2

∂

∂zi
ψ =

∑
j(6=i)

~Si · ~Sj
zi − zj

, ψ i = 1, . . . , N

Using vertex operators, the conformal block ψ is given by

ψ = χ
∏
i>j

(zi − zj)sisj/2

where χ is the Marshall sign factor. Using the conformal transformation z = ew, one can map the complex plane
into the cylinder where the conformal blocks becomes

ψcyl(w1, . . . , wN ) =

(
dw1

dz1

)−h
. . .

(
dwN
dzN

)−h
ψplane(z1, . . . , zN )

and h = 1/4 is the conformal weight of the spin 1/2 primary field. Expressing ψcyl in terms of the zi variables one
has

ψcyl(z1, . . . , zN ) =

N∏
i=1

z
1/4
i ψplane(z1, . . . , zN ) = χ

∏
i>j

(zi − zj)sisj/2
∏
i

z
1/4
i

The KZ eq. for this wave function can be written as

3zi
∂

∂zi
ψ =

∑
j( 6=i)

wij ~Si · ~Sj , ψ i = 1, . . . , N

with

wij =
zi + zj
zi − zj

We skip from now one the index cyl. We shall show that ψ is an eigenstate of the HS Hamiltonian. Applying
directly the derivative one finds

zi
∂

∂zi
ψ =

1

2

∑
j( 6=i)

zi
zi − zj

sisj +
1

4

ψ =
1

2

∑
j(6=i)

(
zi

zi − zj
− 1

2

zi − zj
zi − zj

)
sisjψ

where we have used

∑
j(6=i)

sisj =
∑
j

sisj − 1 = −1,
∑
j

sj = 0

Simplifying the above expression one gets an abelian version of the KZ eq.

zi
∂

∂zi
ψ =

1

4

∑
j(6=i)

wij sisj ψ
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Taking another derivative one finds

(
zi

∂

∂zi

)2

ψ = −1

2

∑
j(6=i)

zizj
z2
ij

sisj ψ +
1

16

∑
j( 6=i)

∑
k(6=i)

wijwik sjsk ψ

where we have used s2
i = 1 and

zi
∂

∂zi
wij = −2zizj

z2
ij

Summing over i in the last expression one gets

∆ψ ≡
∑
i

(
zi

∂

∂zi

)2

ψ = −1

2

∑
i 6=j

zizj
z2
ij

sisj ψ +
1

16

∑
i

∑
j( 6=i)

∑
k(6=i)

wijwik sjsk ψ

The triple sum can be written as

∑
i

∑
j(6=i)

∑
k( 6=i)

=
∑
i 6=j

δjk +
∑
j 6=k

∑
i( 6=j,k)

so that

∆ψ = −1

2

∑
i 6=j

zizj
z2
ij

sisj ψ +
1

16

∑
i 6=j

w2
ij ψ +

1

16

∑
j 6=k

∑
i(6=j,k)

wijwik sjsk ψ

Exchanging i↔ k this becomes

∆ψ = −1

2

∑
i 6=j

zizj
z2
ij

sisj ψ +
1

16

∑
i 6=j

w2
ij ψ +

1

16

∑
i6=j

sisj
∑

k(6=i,j)

wkiwkj ψ

Next we use the identity

wkiwkj + wijwik + wjkwji = 1, i 6= j 6= k 6= i

To derive

∑
k( 6=i,j)

wkiwkj =
∑

k( 6=i,j)

(1 + wijwki − wijwkj) = N − 2 + wij
∑

k(6=i,j)

(wki − wkj)

= N − 2 + wij

∑
k(6=i)

wki − wji −
∑
k(6=j)

wkj + wij


and

∑
k(6=i,j)

wkiwkj = N − 2 + 2w2
ij + wij(ci − cj), ci ≡

∑
k(6=i)

wki

Plugging this eq. above we find
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∆ψ

ψ
= −1

2

∑
i 6=j

zizj
z2
ij

sisj +
1

16

∑
i 6=j

w2
ij +

1

16

∑
i6=j

sisj(N − 2 + 2w2
ij + wij(ci − cj))

= −1

2

∑
i 6=j

(
zizj
z2
ij

− 1

4
w2
ij

)
sisj +

1

16

∑
i6=j

w2
ij +

N − 2

16

∑
i 6=j

sisj +
1

16

∑
i 6=j

sisj wij(ci − cj)

=
1

8

∑
i 6=j

sisj +
N − 2

16

∑
i 6=j

sisj +
1

16

∑
i 6=j

w2
ij +

1

16

∑
i6=j

sisjwij(ci − cj)

= −N
2

16
+

1

16

∑
i 6=j

w2
ij +

1

16

∑
i 6=j

sisjwij(ci − cj)

where we have used

zizj
z2
ij

− 1

4
w2
ij = −1

4
,

∑
i 6=j

sisj = −N

From the abelian KZ equation we find

1

2

∑
i

cizi
∂

∂zi
ψ =

1

16

∑
i6=j

sisjwij(ci − cj)

So finally

(
∆− 1

2

∑
i

cizi
∂

∂zi

)
ψ =

−N2

16
+

1

16

∑
i 6=j

w2
ij

ψ

The operator on the LHS can also be computed using the KZ equation.

3zi
∂

∂zi
ψ =

∑
j( 6=i)

wij ~Si · ~Sj , ψ i = 1, . . . , N

Taking another derivative and following the same steps as before one finds

9 ∆ψ = −6
∑
i6=j

zizj
z2
ij

~Si · ~Sjψ +
∑
i6=j

w2
ij(
~Si · ~Sj)2ψ +

∑
i 6=j

∑
k(6=i,j)

wkiwkj(~Sk · ~Si)(~Sk · ~Sj)ψ

The following identities are needed

(~Si · ~Sj)2 =
3

16
− 1

2
~Si · ~Sj , i 6= j

(~Sk · ~Si)(~Sk · ~Sj) =
1

4
~Si · ~Sj +

i

2
~Sk · (~Si × ~Sj), i 6= j 6= k 6= i∑

i 6=j

~Si · ~Sj = −3

4
N

which finally lead to

∆ψ =

−2

3

∑
i 6=j

zizj
z2
ij

~Si · ~Sj +
1

48

∑
i 6=j

w2
ij −

N(N − 2)

48
+

1

36

∑
i 6=j

~Si · ~Sjwij(ci − cj)

ψ
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Similarly

1

2

∑
i

cizi
∂

∂zi
ψ =

1

12

∑
i6=j

~Si · ~Sjwij(ci − cj)ψ

Hence

[
∆− 1

2

∑
i

cizi
∂

∂zi

]
ψ =

−2

3

∑
i 6=j

(
zizj
z2
ij

+
1

12
wij(ci − cj)

)
~Si · ~Sj +

1

48

∑
i6=j

w2
ij −

N(N − 2)

48

ψ
Equating this with the previous eq. found from the abelian KZ eq. we arrive at

−
∑
i6=j

(
zizj
z2
ij

+
1

12
wij(ci − cj)

)
~Si · ~Sj ψ =

 1

16

∑
i 6=j

w2
ij −

N(N + 1)

16

ψ

In the case where zn = e2πin/N , the constants cn vanish and we recover the standard Haldane and Shastry with
translational invariances. Moreover we have found a generalization of the HS model for another choices of the HS
Hamiltonian.
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